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Summary 93 

Transcribed cis-regulatory elements (tCREs), such as promoters and enhancers, are fundamental to 94 
modulate gene expression and define cell identity. The detailed mapping of tCREs at single-cell 95 
resolution is essential for understanding the regulatory mechanisms that govern cellular functions. 96 
Prior tCRE catalogs, limited by bulk analysis, have often overlooked cellular heterogeneity. We have 97 
constructed a tCRE atlas using single-cell 5’-RNA-seq, capturing over 340,000 single-cells from 23 98 
human tissues and annotating more than 175,000 tCREs, substantially enhancing the scope and 99 
granularity of existing cis-regulatory element annotations in the human genome. This atlas unveils 100 
patterns of gene regulation, revealing connections between broadly expressed promoters and cell 101 
type-specific distal tCREs. Assessing trait heritability at single-cell resolution with a novel tCRE 102 
module-based approach, we uncovered the nuanced trait-gene regulatory relationships across a 103 
continuum of cell populations, offering insights beyond traditional gene-level and bulk-sample 104 
analyses. Our study bridges the gap between gene regulation and trait heritability, underscoring the 105 
potential of single-cell analysis to elucidate the genetic foundations of complex traits. These insights 106 
set the stage for future research to investigate the impact of genetic variations on diseases at the 107 
individual level, advancing the understanding of cellular and molecular basis of trait heritability. 108 
 109 
Introduction 110 

The human body comprises diverse and specialized cell types. Gene expression, which defines cell 111 
identity, is regulated by cis-regulatory elements (CREs), mostly promoters and enhancers. (Zhang et 112 
al., 2021; Ong and Corces, 2011). CREs control gene expression by recruiting transcription factors 113 
(TFs) and RNA polymerase II to initiate transcription of capped-RNA (Cho et al., 1997) at both 114 
promoters and enhancers (Andersson et al., 2014). Sequencing of RNAs 5'-end pinpoints 115 
transcriptional start sites (TSS) and thus transcribed CREs (tCREs). tCREs can be categorized based 116 
on their proximity to the annotated gene: proximal tCREs (P-tCREs), such as promoters, are close to 117 
the gene TSS, while distal tCREs (D-tCREs), like enhancers, are located further away. Previous 118 
studies using TSS profiling in bulk samples, notably CAGE (Murata et al., 2014), concentrated on 119 
tissue samples and a limited number of primary cell types, yielding cell population-averaged 120 
information and a restricted scope (Forrest et al., 2014 FANTOM5). Existing single-cell atlases, 121 
largely based on gene expression, lack alternative promoters and distal CREs (Eraslan et al., 2022; 122 
Domínguez Conde et al., 2022; THE TABULA SAPIENS CONSORTIUM, 2022; Suo et al., 2022) 123 
limiting our ability to decode the regulatory roles of CREs in defining cell type identity. Genome-124 
wide association studies (GWAS) identified variants associated with traits and diseases (Liu et al., 125 
2019) that are highly enriched in CREs. Chromatin accessibility assays are routinely employed to 126 
identify accessible CRE (aCRE) (Buenrostro et al., 2015). Despite this, a significant number of distal 127 
aCREs lack the epigenomic marks of active enhancers (Thibodeau et al., 2018). Although some of 128 
these elements may function as insulators (Kim et al., 2007) or silencers (Pang and Snyder, 2020), 129 
their overall relevance in gene regulation remains elusive, affecting their interpretability in trait-130 
associated variants annotation. 131 

Single-cell omics allows the quantification of transcriptome, epigenome, and chromatin 132 
interactions among individual cells (Buenrostro et al., 2015, Heumos et al., 2023; Gaulton et al., 133 
2023). In particular, single-cell 5' RNA-seq (sc-5’-RNA-seq) enables the concurrent detection and 134 
quantification of tCREs, alongside gene expression profiling in single cells (Kouno et al., 2019). In 135 
this study, we used sc-5’-RNA-seq to annotate 175,032 tCREs across 341,156 cells of 180 distinct 136 
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cell types from 23 human tissues. Our analysis linked D-tCREs to their target promoters, revealing 137 
cell type-specific CRE usage patterns. We characterized tCRE modules and their associations to 63 138 
different traits and diseases, highlighting their relevance in cell type-specific gene regulation and in 139 
disease predispositions. Based on tCRE module usage in single-cells, we introduced the novel ICE-140 
CREAM score to assess trait heritability enrichment at the single-cell level, revealing nuanced trait-141 
gene regulatory relationships across a continuum of cell populations. Moreover, by analyzing trait-142 
associated variants within tCREs to unravel their regulatory impacts, we have deepened the 143 
understanding of how genetic associations contribute to disease at the molecular and cellular levels. 144 

Results 145 

Detection of tCREs using sc-5’-RNA-seq 146 
Enhancer RNAs (eRNA) are generally thought to be non-polyadenylated (Andersson et al., 2014); 147 
therefore, we assessed the sensitivity of D-tCRE detection by sc-5’-RNA-seq, comparing oligo(dT) 148 
(sc-end5-dT) and random hexamer (sc-end5-rand) priming in human dermal fibroblasts (DBFM) and 149 
induced pluripotent stem cells (iPSC). Most signals were observed at gene TSSs for both protocols 150 
as expected (Fig. 1a). Both protocols detected P- and D-tCREs with a high degree of overlap (Fig. 151 
1b) and strong correlation in expression levels (Fig. 1c). Moreover, both protocols recapitulated the 152 
bidirectional transcription of eRNAs defined by bulk-CAGE in a cell type-specific manner (Fig. 1d). 153 
The detection of eRNAs by sc-end5-dT is unexpected, and likely can be attributed to internal priming 154 
(La Manno et al., 2018; Gaidatzis et al., 2015). Notably, sc-end5-dT demonstrated greater sensitivity 155 
at the per-cell level, with similar read distribution profiles (Supplementary Fig. 1,2). These findings 156 
affirm the efficacy of sc-end5-dT in detecting both P-tCREs and D-tCREs, including eRNAs. 157 

We compared tCREs defined by sc-end5-dT with aCREs defined by sc-ATAC-seq in PBMCs 158 
under resting and activated states (Methods). Both methods offered similar cell clustering resolution, 159 
cell type specificity for CREs, and motif activity estimates (Supplementary Fig. 3). Using co-activity 160 
analysis (Pliner et al., 2018), tCRE pairs with high co-activity showed a greater validation rate via 161 
promoter-capture Hi-C (pcHi-C) (Javierre et al., 2016) (Fig. 1e). Upon PBMC activation, we 162 
identified 123 genes showing significant shifts in alternative promoter transcription, with only 163 
minimal changes in accessibility (Fig. 1f), as exemplified with the DHX30 gene in CD8+ T-cells 164 
switching from promoter 1 to promoter 2 (Fig. 1g-h). This indicates that sc-ATAC-seq may have 165 
limited sensitivity in detecting changes in alternative promoter usage. Additionally, we found that 166 
increased transcriptional activity at aCREs correlated with enhanced trait heritability enrichment, 167 
particularly in distal aCREs (Fig. 1i). These findings highlight the capability of sc-end5-dT to capture 168 
cell type-specific P- and D-tCRE activities, leading to the creation of a comprehensive tCRE atlas 169 
using this approach. 170 
 171 
Annotating cell type clusters across 23 human tissues 172 
We obtained sc-end5-dT single-cell or single-nuclei data, hereafter referred to as 'single-cell' data, 173 
from diverse human tissues via Single Cell Medical Network in Japan and public data (He, S et al., 174 
2020) (Supplementary Table 1). Employing a standardized data processing pipeline for dataset 175 
integration (Methods), we constructed an atlas of 341,156 single-cells from 23 tissues (Fig. 2a). This 176 
atlas includes cells categorized into 21 Level 1 (Lv1) cell types (Fig. 2b-c, Supplementary Fig. 4) and 177 
further sub-clustering yielded 180 Level 2 (Lv2) cell types. To address sparsity and computational 178 
load while preserving transcriptional diversity, we created 3,350 meta-cells (Fig. 2b) (Supplementary 179 
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Fig. 5,6). Analyses in this study were predominantly performed at the meta-cell level, unless specified 180 
otherwise. 181 

