

Primary multistep phosphorelay activation comprises both cytokinin and abiotic stress responses in Brassicaceae

1 Katrina Leslie Nicolas Mala^{1,2}, Jan Skalak^{1,2,*}, Elena Zemlyanskaya^{3,6}, Vladislav Dolgikh^{3,6},
2 Veronika Jedlickova¹, Helene S. Robert-Boisivon¹, Lenka Havlicková⁴, Klara Panzarova⁵, Martin
3 Trtilek⁵, Ian Bancroft⁴ and Jan Hejatko^{1,2*}

4 ¹CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625
5 00 Brno, Czech Republic

6 ²National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice
7 5/A2, 625 00 Brno, Czech Republic

8 ³Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences,
9 Novosibirsk, 630090, Russia

10 ⁴Department of Biology, University of York, York, UK

11 ⁵PSI (Photon Systems Instruments), Ltd., Drásov, 66424 Drásov, Czech Republic

12 ⁶ Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia

13 * Correspondence:

14 Corresponding authors:

15 Jan Skalak, jan.skalak@ceitec.muni.cz

16 Jan Hejatko, jan.hejatko@ceitec.muni.cz

17 Functional Genomics and Proteomics of Plants - Jan Hejátko

18 Central European Institute of Technology (CEITEC)

19 Kamenice 753/5

20 CZ-625 00 Brno, Czech Republic

21 Tel: +420-549494165

22 Date of submission

23 Number of figures: 10

24 Word count: 5194

25 Number of supplementary figures: 6

26 Number of supplementary tables: 9

27 **Highlights**

28 We identified *Brassica* homologs of *Arabidopsis* type-A response regulators (*RRAs*),
29 demonstrate existence of selective pressure preventing several *RRAs* multiplication during
30 Brassicaceae evolution and describe cytokinin dependency of cold-induced *RRAs*
31 upregulation.

32 **Abstract**

33 Multistep phosphorelay (MSP) signaling integrates hormonal and environmental signals to
34 control plant development and adaptive responses. The type-A *RESPONSE REGULATORs*

36 (RRAs), the downstream members of the MSP cascade and cytokinin primary response genes,
37 are supposed to mediate primarily the negative feedback regulation of (cytokinin-induced)
38 MSP signaling. However, the transcriptional data suggest the involvement of RRAs in stress-
39 related responses as well. By employing evolutionary conservation with the well-characterized
40 *Arabidopsis thaliana* RRAs, we identified 5 and 38 novel putative RRAs in *Brassica oleracea*
41 and *Brassica napus*, respectively. Our phylogenetic analysis suggests the existence of gene-
42 specific selective pressure, maintaining the homologs of *ARR3*, *ARR6*, and *ARR16* as singletons
43 during the evolution of *Brassica oleracea* and *Brassica rapa*. We categorized RRAs based on
44 the kinetics of their cytokinin-mediated upregulation and observed both similarities and
45 specificities in this type of response across Brassicaceae. Using bioinformatic analysis and
46 experimental data demonstrating the cytokinin responsiveness of *Arabidopsis*-derived TCSV2
47 reporter, we unveil the mechanistic conservation of cytokinin-mediated upregulation of RRAs
48 in *Brassica rapa* and *Brassica napus*. Notably, we identify partial cytokinin dependency of cold
49 stress-induced RRA transcription, thus corroborating the role of cytokinin signaling in the crop
50 adaptive responses.

51 **Keywords:** multistep phosphorelay; two-component signaling; type-A response regulator;
52 cytokinins; salinity; osmotic stress; *Arabidopsis thaliana*; *Brassica oleracea*; *Brassica rapa*;
53 *Brassica napus*

54 **Introduction**

55 Cytokinins regulate a wide range of biological processes that are vital for plant growth and
56 development (Cortleven *et al.*, 2019; Werner and Schmülling, 2009; Zurcher and Muller,
57 2016). In *Arabidopsis thaliana*, cytokinin signaling occurs through a multistep phosphorelay
58 (MSP), sometimes also called two-component signaling (Kieber and Schaller, 2018). The core
59 components of MSP include ARABIDOPSIS HISTIDINE KINASEs (AHKs), ARABIDOPSIS
60 HISTIDINE-CONTAINING PHOSPHOTRANSMITTERs (AHPs), and ARABIDOPSIS RESPONSE
61 REGULATORs (RRs). In the presence of cytokinins, the CHASE-containing AHKs (AHK2, AHK3,
62 and AHK4) located at the plasma membrane or endoplasmic reticulum (ER) undergo
63 autophosphorylation at a conserved His residue and transfer the phosphate group to the
64 conserved Asp residue within the AHK receiver domain (Antoniadi *et al.*, 2020; Hwang and
65 Sheen, 2001; Inoue *et al.*, 2001; Kubiasova *et al.*, 2020; Muller and Sheen, 2007). Cytoplasmic
66 AHPs accept the phosphate from the AHKs and translocate to the nucleus, allowing the final
67 transphosphorylation of the receiver domain of type-B RRs (RRBs) and transcriptional
68 regulation of the cytokinin-responsive genes.

69 Besides the aforementioned RRBs, the *A. thaliana* genome contains two more types of RRs:
70 type-A RRs (RRAs) and type-C RRs [RRCs; (Imamura *et al.*, 1998; Schaller *et al.*, 2008)]. RRBs
71 possess a cytokinin-responsive receiver domain along with a large C-terminal extension that
72 harbors the GARP (Golden/ARR/Psr1) motif, a Myb-like DNA binding domain (Hosoda *et al.*,
73 2002). In contrast, the RRAs are characterized by the presence of a receiver domain and short
74 C-terminal sequences but do not contain the DNA-binding domain. RRAs act as cytokinin
75 primary response genes, being rapidly induced by cytokinins via direct transcriptional
76 activation by RRBs, even in the absence of *de novo* protein synthesis (D'Agostino *et al.*, 2000;
77 Taniguchi *et al.*, 1998). RRA proteins are phosphorylated by RRBs and mediate the negative
78 regulation of MSP signaling via yet-unknown mechanisms (Lee *et al.*, 2008). There are ten
79 known RRAs in *A. thaliana* (*ARR3*, *ARR4*, *ARR5*, *ARR6*, *ARR7*, *ARR8*, *ARR9*, *ARR15*, *ARR16*, and

80 *ARR17*), acting as partially redundant negative regulators of (cytokinin-induced) MSP signaling
81 (To *et al.*, 2004). Previous studies have demonstrated the key role of *A. thaliana* *RRAs* in
82 several developmental and growth regulatory processes including stem cell specification,
83 meristem activity, and regeneration (Buechel *et al.*, 2010; Leibfried *et al.*, 2005; Muller and
84 Sheen, 2008; Zhao *et al.*, 2010).

85 The transcriptional activity of *RRAs* was shown to be linked to diverse abiotic stress responses,
86 including salinity, cold, and drought (Bhaskar *et al.*, 2021; Jain *et al.*, 2006; Jeon *et al.*, 2010;
87 Kang *et al.*, 2012; Sharan *et al.*, 2017; Shi *et al.*, 2012; Tran *et al.*, 2007; Urao *et al.*, 1998; Wang
88 *et al.*, 2019). However, compared to *A. thaliana*, the role of *RRAs* in the cytokinin and stress
89 responses remains rudimentary for a majority of agronomically important plant species.
90 Advancements in molecular biology, particularly sequencing technologies, have facilitated the
91 genome-wide identification of putative components of the MSP cascade not only in *A. thaliana*
92 (Hwang and Sheen, 2001) but also in crop species such as rice (Ito and Kurata, 2006; Jain *et*
93 *al.*, 2006; Karan *et al.*, 2009; Pareek *et al.*, 2006; Sharan *et al.*, 2017; Tsai *et al.*, 2012), maize
94 (Asakura *et al.*, 2003), soybean (Mochida *et al.*, 2010), and wheat (Sun *et al.*, 2022). Genes
95 involved in MSP signaling have been reported in Chinese cabbage (*B. rapa* spp. *Pekinensis*)
96 (Kaltenegger *et al.*, 2018; Liu *et al.*, 2014), *B. oleracea* (Kaltenegger *et al.*, 2018) and *B. napus*
97 (Jiang *et al.*, 2022; Kuderova *et al.*, 2015). Diploid *B. oleracea*, *B. rapa*, and allotetraploid *B.*
98 *napus* species are among the most commercially valuable crops in the Brassicaceae family.
99 They are not only consumed as culinary vegetables but also cultivated as oilseed crops,
100 covering approximately 38 million hectares in 2021/2022 in various countries, including
101 Canada, China, India, European Union, and Australia (European Commision, 2019; Kumar *et*
102 *al.*, 2009; Rathore *et al.*, 2022).

103 In this study, we identify novel *RRAs* in *B. napus* and *B. oleracea* and provide insights into the
104 evolutionary relationships, kinetics, and mechanism of cytokinin responses, as well as the
105 involvement of cytokinin in the abiotic stress-mediated modulation of *RRAs* within the *A.*
106 *thaliana* and *Brassica* species.

107 Materials and methods

108 Identification of type-A response regulators in *Brassica* species, motif search, multiple 109 sequence alignment, and chromosomal mapping

110 The protein sequences of the 10 known type A RRs in the *Arabidopsis thaliana* genome (Hwang
111 *et al.*, 2002) were obtained from NCBI (<https://www.ncbi.nlm.nih.gov/protein/>) (NCBI
112 reference sequence ARR3 NP_176202.1, ARR4 NP_001321924.1, ARR5 NP_190393.1, ARR6
113 NP_201097.1, ARR7 NP_173339.1, ARR8 NP_181663.1, ARR9 NP_001325622.1, ARR15
114 NP_177627.1, ARR16 NP_181599.1, ARR17 NP_567037.1) (Supplementary Table S1). These
115 sequences were used as queries in Protein BLAST (BLASTP) searches against the protein
116 database of *B. oleracea*, *B. rapa*, and *B. napus* in the EnsemblPlants (Release 51) (Howe *et al.*,
117 2021). Genes were selected as described by Kaltenegger *et al.* (2018). The coding sequences,
118 genomic sequences, and protein sequences of the selected genes were retrieved from
119 EnsemblPlants (Release 51) (Howe *et al.*, 2021) and Brassicaceae Database (BRAD version 3.0;
120 <http://brassicadb.cn>) (Chen *et al.*, 2021).

121 Using the ExPasy SIM- Alignment Tool for protein sequences with BLOSUM62 as a comparison
122 matrix (<https://web.expasy.org/sim/>) (Duvaud *et al.*, 2021), the amino acid sequence
123 homology of the identified *Brassica* RRAs was compared with *A. thaliana* RRAs
124 (Supplementary Table S2). Similarly, the *B. napus* RRAs from both A and C subgenomes were
125 compared to their progenitor species *B. rapa* and *B. oleracea*. The presence of the conserved
126 response regulator domain was analyzed using the GenomeNet Bioinformatics Tools,
127 sequence motif search, MOTIF (<https://www.genome.jp/tools/motif/>) of Kyoto University
128 Bioinformatics Center (Kyoto University Bioinformatics Center, 2015). The protein sequences
129 of the identified *Brassica* RRAs were used as input, and a search against the PFAM database
130 was performed with a cut-off score of E-value of 1. Sequences that possessed the conserved
131 response regulator receiver domain (Rec) (PF00072) were selected for further analysis in this
132 study.

133 Multiple sequence alignment was conducted using the MUSCLE algorithm (Edgar, 2004)
134 implemented in the UGENE (Okonechnikov *et al.*, 2012a) to annotate the location of important
135 conserved residues. The genomic locations of *A. thaliana* and *Brassica* RRAs were retrieved
136 from the EnsemblPlants (Release 51) (Howe *et al.*, 2021) and BrassicaDB (BRAD version 3.0;
137 <http://brassicadb.cn>) databases (Chen *et al.*, 2021). These locations were visualized using
138 MapGene2Chrom (MG2C_v2.1, http://mg2c.iask.in/mg2c_v2.1/) (Chao *et al.*, 2015) by setting
139 appropriate parameters for the figure output. The identified *Brassica* RRA genes were named
140 following the nomenclature proposed by Heyl *et al.* (2013), and the numbers assigned to them
141 correspond to their *A. thaliana* counterparts after performing the phylogenetic analysis. In
142 cases where multiple homologs of *ARR4*, *ARR5*, *ARR7*, *ARR8*, *ARR9*, *ARR15*, and *ARR17* were
143 found in *Brassica*, they were designated with the letters “a”, “b”, or “c” following descending
144 order of homology depending on the percentage of amino acid identities they share with that
145 specific RRA.

146 **Phylogenetic analysis of type A response regulator genes and gene structure analysis**

147 A comparative phylogenetic analysis was conducted using MEGA7: Molecular Evolutionary
148 Genetics Analysis version 7.0 for bigger datasets (Kumar *et al.*, 2016) based on the alignment
149 of the conserved response regulator domain (Rec) (PF00072) as described by Kaltenegger *et*
150 *al.* (2018). The multiple sequence alignment was performed using the conserved Rec domain
151 using the MUSCLE algorithm (Edgar, 2004) implemented in MEGA7 (Kumar *et al.*, 2016). The
152 Neighbor-Joining method (Saitou and Nei, 1987) was used to infer the evolutionary history.
153 The evolutionary distances were computed using the Poisson correction method (Zuckerkandl
154 and Pauling, 1965) and are expressed as the number of amino acid substitutions per site. The
155 analysis included 1000 bootstrap replicates, and all ambiguous positions were removed for
156 each sequence pair. Phylogenetic trees were constructed to compare the individual *Brassica*
157 species with *A. thaliana* RRAs, as well as to compare all the *Brassica* RRAs among themselves.
158 Gene structure analysis of *A. thaliana* and *Brassica* RRAs including their schematic
159 representations was made using Gene Structure Display Server (<http://gsds.gao-lab.org/>) (Hu
160 *et al.*, 2015).

161 Dual synteny plots were created using the TBTools dual synteny plot function (Chen *et al.*,
162 2020) to compare the *Brassica* species with *A. thaliana*, and *B. napus* with its parental species,
163 *B. rapa* and *B. oleracea*. Before plotting the dual synteny, a one-step MCScanX analysis was

164 performed in TBTools. The genome sequence files and gene structure annotation files for
165 *Brassica* species and *A. thaliana* were retrieved from EnsemblPlants (Release 54) (Cunningham
166 *et al.*, 2021).

167 **Plant materials, hormones, and abiotic stress treatment**

168 Seeds of *A. thaliana* (Col-0), *B. rapa* (R-0-18), *B. oleracea* (DH1012), and *B. napus* (Darmor)
169 were cultivated on 1/2 MS media for one week inside the growth chamber under controlled
170 conditions. Before cultivation, the seeds underwent a cold pre-treatment in darkness at 4°C
171 for 3 days. The growth chamber was maintained at a temperature of 21°C /18°C for a 16-hour
172 day/8-hour night photoperiod, with 130 µE light intensity.

173 To investigate the expression profile of the 10 *A. thaliana* *RRAs* and 66 *Brassica* *RRAs* after
174 cytokinin treatment, one-week-old seedlings were exposed to exogenous treatment with 5
175 µM BAP for 0 hour, 0.5 hour, 1 hour, 2 hours, and 4 hours as described (D'Agostino *et al.*,
176 2000).

177 For the abiotic stress treatment, cold-treated seedlings were incubated at 4°C in the presence
178 of white light. Seedlings subjected to salinity stress were treated with 250 mM NaCl, while
179 osmotic stress was induced using a 300 mM mannitol solution. All stress treatments were
180 applied for 0 hour, 2 hours, and 4 hours.

181 Additionally, a separate cold treatment experiment was conducted following the
182 methodology described above to assess the expression of cold-responsive *ARR7*, and its
183 *Brassica* homologs. The focus of this experiment was to evaluate the effects of PI-55, a known
184 antagonist of the cytokinin receptor activity (Spichal *et al.*, 2009). One-week-old seedlings
185 were treated with either PI-55 (0.1 µM/1 µM) or DMSO and incubated either under cold (4°C)
186 or control conditions (21°C) for 4 hours.

