

1 **Structural and functional basis of VLDLR receptor usage by Eastern equine encephalitis**
2 **virus**

3
4 Lucas J. Adams^{1*}, Saravanan Raju^{1*}, Hongming Ma^{1,2}, Theron Gilliland, Jr.³, Douglas S. Reed³,
5 William B. Klimstra³, Daved H. Fremont^{1,4,5}, and Michael S. Diamond^{1,2,4,6,7}

6
7 ¹Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
8 63110, USA.

9 ²Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
10 ³The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh,
11 Pittsburgh, PA 15261, USA.

12 ⁴Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
13 63110, USA.

14 ⁵Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St.
15 Louis, MO 63110, USA.

16 ⁶Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs,
17 Washington University School of Medicine, St. Louis, MO 63110, USA.

18 ⁷Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine,
19 Saint Louis, MO 63110, USA.

20 *These authors contributed equally

21 Address correspondence to: Michael S. Diamond, M.D. Ph.D., mdiamond@wustl.edu; Daved H.
22 Fremont, Ph.D., fremont@wustl.edu
23 Lead Contact: Michael S. Diamond, M.D. Ph.D., mdiamond@wustl.edu

24 **SUMMARY**

25 The very low-density lipoprotein receptor (VLDLR) is comprised of eight LDLR type A
26 (LA) domains and supports entry of distantly related Eastern equine encephalitis (EEEV) and
27 Semliki Forest (SFV) alphaviruses. Here, by resolving multiple cryo-electron microscopy
28 structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we
29 show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage different LA
30 domains simultaneously. However, no single LA domain is necessary or sufficient to support
31 efficient EEEV infection, highlighting complexity in domain usage. Whereas all EEEV strains
32 show conservation of two VLDLR binding sites, the EEEV PE-6 strain and other EEE complex
33 members feature a single amino acid substitution that mediates binding of LA domains to an
34 additional site on the E2 B domain. These structural and functional analyses informed the design
35 of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from
36 lethal challenge.

37

38 INTRODUCTION

39 Alphaviruses are arthropod-transmitted, single-stranded positive-sense RNA viruses of
40 the *Togaviridae* family. These enveloped viruses infect a range of vertebrate hosts, including
41 humans, non-human primates, horses, rodents, and birds, and have been categorized as “Old
42 World” or “New World” based on geographic origins.^{1,2} Old World alphaviruses include
43 Chikungunya (CHIKV), Ross River (RRV), Mayaro (MAYV), O’nyong-nyong (ONNV), and
44 Semliki Forest (SFV) viruses, many of which generally cause acute debilitating arthritis and
45 chronic arthralgia in some patients.³ New World alphaviruses include Eastern (EEEV),
46 Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, which cause
47 neurological disease with high rates of morbidity, mortality, and neurological sequelae.⁴ EEEV,
48 the most pathogenic of the encephalitic alphaviruses, causes sporadic outbreaks across North
49 America, with case fatality rates exceeding 30% in hospitalized patients.^{5,6} Though naturally
50 transmitted by mosquitoes, encephalitic alphaviruses also can be spread via aerosolization and
51 have been weaponized in the past.⁷⁻¹¹ At present, there are no approved countermeasures for any
52 alphavirus infection.¹²

53 The mature alphavirus virion is ~70 nm in diameter and composed of glycoproteins E1
54 and E2, which dimerize, and an internal capsid protein that packages the RNA genome. The
55 virion exhibits $T = 4$ icosahedral symmetry with 240 E1/E2 heterodimers arranged as 80 trimeric
56 spikes on icosahedral three-fold ($i3$, $n = 20$) and quasi-threefold ($q3$, $n = 60$) axes of symmetry.
57 Each asymmetric unit ($n = 60$) consists of a complete $q3$ trimer and a single $i3$ E1/E2
58 heterodimer.^{13,14} Within each heterodimer, the E2 glycoprotein is preferentially exposed and
59 shields the majority of the E1 glycoprotein from solvent, including the conserved fusion loop
60 required for escape from the endosome and nucleocapsid penetration into the cytoplasm.¹⁵⁻¹⁷ The

61 B domain of E2 is most distal from the viral membrane, forming the three vertices of the trimeric
62 spike, and the E2 A domain is positioned at the axial interface of the trimer. The E2 A and B
63 domains are the principal targets of neutralizing antibodies.¹⁸⁻²⁶

64 A key initial step in the alphavirus infection cycle is engagement with host receptors that
65 promote attachment and entry into cells.²⁷ While virus binding to cells is assisted by interactions
66 with attachment factors such as heparan sulfate proteoglycans,²⁸⁻³⁶ specific, proteinaceous
67 receptors enable efficient cell entry. For example, the immunoglobulin (Ig)-like domain
68 containing molecule MXRA8 is a receptor for several members of the Semliki forest virus (SFV)
69 complex (e.g., CHIKV, RRV, MAYV, and ONNV),³⁷⁻³⁹ and the low-density lipoprotein receptor
70 (LDLR)-related family member LDLRAD3 is a receptor specifically for VEEV.⁴⁰ Cryo-electron
71 microscopy (cryo-EM) reconstructions of MXRA8 bound to CHIKV and LDLRAD3 bound to
72 VEEV revealed that these unrelated receptors bind their respective viruses within an analogous
73 “cleft” formed by neighboring E1/E2 heterodimers within the trimeric spike.⁴¹⁻⁴⁴ As MXRA8
74 and LDLRAD3 are not used by all alphaviruses, the existence of additional receptors for other
75 family members was postulated. Indeed, a recent study identified the related proteins VLDLR
76 and ApoER2 (encoded by *LRP8*) as receptors for EEEV, SFV, and to a lesser extent for Sindbis
77 virus (SINV).⁴⁵ For VLDLR, the ligand binding domain (LBD) comprised of eight LDLR type A
78 (LA) repeats was necessary and sufficient to mediate infection, and the interaction of VLDLR
79 LA domains with a single site on SFV E1 domain III was recently reported.⁴⁶ However, the
80 mechanism by which EEEV engages VLDLR has not been determined.

81 Here, we characterize multiple cryo-EM structures of full-length VLDLR and VLDLR
82 fragments in complex with EEEV virus-like particles (VLPs). This analysis reveals a distinct
83 mode of interaction compared to SFV. For EEEV strain PE-6, multiple different VLDLR LA

84 domains can bind to three distinct sites on the virus: a cleft formed by E1/E2 heterodimers, a
85 shelf on the E2 A domain, and a separate site on the lateral surface of the E2 B domain. Any one
86 of these three LA domain-binding sites is dispensable for efficient, VLDLR-dependent infection
87 by EEEV PE–6. Although critical basic residues mediating interaction with VLDLR in the E1/E2
88 cleft and the E2 A domain site are conserved across all analyzed EEEV strains, the B domain
89 site, which uses residue K206, is uniquely present in EEEV PE–6 and a few other EEE complex
90 strains, enabling enhanced affinity and versatility of VLDLR domain usage. Together, our data
91 establish the principal modes of VLDLR LA domain engagement with different binding sites on
92 EEEV. Using this knowledge, we developed a VLDLR LA(1–2)-Fc decoy receptor that
93 neutralizes EEEV infection and protects mice against lethal EEEV challenge by an aerosol route.

94 **RESULTS**

95 *Structure of EEEV in complex with full-length VLDLR.* The ligand binding ectodomain
96 (LBD) of VLDLR features eight cysteine-rich LDLR class A (LA) repeats and is necessary and
97 sufficient to mediate infection by EEEV.⁴⁵ To elucidate the structural basis for recognition of
98 VLDLR by EEEV, we reconstructed EEEV VLPs (strain PE-6) alone or in complex with full-
99 length VLDLR via cryo-EM (**Fig S1, S2A-B, and Table S1**), achieving respective resolutions of
100 3.78 Å and 4.75 Å with icosahedral symmetry imposed. In agreement with previous EEEV VLP
101 or virus structures,^{47,48} the EEEV VLP exhibited $T = 4$ icosahedral symmetry with 80 trimeric
102 spikes composed of E1/E2 heterodimers (**Fig 1A, top panel**). Additional densities consistent in
103 size with LA repeats were evident in the VLDLR-bound structure (**Fig 1A, bottom panel**). To
104 orient the VLDLR LA domains within these densities, we performed focused refinement of the
105 asymmetric unit (ASU), generating apo and bound structures at 2.86- and 3.89-Å resolution,
106 respectively (**Fig 1B**).

107 The ASU of the EEEV-VLDLR complex featured connected densities in the cleft formed
108 between E1/E2 heterodimers and on the slanted shelf of the E2 A domain, as well as a third,
109 lower-resolution density on the outward-facing side of the E2 B domain and E1 domain II.
110 Although this structure did not allow unambiguous assignment of specific LA domains, each LA
111 domain was oriented clearly with conserved calcium-coordination sites proximal to residues
112 K156 (cleft), K231/K232 (A domain), and K206 (B domain) of EEEV E2 (**Fig 1C**). This
113 reconstruction suggests a binding strategy analogous to that observed for SFV and VLDLR, in
114 that a basic residue (K345 of SFV E1) engages a conserved aromatic residue (*e.g.*, tryptophan
115 [Trp]) and negatively-charged, calcium-coordinating residues of the LA domain.⁴⁶ However, in
116 contrast to SFV, which engages VLDLR via a single site on E1 domain III, our structure

117 suggests that EEEV uses three distinct sites on the viral glycoproteins for concomitant and/or
118 redundant use of VLDLR LA domains to mediate binding. LA domain densities were not seen
119 near domain III of EEEV E1.

120 ***Mapping of LA domains recognized by EEEV.*** To assess the role of each LA domain in
121 mediating EEEV infection, we generated domain-swapped variants of VLDLR with the LA1
122 domain of the related molecule, LDLRAD3, a receptor for VEEV (**Fig 2A and S3A**) based on an
123 approach used to map receptor domain usage of adeno-associated virus.⁴⁹ Importantly, the LA1
124 domain of LDLRAD3 does not support infection by EEEV.^{40,45} We transduced K562
125 erythroleukemic cells, which lack endogenous VLDLR expression and are non-permissive to
126 EEEV (**Fig S3B**), with N-terminally Flag-tagged constructs in which a single LA repeat of
127 VLDLR was replaced with LDLRAD3-LA1 and then confirmed cell surface expression by flow
128 cytometry (**Fig S3C**). To assess infection at a lower biosafety containment level, we used an
129 established Sindbis virus (SINV) chimeric GFP reporter virus, in which the structural genes of
130 SINV are replaced with those of EEEV (SINV-EEEV; PE-6 strain) (**Fig S3D**). Unexpectedly,
131 infection was supported by all chimeric constructs, suggesting functional redundancy of at least
132 some of the VLDLR LA domains (**Fig 2B**). As an additional control, we replaced the LBD of
133 VLDLR with LDLRAD3 (LA1–LA3); this chimera did not support infection of K562 cells by
134 EEEV (**Fig 2B**) but did promote VEEV infection (**Fig S3E**), which indicates that LDLRAD3 LA
135 domains are unable to functionally “stand-in” for VLDLR LA domains. These results suggest
136 multiple LA domains can bind to EEEV in a redundant fashion and/or no single site is necessary
137 to support infection.

138 We next tested N-terminally truncated LA domain variants of VLDLR on K562 cells for
139 their ability to support SINV-EEEV PE-6 infection. After confirming equivalent cell surface

140 expression of the different proteins (**Fig 2C and S3F**), we observed that LA(2–8) or LA(3–8)
141 supported SINV-EEEV PE–6 infection at levels similar to parental VLDLR, whereas partial
142 reductions of infection were seen with cells expressing LA(4–8) or LA(5–8) (**Fig 2D**). However,
143 K562 cells expressing LA(6–8) showed substantially reduced SINV–EEEV infections, and those
144 expressing LA(7–8), LA8, and Δ LBD failed to support infection (**Fig 2D**); thus, LA7 and/or LA8
145 alone cannot support infection in this context. To identify the LA domains that are functionally
146 relevant for EEEV infectivity, we expressed individual LA domains in the context of the
147 VLDLR Δ LBD backbone with an N-terminal Flag-tag (**Fig 2E and S3G**). After transducing
148 cells, we sorted for similar levels of Flag-expression of all constructs relative to parental VLDLR
149 (**Fig S3H**) and then inoculated them with SINV-EEEV. Expression of LA1, LA2, LA3, LA5, or
150 LA6 on the cell surface promoted infection, albeit much less efficiently than parental VLDLR,
151 whereas LA4, LA7, and LA8 did not support SINV-EEEV PE–6 infection above background
152 (**Fig 2D and F**). These results demonstrate that no single LA domain can support infection as
153 efficiently as the parental 8 LA-domain containing protein, suggesting a requirement for use of
154 multiple LA domains as observed in our structural data.

155 To corroborate these experiments, we generated single LA-domain Fc fusion proteins and
156 evaluated them for binding to EEEV VLPs using biolayer interferometry (BLI) (**Fig S4A**). We
157 first validated the specificity of the binding assay by immobilizing VLDLR-LBD-Fc (**Fig S4B**)
158 or LDLRAD3-LA1-Fc⁴⁰ on anti-human Fc biosensors. As expected, pins coated with VLDLR-
159 LBD-Fc bound to EEEV, but not VEEV VLPs, and reciprocally, pins coated with LDLRAD3-
160 LA1-Fc bound to VEEV, but not EEEV VLPs (**Fig S4B**). We then tested individual VLDLR LA
161 domains for binding to EEEV. Notably, immobilized VLDLR-LA1, VLDLR-LA2, VLDLR-
162 LA3, VLDLR-LA5, and VLDLR-LA6 captured EEEV VLPs (**Fig 2G, left panel**), consistent

163 with the single domain infection experiments. However, EEEV VLPs were unable to bind
164 VLDLR-LA4 or VLDLR-LA7, again consistent with the infection data. To determine how
165 efficiently the single LA domains could bind EEEV VLPs, we immobilized VLPs on mAb-
166 coated biosensors and then evaluated binding of Fc-fusion proteins in solution. In this context,
167 the VLDLR LA domains must bind without the advantage of avidity interactions. In contrast to
168 full-length VLDLR LBD, even at 1 μ M concentrations, the single LA domains showed marginal
169 binding to EEEV VLPs in solution (**Fig 2G, right panel**).

170 ***Defining the domain binding requirements for efficient EEEV infection.*** Our data show
171 that EEEV can recognize LA1, LA2, LA3, LA5, and LA6 but not LA4, LA7, or LA8. Sequence
172 alignment of the VLDLR LA domains reveals that the domains recognized by EEEV all share a
173 conserved Trp at the calcium-coordination site, which contrasts with those not recognized by
174 EEEV (LA4, Phe; LA7, Arg; and LA8, Lys), suggesting that a Trp at this position is required for
175 binding (**Fig S3G**). Indeed, prior work showed the Trp residue is critical for LA domain binding
176 of VLDLR to SFV,⁴⁶ and the orientation of the LA domains in our structure suggests an
177 analogous mode of engagement (**Fig 1C**) with density attributable to Trp observed for the LA
178 domain residing within the E1/E2 cleft (interfacing with K156 of EEEV E2) (**Fig 1C, inset**). To
179 test this hypothesis, we generated K562 cells expressing a construct in which the Trp of LA1
180 (W50), LA2 (W89), LA3 (W132), LA5 (W210), and LA6 (W256) of full-length VLDLR were
181 mutated (VLDLR (WA)), (**Fig 2H**). Despite being expressed on the cell surface, VLDLR (WA)
182 was unable to support EEEV infection (**Fig 2I and S4C**), which confirms the functional
183 importance of the Trp residues in these domains. Reciprocally, we mutated the corresponding
184 residues of LA4, LA7, and LA8 to Trp in the context of VLDLR(WA). However, these proteins
185 did not support EEEV infection (**Fig 2I**), suggesting that other LA domain residues contribute to

186 binding, and that Trp substitution alone is not sufficient to promote infection. To demonstrate
187 that VLDLR(WA) could functionally support infection by an alphavirus, we replaced the LA4
188 domain with LDLRAD3 LA1, which enabled productive SINV-VEEV infection (**Fig S4D**).

189 Using the full-length VLDLR (WA) as a backbone, we next generated constructs in
190 which Trp was re-introduced into each LA domain to assess function. We observed low but
191 detectable levels of EEEV infection in cells expressing constructs in which only one LA domain
192 encoded the conserved Trp (**Fig 2J and S4E**), which was consistent with our single-LA domain
193 binding experiments (**Fig 2F**). Given our structural data (**Fig 1C**), we next tested whether the
194 presence of two functional LA domains (re-inserted Trp residues) in the context of full-length
195 VLDLR (WA) would enhance infection. While some (*e.g.*, LA2 + LA5, LA2 + LA6, and LA5 +
196 LA6) constructs supported lower levels of infection, others (*e.g.*, LA1 + LA2, LA1 + LA3, and
197 LA3 + LA5) mediated infection at levels similar to the parental VLDLR (**Fig 2K and S3F**). The
198 connected LA densities in our structure suggested that EEEV may engage two contiguous LA
199 domains simultaneously. To probe this possibility, we expressed “mini-receptors” harboring
200 tandem LA domains [LA(1–2), LA(2–3), LA(3–4), LA(4–5), LA (5–6), and LA(6–7)] on the
201 VLDLR Δ LBD backbone (**Fig 2L and S4G**). Notably, LA(1–2) Δ LBD supported similar levels
202 of EEEV infection compared to parental VLDLR (**Fig 2L**), much like the full-length VLDLR
203 (WA) with LA1 and LA2 intact (**Fig 2K**). Lower levels of infection were observed with the other
204 tandem domain “mini-receptors” with LA(2–3) Δ LBD barely supporting EEEV (**Fig 2L**). We
205 confirmed LA(2–3) Δ LBD was functional as it supported SINV-SFV infection (**Fig S4H**).
206 Coupled with our binding data (**Fig 2G**), these results suggest that while LA(2–3) may support
207 attachment of EEEV, it inefficiently promotes viral entry. Overall, these experiments with two

208 LA domain constructs support the idea that concurrent interactions with multiple LA domains
209 are required to support efficient EEEV infection.