To illustrate our cell annotations, we highlighted blood endothelial cells (BECs), distinguishing 182 
arterial, capillary, and venous subtypes, their tissue distribution, and marker genes in Level 2 (Lv2) 183 
cell types (Fig. 2d-f). For example, general capillary BECs displayed gene expression profiles 184 
indicative of inflammatory response and lipid transcytosis, marked by genes such as BTNL9, ITGA1, 185 
and CD36. Lung-enriched BEC.Capillary.2 subtypes were characterized by the pulmonary marker 186 
CA4. Notably, we observed an enrichment of capillaries in the heart and joint (BEC.Capillary.1) 187 
whereas venous BECs were enriched in the skin (BEC.Venous.1 and BEC.Venous.4) (Fig. 2e) (He, 188 
Y et al., 2022), aligning with the role capillary-to-myofiber interface plays in muscle function 189 
(Lemieux and Birot, 2021). Additionally, venous BECs showed higher expression of CD74, CCL14, 190 
ACKR1 compared to arterial and capillary subtypes, suggesting a role in immune cell migration (Li 191 
et al., 2022). Detailed markers and tissue composition maps for Lv2 cell types highlight the diversity 192 
captured across immune, neuronal, stromal and endothelial cell types (Supplementary Fig. 6,7). In 193 
summary, these results demonstrated the utility and relevance of our cell type clustering and 194 
annotations. 195 
 196 
Building a single-cell tCRE atlas 197 
Utilizing our single-cell data, we built a tCRE atlas comprising 81,829 proximal (P-tCREs) and 198 
96,400 distal (D-tCREs) elements (Methods; Moody et al., 2022; Supplementary Table 2). The 199 
majority of these tCREs—94.3% of P-tCREs and 88.2% of D-tCREs were supported by candidate 200 
CREs from external epigenomic datasets from ENCODE (ENCODE Project Consortium et al., 2020) 201 
and a sc-ATAC atlas (Zhang et al., 2021), affirming the validity of our tCREs (Fig. 3a). The 202 
remaining unsupported tCREs may represent novel, cell type-specific elements. Notably, only 84.3% 203 
of P-tCREs and 46.7% of D-tCREs aligned with FANTOM5 TSS clusters (Forrest et al., 2014), 204 
expanding tCRE annotations within the human genome. Our analysis of cell type-specificity revealed 205 
a median enrichment of 7.8% for P-tCREs and 11.1% for D-tCREs in Lv1 cell types (Fig. 3b), with 206 
glutamatergic neurons displaying the highest specificity, consistent with known chromatin 207 
accessibility patterns (Hauberg et al., 2020), indicative of a relatively more complex gene regulatory 208 
architecture in glutamatergic neurons. Additionally, we categorized 66.1% of P-tCREs as gene 209 
promoters and the remainder as ‘flanking’, identifying 8,791 potential novel alternative promoters 210 
not listed in GENCODEv32. Overall, our atlas provides promoter annotations for 31,594 genes, 211 
including 12,386 with multiple promoters, averaging 4.4 promoters per gene (Supplementary Table 212 
3). 213 

Alternative promoter usage is a key mechanism for expanding transcriptome diversity and 214 
generating functionally distinct isoforms (Singer et al., 2008). On average 12.9% of multi-promoter 215 
genes (n=1,948 in total) exhibited significant alternative promoter usage across Lv1 cell types (Fig. 216 
3b; Supplementary Table 4). The IL1RN gene, for example, employs distinct promoters for its 217 
secreted (P1) and intracellular (P2) isoforms, with P1 enriched in immune cells and P2 in non-218 
secretory epithelial cells (Fig. 3c), indicating cell type-specific functionalities (Butcher et al., 1994) 219 
and aligning with the hypothesis that the intracellular form modulates IL-1 production in 220 
keratinocytes (Arend and Guthridge, 2000).  Additionally, TF binding motif (TFBM) activity 221 
estimations suggested that differential promoter usage may be influenced by cell type-specific TF 222 
activity, with 48.5% (n=944 of 1,948) of genes with alternative promoters having significantly 223 
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upregulated TFBMs in corresponding Lv1 cell types (Supplementary Fig. 8), indicating a TF-driven 224 
mechanism underpinning cell type-specific promoter usage. 225 

We integrated three public chromatin interaction datasets with co-activity data from our atlas to 226 
infer Promoter-to-Distal tCRE interactions (PD-links), cataloging 466,079 PD-links for 75% of 227 
promoters (n=40,626) (Supplementary Table 5). Notably, 39% of these links were supported by at 228 
least two out of four evidence lines (Fig. 3e), with promoters connecting to a median of nine D-tCREs 229 
at a distance of 137.39 kb (Fig. 3f-g). Alternative usage of distal regulatory elements has broad 230 
implications for cell type identity, differentiation, and development (Nord et al., 2013). Our findings 231 
suggest that promoters with broader expression profiles across Lv2 cell types, indicated by a lower 232 
Gini index, are linked to more D-tCREs (Fig. 3h), suggesting extensive use of distal elements for 233 
regulating genes with a broad cellular activity. Furthermore, 10.4% of genes with multiple D-tCRE 234 
links showed significant changes in D-tCRE usage across Lv1 cell types (Fig. 3b). For example, the 235 
BCL2A1 gene, pivotal for T cell development and survival (Mandal et al., 2005), exhibited 236 
differential D-tCRE usage correlating with its enriched expression pattern across immune cells (Fig. 237 
3d). These results highlight that BCL2A1 consistently maintains enriched expression across immune 238 
cell types, while it harbors unique sets of distal regulatory elements within each cell type, reinforcing 239 
the observation in Fig. 3h that the cell type-specific gene regulation is supported by distinct sets of 240 
D-tCRE. 241 

In our atlas, we observed regions with intense D-tCRE activity and high frequencies of chromatin 242 
interactions, termed High Intensity and Frequently Interacting (HIFI) loci, (Fig. 3k; Supplementary 243 
Table 6), analogous to super-enhancers and FIREs (Schmitt et al., 2016; Hnisz et al., 2013). For 244 
example, the CD44 region contains a HIFI locus (DLOC5040) with 47 D-tCREs spanning 186.6 kb. 245 
Most of these D-tCREs display bidirectional transcription and are supported by epigenomic data, with 246 
74.4% (35 of 47) linked to the CD44 promoter, as corroborated by coactivity and chromatin 247 
interaction data (Fig. 3k). We cataloged 1,229 HIFI loci, with each Lv1 cell type expressing a median 248 
of 336 HIFI loci (Fig. 3l). These were classified as either cell type-unrestricted (n=377) or -restricted 249 
(n=852) based on their expression patterns, correlating well with Gini index distributions (Fig. 3l-m). 250 
At unrestricted loci, both D-tCREs and their linked promoters showed significantly lower Gini indices 251 
compared to restricted loci (Fig. 3m), suggesting a role for distal elements in gene expression 252 
refinement and specificity across cell types. The unrestricted loci also comprise more D-tCREs and 253 
span larger genomic regions, implying a more complex regulatory mechanism at these loci across cell 254 
types (Fig. 3m). 255 

