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Abstract 
Cancer drug resistance is multi-factorial, driven by heritable (epi)genetic changes but also 
phenotypic plasticity. Here we dissect it by perturbing colorectal cancer patient-derived 
organoids longitudinally with drugs in sequence. Combining longitudinal tracking, single cell 
'omics, evolutionary modelling, and machine leaning, we found that different targeted drugs 
select for distinct subclones, supporting rationally designed drug sequences. The cellular 
memory was encoded as a heritable epigenetic configuration, from which multiple 
transcriptional programmes could run, supporting a one-to-many (epi)genotype-to-
phenotype map that explains how clonal expansions and plasticity manifest together. This 
may ensure drug resistance subclones can exhibit distinct phenotypes in changing 
environments while still preserving the cellular memory encoding for their selective 
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advantage. Chemotherapies resistance was instead entirely driven by plasticity. Inducing 
further chromosomal instability before drug application changed clonal evolution but not 
convergent transcriptional programmes. Collectively, our data show how genetic and 
epigenetic alterations are selected to "permissive epigenome” enabling phenotypic 
plasticity. 

Introduction 
Cancers develop following the Darwinian rules of clonal evolution, where selected subclones 
bearing new heritable alterations come to dominate the cellular compartment1. The same 
paradigm is extended to explain the emergence of treatment resistance, arguably the biggest 
problem in oncology today2. However, only a subset of resistance mechanisms have been 
identified3–5. Even when genetic mutations are known to cause resistance, often these are 
only detected in a minor proportion of cells within tumours that are refractory to treatment. 
In many patients, treatment failure remains entirely unexplained by genetic alterations alone. 
Accumulating evidence suggests that additional Darwinian mechanisms involving non-genetic 
alterations3,6,7, as well as non-Darwinian cellular plasticity8 also contribute to tumourigenesis. 
Importantly, these mechanisms can co-exist in the same tumour at the same time and, hence 
therapy resistance is likely multi-factorial. 
 
Relatively little attention has been paid to identifying epigenetic changes that drive cancer 
evolution, and "epigenetic driver” identification has been hindered by the lack of proper 
controls to compare cancer and normal epigenomes from the same tissue of origin9. 
Further, because cancer cell plasticity is inherently a dynamic property, it is challenging to 
study in clinical samples typically collected at a single timepoint10. Elegant experiments 
based on the Luria-Delbruck approaches have demonstrated in cell lines that indeed one 
can distinguish plasticity from Darwinian adaptive changes11. Such mechanisms have also 
been identified in patient-derived xenograft models under the pressure of anti-EGFR 
drugs12.  
 
Fundamental open questions remain, such as “to what extent are epigenetic changes 
heritable upon cell division?”, “is plasticity a new cancer programme or a reactivated 
cellular state?”, “is plasticity reversible?”, “is the propensity to cell plasticity in itself a 
heritable trait?”. Since therapy resistance is multi-factorial, another important question is: 
“are different subclones in the same tumour adapting differently to drugs?”. Answering 
these complex questions requires concomitant measurements of genomes, epigenomes and 
transcriptomes, matched with cell lineage histories to deconvolute Darwinian from non-
Darwinian mechanisms. Because drug resistance is multi-factorial in the same tumour, 
single cell resolution is also required. 
 
In this study we designed an evolutionary experiment using patient-derived tumour 
organoids under the pressure of different sequences of drugs. We used expressed lentiviral 
barcodes combined with single cell multi-omics to track the evolution of single cell 
genomes, epigenomes and transcriptomes over time. We studied adaptation in persistor 
cells under the pressure of drugs, and in the same cell lineages when drug pressure is 
released to understand how the therapeutic environment dynamically perturbs cells. We 
leveraged archetype analysis to chart the mapping between data modalities in individually 
tracked subclones. 
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Results 
 
Experimental Design 
Microsatellite stable (MSS) colorectal tumours are characterised by large numbers of 
chromosomal rearrangements, whereas microsatellite unstable (MSI) malignancies have 
largely diploid genomes but very high number of point mutations due to deficiency in the 
mismatch repair machinery. These are the two main genomic subtypes in colorectal cancer. 
In this study we utilise two patient-derived organoid lines. Firstly, an MSS, AKT-mutant and 
AKT amplified organoid that was derived from a metastatic colorectal cancer sample 
(patient F-016 in ref13). Secondly, an MSI mismatch repair deficient (MMRd) organoid that 
was derived from a primary colorectal cancer (CRC0282 from ref12). We infected each 
organoid with a library of 5 million random Cellecta® expressed barcodes, a form of lentiviral 
barcoding system that generates poly-A transcripts that can be captured by single cell RNA 
sequencing (see Material and Methods). We ensured to have one barcode per cell through 
dilution of 0.1 MOI. Single infected cell lineages are subject to high genetic drift due to cell 
turnover and death, giving rise to an expected final distribution of barcode sizes that scales 
as a power-law (Figure 1A). This power-law was used as the “null” distribution for 
comparison against our subsequent evolutionary experiments. We expanded each barcoded 
population to 75 million cells and 2.5 million cells/well were plated in multiple 6-well plates. 
At baseline, the "parental sample” of the first organoid line (AKT-mutant) had 3,000-5,000 
individual cell lineages (Supplementary Figure 1), whereas the second organoid (MMRd) had 
lower barcode diversity (400 barcodes). 
 
We exposed the MSS AKT mutant organoid line to a set of targeted drugs for 45 days at a 
high dose of 2μM concentration (Figure 1B). We used allosteric AKT inhibitor (MK-2206), a 
competitive AKT inhibitor (capivasertib), an mTOR inhibitor (KU-0063794) and a MEK 
inhibitor (trametinib) (Figure 1C). We use those in sequence, making cells become resistant 
to drug A, followed by pressure by drug B (Figure 1B). Dose-response curves confirmed the 
cells became resistance to those drugs (Supplementary Figure 2A). We started with 6 
replicas per condition, after 45 days collected cells under the pressure of the drug from 3 
wells, and performed bulk DNA barcode analysis and single-cell RNA-seq. We left the other 
three wells regrowing in the absence of the drug until confluence and harvested the 
population again for barcode analysis, bulk DNA profiling and single-cell RNAseq. We re-
plated cells into a new 6-well plate for a second drug and repeated the profiling as before. 
Every two days during the whole course of the experiment we collected “floating barcodes” 
by magnetic bead capture of cell-free DNA released in the media by apoptotic cells: this can 
be thought as a “liquid biopsy” of the cell culture. At the end of the experiment, we had five 
cellular timepoints directly derived from the system (i.e. a “solid” biopsy, Figure 1A) as well 
as 58-61 timepoints taken from floating barcodes. Floating barcode samples allowed 
characterising the system evolution without perturbing it with physical sampling. 
 
In a subsequent experiment, both the MSS and MSI organoids were exposed to a single line 
of ERK inhibitors (SCH772984) and chemotherapy with oxaliplatin (Figure 1D) at IC90 
concentration (Supplementary Table 1). This enabled the study of chemotherapeutic vs 
targeted drug. Furthermore, to probe the contribution of chromosomal changes to drug 
resistance, we induced chromosomal instability (CIN) in  both organoid models by 
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perturbing chromosome segregation14 using a CENP-E inhibitor alone or in combination with 
an MPS1 inhibitor15 (Figure 1D).  
 

 
Figure 1. Experimental design of long-term drug resistance evolution in colorectal cancer 
organoids. (A) Lentiviral barcoding of single cells as an evolutionary tool. (B) Experimental 
design of a long-term drug resistance evolution in MSS AKT mutant organoid. We performed 
bulk DNA profiling for genomic characterisation and barcode measurement, as well as 
single-cell RNA-seq and corresponding single cell barcode extraction of five “solid” 
timepoints over a five-month period: parental, under drug 1, regrowth after drug 1, under 
drug 2 and regrowth after drug 2. We also collected floating DNA every two days from the 
supernatant to profile barcodes as a “liquid biopsy”. (C) We exposed the cells to 4 different 
sequences of drugs with first- and second-line treatments. (D) In a second experiment, we 
exposed both organoid lines (MSS and MSI) to an ERK inhibitor and oxaliplatin. Before drug 
pressure, we performed an induction of chromosomal instability (CIN) with CENP-E inhibitors 
and CENP-E + MPS1 inhibitors to study CIN effects on drug resistance.  