210 ***LA domain decoy receptors can neutralize EEEV infection in vitro.*** As another measure
211 of how EEEV engages multiple LA domains, we performed neutralization assays with soluble
212 decoy receptors comprised of different VLDLR LA domains. To assess neutralization, Fc-fusion
213 proteins (10 µg/mL) were incubated with SINV-EEEV PE-6 prior to inoculation of 293T cells.
214 Whereas VLDLR-LBD-Fc neutralized SINV-EEEV PE-6 almost completely, the single LA
215 domain-Fc proteins did not (**Fig 3A**), which correlated with their relatively poor binding in
216 solution by BLI (**Fig 2G**). We then performed neutralization with different N-terminal fragments
217 of the VLDLR receptor (LA(1–2), LA(1–3), LA(1–4), LA(1–5), and LA(1–6)) fused to an Fc
218 domain. Notably, all N-terminal fragments neutralized infection, with increased potency
219 observed with longer fragments that contain more LA domains (**Fig 3B**). The results with LA(1–
220 2)-Fc are consistent with the sufficiency of these two VLDLR LA domains to support efficient
221 SINV-EEEV infection, although the potency of neutralization was greater for decoy receptor
222 proteins expressing additional LA domains that possibly could engage all three binding sites. We
223 extended this analysis by testing additional two domain constructs (**Fig 3C**). Whereas LA(1–2)-
224 Fc and LA(2–3)-Fc completely neutralized infection at 10 µg/mL, LA(3–4)-Fc, LA(4–5)-Fc, and
225 LA(5–6)-Fc did not. We also tested C-terminal fragments of VLDLR (LA(2–8)-Fc, LA(3–8)-Fc,
226 LA(4–6)-Fc) for their ability to neutralize SINV-EEEV PE-6 infection. As LA(2–8)-Fc, LA(3–8)-
227 Fc, and LA(3–6) efficiently inhibited SINV-EEEV PE-6 infection (**Fig 3D**), binding and
228 neutralization of EEEV PE-6 virions in solution does not require LA1 or LA2, consistent with
229 efficient infection mediated by combinations of other domains (*e.g.*, LA3 + LA5) (**Fig 2K**).

230 Our results showed that Fc decoy molecules expressing tandem but not single LA
231 domains were sufficient to neutralize SINV-EEEV infection. To better understand the functional
232 hierarchy of LA domain engagement, we performed steady-state affinity analyses via BLI with
233 monovalent forms of LA(1–2) and LA(2–3), as these molecules neutralized SINV-EEEV
234 infection when expressed as Fc fusion proteins. Whereas LA(2–3) bound EEEV PE–6 VLPs with
235 low affinity (K_D , $14 \pm 0.9 \mu\text{M}$), LA(1–2) bound with 10-fold higher affinity (K_D , $1.0 \pm 0.1 \mu\text{M}$)
236 (**Fig 3E–F**). We then evaluated the binding of LA(1–3), LA(1–4), LA(1–5), and LA(1–6) to
237 determine whether the addition of more C-terminal LA domains would enhance affinity (**Fig 3G–**
238 **J**). Indeed, addition of LA3 dramatically improved binding, with LA(1–3) and LA(1–4)
239 exhibiting K_D values of 33.8 ± 4 and $37.0 \pm 2 \text{ nM}$, respectively. The observed enhancement of
240 affinity plateaued with the addition of LA5 and LA6, as LA(1–5) and LA(1–6) bound with
241 respective K_D values of $14.5 \pm 0.6 \text{ nM}$ and $15.0 \pm 1 \text{ nM}$. Although it is possible that these
242 affinities reflect some receptor fragments spanning immobilized VLPs (rather than simply
243 binding multiple sites on a single VLP), the data are consistent with our structural, neutralization,
244 and infection studies, further suggesting that EEEV can engage multiple LA domains
245 concurrently with higher avidity. Taken together, our tandem LA domain neutralization (**Fig**
246 **3C**), affinity measurements (**Fig 3E–J**), and “mini-receptor” infection (**Fig 2L**) studies indicate
247 that while EEEV PE–6 can redundantly bind other LA domains, it engages VLDLR LA(1–2)
248 domains particularly well.

249 ***Cryo-EM structures of EEEV VLP in complex with VLDLR fragments.*** To understand
250 how EEEV can engage different LA domains of VLDLR, we attempted to reconstruct EEEV
251 VLPs in complex with different VLDLR fragments using cryo-EM. We first assessed the
252 structures of tandem sequential LA domains bound to EEEV VLPs, as we observed a clear

253 linking density between the cleft and A domain site in our full-length VLDLR-EEEV structure.

254 We focused on LA(1–2) and LA(2–3), as these proteins (as Fc-fusions) neutralized SINV-EEEV

255 PE–6 infection, and also included LA(5–6) as both individual domains can interact with EEEV

256 (**Fig 2F-G**). For uncertain reasons, we observed no receptor density for LA(2–3) or LA(5–6), as

257 either monomeric proteins or bivalent Fc fusions, despite incubation of EEEV VLPs with ten-

258 fold molar excess of receptor in solution. However, when EEEV VLPs were incubated with

259 VLDLR LA(1–2), two LA domains with a linking density were observed with high occupancy

260 (**Fig 4A**), matching the connected domains observed in the full-length VLDLR structure (**Fig**

261 **1C**). To better define this interaction, we performed focused refinement of the asymmetric unit to

262 3.09-Å resolution (**Fig 4A, S1, and S2C**), enabling delineation of most sidechains at the binding

263 interface (**Fig S2D**). VLDLR LA1 binds within the cleft between E1/E2 heterodimers,

264 establishing conventional “wrapped” and “intraspike” contacts to neighboring heterodimers (**Fig**

265 **4B-C**),^{41,43} whereas LA2 assumes an angled position atop the A domain of EEEV E2, a site not

266 occupied in other alphavirus-receptor structures (**Fig 4C**). At the wrapped interface, VLDLR

267 LA1 engages residues of the conserved fusion loop of EEEV E1 (residues 85, 87–92, 95, 97, and

268 98) (**Fig 4D**). On the opposing face of the cleft, LA1 forms electrostatic interactions with

269 residues H155-K156-R157 of the intraspike E2 (**Fig 4E**). This electropositive “HKR” loop of

270 EEEV E2 targets the highly conserved calcium-coordination site of LA1, establishing salt-

271 bridges with VLDLR residues D53, D55, and D57, as well as hydrophobic and cation-π

272 interactions with W50 (**Fig 4E**). EEEV also targets the calcium cage of VLDLR LA2,

273 coordinating via E2 residue K231 with VLDLR residues D92, D94, and D96, as well as W89;

274 LA2 is also stabilized by K232 and an additional loop (residues 56–59) from the A domain of E2

275 (Fig 4F). Cryo-EM processing statistics and a complete list of interfacial residues for EEEV and
276 VLDLR LA(1–2) are provided (Tables S1 and S2).

277 To corroborate our structural model of EEEV in complex with LA(1–2), we selected
278 clones from a previously generated VLP expression library⁵⁰ (EEEV strain FL93–939) encoding
279 alanine mutations in the E2 gene and measured binding to VLDLR LA(1–2)-Fc protein by BLI.
280 Compared to wild-type EEEV VLPs, an almost complete loss of binding of VLDLR LA(1–2)-Fc
281 was observed with EEEV VLPs encoding E2-H155A, E2-K156A, or E2-R157A substitutions,
282 and a partial loss of binding (>50% reduction) was measured with E2-K231A or E2-K232A
283 mutants (Fig 4G). Several other E2 substitutions (D3A, H5A, K10A, G59A, H175A, K221A,
284 R224A) did not impact EEEV VLP binding, suggesting a less critical role for these residues (Fig
285 4G). To assess the interaction of the LA1 domain with the fusion loop in E1, we generated
286 additional mutant VLPs, including E1-Y85A, E1-F87A, E1-G91R, and E1-D97A, and evaluated
287 binding of LA(1–2)-Fc; we observed >50% reduction in binding for E1-G91R (Fig 4G), likely
288 due to steric hindrance at this site or reduced dihedral flexibility of the fusion loop.

289 To further evaluate our model, we generated structure-guided mutants in both LA1 and
290 LA2 domains in the context of the LA(1–2)ΔLBD “mini-receptor” and assessed their effects on
291 SINV-EEEV PE–6 infection. Of the 9 mutants we made in the LA1 domain, only G43R, W50A,
292 and D55A substitutions resulted in decreased SINV-EEEV PE–6 infection (Fig 4H and S4I). A
293 K32A/G43R double substitution showed greater reduction in infectivity, consistent with the
294 LA1–E1 fusion loop interaction in our model and the impaired binding of LA(1–2)-Fc to E1–
295 G91R (Fig 4D and H). Although the single LA2 domain substitutions we tested (K70A, Q83A,
296 R88A, or D94A) did not impair the ability of LA(1–2)ΔLBD to support infection, loss of

297 infectivity was observed with R88A + W89A in LA2, again confirming the importance of the
298 conserved Trp (**Fig 4H**).

299 Given that we were unable to visualize LA(2–3) or LA(5–6) via cryo-EM, we
300 characterized how EEEV engages LA3, LA5, and LA6 by complexing EEEV PE–6 VLPs with
301 LA(1–3), LA(1–5mut3) (harboring a W132A mutation in LA3), or LA(1–6mut3,5) (harboring
302 W132A and W210A mutations in LA3 and LA5, respectively), as LA(1–2) could anchor VLP
303 binding to the E1/E2 cleft and E2 A domain sites (**Table S1**). Each of these reconstructions
304 showed a density, albeit not fully occupied, at the lateral E2 B domain site (**Fig 5A**), suggesting
305 that LA3, LA5, or LA6 can engage this site interchangeably. The more highly occupied density
306 observed at the B domain site for full-length VLDLR might reflect the collective interactions of
307 multiple domains (*e.g.*, LA3, LA5, or LA6) (**Fig 1A–B**). To verify that the B domain density in
308 our full-length VLDLR structure can be attributed to LA3, LA5, and LA6, we reconstructed
309 EEEV VLPs in complex with VLDLR LBDmut3,5,6 (harboring W132A, W210A, and W256A
310 in LA3, LA5, and LA6, respectively). As expected, we observed only LA1 and LA2 domains
311 with no visible density at the lateral B domain site (**Fig 5A**).

312 Since no single LA domain engaged the E2 B domain site with full occupancy, we used
313 the B domain density produced by full-length VLDLR to build LA6 (as an example) for our
314 interface analysis. In our model, LA6 principally engages E2-K206 via W256, D259, D261, and
315 D263 within the calcium-coordination site (**Fig 5B**). VLDLR may contact other residues of E2
316 (*e.g.*, Y198, K200, and V204) or of E1 domain II (*e.g.*, C62, C63, and G64) at this site; however,
317 at a moderate contour threshold, only the calcium-coordination site of the LA domain is visible
318 in our map (**Fig 5B** and **S2D**). The minimal nature of this interface (< 300 Å² buried surface area,

319 with ~120 Å² solely on K206) may explain the LA domain promiscuity observed at this binding
320 site as well as the relative difficulty of resolving a single domain at this position.

321 To further define the patterns of VLDLR domain binding to EEEV, we generated cryo-
322 EM reconstructions of EEEV VLPs in complex with LA(3–8) or LA(1-6mut2) (harboring W89A
323 in LA2) (**Table S1**). For both reconstructions, we observed densities in the cleft between E1-E2
324 heterodimers and on the side of E2 B domain, whereas density was absent in the E2 A domain
325 (**Fig 5A**). This result indicates the glycoprotein cleft of EEEV can be recognized by different LA
326 domains (including non-LA1 domains), whereas the E2 A domain appears to exhibit relative
327 specificity for LA2, as other domains are not visualized at this site. Taken together, our structural
328 analysis shows that multiple sites on the EEEV glycoprotein (E2/E1 cleft, E2 A domain, E2 B
329 domain) can recognize different VLDLR LA domains with some degree of promiscuity.
330 Notwithstanding this point, our results suggest that EEEV engages LA1 and LA2 efficiently at
331 the cleft and A domain sites, as these are the only LA domains fully and unequivocally
332 visualized by cryo-EM with either full-length or fragments of VLDLR; indeed, we did not
333 observe other LA domains occupying the cleft or A domain sites in the absence of LA(1–2). The
334 relative importance of LA(1–2) is consistent with our functional studies, as they are the only
335 tandem LA domains that support efficient SINV-EEEV infection, neutralize EEEV infection as
336 Fc fusions, and bind with moderate affinity as monovalent proteins.

337 ***EEEV strains do not conserve all VLDLR-binding sites.*** Given that cell surface
338 expressed LA(1–2) protein efficiently supports SINV-EEEV infection and LA(1–2)-Fc potently
339 neutralizes SINV-EEEV infection, we considered whether there was redundancy in the three
340 binding sites (E1/E2 cleft, E2 A domain, and E2 B domain), and that any given site might not be
341 required to mediate VLDLR-dependent interactions. We first evaluated whether the basic amino

342 acids interacting with Trp of the LA domains were conserved in EEEV strains. The E2-HKR
343 loop (H155-K156-R157; cleft) and E2-K/R231 + E2-K232 (A domain shelf) residues are
344 conserved in all 692 EEEV structural polyprotein sequences present in GenBank (**Table S3**).
345 However, the E2 B domain binding site, which features residue E2-K206 in the PE-6 strain, is
346 not conserved in FL93–939 (E206), FL91–469 (E206), or 690 other EEEV strains; residue E2-
347 K206 is present only in one other EEEV strain (A61–1K) and in one EEE complex Madariaga
348 virus strain (BeAr348998) (**Table S3**). To confirm that the E2-E206 substitution abrogates
349 VLDR engagement at the B domain site, we performed cryo-EM with VLDR LA(1–6)
350 complexed with EEEV FL93–939 VLPs; this strain differs from PE-6 in E2 only at the E2-E206
351 residue. As expected, we did not observe receptor density at the B domain site for FL93–939
352 (**Fig 5A**). Moreover, VLDR LA(1–2)-Fc neutralized SINV-EEEV FL93–939 infection
353 equivalently compared to LA(1–3)-Fc, LA(1–4)-Fc, LA(1–5)-Fc, LA(1–6)-Fc, or LBD-Fc (**Fig**
354 **S5A**), providing supporting evidence that LA3, LA5, and LA6 do not engage a third site on
355 FL93–939. Given that a prior study showed VLDR-dependent infection with reporter virus
356 particles encoding FL91–469 structural genes,⁴⁵ the E2-K206 residue in EEEV PE-6 may be
357 dispensable or act as a gain-of-function. As K562 cells ectopically expressing VLDR are
358 permissive to SINV-EEEV FL93–939 (**Fig 5C**), engagement of the E2 B domain site on EEEV
359 is not required for infectivity.

360 The E2-206K residue might provide an advantage for EEEV PE-6 by enhancing its
361 binding for VLDR relative to EEEV FL93–939. To test this possibility, we performed affinity
362 measurements of LA(1–6) in complex with FL93–939 or FL93–939 engineered with an E2-
363 E206K substitution. We observed a slightly lower affinity of LA(1–6) binding for FL93–939
364 (K_D , 50.0 ± 4.7 nM) compared to PE-6 (15.0 ± 1 nM), but this difference was abrogated by the

365 E2-E206K change in FL93–939 (K_D , 17.4 ± 2.5 nM). These results suggest that EEEV PE–6 has
366 a small but measurable advantage in VLDLR-binding that is due to the E2-206K polymorphism
367 (**Fig S5B**).

368 Beyond binding affinity, the E2-E206K substitution might enable more versatile domain
369 usage, as other LA domains (*e.g.*, LA3, LA5, and LA6) could be engaged through the B domain
370 binding site. To begin to address this possibility, we evaluated whether LA3, LA5, and/or LA6
371 could bind and support infection of EEEV FL93–939. When immobilized on a biosensor in the
372 solid phase, the single LA domain-Fc proteins could capture FL93–939 VLPs (**Fig S5C**), and
373 K562 cells transduced with VLDLR (WA) constructs with intact LA3, LA5, or LA6 domains
374 supported low levels of SINV-EEEV FL93–939 infection (**Fig S5D**). When VLDLR(WA)
375 constructs were expressed on the cell surface with two intact LA domains (*e.g.*, LA1+LA3,
376 LA1+LA5, or LA1+LA6), more efficient SINV-EEEV FL93–939 infection was observed,
377 comparable to that seen with LA1+LA2 (**Fig S5E**); however, and in contrast to SINV-EEEV
378 PE–6, domain combinations without LA1 did not support robust SINV-EEEV FL93–939
379 infection. The greater dependence of FL93–939 on VLDLR LA1 suggests that while non-LA1
380 domains can enter the E1/E2 cleft (as observed in the LA(3–8) reconstruction (**Fig 5A**)), they
381 engage this site poorly and cannot support efficient infection without assistance of the B domain
382 VLDLR-binding site. We extended this analysis by generating mutant LA(1–6)-Fc decoys with
383 Trp mutations to assess binding as a function of neutralization activity. Consistent with our
384 infection data, a W50A substitution in LA1 (LA(1–6mut1)) impaired the neutralizing activity of
385 LA(1–6)-Fc against SINV-EEEV FL93–939 but not against SINV-EEEV PE–6 (**Fig S5F–G**).
386 However, a W89A substitution in LA2 (LA(1–6mut2)) did not lessen the neutralizing activity of
387 LA(1–6)-Fc against either SINV-EEEV FL93–939 or PE–6. To determine which other LA

388 domains contributed to neutralization of FL93–939, we generated LA(1–6mut2) with additional
389 Trp mutations alone or in combination with the other LA domains. As expected, LA(1–
390 6mut2,3,5,6) did not neutralize SINV-EEEV FL93–939 infection (**Fig S5H**). In contrast, LA(1–
391 6mut2,5,6) and LA(1–6mut2,3,5) neutralized SINV-EEEV FL93–939 infection, albeit less
392 potently than LA(1–6mut2), suggesting that LA3 and LA6 also can engage the A domain site.