To assess the biological relevance of various tCRE categories, we investigated their enrichment in 256 
trait and disease heritability (Finucane et al., 2015). We observed similar enrichment levels for both 257 
P- and D-tCREs across Lv1 cell types (Supplementary Fig. 9). In immune cells, tCREs exhibited 258 
higher enrichment in Crohn’s disease (CD) heritability, particularly D-tCREs (e.g., dendritic cells in 259 
Fig. 3n), which is consistent with their critical role in microbial recognition and innate immunity 260 
(Bates and Diehl, 2014). Additionally, cell-type-specific trait enrichments, such as in BECs and 261 
smooth muscle cells (SMCs) for varicose veins, and microglia and oligodendrocyte progenitors for 262 
Parkinson’s disease (PaD), were observed (Supplementary Fig. 9). CD heritability enrichment was 263 
notably higher at HIFI loci compared to non-HIFI loci (Fig. 3o), mirroring the enriched disease 264 
heritability observed in super-enhancers (Hnisz et al., 2013). Further, cell type-restricted HIFI loci 265 
were more enriched in heritability within relevant cell types, like dendritic cells, 266 
monocytes/macrophages, and fibroblasts, highlighting the cell type-specific importance of these loci 267 
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(Fig. 3o; Supplementary Fig. 10 for all other traits). These findings underscore the critical role of 268 
distal regulatory elements in the cell type-specific landscape of disease heritability. 269 
 270 
 Inferring regulatory programs with tCRE modules 271 
Applying consensus Non-negative Matrix Factorization (cNMF) to our meta-cell data, we identified 272 
150 tCRE regulatory modules that represent independent biological properties in specific cell 273 
populations, such as muscle contraction in SMCs (Kotliar et al., 2019) (Fig. 4a,f). These modules are 274 
largely cell type-specific (Supplementary Fig. 11), with, for example, M011 being specific to BEC 275 
subsets, while M033 is specific to fibroblasts (Fig. 4b-e). Further analysis within the stromal cell 276 
subset, including SMCs, lymph endothelial cells (LECs), and chondrocytes, pinpointed modules like 277 
M053 and M028 as SMC-specific, related to muscle function and cardiac biology, and notably 278 
enriched in myocardial infarction (MI) heritability (Fig. 4f), underscoring the protective role of SMCs 279 
in mediating superoxide free radicals within the aortic wall (Zhuge et al., 2020). Additionally, 280 
significant MI heritability enrichment was observed in one BEC-associated module (M011) and two 281 
fibroblast-associated modules (M012 and M080). These findings provide insights into tCRE module 282 
usages within SMCs, BECs, and fibroblasts and suggest their relevance to MI, underscoring the 283 
biological significance of the tCRE modules we identified. Moreover, our analysis delineates tissue-284 
specific module-trait relationships across immune, neuronal, and epithelial cells (Supplementary Fig. 285 
12-14), reinforcing the intricate cell type-specific nature and disease relevance of these tCRE modules.  286 
 287 
Assessing trait heritability at single-cell resolution using ICE-CREAM score 288 
Identifying cell types implicated in diseases is crucial for biomedical research. We have developed 289 
an analytical framework to assess trait heritability enrichment at the single-cell or meta-cell level 290 
based on trait heritability enrichment in tCRE modules. This allows for interrogation of trait 291 
heritability in a manner dependent or independent of cell type annotations. In this framework, we 292 
calculate a trait heritability enrichment score, the ICE-CREAM score, for each cell by summing the 293 
usage of all modules weighted by their heritability enrichment for a trait, then evaluating the 294 
significance against a permuted null distribution, with score expressed as –log10(p-value) (Methods). 295 
Applying the ICE-CREAM score to analyze 63 traits across 3,350 meta-cells revealed the specificity 296 
of cell types to these traits (Fig. 5a). When projected onto single cells, similar patterns were observed 297 
(Data availability). Using Cell-Set Enrichment Analysis (CSEA) to quantify trait enrichment in Lv1 298 
cell types (Supplementary Table 8), we identified a link between COVID-19 severity and 299 
monocyte/macrophage cells, consistent with their documented recruitment in severe cases (Zhou et 300 
al., 2020), and with BECs and mast cells, known to be implicated in COVID-related thrombosis 301 
(Afrin et al., 2020; Bonaventura et al., 2021). Moreover, our approach revealed the involvement of 302 
diverse cell types in complex diseases, as evidenced by the enrichment across immune cells, 303 
fibroblasts, SMCs, and endothelial cells in psoriasis (Fig. 5a). 304 
 Highlighting MI, we noted significant heritability enrichments within Lv1 cell types of BECs, 305 
fibroblasts, and SMCs (Fig. 5b-d), aligning with the module enrichments depicted in Fig. 4f. Further 306 
CSEA of Lv2 fibroblast cell types pinpointed MI heritability enrichment particularly in Fibroblast.07 307 
and Fibroblast.05, which were notably prevalent and significantly enriched in heart tissues (Fig. 5e). 308 
These findings illustrate the role of tissue origin and microenvironment in influencing cell subtype 309 
specification and their contributions to disease. For a more detailed understanding of cell type-310 
specific trait heritability, we extended the CSEA to Lv2 cell types for all traits studied, offering a 311 
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high-resolution view of cell type to trait associations (Supplementary Table 9; Supplementary Fig. 312 
15-18). 313 

A pairwise comparison of ICE-CREAM scores for closely related traits elucidated fine-grained 314 
differences in cell type relevance between diseases. For example, when contrasting CD and ulcerative 315 
colitis (UC), two related immune disorders affecting different parts of gastrointestinal tract, we found 316 
CD heritability to be more enriched in monocyte, macrophage, and fibroblast subtypes (Fig. 5f), 317 
correlating with the significant role of monocytes in CD (Grip et al., 2007) and fibrogenesis in CD-318 
associated intestinal fibrosis (Burke et al., 2007). In contrast, UC showed higher heritability 319 
enrichment in CD8+ memory and NK cells, underscoring the contribution of NKT cells to the atypical 320 
TH2 response in UC (Fuss et al., 2004) (Fig. 5g). We quantified these differences by applying CSEA 321 
to differential ICE-CREAM score rankings between CD and UC, which highlighted CD8.Trm.01 and 322 
Fibroblast.04 as the most differentially enriched Lv2 cell types for CD and UC, respectively (Fig. 5h-323 
j). Notably, module M050, which is highly specific to Fibroblast.04 and enriched in CD heritability, 324 
showed enrichment in epithelium-related gene sets (Fig. 4f), aligning with the proposed involvement 325 
of epithelial fibroblasts in CD (Burke et al., 2007).  326 

Neurological traits such as schizophrenia, insomnia, and neuroticism showed strong associations 327 
with GABAergic and glutamatergic neurons, while neurodegenerative diseases like Alzheimer’s 328 
diseases and PaD correlated with microglial activity (Fig. 5a). In contrasting amyotrophic lateral 329 
sclerosis (ALS) with PaD, PaD was notably enriched in oligodendrocytes and microglia, aligning 330 
with evidence of microglial activation and consequent neuronal damage in PaD (Bae et al., 2023; 331 
Long-Smith et al., 2009; Hickman et al., 2018; Muzio et al., 2021), while ALS showed enrichment 332 
in dendritic cells and macrophages, known for their inflammatory role in ALS (Rusconi et al., 2017) 333 
(Supplementary Fig. 19). Additionally, in contrasting hypertension with varicose veins, the latter 334 
showed greater enrichment in subsets of BECs, whereas hypertension was more associated with 335 
fibroblasts and SMCs, which is consistent with their roles in vascular function (Touyz et al., 2018) 336 
(Supplementary Fig. 20). Overall, these results highlight the value of the ICE-CREAM score in 337 
identifying specific cell types contributing to traits, advancing our understanding of disease 338 
mechanisms at the cellular level. 339 
 340 
Linking trait-associated variants to relevant cell populations, genes and CREs 341 
To elucidate genetic associations with traits, we prioritized trait-associated variants residing in tCREs 342 
using ICE-CREAM scores, genomic context, PD-links, and TFBM activity (Methods). We 343 
specifically examined SNPs that disrupt TFBMs in relevant cell types and those within HIFI loci, 344 
which exhibit high heritability enrichment (Fig. 3o). Approximately 66% of trait-associated loci 345 
(median per trait) were annotated with at least one SNP in a tCRE enriched in relevant cell types, as 346 
determined by ICE-CREAM score CSEA. In addition, ~56% of trait-associated loci contained at least 347 
one SNP disrupting a TFBM correlated with trait heritability (Supplementary Fig. 21, Supplementary 348 
Table 10, 11). 349 

To illustrate the value of these annotations, consider rheumatoid arthritis (RA), where T cells were 350 
identified as the most strongly associated Lv1 cell type (Fig. 6a). At RA risk loci, we focused on HIFI 351 
loci, particularly DLOC24008 near PTGER4, which showed a high correlation with the RA ICE-352 
CREAM score  and specificity to T cells (Fig. 6b,c,e), in contrast to the broadly expressed PTGER4 353 
(Fig. 6d,f). Interestingly, a large fraction of D-tCREs within DLOC24008 linked to the PTGER4 354 
promoter (Fig. 6h), underscoring how genes with broad expression patterns can achieve cell type-355 
specific regulation through distal tCREs. The RA-associated SNP rs6883964 disrupts an IRF1 motif 356 
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within DLOC24008 (Fig. 6h) and the IRF1 motif is highly active in immune cells (Fig. 6g). The 357 
documented associations of genomic region to multiple immune traits (Libioulle et al., 2007; 358 
Rodriguez-Rodriguez et al., 2015) substantiates the functional association of this SNP with PTGER4 359 
expression specifically in immune cells. This case demonstrates how D-tCREs confer cell type-360 
specific regulation to broadly expressed genes and aids in the interpretation of non-coding SNPs in 361 
intergenic regions with cellular contexts. 362 