 
Resistance evolution to targeted drugs but not chemotherapy is heritable, pre-existing 
and highly repeatable 
We first focused on the MSS (AKT mutant) organoid. In all cases we found that drugs 
selected for one or a few subclones that massively expanded during treatment (Figure 2A). 
The three biological replicas we seeded per drug showed almost identical composition of 
selected barcodes, indicating that those subclones were pre-existing in the population and 
were selected by natural selection.  
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We examined the floating barcodes to reveal longitudinal clonal dynamics. Dynamics were 
extremely similar between replicas, indicating that drug-resistance evolution was highly 
repeatable under the strong selective pressures of cancer drugs, and depended strongly on 
the initial conditions of the system (Figure 2B and Supplementary Figure 3). These data 
implied that the drug resistant phenotype was heritable, as the cellular memory encoding 
the drug resistant features was passed on to the offspring (i.e. drug resistance was clonally 
inherited).  
 
Subsequent “second line” treatment with trametinib (MEK inhibitor) selected the same 
subclone as first line, which was cross-resistant to the other drugs when selected at first line 
(Figure 2C). We measured the growth rates over time of different clonal subpopulations 
(barcodes), showing that most surviving clones were not growing under the drug pressure, 
but were instead drug tolerant (i.e. barcode frequencies did not increase with time). When 
the drug pressure was released, the same subclones massively expanded with a high 
selective coefficient of up to s=0.5 (Supplementary Figure 4). Similarly, in the MSI organoid, 
treatment with the ERK inhibitor SCH772984 revealed selection for pre-existing resistant 
subclones in a recurrent fashion between replicas (Figure 2D and Supplementary Figure 5). 
Contrastingly, chemotherapy with oxaliplatin did not select any pre-existing subclone in 
either of the two organoids, with the population structure of the cancer that remained 
unchanged, suggesting that instead plasticity could be responsible for resistance 
(Supplementary Figure 5).  
 
Different targeted drugs select for different pre-existing clones 
We then investigated which subclones (identified by specific barcodes) were selected by 
different drugs. The two different AKT inhibitors, despite targeting the same signalling 
mechanism, selected for distinct subclones (Figure 2A). In contrast, the mTOR inhibitor 
selected similar subclones as the allosteric AKT inhibitor. The MEK inhibitor trametinib 
selected for an entirely different subclone that became dominant after drug exposure. The 
selective advantage of the trametinib-resistant subclone was very strong (Figure 2A and C; 
blue clone). The same subclone also proved to be a persistor in other drug contexts. For 
example, during first line treatment of AKT and mTOR inhibition, the trametinib-resistant 
subclone did not have a selective advantage but remained at low-frequency in the 
population until the second line of MEK inhibitor was later introduced which, subsequently, 
took over very rapidly.  
 
These data indicate that evolutionary adaptation to targeted drugs was highly repeatable, 
driven by strong selective pressure on pre-existing subclones and led to the evolutionary 
divergence of subclones under distinct drugs. Therefore, evolution is determined by the 
initial conditions of the system (presence/absence of subclones), making it highly 
predictable, with the opportunity of exploiting evolutionary trade-offs for subclones in 
different drug contexts with specific sequences of drugs. These are the necessary conditions 
to exploit evolutionary steering strategies16. 
 
We performed bulk whole-genome sequencing (WGS) of all MSS organoid samples at re-
growth and compared to parental to identify candidate genetic alterations causing 
resistance. We found a small set of somatic mutations and copy number alterations that 
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were different in resistant samples (Supplementary Figure 6 and 7). However, none of these 
variants were convincingly linked to a candidate mechanism of drug resistance.  

  
Figure 2. Evolutionary dynamics of barcoded population. (A) Lentiviral barcodes proportion 
following first line treatment in MSS AKT mutant organoid. For each replica and drug 
condition we quantified barcode proportions from genomic DNA, the only exception being 
trametinib for which we used the proportion quantified from 10x scRNA-seq. The top 100 
barcodes have a unique colour across the whole experiment, all the others (< 2% abundance) 
are shown in grey. All the barcodes are quantified after the re-growth period. Selection is 
evident compared to the parental population. (B) Reconstruction of clonal dynamics using 
floating barcodes, extracted from culture media every 2 days over the whole length of the 
experiment. The dynamics shows an evident clonal sweep of the blue barcode after second 
line treatment with trametinib. Colour code is the same as in panel (A). Proportions are 
smoothed over a rolling average on a window of 7 points. (C) Lentiviral barcodes proportion 
with the second line treatment in MSS AKT mutant organoid. (D) Barcodes proportion in MSI 
organoid after being exposed to chemotherapy (oxaliplatin) and ERK inhibition (SCH772984). 
 
Archetype analysis reveals transcriptional programmes 
In MSS organoids, we had, at first, performed single cell RNA-seq and single cell barcode 
extraction from a total of 19 samples (Supplementary Figure 8) and we were able to recover 
the barcode of 46% of cells on average per sample [30-64%]. Transcriptomes of cells under 
treatment clustered separately from parental, reflecting the strong influence of the 
environment on the transcriptomic profile of a cell (Figure 3A). Cells under different drugs 
also clustered separately, suggesting each drug influences the transcriptome differently 
(Figure 3B). Single cell barcodes recapitulated barcode distributions from bulk profiling 
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(Figure 3C). As expected, most cells in S phase belonged to samples from re-growth after 
drug pressure (Figure 3D). We used markers of known cell types in the intestine to classify 
the transcriptional programmes active in each sample (Figure 3E). The parental sample was 
characterised by a small but significant component of LGR5+ stem-like cells and a large 
component of transient amplifying cells (TA). Under the pressure of first line AKT 
(capivasertib and MK-2206) and mTOR inhibitors (KU-0063794), which act on the PI3K/AKT 
pathway, the population maintained a stem cell component but expanded significantly a 
population with a Paneth signature, similar to what previously reported for patient-derived 
xenografts under the pressure of EGFR inhibitors12. Inhibiting the MAPK pathway with the 
MEK inhibitor (trametinib), even after PI3K/AKT suppression, induced instead different 
transcriptional dynamics where the LGR5+ stem-like component and partly a Goblet-like 
component emerged. Instead, blocking AKT after having previously inhibited MEK gave rise 
to yet another transcriptional programme with low LGR5+ stem component but high ASCL2+ 
stem-like cells. At regrowth, stem-like programmes were evident and a tendency of 
microfold cells. Instead for second line drugs a wider range of stem-like programmes 
emerge, again together with Paneth cell programmes. 
 
Given the heterogeneity of transcriptional programmes we found, we hypothesised that a 
high level of phenotypic plasticity, possibly a reflection of aberrant differentiation pathways, 
was present in our cell populations. To deconvolve this signal we developed a new approach 
based on Archetypal Analysis, a dimensionality reduction technique that decomposes an 
input matrix of gene expression values as a convex combination of ideal extreme gene 
expression phenotypes called archetypes17. In this study we implemented a new Deep 
Archetypal Analysis framework called MIDAA18 to account for non-linearity in the 
dimensionality reduction step19 (Figure 3F). We found that distinct archetypes were 
enriched for clearly different cell type markers, highlighting the fact that they represent 
highly distinct cellular programmes, spanning all eight of the cell types we considered 
(Figure 3G). Archetype presence clustered distinctively between cells as expected (Figure 
3H). These results indicate that archetypes are robust, cluster populations of cells in a 
meaningful way that is biologically interpretable. We performed the same analysis in the 
second line of experiments, obtaining similar results (Supplementary Figure 9). We used 
archetypes in the rest of the study as a surrogate of cell phenotype or transcriptional 
programme and studied their relationship to clonal evolution (with barcodes), copy number 
alterations and chromatin profiles. 
 