187 **RNA Isolation and RT-qPCR Analysis**

188 Total RNA was extracted from the collected seedlings following the Quick-Start Protocol
189 included in the RNeasy® Plant Mini Kit (QIAGEN, Germany). Additionally, DNase treatment
190 was performed using an RNase-Free DNase set (QIAGEN) to remove any DNA contamination.
191 The concentration, integrity, and purity of the extracted RNA samples were examined using
192 NanoDrop One UV spectrophotometer (Thermo Fisher Scientific). Reverse transcription was
193 performed to generate first-strand cDNA using the SuperScript™ III First-Strand Synthesis
194 System (ThermoFisher Scientific) with 1 µg of RNA using oligo-dT primer. For the expression
195 profiling of *RRAs* after cytokinin treatment and abiotic stress exposure, 66 out of the 78
196 *Brassica* *RRAs* along with the 10 *A. thaliana* *RRAs* were analyzed. For the expression profiling
197 of cold-responsive *ARRs* after PI-55 treatment, *ARR7* and its *Brassica* homologs (i.e., *BrARRA7b*,
198 *BoARRA7a*, *BoARRA7b*, *BnARRA7a*, *BnARRA7b*, *BnCRRA7a*, and *BnCRRA7b*) were analyzed.
199 Several reference genes were utilized as an internal control, including the commonly used
200 housekeeping genes (Guénin *et al.*, 2009) such as *UBQ10* and *UBC10* (added for abiotic stress)
201 for *Arabidopsis*, *BrELF1* for *B. rapa*, *BoTUB6* for *B. oleracea*, *BnACT2A* and *BnACT2C* for *B.*
202 *napus* (primers listed in Supplementary Table S3). All primers used were designed based on
203 the following features: product size (70–200bp), primer length (18–22bp), Tm (59–65°C), GC
204 content (50–60%), target gene specificity, and absence of nucleotide repeats. The reactions

205 for RT-qPCR were performed using FastStart SYBR® Green Master (Roche Diagnostics GmbH)
206 on the Rotor-Gene Q 5plex HRM Platform (QIAGEN, Germany). Melting curve analysis was
207 performed to confirm the specificity of the product for each primer pair. The relative gene
208 expression level was calculated relative to the control using the delta-delta Ct method (Pfaffl,
209 2004). The RT-qPCR analysis was performed in three independent biological replicates, each
210 with three technical replicates. Subsequently, a heatmap representation of the expression of
211 type ARRAs after exogenous cytokinin treatment and abiotic stress treatment was generated
212 and presented as the log₂ fold-change (log₂FC). The heatmap was constructed using Cluster
213 3.0 for Windows (de Hoon *et al.*, 2004) and viewed using Java TreeView (Saldanha, 2004).

214 **Analysis of *cis*-regulatory elements in the promoter regions of type A RR genes across**
215 ***Brassica* species**

216 Multiple sequence alignment of the homologous RRB amino acid sequences from *Brassica*
217 species and *A. thaliana* was performed using Clustal Omega (Madeira *et al.*, 2022) to assess
218 the conservation of their GARP-like DNA binding domains. The alignment was visualized using
219 the MView online tool (Madeira *et al.*, 2022). Reference genomes and genome annotations
220 for *A. thaliana*, *B. rapa*, *B. oleracea*, and *B. napus* were downloaded from EnsemblPlants (Yates
221 *et al.*, 2022). The upstream regulatory sequences of protein-coding genes were extracted from
222 the reference genomes using GFF3 annotations with the Bedtools getfasta tool (Quinlan and
223 Hall, 2010). The publicly available ChIP-seq data for *A. thaliana* transcription factors (TFs) ARR1
224 and ARR10 (Xie *et al.*, 2018) was used for a *de novo* motif search with Homer (Heinz *et al.*,
225 2010). To identify potential RRB binding sites in gene regulatory regions, the Position Weight
226 Matrices (PWMs) were used. The thresholds for PWMs were calculated using the previously
227 described algorithm (Touzet and Varré, 2007). Then the PWMs were applied to three 500-bp-
228 long intervals of protein-coding genes: [-1500; -1000], [-1000; -500], [-500; +1] relative TSS. To
229 compare the density of potential RRB binding sites in the regulatory regions of *Brassica* RRA
230 coding genes (used in the cytokinin and abiotic stress treatment) to random expectation
231 (which is the density of the binding sites in the regulatory regions of all protein-coding genes),
232 Fisher's exact test was used. To account for multiple testing, we used Bonferroni correction:
233 *p*-value threshold was set as 0.05/24. The fold enrichment was calculated as the ratio of RRB
234 binding site density in RRA regulatory regions to the average density in the corresponding
235 regions of all protein-coding genes.

236 The promoter sequences of *A. thaliana* and *Brassica* RRAs (used in the cytokinin and abiotic
237 stress treatment) were also subjected to *insilico* analysis using the online database, PlantCARE
238 (<http://bioinformatics.psb.ugent.be/webtools/plantcare/html/>) (Lescot *et al.*, 2002). The
239 objective was to investigate the presence of environmental stress-responsive *cis*-elements in
240 these sequences. Additionally, a Pearson correlation analysis was conducted to determine the
241 relationship between the gene expression of cold-responsive *A. thaliana* RRAs (ARR6, ARR7,
242 and ARR15) and *Brassica* RRAs (BrARRA6, BrARRA7a, BrARRA7b, BrARRA15a, BrARRA15b, BoARRA6,
243 BoARRA7a, BoARRA7b, BoARRA15a, BoARRA15b, BnARRA6, BnARRA7a, BnARRA7b, BnARRA15a,
244 BnCARRA6, BnCARRA7a, BnCARRA7b, BnCARRA15a, BnCARRA15b) after 2 hours and 4 hours of cold
245 exposure, and the total number of environmental stress-related *cis*-elements within the
246 promoter regions of these genes. In the case of *A. thaliana*, additional comparisons were
247 made using the DAPseq data to select transcription factors (TFs) with potential binding sites
248 in the *A. thaliana* promoters. Moreover, to assess the enrichment of the TF binding sites,
249 particularly the position weight matrix (PWM) models in *A. thaliana*, a comparison was made

250 between stress-sensitive promoters and stress-insensitive promoters for both *A. thaliana* and
251 *Brassica* species.

252 **Transformation of *Brassica* species with *TCSv2:3XVENUS* and CK treatment**

253 The *TCSv2:3XVENUS* construct, obtained from Maya Barr (Steiner *et al.*, 2020), was subcloned
254 into the pGREEN0029 binary vector (Hellens *et al.*, 2000) and introduced into *B. rapa* (R-0-18),
255 *B. oleracea* (DH1012), and *B. napus* (Darmor), following the protocol described by Jedlickova
256 *et al.* (2022). Only root tips of *B. rapa* and *B. napus* transformed hairy roots were used in the
257 experiment, as the transformation for *B. oleracea* was unsuccessful. Root tips of *B. rapa* and
258 *B. napus* hairy roots were gathered 2 weeks after subculturing and treated with either 5 µM
259 synthetic 6-benzylaminopurine (BAP) or 0.1 % DMSO for 0 hour, 0.5 hour, 1 hour, 2 hours, and
260 4 hours, as described (D'Agostino *et al.* (2000)).

261 **Root imaging, and quantification of reporter gene expression**

262 Root tips were imaged using the laser scanning confocal imaging microscope Zeiss LSM780
263 Axio-Observer, equipped with an external In Tune laser (488-649 nm, <3 nm width, pulsed at
264 40 MHz, 1.5 mW C-Apochromat) and a 20x objective. The expression of VENUS in the root
265 apical meristem (RAM) was quantified using IMAGEJ software (Schneider *et al.*, 2012) and the
266 spot detection algorithm in IMARIS 9.0 (Bitplane, <http://www.bitplane.com/imiris/imiris>).
267 Representative images generated using IMARIS are presented. To ensure accurate analysis,
268 the fluorescence intensity of each DMSO or BAP-treated root was initially normalized to the
269 area of the scanned roots (in pixels) and further normalized to the fluorescence intensity of
270 the roots at the start of the treatment (0 h). Subsequently, the relative fluorescence intensity
271 was calculated as the ratio of normalized fluorescence intensity in BAP-treated roots to the
272 normalized fluorescence intensity of DMSO-treated roots.

273 **Statistical analysis**

274 A one-way ANOVA followed by Dunnett's test was conducted to evaluate differences in the
275 calculated relative fluorescence intensity in the scanned roots at the start and after 0.5 hour,
276 1 hour, 2 hours, and 4 hours of exogenous BAP treatment. Furthermore, a two-way ANOVA
277 followed by Tukey's HSD multiple comparison test was employed to compare the relative
278 expression of cold-responsive *ARR7*, *BrARRA7a*, *BrARRA7b*, *BoARRA7a*, *BoARRA7b*, *BnARRA7a*,
279 *BnARRA7b*, *BnCRRA7a*, and *BnCRRA7b* after PI-55 treatment. All statistical analysis was
280 conducted using the GraphPad Prism version 9.0 for Windows (GraphPad Software, San Diego,
281 California USA, www.graphpad.com).

282 **Results**

283 **The type-A response regulators and their genomic distribution in the Brassicaceae family**

284 Using a similarity search (see Materials and Methods for more details), we identified 78
285 putative RRAs in *B. oleracea*, *B. rapa*, and *B. napus* that share a high degree of sequence
286 identity with *A. thaliana* RRAs (Fig. 1 and Supplementary Table S2). Among these, 20 were
287 previously reported by Kaltenegger *et al.* (2018) and Liu *et al.* (2014) in the genome of *B. rapa*
288 and following previously agreed nomenclature (Heyl *et al.*, 2013), we designated them as
289 *BrRRAs* (Fig. 1B). In the genome of *B. oleracea*, we found 20 putative RRAs (designated as

290 *BoRRAs*), including 5 novel putative *RRAs* that were not included in Kaltenegger *et al.* (2018)
291 (Fig. 1C). Lastly, we recognized 38 novel putative *RRAs* in *B. napus*, 20 of which located in the
292 A subgenome (*BnARRAs*) and 18 in the C subgenome (*BnCRRAs*) (Fig. 1D). The putative
293 paralogues were indexed with “a”, “b” or “c” in an order following the decreasing percentage
294 of amino acid identities they share with the corresponding *RRAs* from *A. thaliana*.

295 *BrRRAs* were mapped to chromosomes ChrA01, ChrA03, ChrA04, ChrA05, ChrA06, ChrA07,
296 ChrA08, and ChrA09, while *BoRRAs* located on ChrC1, ChrC3, ChrC4, ChrC5, ChrC6, ChrC8, and
297 ChrC9 (Fig. 1B, C). As expected, *BnARRAs* and *BnCRRAs* were found to localize to
298 corresponding homologous chromosomes in A and C subgenomes, respectively (ChrA03,
299 ChrA04, ChrA05, ChrA06, ChrA07, ChrA08, ChrA09 for *BnARRAs* and ChrC01, ChrC03, ChrC04,
300 ChrC05, ChrC06, ChrC08, ChrC09 for *BnCRRAs*; Fig. 1D).

301 ***Brassica* and *A. thaliana* *RRAs* show a high level of conservation**

302 A motif search in the putative protein sequences of all the 78 *Brassica* *RRAs* confirmed the
303 presence of the conserved Rec domain harboring the highly conserved D-D-K motif, including
304 the (underlined) phosphoaccepting Asp, which is essential for the role of *RRAs* in mediating
305 the negative feedback regulation of cytokinin signaling (Lee *et al.*, 2008) (Fig. 2A, B). Moreover,
306 all the predicted *Brassica* *RRAs* had protein sizes comparable with their putative *A. thaliana*
307 orthologues (identified based on their phylogenetic analysis, see later in the text and Fig. 3),
308 ranging from 127 to 265 amino acid residues, with ARR4 and ARR17 and their homologs being
309 the longest and shortest, respectively (Fig. 2 and Supplementary Table S2). The evolutionary
310 relationship among the *RRAs* (78 *Brassica* and 10 *A. thaliana* *RRAs*) was assayed by aligning
311 the amino acid sequences of the conserved Rec domains (Fig. 3A, Supplementary Fig. S1 - S3).
312 As expected, we observed a high level of conservation between the *RRAs* from *Brassica* and
313 *A. thaliana*. The tree consists of five main clades, each composed of two subclades, reflecting
314 the presence of five couples of very similar/paralogous *RRAs* (ARR7/ARR15, ARR5/ARR6,
315 ARR3/ARR4, ARR16/ARR17 and ARR8/ARR9). This information was used to designate the
316 individual *Brassica* *RRAs* according to their clustering into individual paralogous subclades (Fig.
317 3A).

318 The analysis of gene structure revealed that, except for 8 *RRAs* containing only 4 exons
319 (*BrRRA4b*, *BoRRA4a*, *BnARRA4b*, *BnCRRRA4b*, *BoRRA8c*, *BrRRA8c*, *BnCRRRA8c*, and *BnARRA8c*),
320 all other *RRAs* shared a gene model consisting of 5 exons and 4 introns (Fig. 3B). Among these,
321 ARR6 and its *Brassica* homologs exhibited nearly identical gene structures, including the
322 number and length of exons and introns. Furthermore, genome-to-genome synteny analysis
323 between the individual *Brassica* species and *A. thaliana* revealed that 20 out of 20 (20/20)
324 *BrRRAs*, 11 out of 20 *BoRRAs*, and 32 out of 38 *BnRRAs* genes were syntenic with their *A.*
325 *thaliana* counterparts (Fig. 4A). In case of *B. napus*, 36 out of 38 *BnRRAs* were syntenic with
326 those of *B. rapa* and *B. oleracea* (Fig. 4B).

327 Taken together, a high level of amino acid sequence conservation was observed within the
328 *Brassica* species, confirming the previously described evolutionary relationships (Hendriks *et*
329 *al.*, 2022; Cheng *et al.*, 2012; Cheng *et al.*, 2014; Morinaga, 1929; Nagaharu and Nagaharu,
330 1935; Nikolov *et al.*, 2019).

331 **Cytokinin treatment revealed the shared and distinct patterns of the *RRA* expression profiles**
332 **between *A. thaliana* and *Brassica***

333 The *A. thaliana* *RRAs* are considered primary cytokinin response genes, as their transcription
334 is promptly induced by exogenous cytokinins even in the absence of *de novo* protein synthesis
335 (D'Agostino *et al.*, 2000; Taniguchi *et al.*, 1998). To compare the effects of cytokinin on the
336 expression of *A. thaliana* and *Brassica* *RRAs*, one-week-old *A. thaliana* and *Brassica* seedlings
337 were exposed to exogenous cytokinins for various time points ranging from 30 min to 4 hours
338 (Fig. 5 and Supplementary Table S4).

339 Based on the timecourse of the observed transcriptional response, the expression profiles of
340 individual *A. thaliana* *RRAs* were classified into three categories: *(i)* *fast*, exhibiting prompt
341 upregulation after 30 min of cytokinin treatment followed by a gradual decline of expression
342 throughout the rest of the treatment period, *(ii)* *fast-transient*, similar to *(i)*, but revealing fast
343 decline after the initial peak and *(iii)* *no response* (Fig. 5A, E and Supplementary Table S4). In
344 *A. thaliana*, we observed the same number (four) of *RRAs* with cytokinin response profiles
345 classified as *fast* and *fast-transient* and two *RRAs* belonging to the *no response* category (Fig.
346 5A). In contrast, in *B. rapa* and *B. oleracea*, the proportion of *RRAs* with the *fast* profile
347 increased at the expense of the *fast-transient* and two additional categories emerged: *(iv)*
348 *later*, characterized by delayed upregulation occurring after 1 hour of cytokinin treatment and
349 persisting until 4 hours, and *(v)* *later-transient*, similar to the *later* category but with a decline
350 in expression at 4 hours (Fig. 5B, C, E). The decrease in the number of *RRAs* of the *fast-transient*
351 category was more pronounced in *B. oleracea* compared to *B. rapa*. This trend was even more
352 evident when comparing the A and C subgenome-specific *RRAs* in *B. napus*, where at least two
353 *RRAs* of the *fast-transient* profile were still retained among the *BnARRAs* (encoded by the A
354 subgenome of *B. rapa* origin), but no *fast-transient* *RRA* profile was found among *BnCRRAs*
355 (located in the C subgenome originating from *B. oleracea*; compare Fig. 5B, C, D). In the case
356 of *BrRRA17a*, we observed quite strong downregulation early after cytokinin application;
357 however, for the sake of simplicity, *BrRRA17a* was categorized as belonging to category *(iii)*
358 *no response* (Fig. 5B).