We probed trait-associated SNPs in alternative promoters, uncovering significant heritability 363 
enrichment for body height trait within fibroblast and chondrocyte Lv1 cell types (Fig. 6i), 364 
highlighting the crucial role of chondrocytes in endochondral ossification: a process by which 365 
growing cartilage is systematically replaced by bone to form the growing skeleton. Chondrocyte 366 
meta-cells displayed a gradient of height ICE-CREAM scores that correlate with the expression of 367 
essential ossification regulators SOX9 (Hattori et al., 2010) and RUNX2 (Chen et al., 2014) (Fig. 6j-368 
k). A GSEA, where we ranked the absolute correlation between gene expression and height ICE-369 
CREAM score, further underscored the involvement of biological processes and molecular functions 370 
tied to bone biology and the critical components of the TGF-β signaling pathway (Fig. 6l-m), e.g. 371 
SMAD and extracellular matrix (Fig. 6r) (Estrada et al., 2013; Mokuda et al., 2019). 372 

 The inverse expression patterns and trait correlations between WWP2 and SMAD7 in chondrocyte 373 
meta-cells underscore the ubiquitination of SMAD7 by WWP2 within the TGF-β pathway (Fig. 6n-374 
r). Two promoters lead to different WWP2 isoforms (de Kroon et al., 2017; Soond and Chantry, 2011; 375 
Wahl et al., 2019): Promoter 1 (P1) produces a full-length isoform (WWP2-FL) with broad 376 
expression, whereas Promoter 2 (P2) generates a chondrocyte-enriched shorter isoform (WWP2-C), 377 
with P2 expression strongly correlated with the height ICE-CREAM score, but not P1 (Fig. 6r-x). 378 
The observed gradient in height ICE-CREAM score may be influenced by the selective binding of 379 
SMAD proteins to the WWP2 isoforms, particularly the affinity of WWP2-C for SMAD7, impacting 380 
TGF-β signaling in endochondral ossification and ultimately skeletal growth and body height (de 381 
Kroon et al., 2017; Wahl et al., 2019) (Fig. 6r). These detailed tCRE-based analyses provide a 382 
nuanced understanding of trait associations, offering insights beyond traditional gene-level analyses. 383 