The drug environment produces plastic shifts in transcription that are reversible 
We examined the composition of clonal barcodes within cells displaying each gene 
expression archetype. Subclones did not split by archetype, instead cells from the same 
barcoded clone gave rise to different archetypes (Figure 3I) suggesting “differentiation” to 
an archetype occurred in each cell lineage. Drug exposure (i.e. the environment) shifted the 
archetype distribution within a subclone, while those distributions were restored to the pre-
treatment distribution following drug suspension and re-growth (Figure 3I). Hence, the 
selected subclones were transcriptionally plastic as in pre-treatment the archetype 
distribution within a barcode was similar to the background parental population, then 
changed under the drug, but finally returned to the original distribution of states after drug 
pressure was released. We observed a similar pattern in the second experiment where we 
exposed the two organoid lines to ERKi and chemotherapy, although this was expected 
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under chemotherapy due to lack of selection for specific barcodes (Supplementary Figure 9E 
and 9F).  
 

 

 
Figure 3. Transcriptional programmes show plasticity after drug administration. (A-D) 
UMAP of the 37,000 cells in the experiment after QC filters coloured respectively by: 
experimental stage, drug, barcode and cell cycle phase. Cells for which we were not able to 
extract a valid barcode or with an abundance of less than 1% are shown in grey. Cells in 
under drug phase tend to strongly cluster by drug, while they tend to mix back with the 
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parental cells during re-growth. (E) Z-score distribution of adult colonic cell type markers 
from ref20 shows the presence of distinct differentiation programmes inside the organoid. (F) 
Archetypal Analysis (AA) aims at decomposing the input dataset as a convex combination of 
extreme points by learning two matrices A and B, which are the archetype weights for each 
point in the dataset and the matrix that defines the archetypes starting from the input 
dataset, respectively. Here we use a deep learning implementation of AA. We then exploited 
the weights of the A matrix to quantify differences in transcriptional programmes across 
conditions and genotypes (G) Z-score distribution for the same genes as in panel (E) but 
computed by archetype. (H) Archetypes weight distribution over UMAP. (I) Average 
archetype weight for different selected barcodes. The trend is consistent with cells going 
back to the parental phenotype after re-growth. Colours for barcodes are consistent with 
Figure 2. 
 
The epigenome but not the transcriptome of selected subclones reveals their identity 
We had observed that cells showed phenotype plasticity upon drug exposure, but drug 
resistance was nonetheless associated with clonal selection. We hypothesised that the 
epigenome could reconcile these apparently contradictory biological observations. We 
performed single cell multiome ATAC + Gene Expression on four samples: parental, 
trametinib, capivasertib and capivasertibàtrametinib, as those were samples with the 
strongest bottlenecks. UMAP embeddings, in particular for the scATAC component, clearly 
separated the cells by treatment with a much stronger signal than the previous scRNA data 
(Figure 4A).  
 
We inferred archetypes from the ATAC signal and called 3 archetypes that distributed 
differently in distinct samples. We then used the scATAC signal to infer copy number 
alterations with CONGAS21, identified 10 copy number alteration (CNA) subclones and 
reconstructed their phylogenetic history (Figure 4B). We used the lentiviral barcode 
recovery from the RNA component of the assay to assign barcodes to cells. The efficiency of 
barcode recovery here was lower (mean per sample = 27% [2-44%]) and we could only 
recover a strong signal for the ‘blue’ barcode selected under trametinib and capivasertib. 
The proportion of epigenetic archetypes, unlike for scRNA, was different in the parental 
between the pre-existing selected barcode and the rest of the population, suggesting that 
the memory that induced the selection is encoded in the epigenome (Figure 4C). The 
epigenetic memory was maintained in the clone after it expands under AKT and MEK 
inhibition (Figure 4C). To perform the same analysis for other clones for which we did not 
have enough recovered barcodes, we performed subclonal decomposition of the cells using 
the copy number profiles and again compared transcriptional programmes using the RNA 
archetypes against their inherited CNA ‘genotype’ (Figure 4D). The transcriptional 
programmes were very similar when comparing selected versus non-selected subclones, 
whereas their epigenetic programmes were clearly different (Figure 4E), again indicating 
that there is a heritable epigenetic memory that encores many plastic transcriptional 
phenotypes downstream. 
 
In the context of chemotherapy, both for the MSI organoid (Supplementary Figure 9E) and 
the MSS AKT mutant organoid (Supplementary Figure 9F), the plastic transcriptional 
rewiring was clearly evident, whereas both the barcodes (clonal structure of the population) 
and the chromatin remained stable throughout (Figure 4F-H), again confirming that 
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plasticity – the potential to exhibit multiple phenotypes - was encoded by a single 
(epi)genomic configuration. 

 
Figure 4. Epigenetic rewiring in resistant populations. (A) UMAP plots for multiome 
samples. In the first-row different dimensionality reductions are shown, respectively UMAP 
done with Latent Semantic Index (LSI) exploiting just RNA information, LSI with just ATAC 
and a combined LSI. In the second row we colour the combined UMAP by archetypal weight 
(B) Clonal tree constructed starting from CNAs inferred from ATAC data (C) Average 
archetype weights. The blue barcode displays a clear difference in the ATAC profile 
compared to the others (in grey). (D-E) Average ATAC archetype weight for copy number 
clones, for RNA archetypes (D) and ATAC archetypes (E). We split the tree in two clades, the 
top one more abundant in the trametinib samples and the bottom one, more represented in 
the parental and capivasertib samples. The change in archetypal composition is consistent 
with what we saw with the lentiviral lineage tracing. (F-G) Average ATAC archetype weights 
for respectively the violet and blue barcode in the MSI sample (H) Average ATAC archetype 
weights for the violet barcode for the AKT organoid under oxaliplatin. 
 
Multiomic epigenetic analysis reveals heritable rewiring of the epigenome driving 
plastic phenotypes 
We sought to define the epigenome configuration that enabled plasticity. First, we looked 
for recurrent focal changes in chromatin accessibility in promoters and enhancers in pre- vs 
post-treatment cells. We found a very small set of differentially accessible peaks in the 
promoters of differentially expressed genes (Supplementary Figure 10) of which only one 
was of particular interest: increased accessibility to the promoter of SETBP1, a known 
epigenetic regulatory hub22 (Supplementary Figure 11A). We then also looked at genome-
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wide rewiring of the epigenome by focussing on accessibility to transcription factor binding 
sites across the genome.  
 
We found a significant correlation between gene expression of the TF and associated 
changes in the accessibility of the corresponding binding sites for a set of those TFs 
(Supplementary Figure 11B). Enriched TF accessible motifs are presented in Supplementary 
Figure 11C, and involve WNT and MAPK signalling pathways, as well as HomeoBox domains 
(Supplementary Figure 11D-E). Motif enrichment was then mapped into the UMAP showing 
localisation of chromatin accessibility patterns (Supplementary Figure 11F). A previous study 
in pancreatic cancer showed that resistance to trametinib was associated with increase in 
autophagy and decrease in MYC activity23. Similarly, we observed the autophagy expression 
signature under trametinib treatment (Supplementary Figure 11E). However, barcode 
analysis showed that the signal was not derived from the fully resistant subclone (the ‘blue’ 
trametinib resistant barcode), but from the residual persister cells that would eventually die 
after being overtaken by the ‘blue’ barcode (Supplementary Figure 11G,H). 
 
