

1        **The development of the adult nervous system in the annelid *Owenia fusiformis***

2

3        Allan M. Carrillo-Baltodano<sup>1\*</sup>, Rory Donnellan<sup>1</sup>, Elizabeth A. Williams<sup>2</sup>, Gáspár Jékely<sup>3,4</sup>,

4        José M. Martín-Durán<sup>1</sup>

5

6        <sup>1</sup>School of Biological and Behavioural Sciences, Queen Mary University of London, London,

7        UK

8        <sup>2</sup>Faculty of Health and Life Sciences, University of Exeter, Exeter, UK

9        <sup>3</sup>Living Systems Institute, University of Exeter, Exeter, UK

10        <sup>4</sup>Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany

11

12        \*Corresponding author: a.carrillo-baltodano@qmul.ac.uk

13

14        **Abstract**

15        *Background*

16        The evolutionary origins of animal nervous systems remain contentious because we still have  
17        a limited understanding of neural development in most major animal clades. Annelids — a  
18        species-rich group with centralised nervous systems — have played central roles in  
19        hypotheses about the origins of animal nervous systems. However, most studies have focused  
20        on adults of deeply nested species in the annelid tree. Recently, *Owenia fusiformis* has  
21        emerged as an informative species to reconstruct ancestral traits in Annelida, given its  
22        phylogenetic position within the sister clade to all remaining annelids.

23        *Methods*

24 Combining immunohistochemistry of the conserved neuropeptides FVamide-lir, RYamide-lir,  
25 RGWamide-lir and MIP-lir with gene expression, we comprehensively characterise neural  
26 development from larva to adulthood in *Owenia fusiformis*.

27 *Results*

28 The early larval nervous system comprises a neuropeptide-rich apical organ connected  
29 through peripheral nerves to a prototroch ring and the chaetal sac. There are seven sensory  
30 neurons in the prototroch. A bilobed brain forms below the apical organ and connects to the  
31 ventral nerve cord of the developing juvenile. During metamorphosis, the brain compresses,  
32 becoming ring-shaped, and the trunk nervous system develops several longitudinal cords and  
33 segmented lateral nerves.

34 *Conclusions*

35 Our findings reveal the formation and reorganisation of the nervous system during the life  
36 cycle of *O. fusiformis*, an early-branching annelid. Despite its apparent neuroanatomical  
37 simplicity, this species has a diverse peptidergic nervous system, exhibiting morphological  
38 similarities with other annelids, particularly at the larval stages. Our work supports the  
39 importance of neuropeptides in animal nervous systems and the evolution of biphasic life  
40 cycles.

41

42 **Keywords**

43 Annelid, larvae, neuropeptides, nervous system.

44

45

46 **Introduction**

47 Nervous systems encompass all the neurons and their connections in an animal,  
48 representing an efficient way to communicate information along the body to elaborate  
49 behavioural and physiological responses in front of internal and external stimuli (1). Nervous  
50 systems are morphologically diverse, from diffuse nets as present in some non-bilaterian  
51 animals (e.g., ctenophores and cnidarians) to specialised and centralised systems with an  
52 anterior brain and post-cephalic longitudinal cords, as in many bilaterians (2, 3). Yet, how  
53 nervous systems evolved remains contentious because developmental information is lacking  
54 for many animal groups. Comparative, phylogenetically-guided studies on the specification,  
55 differentiation, patterning and architecture of nervous systems in as many different groups as  
56 possible (4, 5) are thus crucial to understand better how animal nervous systems originated  
57 and diversified (6).

58

59 Annelids — a group with a biphasic life cycle with a trochophore-like larva and  
60 centralised nervous systems as adults — have been central in understanding the evolution of  
61 nervous systems (3, 7-12). Traditionally, however, most studies have focused on species  
62 deeply nested in the annelid tree of life (13, 14), primarily on adults, and to a lesser extent  
63 using high-resolution developmental time courses (15-20). Therefore, studying lineages that  
64 branch off earlier in Annelida, such as Oweniidae, Magelonidae and Chaetopterimorpha, is  
65 essential to reconstruct ancestral traits in neural development for this animal clade (13, 21).  
66 Recent works in these groups (12, 21-26) have shown that a basiepidermal nervous system  
67 with a less organised brain was likely present in the last common annelid ancestor, which is a  
68 neuroanatomy that correlates well with their sedentary and tube-dwelling lifestyle (22). These  
69 studies have also indicated a simplification of the brain from larva to adult stages (22, 25,  
70 26). However, we have previously demonstrated that the late embryos and early idiosyncratic

71 mitraria larvae of the Oweniid *Owenia fusiformis* (23) show signs of organised neurogenesis  
72 in the anterior neural system where the apical organ forms and in the ciliary band that works  
73 as the main locomotory organ (24). With feeding, the mitraria larva undergoes a series of  
74 morphological transformations and increases in size (23, 24, 27, 28), concurrent to significant  
75 changes in gene regulation and the formation of a juvenile rudiment that broadly corresponds  
76 to the future adult trunk (23, 24, 27-29). However, using only a few immunostaining markers  
77 has prevented a better understanding of neural development in *O. fusiformis*, particularly  
78 during metamorphosis.

79

80 In this study, we combine cross-species antibodies against a variety of highly-  
81 conserved neuropeptides (30-32) with gene expression analyses of anterior marker genes (9,  
82 33, 34) to characterise the development of the nervous system in *O. fusiformis*, from the  
83 larval to the adult stages (Figure 1). Our findings reveal a transition from a bilateral bilobed  
84 brain before metamorphosis that fuses during metamorphosis to give rise to a ring-shaped  
85 brain in the adult. Likewise, it provides new evidence of the brain's connection with the  
86 future medullary cord of the trunk and the neural subdivisions in the segmented trunk.  
87 Together, we show a previously overlooked level of organisation of the nervous system in *O.*  
88 *fusiformis* that will be important to understanding the early dynamics of neural development  
89 in annelids and other animals.

90

## 91 **Methods**

### 92 Animal collection

93 Reproductive individuals of *O. fusiformis* were collected from the coast near the  
94 Station Biologique de Roscoff (France) and kept in the laboratory as previously described  
95 (24, 33). Embryos and larvae were cultured as previously described (24).

96

97 Immunohistochemistry

98 Fixation and antibody staining were conducted as described elsewhere (24). Adult  
99 specimens were relaxed in 8% MgCl<sub>2</sub> and fixed overnight at 4°C. Adults were then placed in  
100 60 mm dishes in 1x phosphate buffer saline (PBS), and their heads were dissected with a  
101 razor blade between the thoracic and the abdominal segments (between segments three and  
102 four (35, 36)). Adult heads were treated post-fixation with 1% collagenase D (Merk-Sigma, #  
103 COLLD-RO) overnight at 4°C and permeabilised through several washes with 1x PBS +  
104 0.5% Triton X-100 (PTx). The primary antibodies mouse anti-acetylated α-tubulin (clone 6-  
105 11B-1, Merk-Sigma, #MABT868, 1:800), mouse beta-tubulin (E7, Developmental Studies  
106 Hybridoma Bank, 1:20), rabbit anti-FMRFamide (Immunostar, cat#: 20091, 1:600), and  
107 *Platynereis dumerilii* derived (30-32) rabbit anti-FVamide (stock concentration: 0.12 mg/ml;  
108 accession number: AEE25642.1, 1:200–1:500), anti-RYamide (stock concentration: 0.28  
109 mg/ml; accession number: AEE25645.1, 1:200–1:500), anti-RGWamide (stock  
110 concentration: 0.4 mg/ml; accession number: AFS33094.1, 1:200–1:500) and anti-MIP  
111 (myoinhibitory peptide) (stock concentration: 0.28 mg/ml; accession number: AFV92893.1,  
112 1:200–1:500) were diluted in 5% normal goat serum (NGS) in PTx and incubated overnight  
113 at 4°C. After several washes in 1% bovine serum albumin (BSA) in PTx, samples were  
114 incubated with secondary antibodies AlexaFluor488, AlexaFluor555 and AlexaFluor647  
115 conjugated antibodies (ThermoFisher Scientific, A-21428, A32731, A-21235, 1:600) plus  
116 DAPI (stock 2mg/ml, 1:2000) diluted in 5% NGS in PTx overnight at 4°C. Adults were  
117 dehydrated stepwise in isopropanol, cleared in 2:1 benzyl benzoate:benzyl alcohol, briefly  
118 immersed in xylene, and mounted in Entellan (Merk-Sigma, #1.07960).

119

120 Orthology analysis

121 A previously published alignment of SOX proteins (37) and maximum likelihood tree  
122 reconstruction with FastTree (38) were used to assign the orthology of SOXC in *O.*  
123 *fusiformis*.

124

125 **Whole-mount in situ hybridisation**

126 Riboprobes were synthesised with the T7 enzyme following the manufacturer's  
127 recommendations (Ambion's MEGAscript kit, #AM1334) and stored in hybridisation buffer  
128 at a concentration of 50 ng/μl at -20°C. Single colourimetric *in situ* hybridisation of embryos  
129 and mirtraria larvae was performed following an established protocol using a 1.5 ng/μl probe  
130 concentration (24, 29, 33, 34).

131

132 **Imaging**

133 Representative embryos, larvae, and juveniles from the colourimetric whole mount *in*  
134 *situ* hybridisation experiments were cleared and mounted in 80% glycerol in PBS. They were  
135 imaged with a Leica DMRA2 upright microscope equipped with an Infinity5 camera  
136 (Lumenera) using differential interference contrast (DIC) optics. Confocal laser scanning  
137 microscopy (CLSM) images were taken with a Leica SP5, Leica Stellaris 8 and Nikon CSU-  
138 W1 spinning disk confocal microscope. CLSM Z-stack projections were built with ImageJ2  
139 (39) and Nikon NIS-elements software. DIC images were digitally stacked with Helicon  
140 Focus 7 (HeliconSoft). Brightness and contrast were edited with Adobe Photoshop CC (v  
141 24.0.0), and figures were built with Adobe Illustrator CC (v 27.0.0) (Adobe Inc.).

142

143 **Results**

144 To characterise better the complexity and development of the nervous system of *O.*  
145 *fusiformis*, we tested four purified antibodies against conserved mature neuropeptides

146 (FVamide, RYamide, RGWamide and MIP) of the annelid *P. dumerilii* that have broad cross-  
147 species immunoreactivity (Figure 1b–c; Figure 2; Additional File 1: Supplementary Figure 1;  
148 Additional File 2: Supplementary Figure 2) (30, 32, 40). FVamide, RYamide and RGWamide  
149 label many of the previously described components of the early larval nervous system (24)  
150 (Figure 2), including the apical organ and the prototroch ring, but also previously  
151 uncharacterised peripheral nerves in the larval episphere. The MIP antibody has a lower  
152 signal-to-noise ratio but still labels the apical organ and some tissue anterior to the larval  
153 mouth (Additional File 2: Supplementary Figure 2). Having confirmed their connection to the  
154 larval neural components, we focused on describing the immuno-reactivity of these  
155 antibodies during the life cycle of *O. fusiformis*, using tubulin as a counter-immunostaining  
156 of the nervous system.

157

158 The complex nervous system of the early mitraria

159 At 24 hours post-fertilisation (hpf), between three to seven FVamide-like immune-  
160 reactive (FVamide-lir), RYamide-lir and RGWamide-lir cells are detectable in the apical  
161 organ of the early mitraria larva (Figure 2). A solitary FVamide-lir neuron with a weak  
162 FVamide-lir short axon is positioned anterior and apical to the mouth (white arrow, Figure  
163 2a–b). MIP has a similar pattern of immunoreactivity (white arrow, Additional File 2:  
164 Supplementary Figure 2). RYamide-lir axons, on the other hand, connect the apical organ to  
165 an RYamide-lir prototroch ring (pr) (magenta arrowhead, Figure 2e–f, h) via a frontal nerve  
166 (fn), a dorsal nerve (dn) and two bilateral peripheral nerves (lpn1–2) that bifurcate further  
167 midway in the episphere (orange arrowheads, Figure 2e–f). The prototroch ring also contains  
168 seven RYamide-lir cells (magenta arrows, Figure 2e–f, h–i), three anterior and four posterior,  
169 similar to the FMRFamide-lir, *elav*<sup>+</sup> and *synaptotagmin*<sup>+</sup> cells previously described at this  
170 larval stage (24). In contrast, RGWamide-lir cells are exclusively restricted to the apical

171 organ (Figure 2j–l). Apical cilia protrudes from some of the FVamide-lir, RYamide-lir,  
172 RGWamide-lir and MIP-lir neurons of the apical organ (Figure 2b, e, j; Additional File 2:  
173 Supplementary Figure 2). At this stage, beta-tubulin and alpha-acetylated tubulin label the  
174 frontal, dorsal, and peripheral nerves connecting the apical organ with the tubulin<sup>+</sup> prototroch  
175 ring (Figure 3a–e, h–m). Near the seven refringent globules of unknown function (24, 27),  
176 but integrated within the prototroch, are at least five beta-tubulin<sup>+</sup> monociliated cells with a  
177 short cilium, which likely represent mechanoreceptors (Figure 3e–g). Together, these new  
178 neuropeptide antibodies and more detailed observations of tubulin immunostaining  
179 demonstrate the complexity of the apical organ and neural components of the prototroch,  
180 including elaborated neurite patterns that connect these two sensorial structures, many of  
181 which had been previously overlooked (9, 23, 24).