 384 
Conclusions 385 
This single-cell tCRE atlas marks a considerable advancement over our previous efforts on bulk 386 
sample (Forrest et al., 2014), expanding the scope to include a wider array of tCREs and cell types, 387 
and enhancing granularity to single-cell resolution. This substantially improved the depth and breadth 388 
of tCRE annotations within the human genome. By interrogating distal regulatory elements and their 389 
associated promoters, our analyses revealed underlying patterns of gene regulation, such as the 390 
connection between broadly expressed promoters and cell type-restricted D-tCREs (Fig. 3h). The 391 
integration of tCRE information into trait heritability assessments through the ICE-CREAM score 392 
reveals subtle trait associations across cell populations (e.g. body height heritability in chondrocytes, 393 
Fig. 6j; WWP2 promoter effects, Fig. 6r), offering fresh insights into gene regulation and trait 394 
heritability in continuous cell populations. While current approaches like sc-linker (Jagadeesh et al., 395 
2022) and h-magma (Sey et al., 2020) analyze trait-associated SNPs within regulatory elements but 396 
overlook a continuum of cell populations, and scDRS (Zhang et al., 2022) considers the continuum 397 
but omits regulatory elements, our approach addresses both, providing higher resolution and 398 
functional interpretability in a more flexible framework. Although sc-ATAC-seq is a prevalent 399 
technique for studying CREs at single-cell resolution, our data indicate that most distal aCREs are 400 
not transcribed (Fig. 1i), whereas transcribed aCREs show a greater enrichment for trait heritability 401 
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(Fig. 1i). The functional significance of untranscribed distal aCREs in gene regulation remains to be 402 
fully understood, yet our findings underscore the value of transcriptional signals in studying CREs, 403 
particularly concerning trait heritability. Looking forward, it is imperative to evaluate the 404 
applicability of our findings at the individual level by single-cell tCRE profiling on a population scale 405 
and to investigate how genetic variants influence CRE activities and disease predispositions in 406 
specific cell types for diagnostic and therapeutic advancements. In conclusion, our work highlights 407 
the power of sc-5’-RNA-seq in mapping tCREs across cell types and advancing our understanding of 408 
the genetic, molecular and cellular drivers of diseases and traits.  409 
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 410 
Figure 1: Detection of tCREs using sc-5’-RNA-seq. a) Distribution of reads aligning to the whole genome 411 
or to genic regions in bulk-CAGE and 5’-end random primed, 5’-end oligo(dT) primed and 3’-end oligo(dT) 412 
primed 10x single-cell RNA-seq. b) Proportion of overlap in tCRE detected in sc-end5-seq pseudo-bulk from 413 
1 to 150 million reads. c) Correlation of tCRE levels between the pseudo-bulk data of the two sc-end5-seq 414 
methods. Red line, ±2-fold differences. UPM, UMI per million. d) TSS signal of sc-end5-dT and sc-end5-rand 415 
at bidirectionally transcribed enhancer loci defined in bulk-CAGE in iPSC and DMFB. e) Percentage of linked 416 
CRE pairs (co-activity score ≥0.2) validated (by pcHi-C) for tCRE (orange) and aCRE (blue), for per PBMC 417 
cell type (hollow circles) and for all cells pooled (solid circles). T-test for difference of tCRE and aCRE means 418 
shown. p <7×10−6, paired t-test for cell types. f) Shifts in alternative promoter usage upon stimulation for genes 419 
with multiple P-tCRE in CD8 T Cells. X-axis, change in accessibility (ratio of proportion of signal in sc-420 
ATAC-seq) within tCRE upon stimulation; Y-axis, mean change in expression (ratio of proportion of signal 421 
in sc-end5-dT) of tCRE across meta-cells (k=50) upon stimulation. P, t-test for change in tCRE usage shown. 422 
Black dots highlight DHX30 promoters shown in g,h. g) Alternative promoter usage shift at DHX30 locus, 423 
modified from Zenbu genome browser view. h) Cell type-specific shift in alternative promoter usage at 424 
DHX30 locus. Proportion of cells with accessible aCRE (left) and transcribing tCRE (right) colored by 425 
stimulation state. i) Enrichment of heritability in aCREs with various levels of evidence of transcription. Y-426 
axis, enrichment of heritability is measured as the ratio of proportion of heritability to proportion of SNP, 427 
estimated by LDSC. Error bars, standard error of the estimate. Asterisks, significant enrichments with p < 0.05.  428 
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 429 
Figure 2: Annotating cell type clusters across 23 human tissues. a) Schematic with tissues of origin and 430 
number of included cells. b) Single-cell (small points) and meta-cell (large points) UMAP colored by Lv1 cell 431 
type clustering, meta-cells are positioned by the average UMAP positions of their single-cells, #meta-cells and 432 
average cells per meta-cell shown for each Lv1 cluster. c) Tissue of origin (rows) for cells in each Lv1 cell 433 
type (columns, in thousands of cells). d,e) Lv1 BEC subset reclustered and colored by Lv2 cell type cluster (d) 434 
and tissue of origin (e). f) Dotplot displaying top differentially expressed genes for each BEC Lv2 cluster.  435 
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 436 
Figure 3: Building a single-cell tCRE atlas. a) Epigenome support of the tCREs. Percentages (upper) and 437 
coverage pattern (lower) of P-tCREs and D-tCREs overlap with ENCODE and sc-ATAC CREs. b) Cell type-438 
specific expression of tCREs. Left, percentage of active P-tCREs and D-tCREs significantly enriched in Lv1 439 
cell types; Right, percentage of genes with significant alternative usage of promoters and linked D-tCREs in 440 
Lv1 cell types. (p < 0.05, Wilcoxon test) c) Alternative promoter usage by IL1RN. An asterisk represents 441 
significant alternative promoter usage (p < 0.05, Wilcoxon test). d) Alternative D-tCRE at BCL2A1. An 442 
asterisk represents significant alternative D-tCRE usage (p < 0.05, Wilcoxon test). e) Corroboration of PD-443 
links by pcHi-C, HiChIP, Hi-C, and Co-activity. f) Genomic distance of PD-links. g) Number of D-tCRE 444 
linked per promoter. h) Number of D-tCRE linked to promoters stratified by promoter Gini index. i) 445 
Expression cutoffs for high intensity distal loci, lines for each Lv1 cell type. Red dotted line, median of the 446 
cutoffs. j) Number of PD-link cutoffs for frequently interacting distal loci. k) HIFI locus at CD44 region. l) 447 
Expression of HIFI loci. Right, the number of active HIFI loci in each Lv1 cell type. Heatmap k-mean clustered 448 
with k=2. Top, the Gini index of each HIFI locus from expression across Lv2 cell types. m) Comparisons 449 
between cell type-unrestricted and -restricted HIFI loci. Wilcoxon test. n) CD heritability enrichment in P-450 
tCREs and D-tCREs. tCREs active in each Lv1 cell type were used to estimate heritability enrichment. o) CD 451 
heritability at distal loci. Left, heritability enrichment of all distal loci active in each Lv1 cell type. Middle, LD 452 
score regression coefficient comparing HIFI loci against non−HIFI loci. Right, LD score regression coefficient 453 
comparing restricted HIFI loci against unrestricted HIFI loci. Dots and error bars, estimated values and 454 
standard errors. An asterisk represents p < 0.05 in all cases. Selected transcripts shown. All boxes represent 455 
25th, 50th and 75th percentile of the data.  456 
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 457 
Figure 4: Inferring regulatory programs with tCRE modules. a) Heatmap of module usage in 150 tCRE 458 
modules (columns) in meta-cells (rows) annotated (right) with Lv1 cell type clusters. b) UMAP plot of module 459 
M011 usage. c) UMAP plot of module M033 usage. d) UMAP plot of M011 usage within the Lv1 BEC cluster. 460 
e) UMAP plot of M033 usage within Lv1 fibroblast cluster f) tCRE modules enriched in stromal cells (columns 461 
across 3 heatmaps) with: i) Heritability enrichment: for selected traits with significant enrichment in the 462 
stromal cell subset. ii) Gene set enrichment: –log10(FDR) of GO terms amongst P-tCREs, over-represented 463 
keywords are shown. iii) Module usage: mean meta-cell module usage in Lv2 cell type clusters.  464 
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 465 
Figure 5: Assessing trait heritability at single-cell resolution using ICE-CREAM score. a) Heatmap of 466 
ICE-CREAM score for traits (rows) in meta-cells (columns) colored by Lv1 cell type clusters (above). b) 467 
UMAP of MI ICE-CREAM score in meta-cells. c) Lv1 CSEA for MI, x-axis NES, y-axis -log10(FDR) d) 468 
Ranking fibroblast meta-cells for MI enrichment in Lv1 CSEA. e) (left) Lv2 fibroblast cell type enrichment 469 
for MI in CSEA, (center) Enrichment for Heart cells, an asterisk represents significant enrichment (p < 0.05, 470 
Fisher’s exact test)  (right) tissue of origin proportion. f) UMAP of CD ICE-CREAM score. g) UMAP of UC 471 
ICE-CREAM score. h) UMAP of difference between CD and UC ICE-CREAM score. i) Lv2 cell type clusters 472 
with significant difference in ICE-CREAM scores. j) CSEA of meta-cells corresponding to the most divergent 473 
Lv2 cell type clusters in (h,i).  474 
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 475 
Figure 6: Linking trait-associated variants to relevant cell populations, genes and CREs. a) RA ICE-476 
CREAM score UMAP, b) HIFI loci scatter plot on x-axis correlation with RA ICE-CREAM score, y-axis 477 
enrichment within T-cells (Wilcoxon rank-sum test). c) HIFI locus DLOC24008 Pearson’s correlation with 478 
RA ICE-CREAM score in meta-cells. d) PTGER4 promoter Pearson’s correlation with RA ICE-CREAM score 479 
in meta-cells. e) HIFI locus DLOC24008 expression UMAP, summed expression of contained D-tCRE. f) 480 
PTGER4 promoter expression UMAP. g) IRF1 motif activity UMAP. h) PTGER4 gene and DLOC24008 481 
genome browser view. i) Height ICE-CREAM score UMAP. j) Height ICE-CREAM score in chondrocyte 482 
Lv1 cluster. k) Ranked gene expression Pearson’s correlation with height ICE-CREAM score in chondrocyte 483 
meta-cells. l,m) GSEA enrichment for GO biological processes (l) and GO molecular functions (m) ranked by 484 
abs(gene expression) correlation with height ICE-CREAM score in chondrocyte Lv1 cluster. n) WWP2 gene 485 
expression in chondrocyte Lv1 cluster. o) Pearson’s correlation of WWP2 and height ICE-CREAM score in 486 
chondrocyte Lv1 cluster. p) Ranked gene expression Pearson’s correlation with height ICE-CREAM score in 487 
chondrocyte meta-cells. l) SMAD7 gene expression in chondrocyte Lv1 cluster. q) Pearson’s correlation of 488 
SMAD7 and height ICE-CREAM score in chondrocyte Lv1 cluster. r) WWP2 genome browser view (left) with 489 
TSS signal, highlighting P1 and P2 producing the WWP2-FL and WWP2-C isoforms respectively. (right) 490 
Schematic of WWP2 regulation of SMAD degradation in TGF-β signaling. s,t) WWP2 P1 (s) and P2 (t) 491 
expression UMAP. u,w) WWP1 P1 (u) and P2 (w) expression in the chondrocyte Lv1 cluster. v,x) WWP1 P1 492 
(v) and P2 (x) Pearson’s correlation with ICE-CREAM score in chondrocyte Lv1 cluster meta-cells.  493 
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Methods 494 