Induced chromosomal instability alters evolution but not phenotype 
Chromosomal instability correlates with tumour progression14,24 and is likely to be involved 
in drug resistance as well. In recent work we showed that chromosomal configurations, 
although grossly altered, were relatively stable across long periods and through treatment 
in colorectal cancer patients25. Immune predation has also been shown to remove 
chromosomal aberrations26. The data suggested that negative selection was stabilising the 
karyotypes, and hence that cancers were sitting on a fitness peak, where all additional 
chromosomal variation was largely neutral, constrained around a fitness maximum. We had 
two questions: can we push cancers away from that maximum by inducing additional 
chromosomal instability? Would changing the initial chromosomal configuration in this way 
alter future evolution of drug resistance? We induced chromosomal instability with CENP-E 
and MPS1 inhibitors (see Material and Methods) in both organoid lines. The MSS AKT 
mutant organoid was MMRp and chromosomally highly altered to start with (Figure 5A), 
and exposure to the agents above proved relatively toxic (IC50=15nM for the MSS and 
100nM for MSI organoid lines). In the MSS AKT mutant line this caused chromosomal 
rearrangements that nevertheless disappeared with time, and the cellular population 
returned to the chromosomal configuration of the parental line (Figure 5B). We found no 
alterations to the evolution of the tumour following exposure to drugs (Supplementary 
Figure 3). The MMRd organoid instead was chromosomally stable, mostly diploid (Figure 
5C). It was much more tolerant to CIN-inducing agents and massive rearrangements in the 
chromosomal configuration were produced (Figure 5D) that had profound repercussions on 
future evolution. The population structure, as shown by barcode composition (Figure 5E-F) 
completely changed, and so did further evolution to targeted agents (Supplementary Figure 
3). However, the transcriptional profiles driving resistance were not different than non-CIN 
induced samples (Figure 5G-H). This highlighted the different selective pressures acting on 
the cancer, and convergent evolution for drug resistance phenotypes which may be 
independent from DNA alterations. 
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Figure 5. Inducing chromosomal instability before drug pressure. (A-B) Single-cell copy 
number profiles for the MSS AKT mutant organoid untreated and after treatment with CENP-
E and MPS1 inhibitors. This organoid seems to be stable and resilient to drug induced 
alterations (C-D) Same as panel A and B but for the MSI organoid. In this case the situation is 
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different and CENP-E and MPS1 inhibition causes a massive increase in instability with a 
residual bulk of population similar to the parental one. (E-F) Bulk copy-number profile and 
population structure as recapitulated by barcodes composition. We see how barcodes 
composition match copy-number clones, particularly evident with the blue trametinib 
resistant barcode in the MSS AKT mutant organoid. It is also clear how CENP-E inhibition 
induces significant changes in the population structure in the MSI organoid. (G-H) RNA 
archetypes distribution for MSI and MSS organoids. While as expected the drug induces a 
specific transcriptional phenotype, the induced instability acts only on the population 
structure, not influencing the transcriptome much. 
 
A one-to-many (epi)genotype to phenotype mapping drives resistance 
Our evolutionary analysis demonstrates clear Darwinian dynamics driving resistance. At the 
same time the transcriptional programmes do not show such a pre-existing memory at the 
RNA level. Given the lack of genetic alterations responsible for resistance, we propose a 
model in which the combination of genetic alterations as SNVs and copy numbers, but 
importantly also the epigenetic configuration (Figure 6A) determine in what specific location 
on the fitness landscape a subclone resides (Figure 6B). Each subclone has a one-to-many 
map between the cellular memory encoded and heritable in its genome and epigenome, 
and the many possible transcriptional phenotypes it can produce in response to different 
environmental conditions. Therefore, the memory of phenotypic potential is retained long-
term by a cell, but the exhibited phenotype displayed can change in response to 
environmental selective pressure. This potential for transcriptional heterogeneity enables 
rapid adaptation to changing microenvironments. Darwinian selection is for clone 
“memory”, namely the (epi)genomic configuration that enables a cell to access the 
phenotypic states that are adaptive in the face of drug selective pressure. 

 
Figure 6. Heritability and plasticity of cellular phenotypes. (A) We propose a model in 
which genetic mutations and copy number alterations, together with heritable chromatin 
accessibility profiles determine the cellular memory of a certain clone, positioning it within a 
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certain heritable fitness landscape (B). However, the clone does not manifest as a single 
transcriptional phenotype, but rather as a set of transcriptional programmes that could be 
represented within a Waddington landscape, similarly to those that regulate development 
(C). As Darwinian selection occurs at the level of phenotypes, it is likely that the selective 
pressure is at the bottom of the Waddington landscape, possibly for only a subset of the 
transcriptional programmes of a clone, despite the molecular memory carrying these 
programmes also containing as a side effect other plastic phenotype. This may explain the 
persistent phenotypic heterogeneity and plasticity of cancer clones, despite the strong 
selective pressure of treatments that instead should select for a single fittest phenotype. 

Discussion 
Only a limited set of genetic alterations driving cancer drug resistance has been identified. 
Typical examples are gatekeeper mutations driving resistance to targeted therapies, such as 
in lung cancer27, or mutations in signalling pathways downstream of the targeted receptor, 
such as RAS/RAF mutations2, or mutations that revert a vulnerability2. For endocrine 
therapy in breast and prostate cancers, genetic alterations in ER28 and AR29 respectively 
have been described. However, in the majority of cases these mechanisms are not dominant 
(i.e. subclonal) in the tumour, supporting a view of polyclonal drug resistance30. Moreover, 
although chemotherapy is the backbone of cancer treatment in most malignancies, 
recurrent genetic alterations conferring resistance to chemotherapy have not been 
documented. This lack of insight is hindering the development of more effective treatments.  
 
In this study we exploited patient-derived organoids, a new model system that is becoming 
established in the study of human diseases and in clinical research13,31, to design 
evolutionary experiments that are able to dissect the complex multi-faceted nature of drug 
resistance. This allowed us to discriminate between heritable genetic versus epigenetic 
evolution, and the interrelationship with phenotypic plasticity. We found that under the 
pressure of targeted drugs, the pre-existing heritable trait of being plastic is selected in a 
highly repeatable and predictable way.  
 
The use of evolutionary theory applied to barcode information over time, combined with 
machine learning methods for single cell transcriptomics, shows the (epi)genotype-
phenotype map is complex but readily explained by a genetic+epigenetic memory that is 
permissive for the expression of multiple phenotypes. Which phenotype is manifested by a 
cell depends on the environmental conditions, here the presence of cancer drugs. This 
finding could explain the high level of phenotypic plasticity present in tumours despite 
strong selection for individual resistance phenotypes, and at the same time the presence of 
clonal expansions that do not have a genetic driver explanation, and that could be driven by 
epigenetic heritable traits.  
 
Overall, our study brings a mechanistic understanding of cellular plasticity within the clonal 
evolutionary framework1,30,32. 

Material and methods 
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Organoid culture and passaging 
MSS F-016 patient-derived organoid (PDO) was established from a liver metastasis of a 
colorectal tumour and it has been previously characterised as described in Vlachogiannis et 
al. 201813. Among its pathogenic mutations, AKT1 c.49G>A_p.Glu17Lys and AKT1 
amplification was of interest for our purpose as this organoid was a good model of oncogenic 
addition, showing high sensitivity and a selective apoptosis to Akt inhibitors13. CRC0282 
patient-derived organoids was established from cohort in ref12. 
 
PDOs were cultured embedded in Growth Factor Reduced (GFR) Basement Membrane Matrix 
(Corning), hereinafter referred to as matrigel, and Advanced DMEM/F12 media (Thermo 
Fisher Scientific), supplemented with 1X B27 and 1X N2 supplements (Thermo Fisher 
Scientific), 0.01% BSA (Roche), 2mM L-Glutamine (Thermo Fisher Scientific) and 100 units/ml 
penicillin streptomycin (Thermo Fisher Scientific). Additionally, 12 different growth factors 
were used to maintain PDOs culture: 50 ng/ml EGF, 100 ng/ml Noggin, 500 ng/ml R-Spondin 
1, 10 ng/ml FGF-basic, 10 ng/ml FGF-10 (all from PeproTech), 10 nM Gastrin, 10 µM Y-27632, 
4 mM Nicotinamide, 5 µM SB202190 (all from Sigma-Aldrich), 100 ng/ml Wnt-3A (R&D 
Systems), 1 µM Prostaglandin E2 and 0.5 µM A83-01 (Tocris Bioscience). 
 
Passaging of PDOs was performed using TrypLE 1X diluted in 1mM PBS-EDTA (Thermo Fisher 
Scientific). In short, after media removal, PDOs in matrigel were harvested by pipetting with 
1ml of TryplE1X and they were incubated for 20 min at 37oC, with mechanical homogenisation 
every 5 minutes. Then, PDOs were centrifuged at 1,200 rpm for 5 min at 4oC and washed with 
HBSS (Thermo Fisher Scientific). Counting and viability measurements were done using 0.4% 
Trypan Blue staining solution (Thermo Fisher Scientific) and the Countess 3 Automated Cell 
Counter (Thermo Fisher Scientific). Expected cells were pelleted again and re-seeded in 
matrigel.  
 