182

183 The formation of the brain and nerve cords

184 As the larva grows and acquires competence, the adult brain forms, first as a  
185 horseshoe-shaped, bilobular, apical condensation of nuclei recognisable, as well, through the  
186 cell membrane labelling with beta-tubulin (27) (br; Figure 4a, e, g, k, m, o, q, u; Additional  
187 File 3: Supplementary Figure 3a, d, g, j; Additional File 4: Supplementary Figure 4a–d). In  
188 addition, the bilateral gene expression of the putative neural gene *soxC* (Additional File 5:  
189 Supplementary Figure 5) and anterior markers *pou4*, *six3/6*, *nk2.1* and *ChAt* (Figure 5a–f, i–l)  
190 confirm the bilobular nature of the brain at this stage. A small pit, as referred to by Wilson  
191 (27), is positioned most apically in the brain, where the ciliated apical tuft protrudes  
192 (Additional File 4: Supplementary Figure 4a–b, g–i). In addition, an apical ring of FVamide-  
193 lir, RYamide-lir, MIP-lir, and tubulin<sup>+</sup> cells surround this apical tuft (ar; Figure 4f, j, v;  
194 Additional File 4: Supplementary Figure 4b, h) and is presumably part of the apical organ. At  
195 this stage, this neural larval organ also contains multiple FVamide-lir, RYamide-lir,

196 RGWamide-lir and MIP-lir neurons, interconnected with the brain sitting just below (ao;  
197 Figure 4 a–b, d–f, g–l, m–r, u–v; Additional File 3: Supplementary Figure 3). Two thick  
198 RYamide-lir and tubulin<sup>+</sup> axon bundles — the ventral and dorsal roots — cross the brain and  
199 form a central neuropil just below the condensed nuclei of the brain (23, 27) (Figure 4k–l;  
200 Additional File 4: Supplementary Figure 4c, h). We used the terms “ventral” root and  
201 “dorsal” root to follow the nomenclature of the brain in other annelids (14, 41). However, the  
202 ventral and dorsal roots are positioned anteriorly and posteriorly, respectively, along the main  
203 body axis of the larva and juvenile. Altogether, these apical neural structures connect with the  
204 developing ventral nerve cord (vnc) of the juvenile rudiment (see below) through FVamide-  
205 lir, MIP-lir (Additional File 3: Supplementary Figure 3b, k), and tubulin<sup>+</sup> (Additional File 4:  
206 Supplementary Figure 4b) circumesophageal connectives. Eyespots are present on each side  
207 of the most basal part of the brain (not shown) (23, 27). Lastly, frontal and dorsal nerves, plus  
208 the lateral peripheral nerves, maintain the connection between the apical organ/brain and the  
209 prototroch neural ring (Figure 4b, h, r; Additional File 3: Supplementary Figure 3b, e, k;  
210 Additional File 4: Supplementary Figure 4f, i).

211  
212 At this pre-metamorphic larval stage, the juvenile rudiment has grown into a defined  
213 trunk, with segments that will wrap around the gut as it prepares to evaginate from the larval  
214 body (27-29). The vnc of the trunk starts forming as early as two weeks post fertilisation  
215 (wpf) and is immunoreactive to serotonin (5HT), FMRFamide and tubulin (23). Between two  
216 to three wpf, 5HT-lir and FMRFamide-lir neurons and lateral nerves presumably get  
217 patterned on each of the developing trunk segments (23). In agreement with the expression of  
218 *elav* and *synaptotagmin*, *soxC* is highly expressed in the juvenile trunk at this stage,  
219 supporting that this is a prominent site of active neurogenesis in the competent larva (24)  
220 (Figure 5a–b). Not only has the trunk an FVamide-lir, RYamide-lir, MIP-lir and tubulin<sup>+</sup> vnc

221 but also an FVamide-lir and RYamide-lir dorsal one (Additional File 3: Supplementary  
222 Figure 3c, f), demonstrating that many of the components of the adult peripheral nervous  
223 system develop before metamorphosis.

224

225 In addition to the developing brain and nerve cords, the foregut is innervated with  
226 FVamide-lir and RYamide-lir neurons and nerves (fgn; Figure 4d–d, h; Additional File 3:  
227 Supplementary Figure 3b–c, e–f). MIP shows some unspecific labelling at the anterior section  
228 of the foregut (Figure 4s–t; Additional File 3: Supplementary Figure 3k–l), mirroring the  
229 expression domains of *soxC*, *otx*, *nk2.1*, and *ChAt* in this larval region (Figure 5a, g, i, k).

230 Dorsal to the posterior tip of the trunk, the larval chaetal sac, which has many more chaetae at  
231 this stage than in the early mitraria, has an RYamide-lir and MIP-lir nerve connecting these  
232 defensive structures to the peripheral neurites of the episphere (Additional File 3:  
233 Supplementary Figure 3f, l). Altogether, the comprehensive analysis of the nervous system of  
234 the competent larva of *O. fusiformis* reveals a transition of neural connectivity, where the  
235 forming adult brain remains connected to the transitory larval organs, such as the prototroch  
236 and chaetal sac, as the connections with the developing trunk nervous system are established.

237

### 238 The nervous system during metamorphosis

239 The apical organ remains positioned dorsally and apically to the double root of axons  
240 of the brain (i.e., the central neuropil; Figure 6; Additional File 6: Supplementary Figure 6a),  
241 and continues to be connected with the larval episphere and prototroch ring with the  
242 FVamide-lir, RYamide-lir and tubulin<sup>+</sup> dorsal nerves (Additional File 6: Supplementary  
243 Figure 6a–d; Additional File 7: Supplementary Figure 7b), and RYamide-lir and tubulin<sup>+</sup>  
244 lateral nerves (Figure 6c–d; Additional File 6: Supplementary Figure 6c–d; Additional File 6:  
245 Supplementary Figure 7a–b). The distinct two lobes of the brain of the competent larva

246 appear to fuse into a continuous horseshoe during metamorphosis (Figure 7b, f), forming the  
247 putative ring-shaped brain of the juvenile and adult (see below). The dorsal and ventral root  
248 of the brain creates an FVamide-lir, RYamide-lir, RGWamide-lir, MIP-lir and tubulin<sup>+</sup>  
249 neuropil (np; Figure 6c, f, i, l; Additional File 7: Supplementary Figure 7a–b), which  
250 connects to the thorax of the evaginating trunk via circumesophageal connectives (or lateral  
251 medullary cords (22); see discussion) (Figure 6; Additional File 6: Supplementary Figure 6;  
252 Additional File 7: Supplementary Figure 7a–b). In the juvenile and adult, the thorax is  
253 composed of three fused trunk segments, which we name ciliated thoracic segments (cts), and  
254 differentiate from the other trunk segments by having capillary chaetae (35, 36) and abundant  
255 cilia in the epidermis (Additional File 7: Supplementary Figure 7a–b). Paired RGWamide-lir  
256 parapodial glandular organs (pgos) up to the seventh segment (27, 42) facilitate the  
257 distinction between the three thoracic and the seven abdominal segments (27, 28) (Figure 6g–  
258 h; Additional File 6: Supplementary Figure 6e–f). We could not observe ganglia in either  
259 thoracic or abdominal segments using nuclear staining and gene expression (Figure 7),  
260 providing further evidence of the medullary cord nature in oweniids (12, 22). However,  
261 several iterated FVamide-lir, RYamide-lir, RGWamide-lir, and MIP-lir neurons are present  
262 along the vnc, which are more condensed in the thorax because of the fusion of the three  
263 thoracic segments and more distant in the rest of the trunk (Figure 6a–b, d–e, g–h, j–k;  
264 Additional File 6: Supplementary Figure 6). From these clusters of iterated neurons,  
265 FVamide-lir, RYamide-lir, RGWamide-lir, MIP-lir and tubulin<sup>+</sup> lateral nerves run on the  
266 anterior edge of each segment transversally towards the dorsal side of the trunk, connecting  
267 to the dorsal nerve cord (Additional File 6: Supplementary Figure 6; Additional File 7:  
268 Supplementary Figure 7b). During metamorphosis, the foregut will break from the larval  
269 tissue to connect with the brain and become the definite mouth of the juvenile (27). The  
270 patterns of innervation and gene expression remain very similar to that of the competent

271 larvae (compare Figure 5 with Figure 7, and Additional File 3: Supplementary Figure 3 with  
272 Additional File 6: Supplementary Figure 6), except that now there are RGW-lir neurons on  
273 the lower mouth lip (lml; Figure 6g–h; Additional File 6: Supplementary Figure 6e–f). At this  
274 stage, *soxC* is broadly expressed in the mouth, and *six3/6* and *nk2.1* are expressed in the  
275 dorsal part of the foregut. *Otx* is now expressed in the boundary between the foregut and the  
276 midgut (Figure 7a–b, e–f, g–j), suggesting an additional role in the neural innervation of the  
277 foregut. Altogether, our findings indicate that significant changes in the neural architecture  
278 occur during metamorphosis, as the originally bilobed brain transforms into a ring and  
279 connects with the anterior part of the trunk, establishing the final nervous system architecture  
280 of the juvenile/adult.

281

282 The juvenile nervous system

283 After metamorphosis, the juvenile body subdivides into the head — with the fused  
284 prostomium and peristomium — and the trunk, further differentiating into three fused  
285 thoracic segments, seven abdominal segments, and the pygidium (27) (Figure 8). The mouth  
286 is anterior, and the brain ring is positioned dorsal to the roof of the foregut (23). The brain  
287 ring comprises 5HT-lir, FMRFamide-lir, and tubulin<sup>+</sup> roots, connected via lateral medullary  
288 cords around the foregut to the vnc (9, 12, 23). The vnc has iterated 5HT-lir neurons in an  
289 otherwise continuous medullary cord with no breaks, as seen with *ChAt* expression (9, 12,  
290 23). Consistently, FVamide-lir, RYamide-lir, RGWamide-lir, and MIP-lir localise to the ring-  
291 shaped brain that connects to the vnc with lateral medullary cords at the ciliated thoracic  
292 segments (Figure 8). FVamide-lir and RYamide-lir clusters of neurons (Figure 8a–d) and  
293 FVamide-lir, RYamide-lir, and tubulin<sup>+</sup> peripheral nerves (Additional File 7: Supplementary  
294 Figure 7c–d) occur in the anterior part of each segment, with one tubulin<sup>+</sup> pair of lateral  
295 nerves more prominent in each of the segments (In; Additional File 7: Supplementary Figure

296 7c–d). Tubulin<sup>+</sup> longitudinal nerve tracts run alongside the median vnc (cyan arrows;  
297 Additional File 7: Supplementary Figure 7c) and ventrolaterally (magenta arrows; Additional  
298 File 7: Supplementary Figure 7c–d). RGWamide-lir and MIP-lir nerves are also present in the  
299 mouth opening (Figure 8e–h). At this stage, *six3/6* and weakly *soxC* are expressed in the  
300 brain (Additional File 8: Supplementary Figure 8a–f). The latter is also expressed in the  
301 foregut and the putative posterior growth zone (gz), just before the pygidium (Additional File  
302 8: Supplementary Figure 8a–c). Therefore, the definitive brain is primarily formed in the  
303 juvenile. However, the vnc neuroarchitecture is more elaborated at this stage than in the  
304 adult, as we describe below (12, 22).

305

306 The anterior adult neural structures

307 The head of the adult *O. fusiformis* includes a crown of tentacles formed from the  
308 fused prostomium and peristomium and a pair of ventrolateral eyes (22, 36) (Figure 9a). The  
309 FVamide-lir, RYamide-lir, RGWamide-lir, and MIP-lir nervous system is preserved  
310 throughout the ring-shaped brain, medullary cords, and vnc as seen in the juvenile (Figure 9;  
311 Additional File 9: Supplementary Figure 9). The neuropile of the brain is composed of  
312 parallel bundles of axons transverse to the lateral medullary cords, with FVamide-lir,  
313 RYamide-lir, RGWamide-lir, and MIP-lir neurons on the anterior and posterior edges (Figure  
314 9b, d, f, h; Additional File 9: Supplementary Figure 9c, f, i, l). The FVamide-lir and  
315 RYamide-lir neuropil is wider than the RGWamide-lir and MIP-lir. The RYamide-lir neurons  
316 of the neuropil partially distinguish the dorsal and ventral roots of the brain as two  
317 concentrated bundles of neurites parallel to one another, separated by a less dense portion of  
318 neurites (Additional File 9: Supplementary Figure 9f), suggesting some level of  
319 compartmentalisation in the apparently simple ring-shaped brain of this annelid. Finally,  
320 there are FVamide-lir, RYamide-lir, RGWamide-lir, and MIP-lir longitudinal head nerves

321 lateral to the brain (Additional File 9: Supplementary Figure 9b, f, j, n) that project anteriorly  
322 to the tentacles (22), and posteriorly into the trunk.

323

324 In addition to the brain, FVamide-lir, RYamide-lir, RGWamide-lir, and MIP-lir  
325 somata are present throughout the head tentacles (Figure 9 a–h) and surrounding the eyes  
326 (Figure 9a, c, e, g; Additional File 9: Supplementary Figure 9a, d, g, j). In these visual organs,  
327 a posterolateral cluster of neurons exhibits primarily FVamide-lir but also some RYamide-lir  
328 and MIP-lir signal, while RYamide-lir dominates in a second anterior cluster, which also  
329 shows some FVamide-lir and MIP-lir (Figure 9a, c, g; Additional File 9: Supplementary  
330 Figure 9a, d, j). However, this immunoreactivity is not part of the eye structure (21). A dorsal  
331 nerve cord composed of FVamide-lir, RYamide-lir, RGWamide-lir, and MIP-lir neurites and  
332 somata extends across the dorsal side of the body (Additional File 9: Supplementary Figure  
333 9b, e, h, k). Some of these immunoreactivity patterns in the head support previously observed  
334 5HT-lir and FMRFamide-lir clusters in other oeweniids (43, 44). Our findings support that the  
335 adult brain and trunk nervous system are compartmentalised during the gradual  
336 reorganisation of the nervous system from larval and juvenile stages.