Human Subjects 495 
All human samples examined in this study were either exempted material or were obtained with 496 
informed consent and covered under the following research protocols: RIKEN Yokohama Campus 497 
(no. H28-24, H30-9, H30-26), Ehime University Hospital (1812005), Keio University Hospital 498 
(20170302, 20160377), Keio University School of Medicine (2019-0212), The Jikei University 499 
School of Medicine (33-438(11065)), Osaka University Hospital (21113-2), the University of Tokyo 500 
(2018192G-(4)). Written informed consent on sample collection, data acquisition and usage, and 501 
publication was obtained from all the participants.  502 
         503 
Single-cell 3’ and 5’ RNA-seq 504 
Freshly prepared iPSC and DMFB cells were loaded onto the ChromiumTM Controller (10x 505 
Genomics®) on different days. Cell number and viability were measured by CountessTM II 506 
Automated Cell Counter (Thermo Fisher®). Final cell density was adjusted to 1.0×106cells/ml 507 
with >95% viability. Both cells were targeting ~5,000 cells per reaction. For sc-end3-dT libraries, we 508 
used ChromiumTM Single Cell 3′ Library kit v2 (10x Genomics®). Briefly, single-cell suspensions 509 
were mixed with the Single-cell Master Mix using Reverse transcription (RT) Primer 510 
(AAGCAGTGGTATCAACGCAGAGTACATr–GrGrG) and loaded together with 3′ gel beads and 511 
partitioning oil into a Single Cell A Chips according to the manufacturer's instructions (10x 512 
Genomics®). For sc-end5-dT and sc-end5-rand libraries, we used ChromiumTM Single Cell 5′ 513 
Library kit v1.1 (10x Genomics®). Single-cell suspension was mixed with Single-cell Master Mix 514 
using oligo(dT) RT primer (AAGCAGTGGTATCAACGCAGAGTACGAGAC–T(30)–VN) or 515 
random hexamer RT primer (AAGCAGTGGTATCAACGCAGAGTACNNNNNN) and loaded 516 
together with 5′ gel beads and partitioning oil into a Single Cell A Chips according to the 517 
manufacturer's instructions. RNAs within single-cells were uniquely barcoded and reverse 518 
transcribed within droplets. Both methods used VeritiTM Thermal Cycler (Applied Biosystems®) 519 
for RT reaction. After collecting cDNAs prepared from each method, they were amplified using 520 
cDNA primer mix from the kit, followed by the standard steps according to manufacturer’s 521 
instructions. For iPSC and DMFB, six libraries (i.e. 3 methods × 2 cell lines) were barcoded by 522 
different indexes from i7 sample index plate (10x Genomics®). The libraries were examined in 523 
BioanalyzerTM (Agilent®) for size profiles and quantified by KAPATM Library Quantification Kits 524 
(Kapa Biosystems®). All libraries were sequenced on HiSeqTM 2500 (Illumina®) as 75 bp paired-525 
end reads.  526 
 527 
Single-cell ATAC-seq 528 
Freshly prepared resting and stimulated PBMCs were subjected to sc-end5-dT (Single Cell 5′ Library 529 
kit v1.1) and sc-ATAC-seq (Single Cell ATAC kit v1.1) library construction on the same day using 530 
the ChromiumTM platform according to manufacturer’s instructions (10x Genomics®). About 5,000 531 
cells/nuclei were targeted per reaction. sc-end5-dT and sc-ATAC-seq libraries were sequenced on 532 
HiSeqTM 2500 (Illumina®) as 75bp and 100bp paired-end reads respectively.  533 
 534 
PBMC stimulation  535 
Human PBMCs were prepared from the whole blood of a male healthy donor with LeucosepTM 536 
(Greiner®). Isolated 2×106 PBMC cells were incubated with PMA/ionomycin (i.e. stimulated) (Cell 537 
Activation Cocktail with Brefeldin A, Biolegend®), or DMSO as control (i.e. resting), for six hours.  538 
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 539 
Bulk CAGE, RNA-seq and ATAC-seq library construction and sequencing for DMFB and 540 
iPSC  541 
Bulk CAGE libraries were generated by the nAnT-iCAGE (Murata et al., 2014) method as previously 542 
described and sequenced on HiSeqTM 2500 (Illumina®) as 50bp single-end reads. Bulk RNA-seq 543 
libraries were generated as previously described (Andersson et al., 2014) and sequenced on HiSeqTM 544 
2500 (Illumina®) as 100bp paired-end reads. Bulk ATAC-seq was performed as previously described 545 
(Buenrostro et al., 2015) with slight modifications. Briefly, 2.5×104 cells/ml were used for library 546 
preparation. Due to the more resistant membrane properties of DMFB, 0.25% IGEPALTM CA- 630 547 
(Sigma-Aldrich®) were used for cell lysis. Transposase reaction was carried out as described in the 548 
protocol followed by 10 to 12 cycles of PCR amplification. Amplified DNA fragments were purified 549 
with MinEluteTM PCR Purification Kit (QIAGEN®) and size-selected with AMPureTM XP 550 
(Beckman Coulter®). All libraries were examined in BioanalyzerTM (Agilent®) for size profiles and 551 
quantified by KAPATM Library Quantification Kits (Kapa Biosystems®). Bulk ATAC-seq libraries 552 
were sequenced on HiSeqTM 2500 (Illumina®) as 50bp paired-end reads.  553 
 554 
Processing sc-end5-dT data for PBMC 555 
Reads were aligned to hg19 with Cell Ranger and the gene-based expression matrixes were processed 556 
with Seurat v3. Briefly, cells were excluded with ≥4 median absolute deviation from the mean for 557 
number of features, UMI count, and percentage of mitochondrial UMI. Top 2,000 variable features 558 
were selected. Resting and stimulated PBMC samples were integrated with Canonical correlation 559 
analysis (CCA) implemented in Seurat using principal component (PC) 1 to 20 based on gene-based 560 
expression matrix. Bam files were processed with SCAFE (v1.0.0) to generate filtered CTSS bed files 561 
and de novo define tCRE. tCRE-based expression matrices from SCAFE were added to the Seurat 562 
object for downstream analysis. Cell annotation was performed by manually combining annotations 563 
from scMatch (Hou et al., 2019) (version at 2020-10-10) and known marker genes. cell type-564 
specificity and stimulation-specificity of tCREs were calculated with Seurat FindMarkers function 565 
with min.pct=0, return.thresh=Inf, logfc.threshold=0, min.cells.group=0. 566 
 567 
Processing sc-ATAC-seq data for PBMC 568 
Reads were aligned to hg19 with Cell Ranger ATAC v1.2 (10x Genomics) and the data were processed 569 
with SnapATAC (Fang et al., 2020) v1.0.0 using default parameters, selecting cells with ≥40% reads 570 
in ATAC peaks. Resting and stimulated cells were integrated with Harmony v1.0 using PC 1 to 20. 571 
sc-ATAC-seq and sc-end5-dT were integrated using SnapATAC FindTransferAnchors and 572 
TransferData functions to transfer cell cluster annotations from the sc-end5-dT cells to the sc-ATAC-573 
seq cells. sc-ATAC-seq peaks were defined per cell type using SnapATAC runMACS, then merged. 574 
These merged peaks were referred to as aCREs and these aCREs were annotated using SCAFE. Cell 575 
type-specificity and stimulation-specificity of aCREs were calculated with SnapATAC findDAR. 576 
 577 
Analysis of DMFB, IPSC and PBMC data in Figure 1, Supplementary Figures 1-3. 578 
Reads were aligned to hg19 with Cell Ranger v3.1.0 (10x Genomics), and bam files were processed 579 
with SCAFE to generate filtered CTSS bed files and de novo define tCRE. Annotation counts were 580 
produced by intersecting CTSS bed files with GENCODE gene models. Metagene plots from 581 
overlapping CTSS bed files with exons binned with Bioconductor equisplit using foverlaps. 582 
Enrichment of genesets in sc-end5-dT versus sc-end5-rand was tested using fgsea v1.16.0 with 583 
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nperm=1000. Genesets were defined as: 1) cytoplasmic, nucleoplasmic, and chromatin-bound RNAs: 584 
log2 fold-change ≥2 in fractionated CAGE data compared to total CAGE data, 2) long and short RNAs: 585 
maximum transcript length per gene ≥25,000nt and <1,000nt, 3) Non-polyA histone RNAs: histone 586 
RNAs with log2 fold-change ≥2 in non-polyA fraction in a previous study (Yang et al., 2011) 587 
ChromVAR v1.12.0 was used to estimate per-cell TF motif activities for the JASPAR2018 core motif 588 
set for tCRE or aCRE excluding chrM. The tCRE expression matrix was binarized prior to running. 589 
Cicero v1.3.4.11was used to calculate the co-activity score between CRE pairs using default 590 
parameters. Only tCREs and aCREs present in ≥3 cells were considered. Co-activity scores were 591 
estimated separately using cells within individual cell types (cell type sets) or all cells (pooled set). 592 
A pair of CREs with co-activity score ≥0.2 is defined as “linked”. pcHi-C connections (without 593 
cutoffs) from all cell types were pooled and used for validation of co-activity linked CREs pairs. For 594 
comparisons of validation rates between tCREs and aCREs, only a subset of CREs that are overlapped 595 
between tCREs and aCREs and CRE pairs located ≥10kb apart was used. Detecting shifts in 596 