393 To corroborate that a non-LA2 domain can recognize the A domain site, we performed
394 semi-quantitative BLI to evaluate the binding of LA(1–6mut2)-Fc to EEEV FL93–939 VLPs
395 with or without K231E and K232E substitutions in E2. As LA(1–6mut2) showed substantially
396 less binding to FL93–939 E2-K231E/E2-K232E VLPs than WT FL93–939 VLPs, non-LA2
397 domains of VLDLR likely can bind the A domain site of EEEV FL93–939 (**Fig S5I**).

398 ***Two sites on EEEV E2 are required for efficient VLDLR-dependent infection.*** To test
399 the functional importance of the cleft binding site, we generated a SINV-EEEV PE–6 E2-K156A
400 virus. This mutant virus infected VLDLR-expressing K562 cells as efficiently as the parental
401 SINV-EEEV PE–6 (**Fig 5C**). We then generated a SINV-EEEV PE–6 E2-K156A/E2-K206E
402 double mutant virus in which both the cleft and B domain binding sites are inactivated. While
403 this mutant virus grew as efficiently as parental SINV-EEEV PE–6 in BHK-21 and Vero cells,
404 the SINV-EEEV-PE–6 E2-K156A/E2-K206E mutant virus did not infect VLDLR-expressing
405 K562 cells (**Fig 5C**). Thus, the A domain site (E2-K231 and E2-K232) alone is insufficient to
406 mediate VLDLR-dependent infection. These data suggest that E2-K206 on the residue B domain
407 site can rescue VLDLR-dependent infection in the event of mutations within the cleft.

408 We next considered whether the neighboring residues E2-H155 and E2-R157 in the cleft
409 could compensate for the E2-K156A mutation in the context of the SINV-EEEV PE–6 strain,
410 given that SINV-EEEV PE–6 E2-K156A used VLDLR as efficiently as the parental virus (**Fig**

411 4H). To test whether cleft binding was incompletely abolished with the E2-K156A mutant, we
412 generated a SINV-EEEV PE-6 HKR→AAA virus. This mutant virus showed only a moderate
413 loss-of-infection phenotype compared to parental SINV-EEEV PE-6 in VLDLR-expressing
414 K562 cells (Fig 5D), suggesting that the cleft binding site is not essential for EEEV PE-6 to
415 utilize VLDLR as a receptor. Moreover, when we performed neutralization experiments with
416 SINV-EEEV PE-6 HKR→AAA virus with Fc fusion protein decoys, we observed inhibition
417 with VLDLR-LBD-Fc (Fig 5E), which in theory can still recognize two binding sites (E2 A and
418 B domains) on this mutant virus. In contrast, LA(1–2)-Fc or LA(3–8)-Fc failed to neutralize
419 SINV-EEEV PE-6 HKR→AAA (Fig 5E); in our cryo-EM reconstructions, LA(1–2) or LA(3–8)
420 bind only one other site in addition to the E1/E2 cleft (E2 A and E2 B domains, respectively).
421 Together, these results indicate the E1/E2 cleft site is not absolutely required to efficiently bind
422 VLDLR for EEEV strains featuring E2-K206.

423 We also tested whether the cleft binding site alone was sufficient for VLDLR-dependent
424 infection by generating SINV-EEEV PE-6 E2-K206E/E2-K231E/E2-K232E, in which the E2 A
425 and B domain binding sites are inactivated. While this mutant virus grew in BHK-21 cells, it
426 poorly infected VLDLR-expressing K562 cells (Fig 5F). We extended these studies by
427 generating SINV-EEEV PE-6 E2-K231E/E2-K232E (K206 and cleft binding site present); this
428 mutant virus used VLDLR for infection with only a slightly reduced efficiency (Fig 5F). These
429 results are consistent with a requirement for two distinct binding sites on EEEV (cleft + A
430 domain, cleft + B domain, or A + B domains) for efficient VLDLR-dependent infection.

431 **Comparison of receptor engagement by alphaviruses.** The structural interface of EEEV
432 with VLDLR resembles yet differs from those observed for other alphavirus-receptor complexes
433 (Fig S6-S7). Whereas LA1 binds within the cleft between E1/E2 heterodimers in a manner

434 analogous to VEEV/LDLRAD3 and CHIKV/MXRA8 (**Fig 6A-C**),⁴¹⁻⁴⁴ LA2 engages a unique
435 site on a shelf atop the A domain of EEEV E2 and other LA domains engage a third site on E2 B
436 domain in some EEEV strains (**Fig 6A**). In comparison, SFV engages VLDLR LA3 outside of
437 the cleft through domain III of E1 (**Fig 6D**).⁴⁶ Like EEEV, SFV can engage multiple domains of
438 VLDLR;⁴⁶ however, the concomitant engagement of different LA domains was not structurally
439 or functionally resolved, and unlike EEEV, SFV uses a single site in E1 for receptor binding.

440 Although EEEV and VEEV can engage LA domains using their E1/E2 clefts in a roughly
441 similar location, EEEV establishes two limited points of contact with VLDLR LA1 using the
442 fusion loop of E1 and the HKR loop of E2. LA1 is otherwise suspended away from the back of
443 the cleft (**Fig 6E**), burying only ~650 Å² of the viral surface (by PISA⁵¹ analysis) (**Fig 6F**). In
444 contrast, VEEV positions LDLRAD3 LA1 inward to form extensive hydrophobic and Van der
445 Waals contacts at the back of the cleft (~900 Å²) (**Fig 6E-F**).^{43,44} Accounting for the two
446 domains together, VLDLR LA1 and LA2 establish an interface larger (~1,100 Å²) than that of
447 LDLRAD3, and an additional ~290 Å² is buried at the B domain site in some EEEV strains (**Fig**
448 **6F**). This three-site interface still is smaller than the expansive interaction between MXRA8 and
449 CHIKV (~2,200 Å²), and the single VLDLR-binding site on SFV is even more limited (~380 Å²)
450 (**Fig 6F**). Nonetheless, because EEEV and SFV can engage multiple LA domains
451 simultaneously,⁴⁶ they bind VLDLR with higher effective affinity (K_D values of ~15 nM and ~2
452 nM⁴⁶, respectively) than CHIKV/MXRA8 (K_D of 84 to 270 nM) or VEEV/LDLRAD3-LA1 (K_D
453 of 50 nM). However, EEEV's usage of multiple glycoprotein sites for avid receptor engagement
454 differs from SFV and from all previously described alphavirus-receptor complexes.

455 ***LA(1-2)-Fc protects against lethal EEEV challenge in a mouse model.*** We next tested
456 the protective efficacy of the VLDLR-LBD-Fc decoy and LA(1-2)-Fc against EEEV *in vivo*. We

457 used LA(1–2)-Fc as it retains neutralizing activity against EEEV and lacks other LA domains of
458 VLDLR (e.g., LA5 and LA6) that are implicated in endogenous lipoprotein binding,⁵² which
459 could impact bioavailability and efficacy. We administered PBS or 100 µg (~5 mg/kg) of
460 LDLRAD3-LA1-Fc, VLDLR LBD-Fc, or VLDLR LA(1–2)-Fc to female CD-1 mice 6 h prior to
461 subcutaneous inoculation with 10³ FFU of the authentic CDC Select Agent EEEV FL93–939
462 strain. All animals treated with PBS, LDLRAD3-LA1-Fc, or LBD-Fc died within 8 days of
463 infection (**Fig 7A**). In contrast, mice given VLDLR LA(1–2)-Fc were completely protected from
464 lethality and did not show weight loss or signs of disease (ruffled fur, hunched posture, seizures,
465 or moribundity) (**Fig 7B-C**). Although LBD-Fc exhibited similar neutralization potency as
466 LA(1–2)-Fc against FL93–939, its lipoprotein binding activity *in vivo* may have limited efficacy.
467 Given the protective efficacy of LA(1–2)-Fc against subcutaneous EEEV infection, we next
468 tested its function in the more stringent aerosol challenge model. Mice administered VLDLR
469 LA(1–2)-Fc were substantially protected (70% vs 0% survival) from lethal aerosol EEEV FL93–
470 939 infection compared to LDLRAD3-LA1-Fc treated mice (**Fig 7D**). Thus, and in contrast to a
471 full-length receptor decoy, these data highlight the protective activity of a truncated two-domain
472 VLDLR decoy molecule against EEEV infection.

473

474 **DISCUSSION**

475 Although alphaviruses share similar virion structures, the glycoproteins vary substantially
476 in sequence (~45 to 90% identity for E1 and ~40 to 80% identity for E2 across all
477 serocomplexes),⁵³ which likely contributes to their differential receptor usage. Previously
478 characterized alphavirus receptors include MXRA8, which is used by several members of the
479 Semliki Forest (SF) serocomplex (*e.g.*, CHIKV, RRV, MAYV, and ONNV, but notably not by
480 SFV),³⁷ and LDLRAD3, which is used only by VEEV serocomplex members.⁴⁰ Despite
481 dissimilarity in protein topology, MXRA8 (Ig-like domains) and LDLRAD3 (LA domains)
482 engage their respective viruses within an analogous cleft formed by neighboring E1/E2
483 glycoprotein heterodimers.⁴¹⁻⁴⁴ Recently, VLDLR and the related ApoER2 molecule were
484 reported to bind and facilitate infection of EEEV, SFV, and to a lesser extent, SINV.⁴⁵ While
485 SFV was unexpectedly shown to bind LA3 via the domain III tail of E1,⁴⁶ the binding mode of
486 EEEV and VLDLR remained unclear.

487 Our experiments show that EEEV uses multiple distinct sites on the E2 glycoprotein to
488 mediate efficient VLDLR-dependent infection (**Fig S8**). Whereas 2 of the 3 identified sites in E2
489 are conserved in all deposited EEEV structural polyprotein sequences present in Genbank, the
490 PE-6 strain and some other related strains (EEEV A61-1K and Madariaga virus BeAr348998)
491 have a rare polymorphism (E206K) that enables LA domain binding to a third site on the E2-B
492 domain. In addition, we show that the five VLDLR LA domains (LA1, LA2, LA3, LA5, and
493 LA6) that encode a conserved Trp all can participate in the binding to EEEV. Through a series of
494 cryo-EM reconstructions and functional studies with different domain-containing fragments of
495 VLDLR, we observed promiscuity in LA domain interactions with each of the three EEEV
496 binding sites: (a) EEEV engages both VLDLR LA1 and LA2, with LA1 bound within the cleft

497 near the E1 fusion loop and LA2 positioned atop a neighboring site on the A domain of E2; (b)
498 LA3, LA5, and LA6 all can bind to the E2 B domain site when the K206 residue is present in
499 EEEV; (c) our cryo-reconstruction of LA(3–8) show that domain(s) other than LA1 can bind in
500 the cleft; and (d) while we were unable to obtain direct structural evidence for a non-LA2
501 domain binding at the A domain site, infection or neutralization of FL93–939 (which lacks the B
502 domain site) with an LA(1–6) featuring an inactivating LA2 W89 mutation strongly suggests that
503 an additional LA domain (*e.g.*, likely LA3 or LA6) can bind the E2-A domain site. Although we
504 did not observe conformational changes upon LA domain binding at any of the sites in EEEV,
505 the potential effects of the different VLDLR binding modes on downstream processes of viral
506 entry warrant further study.

507 The PE-6 strain, which is a component of the trivalent VEEV/EEEV/WEEV VLP
508 vaccine currently in advanced clinical trials,⁵⁴ features E2-K206, which allows EEEV to engage
509 LA domains on the side of the E2 B domain. In contrast, other commonly used experimental
510 EEEV strains (*e.g.*, FL93–939 and FL91–469) possess E2-E206 and do not use their E2 B
511 domain to engage VLDLR. Thus, the third VLDLR binding site observed for EEEV PE-6
512 appears to be an exception to the norm. While the possibility of sampling bias in EEEV isolates
513 remains, nearly all other 692 EEEV sequences we analyzed possess E2-E206. The E2-K206
514 residue might be a tissue culture adaptation, since the sequence of the PE-6 strain was obtained
515 after indeterminant passage in eggs, mice, and guinea pigs.⁵⁵ Notwithstanding this point, one
516 other EEEV isolate (A61-1K) and one sequenced Madariaga (EEE serocomplex) isolate also
517 harbor E2-K206, although their usage of VLDLR as a receptor and the contribution of the E2 B
518 domain warrants further study. Regardless, our structural and functional data show how viruses

519 can acquire multiple receptor-binding sites to co-opt repeat domains present in host receptors for
520 high avidity interactions.

521 Whereas SFV binds the same VLDLR LA domains as EEEV (LA1, LA2, LA3, LA5,
522 and/or LA6) using a single site on domain III of E1 (located around the 5- and 2-fold axes of
523 symmetry), EEEV engages VLDLR LA(1–2) more like CHIKV/MXRA8 and
524 VEEV/LDLRAD3, as it dominantly interacts with sites on E2 and the E1 fusion loop within the
525 E1/E2 cleft. This differential engagement of LA domains through different envelope protein sites
526 helps to explain how distantly related alphaviruses can bind the same host receptor. LDL-
527 receptor family members also have been implicated in entry of unrelated viral families; in every
528 case that has been structurally characterized, which includes vesicular stomatitis virus
529 (VSV)/LDLR,⁵⁶ human rhinovirus 2 (HRV2)/VLDLR,⁵⁷ VEEV/LDLRAD3,^{43,44} and
530 SFV/VLDLR⁴⁶, the virus has used lysine or arginine residues to target conserved aspartate,
531 glutamate, and tryptophan residues in the calcium-coordination site of the LA repeat, suggesting
532 convergence of unrelated or distantly related viruses toward a shared receptor engagement
533 strategy. However, in the case of LA domains engaged in the E1/E2 cleft (e.g., LDLRAD3 LA1-
534 VEEV and VLDLR LA1-EEEV), other surfaces of the LA domain appear to augment specificity
535 of the interaction. Notably, SFV E2 lacks the lysine (E2-K156) critical for VLDLR LA1 binding
536 by EEEV (**Fig S6**), and EEEV E1 reciprocally lacks the key lysine (E2-K345) used by SFV to
537 target LA3 (**Fig S5**),⁴⁶ potentially explaining their disparate modes of receptor engagement.

538 In contrast to the LDLRAD3-LA1/VEEV interaction, EEEV requires concurrent use of at
539 least two LA domains of VLDLR for an avid interaction and efficient infection. While a higher
540 affinity, single-domain receptor could still exist for EEEV, analogous to LDLRAD3-
541 LA1/VEEV, the use of multiple LA domains could afford greater versatility in receptor binding.

542 Rather than co-evolving with a single protein to achieve high-affinity binding mediated by a
543 large binding interface, some alphavirus structural proteins may have evolved toward more
544 flexible domain usage, engaging host receptors through a conserved structural element (*e.g.*, the
545 calcium-coordination site of the LA domain) with only a small interface, but at multiple sites for
546 high avidity binding. Targeting a minimal, conserved feature also may enable interactions with
547 related receptors in the same host or across orthologs in different species. Indeed, human *LRP8*
548 (ApoER2) and the *Aedes aegypti* and *Aedes albopictus* VLDLR orthologs can support infection
549 of EEEV.⁴⁵ However, structure-based sequence alignment of VLDLR orthologs from species
550 that do (*Aedes* species and human) or do not (horse, avian, and *C. elegans*) support EEEV
551 infection⁴⁵ does not readily explain the differential receptor usage across evolution, as critical
552 interacting residues within the calcium-coordination site generally are conserved across species
553 (**Fig S9**). This suggests that other sequence or structural features must dictate LA domain
554 geometry and receptor utilization. It is also possible that EEEV engages *Aedes* species VLDLR
555 orthologs in a different manner or at sites not used for human VLDLR, further complicating
556 sequence-based analyses.

557 **Limitations of the study.** We acknowledge limitations of our study. (1) Due to biosafety
558 considerations, many of the structural and functional experiments were performed with EEEV
559 VLPs or attenuated chimeric viruses (*e.g.*, SINV-EEEV) that produce virions displaying the
560 EEEV structural proteins; (2) While we generated a VLDLR LA(1–2)-Fc decoy that protected
561 against subcutaneous or aerosol challenge with highly pathogenic EEEV, we did not test its post-
562 exposure activity; (3) Some of our cryo-EM reconstructions are of moderate resolution, limiting
563 our ability to make claims of specific molecular interactions between EEEV and VLDLR; and
564 (4) We did not test VLDLR LA domain decoy molecules against the passaged EEEV-PE6 strain

565 *in vivo* to assess whether engagement of the E2 domain B binding site would confer greater
566 protection.

567 In summary, the alphavirus-receptor complexes described here and elsewhere together
568 demonstrate how modes of engagement between receptor and virus can defy expectations, as the
569 notion of a sole “receptor-binding domain” may be oversimplified. Different homologs and/or
570 orthologs of LA domains or other types of repeat domains (*e.g.*, Ig-like) could be engaged at
571 spatially distinct sites or in differing orientations by the same or related viruses. A more
572 complete understanding of virus-receptor biology and entry will require characterization of more
573 receptors in relevant hosts to determine how viruses evolve to infect cells and adapt to new
574 species.