337

### 338 **Discussion**

339 This study characterises the ontogeny of the nervous system in *O. fusiformis* from  
340 larvae to adulthood using a set of conserved cross-species antibodies and gene expression.  
341 The morphological landmarks presented here will serve as a foundation to understand larval  
342 development, metamorphosis, and post-larval morphogenesis in an annelid occupying a  
343 critical phylogenetic position, which will help to infer ancestral characters to Annelida and  
344 animals in general (Figure 10).

345

346 The nervous system in the early larva

347 The mitraria larva largely derives from anterior/head tissues (29), and posterior  
348 territories are limited to a ventral epithelial invagination that will form the juvenile rudiment  
349 trunk (24, 27) and a small dorsal posterior tissue that includes the anus and chaetal sac (34).  
350 The larval neural system — composed of the apical organ and apical tuft connected to a  
351 prototroch ring — starts developing by 13 hours post fertilisation (hpf) and connects to the  
352 FMRFamide-lir prototroch ring by 24 hpf. The nervous system also includes seven  
353 FMRFamide-lir, *elav*<sup>+</sup> and *synaptotagmin*<sup>+</sup> neurons in the prototroch (24). Our findings  
354 support this early neural architecture of the mitraria larva and reveal further complexity and  
355 refinement, particularly in the apical organ and its connections to the prototrochal neural ring.  
356 As in *P. dumerilii*, the apical organ contains FVamide-lir, RYamide-lir, RGWamide-lir, and  
357 MIP-lir neurons in *O. fusiformis*, some of which are monociliated. All these neuropeptides  
358 form a neurosecretory centre that regulates the swimming behaviour of the larvae of *P.*  
359 *dumerilii* (31, 32, 45, 46). They are also present in the anterior neural systems of other  
360 annelid and spiralian larvae, as in *C. teleta*, and even directly developing species (30-32, 40).  
361 In *O. fusiformis*, the apical organ connects frontally, bilaterally, and dorsally to the prototroch  
362 (Figure 10a). The monociliary nature of the neuropeptide-lir neurons in the apical organ and  
363 the seven RYamide-lir neurons in the prototroch indicate they might have a sensory function  
364 (Figure 10a). They presumably integrate stimuli from the apical organ and the prototroch to  
365 control the shape of the episphere and the ciliary beating, thus influencing the locomotion and  
366 behaviour of the larva, without the need for excess neural wiring as hypothesised for larvae  
367 with monociliated cells (47).

368

369 The spatial patterns of immunoreactivity show notable similarities between *O.*  
370 *fusiformis* and *P. dumerilii*. In both larvae, RY (31), FV (30, 31, 48, 49), and MIP (32, 48-50)

371 occur in ciliated sensory neurons. However, RY and RGW are expressed in interneurons that  
372 communicate to the synaptic nervous system in *P. dumerilii* (48, 49, 51, 52). Future studies of  
373 the connectome in *O. fusiformis* could clarify if this is true for *O. fusiformis*. Nonetheless, the  
374 presence of diverse neuropeptide sensory neurons, together with the deployment of staggered  
375 apical expression domains of transcription factors like *foxQ2*, *six3/6* and *otx* (11, 33, 53),  
376 support the evolutionary conservation of the apical region between annelids and spiralian  
377 and reveal anatomical traits of the anterior neural system of the ancestral “head swimming  
378 larva” of annelids.

379

380 From a bilobed larval brain to an adult ring-shaped brain

381 With growth, the neural features present in the early larva become more elaborated  
382 (23, 24), and the adult nervous system develops, first with the condensation of nuclei that  
383 form the brain (Figure 10b) and later, with the patterning, elongation and subsequent  
384 evagination of the trunk. Nuclear staining, the expression of the anterior marker genes *ChAt*,  
385 *nk2.1*, *otx*, *pou4*, and *six3/6* (9, 33, 34), and neuropeptide immunoreactivity reveal that the  
386 pre-metamorphic larva has a bilobed brain (Figure 10b). This is consistent with classic  
387 morphological descriptions (27) and similar to the larvae of other “early branching” (54, 55)  
388 and more divergent annelids (15, 16, 56). The brain sits underneath a prominent  
389 neuropeptide-rich apical organ (Figure 10b), which comprises an apical ring and several  
390 neurons surrounding the monociliated apical tuft. Anterior and posterior FMRFamide-lir and  
391 5HT-lir (23) and RYamide-lir axonal roots form a neuropil underneath the brain referred to as  
392 ventral and dorsal roots in other annelids, respectively (14, 41). Remarkably, this organisation  
393 changes with metamorphosis, as the bilobed brain forms a continuous *soxC+* and *six3/6+*  
394 band that compresses anteroposteriorly, bringing the dorsoventral roots closer to each other  
395 (Figure 10b). This results in the fusion of the brain lobes and roots into a double ring that

396 forms the brain in the juvenile (23) and adult (22). While our data support a reorganisation of  
397 the brain from larval to adult stages (22, 25, 26), we were unable to determine the fate of the  
398 larval apical organ, and it remains unclear whether it integrates into the juvenile brain or is  
399 resorbed during metamorphosis with the apical tuft and prototroch.

400

401 From metamorphosis onwards, the roots of the brain neuropil connect with lateral  
402 medullary cords, ending into a medullary non-ganglionated, medially-condensed vnc in the  
403 trunk (12, 22). The presence of bundles of axons with distinct neuropeptide immunoreactivity  
404 in the adult brain ring suggests an unexpected level of compartmentalisation in this  
405 previously regarded “simple” brain (22) that might indicate the retention of the anterior and  
406 posterior roots (“ventral” and “dorsal”, respectively, according to traditional anatomical  
407 descriptions (14, 41)) seen in the larval and metamorphic stages in adult stages. This would  
408 challenge hypotheses based on the analysis of other oweniids that their ring-shaped brain is  
409 homologous to the dorsal (posterior) root neuropil of other annelids (43, 44). Despite its  
410 presumable compartmentalisation, there are no distinct ganglionic centres in the adult brain  
411 of *O. fusiformis*, unlike in more active annelids that exhibit structures like the mushroom  
412 bodies and nuchal organs (57, 58). Therefore, the brains of *O. fusiformis* and other  
413 representatives of the “early branching” clades gradually reorganise their morphology while  
414 retaining neuronal diversity during metamorphosis to form a continuous medullary cord with  
415 the vnc, perhaps associated with a transition to a more sedentary, tube-dwelling lifestyle as  
416 adults.

417

418 From a juvenile rudiment to the trunk nervous system

419 The trunk of oweniids forms as an invagination of the ventral epithelium of the larva  
420 (27, 28) with the deployment of conserved anterior-posterior and trunk-patterning

421 programmes like the *hox* genes (29). While neurogenesis, as revealed by the expression of  
422 *elav*, *synaptotagmin* (24), and *soxC* (this study), is predominant in the apical organ and brain  
423 region in the early larva, it mainly occurs in the developing trunk before metamorphosis. As  
424 in other annelids (9, 12), the trunk nervous system develops as a paired medially-condensed  
425 vnc, but, most notably, it also includes a single dorsal nerve cord connected to the ventral one  
426 by segmentally iterated lateral nerves. During metamorphosis, additional ventrolateral  
427 longitudinal cords form, giving the trunk nervous system an orthogonal appearance that has  
428 been hypothesised to be the ancestral pattern for annelids (59) and other spirilians, such as  
429 flatworms and nemerteans (60, 61). A ganglionated ladder-like vnc thus likely evolved  
430 independently multiple times in annelids and animals (9, 12). As the juvenile worm matures  
431 into adulthood, more neurons appear along the vnc, resulting in a continuous medullary cord  
432 with no apparent breaks (12, 22, 43). However, the lack of segmented ganglia in the vnc of *O.*  
433 *fusiformis* does not exclude the presence of clusters of 5HT-lir (9, 12, 23) and FVamide-lir,  
434 RYamide-lir and MIP-lir (this study) neurons in each segment. Parapodial glandular organs  
435 (PGOs) (42) develop in each of the first seven segments (27) and show RGWamide-lir, which  
436 combined with the cilia of the thoracic segments and the neuropeptide-lir and tubulin<sup>+</sup> lateral  
437 nerves of the abdominal segments, define positional landmarks along the anterior-posterior  
438 axis that would aid in the study of trunk formation in *O. fusiformis* (Figure 10c). Concurrent  
439 with the maturation of the brain and trunk nervous system, the immunoreactivity in the larval  
440 foregut and definitive oesophagus changes. In *O. fusiformis*, the foregut of the competent  
441 larvae is innervated by 5HT-lir and FMRFamide-lir (23, 24), and FVamide-lir and RYamide-  
442 lir neurons and axons (this study); and by 5HT-lir (23) and RGWamide-lir and MIP-lir (this  
443 study) in the juvenile stage. FMRFamide-lir neurons and axons innervate the enteric nervous  
444 system of juvenile annelids like *C. teleta* (15). At the same time, MIP is also present in the  
445 stomatogastric nervous system in dinophilids (40), and it plays a role in the feeding behaviour

446 of *P. dumerilii* larva (50), suggesting a conserved neuropeptide-mediated control of feeding  
447 in annelids.

448

449 **Conclusions**

450 Our study describes the transition of the nervous system from the early larva to the  
451 adult stage in the annelid *O. fusiformis*, a representative of Oweniidae and the sister lineage  
452 to all remaining annelids. The initial larval neural system comprises an apical organ  
453 connected to a prototrochal ring and the chaetal sac through several neurites. Soon, a bilobed  
454 brain forms underneath the apical organ, connecting with other larval tissues and the  
455 developing juvenile trunk in its anterior part. During metamorphosis, the lobes, and the  
456 ventral and dorsal roots fuse to form a ring-shaped brain, following a similar trend of  
457 reorganisation of the neural architecture as in other “early branching” annelids like  
458 magelonids and chaetopterids (22, 25, 26). However, our findings indicate that the larval and  
459 adult nervous systems are not as simple as previously thought in *O. fusiformis* and retain  
460 similarities with more deeply nested annelids, particularly at the larval stages. Future studies  
461 of the detailed connectome of the mitraria larva will help to understand how these anatomical  
462 similarities translate into conservation of behaviours and physiological functions,  
463 illuminating how neuropeptidergic systems might have contributed to the evolution of  
464 biphasic life cycles.

465

466 **List of abbreviations**

467 als: antero-lateral somata

468 an: anus

469 ao: apical organ

470 ar: apical nerve ring

471 at: apical tuft  
472 br: brain  
473 CLSM: confocal laser scanning microscopy  
474 cc: circumesophageal connective  
475 chn: chaetal sac nerve  
476 co: collar  
477 cs: chaetal sac  
478 cts: ciliated thoracic segment  
479 dn: dorsal nerve  
480 dnc: dorsal nerve cord  
481 dr: dorsal root  
482 fg: foregut  
483 fgn: foregut nerve  
484 fn: frontal nerve  
485 gz: growth zone  
486 jr: juvenile rudiment  
487 lc: lateral cord  
488 lmc: lateral medullary cord  
489 lml: lower mouth lip  
490 ln: lateral transverse nerve  
491 lpn: left peripheral nerve  
492 mg: midgut  
493 MIP: myoinhibitory peptide  
494 mo: mouth  
495 mt: mucous tube

496 ne: neurite  
497 np: brain neuropil  
498 nph: nephridia  
499 pgo: parapodial glandular organ  
500 pls: posterior-lateral somata  
501 pr: prototrochal ring  
502 pt: prototroch  
503 so: somata  
504 rg: refringent globule  
505 rpn: right peripheral nerve  
506 tc: tentacle crown  
507 th: thorax  
508 tp: tentacle plexus  
509 vnc: ventral nerve cord  
510 vr: ventral root  
511

512 **Declarations**

513 Ethics approval and consent to participate

514 Not applicable.

515

516 Consent for publication

517 Not applicable.

518

519 Availability of data and materials

520 The datasets used and analysed during the current study are available from the corresponding  
521 author upon reasonable request.

522

523 **Competing interests**

524 The authors declare that they have no competing interests.

525

526 **Funding**

527 This study was funded by the Company of Biologists (Travel fellowship grant  
528 JEBTF2205748) to AMCB and the European Research Council (Starting Grant, Action  
529 number 801669) to JMMD.

530

531 **Authors' contributions**

532 AMCB and JMMD designed the study. AMCB and RD performed all the immunostainings  
533 and fluorescence imaging. AMCB performed the expression analyses and imaging of gene  
534 expression. EAW and GJ contributed with reagents and sequencing data. AMCB, RD and  
535 JMMD built the figures. AMCB drafted the manuscript. All authors contributed to data  
536 interpretation and manuscript writing.

537

538 **Acknowledgements**

539 We thank all members of the Martín-Durán lab for their support. We thank Océane Seudre  
540 for amplifying and synthesising the *soxC* probe and Paul Kalke for recommendations  
541 regarding immunostaining of the adult heads. We also thank the Station Biologique de  
542 Roscoff for their help with collections and animal supplies.

543

544

545 **References**

546

547 1. Jékely G, Keijzer F, Godfrey-Smith P. An option space for early neural evolution. *Philos  
548 Trans R Soc Lond B Biol Sci.* 2015;370(1684).

549 2. Bullock TH, Horridge GA. *Structure and Function in the Nervous Systems of  
550 Invertebrates.* San Francisco: W. H. Freeman and Company; 1965. 1719 p.

551 3. Martín-Durán JM, Hejnol A. A developmental perspective on the evolution of the nervous  
552 system. *Dev Biol.* 2021;475:181-92.