alternative promoter use: For each cell type (excluding dendritic cells due to low cell count), knn 597 
clustering of the Seurat SNN matrix (k=50) was used to generate meta-cells. The proportion of UMI 598 
in each gene arising from P-tCREs was calculated for each meta-cell. cell type-specific tCRE 599 
switching events were identified using a t-test for differences in the proportion of UMI in gene 600 
contributed from each tCRE between meta-cells of selected cell type and a background of all other 601 
cell types. sc-ATAC-seq signal (UMI per millions) at a tCRE was defined as the maximum signal in 602 
cell type bigwig files generated with SnapATAC runMACS. 603 
 604 
tCRE atlas scRNA alignment, filtering, doublet removal, processing 605 
Fastq from the Single Cell Medical Network in Japan were aligned to hg38 using cellranger versions 606 
3.1.0 to 6.1.2 as data was generated. Samples from He, S et al., 2020 were re-processed from 607 
downloaded fastq files. Gene expression counts were corrected for ambient RNA using cellbender 608 
(Fleming et al., 2023) v0.2.0, using 0.6x and 2.5x cellranger identified cell count as --expected-cells 609 
and --total-droplets-included. Doublet removal was performed with scrublet (Wolock et al., 2019), 610 
cells with fewer than 500 umi, 300 genes, or more than 10% mitochondrial UMI were removed. 611 
Variable genes were identified using scanpy.pp.highly_variable genes flavour=seurat_v3, 612 
batch_key=project, span=0.5. Gene counts were normalized to 1e4 per cell and log transformed. 20 613 
PCs were used for bbknn(Polański et al., 2020) batch correction. Corrected nearest-neighbors graph 614 
were used in UMAP projection and leiden clustering. 615 
 616 
Cell annotation 617 
Cells were annotated with various references as input for manual curation: cello (Bernstein et al., 618 
2021), Azimuth PBMC, Azimuth BBMC, Azimuth Motor cortex (Hao et al., 2021), celltypist 619 
Immune_All_High, Immune_All_Low (Domínguez Conde et al., 2022). Leiden clustering with high 620 
resolution plus manual annotation to merge clusters annotated to the same broad cell types or with 621 
few differential genes was used to assign cells to Lv1 annotations. After annotation of Lv1 cell types, 622 
each was sub-clustered to assign cells to Lv2 cell types following the same procedure as for the whole 623 
atlas Lv1 annotation with the difference of applying harmony batch correction. 624 
 625 
Meta-cells 626 
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Meta-cells were created within each Lv2 cell type using SEACells (Persad et al., 2023) v0.2.0 627 
creating sqrt(n_cells) *2 meta-cells. UMI within genes or tCRE were summed from cells for each 628 
meta-cell and re-log-normalized. 629 
 630 
Annotation and quantification of tCREs in the atlas 631 
To identify tCRE in the atlas data, the SCAFE v1.0.0 (Moody et al., 2022) pipeline was applied to 632 
define and annotate tCREs. Briefly, for each library, the single nucleotide resolution 5’Cap TSS 633 
(CTSS) signals, including the number of UMI with unencoded Gs, were extracted from the alignment 634 
bam files generated from cellranger. The CTSS signals for all libraries of each “project” (as listed in 635 
Supplementary Table 1) were aggregated and used to define a set of TSS clusters for each project. 636 
For each project, the pooled CTSS signals were clustered using paraclu within SCAFE (Moody et 637 
al., 2022) using default parameters, with a cutoff set to ≥3 UMI of encoded-G supported TSS per TSS 638 
cluster. TSS clusters that are potentially strand invasion artifacts were removed (Moody et al., 2022). 639 
The remaining TSS clusters were further filtered using a logistic regression classifier trained with 640 
matched sc-5’-RNASeq and ATAC-Seq data implemented in SCAFE (Moody et al., 2022) at the 641 
logistic probability cutoff of 0.9. These remaining TSS clusters from each project, multiple hard filters 642 
were applied to remove the potentially artifactual clusters on the sense strand of the intronic and 643 
exonic regions of annotated genes, with ≥5 UMI within the cluster and ≥3 UMI at TSS cluster summit. 644 
A slightly more stringent cutoff was applied to the single nuclei libraries from project HCAJ0029 645 
Brain tissues, with ≥10 UMI within the cluster, ≥5 UMI at TSS cluster summit and ≥5 UMI of 646 
encoded-G supported CTSS. These sets of filtered TSS clusters from all projects were merged using 647 
bedtools merge in a strand specific manner. The merged TSS clusters located within ±500nt of gene 648 
TSS annotated in GENCODEv32 were classified as proximal, or as distal otherwise. All TSS clusters 649 
were then extended 400nt upstream and 100nt downstream. These extended ranges were merged 650 
using bedtools, in a strand-specific manner for proximal TSS clusters and non-strand-specific manner 651 
for distal TSS clusters, as proximal-tCRE (P-tCREs) and distal tCREs (D-tCREs) respectively. The 652 
P-tCREs with its CTSS summit within 500nt of annotated gene TSS on the same strand would be 653 
annotated as promoter P-tCREs, and otherwise as flanking P-tCREs. It is noted that most flanking P-654 
tCREs are on the opposite strand of the promoters, resembling promoter upstream antisense 655 
transcripts. For the D-tCREs that are located within the introns or exons of annotated genes, it will 656 
be “rescued” as promoter P-tCREs if, 1) its expression levels (number of UMIs within its TSS clusters) 657 
≥5% of the expression levels of the corresponding gene (total number of UMI of all annotated 658 
promoter P-tCREs of the gene) and 2) ≥75% of its UMIs are on the same strand of the corresponding 659 
gene. In total, 8,791 D-tCRE were rescued as promoter P-tCREs, which can be considered as novel 660 
alternative promoters that are not annotated in GENCODEv32. In total, the above process yielded 661 
81,829 P-tCREs and 96,400 D-tCRE, with 54,149 of 81,829 P-tCREs annotated as promoters. The 662 
average size of P-tCREs and D-tCREs are 771.12 nt and 608.01 nt, respectively. Expression of tCREs 663 
is quantified by counting the number of CTSS UMIs overlap with its constituent TSS clusters on the 664 
same stand. 665 
 666 
Defining of distal loci and HIFI loci 667 
Distal loci is defined as a stretch of closely situated D-tCRE with a distance limit and P-tCREs were 668 
excluded from this analysis. To estimate an optimal distance, the closest distance of a D-tCRE to 669 
another was plotted against the rank and the tangle line of the curve was used to identify a cutoff at 670 
17,065 nt. D-tCREs within this cutoff were ‘stitched’ together and defined 34,120 distal loci, which 671 
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~31.% of them (n=10,547) contains ≥ 3 D-tCREs. A metric, “spreadness”, which quantifies the extent 672 
of evenness of UMI distribution across the constituent D-tCREs, is calculated as ratio of (the fraction 673 
of the the total number of UMI in the loci contributed by the highest expressed D-tCRE in ) to the 674 
(total number D-tCREs in the loci). A distal locus with spreadness ≥ 4 is defined as evenly spread. 675 
The expression level of a distal locus is defined as the sum of the expression level of their constituent 676 
D-tCREs. To identify high intensity distal loci in each Lv1 cell type, the expression levels (log-677 
normalized values) of each active distal loci (UMI count ≥ 1) were plotted against their ranks and the 678 
tangle line of the curve was used to identify a cutoff in each Lv 1 cell type, with a median of 8.36 679 
among Lv1 cell types (Fig. 3i). Frequently interacting distal loci are defined in a cell type agnostic 680 
manner as distal loci with total number linked promoters (from its constituent D-tCREs) passing a 681 
cutoff of 75 (Fig. 3j), determined the same way as high intensity distal loci but plotting the number 682 
of linked promoters instead of expression levels. A distal locus that is 1) evenly spread, 2) frequently 683 
interacting, and 3) high intensity in one of the Lv 1 cell types were defined a HIFI loci, yielding 1,229 684 
HIFI loci in total. Cell type-unrestricted and -restricted HIFI loci were defined by k-mean clustering 685 
of their binary presence/absence among Lv1 cell types with n=2 (Fig. 3l).  686 
 687 
Gini index 688 
Gini index of all tCREs and all distal loci were calculated from the respective expression matrices on 689 
Lv2 cell types (n=180), using the gini() function implemented in the ‘ineq’ R package. 690 
 691 
Inferring Promoter-to-D-tCRE interactions (PD-links) 692 
PD-links were inferred by integrating public chromatin interaction datasets with our tCRE atlas, 693 
including 1) Hi-C from ENCODE (ENCODE Project Consortium et al., 2020) (n=172), 2) H3K27ac 694 
HiChIP from HiChIPdb ((Zeng et al., 2023), n=129), and 3) pcHi-C from 3DIV (Yang et al., 2018) 695 