575 **Acknowledgements.** We thank Michael Rau, Brock Summers, Katherine Basore, and
576 James Fitzpatrick at the Washington University Center for Cellular Imaging (WUCCI) for cryo-
577 EM sample preparation and data acquisition. We thank Camille Carmona for technical
578 assistance. We acknowledge K. Carlton and J. Mascola from the Vaccine Research Center of the
579 National Institutes of Allergy and Infectious Diseases (NIH) for a gift of the EEEV PE-6 VLPs.
580 The studies were supported by NIH grants R01 AI141436 and contract AI201800001 (to
581 M.S.D.), U19 AI142790 (to M.S.D and D.H.F.), NIAID contract HHSN272201700060C (to
582 D.H.F.), R01AI095436 (to W.B.K.), and DTRA MCDC2103-01 (to W.B.K. and M.S.D.)

583 **Author Contributions.** L.J.A., S.R. and M.S.D. designed the study. L.J.A. performed
584 cryo-EM reconstruction and model building and generated all structural representations. S.R. and
585 L.J.A. generated Fc-fusion proteins. S.R. generated VLPs and performed all cell culture and
586 mutagenesis experiments. L.J.A. performed affinity analyses. H.M. provided critical reagents
587 and experimental support. T.G., D.S.R, and W.K. performed and supervised *in vivo* studies.
588 D.H.F. supervised and analyzed the cryo-EM and binding studies. L.J.A., S.R. and M.S.D. wrote
589 the initial draft with all other authors providing comments.

590 **Competing Financial Interests.** M.S.D. is a consultant for Inbios, Ocugen, Vir
591 Biotechnology, Senda Biosciences, Moderna, and Immunome. The Diamond laboratory has
592 received unrelated funding support in sponsored research agreements from Emergent
593 BioSolutions, Moderna, Generate Biomedicines, Vir Biotechnology, and Immunome. D.H.F. is a
594 founder of Courier Therapeutics and has received unrelated funding support from Emergent
595 BioSolutions and Mallinckrodt Pharmaceuticals.

596

597 **FIGURE LEGENDS**

598 **Figure 1. Cryo-EM structure of EEEV PE–6 in complex with VLDLR. (A)**

599 Icosahedral reconstructions of EEEV PE–6 VLP alone (*upper panel*) or in complex with full-
600 length VLDLR (*lower panel*) with 2-fold (i2), 5-fold (i5), 3-fold (i3), and quasi-3-fold (q3) axes
601 designated. Central sections are shown in round insets. Proteins are differentially colored with
602 E1 in tan, E2 A domain in sea green, E2 B domain in blue, the remainder of E2 colored purple,
603 and VLDLR shown in orange. **(B)** Focused reconstructions of the EEEV asymmetric unit alone
604 (*upper panel*) or in complex with full-length VLDLR (*lower panel*), colored as in **(A)**. **(C)** An
605 atomic model of a single E1/E2 heterodimer with non-descript LA domains docked and morphed
606 into the experimental electron density map, colored as in **(A)** with capsid shown in navy and the
607 lipid bilayer depicted as dashed lines. Interfacial lysines are highlighted in yellow, with the
608 region near K156 magnified in the inset.

609 **Figure 2. No single LA domain of the VLDLR LBD is required to support EEEV.**

610 **(A)** Scheme of LDLRAD3-LA1 domain replacement of VLDLR LA domains. **(B, D, F, H)**
611 SINV-EEEV-GFP PE–6 infection of K562 cells transduced with indicated N-terminal Flag-
612 tagged constructs as quantified by GFP expression using flow cytometry. **(C)** Scheme of N-
613 terminal VLDLR LA domain truncation constructs. **(E)** Scheme of single LA domain constructs
614 in the context of the VLDLR Δ LBD backbone. **(G)** Raw BLI sensorgrams of biosensors coated
615 with indicated Fc-fusion proteins following incubation with EEEV PE–6 VLPs (*left panel*) or
616 biosensors coated with EEEV PE–6 VLPs following incubation with Fc-fusion proteins in
617 solution (*right panel*). **(I)** Scheme of VLDLR with Trp (W) to Ala (A) mutations in LA1, LA2,
618 LA3, LA5, and LA6 (left) VLDLR (WA), and also VLDLR (WA) with LA4 (F171W), LA7
619 (R295W), LA8 (K336W) residues changed to Trp. **(J)** SINV-EEEV-GFP PE–6 infection of

620 K562 cells transduced with variants of VLDLR (WA) in which the indicated single LA domain
621 has been reverted to Trp as indicated. (K) SINV-EEEV PE-6 GFP infection of K562 cells
622 transduced with variants of VLDLR (WA) in which the indicated LA domains have been
623 reverted to Trp as indicated. (L) SINV-EEEV-GFP PE-6 infection of K562 cells transduced with
624 the indicated tandem LA domain constructs in the context of the VLDLR Δ LBD backbone. Data
625 in (B, D, F, I-L) are pooled from two to six independent experiments. Data in G are
626 representative of two independent experiments. *p < 0.05, ****p < 0.0001, n.s., not significant;
627 one-way ANOVA with Dunnett's post-test.

628 **Figure 3. Multiple LA domains mediate neutralization by VLDLR receptor decoys**
629 **against EEEV.** (A, C) Infection of 293T cells by SINV-EEEV-GFP PE-6 following pre-
630 incubation with the indicated Fc-fusion proteins (10 μ g/mL) prior to inoculation. GFP expression
631 was measured by flow cytometry. (B, D) Dose-response curves of neutralization by the indicated
632 Fc-fusion proteins against SINV-EEEV-GFP PE-6. Data in (A, C) are pooled from three to six
633 independent experiments performed in technical duplicate. **p < 0.01, **** p < 0.0001, n.s., not
634 significant by one-way ANOVA with Dunnett's post-test. Data in (B, D) is representative of
635 three independent experiments with mean half-maximal effective inhibitory concentrations (EC₅₀
636 values) calculated. (E–J) Steady-state BLI curves of the indicated monovalent VLDLR domains
637 bound to EEEV PE-6 VLP coated biosensors. Data are pooled from three independent
638 experiments.

639 **Figure 4. Cryo-EM structure of EEEV PE-6 VLPs in complex with VLDLR LA(1–**
640 **2).** (A) Focused reconstruction of the EEEV PE-6 asymmetric unit in complex with VLDLR-
641 LA(1–2). Proteins are differentially colored with E1 in tan, E2 A domain in sea green, E2 B
642 domain in blue, the remainder of E2 colored purple, and VLDLR shown in orange. (B)

643 Individual E1/E2 heterodimers at the binding interface, illustrating conventional “wrapped” and
644 “intraspike” contacts, colored as in (A).^{41,43} (C) A ribbon diagram of VLDLR LA(1–2) (orange)
645 overlaying a surface representation of neighboring E1/E2 heterodimers, colored as in (A).
646 Domains of E2 are labeled, as is the fusion loop (FL) of E1. (D–F) Magnified regions from boxes
647 in panel (C). Interface details between VLDLR LA1 and the E1 fusion loop (pale green) (D),
648 LA1 and E2 (E), and LA2 and E2 (F) are shown. VLDLR residues are labeled in white or
649 orange, with EEEV residues labeled in black. Predicted salt bridges (interatomic distance ≤ 4.0
650 Å) and cation- π interactions (≤ 6.0 Å from aromatic plane) are demarcated by white or yellow
651 dashed lines, respectively. (G) Binding of LA(1–2)-Fc to captured wild-type (WT) and mutant
652 EEEV FL93–939 VLPs. Biosensors were coated with WT or mutant VLPs followed by
653 incubation with 1 μ M of LA(1–2)-Fc for 300 sec. Binding was calculated as percent signal
654 (R_{max}) relative to WT VLPs. (H) Infection of K562 cells expressing WT and mutant constructs of
655 VLDLR LA(1–2) by SINV-EEEV PE–6. Infection was assessed by GFP expression using flow
656 cytometry. Data in G–H are pooled from two to four independent experiments. ** $p < 0.01$,
657 *** $p < 0.0001$, n.s., not significant by one-way ANOVA with Dunnett’s post-test.

658 **Figure 5. Mapping LA domain binding and EEEV E2 binding sites.** (A) Cryo-EM
659 reconstructions of EEEV PE–6 or FL93–939 VLP in complex with different VLDLR fragments,
660 identified schematically below each reconstruction. VLDLR constructs include full-length
661 VLDLR; LA(1–2); LA(1–3); LA(1–5mut3); LA(1–6mut3,5); LBDmut3,5,6; LA(3–8); LA(1–
662 6mut2); and LA(1–6). EEEV E1 is shown in tan, E2 A domain in sea green, E2 B domain in
663 blue, the remainder of E2 in purple, and VLDLR in orange. (B) A ribbon diagram depicting the
664 interaction of VLDLR LA6 with EEEV E1 and E2, colored as in (A) with the fusion loop (FL)
665 shown in pale green. Predicted salt bridges (interatomic distance ≤ 4.0 Å) are demarcated by

666 white dashed lines. The fit of this model within the experiment density is pictured within the
667 inset. **(C, D, F)** Infection of SINV-EEEV-GFP PE-6 WT and mutants in K562 cells expressing
668 WT VLDLR as quantified by GFP expression using flow cytometry. **(E)** Dose-response
669 neutralization (10, 1, and 0.1 μ g/mL) of indicated Fc-fusion proteins against SINV-EEEV PE-6
670 HKR \rightarrow AAA virus in 293T cells. Infection was assessed by GFP expression using flow
671 cytometry. Data in **(C, D, F)** are pooled from three to six independent experiments. Data in **E** are
672 representative are pooled from two independent experiments. ***p < 0.001, ****p < 0.0001;
673 one-way ANOVA with Dunnett's post-test.

674 **Figure 6. Comparative analysis of virus-receptor complexes. (A-D)** Structures of
675 known alphavirus-receptor complexes, with VLDLR (orange; strain-specific site shown as
676 transparent), LDLRAD3 LA1 (yellow, PDB 7N1H), MXRA8 (magenta, PDB 6NK7), and
677 VLDLR LA3 (green, PDB 8IHP) displayed as ribbon diagrams, overlaying surface
678 representations of EEEV, VEEV, CHIKV, or SFV structural proteins. E1 is shown in tan, E2 A
679 domain in sea green, E2 B domain in blue, and the remainder of E2 (including C domain and the
680 β -linker) in pale purple. **(E)** Magnified top view showing overlay of VLDLR LA1 (orange) and
681 LDLRAD3 LA1 (yellow) within the EEEV/VEEV receptor binding cleft. **(F)** Surface
682 representations of neighboring E1/E2 heterodimers, colored as in **(A-D)**, with receptor binding
683 interfaces (determined by Proteins, Interfaces, Structures, and Assemblies (PISA))⁵¹ highlighted
684 on their respective alphaviruses.

685 **Figure 7. VLDLR LA(1-2)-Fc protects mice against EEEV FL93-939 challenge in**
686 ***vivo*.** **(A-C)** Survival **(A)**, weight change **(B)**, and clinical scores **(C)** of 5-7-week-old female
687 CD-1 mice administered 100 μ g of indicated Fc-fusion protein prior to subcutaneous challenge
688 with EEEV FL93-939. The scoring system is described in STAR Methods. **(D)** Survival of mice

689 treated as in **(A)** following aerosol challenge with EEEV FL93–939. Data in **A–D** are pooled
690 from two independent experiments with $n = 10$ mice per experimental group. **(A)** log-rank test
691 with Bonferroni correction; **(D)** log-rank test: ** $p < 0.01$, **** $p < 0.0001$.

692

693 **SUPPLEMENTAL FIGURE LEGENDS**

694 **Figure S1. Cryo-EM methodology. Related to Figure 1.** Cryo-EM data processing
695 steps are shown for EEEV VLPs apo, in complex with full-length VLDLR, or in complex with
696 VLDLR LA(1–2).

697 **Figure S2. Cryo-EM quality control. Related to Figure 1.** **(A–C)** Local resolution
698 estimates (*left*) and gold-standard FSC plots (*right*) of EEEV asymmetric unit apo **(A)**, in
699 complex with full-length VLDLR **(B)**, or in complex with VLDLR LA(1–2) **(C)**. Resolutions
700 were estimated in cryoSPARC using a 0.143 FSC cutoff. **(D)** Example model fits at EEEV-
701 VLDLR interfaces, with experimental cryo-EM densities shown as a mesh.

702 **Figure S3. Defining VLDLR LA domains that support EEEV PE–6 binding and**
703 **infection. Related to Figure 2.** **(A)** Phylogenetic tree generated using the sequences of the
704 structural genes E1 and E2 of the indicated alphaviruses. Colored lines indicate known receptor
705 usage by the corresponding virus. **(B)** Flow cytometry plots of K562 cells stained with the
706 indicated mAbs (*left*) and representative flow plot of GFP expression in K562 cells following
707 SINV-EEEV-GFP expression (*right*). **(C)** Flow cytometry histograms showing expression of the
708 indicated Flag-tagged VLDLR constructs in K562 cells. **(D)** Schematic of SINV chimeric
709 reporter viruses in which the structural genes of SINV have been replaced with those of the
710 indicated alphaviruses in addition to GFP. **(E)** Infection of K562 cells expressing the indicated
711 constructs by SINV-VEEV-GFP (*left*) and SINV-EEEV-GFP (*right*) as assessed by GFP

712 expressing using flow cytometry. Data are pooled from two to four independent experiments. (F)
713 Flow cytometry histograms showing expression of the indicated Flag-tagged truncated VLDLR
714 constructs in K562 cells. (G) Alignment of the 8 LA domains of VLDLR and LDLRAD3 LA1.
715 Filled or open arrowheads respectively indicate residues that coordinate calcium by side chain or
716 main chain carbonyl. (H) Flow cytometry plots of the indicated single LA domain transduced
717 K562 cells showing expression of the Flag tag in control K562 and K562-VLDLR cells. Flow
718 cytometry histograms in **B, C, F, and H** are representative of two independent experiments. Data
719 in **E** are pooled from two independent experiments.

720 **Figure S4. Characterization of LA domain binding of VLDLR by EEEV PE-6.**

721 **Related to Figure 2.** (A) Diagram of BLI experiments. Fc-fusion proteins are captured with anti-
722 human Fc biosensors followed by incubation with VLPs (left schematic, “receptor
723 immobilized”). VLPs are captured by anti-mouse mAbs (EEEV-3) followed by incubation with
724 Fc-fusion protein (right schematic, “receptor in solution”). (B) BLI of Fc-fusion proteins
725 following incubation with VLPs. Representative sensor traces are shown after dipping into wells
726 containing 20 µg/mL of EEEV (left panel) or VEEV VLP (right panel). Data are representative
727 of two independent experiments. (C, E, F, G) Flow cytometry histograms showing expression of
728 the indicated Flag-tagged chimeric VLDLR constructs in K562 cells. (D) Quantification of GFP⁺
729 cells (%) 24 h after SINV-VEEV-GFP TrD infection of K562 cells expressing indicated
730 VLDLR(WA) constructs from (C). (H) Quantification of GFP⁺ cells (%) 24 h after SINV-SFV4-
731 GFP infection of K562 cells expressing WT VLDLR or LA(2-3)ΔLBD. Data are pooled from 4
732 independent experiments. (I) Flag expression of indicated VLA(1-2)ΔLBD mutants as assessed
733 by flow cytometry. Statistical analysis (D, H): n.s, not significant, **** p < 0.0001; student’s t-
734 test.

735 **Figure S5. Characterization of EEEV FL93–939 binding and infection by VLDLR.**

736 **Related to Figure 5.** (A) Dose-response curves of neutralization by the indicated Fc-fusion
737 proteins against SINV-EEEV FL93–939-GFP. (B) Steady-state BLI curves of monovalent
738 LA(1–6) bound to indicated EEEV FL93–939 VLP coated biosensors. Data are pooled from
739 three independent experiments. (C) BLI of Fc-fusions following incubation with VLPs.
740 Representative sensor traces are shown after dipping into wells containing 20 µg/mL of EEEV
741 FL93–939 VLPs. (D–E) SINV-EEEV-GFP FL93–939 infection of K562 cells transduced with
742 variants of VLDLR (WA) in which the single (D) or two (E) LA domains have been reverted to
743 Trp. (F–H) Scheme of LA(1–6)-Fc fusion protein and relevant Trp residues annotated (F).
744 Neutralization by the indicated Trp variants of LA(1–6)-Fc proteins against SINV-EEEV-GFP
745 PE–6 (G) or SINV-EEEV-GFP FL93–939 (H) in 293T cells. (I) Binding of LA(1–6mut2)-Fc to
746 captured wild-type (WT) and mutant EEEV FL93–939 VLPs. Biosensors were coated with WT
747 or mutant VLPs followed by incubation with 25 nM of LA(1–6mut2)-Fc for 300 sec. Binding
748 was calculated as percent signal (R_{max}) relative to WT VLPs. Data in (A, G, H) are pooled from
749 two to three independent experiments. Data in (E, F, I) are pooled from three independent
750 experiments: *p < 0.05, ****p < 0.0001, n.s. not significant; one-way ANOVA with Dunnett's
751 post-test).

752 **Figure S6. Alphavirus E1 multiple sequence alignment with receptor contacts.**

753 **Related to Figure 6.** Structural alignment of E1 proteins from EEEV PE–6 (GenBank
754 L37662.1), EEEV FL93–939 (EF151502.1), VEEV (strain TC-83, AAB02517.1), SFV (strain 4,
755 AKC01668.1), and CHIKV (strain 37997, AAU43881.1) generated with PROMALS3D⁵⁸ and
756 visualized with ESPript 3.⁵⁹ Receptor contacts (determined by PISA) are shown below the
757 alignment in orange (EEEV/VLDLR; transparent orange for PE–6-specific contacts), yellow

758 (VEEV/LDLRAD3), purple (CHIKV/MXRA8), or green (SFV/VLDLR), delineated as wrapped,
759 intraspike, interspike (CHIKV/MXRA8 only), or vertex (SFV/VLDLR only). Blue boxes
760 highlight electropositive residues on a given virus known to form salt bridges with the calcium-
761 coordination site of an LA domain receptor.