553 4. Hejnol A, Lowe CJ. Embracing the comparative approach: how robust phylogenies and  
554 broader developmental sampling impacts the understanding of nervous system evolution.  
555 *Philos Trans R Soc Lond B Biol Sci.* 2015;370(1684).

556 5. Northcutt RG. Evolution of centralized nervous systems: two schools of evolutionary  
557 thought. *Proc Natl Acad Sci U S A.* 2012;109 Suppl 1(Suppl 1):10626-33.

558 6. Hartenstein V, Stollewerk A. The evolution of early neurogenesis. *Dev Cell.*  
559 2015;32(4):390-407.

560 7. Arendt D, Urzainqui IQ, Vergara HM. The conserved core of the nereid brain: Circular  
561 CNS, apical nervous system and lhx6-арx-dlx neurons. *Curr Opin Neurobiol.* 2021;71:178-  
562 87.

563 8. Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of  
564 spiralian larvae. *Evol Dev.* 2023.

565 9. Martín-Durán JM, Pang K, Borve A, Le HS, Furu A, Cannon JT, et al. Convergent  
566 evolution of bilaterian nerve cords. *Nature.* 2018;553(7686):45-50.

567 10. Denes AS, Jékely G, Steinmetz PR, Raible F, Snyman H, Prud'homme B, et al. Molecular  
568 architecture of annelid nerve cord supports common origin of nervous system centralization  
569 in Bilateria. *Cell.* 2007;129(2):277-88.

570 11. Marlow H, Tosches MA, Tomer R, Steinmetz PR, Lauri A, Larsson T, et al. Larval body  
571 patterning and apical organs are conserved in animal evolution. *BMC Biology*. 2014;12(7):1-  
572 17.

573 12. Helm C, Beckers P, Bartolomaeus T, Drukewitz SH, Kourtesis I, Weigert A, et al.  
574 Convergent evolution of the ladder-like ventral nerve cord in Annelida. *Front Zool*.  
575 2018;15:36.

576 13. Purschke G. Annelida: Basal Groups and Pleistoannelida. In: Schmidt-Rhaesa A, Harzsch  
577 S, editors. *Structure and Evolution of Invertebrate Nervous Systems*. Oxford: Oxford  
578 University Press; 2016. p. 254-312.

579 14. Orrhage L, Müller CHG. Morphology of the nervous system of Polychaeta (Annelida).  
580 *Hydrobiologia*. 2005;535/536:79-111.

581 15. Meyer NP, Carrillo-Baltodano A, Moore RE, Seaver EC. Nervous system development in  
582 lecithotrophic larval and juvenile stages of the annelid *Capitella teleta*. *Front Zool*.  
583 2015;12:15.

584 16. Vopalensky P, Tosches MA, Achim K, Handberg-Thorsager M, Arendt D. From spiral  
585 cleavage to bilateral symmetry: the developmental cell lineage of the annelid brain. *BMC  
586 Biol*. 2019;17(1):81.

587 17. Kumar S, Tumu SC, Helm C, Hausen H. The development of early pioneer neurons in the  
588 annelid *Malacoceros fuliginosus*. *BMC Evol Biol*. 2020;20(1):117.

589 18. Sur A, Magie CR, Seaver EC, Meyer NP. Spatiotemporal regulation of nervous system  
590 development in the annelid *Capitella teleta*. *Evodevo*. 2017;8:13.

591 19. McDougall C, Chen WC, Shimeld SM, Ferrier DE. The development of the larval  
592 nervous system, musculature and ciliary bands of *Pomatoceros lamarckii* (Annelida):  
593 heterochrony in polychaetes. *Front Zool*. 2006;3:16.

594 20. Starunov VV, Voronezhskaya EE, Nezlin LP. Development of the nervous system in  
595 *Platynereis dumerilii* (Nereididae, Annelida). *Front Zool.* 2017;14:27.

596 21. Purschke G, Vodopyanov S, Baller A, von Palubitzki T, Bartolomaeus T, Beckers P.  
597 Ultrastructure of cerebral eyes in Oweniidae and Chaetopteridae (Annelida) - implications for  
598 the evolution of eyes in Annelida. *Zoological Lett.* 2022;8(1):3.

599 22. Beckers P, Helm C, Purschke G, Worsaae K, Hutchings P, Bartolomaeus T. The central  
600 nervous system of Oweniidae (Annelida) and its implications for the structure of the ancestral  
601 annelid brain. *Front Zool.* 2019;16:6.

602 23. Helm C, Vocking O, Kourtesis I, Hausen H. *Owenia fusiformis* - a basally branching  
603 annelid suitable for studying ancestral features of annelid neural development. *BMC Evol  
604 Biol.* 2016;16(1):129.

605 24. Carrillo-Baltodano AM, Seudre O, Guynes K, Martín-Durán JM. Early embryogenesis  
606 and organogenesis in the annelid *Owenia fusiformis*. *Evodevo.* 2021;12(1):5.

607 25. Beckers P, Helm C, Bartolomaeus T. The anatomy and development of the nervous  
608 system in Magelonidae (Annelida) - insights into the evolution of the annelid brain. *BMC  
609 Evol Biol.* 2019;19(1):173.

610 26. Helm C, Schwarze G, Beckers P. Loss of complexity from larval towards adult nervous  
611 systems in Chaetopteridae (Chaetopteriformia, Annelida) unveils evolutionary patterns in  
612 Annelida. *Organisms Diversity & Evolution.* 2022;22(3):631-47.

613 27. Wilson DP. On the mitraria larva of *Owenia fusiformis* Delle Chiaje. *Philosophical  
614 Transcations of the Royal Society B.* 1932;221(474-482):231-334.

615 28. Smart TI, von Dassow G. Unusual development of the mitraria larva in the polychaete  
616 *Owenia collaris*. *Biological Bulletin.* 2009;217:253-68.

617 29. Martín-Zamora FM, Liang Y, Guynes K, Carrillo-Baltodano AM, Davies BE, Donnellan  
618 RD, et al. Annelid functional genomics reveal the origins of bilaterian life cycles. *Nature*.  
619 2023;615(7950):105-10.

620 30. Conzelmann M, Jékely G. Antibodies against conserved amidated neuropeptide epitopes  
621 enrich the comparative neurobiology toolbox. *Evodevo*. 2012;3:23.

622 31. Conzelmann M, Offenburger SL, Asadulina A, Keller T, Munch TA, Jékely G.  
623 Neuropeptides regulate swimming depth of *Platynereis* larvae. *Proc Natl Acad Sci U S A*.  
624 2011;108(46):E1174-83.

625 32. Conzelmann M, Williams EA, Tunaru S, Randel N, Shahidi R, Asadulina A, et al.  
626 Conserved MIP receptor-ligand pair regulates *Platynereis* larval settlement. *Proc Natl Acad  
627 Sci U S A*. 2013;110(20):8224-9.

628 33. Martín-Durán JM, Passamaneck YJ, Martindale MQ, Hejnol A. The developmental basis  
629 for the recurrent evolution of deuterostomy and protostomy. *Nat Ecol Evol*. 2016;1(1):5.

630 34. Seudre O, Carrillo-Baltodano AM, Liang Y, Martín-Durán JM. ERK1/2 is an ancestral  
631 organising signal in spiral cleavage. *Nat Commun*. 2022;13(1):2286.

632 35. Müller J, Bartolomaeus T, Tilic E. Formation and degeneration of scaled capillary  
633 notochaetae in *Owenia fusiformis* Delle Chiaje, 1844 (Oweniidae, Annelida).  
634 *Zoomorphology*. 2021;141(1):43-56.

635 36. Rouse GW, Pleijel F, Tilic E. Oweniidae Rioja, 1917. In: Rouse GW, Pleijel F, Tilic E,  
636 editors. *Annelida*. Oxford: Oxford University Press; 2022. p. 321-5.

637 37. Schnitzler C, Simmons DK, Pang K, Martindale MQ, Baxevanis AD. Expression of  
638 multiple *Sox* genes through embryonic development in the ctenophore *Mnemiopsis leidyi* is  
639 spatially restricted to zones of cell proliferation. *Evodevo*. 2014;5(15):1-17.

640 38. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for  
641 large alignments. *PLoS One*. 2010;5(3):e9490.

642 39. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2:  
643 ImageJ for the next generation of scientific image data. *BMC Bioinformatics*.  
644 2017;18(1):529.

645 40. Kerbl A, Conzelmann M, Jékely G, Worsaae K. High diversity in neuropeptide  
646 immunoreactivity patterns among three closely related species of Dinophilidae (Annelida). *J*  
647 *Comp Neurol*. 2017;525(17):3596-635.

648 41. Müller MC. Polychaete nervous systems: Ground pattern and variations--cLS microscopy  
649 and the importance of novel characteristics in phylogenetic analysis. *Integr Comp Biol*.  
650 2006;46(2):125-33.

651 42. Rimskaya-Korsakova N, Dyachuk V, Temereva E. Parapodial glandular organs in  
652 *Owenia borealis* (Annelida: Oweniidae) and their possible relationship with nephridia. *J Exp*  
653 *Zool B Mol Dev Evol*. 2020;334(2):88-99.

654 43. Rimskaya-Korsakova NN, Kristof A, Malakhov VV, Wanninger A. Neural architecture of  
655 *Galathowenia oculata* Zach, 1923 (Oweniidae, Annelida). *Front Zool*. 2016;13:5.

656 44. Temereva E, Rimskaya-Korsakova N, Dyachuk V. Detailed morphology of tentacular  
657 apparatus and central nervous system in *Owenia borealis* (Annelida, Oweniidae). *Zoological*  
658 *Lett*. 2021;7(1):15.

659 45. Veraszto C, Guhmann M, Jia H, Rajan VBV, Bezares-Calderón LA, Pineiro-Lopez C, et  
660 al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine  
661 zooplankton. *Elife*. 2018;7.

662 46. Jokura K, Ueda N, Gühmann M, Yañez-Guerra LA, Słowiński P, Wedgwood KCA, et al.  
663 Nitric oxide feedback to ciliary photoreceptor cells gates a UV avoidance circuit. *Elife*.  
664 2023;12(RP91258):1-52.

665 47. Jékely G. Origin and early evolution of neural circuits for the control of ciliary  
666 locomotion. *Proc Biol Sci*. 2011;278(1707):914-22.

667 48. Williams EA, Veraszto C, Jasek S, Conzelmann M, Shahidi R, Bauknecht P, et al.  
668 Synaptic and peptidergic connectome of a neurosecretory center in the annelid brain. *Elife*.  
669 2017;6.  
670 49. Williams EA, Jékely G. Neuronal cell types in the annelid *Platynereis dumerilii*. *Curr*  
671 *Opin Neurobiol*. 2019;56:106-16.  
672 50. Williams EA, Conzelmann M, Jékely G. Myoinhibitory peptide regulates feeding in the  
673 marine annelid *Platynereis*. *Front Zool*. 2015;12(1):1.  
674 51. Shahidi R, Williams EA, Conzelmann M, Asadulina A, Veraszto C, Jasek S, et al. A  
675 serial multiplex immunogold labeling method for identifying peptidergic neurons in  
676 connectomes. *Elife*. 2015;4.  
677 52. Veraszto C, Ueda N, Bezares-Calderon LA, Panzera A, Williams EA, Shahidi R, et al.  
678 Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the *Platynereis*  
679 larva. *Elife*. 2017;6.  
680 53. Seudre O, Martín-Zamora FM, Rapisarda V, Luqman I, Carrillo-Baltodano AM, Martín-  
681 Durán JM. The *Fox* gene repertoire in the annelid *Owenia fusiformis* reveals multiple  
682 expansions of the *foxQ2* class in Spiralia. *Genome Biol Evol*. 2022;14(10).  
683 54. Jackson DJ, Meyer NP, Seaver E, Pang K, McDougall C, Moy VN, et al. Developmental  
684 expression of *COE* across the Metazoa supports a conserved role in neuronal cell-type  
685 specification and mesodermal development. *Dev Genes Evol*. 2010;220(7-8):221-34.  
686 55. Carrillo-Baltodano AM, Boyle MJ, Rice ME, Meyer NP. Developmental architecture of  
687 the nervous system in *Themiste lageniformis* (Sipuncula): New evidence from confocal laser  
688 scanning microscopy and gene expression. *J Morphol*. 2019;280(11):1628-50.  
689 56. Meyer NP, Seaver EC. Neurogenesis in an annelid: characterization of brain neural  
690 precursors in the polychaete *Capitella* sp. I. *Dev Biol*. 2009;335(1):237-52.