3D patient-derived organoids drug screenings 
To check baseline sensitivity to the drugs and inhibitors used, initial dose response curves 
(DRC) were performed with the allosteric inhibitor MK-2206, the non-allosteric one AZD5363 
(capivasertib), ERK inhibitor SCH772984 and oxaliplatin . Initially, PDOs were dissociated into 
single cells as the passaging procedure described above, and after an automatic counting by 
Countess 3 Automated Cell Counter (Thermo Fisher Scientific, 6000 cells were seeded in 30µl 
of matrigel in 96-well plates. The matrigel was solidified after a 20-minute incubation at 37oC 
and 5% CO2, and overlaid with 70 µl of complete human organoid media. 24 hours later, media 
was removed and replaced with 50 µl of drug-containing media at different concentrations 
along with DMSO as a vehicle control, and replenished every two days for three times. Finally, 
drug-containing media was removed and replaced with 10% CellTiter-Blue cell viability assay 
media (Promega) and after 3-hour incubation at 37oC and 5% CO2, readings were taken in 
EnVision plate reader (PerkinElmer). Experiments were conducted in technical and biological 
replicates. DRC were represented by GraphPad Prism 9 (Dotmatics). 
 
Patient-derived organoids barcoding 
Individual cell barcoding was performed by CloneTracker XP™ 5M Barcode-3' Library in 
pScribe4M-RFP-Puro (Cellecta). This expressible barcode libraries enable the tracking and 
profiling of individual clones thanks to the integration in gDNA and barcode transcription in 
RNA. To ensure the insertion of a single barcode per cell, lentiviral titration was assessed and 
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a MOI of 0.1 was chosen along with 0.8 μg/ml polybrene, corresponding to 10% of infection. 
1 million cells from the organoids were infected following manufacturer’s protocol. After an 
over-night incubation in media suspension, cells were pelleted and resuspended in 1ml of 
matrigel in 6-well plates and with 2ml media containing 2.5μg/ml puromycin, as previously 
calculated by the puromycin killing curve. Following 10 days of puromycin selection, RFP-
positive cells were checked under the microscope, and they were expanded with normal 
growth media. After several passages, parental population (POT) was frozen and 
characterised. DNA and RNA extractions and libraries sequencing (protocol below), detected 
around 3,500 different barcodes were in the final POT. 
 
Induction of chromosomal instability 
F-016 (MSS) and CRC0282 (MSI) barcoded organoids were treated following Bennett et al. 
2015 protocol. Briefly, following an overnight treatment with 100ng/mL of Nocodazole 
(487928, Sigma-Aldrich). Media was removed and replaced with fresh media containing IC50 
concentrations (15nM for 3994-117 and 100nM for CRC0282) of CENP-E inhibitor GSK923295 
(S7090, Selleckchem). After 2h, 150nM MPS1 inhibitor BOS172722 (S8911, Selleckchem) was 
added on top of one well for another 2h. Then, all the treatments were removed and replaced 
with fresh media. Organoids were allowed to grow for 10 days before performing the single 
cell sorting and freezing. The experiment was performed in 9 replicates and 3 replicates were 
collected at different timepoints along 15 days to check viability and barcodes distribution 
during the washout phase. 
 
Generation of drug resistant organoids 
Once the F-016 POT was expanded, 75 million cells were used for the generation of resistant 
organoids to previously selected inhibitors. Briefly, 2,5 million cells/well were seeded in 6-
well plates in 1ml of matrigel and 2ml of growth media. 24 hours later, media was collected 
and renewed with media containing 2μM of the selected inhibitors. For the first experiment, 
MK-2206 and capivasertib were chosen as Akt inhibitors, while trametinib, as a MEK inhibitor, 
and KU-0063794, as an upstream mTOR inhibitor, were also selected. DMSO was always used 
as the vehicle control. 
 
Following above-described conditions, individual 6-well plates were used per each drug. 
Bottom three replicas were used for unique treatments while top three wells were used for a 
second treatment with drugs involved in different pathways, to perform a crossover 
screening. For the first experiment, F-016 PDOs were treated for 45 days with the respective 
first treatment and then, the three bottom wells were harvested and mixed to be used for 
bulk and single-cell characterisation, as well as for barcode amplification from DNA and RNA. 
Remaining cells were frozen and biobanked in FBS (Thermo Fisher Scientific), containing 10% 
DMSO (SigmaAldrich) for future analysis. 
Top three wells were expanded without drug for two weeks (drug holidays), and then re-
seeded with the same conditions as initial treatment, to be treated with the second inhibitor 
during additional 45 days. Lately, at the end of the treatment, cells were also expanded 
without drug for a couple of weeks and characterised and stored like initial time points.  
 
As previously described, a total of 4 inhibitors were selected and a DMSO control plate was 
maintained until maximum confluency at day 15. For the crossover treatment, cells under Akt 
or mTOR inhibitors were treated with trametinib as a second treatment, while in cells initially 
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treated with the MEK inhibitor, Akt or mTOR inhibitors were administered. To check the 
generation of resistant cells, sensitivity assays by dose response curves were performed at 
the end of each treatment. 
 
For the second experiment, high doses corresponding to IC90 of oxaliplatin and the ERK 
inhibitor SCH772984 were used in both the MSS and MSI PDOs (Supplementary Table 1), with 
and without the CIN treatment previously explained, continually for 5 weeks. Then, the three 
bottom wells were harvested and used for bulk and single-cell characterisation, as well as for 
barcode amplification from DNA and RNA. Top three wells were expanded without drug for 
another 3 weeks before harvesting, characterisation and freezing. 
 
Parental and resistant cells characterisation by bulk and single-cell sequencing 
Once treatments concluded, organoids were collected and dissociated into single-cell using 
the passaging procedure previously described. Half of the cells were used for bulk analysis 
while the other half was for single-cell experiments.  
 
gDNA and RNA were isolated for bulk characterisation using All Prep DNA/RNA Mini Kit Qiagen 
(Qiagen) according to manufacturer’s recommendations. It mainly consisted of whole 
genome library preparation from 100ng of gDNA following NEBNext Ultra II FS (New England 
Biolabs) recommendations, with 20 minutes of enzymatic fragmentation and 5 PCR cycles. 
NEBNext® Multiplex Oligos for Illumina® (96 Unique Dual Index Primer Pairs, New England 
Biolabs) were used. After pooling, samples were sequenced for low-pass whole genome 
sequencing with at least 0.1X coverage in a NovaSeq 6000 (Illumina). 
 
Regarding single-cell RNA approaches, a total of 19 single-cell experiments were performed 
from the parental (POT) and the 4 inhibitors (MK-2206, capivasertib, trametinib and KU-
63794) after drug removal (under drug) and after expansion (re-growth) for the two lines of 
treatment. For the second part, 36 single-cell experiments were performed, including the CIN 
generation and the following treatments with Oxaliplatin and ERK inhibitor SCH772984. After 
dissociation, single cells were washed with PBS and resuspended in PBS + 0.04% BSA, filtered 
through a 40µm FlowMi cell strainer (Sigma) and resuspended at a concentration of 1000 
cells/μl. Viability was confirmed to be >90% in all samples using 0.4% Trypan Blue dye with 
Countess 3 Automated Cell Counter (ThermoFisher). Those organoids harvested under drug 
exposure with less than 70% viability were enriched by Dead Cell Removal Kit (Miltenyi) 
according to manufacturer’s protocol. For an estimation of 5000 cells, single cell suspensions 
were loaded on a Chromium Next GEM Chip G (10X Genomics) and were run in the Chromium 
Controller to generate single-cell gel bead-in-emulsions using the Chromium Next GEM Single 
Cell 3ʹ GEM, Library & Gel Bead Kit v3.1 kit (10X Genomics). After single-cell RNA-seq libraries 
were prepared and the library quality was confirmed with the TapeStation D1000 Screen Tape 
(Agilent) and a Qubit 3.0 dsDNA HS Assay Kit (Life Technologies), samples were pooled and 
sequenced on an Illumina NovaSeq 6000 (Illumina) according to standard 10X Genomics’ 
protocol. 
 