762 **Figure S7. Alphavirus E2 multiple sequence alignment with receptor contacts.**

763 **Related to Figure 6.** Structural alignment of E2 proteins from EEEV PE-6 (Genbank
764 L37662.1), EEEV FL93-939 (EF151502.1) VEEV (strain TC-83, AAB02517.1), SFV (strain 4,
765 AKC01668.1), and CHIKV (strain 37997, AAU43881.1) generated with PROMALS3D⁵⁸ and
766 visualized with ESPript 3.⁵⁹ Receptor contacts (determined by PISA) are shown below the
767 alignment in orange (EEEV/VLDLR; transparent orange for PE-6-specific contacts), yellow
768 (VEEV/LDLRAD3), or purple (CHIKV/MXRA8), delineated as wrapped, intraspike, or
769 interspike (CHIKV/MXRA8 only). Blue boxes highlight electropositive residues on a given virus
770 known to form salt bridges with the calcium-coordination site of an LA domain receptor.

771 **Figure S8. Differential VLDLR LA domain usage by distinct binding sites on EEEV.**

772 **Related to Figures 2-5. A.** Schematic representation of VLDLR LA domain usage at the
773 different receptor-binding sites on EEEV (E1/E2 cleft, E2 A domain, and E2 B domain). The
774 cleft and E2 A sites are conserved in all EEEV strains whereas the E2 B domain binding site is
775 present in the few strains featuring residue E2-206K (e.g., EEEV PE-6). Arrows from LA
776 domains indicate which sites on EEEV are bound, respectively, with solid lines indicating
777 interactions observed structurally, and thicker lines indicating interactions that are of higher
778 affinity. **B.** Predicted EEEV-VLDLR binding modes are depicted on the virion surface.

779 **Figure S9. Sequence alignment of VLDLR orthologs, Related to Figures 5-6 .**

780 Multiple sequence alignment of *Homo sapiens* (human, GenBank NP_003374.3), *Mus musculus*

781 (mouse, NP_038731.2), *Equus caballus* (horse, XP_023483037.1), *Sturnus vulgaris* (avian,
782 XP_014736085.1), *Aedes aegypti* (mosquito, AEY84776.1), *Aedes albopictus* (mosquito,
783 JAC13440.1), and *Caenorhabditis elegans* (nematode, NP_872023.2) VLDLR orthologs.
784 Structural homology guided alignment was performed via cysteine barcoding⁶⁰ followed by
785 alignment via PROMALS3D,⁵⁸ visualized with ESPript 3.⁵⁹ LA domains are annotated below the
786 alignment. Predicted EEEV contacts are designated by large (close contacts) or small (other
787 contacts) dots, with strain-specific contacts (in LA6) colored lightly.

788

789 **SUPPLEMENTAL TABLE TITLES**

790 **Supplemental Table 1. Cryo-EM data collection, processing, and model refinement**
791 **statistics. Related to Figures 4 and 5.**

792 **Supplemental Table 2. Residues comprising the EEEV/VLDLR interface. Related to**
793 **Figures 4 and 5.** Contact residues were determined by PISA. Close contacts ($\leq 3.9 \text{ \AA}$) conserved
794 at all binding sites in the asymmetric unit are underlined. Strain (PE-6)-specific contacts are
795 italicized.

796 **Supplemental Table 3. Sequence alignment of EEEV sequences in Genbank, Related**
797 **to Figure 5**

798

799 **STAR METHODS**

800 **RESOURCE AVAILABILITY**

801 ***Lead contact.*** Further information and requests for resources and reagents should be
802 directed to the Lead Contact, Michael S. Diamond (mdiamond@wustl.edu).

803 ***Materials availability.*** All requests for resources and reagents should be directed to the
804 Lead Contact author. This includes viruses, proteins, and cells. All reagents will be made
805 available on request after completion of a Materials Transfer Agreement (MTA).

806 ***Data and code availability.*** All data supporting the findings of this study are available
807 within the paper and are available from the corresponding author upon request. This paper does
808 not include original code. All structures have been deposited in the PDB and EMDB databases
809 (PDB: 8SNT, 8SNU; EMDB: 17237, 40634, 40635, 40636).

810

811 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

812 ***Cells.*** 293T (ATCC, CRL-3216), Vero (ATCC, CCL-81), and BHK21 (ATCC, CCL-10)
813 cells were maintained in high-glucose DMEM supplemented with 10% FBS, Gluta-MAX, 10
814 mM HEPES, non-essential amino acids, and penicillin-streptomycin. K562 (ATCC, CCL-243
815 cells were maintained in RPMI-1640 (Thermo Fisher) supplemented with 10% FBS, Gluta-MAX
816 and 10mM HEPES.

817 ***Viruses.*** SINV-EEEV-EGFP PE-6 (and mutants) and SINV-SFV4-EGFP were generated
818 by replacement of structural genes of SINV-WEEV-EGFP CBA87 with EEEV PE-6 and SFV4
819 structural genes, respectively, by PCR and Gibson assembly with EGFP expressed a structural
820 protein fusion as described previously.⁶¹ The infectious cDNA clones were digested with XhoI,
821 and the linearized vector purified with Monarch PCR & DNA Clean up Kit (New England

822 BioLabs). One μ g of linearized vector was used to generate RNA with a HiScribe SP6 RNA
823 synthesis kit (New England BioLabs) followed by purification with Monarch RNA clean up kit.
824 Four μ gs of RNA were transfected into BHK21 cells with a GenePulser Xcell electroporator
825 (Bio-Rad). The supernatant was harvested as the P0 stock 48 h later. The virus was passaged one
826 additional time on BHK21 cells and titered on Vero cells. SINV-VEEV-EGFP TrD and SINV-
827 EEEV-GFP FL93–939 has been described previously. EEEV FL93–939 was produced from a
828 cDNA clone (a gift from S. Weaver, UTMB Galveston) as described previously.³²

829 **Mouse studies.** All animal procedures performed at the University of Pittsburgh were
830 carried out under approval of the Institutional Animal Care and Use Committee of the University
831 of Pittsburgh in protocols 15066059 and 18073259. Animal care and use were performed in
832 accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals
833 of the National Research Council. Approved euthanasia criteria were based on weight loss and
834 morbidity. Virus inoculations were performed under anesthesia that was induced and maintained
835 either with inhaled isoflurane or ketamine hydrochloride and xylazine, and all efforts were made
836 to minimize animal suffering. CD-1 mice were purchased commercially (Jackson Laboratories).
837 Subcutaneous infections with cDNA clone-derived EEEV FL93–939 were in the left rear footpad
838 and aerosol infections were performed as previously described.⁶²

839

840 **METHOD DETAILS**

841 ***Ectopic expression of VLDLR constructs.*** cDNA encoding VLDLR (GenBank
842 NP_003374.3) residues 28-873 was subcloned into a pLV-IRES-puromycin lentiviral vector with
843 an N-terminal Flag tag, downstream of a human β 2m signal sequence. VLDLR chimeras and
844 mutants were cloned into the pLV-VLDLR-IRES-puro or by Gibson assembly with Geneblocks

845 (IDT) and verified by Sanger sequencing or were designed and synthesized by Twist Biosciences
846 (San Francisco, CA), into the pSFFV-IRES-puromycin backbone. Lentivirus was harvested 48 h
847 post-transfection of HEK293T cells with donor vector, psPAX2 (Addgene #12260), and
848 pMD2.G (Addgene#12259) in a 2:2:1 ratio using Mirus LT-1 reagent according to the
849 manufacturer's recommended instructions. We 'spinoculated' (800 x g for 25 min) K562 cells
850 with the lentiviral supernatants and exchanged cells into fresh media after 24 hours. Transduced
851 cells were selected after 48 h of incubation with puromycin (2 µg/mL, Invivogen) and 7 days of
852 culture before use in experiments. To verify Flag-tag expression after selection, cells were
853 incubated with anti-Flag-Alexa Flour 647 (15009S, Cell Signaling) at a 1:200 dilution in FACS
854 buffer (1x PBS + 0.1% BSA + 2 mM EDTA + 0.05% NaN₃) for 30 min at 4°C. Following
855 washing steps, cells were analyzed on an iQue3 flow cytometer. For some experiments, cells
856 stained with anti-Flag-A647 were sorted for either low or high expression on a MACSQuant
857 Tyto instrument (Miltenyi Biotec).

858 ***Cell infection experiments.*** Transduced K562 cells were inoculated with SINV-EGFP
859 chimeric viruses at a multiplicity of infection (MOI) of 2 for 24 h. To assess the neutralization
860 capacity of Fc-fusion proteins, virus was incubated with the VLDLR Fc-fusion proteins for 1 h at
861 37°C before inoculation of 293T cells. Cells were harvested 16 h post-infection for flow
862 cytometric analysis. Cells were subjected to flow cytometry in the presence of 4',6-diamidino-2-
863 phenylindole (DAPI, 1 µg/mL) using an iQue3 (Sartorius) and analyzed with Forecyte (Sartorius)
864 software.

865 ***Fc-fusion proteins.*** The ligand binding domain (LA1-8) of human VLDLR (residues 28–
866 355, GenBank NP_003374.3) was subcloned into a pTwist CMV β-globin expression vector
867 downstream of a mouse IgH signal sequence encoding human IgG1 Fc separated by a

868 GGGSGGS linker with or without an HRV 3C protease cleavage site. The individual and
869 truncated Fc-fusion constructs were generated in a similar fashion: LA1 (31-69), LA2 (70-110),
870 LA3 (111-151), LA4(152-190), LA5(191-231), LA6(237-275), LA7(276-314), LA(1-2) (31-
871 110), LA(2-3) (70-151), LA(3-4) (111-190), LA(4-5) (152-231), LA(5-6) (191-275) , LA(1-3)
872 (31-151), LA(1-4) (1-190), LA(1-5) (1-231), LA(1-6) (1-275). To express proteins, constructs
873 were co-transfected with human LRPAP (RAP) chaperone protein (NM_002337.4, residues 1-
874 353) at a (4:1 ratio) with Expifectamine 293 reagent into Expi293 cells (Thermo Fisher)
875 according to the manufacturer's instructions. Supernatants were harvested four days post-
876 transfection, centrifuged, filtered, and Fc-fusion proteins were bound to Protein A Sepharose
877 (Thermo) in a gravity flow column. The column was washed with 25 column volumes of 1x TBS
878 (20 mM Tris pH 8.0, 150 mM NaCl), 50 column volumes of high-salt buffer (20 mM Tris pH
879 8.0, 500 mM NaCl, 10 mM EDTA) to strip LRPAP, followed by 25 column volumes of 1x TBS
880 + 10 mM CaCl₂. Proteins were eluted with PierceTM Gentle Ag/Ab Elution Buffer, pH 6.6
881 (Thermo Fisher) and desalting into 1x TBS (20 mM Tris pH 8.0, 150 mM NaCl) with 2 mM
882 CaCl₂ using a PD-10 column (Cytiva). Depending on the yield, protein was concentrated with an
883 Amicon 10 kDa centrifugal filter (Millipore). Protein purity was assessed by non-reducing SDS-
884 PAGE followed by staining with SimpliSafe Coomassie reagent (Thermo). Gels were imaged
885 with an iBright 1500 instrument (Thermo Fisher).

886 **VLPs.** EEEV PE-6 and VEEV TC-83 VLPs were a gift from K. Carlton and J. Mascola,
887 Vaccine Research Center of the National Institutes of Allergy and Infectious Diseases).⁶³

888 **Domain mapping and quantitative BLI.** All domain mapping and quantitative affinity
889 experiments were performed on a GatorPlus BLI and analyzed using on-board software
890 (GatorBio) or BiaEvaluation Software (Biacore). Unless otherwise noted, all experiments were

891 performed with 1x PBS supplemented with 1% BSA and 2 mM CaCl₂ (Running buffer). To test
892 the avidity of receptor constructs clustered in the solid phase, VLDLR-Fc fusion constructs were
893 immobilized on anti-human IgG Fc biosensors (GatorBio #160003) for 120 sec, washed in
894 Running buffer for 30 sec, then submerged in EEEV or SFV VLPs at a nominal concentration of
895 ~20 µg/mL for 360 sec to assess binding. To evaluate binding of VLDLR constructs in solution,
896 anti-mouse IgG Fc biosensors (GatorBio #160004) were incubated ~20 µg/mL of mEEEV-3⁵⁰
897 for 120 sec then, after washing in Running buffer for 30 sec, EEEV VLPs were captured at a
898 nominal concentration of ~20 µg/mL for 240 sec. For qualitative domain mapping, VLP-coated
899 biosensors then were dipped into wells containing 1 µM of each VLDLR Fc-fusion construct; for
900 quantitative kinetic experiments, VLP-coated biosensors were submerged into in the indicated
901 concentrations of monovalent VLDLR fragments cleaved from the Fc using GlySERIAS
902 (Genovis #A0-GS6) or PierceTM HRV 3C protease (Thermo Fisher). Steady state (equilibrium)
903 affinity was determined via on-board on-board GatorOne Software (v2.7, GatorBio).
904 Experiments were performed in replicate (qualitative) or triplicate (quantitative).

905 ***Mutant VLP generation and assessment of VLDLR-Fc binding.*** To produce mutant
906 EEEV VLPs, we utilized a previously generated EEEV E2 alanine-scanned library or E1 mutants
907 of a pCAGGS vector encoding the structural proteins of EEEV (KR780-2). Select E2 mutants
908 were transfected into Expi293 cells and supernatants were harvested after 2 days and centrifuged
909 to remove cells and debris. VLPs were captured from the crude supernatant with mEEEV-3
910 coated anti-mouse IgG biosensors. We then saturated non-specific binding sites on the anti-
911 mouse IgG pins by incubating with 20 µg/mL of MAY-117 (an isotype control mAb). To assess
912 and quantify binding to LA(1-2)-Fc, the EEEV VLP coated sensor tips were dipped into 1000

913 nM of LA(1–2)-Fc or 10 μ g/mL of EEEV-3. The percent binding was quantified as the BLI
914 signal of LA(1–2)-Fc relative to EEEV-3, with mutant VLPs normalized to that of WT VLPs.

915 **Mouse infections.** Five-week old CD-1 female mice were injected intraperitoneally with
916 a single 100 mg (~5 mg/kg) dose of VLDLR LA(1–2)-Fc or LDLRAD3 LA1-Fc or PBS (in 200
917 ml PBS volume), followed 6 h later by subcutaneous inoculation with 10^3 plaque-forming units
918 (PFU) of EEEV FL93–939 in the left rear footpad. Aerosol exposures were performed as
919 previously described⁶² using the AeroMP exposure system (Biaera Technologies) inside a
920 biological safety cabinet class III with target dose of 5×10^2 PFU. Mice were monitored once or
921 twice daily for weight loss, morbidity, and mortality through 14 days post infection. Clinical
922 signs were assigned by the following criteria: 0 - healthy; 1 - ruffled fur, mild behavioral
923 changes; 2 - hunched posture, significant behavioral changes; 3 - seizures, ataxia, catatonia; 4 -
924 recumbent moribundity; 5 - death. Mice scoring 3 or higher were immediately euthanized.

925 **Cryo-EM sample preparation.** EEEV VLPs were prepared at a nominal concentration of
926 ~ 0.7 mg/mL in PBS (pH 7.4), then incubated for 1 h on ice with 2-to-10-fold molar excess of
927 full-length VLDLR (ACROBiosystems # VLR-H5227) or VLDLR fragments. Solutions of VLPs
928 alone or with VLDLR were applied to glow-discharged lacey carbon grids (Ted Pella #01895-F)
929 then flash-frozen in liquid ethane using a Vitrobot Mark IV (ThermoFisher Scientific).

930 **Cryo-EM data collection.** Grids were loaded into a Cs-corrected FEI Titan Krios 300kV
931 microscope or an FEI Glacios 200kV scope, each equipped with a Falcon 4 direct electron
932 detector, and then imaged at a nominal magnification of 59k \times (Krios) or 120k \times (Glacios),
933 resulting in a calibrated pixel size of 1.081 \AA (Krios) or 1.184 \AA (Glacios). Movies were
934 collected in EER format with a total dose of ~36-40 $e^-/\text{\AA}^2/\text{movie}$ (~4.5 $e^-/\text{\AA}^2/\text{s}$ over 8-9 sec
935 acquisition).

936 **Cryo-EM data processing.** EER movies were binned into 36-40 fractions ($\sim 1.0 \text{ e-}/\text{\AA}^2/\text{f}$)
937 and then pre-processed via patch motion and patch CTF correction in cryoSPARC v3.1.0.⁶⁴
938 Particles were selected using a template picker then cleaned via two- and three-dimensional
939 classification. Whole VLPs with or without VLDLR were reconstructed via homogeneous non-
940 uniform refinement with I1 symmetry imposed. We then performed symmetry expansion and
941 extracted individual asymmetric units for focused three-dimensional classification without
942 orientational sampling in Relion 3.1,⁶⁵ and the class of highest resolution for each sample was
943 subjected to local non-uniform refinement in cryoSPARC.

944 **Model building.** Starting models for EEEV structural proteins were adapted from a
945 previous EEEV VLP cryo-EM structure (PDB: 6XO4),⁴⁷ and VLDLR LA domains were
946 modeled using AlphaFold2 implemented in ColabFold.^{66,67} These starting components were
947 docked into the electron density maps and then refined iteratively using Coot v0.9.5,⁶⁸ Isolde
948 v1.1.0,⁶⁹ Phenix v1.19,⁷⁰ and Rosetta scripts.⁷¹⁻⁷³ Proteins, Interfaces, Structures, and Assemblies
949 (PISA)⁵¹ solvent exclusion analysis was used to identify contact residues and calculate buried
950 surface area. Structures were visualized using UCSF ChimeraX.⁷⁴

951
952 **QUANTIFICATION AND STATISTICAL ANALYSES**

953 Statistical significance was assigned using Prism Version 8.0 (GraphPad) when $P < 0.05$.
954 Statistical analysis of viral infection levels was determined by one-way ANOVA with Dunnett's
955 post-test or student's t test. Statistical analysis of *in vivo* experiments was determined by Kaplan-
956 Meier survival curve analysis. The statistical tests, number of independent experiments, and
957 number of experimental replicates are indicated in the Figure legends.