691 57. Tomer R, Denes AS, Tessmar-Raible K, Arendt D. Profiling by image registration reveals  
692 common origin of annelid mushroom bodies and vertebrate pallium. *Cell*. 2010;142(5):800-9.  
693 58. Heuer CM, Müller CHG, Todt C, Loesel R. Comparative neuroanatomy suggests  
694 repeated reduction of neuroarchitectural complexity in Annelida. *Front Zool*. 2010;7(13):1-  
695 21.  
696 59. Purschke G. On the ground pattern of Annelida. *Organisms Diversity & Evolution*.  
697 2002;2(3):181-96.  
698 60. Gustafsson MKS, Halton DW, Kreshchenko ND, Movsessian SO, Raikova OI, Reuter M,  
699 et al. Neuropeptides in flatworms. *Peptides*. 2002;23(11):2053-61.  
700 61. Beckers P, Loesel R, Bartolomaeus T. The nervous systems of basally branching  
701 nemertea (Palaeonemertea). *PLoS One*. 2013;8(6):e66137.  
702 62. Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, et al.  
703 Insights into bilaterian evolution from three spiralian genomes. *Nature*. 2013;493(7433):526-  
704 31.  
705

706 **Figure captions**

707

708 Figure 1. *Owenia fusiformis* development. **a** Developmental time course of stages studied:  
709 gastrula, early larva, competent larva, metamorphosis, juvenile and adult. **b** Conserved motifs  
710 in the epitopes of neuropeptides between *Platynereis dumerilii* (30-32) and *Owenia*  
711 *fusiformis*. Representative mature peptides and conserved dipeptides are highlighted in red  
712 and bold, respectively. **c** Cross-species reactivity tested across several annelids (30, 32, 40).  
713

714 Figure 2. Neuropeptide-lir elements in the early mitraria. Confocal Laser Scanning  
715 Microscopy (CLSM) images of DAPI (cyan), acetylated tubulin (yellow) and neuropeptide-

716 lir (red or white) elements at 24 hpf. All images are lateral views except for ventral views in  
717 **g–i**. Insets in **(b, e, i and k)** are close ups of the apical organ (ao) in the same view as the  
718 larger image. **a–c** FVamide-lir cells in the apical organ and one cell anterior to the foregut  
719 (white arrow). **d–i** RYamide-lir cells are present in the apical organ, with RYamide-lir axons  
720 (fn, dn, and orange arrowheads) connecting with seven RYamide-lir cells (magenta arrows)  
721 and an RYamide-lir prototrochal ring (pr). **j–l** RGWamide-lir cells are exclusively present in  
722 the apical organ. an: anus; ao: apical organ; at: apical tuft; cs: chaetal sac; dn: dorsal nerve;  
723 fg: foregut; fn: frontal nerve; mg: midgut; mo: mouth; pr: prototrochal ring; pt: prototroch.  
724

725 Figure 3. Tubulin<sup>+</sup> elements in the early mitraria. CLSM images of DAPI (cyan) and beta-  
726 tubulin (**a–j**) and alpha-acetylated tubulin (**k–m**) (yellow) at 24 hpf. Insets in **(f–g)** are close  
727 ups of the peripheral neuron in **e**. **a–c** Lateral views with beta-tubulin<sup>+</sup> axons extending from  
728 the apical organ (ao) anteriorly (fn), dorsally (dn) and laterally (rpn, lpn; orange arrowheads)  
729 towards the prototroch ring. The polar bodies (pb) are still visible at this stage in the  
730 blastocoel space between the apical organ and the midgut (mg). Beta-tubulin is also staining  
731 the cell boundaries across the body of the larva, like in **c**. **d–g** Ventral views showing at least  
732 one beta-tubulin<sup>+</sup> monociliated cell (magenta arrow) in the prototroch that presumably  
733 connects to the apical organ via a peripheral nerve (rpn1). **h–j** Two bilateral peripheral nerves  
734 (rpn1–rpn2 and lpn1–lpn2) branch out on each side of the episphere towards the tubulin<sup>+</sup>  
735 prototrochal ring (pr). **k–m** Most of the beta-tubulin<sup>+</sup> axons are also with acetylated tubulin.  
736 ao: apical organ; at: apical tuft; dn: dorsal nerve; fn: frontal nerve; lpn1–lpn2: left peripheral  
737 nerves 1–2; mg: midgut; mo: mouth; pr: prototrochal ring; pt: prototroch; rg: refringent  
738 globule; rpn1–rpn2: right peripheral nerves 1–2.

739

740 Figure 4. Neuropeptide-lir elements in the competent larvae. CLSM images of DAPI (cyan),  
741 acetylated tubulin (yellow) and neuropeptide-lir (red or white) elements in the competent  
742 larvae (~ 3 wpf). Apical views, with anterior to the top. **c–f, i–l, o–p** and **s–v** are close ups of  
743 the foregut or apical organ in the same view as the respective larger image in **b, h, n, r. a–b,**  
744 **e–f** FVamide-lir cells and **q–r, u–v** MIP-lir cells in the apical organ connect via FVamide-lir  
745 and MIP circumesophageal connectives (cc) to the ventral nerve cord (vnc) of the juvenile  
746 trunk rudiment (jr) (See Additional File 3: Supplementary Figure 3), and via **a–b** FVamide-  
747 lir, **g–h** RYamide-lir and **q–r** MIP-lir frontal (fn), dorsal (dn) and peripheral nerves (orange  
748 arrow heads) to the **a–b** FVamide-lir, **g–h** RYamide-lir and **q–r** MIP-lir prototrochal ring  
749 (pr). An **e–f** FVamide-lir, **i–j** RYamide-lir and **u–v** MIP-lir apical nerve ring (ar) surrounds  
750 the apical tuft. The foregut is innervated by **a–d** FVamide-lir cells and neurites. **k–l**  
751 RYamide-lir axons form a neuropil between two brain lobes (rbl–lbl) underneath the apical  
752 organ. **m–p** RGWamide-lir cells remain only in the apical organ. Arrow in **r, t** is presumably  
753 background staining.an: anus; ao: apical organ; ar: apical nerve ring; at: apical tuft; br: brain;  
754 cc: circumesophageal connectives; chn: chaetal sac nerve; cs: chaetal sac; dn: dorsal nerve;  
755 dr: dorsal root; fg: foregut; fgn: foregut nerve; fn: frontal nerve; jr: juvenile rudiment; mg:  
756 midgut; mo: mouth; np: brain neuropil; pr: prototrochal ring; pt: prototroch; vr: ventral root.  
757

758 Figure 5 Expression of neural genes in the competent larvae. Differential Interference  
759 Contrast (DIC) images showing expression of *soxC*, *pou4*, *six3/6*, *otx*, *nk2.1* and *ChAt*. **a, c, e,**  
760 **g, i, k** lateral views; **b, d, f, h, j, l** apical views. Insets are close ups of the corresponding  
761 larger images in anterior view. All genes, except for *otx* **g–h**, have a bilateral expression in  
762 the brain (br). **a–b** *soxC* is strongly expressed in the juvenile rudiment (jr), the mouth (mo),  
763 and the anterior part of the foregut (fg). **g–l** *otx*, *nk2.1* and *ChAt* have some weaker  
764 expression in the foregut. **g–h** in addition *otx* is expressed in the prototroch. an: anus; br:

765 brain; cs: chaetal sac; fg: foregut; jr: juvenile rudiment; mo: mouth; pgo: parapodial glandular  
766 organ; pt: prototroch.

767

768 Figure 6 Neuropeptide-lir elements during metamorphosis. CLSM images of DAPI (cyan)  
769 and neuropeptide<sup>+</sup> (red or white) elements during metamorphosis (~ 3-4 wpf). Ventral views,  
770 with anterior to the top. **c–d, g–h, k–l, o–p** are close ups of the apical organ and brain in the  
771 same view as the respective larger image in **a–b, e–f, i–j, m–n**. **a–b, e–f, i–j, m–n** The brain  
772 connects with the ventral nerve cord (vnc), via circumesophageal connectives (lateral  
773 medullary cords (22) at the trunk thorax, made out of three ciliated thoracis segments (cts).  
774 Iterated **a–b** FVamide-lir, **e–f** RYamide-lir and **m–n** MIP-lir neurons and transverse lateral  
775 nerves are present in the segments of the trunk. **i–j** RWG labels the parapodial glandular  
776 organs (pgos). Double yellow line marks the division between thoracic and abdominal  
777 segments. ao: apical organ; ar: apical nerve ring; br: brain; cc: circumesophageal connectives;  
778 cts: ciliated thoracic segments; dr: dorsal root; fg: foregut; fgn: foregut nerve; lmc: lateral  
779 medullary cords; lml: lower mouth lip; np: brain neuropil; pgo: parapodial glandular organ 1–  
780 4; pr: prototrochal ring; pt: prototroch; vnc: ventral nerve cord; vr: ventral root.

781

782 Figure 7 Neural development during metamorphosis. DIC images showing expression of  
783 *soxC*, *pou4*, *six3/6*, *otx*, *nk2.1* and *ChAt*. **a, c, e, g, i** Lateral views; **b, d, f, h, j**, ventral views.  
784 Insets are close ups focusing on the brain of the corresponding larger images. **a–b** *soxC*, **e–f**  
785 *six3/6* and **k–l** *ChAT* are expressed in the brain (br). **a–b** *soxC* is expressed throughout the  
786 trunk, the foregut (fg), and in the putative growth zone (gz). **e–f** *six3/6* and **i–j** are expressed  
787 on the dorsal side of the foregut, while **g–h** *otx* is expressed in the boundary between foregut  
788 and midgut. an: anus; br: brain; cc: circumesophageal connectives; cts: ciliated thoracic  
789 segments; dr: dorsal root; fg: foregut; fgn: foregut nerve; lmc: lateral medullary cords; lml:

790 lower mouth lip; np: brain neuropil; pgo: parapodial glandular organ 1–4; pr: prototrochal  
791 ring; pt: prototroch; vnc: ventral nerve cord; vr: ventral root.

792

793 Figure 8 Neuropeptide-lir elements in the juveniles. CLSM images of DAPI (cyan) and  
794 neuropeptide-lir (red or white) elements in juveniles (>4 wpf). **a, c, e, g** Ventral views; **b, d,**  
795 **f, h** lateral views, with anterior to the top. The brain connects with the ventral nerve cord  
796 (vnc), via circumesophageal connectives (lateral medullary cords (22) at the trunk thorax,  
797 made out of three ciliated thoracic segments (cts). Iterated **a–b** FVamide-lir, **c–d** RYamide-lir  
798 and **g–h** MIP-lir neurons and lateral transverse nerves (ln) are present in the segments of the  
799 trunk. **e–f** RWG labels the parapodial glandular organs (pgos). Double yellow line marks the  
800 division between thoracic and abdominal segments. br: brain; cc: circumesophageal  
801 connectives; cts: ciliated thoracic segments; lmc: lateral medullary cords; lml: lower mouth  
802 lip; mo: mouth; mt: mucous tube; pgo: parapodial glandular organ 1–4; vnc: ventral nerve  
803 cord.

804

805 Figure 9. Neuropeptide-lir elements in the head of adults. CLSM images of DAPI (cyan) and  
806 neuropeptide-lir (red or white) elements. **a, c, e, g** ventral views; **b, d, f, h** dorsal views. **a, c,**  
807 **e, g** The FVamide-lir, RYamide-lir, RGWamide-lir and MIP-lir brain ring (br) is connected  
808 via lateral medullary cords (lmc) to the ventral nerve cord (vnc) at the position of the thorax  
809 (th). Each tentacle of the head contains a basiepidermal nerve plexus (tp), which projects  
810 from the brain. **b, d, f, h** Posterior to the head there is a dorsal nerve plexus (dnp).  
811 Surrounding each eye are clusters of somata oriented in an anterior-lateral (als) and  
812 posterior-lateral position (pls) position, showing FVamide-lir, RYamide-lir, and MIP-lir. als:  
813 antero-lateral somata; br: brain; ch: chaetae; co: collar; dorsal nerve plexus: dnp; ey: eye;

814 lmc: lateral medullary cord; lml: lower mouth lip; pls: posterior-lateral somata; tc: tentacle  
815 crown; th: thorax; tp: tentacle plexus; vnc: ventral nerve cord.

816

817 Figure 10. Diagram of neural development in *O. fusiformis*. **a** At 24 hpf there is an FVamide-  
818 lir, RYamide-lir, RGWamide-lir, MIP-lir and FMRFamide-lir apical organ with *elav*<sup>+</sup> and  
819 *synaptotagmin*<sup>+</sup> cells that connect to the prototroch ring (24). **b** The brain goes from a bilobed  
820 brain in the pre-competent larvae, to a ring in the juvenile **c** Pattern of immunoreactivity and  
821 *soxC* and *six3/6* expression in the juvenile. ao: apical organ; as: abdominal segment; at: apical  
822 tuft; br: brain; ch: chaetae; cs: chaetal sac; cts: ciliated thoracic segment; dn: dorsal nerve;  
823 dnc: dorsal nerve cord; dr: dorsal root; fn: frontarl nerve; gz: growth zone; lc: lateral cord;  
824 lmc: lateral medullary cords; lpn: left peripheral nerve; mg: midgut; pgo: parapodial  
825 glandular organ; pr: prototroch ring; pt: prototroch; rbl: right brain lobe; rpn: right peripheral  
826 nerve; vr: ventral root.

827

828 Supplementary Figure 1 Alignment of the neuropeptide precursors *P. dumerilii* (30-32), *C.*  
829 *teleta* (62) and *Owenia fusiformis* (29). Representative mature peptides and conserved  
830 dipeptides are highlighted in red and bold, respectively.

831

832 Supplementary Figure 2 MIP-lir elements in the 24hpf mitraria. MIP-lir cells include several  
833 cells as part of the apical organ (ao) and one cell anterior to the foregut (white arrow),  
834 including a MIP-lir frontal nerve (fn). Inset in **b** is a close up of the apical organ (ao) in the  
835 same view as the larger image. ao: apical organ; at: apical tuft; cs: chaetal sac; fn: frontal  
836 nerve; mo: mouth.