Single-cell DNA approach was processed following 10x Genomics Single Cell CNV Solution kit 
(10X Genomics). Briefly, dissociated cells were partitioned in a microfluidic chip to form the 
cell beads and to continue with cell lysis and genomic DNA denaturation. Then, denatured 
gDNA in the cell bead followed a second encapsulation with barcoded gel beads to generate 
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gel beads in emulsion (GEMs). Following a barcoding and amplification, fragments were 
later pooled to be linked to standard Illumina adaptors. Libraries were finally quantified by 
D1000 Screen Tape (Agilent) and a Qubit 3.0 dsDNA HS Assay Kit (Life Technologies), and 
pooled to be sequence on the NovaSeq S4 chemistry (Illumina) with 100 paired-end reads. 
Paired-end reads were processed using version 1.0 of the Cell Ranger DNA Pipeline (10× 
Genomics). 
 
For single-cell multiome sequencing, after organoid dissociation, cells were lysed to obtain 
single nuclei following Chromium Nuclei Isolation Kit with RNase Inhibitor (10x Genomics, 
PN-1000494). Then, performing Chromium Next GEM Single Cell Multiome ATAC + Gene 
Expression (10x Genomics), around 5.000 nuclei followed a transposition step. Then, they 
were loaded on the Chip J Chromatin Controller (10x Genomics), for GEM generation and 
barcoding. After pre-amplification, ATAC and cDNA libraries were independently generated 
using user recommendations. Libraries were finally pooled and sequenced on the 
NovaSeq6000 (Illumina), following specific sequencing read cycles for an output of 25,000 
read pairs per nucleus for both conditions. 
 
Barcode amplification and library preparation 
Barcoded organoids at each time point before and after treatment were harvested and 
pelleted. To study the expressible barcodes, gDNA and RNA were isolated using All Prep 
DNA/RNA Mini Kit Qiagen (Qiagen) according to manufacturer’s recommendations. While 
DNA was directly quantified by Qubit 3.0 dsDNA HS Assay Kit (Life Technologies) and stored 
for barcode amplification, 300ng of total RNA were taken for cDNA synthesis with 
SuperScriptTM II Reverse Transcriptase (Invitrogen). 
Contrary to a 2D culture, organoids are embedded in matrigel and although dead cells 
remained inside, gDNA is released to the surrounded media. Hence, to track the evolution of 
each cell lineage during the treatment without replating them, gDNA from apoptotic cells was 
collected every media change (2 days) to amplify dead cell barcodes, providing us 
unparalleled temporal resolution. Collected media was incubated for 2 hours at 55oC with 
20mg/ml proteinase K (Roche). Then, gDNA was purified with 3X SPRIselect beads (Beckman 
Coulter) followed by an 80% ethanol wash step. DNA was eluted in low TE and quantified by 
Qubit 3.0 dsDNA HS Assay Kit (Life Technologies). 
 
Barcode amplification by PCR was performed using 2x Accuzyme mix (Bioline) and 10 ng of 
the extracted DNA/cDNA using the primers below (10μM): 
 

Forward XP primer: 5’-ACCGAACGCAACGCACGCA-3’  
Reverse XP primer: 5’-ACGACCACGACCGACCCGAACCACGA-3’ 

 
Briefly, 25μl reactions PCR steps were: 98oC 2’, and 35 cycles of 95oC 15’’, 71oC 15’’, 72oC 10’’ 
and a final extension of 72oC 3’. 4μl of the 128-bp PCR product were later checked on an 1.5% 
agarose gel and quantified for library generation by TapeStation (Agilent). NGS libraries were 
prepared from 30ng of the PCR product using the NEBnext Ultra II DNA library preparation kit 
for Illumina (New England Biolabs) according to manufacturer’s recommendations and using 
NEBNext® Multiplex Oligos for Illumina® (96 Unique Dual Index Primer Pairs, New England 
Biolabs). Libraries were quantified using Qubit 3.0 dsDNA HS Assay Kit (Life Technologies) and 
TapeStation D1000 Screen Tape (Agilent Genomics). Up to 384 samples were pooled for 
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sequencing. Due to unspecific library amplification, 3ng/μl samples were pooled considering 
250-340bp concentration in TapeStation. Then, pools were dried out to 50ul using a vacuum 
concentrator and an electrophoresis in 2.5% gel was done. 280pb band was cut and purified 
by Gel purification kit (Qiagen). 50μl of the eluted product was again quantified by both 
methods. NGS was performed at the Tumour Profiling Unit of the Institute of Cancer Research 
using NovaSeq 6000 (Illumina). 150 pair-end reads and 15% of PhiX was considered and 
approximately 5000 reads per time-point was aimed.  
 
Phenotypic correlation with barcodes 
CloneTracker XP™ barcode enrichment was performed in single-cell gene expression libraries. 
The 10x Chromium 3’ Reagent Kit was developed for amplification of 3’-ends of polyA+ RNAs. 
Due to the CloneTracker XP BC14-spacer-BC30 barcode design, located at a fixed ~150-200nt 
distance upstream from the poly-A+ site, the transcribed barcodes are captured in the first 
step of the 10x Chromium 3’ protocol.  
 
To effectively read the barcode sequence an additional PCR amplification step was needed 
with a barcode-specific primer that is located just upstream of the CloneTracker XP barcode 
(FBP1). This ensured amplification of the segment of cDNA that contains both the 
CloneTracker XP barcode and the cell barcode associated with the poly-A+ sequence in the 
scRNA-Seq protocol. In short, after cDNA generation by 10x Chromium Next GEM Single Cell 
3ʹ protocol, 75% of the adaptor ligated product was used for gene expression libraries, while 
25% of amplified cDNA was taken for sequential nested PCR barcode amplification. First PCR 
was performed for 9 cycles using below primers: 
 

Partial 10X Read 1 primer forward: 5’- ACACTCTTTCCCTACACGACGCTCTTCCGATCT- 3’ 
Specific barcode fragment primer (FBP1) FSeqRNA-BC14-XP Reverse Primer:  

5’- GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGACCACCGAACGCAACGCACGCA- 3’ 
 
Second round of PCR to increase Clone Tracker XP barcoded cDNA sequences used standard 
10X p7 and p5 primers for additional 6 cycles to then proceed to indexing and final library 
generation. After QC by TapeStation (Agilent), barcode amplicon libraries were pooled and 
sequenced. Then, Clone Tracker XP barcodes and gene expression were correlated thanks to 
10X barcodes identifying cellular gene expression with the clone identifiers. 
 
Barcode bioinformatics analysis 
Barcodes from bulk experiments were quantified using BWA1 and FeatureCounts 2. We first 
generated a fasta reference using the full pool of barcodes provided by Cellecta. We then 
aligned the amplicons using bwa-mem with custom parameters. The bam files obtained 
from bwa were then used to quantify barcode abundances using the FeatureCounts 
implementation of the R package Rsubread 3. More specifically we run the command 
featureCounts we filtered reads with mapping quality less than 30 (minMQS = 30). 
For barcodes enriched from the 10x Chromium library we used STAR solo 4 with a custom 
reference index built on the reference fasta used for BWA. 
 
Barcode evolutionary modelling 
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We used the floating barcodes abundances to produce an estim1ate of the fitness value of 
each barcode. To avoid biases due to the differential efficacy in capturing the DNA across 
different phases of the experiment we worked with the relative abundances of each 
barcode and to make the calculations tractable for thousands of barcodes we assumed 
exponential growth. Under this assumption if call as 𝜔!  the effective growth rate (so the 
difference between birth rate and death rate) for barcode i we can write its abundance at 
time T as: 

𝑁!(𝑇) = 𝑁!(0)𝑒"!#  
 
   
As we were working with relative abundances it follows, if we assume independence 
between subclones, that the abundance 𝑓_𝑖(𝑇) for barcode I at time T is simply: 
 

𝑓!(𝑇) =
𝑁!(0)𝑒"!#

𝑁(0)𝑒"#
= 𝑓!(0)𝑒$"#  

 
Where N(0) is the population size at time 0, 𝜔  is the average growth rate of the population 
and Δ𝜔 id the difference between the barcoded population growth rate and the average 
population. From this simple model we derive that the relation between the abundance at 
sampling time T and time T-1 is (after taking the logarithm of both sides): 
 

𝑙𝑛/𝑓!(𝑇)0 = 𝑙𝑛/𝑓!(𝑇 − 1)0 + Δ𝑇Δ𝜔 
 
We then calculate the relative growth rate by fitting the beta coefficients of a linear model 
on the log abundances using the fastLM function of the RcppEigen33  R package. 
 