958 **REFERENCES**

- 959 1. Levinson, R.S., Strauss, J.H., and Strauss, E.G. (1990). Complete sequence of the genomic
960 RNA of O'nyong-nyong virus and its use in the construction of alphavirus phylogenetic
961 trees. *Virology* *175*, 110–123. 10.1016/0042-6822(90)90191-s.
- 962 2. Strauss, J.H., and Strauss, E.G. (1994). The alphaviruses: gene expression, replication, and
963 evolution. *Microbiol Rev* *58*, 491–562. 10.1128/mr.58.3.491-562.1994.
- 964 3. Suhrbier, A., Jaffar-Bandjee, M.-C., and Gasque, P. (2012). Arthritogenic alphaviruses--an
965 overview. *Nat Rev Rheumatol* *8*, 420–429. 10.1038/nrrheum.2012.64.
- 966 4. Zacks, M.A., and Paessler, S. (2010). Encephalitic alphaviruses. *Vet Microbiol* *140*, 281–
967 286. 10.1016/j.vetmic.2009.08.023.
- 968 5. Silverman, M.A., Misasi, J., Smole, S., Feldman, H.A., Cohen, A.B., Santagata, S.,
969 McManus, M., and Ahmed, A.A. (2013). Eastern equine encephalitis in children,
970 Massachusetts and New Hampshire, USA, 1970–2010. *Emerg Infect Dis* *19*, 194–201; quiz
971 352. 10.3201/eid1902.120039.
- 972 6. Lindsey, N.P., Staples, J.E., and Fischer, M. (2018). Eastern Equine Encephalitis Virus in the
973 United States, 2003–2016. *Am J Trop Med Hyg* *98*, 1472–1477. 10.4269/ajtmh.17-0927.
- 974 7. Reed, D.S., Lind, C.M., Sullivan, L.J., Pratt, W.D., and Parker, M.D. (2004). Aerosol
975 infection of cynomolgus macaques with enzootic strains of venezuelan equine encephalitis
976 viruses. *J Infect Dis* *189*, 1013–1017. 10.1086/382281.
- 977 8. Bossi, P., Garin, D., Guihot, A., Gay, F., Crance, J.-M., Debord, T., Autran, B., and Bricaire,
978 F. (2006). Bioterrorism: management of major biological agents. *Cell Mol Life Sci* *63*,
979 2196–2212. 10.1007/s00018-006-6308-z.
- 980 9. Porter, A.I., Erwin-Cohen, R.A., Twenhafel, N., Chance, T., Yee, S.B., Kern, S.J., Norwood,
981 D., Hartman, L.J., Parker, M.D., Glass, P.J., et al. (2017). Characterization and pathogenesis
982 of aerosolized eastern equine encephalitis in the common marmoset (*Callithrix jacchus*).
983 *Virol J* *14*, 25. 10.1186/s12985-017-0687-7.
- 984 10. Phelps, A.L., O'Brien, L.M., Eastaugh, L.S., Davies, C., Lever, M.S., Ennis, J., Zeitlin, L.,
985 Nunez, A., and Ulaeto, D.O. (2019). Aerosol infection of Balb/c mice with eastern equine
986 encephalitis virus; susceptibility and lethality. *Virol J* *16*, 2. 10.1186/s12985-018-1103-7.
- 987 11. Williams, J.A., Long, S.Y., Zeng, X., Kuehl, K., Babka, A.M., Davis, N.M., Liu, J., Trefry,
988 J.C., Daye, S., Facemire, P.R., et al. (2022). Eastern equine encephalitis virus rapidly infects
989 and disseminates in the brain and spinal cord of cynomolgus macaques following aerosol
990 challenge. *PLoS Negl Trop Dis* *16*, e0010081. 10.1371/journal.pntd.0010081.
- 991 12. Stromberg, Z.R., Fischer, W., Bradfute, S.B., Kubicek-Sutherland, J.Z., and Hrabr, P.
992 (2020). Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis
993 Viruses. *Vaccines (Basel)* *8*, E273. 10.3390/vaccines8020273.

994 13. Paredes, A.M., Brown, D.T., Rothnagel, R., Chiu, W., Schoepp, R.J., Johnston, R.E., and
995 Prasad, B.V. (1993). Three-dimensional structure of a membrane-containing virus. *Proc Natl
996 Acad Sci U S A* **90**, 9095–9099. 10.1073/pnas.90.19.9095.

997 14. Cheng, R.H., Kuhn, R.J., Olson, N.H., Rossmann, M.G., Choi, H.K., Smith, T.J., and Baker,
998 T.S. (1995). Nucleocapsid and glycoprotein organization in an enveloped virus. *Cell* **80**,
999 621–630. 10.1016/0092-8674(95)90516-2.

1000 15. Lescar, J., Roussel, A., Wien, M.W., Navaza, J., Fuller, S.D., Wengler, G., Wengler, G., and
1001 Rey, F.A. (2001). The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral
1002 assembly primed for fusogenic activation at endosomal pH. *Cell* **105**, 137–148.
1003 10.1016/s0092-8674(01)00303-8.

1004 16. Li, L., Jose, J., Xiang, Y., Kuhn, R.J., and Rossmann, M.G. (2010). Structural changes of
1005 envelope proteins during alphavirus fusion. *Nature* **468**, 705–708. 10.1038/nature09546.

1006 17. Voss, J.E., Vaney, M.-C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E.,
1007 Thompson, A., Bricogne, G., and Rey, F.A. (2010). Glycoprotein organization of
1008 Chikungunya virus particles revealed by X-ray crystallography. *Nature* **468**, 709–712.
1009 10.1038/nature09555.

1010 18. Pal, P., Dowd, K.A., Brien, J.D., Edeling, M.A., Gorlatov, S., Johnson, S., Lee, I., Akahata,
1011 W., Nabel, G.J., Richter, M.K.S., et al. (2013). Development of a highly protective
1012 combination monoclonal antibody therapy against Chikungunya virus. *PLoS Pathog* **9**,
1013 e1003312. 10.1371/journal.ppat.1003312.

1014 19. Jin, J., Liss, N.M., Chen, D.-H., Liao, M., Fox, J.M., Shimak, R.M., Fong, R.H., Chafets, D.,
1015 Bakkour, S., Keating, S., et al. (2015). Neutralizing Monoclonal Antibodies Block
1016 Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral
1017 Pathogenesis. *Cell Rep* **13**, 2553–2564. 10.1016/j.celrep.2015.11.043.

1018 20. Long, F., Fong, R.H., Austin, S.K., Chen, Z., Klose, T., Fokine, A., Liu, Y., Porta, J.,
1019 Sapparapu, G., Akahata, W., et al. (2015). Cryo-EM structures elucidate neutralizing
1020 mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity.
1021 *Proc Natl Acad Sci U S A* **112**, 13898–13903. 10.1073/pnas.1515558112.

1022 21. Fox, J.M., Long, F., Edeling, M.A., Lin, H., van Duijl-Richter, M.K.S., Fong, R.H., Kahle,
1023 K.M., Smit, J.M., Jin, J., Simmons, G., et al. (2015). Broadly Neutralizing Alphavirus
1024 Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. *Cell* **163**, 1095–1107.
1025 10.1016/j.cell.2015.10.050.

1026 22. Smith, S.A., Silva, L.A., Fox, J.M., Flyak, A.I., Kose, N., Sapparapu, G., Khomandiak, S.,
1027 Khomandiak, S., Ashbrook, A.W., Kahle, K.M., et al. (2015). Isolation and Characterization
1028 of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against
1029 Chikungunya Virus. *Cell Host Microbe* **18**, 86–95. 10.1016/j.chom.2015.06.009.

1030 23. Powell, L.A., Miller, A., Fox, J.M., Kose, N., Klose, T., Kim, A.S., Bombardi, R.,
1031 Tennekoon, R.N., Dharshan de Silva, A., Carnahan, R.H., et al. (2020). Human mAbs

1032 Broadly Protect against Arthritogenic Alphaviruses by Recognizing Conserved Elements of
1033 the Mxra8 Receptor-Binding Site. *Cell Host Microbe* 28, 699-711.e7.
1034 10.1016/j.chom.2020.07.008.

1035 24. Powell, L.A., Fox, J.M., Kose, N., Kim, A.S., Majedi, M., Bombardi, R., Carnahan, R.H.,
1036 Slaughter, J.C., Morrison, T.E., Diamond, M.S., et al. (2020). Human monoclonal antibodies
1037 against Ross River virus target epitopes within the E2 protein and protect against disease.
1038 *PLoS Pathog* 16, e1008517. 10.1371/journal.ppat.1008517.

1039 25. Zhou, Q.F., Fox, J.M., Earnest, J.T., Ng, T.-S., Kim, A.S., Fibriansah, G., Kostyuchenko,
1040 V.A., Shi, J., Shu, B., Diamond, M.S., et al. (2020). Structural basis of Chikungunya virus
1041 inhibition by monoclonal antibodies. *Proc Natl Acad Sci U S A* 117, 27637–27645.
1042 10.1073/pnas.2008051117.

1043 26. Malonis, R.J., Earnest, J.T., Kim, A.S., Angeliadis, M., Holtsberg, F.W., Aman, M.J., Jangra,
1044 R.K., Chandran, K., Daily, J.P., Diamond, M.S., et al. (2021). Near-germline human
1045 monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses.
1046 *Proc Natl Acad Sci U S A* 118, e2100104118. 10.1073/pnas.2100104118.

1047 27. Zimmerman, O., Holmes, A.C., Kafai, N.M., Adams, L.J., and Diamond, M.S. (2023). Entry
1048 receptors - the gateway to alphavirus infection. *J Clin Invest* 133, e165307.
1049 10.1172/JCI165307.

1050 28. Klimstra, W.B., Ryman, K.D., and Johnston, R.E. (1998). Adaptation of Sindbis virus to
1051 BHK cells selects for use of heparan sulfate as an attachment receptor. *J Virol* 72, 7357–
1052 7366. 10.1128/JVI.72.9.7357-7366.1998.

1053 29. Bernard, K.A., Klimstra, W.B., and Johnston, R.E. (2000). Mutations in the E2 glycoprotein
1054 of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity,
1055 and rapid clearance from blood of mice. *Virology* 276, 93–103. 10.1006/viro.2000.0546.

1056 30. Heil, M.L., Albee, A., Strauss, J.H., and Kuhn, R.J. (2001). An amino acid substitution in the
1057 coding region of the E2 glycoprotein adapts Ross River virus to utilize heparan sulfate as an
1058 attachment moiety. *J Virol* 75, 6303–6309. 10.1128/JVI.75.14.6303-6309.2001.

1059 31. Zhang, W., Heil, M., Kuhn, R.J., and Baker, T.S. (2005). Heparin binding sites on Ross
1060 River virus revealed by electron cryo-microscopy. *Virology* 332, 511–518.
1061 10.1016/j.virol.2004.11.043.

1062 32. Gardner, C.L., Ebel, G.D., Ryman, K.D., and Klimstra, W.B. (2011). Heparan sulfate
1063 binding by natural eastern equine encephalitis viruses promotes neurovirulence. *Proc Natl
1064 Acad Sci U S A* 108, 16026–16031. 10.1073/pnas.1110617108.

1065 33. Gardner, C.L., Choi-Nurvitadhi, J., Sun, C., Bayer, A., Hritz, J., Ryman, K.D., and Klimstra,
1066 W.B. (2013). Natural variation in the heparan sulfate binding domain of the eastern equine
1067 encephalitis virus E2 glycoprotein alters interactions with cell surfaces and virulence in
1068 mice. *J Virol* 87, 8582–8590. 10.1128/JVI.00937-13.

1069 34. Silva, L.A., Khomandiak, S., Ashbrook, A.W., Weller, R., Heise, M.T., Morrison, T.E., and
1070 Dermody, T.S. (2014). A single-amino-acid polymorphism in Chikungunya virus E2
1071 glycoprotein influences glycosaminoglycan utilization. *J Virol* 88, 2385–2397.
1072 10.1128/JVI.03116-13.

1073 35. Tanaka, A., Tumkosit, U., Nakamura, S., Motooka, D., Kishishita, N., Priengprom, T., Sa-
1074 Ngasang, A., Kinoshita, T., Takeda, N., and Maeda, Y. (2017). Genome-Wide Screening
1075 Uncovers the Significance of N-Sulfation of Heparan Sulfate as a Host Cell Factor for
1076 Chikungunya Virus Infection. *J Virol* 91, e00432-17. 10.1128/JVI.00432-17.

1077 36. Chen, C.-L., Hasan, S.S., Klose, T., Sun, Y., Buda, G., Sun, C., Klimstra, W.B., and
1078 Rossmann, M.G. (2020). Cryo-EM structure of eastern equine encephalitis virus in complex
1079 with heparan sulfate analogues. *Proc Natl Acad Sci U S A* 117, 8890–8899.
1080 10.1073/pnas.1910670117.

1081 37. Zhang, R., Kim, A.S., Fox, J.M., Nair, S., Basore, K., Klimstra, W.B., Rimkunas, R., Fong,
1082 R.H., Lin, H., Poddar, S., et al. (2018). Mxra8 is a receptor for multiple arthritogenic
1083 alphaviruses. *Nature* 557, 570–574. 10.1038/s41586-018-0121-3.

1084 38. Zhang, R., Earnest, J.T., Kim, A.S., Winkler, E.S., Desai, P., Adams, L.J., Hu, G., Bullock,
1085 C., Gold, B., Cherry, S., et al. (2019). Expression of the Mxra8 Receptor Promotes
1086 Alphavirus Infection and Pathogenesis in Mice and Drosophila. *Cell Rep* 28, 2647–2658.e5.
1087 10.1016/j.celrep.2019.07.105.

1088 39. Kim, A.S., Zimmerman, O., Fox, J.M., Nelson, C.A., Basore, K., Zhang, R., Durnell, L.,
1089 Desai, C., Bullock, C., Deem, S.L., et al. (2020). An Evolutionary Insertion in the Mxra8
1090 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis. *Cell*
1091 *Host Microbe* 27, 428–440.e9. 10.1016/j.chom.2020.01.008.

1092 40. Ma, H., Kim, A.S., Kafai, N.M., Earnest, J.T., Shah, A.P., Case, J.B., Basore, K., Gilliland,
1093 T.C., Sun, C., Nelson, C.A., et al. (2020). LDLRAD3 is a receptor for Venezuelan equine
1094 encephalitis virus. *Nature* 588, 308–314. 10.1038/s41586-020-2915-3.

1095 41. Basore, K., Kim, A.S., Nelson, C.A., Zhang, R., Smith, B.K., Uranga, C., Vang, L., Cheng,
1096 M., Gross, M.L., Smith, J., et al. (2019). Cryo-EM Structure of Chikungunya Virus in
1097 Complex with the Mxra8 Receptor. *Cell* 177, 1725–1737.e16. 10.1016/j.cell.2019.04.006.

1098 42. Song, H., Zhao, Z., Chai, Y., Jin, X., Li, C., Yuan, F., Liu, S., Gao, Z., Wang, H., Song, J., et
1099 al. (2019). Molecular Basis of Arthritogenic Alphavirus Receptor MXRA8 Binding to
1100 Chikungunya Virus Envelope Protein. *Cell* 177, 1714–1724.e12. 10.1016/j.cell.2019.04.008.

1101 43. Basore, K., Ma, H., Kafai, N.M., Mackin, S., Kim, A.S., Nelson, C.A., Diamond, M.S., and
1102 Fremont, D.H. (2021). Structure of Venezuelan equine encephalitis virus in complex with the
1103 LDLRAD3 receptor. *Nature* 598, 672–676. 10.1038/s41586-021-03963-9.

1104 44. Ma, B., Huang, C., Ma, J., Xiang, Y., and Zhang, X. (2021). Structure of Venezuelan equine
1105 encephalitis virus with its receptor LDLRAD3. *Nature* 598, 677–681. 10.1038/s41586-021-
1106 03909-1.

1107 45. Clark, L.E., Clark, S.A., Lin, C., Liu, J., Coscia, A., Nabel, K.G., Yang, P., Neel, D.V., Lee,
1108 H., Brusic, V., et al. (2022). VLDLR and ApoER2 are receptors for multiple alphaviruses.
1109 *Nature* *602*, 475–480. 10.1038/s41586-021-04326-0.

1110 46. Cao, D., Ma, B., Cao, Z., Zhang, X., and Xiang, Y. (2023). Structure of Semliki Forest virus
1111 in complex with its receptor VLDLR. *Cell*, S0092-8674(23)00329-X.
1112 10.1016/j.cell.2023.03.032.

1113 47. Williamson, L.E., Gilliland, T., Yadav, P.K., Binshtain, E., Bombardi, R., Kose, N., Nargi,
1114 R.S., Sutton, R.E., Durie, C.L., Armstrong, E., et al. (2020). Human Antibodies Protect
1115 against Aerosolized Eastern Equine Encephalitis Virus Infection. *Cell* *183*, 1884-1900.e23.
1116 10.1016/j.cell.2020.11.011.

1117 48. Hasan, S.S., Sun, C., Kim, A.S., Watanabe, Y., Chen, C.-L., Klose, T., Buda, G., Crispin,
1118 M., Diamond, M.S., Klimstra, W.B., et al. (2018). Cryo-EM Structures of Eastern Equine
1119 Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization.
1120 *Cell Rep* *25*, 3136-3147.e5. 10.1016/j.celrep.2018.11.067.