837

838 Supplementary Figure 3. Neuropeptide-lir elements in the competent larvae. CLSM images  
839 of DAPI (cyan), acetylated tubulin (yellow) and neuropeptide-lir (red or white) elements in  
840 the competent larvae (~ 3 wpf). Lateral views, with anterior to the left. **c, f, i, l** are close ups  
841 of the juvenile rudiment in the same view as the respective larger image in **b, e, h, k**. **a–c**  
842 FVamide-lir cells and MIP-lir cells in the apical organ connect via FVamide-lir and MIP-lir  
843 circumesophageal connectives (cc) to the ventral nerve cord (vnc) of the juvenile trunk  
844 rudiment (jr), and via **a–b** FVamide-lir, **d–e** RYamide-lir and **j–k** MIP-lir frontal (fn), dorsal  
845 (dn) and peripheral nerves (closed orange arrow heads) to the **a–c** FVamide-lir, **d–f**  
846 RYamide-lir and **j–l** MIP-lir prototrochal ring (pr). See also Figure 2. **d–f** RYamide-lir and **j–**  
847 **l** MIP-lir peripheral nerves also branch out to the chaetal nerve (chn) (open pink arrowheads).  
848 The foregut is innervated by **a–c** FVamide-lir and **d–f** RYamide-lir cells and neurites. By this  
849 stage the juvenile rudiment has a vnc and a **a–c** FVamide-lir and **d–f** RYamide-lir dorsal  
850 nerve cord (dnc). **g–i** RGWamide-lir cells are only present in the apical organ. **j–l** MIP-lir is  
851 present in the anterior part of the foregut (white arrow). an: anus; ao: apical organ; at: apical  
852 tuft; br: brain; cc: circumesophageal connectives; chn: chaetal sac nerve; cs: chaetal sac; dn:  
853 dorsal nerve; dnc: dorsal nerve cord; fg: foregut; fgn: foregut nerve; fn: frontal nerve; jr:  
854 juvenile rudiment; mg: midgut; mo: mouth; pr: prototrochal ring; pt: prototroch; vnc: ventral  
855 nerve cord.

856

857 Supplementary Figure 4 Tubulin<sup>+</sup> elements in the competent. CLSM images of beta-tubulin  
858 (**a–e**) and alpha-acetylated tubulin (**f–j**) in the competent larvae (~3 wpf). **a–c, g–h** apical  
859 views; **d–e, i–j**, lateral views; **f** ventral view. **a–c, g–h** the apical organ (ao), associated with  
860 an apical tuft (at) and apical nerve ring (ar) is positioned above the brain (br). Ventral (vr)  
861 and dorsal (dr) roots **c, h** make the neuropil of the brain, that connects with the **d**  
862 cirucomesophageal connectives (cc), and ultimately with the ventral nerve cord (vnc) **d–e, f,**

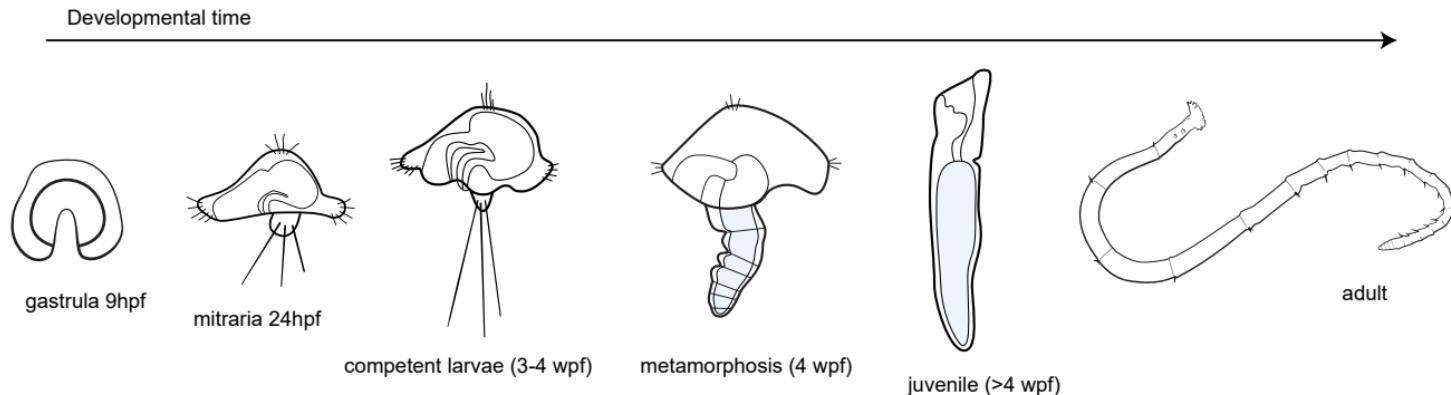
863 **i–j** Tubulin<sup>+</sup> peripheral nerves (fn, dn, and orange arrowheads) connect the apical organ with  
864 the prototroch ring (pr). ao: apical organ; an: anus; ar: apical nerve ring; at: apical tuft; br:  
865 brain; cb: chaetoblast; cc: circumesophageal connectives; chn: chaetal sac nerve; cs: chaetal  
866 sac; dn: dorsal nerve; dnc: dorsal nerve cord; dr: dorsal root; fg: foregut; fgn: foregut nerve;  
867 fn: frontal nerve; jr: juvenile rudiment; mg: midgut; mo: mouth; neph: nephridia; pr:  
868 prototrochal ring; pt: prototroch; vnc: ventral nerve cord; vr: ventral root.

869

870 Supplementary Figure 5 SoxC orthology and early mRNA expression. **a** Maximum likelihood  
871 orthology assignments of *soxC*. **b** DIC images showing expression of *soxC* during  
872 gastrulation (9hpf) and early mitraria (24hpf). Asterisks mark the animal/apical pole an: anus;  
873 bp: blastopore; cs: chaetal sac; fg: foregut; mo: mouth; pt: prototroch.

874

875 Supplementary Figure 6 Neuropeptide-lir elements during metamorphosis. CLSM images of  
876 DAPI (cyan) and neuropeptide-lir (red or white) elements during metamorphosis (~ 3 4pf).  
877 Lateral views, with anterior to the top. **a–h** The brain connects with the ventral nerve cord  
878 (vnc), via circumesophageal connectives (lateral medullary cords (22) at the trunk thorax,  
879 made out of three ciliated thoracis segments (cts). The foregut (fg) has **b** FVamide-lir, **f**  
880 RYamide-lir and **h** MIP-lir neurons and cells. **e–f** RWGamide labels the parapodial glandular  
881 organs (pgos), and the lower mouth lip (lml). Double yellow line marks the division between  
882 thoracic and abdominal segments. ao: apical organ; an: anus; br: brain; cc: circumesophageal  
883 connectives; cts: ciliated thoracic segments; dn: dorsal nerve; dr: dorsal root; fg: foregut; fgn:  
884 foregut nerve; lmc: lateral medullary cords; lml: lower mouth lip; np: brain neuropil; pgo:  
885 parapodial glandular organ 1–4; pr: prototrochal ring; pt: prototroch; vnc: ventral nerve cord;  
886 vr: ventral root.


887

888 Supplementary Figure 7 Tubulin<sup>+</sup> elements during metamorphosis and juvenile. CLSM  
889 images of acetylated tubulin. **a–b** Larvae undergoing metamorphosis. **c–d** >4 wfp juvenile.  
890 **a–b** Tub<sup>+</sup> peripheral nerves (orange arrowheads) in the remaining episphere of the larva keep  
891 connecting the brain to the prototrochal ring (pr). **a–d** The brain connects with the ventral  
892 nerve cord (vnc), via circumesophageal connectives (lateral medullary cords (22) at the trunk  
893 thorax, made out of three ciliated thoracis segments (cts). The vnc is composed of two robust  
894 longitudinal tracts, and two more lateral tracts (magenta arrows). On the anterior border of  
895 each segment, there is a pair of lateral transverse nerves (ln) that connect to lateral ventral-  
896 lateral longitudinal cords (magenta arrows). Double yellow line marks the division between  
897 thoracic and abdominal segments. ao: apical organ; br: brain; cc: circumesophageal  
898 connectives; cts: ciliated thoracic segments; dr: dorsal root; fn: frontarl nerve; lmc: lateral  
899 medullary cords; ln: lateral transverse nerves; neph: nephridia; pr: prototrochal ring; pt:  
900 prototroch; vnc: ventral nerve cord; vr: ventral root.

901  
902 Supplementary Figure 8 Neural development in juveniles. DIC images showing expression of  
903 *soxC*, *pou4*, *six3/6* and *otx*. **a, d, g, j** Lateral views; **b, e, h, k** ventral views; **c, f, i, l** dorsal  
904 views. **a–c** *soxC* and **d–f** *six3/6* are expressed in the brain (br). **g–i** *pou 4* and **j–l** *otx* have no  
905 longer any neural expression. **a–c** *soxC* is expressed in the foregut (fg), and in the putative  
906 growth zone (gz). br: brain; fg: foregut; gz: growth zone; mo: mouth.

907  
908 Supplementary Figure 9 Neuropeptide-lir elements in the adults. CLSM images of  
909 neuropeptide-lir close ups of images in Figure 9. **a–b, e–f, i–j, m–n** ventral views; **c–d, g–h,**  
910 **k–l, o–p** dorsal views. **a, e, i, m** Views of the eye showing FVamide-lir, RYamide-lir and  
911 MIP-lir, antero-lateral (als) and postero-lateral (pls) somata. **b, f, j, n** Lateral head neurites  
912 (ln) extend toward the tentacles and the trunk. **c, g, k, o** Longitudinal dorsal nerve cord

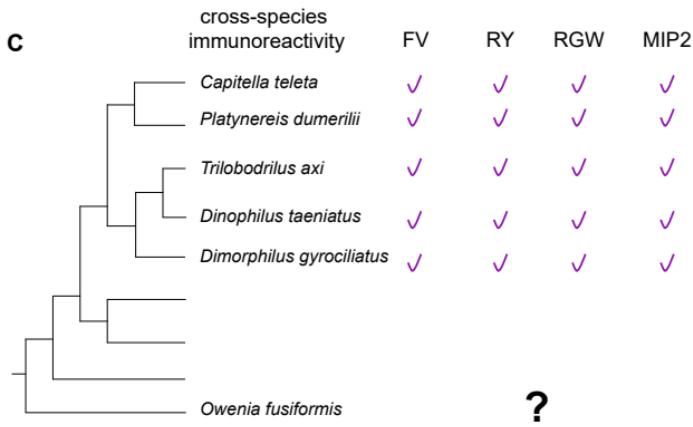
913 (dnc). **d, h, l, p** Brain ring with associated neurites (ne) and somata (so). als: anterior-lateral  
914 somata; br: brain; dnc: dorsal nerve cord; ey: eye; lhn: lateral head neurites; lmc: lateral  
915 medullary cord; ne: neurite; pls: posterior-lateral somata; so: somata; tp: tentacle plexus.

**Figure 1****A****B**

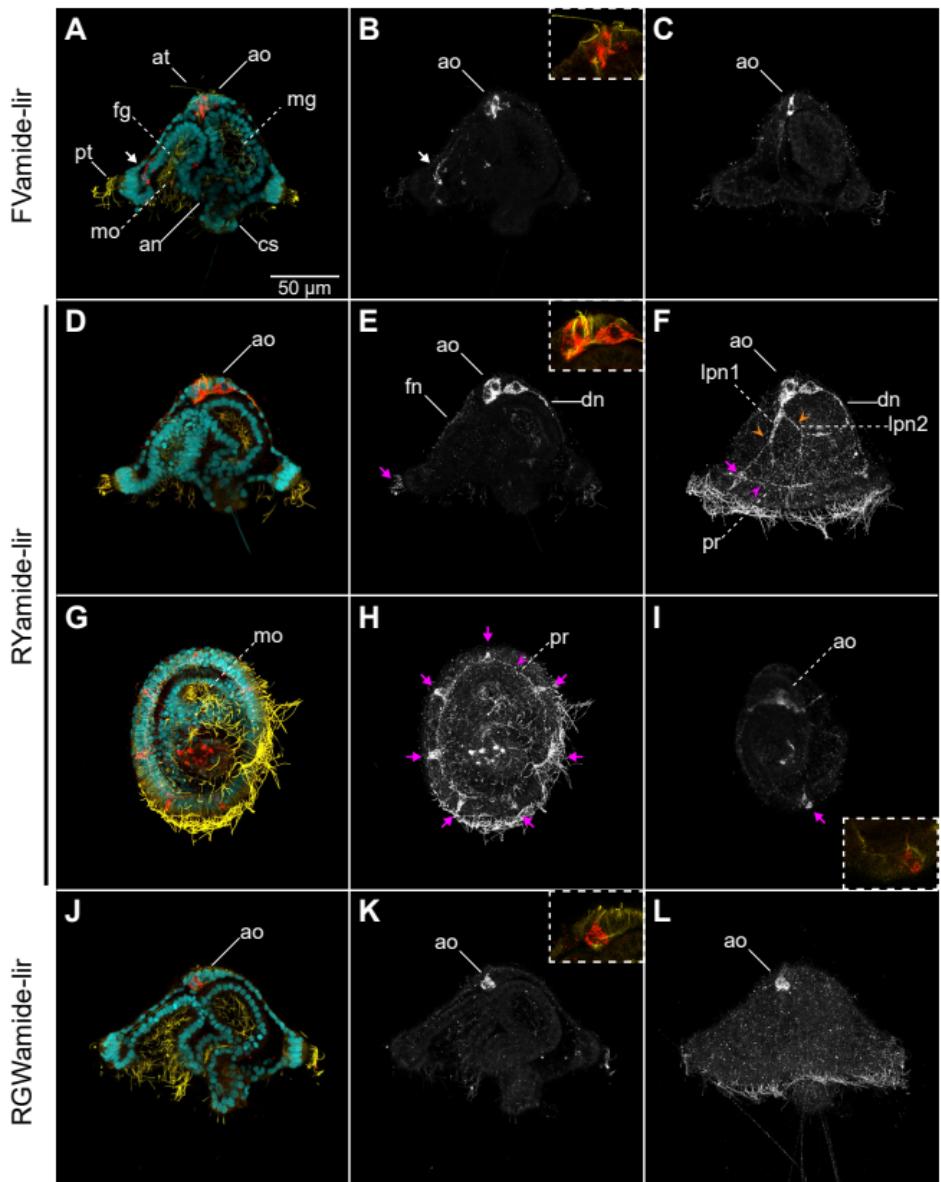
**FV** | *P. dumerilii* FVamide precursor AEE25642.1  
*O. fusiformis* FVamide precursor CAH1786749.1