359 Analyzing the cytokinin response of individual *RRA* across the *Brassica* species and *A. thaliana*,
360 similar expression profiles were observed for *ARR5*, *ARR7*, and *ARR15*, and most of their
361 homologs in *B. rapa*, *B. oleracea*, and *B. napus*. However, a higher level of expression change
362 ($\log_2\text{FC}$) of these *RRAs* was observed in the *Brassica* species compared to *A. thaliana* and this
363 trend was apparent, particularly for *B. napus* homologs of *ARR7* (Fig. 5 and Supplementary
364 Table S4). That aligns with RNA-sequencing profiling results of *B. napus* cultivars using the
365 Renewable Industrial Products from Rapeseed (RIPR) diversity panel (Havlickova *et al.*, 2018),
366 which identified *ARR7* orthologues as one of the most abundant *RRAs* among the *B. napus*
367 cultivars (Supplementary Fig. S4).

368 To wrap it up, all assayed *RRAs* across the *Brassicaceae* family were upregulated by cytokinins,
369 demonstrating partially overlapping, but also species-specific temporal expression patterns.

370 **RRBs mediate the cytokinin-induced upregulation of *Brassica* *RRAs***

371 In *Arabidopsis*, cytokinin-dependent transcriptional activation of *RRAs* is mediated by RRBs,
372 the cytokinin-regulated transcription factors that bind specific *cis*-regulatory motif enriched in

373 the promoters of cytokinin-responsive genes (Muller and Sheen, 2008). To assess the possible
374 conservation of DNA targets recognized by RRBs in *A. thaliana* and *Brassica* species, we
375 performed a multiple protein sequence alignment of DNA-binding GARP-like domain of *A.*
376 *thaliana* RRBs ARR1, ARR2, ARR10, ARR11, ARR12, ARR13, ARR18, ARR19, ARR20, and ARR21
377 (Hosoda *et al.*, 2002; Lohrmann *et al.*, 2001; Mason *et al.*, 2005; Sakai *et al.*, 2000) and their
378 putative orthologues previously identified in the *Brassica* sp. (Jiang *et al.*, 2022; Kaltenegger
379 *et al.*, 2018; Liu *et al.*, 2014). A high level of conservation was observed with the identity in
380 amino acid sequence ranging from 100% for ARR1, 95.2% for ARR2, and 80.9% for ARR10 to
381 58.7% in the case of ARR21 (Fig. 6 and Supplementary Fig. S5). Given this high conservation of
382 GARP-like DNA binding domain across the *A. thaliana* and *Brassica* RRBs, it is likely that the
383 *Brassica* RRBs recognize DNA binding motifs similar to those previously described in *A.*
384 *thaliana* (Hosoda *et al.*, 2002; Imamura *et al.*, 2003; Sakai *et al.*, 2000; Xie *et al.*, 2018; Zubo *et*
385 *al.*, 2017).

386 To further corroborate this assumption, we utilized the position weight matrices (PWMs) for
387 the *A. thaliana* ARR1 and ARR10 DNA binding sites, retrieved from the ChIP-seq peak sets (Xie
388 *et al.*, 2018; Zubo *et al.*, 2017) to predict putative RRB binding sites within the *Brassica* RRAs
389 (Fig. 7A). Using this approach, the presence of *Arabidopsis*-like cytokinin-responsive *cis*-
390 elements was predicted in the [-1500; +1] regulatory regions of 62 out of the 66 analyzed
391 *Brassica* RRA genes used in the CK treatment. Similar to *A. thaliana*, these potential *cis*-
392 elements were significantly enriched within the proximal 5'-regulatory regions of *Brassica* RRA
393 genes (within 500 bp upstream of TSS; Fig. 7B). We also observed a moderate correlation
394 between the number of motifs within the [-500;+1] regulatory regions and the magnitude of
395 the transcriptional response to cytokinin, which was statistically significant in *B. napus* and *B.*
396 *rapa* (Fig. 7C and Supplementary Table S5). This finding further supports the notion of the
397 functional role of *Arabidopsis*-like *cis*-elements in regulating the transcriptional response to
398 cytokinins in the assayed *Brassica* species and suggests the possible role of motif clustering in
399 the response amplification.

400 To validate these findings, we utilized a hairy root transformation system (Jedlickova *et al.*,
401 2022) to introduce the cytokinin-responsive reporter (*TCSv2:3XVENUS*) developed in *A.*
402 *thaliana* by Steiner *et al.* (2020) into *Brassica* species. The *TCSv2* incorporates concatemerized
403 RRB-binding motifs with a distinct arrangement (Fig. 8A) that enhances sensitivity when
404 compared to the original version of the TCS reporter (Zurcher *et al.* (2013). Compared to a
405 mock-treated control, a significant increase in the relative fluorescence intensity was
406 observed after 30 min and 1 hour of the cytokinin treatment in the hairy roots of *B. napus* and
407 *B. rapa*, respectively, carrying the *TCSv2:3XVENUS* (Fig. 8B, C).

408 Taken together, our results strongly suggest that similarly to *Arabidopsis*, the *Brassica* RRBs
409 recognize conserved *cis*-regulatory regions to mediate the cytokinin-induced transcriptional
410 activation of *Brassica* RRAs and possibly other cytokinin-responsive genes within the *Brassica*
411 genomes.

412 **Cold stress stimulates RRA expression in the Brassicaceae family**

413 To assay the possible stress-related regulations of RRAs within the Brassicaceae family, the
414 expression profiles of the 66 selected *Brassica* RRAs and the 10 *A. thaliana* RRAs were
415 investigated after exposure to cold, salinity, and osmotic stress. In *A. thaliana*, cold stress

416 rapidly (within 2 h after the stress application) upregulated the expression of several *RRAs*,
417 particularly *ARR6*, *ARR7*, and *ARR15*. However, the cold-induced upregulation was transient,
418 and the expression of upregulated *RRAs* returned to basal levels after 4 hours of cold
419 exposure. In contrast, we observed gradual repression of *ARR3*, *ARR8*, *ARR9*, *ARR16*, and
420 *ARR17* at 2 h and 4 h of the cold stress application (Fig. 9A and Supplementary Table S6). In *B.*
421 *rapa*, a greater number of *RRAs* were upregulated in the response to cold, although the
422 induction was delayed when compared to *A. thaliana*. Most *BrRRAs*, except for the non-
423 responsive *BrRRA8a*, *BrRRA9a*, *BrRRA9b*, and *BrRRA9c*, exhibited upregulation after 4 h of cold
424 exposure. *BrRRA15a* and *BrRRA15b* showed an earlier response, being upregulated after 2 h
425 of chilling and remaining activated for the 4 hours of the treatment (Fig. 9B and
426 Supplementary Table S6). Also in *B. oleracea*, most of the *BoRRAs* were upregulated by cold
427 stress. Similarly to *A. thaliana*, the response was evident early (2 h) of cold exposure, but
428 compared to the transient upregulation seen in the cold-responsive *A. thaliana* *RRAs*, the
429 upregulation of *BoRRAs* lasted the entire 4 hours of the treatment. This pattern was observed
430 for *BoRRA6*, *BoRRA7a*, *BoRRA7b*, *BoRRA15a*, and *BoRRA15b* (Fig. 9C and Supplementary Table
431 S6). Also in *B. napus*, we observed prompt upregulation of *RRAs* lasting for the entire 4 hours
432 of the cold treatment. This type of response was apparent for homologs of *ARR6* (*BnARRA6*,
433 *BnCRRRA6*), *ARR7* (*BnARRA7a*, *BnARRA7b*, *BnCRRRA7a*, and *BnCRRRA7b*), and *ARR15*
434 (*BnARRA15a*, *BnCRRRA15b*). Several other *BnRRAs*, including homologs of *ARR3*, *ARR4*, *ARR5*,
435 *ARR8*, and *ARR17*, were also upregulated by cold, but with variable kinetics (Fig. 9D and
436 Supplementary Table S6).

437 To wrap it up, several *RRAs* are upregulated in the response to cold stress in the Brassicaceae
438 family, albeit with slightly different kinetics. Among these, the *ARR6*, *ARR7*, *ARR15*, and their
439 *Brassica* homologs appear to represent the core of the common cold-responsive
440 transcriptional signature.

441 **Salinity and osmotic stress lead to contrasting expression of *A. thaliana* and *Brassica* *RRAs***

442 Compared to cytokinin and cold treatment, the majority of *A. thaliana* *RRAs* exhibited
443 downregulation after exposure to salinity and osmotic stress, except for *ARR16*, which showed
444 upregulation after 2 h of salinity stress (Fig. 9A and Supplementary Table S6). In contrast,
445 several *BrRRAs* were upregulated after 2 h of salinity exposure, particularly the homologs of
446 *ARR6* (*BrRRA6*), *ARR7* (*BrRRA7a*, *7b*), and *ARR15* (*BrRRA15a* and *BrRRA15b*). However, only
447 *BrRRA7b* displayed upregulation when exposed to osmotic stress (Fig. 9B and Supplementary
448 Table S6). In *B. oleracea*, homologs of *ARR7* (*BoRRA7b* and *BoRRA7c*) along with *BoRRA8b* and
449 *BoRRA8c* were upregulated after 2 h of salinity treatment, and this effect persisted up to 4 h
450 except for *BoRRA8b*. In response to osmotic stress, only homologs of *ARR7* (*BoRRA7a* and
451 *BoRRA7b*) were upregulated after 4 h of treatment (Fig. 9C and Supplementary Table S6). In
452 contrast to their diploid ancestors, there were more *RRAs* in *B. napus* that were induced by
453 salinity and/or osmotic stress either after 2 or 4 hours of stress exposure. These included
454 *BnARRA3*, *BnARRA7a*, *BnARRA7b*, *BnARRA8a*, *BnARRA8b*, *BnARRA8c*, and *BnARRA9b* in the A
455 genome and all *RRAs* from the C-genome except *BnARRA9a* and *BnARRA9b*.

456 Overall, *RRAs* in Brassicaceae are regulated by salt and osmolarity stresses, displaying various
457 types (up- vs. down-regulation) and dynamics of the response. Compared to *A. thaliana* *RRAs*
458 being mostly down-regulated, all tested *Brassica* crops exhibited upregulation of *RRAs* not
459 only in the presence of cytokinins but also abiotic stresses. Similar to the cold treatment,

460 homologs of *ARR7* and *ARR15* appear to be a sensitive readout of the response to salinity and
461 high osmolarity in both diploid *Brassicaceae*, *B. rapa*, and *B. oleracea*. However, particularly in *B.*
462 *napus*, the response to these stress types seems to be more general, involving a larger number
463 of *RRAs*.

464 **Cytokinins contribute to the cold stress-induced upregulation of *RRAs* in *Brassicaceae***

465 Our gene expression data show the regulation of *RRAs* by abiotic stresses. Utilizing the online
466 database and PlantCARE portal (Lescot *et al.*, 2002), several environmental stress-related *cis*-
467 elements were identified in all the promoter sequences of *A. thaliana* *RRAs*, 16 *BrRRAs* and
468 *BnARRAs*, and 17 *BoRRAs* and *BnCRRA*s (Fig. 10A and Supplementary Table S7). However, the
469 correlation tests between the number of identified stress-related *cis*-elements and the
470 expression of cold-responsive *ARR6*, *ARR7*, *ARR15*, and their *Brassica* homologs after cold
471 exposure did not yield any statistically significant results (Fig. 10B and Supplementary Fig. S6).
472 In an alternative approach, we searched the DAP-seq data (Bartlett *et al.*, 2017) to find TFs
473 with potential binding sites in *A. thaliana* *RRAs* promoters. We found 6 such TFs (*AT2G28810*,
474 *AT3G52440*, *AT5G56840*, *ATHB25*, *ATHB23*, *ATHB34*); however, the significance of enrichment
475 of their binding sites in the stress-responsive *A. thaliana* and *Brassica* *RRAs* was low
476 (Supplementary Tables S8-S9). Altogether, our data do not provide any solid evidence
477 supporting the role of the identified stress-related *cis*-regulatory elements in the control of
478 *RRAs* in the *Brassicaceae* family.

479 To assess the possible involvement of cytokinins in cold stress-mediated upregulation of *RRAs*,
480 we tested the cold response of *ARR7* and its *Brassica* homologs in the presence of
481 anticytokinin PI-55. PI-55 was demonstrated to inhibit the activation of the MSP signaling
482 cascade by competing with cytokinin binding to the CHASE domain of AHKs (Spichal *et al.*,
483 2009). Under control conditions, the treatment with PI-55 led to the induction of all tested
484 *RRAs*, probably due to its previously reported weak cytokinin activity (Spichal *et al.*, 2009).
485 However, when applied under low-temperature conditions, PI-55 was able to significantly
486 reduce the cold-induced upregulation of *ARR7* and its *Brassica* homologs. This effect was
487 particularly strong in *B. napus*, where the presence of 1 μ M PI-55 completely abolished the
488 upregulation of cold-induced *B. napus* *ARR7* homologs and led to the drop of gene expression
489 even under the control levels (Fig. 10C).

490 In conclusion, our findings suggest the existence of a cytokinin-dependent mechanism that
491 contributes to the activation of several *RRAs* in the response to cold stress.

492 **Discussion**

493 ***Brassica* and *A. thaliana* *RRAs* reveals close evolutionary relationship**

494 Three rounds of whole genome duplications (WGDs) took place in *Brassicaceae* after its
495 lineage diverged from monocots but prior to the further divergence within the family (Moghe
496 *et al.*, 2014). Kaltenegger *et al.* (2018) proposed the presence of two *RRAs* copies (possibly
497 resulting from the ancient ζ or ϵ WGD event) in the last common ancestor before the
498 divergence of monocots and dicots. Four of the five paralogous *RRAs* pairs (*ARR6/ARR5*,
499 *ARR15/ARR7*, *ARR8/ARR9*, and *ARR17/ARR16*) (Kaltenegger *et al.*, 2018) probably originated
500 through the later α WGD event dated to approx. 47 million years ago (Mya). More recently

501 (approx. 25 Mya), an α' whole-genome triplication (WGT) event took place in the ancestor of
502 *Brassica* species after the divergence from the *Arabidopsis* lineage (Lysak *et al.*, 2005; Town
503 *et al.*, 2006; Wang *et al.*, 2011; Yang *et al.*, 2006), leading to the formation of 20 *RRAs* in both
504 *B. oleracea* and *B. rapa*.