1121 49. Pillay, S., Zou, W., Cheng, F., Puschnik, A.S., Meyer, N.L., Ganaie, S.S., Deng, X., Wosen,
1122 J.E., Davulcu, O., Yan, Z., et al. (2017). Adeno-associated Virus (AAV) Serotypes Have
1123 Distinctive Interactions with Domains of the Cellular AAV Receptor. *J Virol* *91*, e00391-17.
1124 10.1128/JVI.00391-17.

1125 50. Kim, A.S., Austin, S.K., Gardner, C.L., Zuiani, A., Reed, D.S., Trobaugh, D.W., Sun, C.,
1126 Basore, K., Williamson, L.E., Crowe, J.E., et al. (2019). Protective antibodies against
1127 Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2
1128 glycoprotein. *Nat Microbiol* *4*, 187–197. 10.1038/s41564-018-0286-4.

1129 51. Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from
1130 crystalline state. *J Mol Biol* *372*, 774–797. 10.1016/j.jmb.2007.05.022.

1131 52. Guttman, M., Prieto, J.H., Croy, J.E., and Komives, E.A. (2010). Decoding of lipoprotein-
1132 receptor interactions: properties of ligand binding modules governing interactions with
1133 apolipoprotein E. *Biochemistry* *49*, 1207–1216. 10.1021/bi9017208.

1134 53. Kim, A.S., Kafai, N.M., Winkler, E.S., Gilliland, T.C., Cottle, E.L., Earnest, J.T., Jethva,
1135 P.N., Kaplonek, P., Shah, A.P., Fong, R.H., et al. (2021). Pan-protective anti-alphavirus
1136 human antibodies target a conserved E1 protein epitope. *Cell* *184*, 4414-4429.e19.
1137 10.1016/j.cell.2021.07.006.

1138 54. Coates, E.E., Edupuganti, S., Chen, G.L., Happe, M., Strom, L., Widge, A., Florez, M.B.,
1139 Cox, J.H., Gordon, I., Plummer, S., et al. (2022). Safety and immunogenicity of a trivalent
1140 virus-like particle vaccine against western, eastern, and Venezuelan equine encephalitis
1141 viruses: a phase 1, open-label, dose-escalation, randomised clinical trial. *The Lancet*
1142 *Infectious Diseases* *22*, 1210–1220. 10.1016/S1473-3099(22)00052-4.

1143 55. Randall, R., Mills, J.W., and Engel, L.L. (1947). The preparation and properties of a purified
1144 equine encephalomyelitis vaccine. *J Immunol* *55*, 41–52.

1145 56. Nikolic, J., Belot, L., Raux, H., Legrand, P., Gaudin, Y., and A. Albertini, A. (2018).
1146 Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein.
1147 *Nat Commun* 9, 1029. 10.1038/s41467-018-03432-4.

1148 57. Verdaguer, N., Fita, I., Reithmayer, M., Moser, R., and Blaas, D. (2004). X-ray structure of a
1149 minor group human rhinovirus bound to a fragment of its cellular receptor protein. *Nat Struct
1150 Mol Biol* 11, 429–434. 10.1038/nsmb753.

1151 58. Pei, J., Kim, B.-H., and Grishin, N.V. (2008). PROMALS3D: a tool for multiple protein
1152 sequence and structure alignments. *Nucleic Acids Res* 36, 2295–2300. 10.1093/nar/gkn072.

1153 59. Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new
1154 ENDscript server. *Nucleic Acids Res* 42, W320-324. 10.1093/nar/gku316.

1155 60. Shafee, T.M.A., Robinson, A.J., van der Weerden, N., and Anderson, M.A. (2016).
1156 Structural homology guided alignment of cysteine rich proteins. *Springerplus* 5, 27.
1157 10.1186/s40064-015-1609-z.

1158 61. Sun, C., Gardner, C.L., Watson, A.M., Ryman, K.D., and Klimstra, W.B. (2014). Stable,
1159 high-level expression of reporter proteins from improved alphavirus expression vectors to
1160 track replication and dissemination during encephalitic and arthritogenic disease. *J Virol* 88,
1161 2035–2046. 10.1128/JVI.02990-13.

1162 62. Gardner, C.L., Sun, C., Luke, T., Raviprakash, K., Wu, H., Jiao, J., Sullivan, E., Reed, D.S.,
1163 Ryman, K.D., and Klimstra, W.B. (2017). Antibody Preparations from Human
1164 Transchromosomal Cows Exhibit Prophylactic and Therapeutic Efficacy against Venezuelan
1165 Equine Encephalitis Virus. *J Virol* 91, e00226-17. 10.1128/JVI.00226-17.

1166 63. Ko, S.-Y., Akahata, W., Yang, E.S., Kong, W.-P., Burke, C.W., Honnold, S.P., Nichols,
1167 D.K., Huang, Y.-J.S., Schieber, G.L., Carlton, K., et al. (2019). A virus-like particle vaccine
1168 prevents equine encephalitis virus infection in nonhuman primates. *Sci Transl Med* 11,
1169 eaav3113. 10.1126/scitranslmed.aav3113.

1170 64. Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC:
1171 algorithms for rapid unsupervised cryo-EM structure determination. *Nat Methods* 14, 290–
1172 296. 10.1038/nmeth.4169.

1173 65. Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., and
1174 Scheres, S.H. (2018). New tools for automated high-resolution cryo-EM structure
1175 determination in RELION-3. *eLife* 7. 10.7554/eLife.42166.

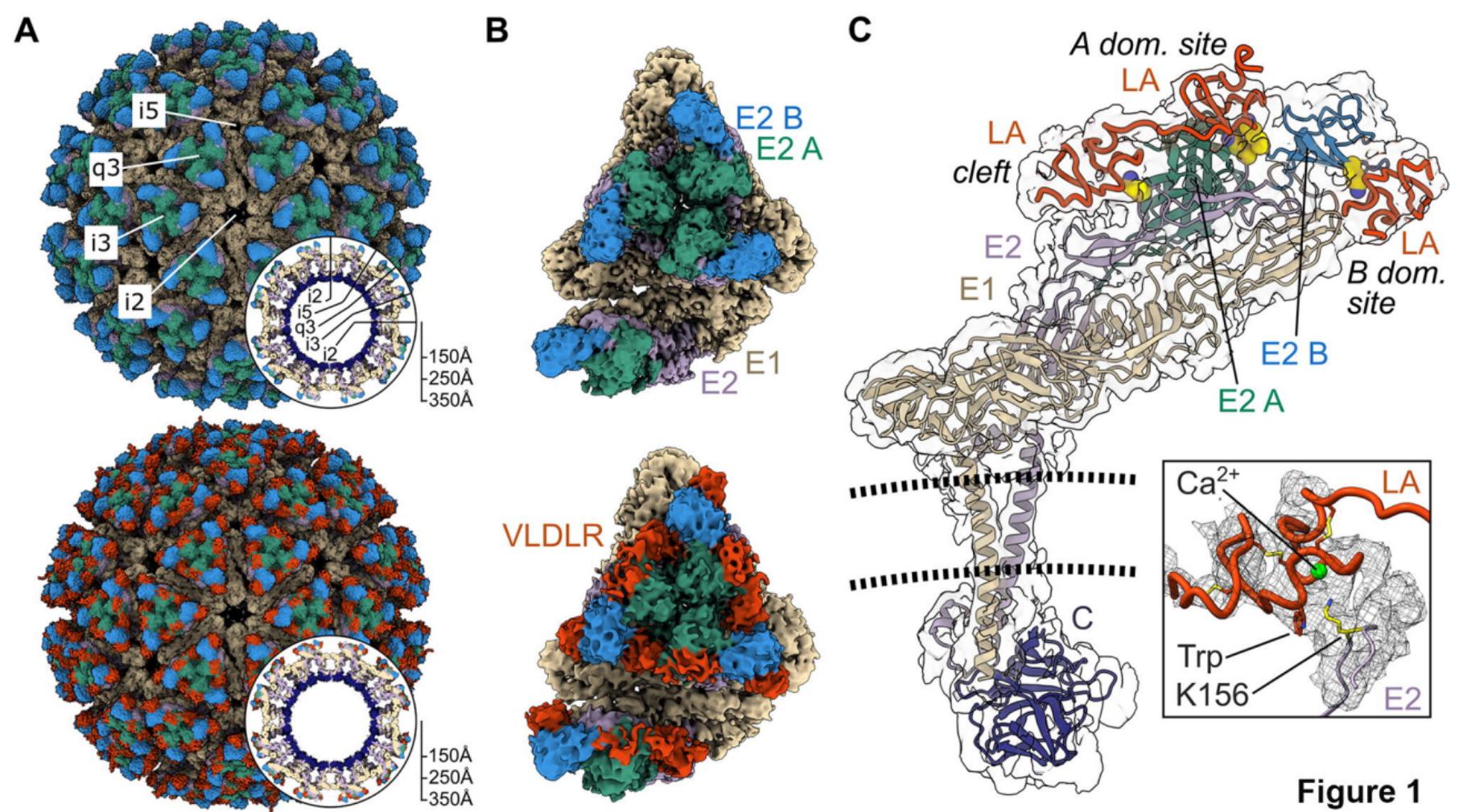
1176 66. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
1177 Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate
1178 protein structure prediction with AlphaFold. *Nature* 596, 583–589. 10.1038/s41586-021-
1179 03819-2.

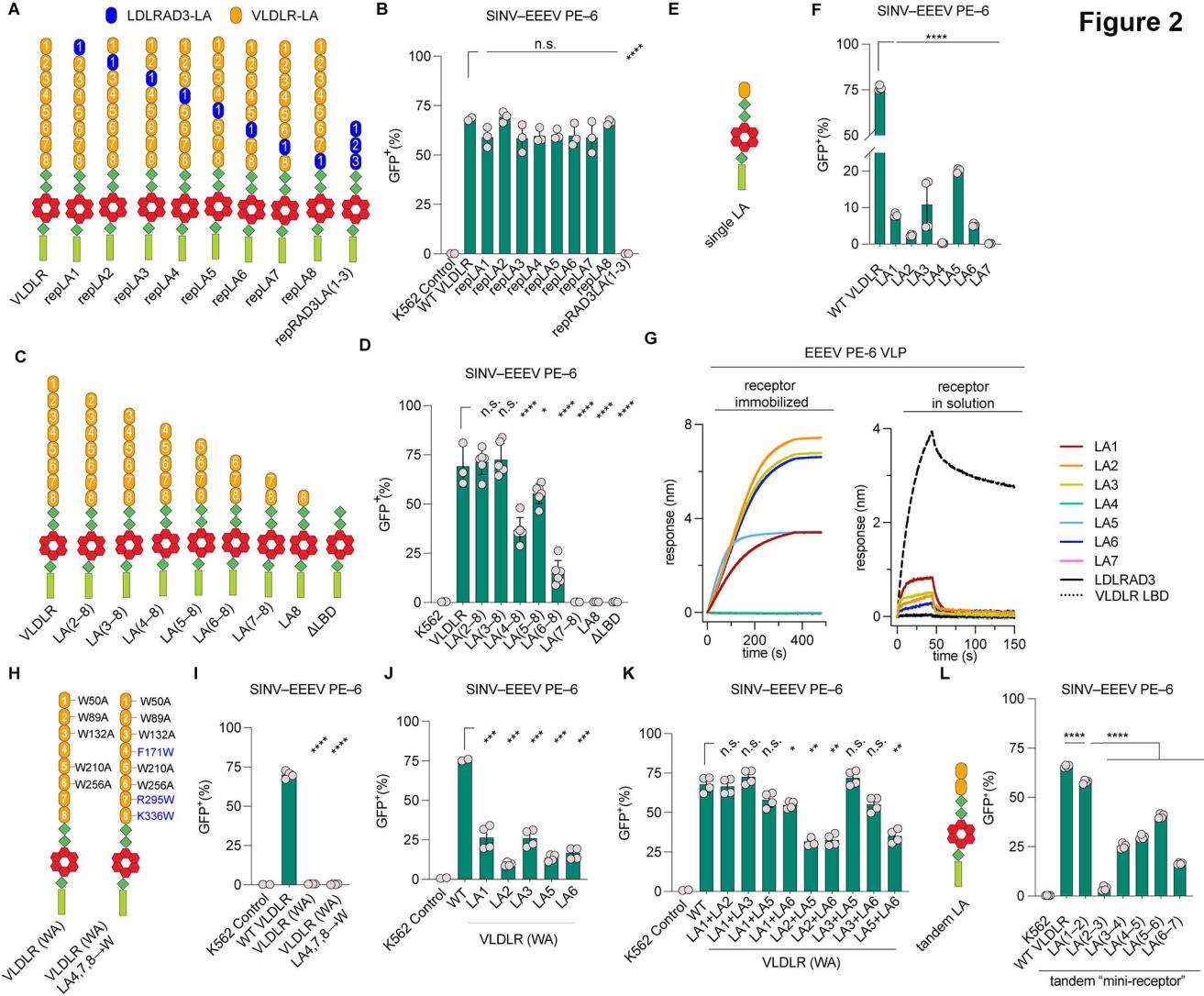
1180 67. Mirdita, M., Ovchinnikov, S., and Steinegger, M. (2021). ColabFold - Making protein
1181 folding accessible to all 10.1101/2021.08.15.456425.

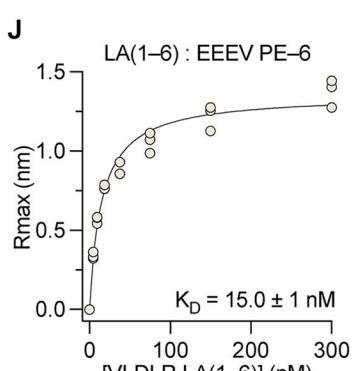
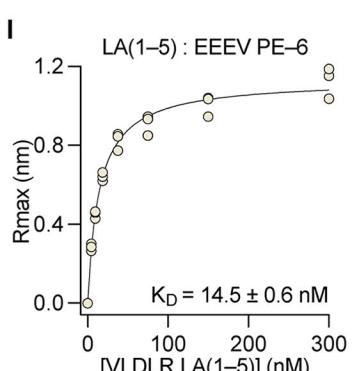
1182 68. Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of
1183 Coot. *Acta Crystallogr D Biol Crystallogr* 66, 486–501. 10.1107/S0907444910007493.

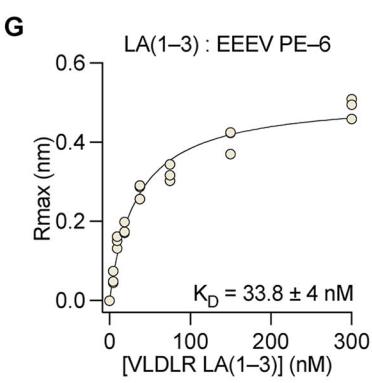
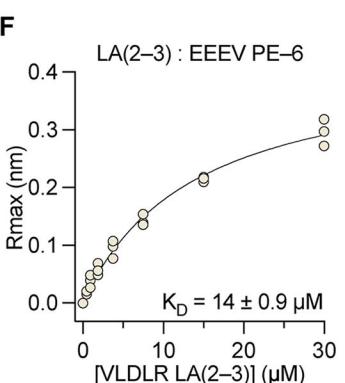
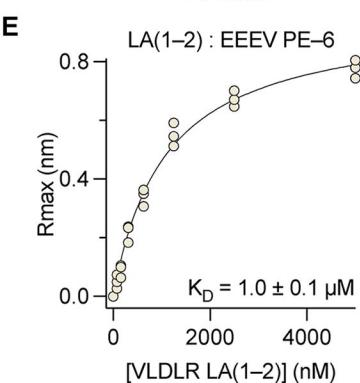
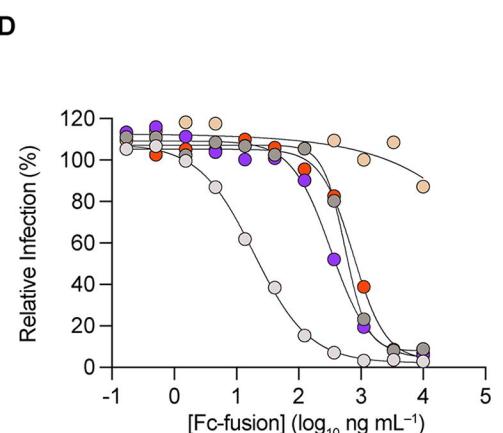
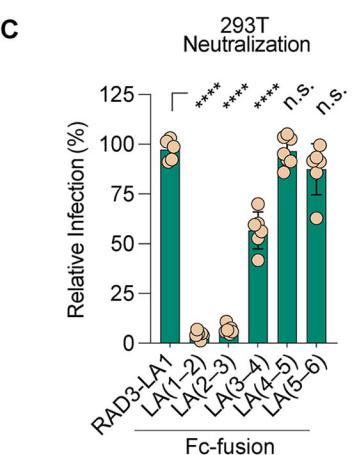
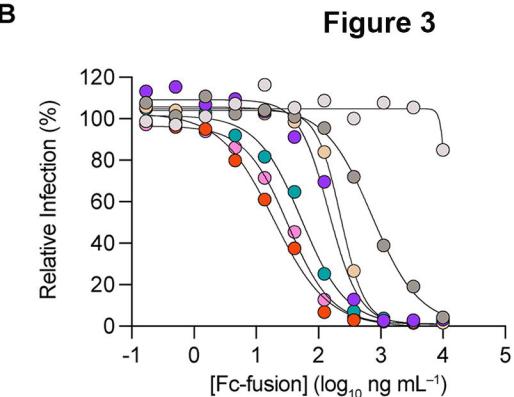
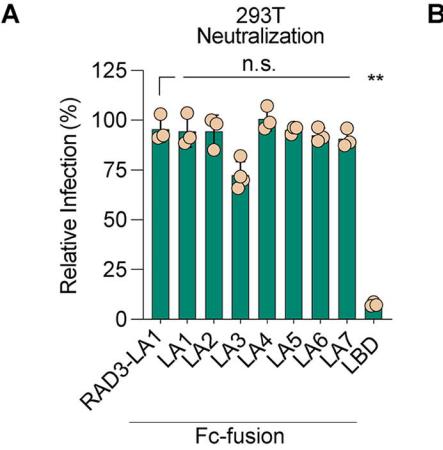
1184 69. Croll, T.I. (2018). ISOLDE: a physically realistic environment for model building into low-
1185 resolution electron-density maps. *Acta Crystallogr D Struct Biol* 74, 519–530.
1186 10.1107/S2059798318002425.