Single cell RNA sequencing analysis 
 
For the analysis of single-cell RNA sequencing (scRNA-seq) data, the fastq files containing 
the sequential reads were aligned to the reference genome (assembly hg38) using STARsolo 
version 2.7.9a.  
 
The matrices produced from the alignment were corrected for ambient RNA using the 
adjustCounts function of SoupX34. We then used DoubletFinder35 to estimate the doublet 
status of each cell. For quality control, filters were applied for the minimum number of 
genes with non-zero expression and for the percentage of expression derived from 
mitochondrial transcripts (%mt), indicative of dying cells. Specifically, cells with %mt greater 
than 30%, fewer than 1000 expressed genes and putative doublet from DoubletFinder were 
filtered out. 
 
Data was then analyzed in Seurat36. Counts were normalized using the NormalizeData 
function. At this point, the 3000 most variable genes were identified with the 
FindVariableFeatures routine, which were then scaled (ScaleData)  and used to compute a 
Principal Component Analysis (RunPCA). The first 25 components, selected based on the 
amount of variance explained, were used to compute the KNN graph and Uniform Manifold 
Approximation (UMAP) with the functions FindNeighbors and RunUMAP. 
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We compute gene set scores for the Autophagy signature from Ref.23   and the MSigDB37   
Hallmark of Cancer MYC targets V2 using the function AddModuleScore.  
 
Single cell ATAC + GEX analysis 
 
10X multiomics sequencing data has been processed with cellranger-arc version . We then 
performed all the quality control and analysis using the R package ArchR38 . After generating 
the arrow files, we used the filterDoublets and filtered out cells with TSSEnrichment < 6, 
number of fragments < 10000, putative doublets and cells without a valid UMI for both GEX 
and ATAC libraries. LSI for RNA and ATAC were computed using the addIterativeLSI method 
using respectively the 2500 most variable genes and the ArchR tile matrix. Motif 
annotations for ChromVAR39 were added using the addMotifAnnotations function with using 
the CIS-BP dataset and scores calculated using the addDeviationsMatrix method. To 
compute correlation, we used the correlateMatrices function with input the Motif Matrix 
and the Gene Expression Matrix. Marker peaks were computed using the 
getMarkerFeatures and setting as bias terms the TSS enrichment score and the 
log10(number of fragments). To then computer differential Transcription Factor Motif 
accessibility we used the function peakAnnoEnrichment. 
Background peaks were computed using the addBgdPeaks method. 
 
Deep Archetypal Analysis 
 
Archetypal Analysis is a dimensionality reduction method that decomposes an input matrix 
as a convex combination of ideal extreme points called archetypes and it was first 
introduced in ref17. More in detail if we assume  𝑋 ∈ 𝑅 to be our 𝑁	𝑥	𝑀 
input matrix, the classical problem of archetypal analysis revolves on optimizing the 
following loss function: 

||𝑋 − 𝑍𝐴	||%	𝑤𝑖𝑡ℎ	𝑍 = 𝑋𝐵#  
	 

 
Where B and A are respectively 𝑁	𝑥	𝐾 and 𝐾	𝑥	𝑁 row stochastic matrices with K being the 
number of archetypes. We define a matrix X to be row stochastic matrix if it satisfies x!& ≥
0,∑ x!&& = 1. The matrix B defines the archetype as a convex combination of real data 
points, while the matrix A represents the weights of each archetype in reconstructing each 
cell. This is intuitively equivalent to optimally embed the data in a convex polytope with K 
vertices (archetypes), it then follows that the archetypes define the convex hull of the 
polytope.  
 
The original algorithm for finding the minima involves alternating optimization steps were 
we first fix B and optimize for A and then do the do the reverse. This solution is generally 
considered hard to scale as it needs to use all the whole dataset for each iteration ref40. 
 
To add the possibility of mini batch learning and to account possible non-linear effects in the 
archetypal composition we implemented the Deep Archetypal Network presented in ref19 
into a new tool called MIDAA18.  
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In this case we learn both matrices using a feed-forward neural network 𝐴, 𝐵	 = 	𝑓'(𝑋). The 
input is then reconstructed by a specular decoder network 𝑓((𝑍∗𝐴) = 𝑋F. To reduce the 
complexity of the problem Z* is fixed and set to a standard simplex with K vertices and the 
condition 𝑍 = 𝑋𝐵#  is guaranteed by using an additional term in the loss, that becomes: 
 

||	𝑋	 −	𝑍∗𝐴	||% +	||	𝑍∗ − 	𝐵𝐴𝑍∗	||%	 
 
To fit the scRNA-seq data we first computed the intersection top 2000 most variable genes 
in the under-drug phase, the 1000 most variable in re-growth and the 500 most variable in 
the parental sample. We then computed the Z-score across all the cells with a valid barcode 
and used it as an input for the AA net.  For the scATAC-seq from the 10x multiome, given the 
higher complexity we used the first 30 components of the LSI as input. 
 
Copy Number Analysis 
 
Copy Number Analysis from ATAC Data 
To infer copy number clones from the ATAC portion of the single-cell multiome we used 
CONGAS+21. To derive a prior segmentation, we used the inferred copy number states from 
the corresponding low-pass DNA analysis, and we did an intersection of the segments 
among the samples to obtain a unique profile.  We then used the function 
segments_selector_congas to filter for putative multimodal segments. We run the method 
fit_congas and tested a range of clusters going from 1 to 15 for 2000 steps, a learning rate 
of 0.005 and a temperature parameter for the Gumbel-SoftMax of 10. We choose the best 
number of cluster that minimized the Integrated Completed Likelihood (ICL). The inferred 
copy number alteration matrix was used as an input to MEDICC241 with parameters --total-
copy-numbers --input-allele-columns to build a clonal tree.  
 
Copy Number Analysis from 10x Single Cell DNA Data 
As per the 10x recommended analysis, CNAs were determined using CellRanger with default 
settings (using GRCh38 as the reference genome). For each sample a threshold of maximum 
number segments per cell was used, as determined by manually assessing 30 random cells 
from each sample for noisy profiles. The thresholds were 190 for the MSI parental and 
CENPE-treated organoids, 299 for the CENPE- and MPS1-treated MSI organoid, 291 for the 
AKT parental organoid, 249 for the CENPE-treated AKT organoid and 227 for the CENPE- and 
MPS1-treated organoid. Calls were then binned into 1Mbp bins and bins with no 
overlapping segments in at least one cell were removed. Cells with more than 50% of the 
genome with copy number zero were removed, as were cells with a mean copy number of 
more than 20. 
 
Copy Number Analysis from Low-Pass Whole-Genome Sequencing 
 
FASTQ files were trimmed for adaptor content using skewer42 with a minimum length 
allowed after trimming of 35 bp, keeping only reads with a minimum mean quality of 10 and 
removing highly degenerative reads (-l 35 -Q 10 -n). Trimmed reads were aligned to hg38 
(GRCh38) using bwa mem43. SAM files were sorted, compressed to BAM files and duplicates 
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were marked using Picard tools (https://broadinstitute.github.io/picard/). BAM files were 
then indexed also using samtools44. 
 