505 An allotetraploid *B. napus* is a result of interspecific hybridization between *B. rapa* and *B.*
506 *oleracea* (Nagaharu and Nagaharu, 1935; Zhang *et al.*, 2016). In accordance with that, the 20
507 *BnARRAs* identified in the A subgenome and 18 *BnCRRAs* found in the C subgenome, exhibit
508 notable similarity and are mostly syntenic with their counterparts in the *B. rapa* and *B.*
509 *oleracea* genomes, respectively. Considering the close evolutionary relationships, we used the
510 well-established *A. thaliana* *RRAs* (*ARRs*) as a reference and numbered the newly identified *B.*
511 *napus* *RRAs* according to their (putative) *A. thaliana* orthologues. For the sake of consistency,
512 we extended this type of numbering to the newly identified *BoRRAs* as well as to the previously
513 described *BrRRAs* and *BoRRAs* (Kaltenegger *et al.*, 2018). We believe this nomenclature type
514 facilitates comparative analyses within the large gene families of closely related species
515 including the description of gene structure or expression profiles, as we demonstrated in our
516 work. Obviously, different reference species must be used for the monocotyledonous plants
517 that evolved the individual components of (not only) MSP signaling separately (Kaltenegger *et*
518 *al.*, 2018).

519 **Homologs of *ARR3*, *ARR6*, and *ARR16* are under evolutionary pressure against multiplication
520 during Brassicaceae evolution**

521 Gene or genome multiplication is an indispensable feature of plant evolution, and gene loss is
522 a frequent fate of newly multiplied genes (Lynch and Conery, 2000). More specifically, the
523 majority of orthologous groups (approx. 70%) in the common progenitor of recent
524 Brassicaceae species *Raphanus raphanistrum* and *Brassica rapa* experienced losses after the
525 WGT (Moghe *et al.*, 2014). Interestingly, genes encoding individual MSP components (i.e.,
526 sensor HKs, HPts, and RRs) differ in the extent of gene loss and preservation during evolution.
527 While in the case of HKs, gene loss is a dominant feature, response regulators particularly
528 *RRAs* are mostly preserved after WGDs (Kaltenegger *et al.*, 2018).

529 In this context, we have rather surprisingly identified three *RRAs*, homologs of *ARR3*, *ARR6*,
530 and *ARR16*, as singletons in both *B. rapa* and *B. oleracea* (Fig. 3), suggesting evolutionary
531 pressure against the multiplication of those genes. The presence of two copies of the *ARR3*,
532 *ARR6*, and *ARR16* homologs in *B. napus* (a single copy in each subgenome) might be explained
533 by the recency of the interploidy event. The ability of the gene duplication to be retained
534 seems to be associated with sequence and expression divergence, leading to functional
535 diversification (Moghe *et al.*, 2014). In our cytokinin and abiotic stress response assays, we did
536 not observe any strong expression specificity of *ARR3*, *ARR6*, or *ARR16* and their *Brassica*
537 orthologues, potentially explaining the singleton status of those genes. In *A. thaliana*, some of
538 the *RRAs* were shown to play specific roles in controlling plant growth and development that
539 cannot be solely explained by their functions as redundant cytokinin primary response genes
540 and negative regulators of MSP signaling. To name a few, the ethylene-inducible *ARR3*
541 regulates RAM size (Zdarska *et al.*, 2019) and is involved in the cytokinin-independent control
542 over circadian rhythms (Salome *et al.*, 2006). *ARR6* mediates a negative interaction between
543 abscisic acid and MSP signaling (Huang *et al.*, 2017; Wang *et al.*, 2011), plays a role in the CLE
544 peptide-mediated inhibition of protoxylem formation (Kondo *et al.*, 2011), and regulates

545 pathogen immune response by controlling cell wall composition (Bacete *et al.*, 2020). Finally,
546 spatial-specific expression of *ARR16* (and *ARR17*) regulates the hydrotropic bending of the
547 root (Chang *et al.*, 2019), and controls stomata formation (Vaten *et al.*, 2018) and leaf growth
548 (Efroni *et al.*, 2013). Thus, *ARR3*, *ARR6*, and *ARR16* seem to mediate several key regulatory
549 roles, which might be sensitive to gene dosage. To what extent the *Brassica* homologs of those
550 genes play similar regulatory roles and whether this explains the observed strong negative
551 selection, however, remains to be clarified.

552 **Cytokinins contribute to abiotic stress-mediated induction of a subset of *RRAs***

553 The *A. thaliana* *RRAs* were originally described as cytokinin primary response genes, being
554 rapidly (in order of minutes) induced by exogenous cytokinin treatment (D'Agostino *et al.*,
555 2000). Here, we categorized the *RRAs* based on the kinetics of their cytokinin response into
556 five categories: (i) *fast*, (ii) *fast-transient*, (iii) *no response*, (iv) *later*, and (v) *later transient*. The
557 corresponding response type may reflect certain specificity within MSP signaling (Pekarova *et*
558 *al.*, 2016) with a possible impact on the downstream molecular network underlying the
559 cytokinin cellular responses (Skalak *et al.*, 2019). The proportion of individual *RRAs* categories
560 varied among tested species with categories (iv) *later* and (v) *later transient* being specific for
561 *Brassica* sp.. However, a subset of *RRAs*, including homologs of *ARR5*, *ARR7*, and *ARR15* [all
562 belonging to the class (i) *fast*] exhibited comparable cytokinin responses in all the tested
563 species. This observation, together with a high level of conservation of the DNA-binding GARP
564 domain of *RRBs* and the cytokinin responsiveness of *TCSv2* reporter in *B. rapa* and *B. napus*,
565 implies that *RRAs* may share common features and functions within the Brassicaceae family.
566 Interestingly, we observed that a subset of cytokinin-responsive *RRAs* of the category (i) *fast*
567 constitutes a core of the abiotic stress-responsive *RRAs*. While homologs of *ARR6*, *ARR7*, and
568 *ARR15* were cold-responsive, *RRAs* similar to *ARR7* and *ARR15* (together with other *RRAs*,
569 particularly in *B. napus*) seem to be involved also in the response to salinity and high
570 osmolarity in all the tested *Brassicaceae*, suggesting the existence of common regulatory
571 mechanism. Our finding on the contribution of cytokinin signaling to the cold-mediated
572 regulation of *ARR7* and its *Brassica* homologs is in line with this hypothesis. The (a)biotic stress
573 has been shown to control endogenous hormone levels, including cytokinins, both at the level
574 of biosynthesis and metabolism (Skalak *et al.*, 2021) and references therein). This implies that
575 stress-induced upregulation of endogenous cytokinin levels might be a part of cold (and
576 probably other abiotic stress) response in *Brassicaceae*, thus further substantiating the
577 proposed role of plant hormones as a regulatory interface between environmental conditions
578 and intrinsic regulatory pathways controlling individual processes of plant growth and
579 development (Cortleven *et al.*, 2019; Ramireddy *et al.*, 2014; Skalak *et al.*, 2021; Taleski *et al.*,
580 2023; Waadt *et al.*, 2022; Yamoune *et al.*, 2021).

581 **Conclusions and future outlines**

582 In summary, our work sheds light on the evolutionary relationships of MSP signaling within
583 the Brassicaceae family. We provide a complete list of the type-A response regulators and
584 their partial molecular characterization in the allotetraploid *B. napus* but also in its parental
585 species, *B. rapa*, and *B. oleracea*. That includes a novel classification reflecting the kinetics of
586 their cytokinin-dependent transcriptional regulation. The conserved occurrence of *ARR3*,
587 *ARR6*, and *ARR16* as singletons in *A. thaliana*, *B. rapa*, and *B. oleracea* implies the existence of
588 gene-specific negative selection, possibly based on the functional importance and preventing

589 gene multiplication. Several of the *RRAs* exhibited conserved expression patterns in the
590 response to cytokinin and abiotic stresses, implying the presence of common regulatory
591 elements. Our data suggest that cold-mediated induction of *RRAs* demands canonical
592 cytokinin signaling in all tested *Brassica* species, thus emphasizing the importance of
593 cytokinin-regulated MSP in abiotic stress responses. These findings contribute to a nuanced
594 comprehension of the pivotal role of *RRAs* in plant stress responses and open novel avenues
595 for further investigation to uncover the intricate mechanisms guiding plant growth and
596 adaptation, with high potential in applied research.

597 **Supplementary data**

598 The following supplementary data are available at JXB online.

599 **Supplementary Table S1.** *RRAs* from *Arabidopsis thaliana*.

600 **Supplementary Table S2.** *RRAs* identified in *Brassica* species.

601 **Supplementary Table S3.** List of primers used in the study.

602 **Supplementary Table S4.** Expression profile (log₂ fold change) of *RRAs* in *A. thaliana*, *B. rapa*,
603 *B. oleracea*, and *B. napus* after cytokinin treatment.

604 **Supplementary Table S5.** *Arabidopsis*-like cytokinin-responsive *cis*-elements identified in the
605 promoter regions of *A. thaliana* *RRAs* and *Brassica* *RRAs*.

606 **Supplementary Table S6.** Expression profile (log₂ fold change) of *RRAs* in *A. thaliana*, *B. rapa*,
607 *B. oleracea*, and *B. napus* after exposure to abiotic stress.

608 **Supplementary Table S7.** *In silico* analysis of environmental stress-related *cis*-elements
609 identified using PlantCARE in the promoter regions of the *RRAs* in *A. thaliana*, *B. rapa*, *B.*
610 *oleracea*, and *B. napus*.

611 **Supplementary Table S8.** Enrichment of stress-responsive transcription factors in the
612 promoter sequence of *RRAs* in *Arabidopsis thaliana*.

613 **Supplementary Table S9.** Enrichment of stress-responsive transcription factors in the
614 promoter sequence of *RRAs* in *Brassica* species.

615 **Supplementary Figure S1.** Phylogenetic relationship of *RRAs* in *A. thaliana* and *B. rapa*.

616 **Supplementary Figure S2.** Phylogenetic relationship of *RRAs* in *A. thaliana* and *B. oleracea*.

617 **Supplementary Figure S3.** Phylogenetic relationship of *RRAs* in *A. thaliana* and those encoded
618 by the A and C subgenomes of *B. napus*.

619 **Supplementary Figure S4.** The mean expression levels of *RRAs* in *B. rapa* (*BrRRAs*) and *B.*
620 *oleracea* (*BoRRAs*) measured from the *Brassica napus* cultivars of the Renewable Industrial
621 Products from Rapeseed (RIPR) diversity panel (Havlickova et al., 2018). The dotted lines
622 indicate the average RPKM values.

623 **Supplementary Figure S5.** Multiple alignments of GARP-like DNA binding domain of the *A.*
624 *thaliana* RRBs (ARR11, ARR12, ARR13, ARR14, ARR18, ARR19, and ARR20) *A. thaliana* and their
625 closest homologs from *B. napus*, *B. oleracea*, and *B. rapa*.

626 **Supplementary Figure S6.** Pearson correlation (with 95% confidence intervals, shadowed
627 part) between the gene expression of cold-responsive *A. thaliana* and *Brassica* RRAs after 2
628 hours of cold treatment and the number of environmental stress-related *cis*-elements present
629 in their promoter regions.

630 **Acknowledgments**

631 We express our gratitude to the Crop Research Institute (Výzkumný ústav rostlinné výroby,
632 v.v.i.) Genebank, Prague, Czech Republic, for providing the *B. napus* (Darmor) seeds.
633 Additionally, we extend our acknowledgment to the core facility CELLIM, which is supported
634 by MEYS CR (LM2023050 Czech-Biolimaging), and the Plant Sciences Core Facility of CEITEC
635 Masaryk University for their invaluable technical assistance.

636 **Author Contributions**

637 JH conceived the research and secured funding, JS and JH coordinated the work. KLMN
638 performed all bioinformatic searches, ranging from BLAST to phylogenetic analysis, RT-qPCR,
639 imaging of the transformed *Brassica* species with CK sensor, statistical analysis, and figure
640 preparation, with assistance from JS. EZ and VD were responsible for promoter analysis,
641 multiple sequence alignment of type B RRs, and figure preparation for this segment. VJ and
642 HSR handled the transformation with a cytokinin sensor and selection of the *Brassica* species.
643 KLMN, JS, EZ, VD, VJ, HSR, LH, IB, and JH wrote and revised the manuscript; all authors read
644 and approved the final manuscript.

645 **Conflict of interest**

646 No conflict of interest declared.

647 **Funding**

648 This work was supported by the European Regional Development Fund project "SINGING
649 PLANT" (No. CZ.02.1.01/0.0/0.0/16_026/0008446). The work of EZ and VD was supported by
650 the Russian Science Foundation (20-14-00140) and the Russian State Budgetary Project
651 (FWNR-2022-0006).

652 **Data availability**

653 All data supporting the findings of this study are available within the paper and its
654 supplementary materials.

References

Antoniadi I, Novak O, Gelova Z, Johnson A, Plihal O, Simersky R, Mik V, Vain T, Mateo-Bonmati E, Karady M, Pernisova M, Plackova L, Opasathian K, Hejatko J, Robert S, Friml J, Dolezal K, Ljung K, Turnbull C. 2020. Cell-surface receptors enable perception of extracellular cytokinins. *Nature communications* **11**, 4284.

Asakura Y, Hagino T, Ohta Y, Aoki K, Yonekura-Sakakibara K, Deji A, Yamaya T, Sugiyama T, Sakakibara H. 2003. Molecular characterization of His-Asp phosphorelay signaling factors in maize leaves: Implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. *Plant Molecular Biology* **52**, 331-341.

Bacete L, Melida H, Lopez G, Dabos P, Tremousaygue D, Denance N, Miedes E, Bulone V, Goffner D, Molina A. 2020. Arabidopsis Response Regulator 6 (ARR6) Modulates Plant Cell-Wall Composition and Disease Resistance. *Molecular plant-microbe interactions : MPMI* **33**, 767-780.

Bartlett A, O'Malley RC, Huang SSC, Galli M, Nery JR, Gallavotti A, Ecker JR. 2017. Mapping genome-wide transcription-factor binding sites using DAP-seq. *Nature Protocols* **12**, 1659-1672.

Bhaskar A, Paul LK, Sharma E, Jha S, Jain M, Khurana JP. 2021. OsRR6, a type-A response regulator in rice, mediates cytokinin, light and stress responses when over-expressed in Arabidopsis. *Plant Physiology and Biochemistry* **161**, 108-122.

Buechel S, Leibfried A, To JP, Zhao Z, Andersen SU, Kieber JJ, Lohmann JU. 2010. Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. *Eur J Cell Biol* **89**, 279-284.

Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T. 2019. Cytokinin action in response to abiotic and biotic stresses in plants. *Plant Cell Environ* **42**, 998-1018.

Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode M R, Armean Irina M, Austine-Orimoloye O, Azov Andrey G, Barnes I, Bennett R, Berry A, Bhai J, Bignell A, Billis K, Boddu S, Brooks L, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, Donaldson S, El Houdaoui B, El Naboulsi T, Fatima R, Giron CG, Genez T, Martinez Jose G, Guijarro-Clarke C, Gymer A, Hardy M, Hollis Z, Hourlier T, Hunt T, Juettemann T, Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Marugán JC, Mohanan S, Mushtaq A, Naven M, Ogeh Denye N, Parker A, Parton A, Perry M, Piližota I, Prosovetskaia I, Sakthivel Manoj P, Salam Ahamed Imran A, Schmitt Bianca M, Schuilenburg H, Sheppard D, Pérez-Silva José G, Stark W, Steed E, Sutinen K, Sukumaran R, Sumathipala D, Suner M-M, Szpak M, Thormann A, Tricomi FF, Urbina-Gómez D, Veidenberg A, Walsh Thomas A, Walts B, Willholt N, Winterbottom A, Wass E, Chakiachvili M, Flint B, Frankish A, Giorgetti S, Haggerty L, Hunt Sarah E, Ilsley Garth R, Loveland Jane E, Martin Fergal J, Moore B, Mudge Jonathan M, Muffato M, Perry E, Ruffier M, Tate J, Thybert D, Trevanion Stephen J, Dyer S, Harrison Peter W, Howe Kevin L, Yates Andrew D, Zerbino Daniel R, Flicek P. 2021. Ensembl 2022. *Nucleic Acids Research* **50**, D988-D995.

D'Agostino IB, Deruere J, Kieber JJ. 2000. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. *Plant Physiol* **124**, 1706-1717.

de Hoon MJL, Imoto S, Nolan J, Miyano S. 2004. Open source clustering software. *Bioinformatics* **20**, 1453-1454.

Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. 2021. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. *Nucleic Acids Research* **49**, W216-W227.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* **32**, 1792-1797.

Efroni I, Han SK, Kim HJ, Wu MF, Steiner E, Birnbaum KD, Hong JC, Eshed Y, Wagner D. 2013. Regulation of Leaf Maturation by Chromatin-Mediated Modulation of Cytokinin Responses. *Developmental Cell* **24**, 438-445.

European Commision. 2019. Oilseeds and protein crops production.

Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L. 2009. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. *Journal of Experimental Botany* **60**, 487-493.

Havlickova L, He Z, Wang L, Langer S, Harper AL, Kaur H, Broadley MR, Gegas V, Bancroft I. 2018. Validation of an updated Associative Transcriptomics platform for the polyploid crop species *Brassica napus* by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. *Plant J* **93**, 181-192.

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. *Molecular Cell* **38**, 576-589.

Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. 2000. pGreen: a versatile and flexible binary Ti vector for *Agrobacterium*-mediated plant transformation. *Plant Mol Biol* **42**, 819-832.

Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, Huysduyzen AHv, Nikolov LA, Nauheimer L, Zuntini AR, German DA, Franzke A, Koch MA, Lysak MA, Toro-Núñez Ó, Özüdoğru B, Invernón VR, Walden N, Maurin O, Hay NM, Shushkov P, Mandáková T, Thulin M, Windham MD, Rešetnik I, Španiel S, Ly E, Pires JC, Harkess A, Neuffer B, Vogt R, Bräuchler C, Rainer H, Janssens SB, Schmull M, Forrest A, Guggisberg A, Zmartzy S, Lepschi BJ, Scarlett N, Stauffer FW, Schönberger I, Heenan P, Baker WJ, Forest F, Mummenhoff K, Lens F. 2022. Global Phylogeny of the Brassicaceae Provides Important Insights into Gene Discordance. *bioRxiv*, 2022.2009.2001.506188.

Heyl A, Brault M, Frugier F, Kuderova A, Lindner AC, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE. 2013. Nomenclature for members of the two-component signaling pathway of plants. *Plant Physiology* **161**, 1063-1065.

Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, Mizuno T, Yamazaki T. 2002. Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the *Arabidopsis* response regulators. *Plant Cell* **14**, 2015-2029.

Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, Billis K, Boddu S, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, El Houdaigui B, Fatima R, Gall A, Garcia Giron C, Grego T, Guijarro-Clarke C, Haggerty L, Hemrom A, Hourlier T, Izuogu OG, Juettemann T, Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Gonzalez Martinez J, Marugán JC, Maurel T, McMahon AC, Mohanan S, Moore B, Muffato M, Oheh DN, Paraschas D, Parker A, Parton A, Prosovetskaia I, Sakthivel MP, Salam AIA, Schmitt BM, Schuilenburg H, Sheppard D, Steed E, Szpak M, Szuba M, Taylor K, Thormann A, Threadgold G, Walts B, Winterbottom A, Chakiachvili M, Chaubal A, De Silva N, Flint B, Frankish A, Hunt SE, GR II, Langridge N, Loveland JE, Martin FJ, Mudge JM, Morales J, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Cunningham F, Yates AD, Zerbino DR, Flicek P. 2021. Ensembl 2021.

Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: an upgraded gene feature visualization server.

Huang X, Zhang X, Gong Z, Yang S, Shi Y. 2017. ABI4 represses the expression of type-A ARR5s to inhibit seed germination in *Arabidopsis*. *Plant J* **89**, 354-365.

Hwang I, Chen HC, Sheen J. 2002. Two-component signal transduction pathways in *Arabidopsis*. *Plant Physiol* **129**, 500-515.

Hwang I, Sheen J. 2001. Two-component circuitry in *Arabidopsis* cytokinin signal transduction. *Nature* **413**, 383-389.

Chang J, Li X, Fu W, Wang J, Yong Y, Shi H, Ding Z, Kui H, Gou X, He K, Li J. 2019. Asymmetric distribution of cytokinins determines root hydrotropism in *Arabidopsis thaliana*. *Cell Res* **29**, 984-993.

Chao JT, Kong YZ, Wang Q, Sun YH, Gong DP, Lv J, Liu GS. 2015. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages.

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. 2020. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Molecular Plant* **13**, 1194-1202.

Chen H, Wang T, He X, Cai X, Lin R, Liang J, Wu J, King G, Wang X. 2021. BRAD V3.0: an upgraded Brassicaceae database. *Nucleic Acids Research* **50**, D1432-D1441.

Cheng F, Wu J, Fang L, Wang X. 2012. Syntenic gene analysis between *Brassica rapa* and other Brassicaceae species. *Frontiers in plant science* **3**.

Cheng F, Wu J, Wang X. 2014. Genome triplication drove the diversification of *Brassica* plants. *Horticulture Research* **1**, 14024.

Imamura A, Hanaki N, Umeda H, Nakamura A, Suzuki T, Ueguchi C, Mizuno T. 1998. Response regulators implicated in His-to-Asp phosphotransfer signaling in *Arabidopsis*. *Proceedings of the National Academy of Sciences of the United States of America* **95**, 2691-2696.

Imamura A, Kiba T, Tajima Y, Yamashino T, Mizuno T. 2003. In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in *Arabidopsis thaliana*. *Plant and Cell Physiology* **44**, 122-131.

Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T. 2001. Identification of CRE1 as a cytokinin receptor from *Arabidopsis*. *Nature* **409**, 1060-1063.

Ito Y, Kurata N. 2006. Identification and characterization of cytokinin-signalling gene families in rice. *Gene* **382**, 57-65.

Jain M, Tyagi AK, Khurana JP. 2006. Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (*Oryza sativa*). *BMC Plant Biology* **6**, 1.

Jedlickova V, Macova K, Stefkova M, Butula J, Stavenikova J, Sedlacek M, Robert HS. 2022. Hairy root transformation system as a tool for CRISPR/Cas9-directed genome editing in oilseed rape (*Brassica napus*). *Frontiers in plant science* **13**, 919290.

Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J. 2010. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in *Arabidopsis*. *J Biol Chem* **285**, 23371-23386.

Jiang JJ, Li N, Chen WJ, Wang Y, Rong H, Xie T, Wang YP. 2022. Genome-Wide Analysis of the Type-B Authentic Response Regulator Gene Family in *Brassica napus*. *Genes (Basel)* **13**.

Kaltenegger E, Leng S, Heyl A. 2018. The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. *BMC Evol Biol* **18**, 76.

Kang NY, Cho C, Kim NY, Kim J. 2012. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of *Arabidopsis thaliana*. *Journal of Plant Physiology* **169**, 1382-1391.

Karan R, Singla-Pareek SL, Pareek A. 2009. Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. *Functional & integrative genomics* **9**, 411-417.

Kieber JJ, Schaller GE. 2018. Cytokinin signaling in plant development. *Development* **145**.

Kondo Y, Hirakawa Y, Kieber JJ, Fukuda H. 2011. CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling. *Plant Cell Physiol* **52**, 37-48.

Kubiasova K, Montesinos JC, Samajova O, Nisler J, Mik V, Semeradova H, Plihalova L, Novak O, Marhavy P, Cavallari N, Zalabak D, Berka K, Dolezal K, Galuszka P, Samaj J, Strnad M,

Benkova E, Plihal O, Spichal L. 2020. Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum. *Nature communications* **11**, 4285.

Kuderova A, Gallova L, Kuricova K, Nejedla E, Curdova A, Micenkova L, Plihal O, Smajs D, Spichal L, Hejatko J. 2015. Identification of AHK2- and AHK3-like cytokinin receptors in *Brassica napus* reveals two subfamilies of AHK2 orthologues. *Journal of Experimental Botany* **66**, 339-353.

Kumar A, Sharma P, Thomas L, Agnihotri A, Banga S. 2009. Canola cultivation in India: scenario and future strategy. 16th Australian research assembly on Brassicas. Ballarat, Victoria, 0-5.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Molecular Biology and Evolution* **33**, 1870-1874.

Kunzmann P, Mayer BE, Hamacher K. 2020. Substitution matrix based color schemes for sequence alignment visualization. *BMC Bioinformatics* **21**, 209.

Kyoto University Bioinformatics Center. 2015. MOTIF: Searching Protein Sequence Motifs.

Lee DJ, Kim S, Ha YM, Kim J. 2008. Phosphorylation of *Arabidopsis* response regulator 7 (ARR7) at the putative phospho-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling. *Planta* **227**, 577-587.

Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. *Nature* **438**, 1172-1175.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Research* **30**, 325-327.

Liu ZN, Zhang M, Kong LJ, Lv YX, Zou MH, Lu G, Cao JS, Yu XL. 2014. Genome-Wide Identification, Phylogeny, Duplication, and Expression Analyses of Two-Component System Genes in Chinese Cabbage (*Brassica rapa* ssp *pekinensis*). *DNA Research* **21**, 379-396.

Lohrmann J, Sweere U, Zabaleta E, Baurle I, Keitel C, Kozma-Bognar L, Brennicke A, Schafer E, Kudla J, Harter K. 2001. The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial Complex I in *Arabidopsis*. *Molecular Genetics and Genomics* **265**, 2-13.

Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate genes. *Science* **290**, 1151-1155.

Lysak MA, Koch MA, Pecinka A, Schubert I. 2005. Chromosome triplication found across the tribe Brassiceae. *Genome Research* **15**, 516-525.

Madeira FA-O, Pearce MA-O, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez RA-O. 2022. Search and sequence analysis tools services from EMBL-EBI in 2022.

Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE. 2005. Multiple type-B response regulators mediate cytokinin signal transduction in *Arabidopsis*. *Plant Cell* **17**, 3007-3018.

Moghe GD, Hufnagel DE, Tang H, Xiao Y, Dworkin I, Town CD, Conner JK, Shiu SH. 2014. Consequences of Whole-Genome Triplication as Revealed by Comparative Genomic Analyses of the Wild Radish *Raphanus raphanistrum* and Three Other Brassicaceae Species. *Plant Cell* **26**, 1925-1937.

Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2010. Genome-wide analysis of two-component systems and prediction of stress-responsive two-

component system members in soybean. DNA research : an international journal for rapid publication of reports on genes and genomes **17**, 303-324.

Morinaga T. 1929. Interspecific Hybridization in *Brassica* I. The Cytology of F1 Hybrids of *B. Napella* and Various Other Species with 10 Chromosomes. *Cytologia* **1**, 16–27.

Muller B, Sheen J. 2007. Advances in cytokinin signaling. *Science* **318**, 68-69.

Muller B, Sheen J. 2008. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. *Nature* **453**, 1094-1097.

Nagaharu U, Nagaharu N. 1935. Genome analysis in *Brassica* with special reference to the experimental formation of *B. napus* and peculiar mode of fertilization. *Jpn. J. Bot.* **7**, 389-452.

Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M. 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. *New Phytol* **222**, 1638-1651.

Okonechnikov K, Golosova O, Fursov M, team tU. 2012a. Unipro UGENE: a unified bioinformatics toolkit. *Bioinformatics* **28**, 1166-1167.

Okonechnikov K, Golosova O, Fursov M, Team U. 2012b. Unipro UGENE: a unified bioinformatics toolkit. *Bioinformatics* **28**, 1166-1167.

Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL. 2006. Whole-genome analysis of *Oryza sativa* reveals similar architecture of two-component signaling machinery with *Arabidopsis*. *Plant Physiology* **142**, 380-397.

Pekarova B, Szmitskowska A, Dopitova R, Degtjarik O, Zidek L, Hejatkova J. 2016. Structural Aspects of Multistep Phosphorelay-Mediated Signaling in Plants. *Mol Plant* **9**, 71-85.

Pfaffl MW. 2004. Quantification strategies in real-time PCR. In: Bustin SA, ed. *A-Z of quantitative PCR*. La Jolla, CA, USA.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**, 841-842.

Ramireddy E, Chang L, Schmulling T. 2014. Cytokinin as a mediator for regulating root system architecture in response to environmental cues. *Plant Signal Behav* **9**, e27771.

Rathore SS, Babu S, Shekhawat K, Singh VK, Upadhyay PK, Singh RK, Raj R, Singh H, Zaki FM. 2022. Oilseed *Brassica* Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions. *Sustainability* **14**, 2230.

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* **4**, 406-425.

Sakai H, Aoyama T, Oka A. 2000. *Arabidopsis* ARR1 and ARR2 response regulators operate as transcriptional activators. *The Plant journal : for cell and molecular biology* **24**, 703-711.

Saldanha AJ. 2004. Java Treeview—extensible visualization of microarray data. *Bioinformatics* **20**, 3246-3248.

Salome PA, To JP, Kieber JJ, McClung CR. 2006. *Arabidopsis* response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. *Plant Cell* **18**, 55-69.

Sharan A, Soni P, Nongpiur RC, Singla-Pareek SL, Pareek A. 2017. Mapping the 'Two-component system' network in rice. *Scientific reports* **7**, 9287.

Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in *Arabidopsis*. *Plant Cell* **24**, 2578-2595.

Schaller GE, Kieber JJ, Shiu SH. 2008. Two-component signaling elements and histidyl-aspartyl phosphorelays. *Arabidopsis Book* **6**, e0112.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. *Nature Methods* **9**, 671-675.

Skalak J, Nicolas KL, Vankova R, Hejatko J. 2021. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. *Frontiers in plant science* **12**, 644823.

Skalak J, Vercruyssen L, Claeys H, Hradilova J, Cerny M, Novak O, Plackova L, Saiz-Fernandez I, Skalakova P, Coppens F, Dhondt S, Koukalova S, Zouhar J, Inze D, Brzobohaty B. 2019. Multifaceted activity of cytokinin in leaf development shapes its size and structure in *Arabidopsis*. *Plant J* **97**, 805-824.

Spichal L, Werner T, Popa I, Riefler M, Schmulling T, Strnad M. 2009. The purine derivative PI-55 blocks cytokinin action via receptor inhibition. *FEBS J* **276**, 244-253.

Steiner E, Israeli A, Gupta R, Shwartz I, Nir I, Leibman-Markus M, Tal L, Farber M, Amsalem Z, Ori N, Muller B, Bar M. 2020. Characterization of the cytokinin sensor TCSv2 in *arabidopsis* and tomato. *Plant Methods* **16**, 152.

Sun L, Lv L, Zhao J, Hu M, Zhang Y, Zhao Y, Tang X, Wang P, Li Q, Chen X, Li H, Zhang Y. 2022. Genome-wide identification and expression analysis of the TaRRA gene family in wheat (*Triticum aestivum* L.). *Frontiers in plant science* **13**, 1006409.

Taleski M, Chapman K, Novak O, Schmulling T, Frank M, Djordjevic MA. 2023. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. *Nature communications* **14**, 1683.

Taniguchi M, Kiba T, Sakakibara H, Ueguchi C, Mizuno T, Sugiyama T. 1998. Expression of *Arabidopsis* response regulator homologs is induced by cytokinins and nitrate. *FEBS Letters* **429**, 259-262.

To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ. 2004. Type-A *Arabidopsis* response regulators are partially redundant negative regulators of cytokinin signaling. *Plant Cell* **16**, 658-671.

Touzet H, Varré J-S. 2007. Efficient and accurate P-value computation for Position Weight Matrices. *Algorithms for Molecular Biology* **2**, 15.

Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I. 2006. Comparative genomics of *Brassica oleracea* and *Arabidopsis thaliana* reveal gene loss, fragmentation, and dispersal after polyploidy. *Plant Cell* **18**, 1348-1359.

Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in *Arabidopsis*. *Proc Natl Acad Sci U S A* **104**, 20623-20628.

Tsai YC, Weir NR, Hill K, Zhang W, Kim HJ, Shiu SH, Schaller GE, Kieber JJ. 2012. Characterization of genes involved in cytokinin signaling and metabolism from rice. *Plant Physiology* **158**, 1666-1684.