K R P H N F V G K R  
K R R N M F V G K R

**RY** | *P. dumerilii* RYamide precursor AEE25645.1  
*O. fusiformis* RYamide precursor CAH1772730.1

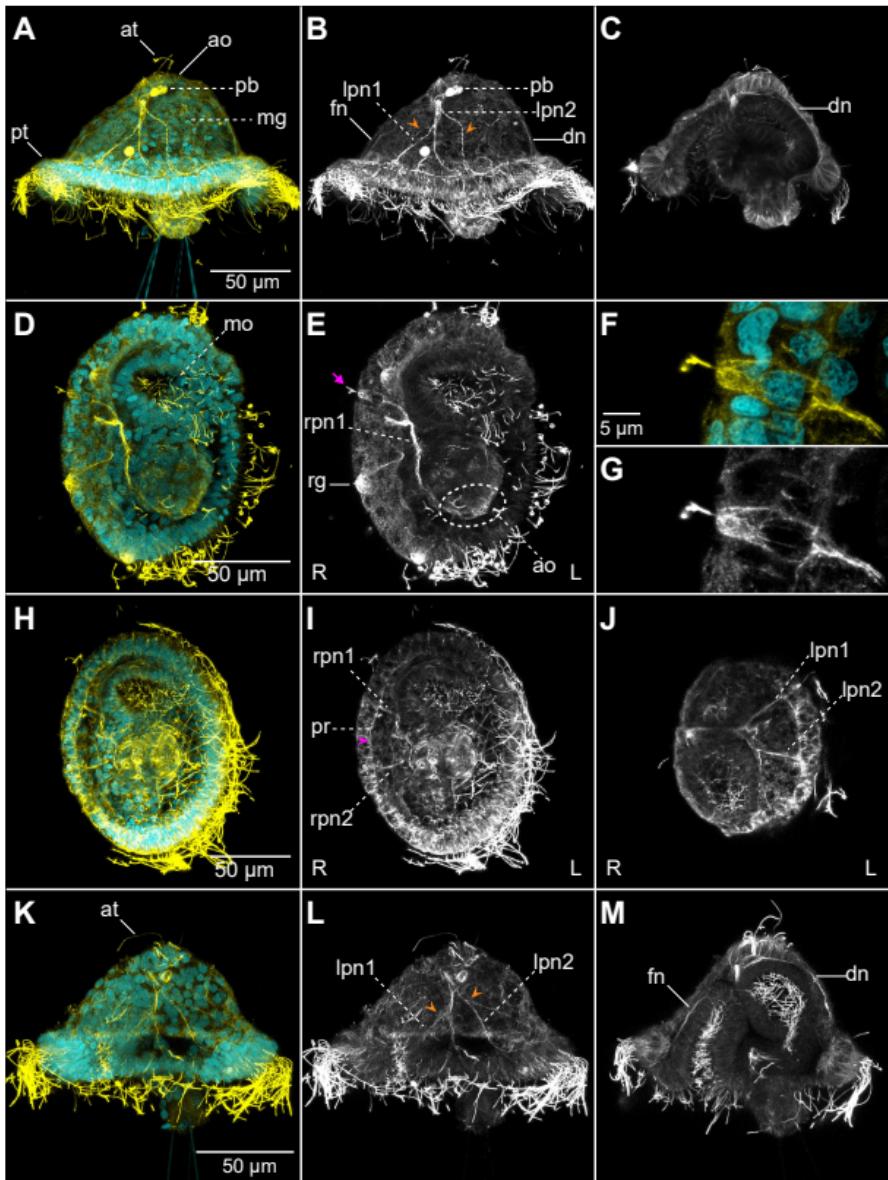

K R G T L M R Y G K R  
K R Q S F M R Y G K R

**RGW** | *P. dumerilii* RGWamide precursor AFS33094.1  
*O. fusiformis* RGWamide precursor CAH1783991.1

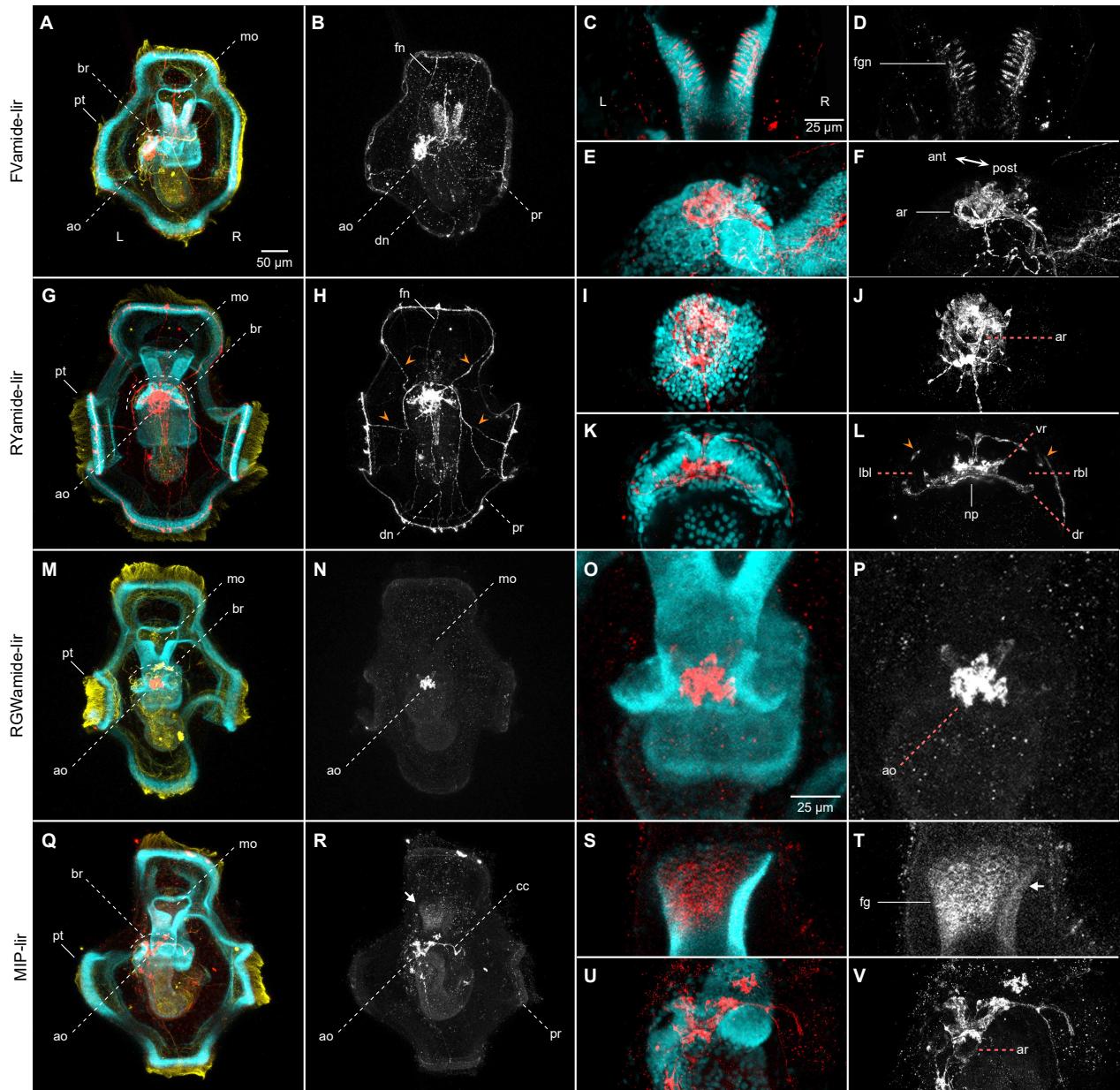

K R R G W G K R  
K R R G W G K R

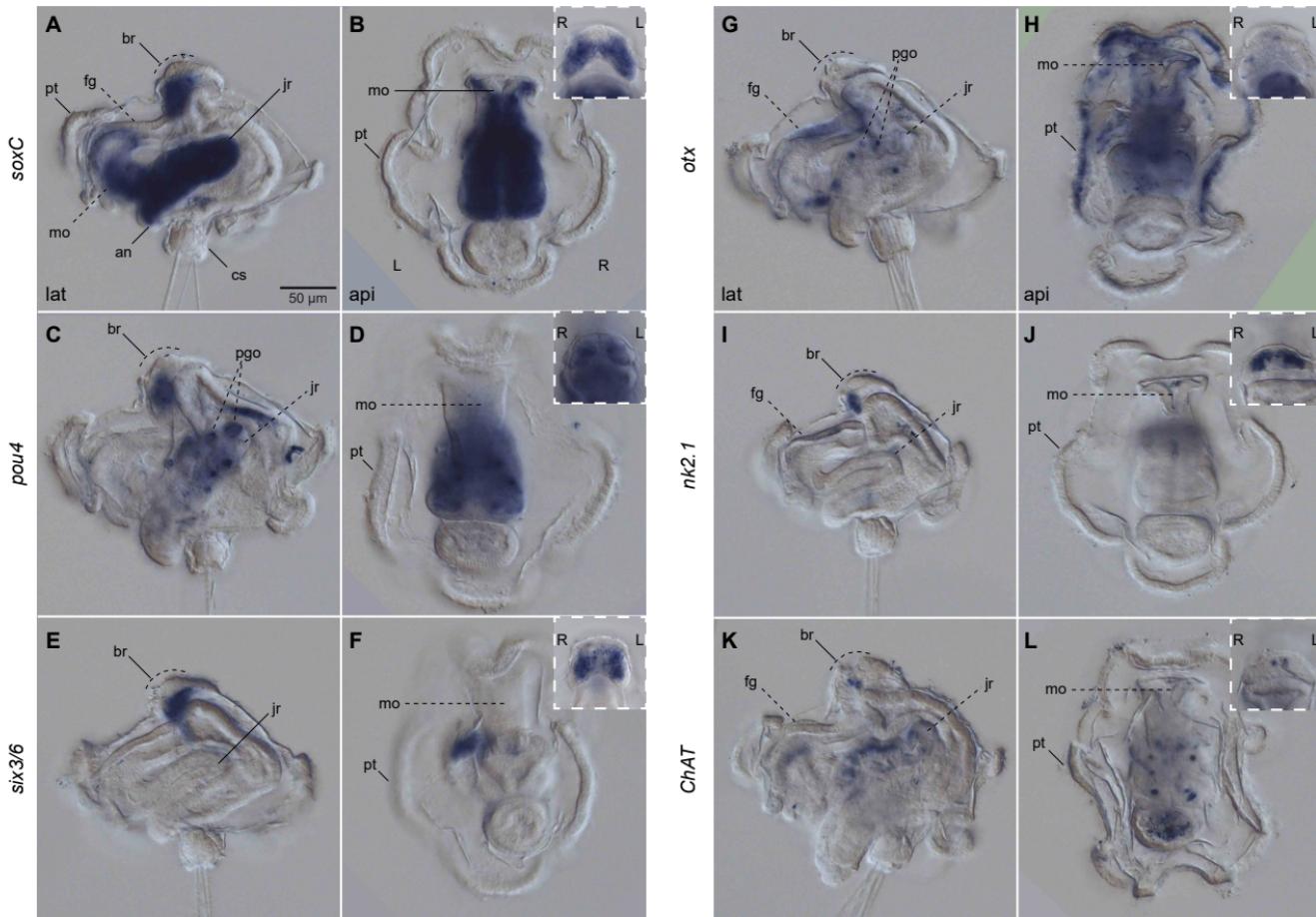
**MIP2** | *P. dumerilii* MIP precursor AFV92893.1  
*O. fusiformis* MIP precursor CAH1786447.1