BAM files were processed using QDNAseq45 to convert read counts in 500kb bins across the 
chromosomes of hg38 into log2 ratio data. The 500kb bins for hg38 were generated 
according to QDNAseq instructions using the GEM library46 and normal BAM files from the 
1000 genomes project (1000genomes.ebi.ac.uk, phase 3). Data normalisation was 
performed in accordance with the QDNAseq workflow, including sex chromosomes. Bins 
were required to have a minimum mappability of 65 and 95% non-N bases. The 
smoothOutlierBins function step was removed as it artificially depressed highly amplified 
bins. The sqrt option was used for the segmentBins function. Log2 ratios in bins and 
segments were normalised by subtracting the median log2 ratio value of all autosome bins. 
 
To call absolute copy number we used an adapted version of the ASCAT47 approach using 
only log2 ratio information and calculating the sum of squared differences between per bin 
segmented copy number and the nearest positive integer within a grid search of purity and 
ploidy parameters and identifying the best fitting local minima. Based on expected ploidy 
statuses, we search for fits in the range of 2.9 – 3.3 for the AKT organoid samples and 1.9 – 
2.3 for the MSI organoid samples, with a minimum purity of 0.98 as these are pure samples. 
If no local minimum was found a ploidy of 3.1 for was used for AKT and 2.1 for MSI, with 
purity being set at 1 for both. Purity and ploidy searches were performed only on the 
autosome segmented bins and the X chromosome copy number status was inferred from 
the resulting solution. Continuous copy number values were reported to capture 
heterogeneity in Figure 5E and F. 
 
For CONGAS input (AKT organoid only) we required segmentation and calling that was 
comparable across the multiple samples, therefore we employed multi-sample 
segmentation using the copynumber package[REF]  (multipcf, gamma = 10) and called copy 
number as previously described but across a narrower ploidy range of 3.1±0.1. 
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Code Availability  
The code to reproduce the analysis and the figures is available on GitHub 
(https://github.com/sottorivalab/epigenetic_heritability_and_cell_plasticity_reproducibility
). We also provide annotated Seurat objects and barcode tables in Zenodo 
(10.5281/zenodo.11058999) 

Supplementary Figures 
 
Supplementary Figure 1. Distribution of lentiviral barcodes from the POT across biological and 
technical replicates.  The plot shows how lentiviral barcode proportions in absence of selective 
pressure follow and expected power-law distribution and how the number of barcodes retrieved is 
consistent across replicates. 
 
Supplementary Figure 2. Drug response curves of the resistant organoids. (A) Drug response 
curves related to the first experiment using the MSS AKT organoids after the long-term treatments 
with the 4 targeted inhibitors (MK-2206, capivasertib, trametinib, and KU-0063794) during the 
recovering stage showing they remained resistant after the drug removal in all replicates. (B) Drug 
response curves related to the second experiment after the CIN treatment and long-term exposure to 
oxaliplatin and SCH772984 after the 3 weeks of recovery without the drug, showing that the cells 
recovered sensitivity after the heavy treatment. 
 
Supplementary Figure 3. Floating barcodes evolution for the whole cohort. Fishplots as in 
Figure 2 panel B showing the clonal dynamics of all the replicates and the sample in the experiment. 
 
Supplementary Figure 4. Relative fitness distribution computed over floating barcodes 
abundance. Relative fitness distribution shows high variability in re-growth phase during first-line 
treatment. Coefficients were calculated by assuming exponential growth and independence between 
different clonal populations. (A) MSS AKT organoid first batch, (B) MSS AKT organoid second batch, 
(C) MSI organoid. 
 
Supplementary Figure 5. Lentiviral barcodes proportion for the AKT organoid after the CENP-
E/MPS1 perturbation experiment and during the resistant generation with oxaliplatin and 
SCH772984. Colours are consistent with Figure 2 panel A and B, so that grey barcodes are lowly 
abundant barcodes are in fact defined compared to the first drug experiment. 
 
Supplementary Figure 6. Allele frequency distribution in parental vs capivasertib->trametinib 
treated organoids. Scatterplot of the variant allele frequency of putative functional mutations. 
Mutations were selected as either having VEP MODERATE impact and being either deleterious 
according to SIFT or damaging according to PolyPhen (left panel) or having VEP HIGH impact (right 
panel). No obvious resistance gene is present off diagonal. 
 
Supplementary Figure 7. Copy number profiles of treated and untreated organoids from low-
pass WGS. Heatmap of relative copy number profiles for all the organoids in the experiment. Gain 
and losses are expressed compared to the Parental. The similarity across replicas and drug 
treatments is an orthogonal validation of the results obtained by lentiviral barcoding. 
 
Supplementary Figure 8. Lentiviral barcodes distribution in 10X scRNA-seq. (A-B) Barcode 
distribution in the parental and the treated organoids respectively, the top 100 barcodes in frequency 
are colored the others are shown in grey. (C) UMAP colored by barcode as in Figure 3C. Colors are 
consistent with Figures 2-3 and across panel, such that each color is always a unique barcode. 
 
Supplementary Figure 9. Transcriptional Landscape of organoids treated with CENP-E and 
MPS1 inhibitor. (A-B) Z-score distribution of markers in Figure 3E, we note how the MSI organoid 
seems to be less heterogenous. (C-D) Cell type specific marker expression for each archetype in the 
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MSI and AKT (second batch) organoid, in both cases we see how archetypes capture some cell-type 
specific variability. (E-F) Archetype distribution for selected barcodes over the course of the 
experiment in MSI (E) and AKT batch 2 (F) organoids. We find again a massive transcriptional 
rewiring after therapy that tends to slowly come back to an untreated like status after re-growth. It is 
important to note that this effect is not homogenous across drugs and organoids in this case with the 
AKT rapidly coming back to a DMSO like state after SCH77298, while in the MSI case it seems like 
the drug the is the induces this strong on-off transcriptional requiring is the Oxaliplatin.  
 
Supplementary Figure 10. Trackplot of peaks enriched in gene promoters after Trametinib 
treatment. We first run differential expression analysis on the Multiome GEX part using a non-
parametric Wilcoxon test grouping by drug. We then perform the same analysis but with peak 
coverage. In both cases we selected the results with FDR <= 0.01 and absolute logFC > 1. To 
generate the final set we intersected the significant peaks and genes, by considering only peaks in 
the promoter regions. 
 
Supplementary Figure 11. Biological characterization of Trametinib resistant population. (A) 
SETBP1 chromatin profile in the promoter region. (B) Scatterplot of Transcription Factor (TF) Motifs 
variance computed using ChromVAR39  from the ATAC portion of the Multiome and expression from 
the GEX part. Points in red are enriched TFs that also show consistent high change in expression, 
selected as having correlation > 0.6, adjusted p-value < 0.001 and TFs Motif variance greater than the 
10% quantile. (C) Heatmap of enriched Motifs in Marker Peaks. We filtered Enriched Motifs with FDR 
<= 0.001 & Log2FC >= 1 (D-E) StringDB analysis of Motifs enriched respectively in capivasertib-
>trametinib and trametinib samples, showing involvement of TFs active in WNT and MAPK signalling 
pathways as well as TFs containing HomeoBox domains. Analysis was conducted using the browser 
version 12.0 of StringDB48 (F) UMAP plots for some of the top enriched Motifs. Sample specific 
localization is evident. (G-H) Gene Module score for the autophagy signature in Ref.23 and the 
MSigDB Hallmark of Cancer MYC targets V237, grouped respectively by phase and barcode. The plot 
shows how in the under-drug phase cells under Trametinib have and high level of autophagy and a 
correspondingly lower level of MYC activation. The blue resistant barcode however shows an 
opposite trend and seems to resemble the parental and re-growth behavior even under drug. Panel 
(H) scores are computed for the under-drug samples. 
 
 
Supplementary Table 1. IC90 values assessed by CellTiter-Blue cell viability assay 
Organoids were treated with serial dilutions of the drugs along with DMSO as a vehicle control, and 
treatment was replenished every two days for three times. Experiments were conducted in technical 
and biological replicates. Plates were assessed by CellTiter-Blue cell viability assay media 
(Promega). 
 

IC90 values Oxaliplatin (µM) SCH772984 (µM) 
MSI Parental 25 0.5 
MSI CENPEi 25 1 

MSI CENPEi + MPS1i 50 1 
AKT Parental 50 1 
AKT CENPEi 50 1 

AKT CENPEi + MPS1i 50 1 
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