Urao T, Yakubov B, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Stress-responsive expression of genes for two-component response regulator-like proteins in *Arabidopsis thaliana*. *FEBS Lett* **427**, 175-178.

Vaten A, Soyars CL, Tarr PT, Nimchuk ZL, Bergmann DC. 2018. Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the *Arabidopsis* Stomatal Lineage. *Dev Cell* **47**, 53-66 e55.

Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI. 2022. Plant hormone regulation of abiotic stress responses. *Nat Rev Mol Cell Biol* **23**, 680-694.

Wang WC, Lin TC, Kieber J, Tsai YC. 2019. Response Regulator 9 and 10 Negatively Regulate Salinity Tolerance in Rice. *Plant Cell Physiol*.

Wang Y, Li L, Ye T, Zhao S, Liu Z, Feng YQ, Wu Y. 2011. Cytokinin antagonizes ABA suppression to seed germination of *Arabidopsis* by downregulating *ABI5* expression. *Plant J* **68**, 249-261.

Werner T, Schmülling T. 2009. Cytokinin action in plant development. *Curr Opin Plant Biol* **12**, 527-538.

Xie M, Chen H, Huang L, O'Neil RC, Shokhirev MN, Ecker JR. 2018. A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. *Nature communications* **9**, 1604.

Yamoune A, Cuyacot AR, Zdarska M, Hejatko J. 2021. Hormonal orchestration of root apical meristem formation and maintenance in *Arabidopsis*. *J Exp Bot* **72**, 6768-6788.

Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Parka BS. 2006. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of *Brassica rapa*. *Plant Cell* **18**, 1339-1347.

Yates AA-O, Allen J, Amode RM, Azov AG, Barba M, Becerra A, Bhai J, Campbell LI, Carbajo Martinez M, Chakiachvili M, Chougule K, Christensen M, Contreras-Moreira B, Cuzick AA-O, Da Rin Fioretto L, Davis PA-O, De Silva NA-O, Diamantakis S, Dyer S, Elser J, Filippi CV, Gall A, Grigoriadis D, Guijarro-Clarke C, Gupta P, Hammond-Kosack KA-OX, Howe KA-O, Jaiswal PA-O, Kaikala V, Kumar V, Kumari S, Langridge N, Le T, Luypaert M, Maslen GL, Maurel T, Moore B, Muffato M, Mushtaq A, Naamati G, Naithani SA-O, Olson A, Parker A, Paulini M, Pedro H, Perry EA-O, Preece J, Quinton-Tulloch M, Rodgers F, Rosello M, Ruffier MA-O, Seager JA-OX, Sitnik V, Szpak M, Tate J, Tello-Ruiz MK, Trevanion SJ, Urban MA-O, Ware D, Wei S, Williams G, Winterbottom A, Zarowiecki M, Finn RA-O, Flicek PA-O. 2022. Ensembl Genomes 2022: an expanding genome resource for non-vertebrates.

Zdarska M, Cuyacot AR, Tarr PT, Yamoune A, Szmitskowska A, Hrdinova V, Gelova Z, Meyerowitz EM, Hejatko J. 2019. ETR1 Integrates Response to Ethylene and Cytokinins into a Single Multistep Phosphorelay Pathway to Control Root Growth. *Mol Plant* **12**, 1338-1352.

Zhang X, Liu T, Li X, Duan M, Wang J, Qiu Y, Wang H, Song J, Shen D. 2016. Interspecific hybridization, polyploidization and backcross of *Brassica oleracea* var. *alboglabra* with *B. rapa* var. *purpurea* morphologically recapitulate the evolution of *Brassica* vegetables. *Scientific reports* **6**, 18618.

Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU. 2010. Hormonal control of the shoot stem-cell niche. *Nature* **465**, 1089-1092.

Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Franco-Zorrilla JM, Zhang W, Hill K, Raines T, Solano R, Kieber JJ, Loraine AE, Schaller GE. 2017. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in *Arabidopsis*. *Proc Natl Acad Sci U S A* **114**, E5995-E6004.

Zuckerkandl E, Pauling L. 1965. Evolutionary Divergence and Convergence in Proteins. In: Bryson V, Vogel HJ, eds. *Evolving Genes and Proteins*: Academic Press, 97-166.

Zurcher E, Muller B. 2016. Cytokinin Synthesis, Signaling, and Function--Advances and New Insights. *Int Rev Cell Mol Biol* **324**, 1-38.

Zurcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Muller B. 2013. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. *Plant Physiology* **161**, 1066-1075.

Figure legends

Figure 1. Chromosomal localization of known and newly identified RRAs in *Brassicaceae*. RRAs in **(A)** *Arabidopsis thaliana*, **(B)** *Brassica rapa*, **(C)** *Brassica oleracea*, and **(D)** *Brassica*

napus. The figures were generated using MapGene2Chrom (MG2C_v2.1, http://mg2c.iask.in/mg2c_v2.1/) (Chao *et al.*, 2015).

Figure 2. *A. thaliana* and *Brassica* RRAs reveal a high level of domain structure and amino acid sequence conservation. (A) Schematic depiction of the receiver domain (Rec, green rounded rectangle) localization in *A. thaliana* and *Brassica* RRAs identified using MOTIF (<https://www.genome.jp/tools/motif/>). (B) Amino acid sequence consensus within the conserved Rec domain (top line) based on the multiple alignments of the individual RRA protein sequences by MUSCLE algorithm in UGENE (Edgar, 2004; Okonechnikov *et al.*, 2012a); the conserved D-D-K motif is highlighted in green.

Figure 3. Phylogenetic relationships and gene structures of RRAs in Brassicaceae. (A) The unrooted tree is based on the similarity of RRA Rec domains constructed using the neighbor-joining method in MEGA 7 (Kumar *et al.*, 2016); the bar represents the relative divergence of the examined sequences. The subclades composed of RRAs potentially orthologous to individual *A. thaliana* RRAs were colored using the same color; the subclades comprising homologs of the paired *A. thaliana* RRAs, the result of a WGD event (see the main text for details) are distinguished by different shades of a given color. The RRAs from individual species are distinguished by triangle (BrRRAs), star (BoRRAs), and circle (BnRRAs). (B) A schematic representation of the *A. thaliana* and *Brassica* RRA gene structures (exons are depicted as boxes separated by introns as lines) constructed using the Gene Structure Display Server (GSDS2.0 <http://gsds.gao-lab.org/index.php>) (Hu *et al.*, 2015); the color code used as in (A).

Figure 4. The synteny analysis of *Brassica* RRAs. (A) The synteny plots of the RRAs from assayed *Brassica* species with *A. thaliana*. (B) The synteny plots between *Brassica napus* and its parental species, *B. rapa*, and *B. oleracea*. Gray lines represent the syntenic blocks between the species, while the black lines represent the syntenic RRA pairs within the compared genomes.

Figure 5. Kinetics of *A. thaliana* and *Brassica* RRAs response to cytokinins. Heatmaps representing the relative change of RRA expression in the one-week-old seedlings after cytokinin (5 μ M BAP) treatment for the given time (0.5, 1, 2, and 4 h) normalized to mock-treated controls in (A) *A. thaliana*, (B) *Brassica rapa*, (C) *B. oleracea*, and (D) *B. napus*. The expression data is presented as log2 of fold-change between BAP- and mock-treated samples normalized by the delta-delta Ct (Pfaffl, 2004). (E) Schematic depiction of identified expression profile categories. The categorization of individual RRAs in panel A-D is color-coded as defined in (E).

Figure 6. The DNA-binding domain of *A. thaliana* and *Brassica* RRBs show a high level of amino acid conservation. Domain structure of *A. thaliana* and *Brassica* RRBs and alignment of the amino acid sequences of the GARP-like DNA binding domain for the selected RRBs from *A. thaliana* and assayed *Brassica* species. Conserved amino acids are highlighted and the percentage of identity is shown. The CLUSTAL color scheme was used to color the alignment, reflecting the physicochemical properties of amino acids (Kunzmann *et al.*, 2020). The asterisk denotes the ARR10 residues that were proposed to directly interact with DNA (Hosoda *et al.*, 2002); for a comprehensive list of RRB alignments, refer to Supplementary Fig. S5.

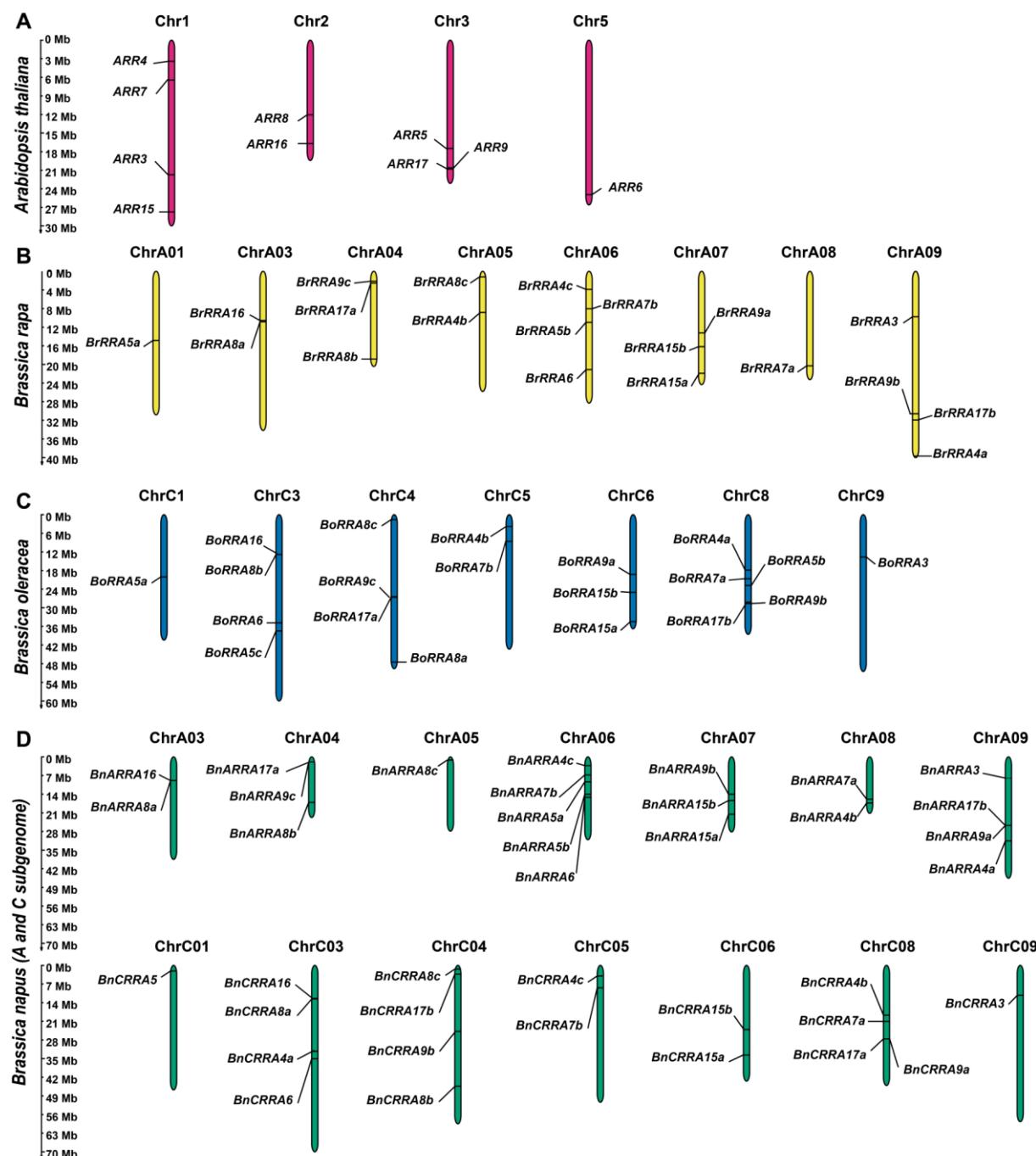
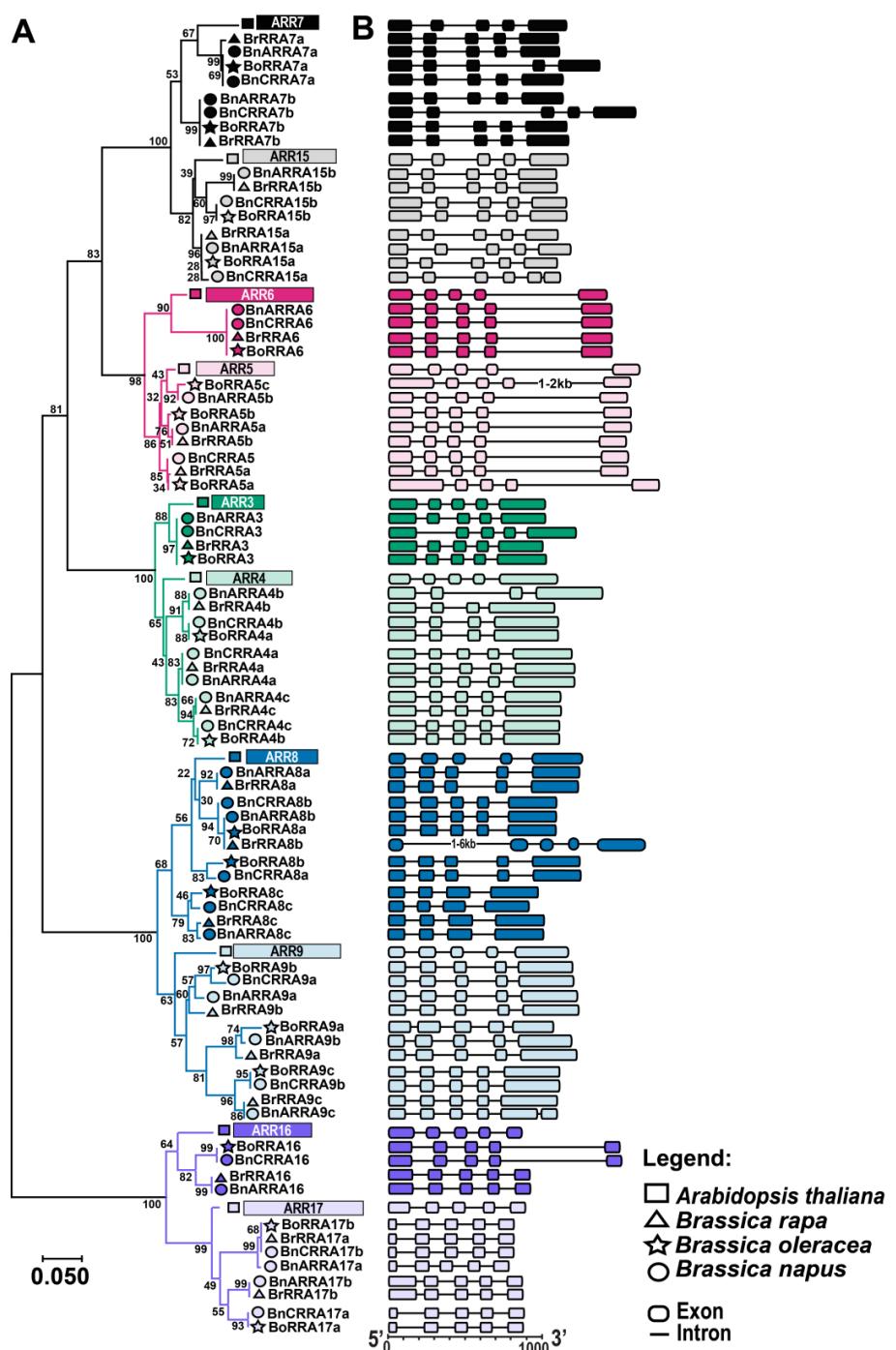
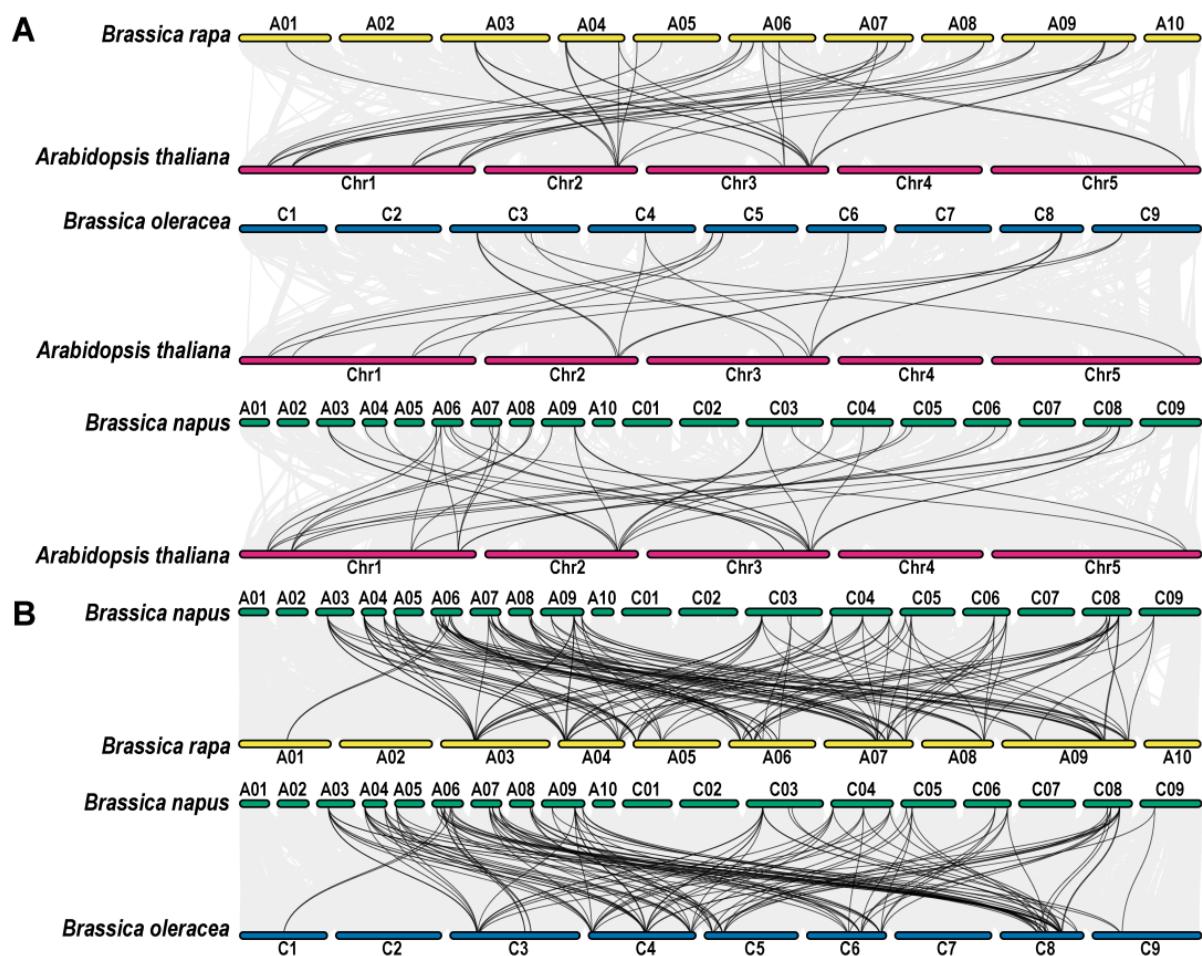