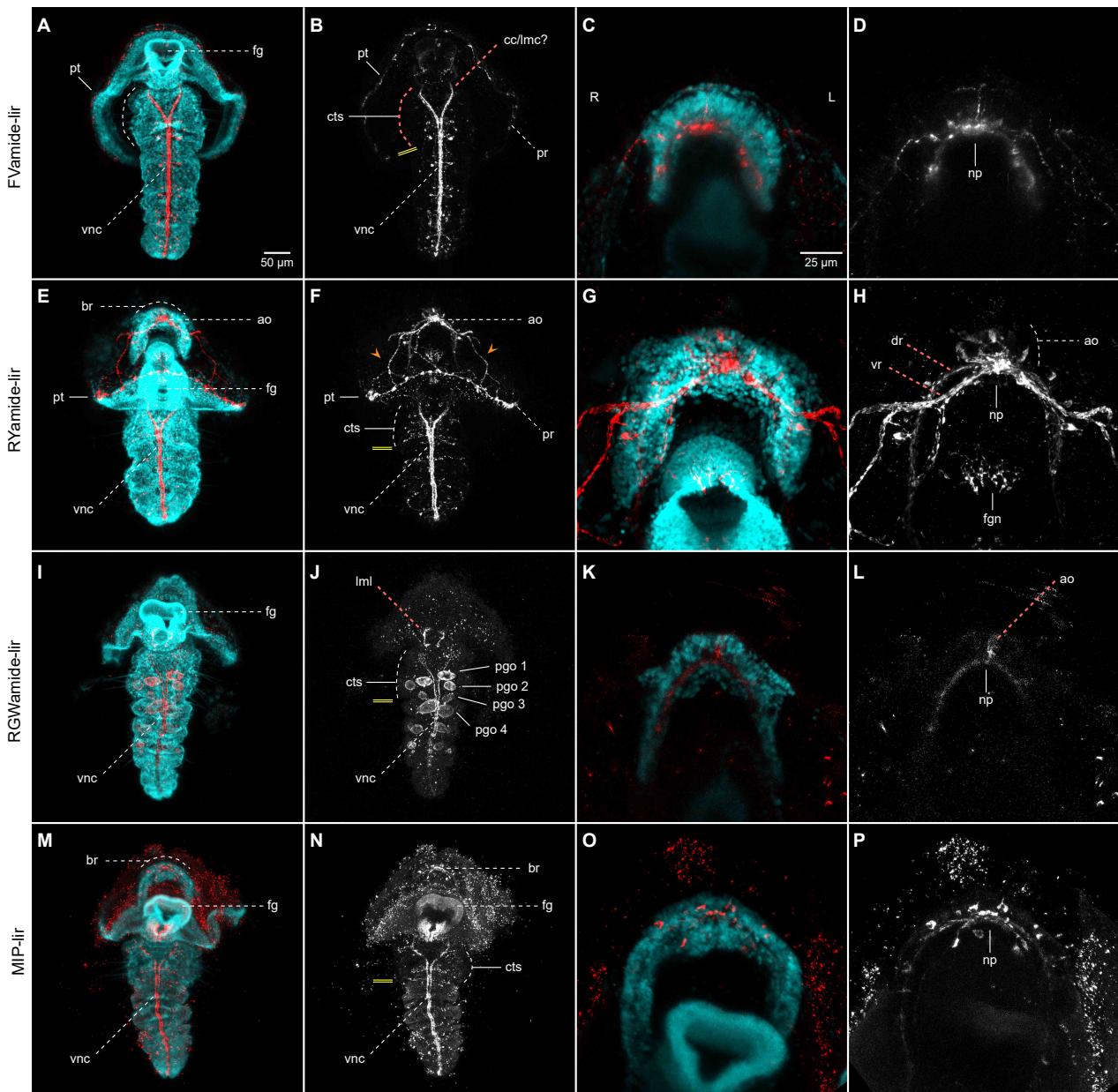
K R G W K Q G A S Y S W G K R  
K R A W Q N P G S -- W G K R

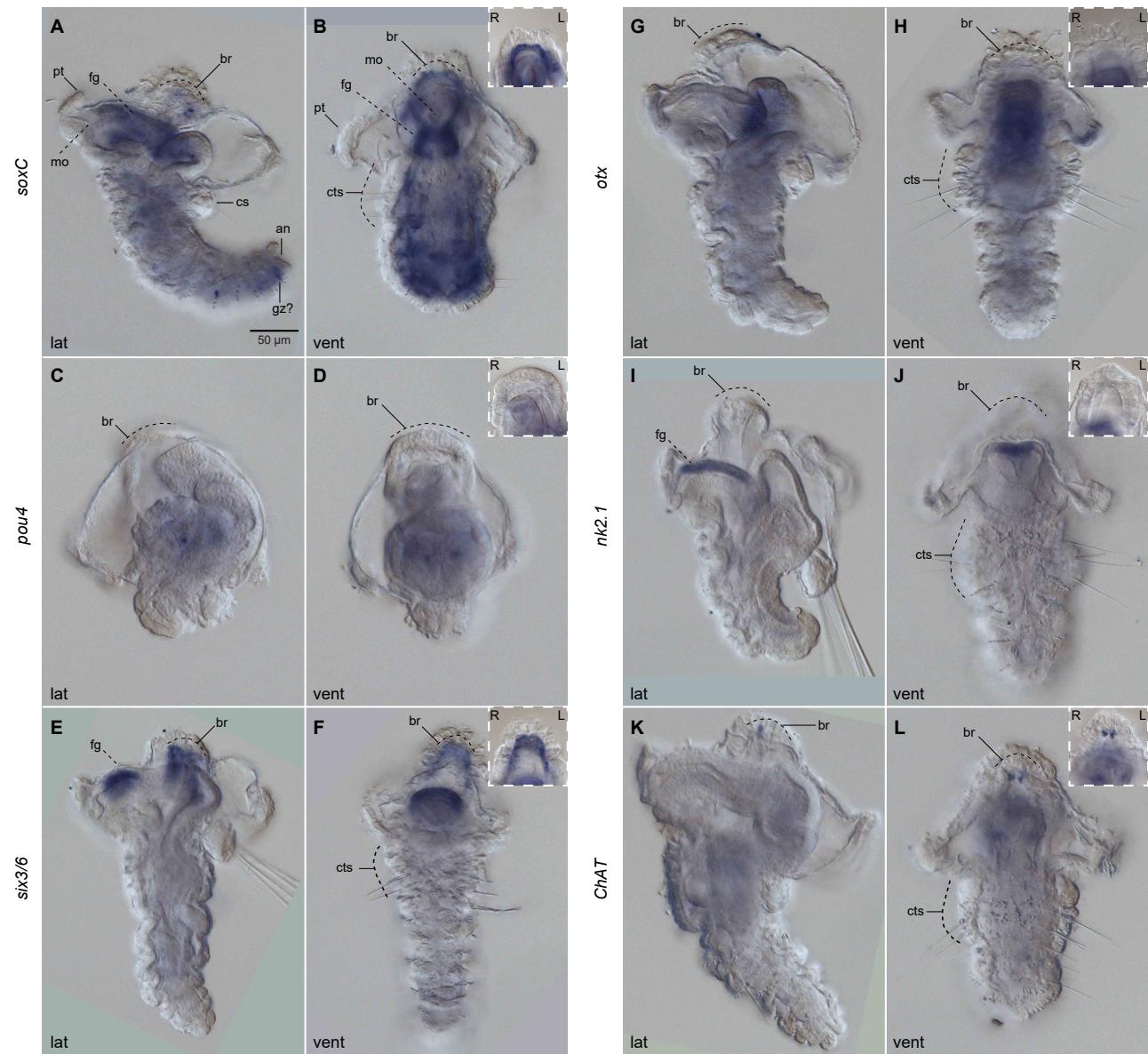

**C**

# Figure 2

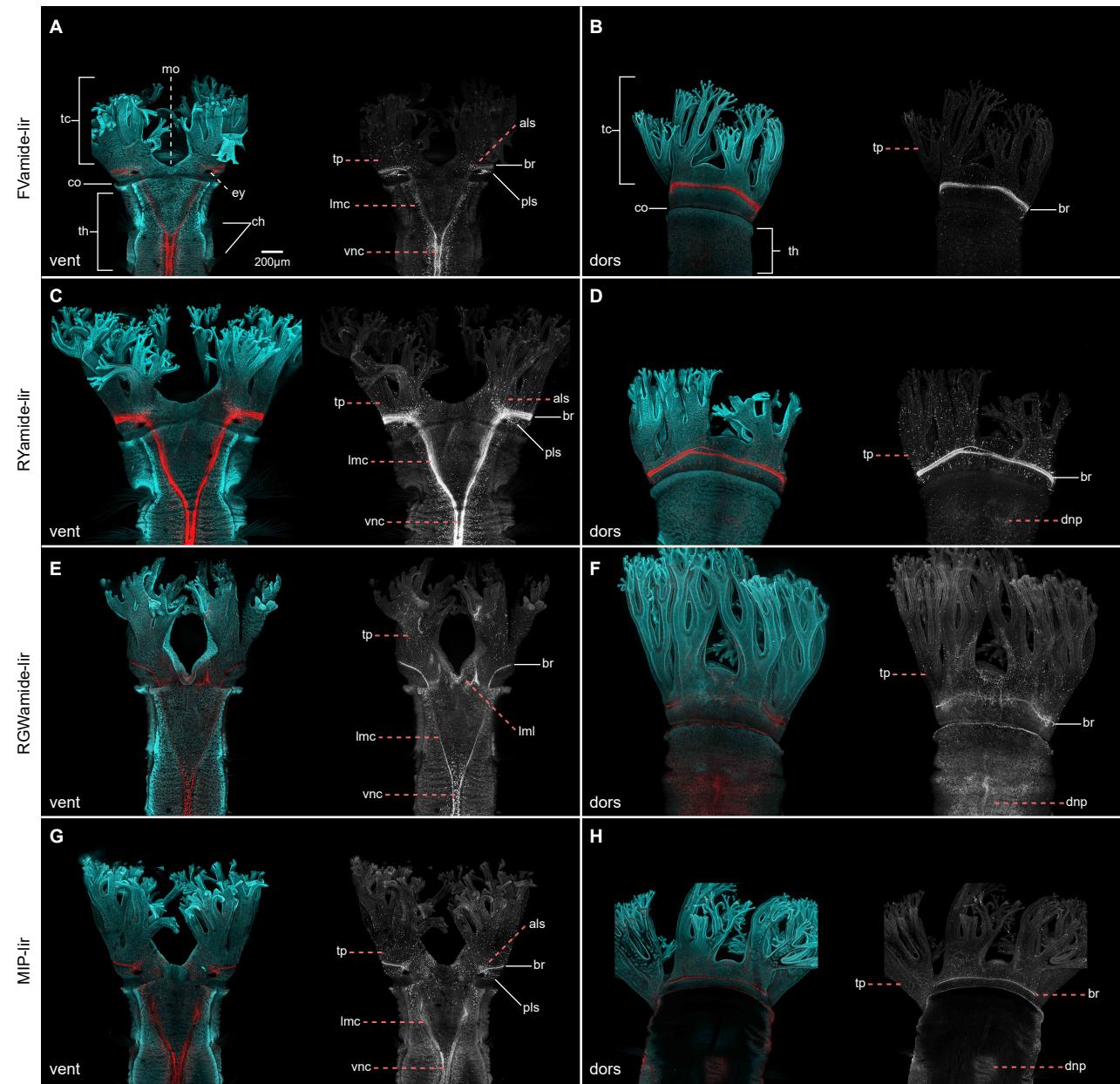


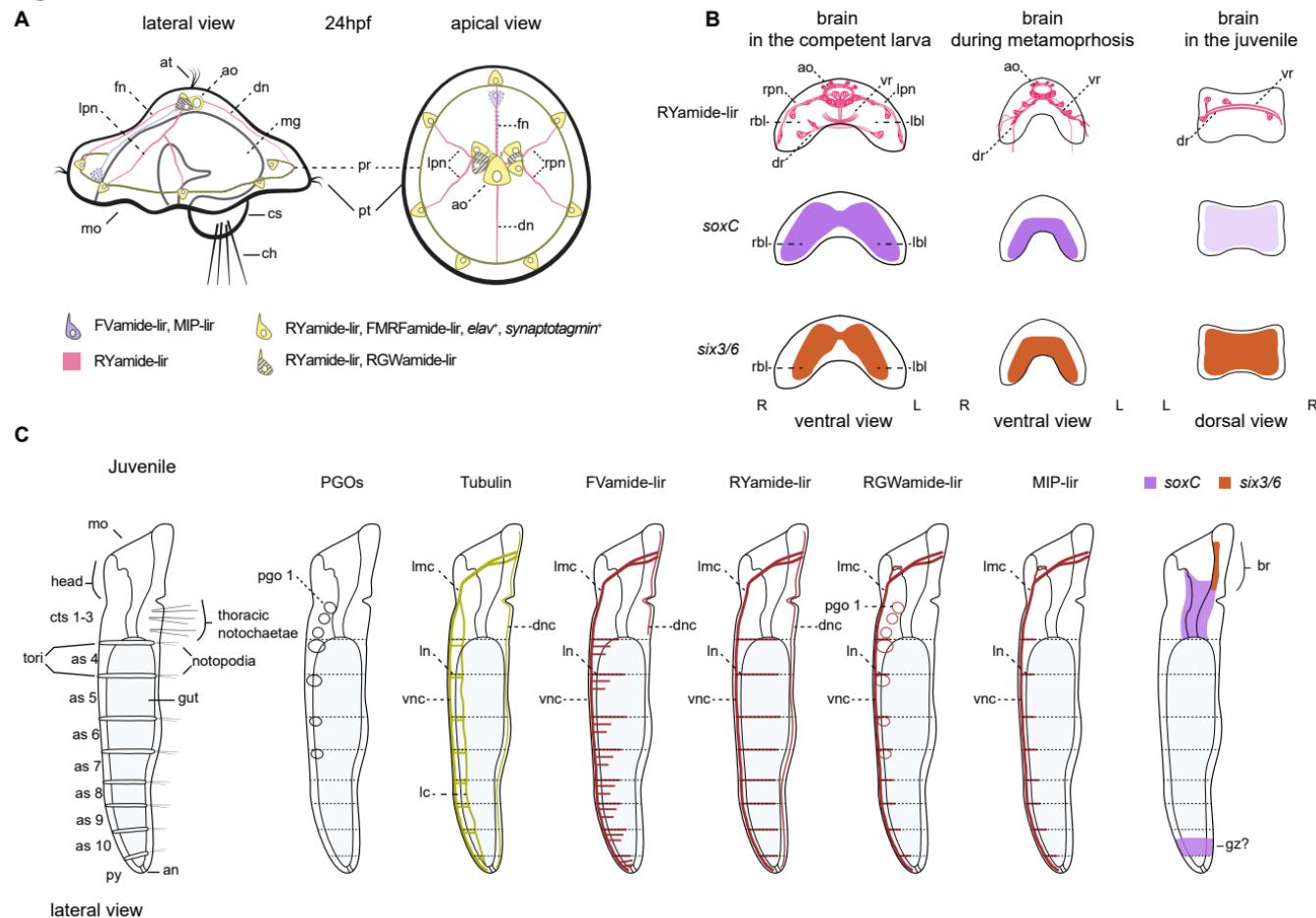


**Figure 3**


beta tubulin




alpha acetylated tubulin


**Figure 4**


**Figure 5**

**Figure 6**

**Figure 7**

**Figure 8**

**Figure 9**

**Figure 10**