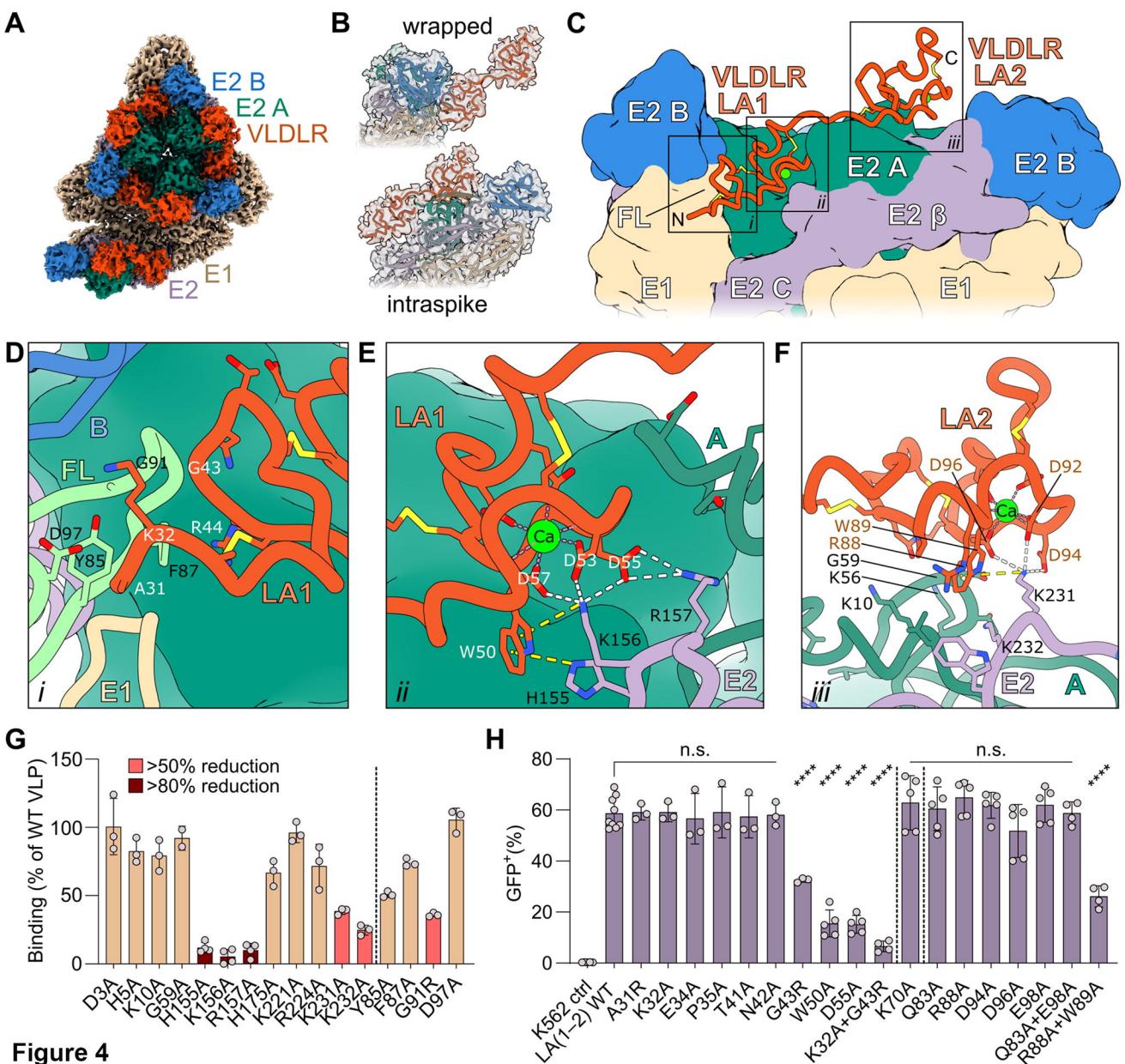
1187 70. Adams, P.D., Afonine, P.V., Bunkóczki, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J.,
1188 Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a
1189 comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr
1190 D Biol Crystallogr* 66, 213–221. 10.1107/S0907444909052925.


1191 71. Fleishman, S.J., Leaver-Fay, A., Corn, J.E., Strauch, E.-M., Khare, S.D., Koga, N.,
1192 Ashworth, J., Murphy, P., Richter, F., Lemmon, G., et al. (2011). RosettaScripts: a scripting
1193 language interface to the Rosetta macromolecular modeling suite. *PLoS One* 6, e20161.
1194 10.1371/journal.pone.0020161.


1195 72. Khatib, F., Cooper, S., Tyka, M.D., Xu, K., Makedon, I., Popovic, Z., Baker, D., and Players,
1196 F. (2011). Algorithm discovery by protein folding game players. *Proc Natl Acad Sci U S A*
1197 108, 18949–18953. 10.1073/pnas.1115898108.








1198 73. Maguire, J.B., Haddox, H.K., Strickland, D., Halabiya, S.F., Coventry, B., Griffin, J.R.,
1199 Pulavarti, S.V.S.R.K., Cummins, M., Thieker, D.F., Klavins, E., et al. (2021). Perturbing the
1200 energy landscape for improved packing during computational protein design. *Proteins* 89,
1201 436–449. 10.1002/prot.26030.


1202 74. Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., and
1203 Ferrin, T.E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and
1204 analysis. *Protein Sci* 27, 14–25. 10.1002/pro.3235.

1205

Figure 2

Figure 4

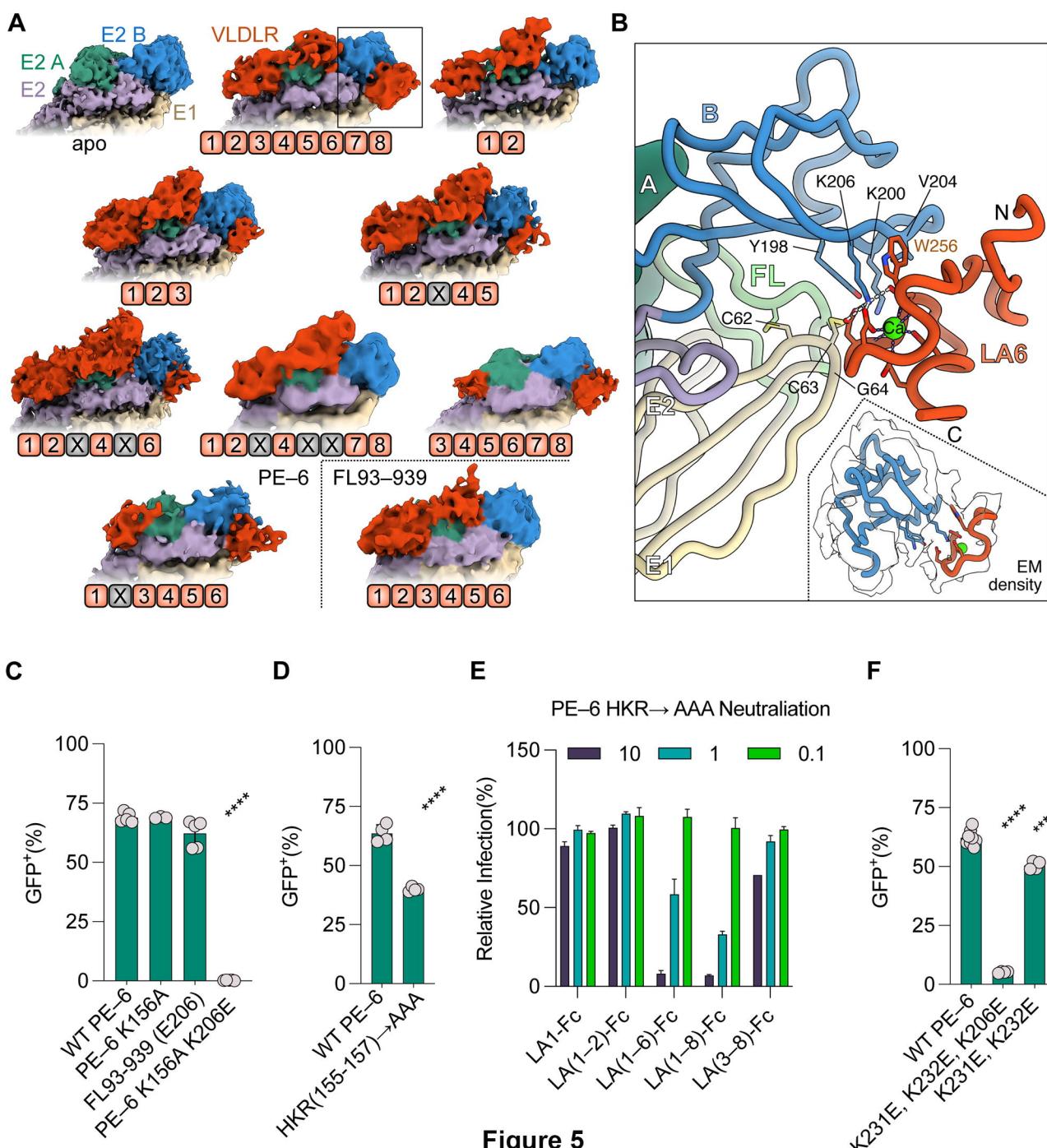
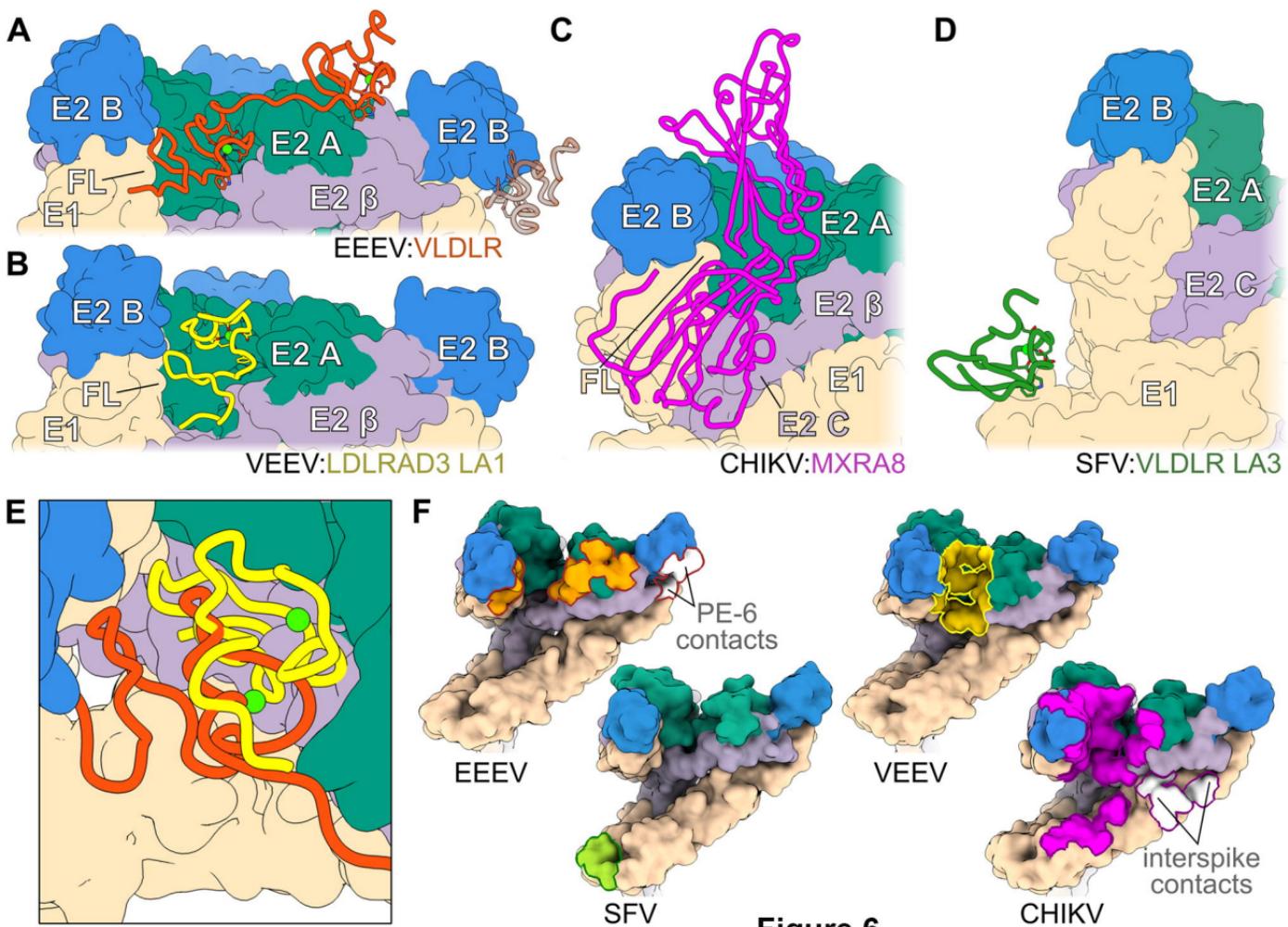
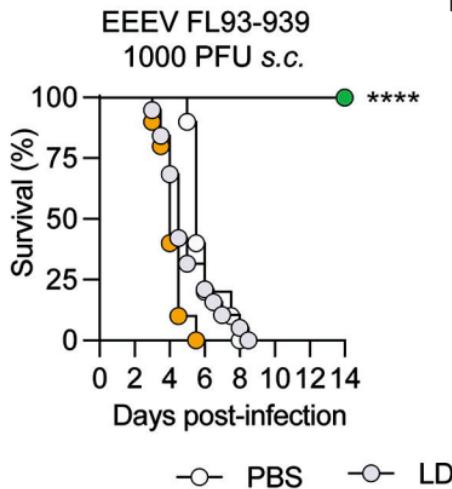
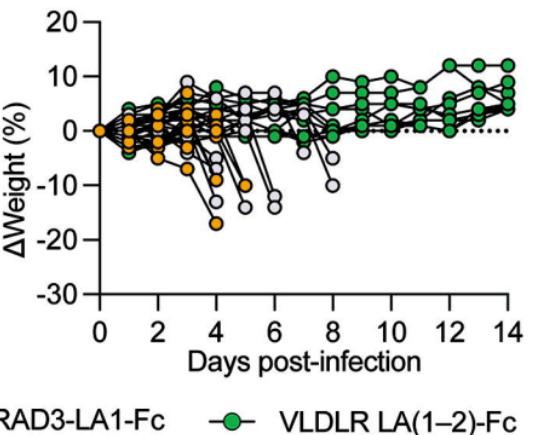
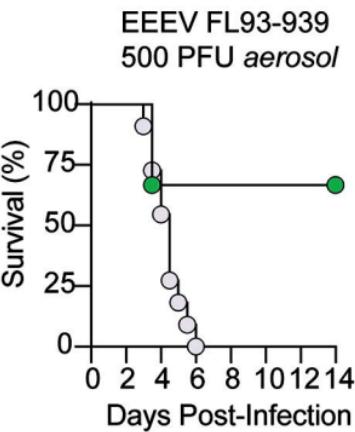
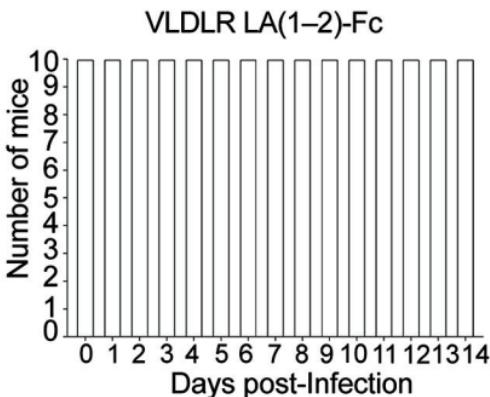
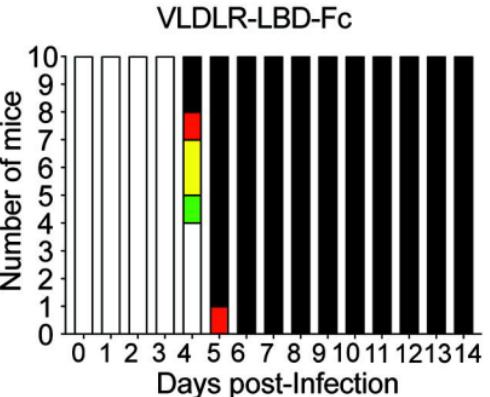
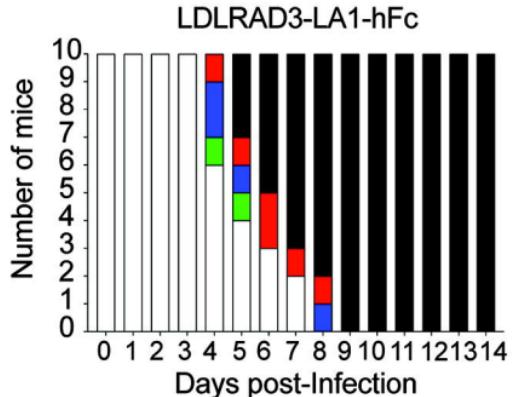









Figure 5

Figure 6

A**B****D****C****Figure 7**

□ Healthy ■ Ruffled Fur ■ Hunched ■ Seizures/Ataxia ■ Moribund ■ Dead