Figure 7. Promoters of *Brassica* RRAs are enriched for the *Arabidopsis*-like cytokinin-responsive *cis*-regulatory elements. **(A)** The position weight matrix (PWM) for the ARR1 and ARR10 DNA binding sites in *Arabidopsis thaliana* was retrieved from ChIP-seq peak sets (Xie *et al.*, 2018). **(B)** Significant enrichment of ARR1 and ARR10 PWM hits proximally to 5'-regulatory regions of *A. thaliana* and *Brassica* RRAs. **(C)** Significant correlation (Pearson correlation with 95% confidence intervals, shadowed part) between the transcriptional response to cytokinin of *BrRRAs* and *BnRRAs* and the number of cytokinin-responsive motifs present in their promoter regions.

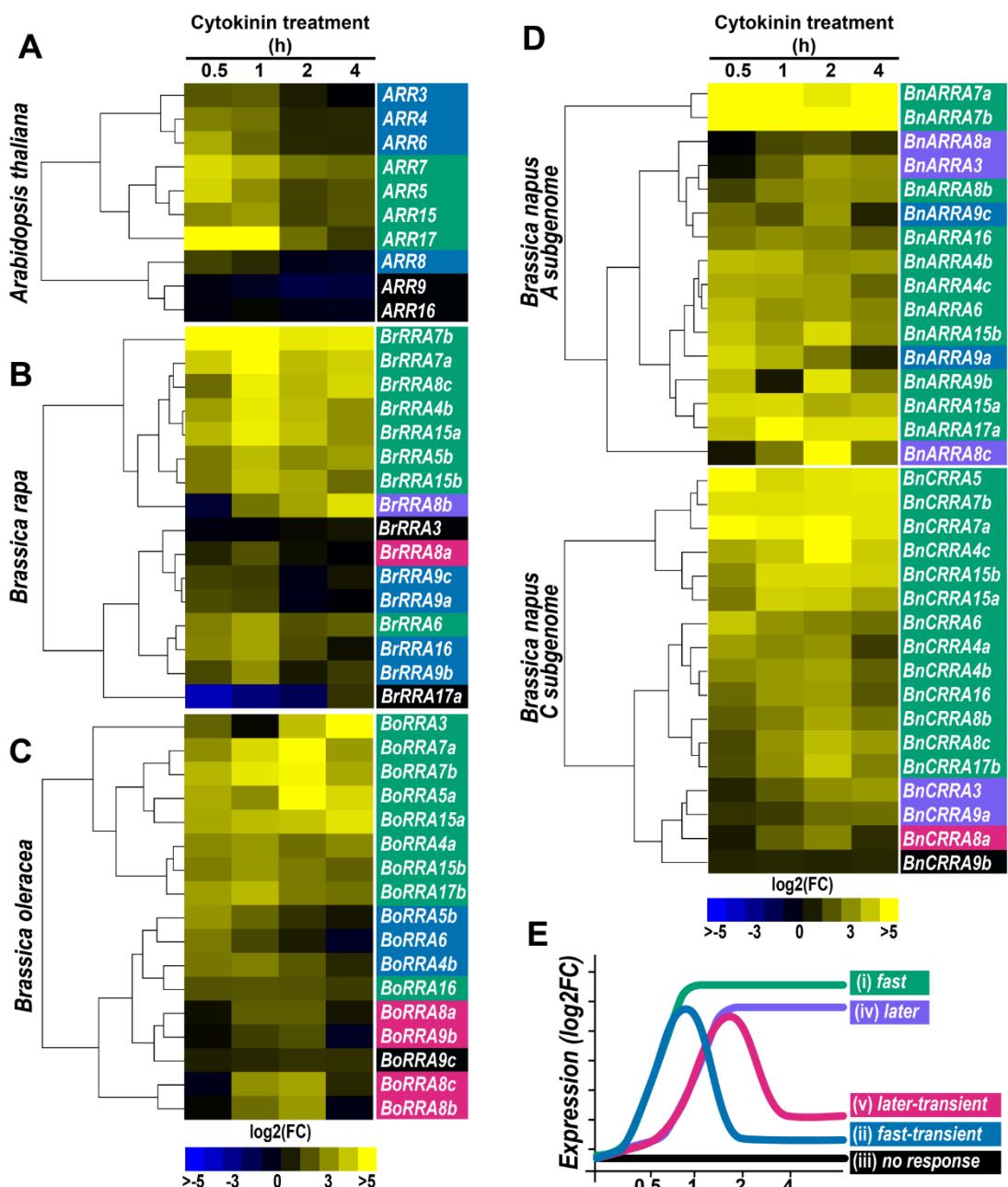
Figure 8. The *Arabidopsis* TCSv2:3XVENUS cytokinin reporter (Steiner *et al.*, 2020) is cytokinin-responsive in *B. rapa* and *B. napus*. **(A)** Scheme of the TCSv2:3XVENUS (adapted from (Steiner *et al.*, 2020)). **(B)** Comparison of the relative fluorescence intensity of TCSv2:3XVENUS cytokinin reporter in BAP-treated hairy roots of *B. rapa* and *B. napus* at different time points (0.5, 1, 2, and 4 h) of cytokinin (5 μ M BAP) treatment. Means \pm standard errors (SE) are shown in the plots. Asterisks indicate statistical significance [$p<0.001$ (***)], $p<0.01$ (**), and $p<0.05$ (*), Dunnett's Test]. **(C)** Representative images of *B. rapa* and *B. napus* hairy root tips treated with DMSO and BAP throughout the treatment period, showing the measured fluorescent signal intensities in a single root (top) and the corresponding image analyzed by IMARIS software (below). Scale bars represent 40 μ M.

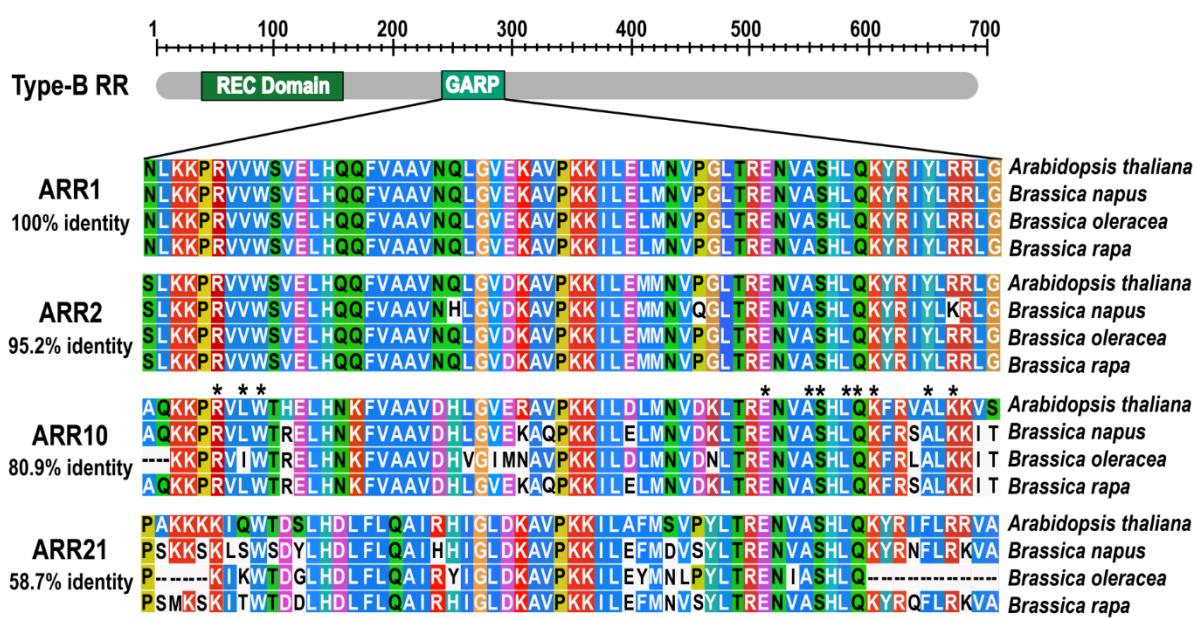
Figure 9. *A. thaliana* and *Brassica* RRAs respond to abiotic stress. Heat maps depicting the expression pattern of RRA genes in the one-week-old seedlings of **(A)** *A. thaliana*, **(B)** *B. rapa*, **(C)** *B. oleracea*, and **(D)** *B. napus* being under cold, salinity, and osmotic stress conditions for 2 and 4 h. The expression data are presented as log2 fold-change normalized to the mock treatment by the delta-delta Ct (Pfaffl, 2004), for the color code see the legend.

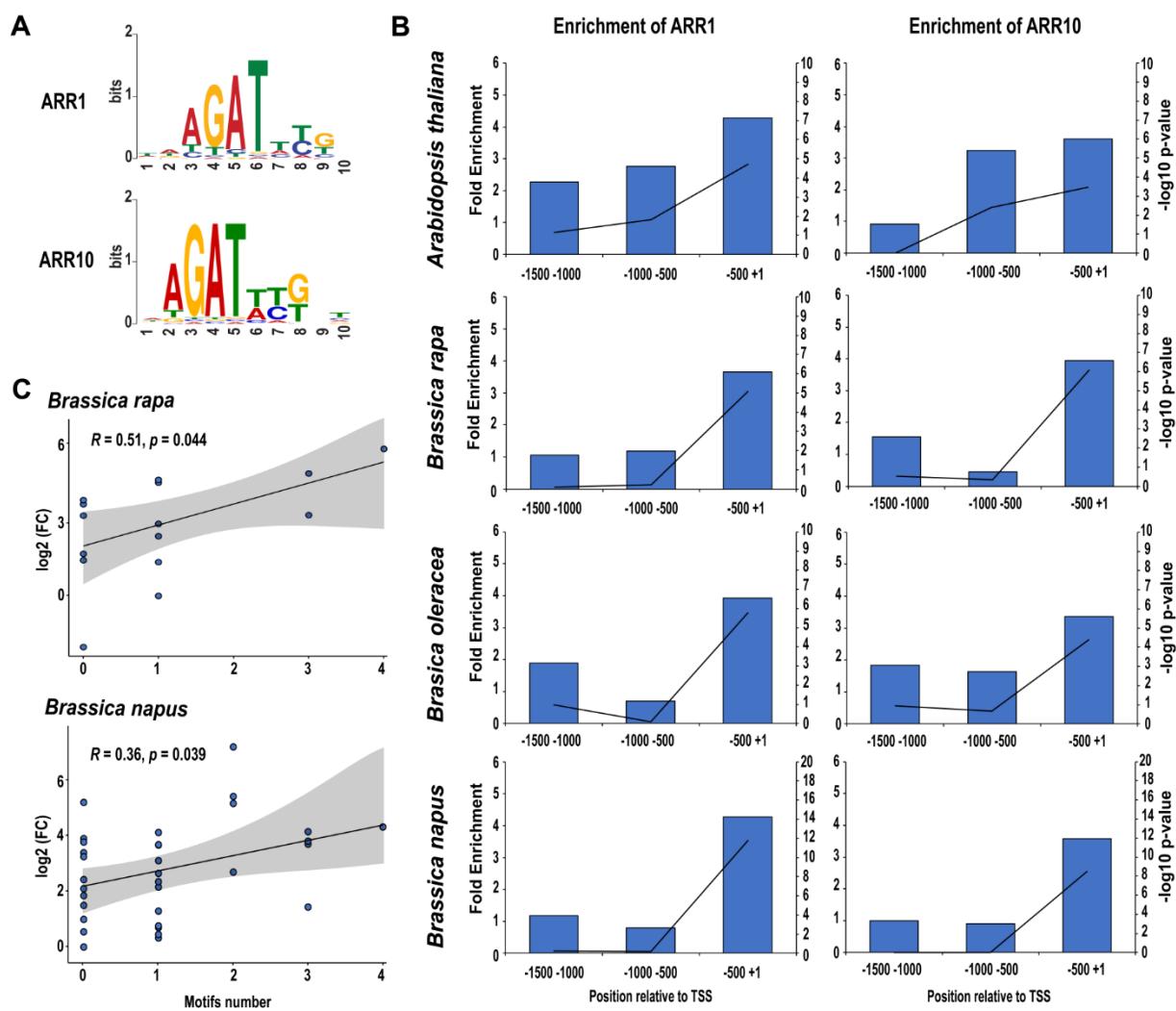
Figure 10. Cytokinins contribute to the cold-induced ARR7 upregulation. **(A)** Comparison of the number of environmental stress-related *cis*-elements identified in the promoters of *A. thaliana* and *Brassica* RRAs using the PlantCARE program (<http://bioinformatics.psb.ugent.be/webtools/plantcare/html/>) (Lescot *et al.*, 2002) along with the percentage of RRAs where these *cis*-elements were found. **(B)** Pearson correlation (with 95% confidence interval, shadowed part) between the transcriptional response of cold-responsive *A. thaliana* and *Brassica* RRAs after 4 hours of cold treatment and the number of environmental *cis*-elements present in their promoter regions. **(C)** Expression of ARR7 and its homologs after incubation of one-week-old seedlings in media supplemented with either DMSO or cytokinin antagonist PI-55 (0.1 μ M/1 μ M) and exposure for 4 hours to either cold or control conditions. The expression data are presented as log2 fold-change double normalized by the delta-delta Ct (Pfaffl, 2004) (means \pm SE) to the corresponding housekeeping gene (see Materials and Methods) and the control. The different letters indicate variable groups with statistically significant differences ($p<0.05$, Tukey's HSD).

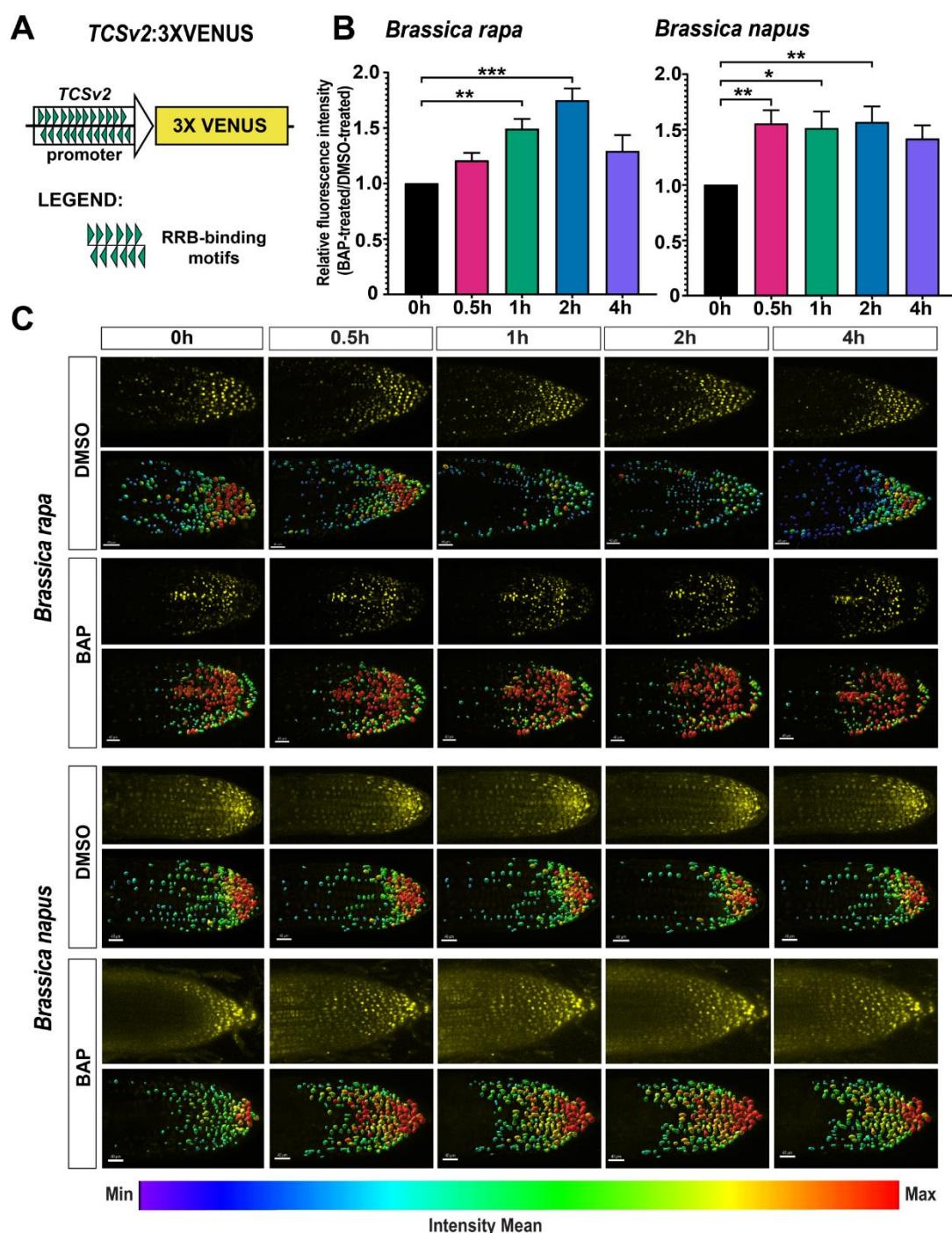

Figures


Figure 1. Chromosomal localization of known and newly identified RRAs in Brassicaceae. RRAs in (A) *Arabidopsis thaliana*, (B) *Brassica rapa*, (C) *Brassica oleracea*, and (D) *Brassica napus*. The figures were generated using MapGene2Chrom (MG2C_v2.1, http://mg2c.asks.in/mg2c_v2.1/) (Chao *et al.*, 2015).


Figure 2. *A. thaliana* and *Brassica* RRAs reveal a high level of domain structure and amino acid sequence conservation. (A) Schematic depiction of the receiver domain (Rec, green rounded rectangle) localization in *A. thaliana* and *Brassica* RRAs identified using MOTIF (<https://www.genome.jp/tools/motif/>). (B) Amino acid sequence consensus within the conserved Rec domain (top line) based on the multiple alignments of the individual RRA protein sequences by MUSCLE algorithm in UGENE (Edgar, 2004; Okonechnikov *et al.*, 2012b); the conserved D-D-K motif is highlighted in green.


Figure 3. Phylogenetic relationships and gene structures of RRAs in Brassicaceae. (A) The unrooted tree is based on the similarity of RRA Rec domains constructed using the neighbor-joining method in MEGA 7 (Kumar *et al.*, 2016); the bar represents the relative divergence of the examined sequences. The subclades composed of RRAs potentially orthologous to individual *A. thaliana* RRAs were colored using the same color; the subclades comprising homologs of the paired *A. thaliana* RRAs, the result of a WGD event (see the main text for details) are distinguished by different shades of a given color. The RRAs from individual species are distinguished by triangle (BrRRAs), star (BoRRAs), and circle (BnRRAs). (B) A schematic representation of the *A. thaliana* and *Brassica* RRA gene structures (exons are depicted as boxes separated by introns as lines) constructed using the Gene Structure Display Server (GSDS2.0 <http://gsds.gao-lab.org/index.php>) (Hu *et al.*, 2015); the color code used as in (A).


Figure 4. The synteny analysis of *Brassica* RRAs. (A) The synteny plots of the RRAs from assayed *Brassica* species with *A. thaliana*. **(B)** The synteny plots between *Brassica napus* and its parental species, *B. rapa*, and *B. oleracea*. Gray lines represent the syntenic blocks between the species, while the black lines represent the syntenic RRA pairs within the compared genomes.


Figure 5. Kinetics of *A. thaliana* and *Brassica* RRAs response to cytokinins. Heatmaps representing the relative change of RRA expression in the one-week-old seedlings after cytokinin (5 μ M BAP) treatment for the given time (0.5, 1, 2, and 4 h) normalized to mock-treated controls in (A) *A. thaliana*, (B) *Brassica rapa*, (C) *B. oleracea*, and (D) *B. napus*. The expression data is presented as log2 of fold-change between BAP- and mock-treated samples normalized by the delta-delta Ct (Pfaffl, 2004). (E) Schematic depiction of identified expression profile categories. The categorization of individual RRAs in panel A-D is color-coded as defined in (E).

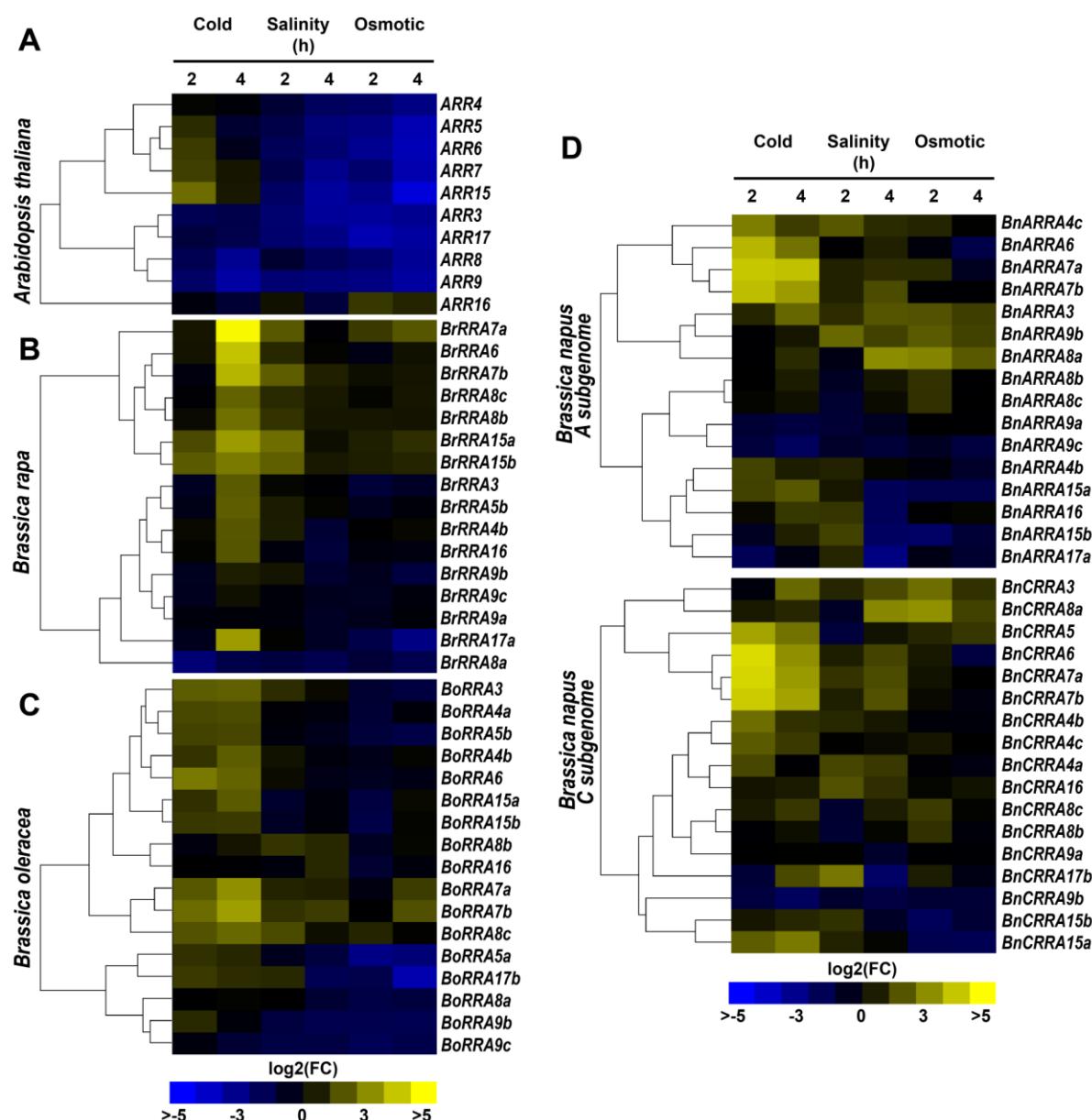

Figure 6. The DNA-binding domain of *A. thaliana* and *Brassica* RRBs show a high level of amino acid conservation. Domain structure of *A. thaliana* and *Brassica* RRBs and alignment of the amino acid sequences of the GARP-like DNA binding domain for the selected RRBs from *A. thaliana* and assayed *Brassica* species. Conserved amino acids are highlighted and the percentage of identity is shown. The CLUSTAL color scheme was used to color the alignment, reflecting the physicochemical properties of amino acids (Kunzmann *et al.*, 2020). The asterisk denotes the ARR10 residues that were proposed to directly interact with DNA (Hosoda *et al.*, 2002) for a comprehensive list of RRB alignments, refer to Supplementary Figure 5.

Figure 7. Promoters of Brassica RRs are enriched for the *Arabidopsis*-like cytokinin-responsive cis-regulatory elements. (A) The position weight matrix (PWM) for the ARR1 and ARR10 DNA binding sites in *Arabidopsis thaliana* was retrieved from ChIP-seq peak sets (Xie et al., 2018). **(B)** Significant enrichment of ARR1 and ARR10 PWM hits proximally to 5'-regulatory regions of *A. thaliana* and *Brassica* RRs. Bars represent fold enrichment (left axis) and the line represents log-10 p-value (right axis). **(C)** Significant correlation (Pearson correlation with 95% confidence intervals, shadowed part) between the transcriptional response to cytokinin of *BrRRAs* and *BnRRAs* and the number of cytokinin-responsive motifs present in their promoter regions.

Figure 8. The *Arabidopsis* *TCSv2:3XVENUS* cytokinin reporter (Steiner *et al.*, 2020) is cytokinin-responsive in *B. rapa* and *B. napus*. (A) Scheme of the *TCSv2:3XVENUS* (adapted from (Steiner *et al.*, 2020)). **(B)** Comparison of the relative fluorescence intensity of *TCSv2:3XVENUS* cytokinin reporter in BAP-treated hairy roots of *B. rapa* and *B. napus* at different time points (0.5, 1, 2, and 4 h) of cytokinin (5 μ M BAP) treatment. Means \pm standard errors (SE) are shown in the plots. Asterisks indicate statistical significance [$p < 0.001$ (***)], $p < 0.01$ (**), and $p < 0.05$ (*), Dunnett's Test]. **(C)** Representative images of *B. rapa* and *B. napus* hairy root tips treated with DMSO and BAP throughout the treatment period, showing the measured fluorescent signal intensities in a single root (top) and the corresponding image analyzed by IMARIS software (below). Scale bars represent 40 μ M.

Figure 9. *A. thaliana* and *Brassica* RRAs respond to abiotic stress. Heat maps depicting the expression pattern of RRA genes in the one-week-old seedlings of (A) *A. thaliana*, (B) *B. rapa*, (C) *B. oleracea*, and (D) *B. napus* being under cold, salinity, and osmotic stress conditions for 2 and 4 h. The expression data are presented as log₂ fold-change normalized to the mock treatment by the delta-delta Ct (Pfaffl, 2004), for the color code see the legend.

Figure 10. Cytokinins contribute to the cold-induced *ARR7* upregulation. **(A)** Comparison of the number of environmental stress-related *cis*-elements identified in the promoters of *A. thaliana* and *Brassica* RRAs using the PlantCARE program (<http://bioinformatics.psb.ugent.be/webtools/plantcare/html/>) (Lescot *et al.*, 2002) along with the percentage of RRAs where these *cis*-elements were found. **(B)** Pearson correlation (with 95% confidence interval, shadowed part) between the transcriptional response of cold-responsive *A. thaliana* and *Brassica* RRAs after 4 hours of cold treatment and the number of environmental *cis*-elements present in their promoter regions. **(C)** Expression of *ARR7* and its homologs after incubation of one-week-old seedlings in media supplemented with either DMSO or cytokinin antagonist PI-55 (0.1 μ M/1 μ M) and exposure for 4 hours to either cold or control conditions. The expression data are presented as log2 fold-change double normalized by the delta-delta Ct (Pfaffl, 2004) (means \pm SE) to the corresponding housekeeping gene (see Materials and Methods) and the control. The different letters indicate variable groups with statistically significant differences ($p < 0.05$, Tukey's HSD).