(n=28). Together with 4) tCRE co-activity estimated from our atlas (Methods). For 1), 2) and 3), the 696 
significant (FDR < 0.05) loops (at various resolutions) were taken as provided by the original sources. 697 
The details of the used chromatin interaction datasets were listed in Supplementary Table 12. For 1) 698 
and 3), the provided significant loops are at mixed resolutions, with mean of 5157.99 bp and 699 
10739.5bp in 1) and 3) respectively. For 2), interactions at 5,000bp were chosen for our analyses. For 700 
4), we estimated the co-activity of all tCRE pairs among all meta-cells across the whole atlas as well 701 
as the meta-cells within each Lv1 cell type, using Cicero v1.3.4.11, with the expression matrix of 702 
tCREs as input and ran in a non-binarized manner. For each pair of tCREs, the highest co-activity 703 
score among the above-mentioned scope was taken as the representative. A pair of promoter and D-704 
tCRE is inferred as linked if both tCREs overlap a significant loop in 1), 2) or 3), or having a 705 
representative co-activity score ≥ 0.2. This analysis yields 466,079 linked promoter-D-tCRE pairs, 706 
involving 40,626 promoters with a median of 9 D-tCREs linked. 707 
 708 
Defining tCRE modules 709 
tCRE modules are defined using cNMF (Kotliar et al., 2019) using the prepare, factorize, combine, 710 
consensus workflow for meta-cell tCRE expression. We used values of k from 50 to 250 in increments 711 
of 10, examining the stability/error plots to maximize the stability and number of components, 712 
selecting k=150 to define 150 modules providing tCRE spectra scores quantifying the contribution of 713 
each tCRE to the module. 714 
 715 
 716 
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Processing of GWAS summary statistics 717 
All GWAS summary statistics (n=63 traits and diseases) are listed in Supplementary Table 7. Briefly, 718 
GWAS summary statistics were obtained from (1) UK biobank heritability browser 719 
(https://nealelab.github.io/UKBB_ldsc/index.html), (2) Dr. Alkes Price group site 720 
(https://alkesgroup.broadinstitute.org/) and (3) other sources (refer to Supplementary Table 7). 721 
Summary statistics obtained from (1) and (2) were directly used for heritability enrichment analyses, 722 
while the summary statistics obtained from (3) were pre-processed using “munge_sumstats.py” 723 
scripts in LDSC software. 724 
 725 
Trait heritability enrichment in CREs 726 
For analysis in Fig. 1i, Fig. 3n, Fig. 3o left column, Supplementary Fig. 9 and Supplementary Fig. 10, 727 
enrichment of trait heritability in CREs was assessed by stratified LD score regression (S-LDSC) 728 
implemented in LDSC software. Annotation files and LD score files were generated for each set of 729 
CREs using the “make_annot.py” and “ldsc.py” scripts using default parameters. Each set of CREs 730 
was added onto the 97 annotations of the baseline-LD model v2.2 and heritability enrichment (i.e., 731 
ratio of proportion of heritability to proportion of SNP) for each trait was estimated using the “ldsc.py” 732 
script with “--h2” flag in default parameters. For analysis in Fig. 3o, middle and right column, as 733 
well as the heritability enrichment in modules (described below), which involve the comparison of 734 
relative heritability enrichment between two sets of CREs, we used the “specifically expressed genes” 735 
approach (LDSC-SEG) implemented in LDSC software. Briefly, two sets of tCREs, one defined as 736 
“foreground” e.g. HIFI loci, was compared against a “background” tCRE set, e.g. non-HIFI loci. 737 
Annotation files and LD score files were generated for each set of “foreground” and “background” 738 
tCREs using the “make_annot.py” and “ldsc.py” scripts using default parameters. These foreground 739 
and background annotations were added onto the 53 annotations of baseline-LD model v1.2 and the 740 
contribution of “foreground” tCREs to trait heritability (i.e., regression coefficient) for each trait was 741 
estimated using the “ldsc.py” script with “--h2-cts” flag in default parameters. 742 
 743 
Trait heritability enrichment in modules 744 
The extent of heritability enrichment for each trait in each module was quantified using the LDSC-745 
SEG approach similar to the approach mentioned above, with the 53 annotations baseline-LD model 746 
v1.2. Briefly, for each module, the top 15000 tCREs ranked by the module contribution score (i.e. 747 
spectra) derived from cNMF was used as the ‘foreground’ and the rest of the tCREs were used as the 748 
‘background’. The ‘‘foreground’ tCRE regions were compared against the ‘background’ tCRE 749 
regions by running ldsc.py --h2-cts, yielding a p-value and a regression coefficient for each trait-750 
module pair. The value of –log10(P) was as a score which is then further trimmed, scaled and powered 751 
within each trait as follows: 1) score of the modules with regression coefficient < 0 or p-value > 0.1 752 
were set to zero; 2) the trimmed score was raised to the power of 1.5 to increase the contrast of high 753 
and low levels of heritability enrichment; 3) the powered score was scaled to the maximum score 754 
within the trait. This yields a value of 0 to 1 within each trait across all modules, which was then used 755 
as the weight to calculate the weighted sum of module usage for ICE-CREAM score described below. 756 
 757 
ICE-CREAM score 758 
In essence, the ICE-CREAM (Individual Cell Enrichment of CRE Activity Module) score, for a 759 
particular trait in a particular single-cell (or meta-cell) was calculated as the sum of module usage, 760 
each weighted by the extent of trait heritability enrichment in the corresponding module. Briefly, 761 
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module usages were calculated for meta-cells (or single-cells) by running cnmf_obj.refit_usage(expr, 762 
spectra). The usage for each module in a cell is then weighted (i.e. multiplied) by the extent of 763 
heritability enrichment (explained above) for the corresponding module for a given trait. The 764 
weighted sum of all modules thus yields a score for each trait in each cell. To quantify the statistical 765 
significance of this score, a null distribution of the score is generated by permutation of the module 766 
usage. Briefly, the tCRE expression values were shuffled within 5 expression bins 1000 times to 767 
generate 1000 expression levels-matched random expression matrices as the input for rerunning 768 
cnmf_obj.refit_usage, yielding 1000 permuted module usage matrices. Weighted sums were then 769 
recalculated for 1000 times, while keeping the extent of heritability enrichment fixed, yielding a null 770 
distribution of the score. The observed score for a given trait in a cell was then compared against the 771 
corresponding null distribution, yielding a Z-score and thus a one-tailed p-value (P), using 772 
scipy.stats.norm.sf. The ICE-CREAM score is then calculated as –log10(P) yielding a non-negative 773 
value. 774 
 775 
Differential gene/tCRE expression and differential tCRE usage 776 
Differential expression for gene or tCRE at Lv1 and Lv2 cell types were performed with 777 
scanpy.tl.rank_genes_groups with method=‘t-test’. In promoter usage analysis, promoters were 778 
considered if they had more than 10 UMI and >=5% of the UMI when summing all promoters 779 
assigned to a gene. The proportion of UMI from each promoter was calculated per meta-cell to give 780 
a promoter usage score. This score was visualized and used as input for differential expression testing 781 
to assign cell type enriched usage.Similarly to promoter usage, D-tCRE usage was calculated for each 782 
gene, using all D-tCRE that were linked with a gene promoter. 783 
 784 
Motif analysis 785 
ChromVAR (Schep et al., 2017) using JASPAR2018 (Khan et al., 2018) motifs was applied to the 786 
tCRE meta-cell based matrix to estimate motif activity in each meta-cell. The motifbreakR R package 787 
(Coetzee et al., 2015) was used to assess the severity of SNP disruption of JASPAR2018 TFBMs. 788 
 789 
Gene Set Enrichment Analysis (GSEA) 790 
fgsea v1.28 (Korotkevich et al., 2021) was used to score enrichment of gene sets from MSigDB 791 
(Hallmarks, Reactome, KEGG, GO biological processes and molecular functions) using maximum 792 
cNMF ‘gene spectra’ scores from promoters assigned to genes to rank genes. 793 
 794 
Cell Set Enrichment Analysis (CSEA) 795 
fgsea was applied to groups of meta-cells within the atlas ranked by trait scores at two levels: Lv1 796 
cell types within the ranking of the whole atlas, or Lv2 cell types within subsets of the atlas (stromal, 797 
immune, neural, epithelial). 798 
 799 
Defining trait associated SNPs, tCREs and genes with functional contexts 800 
To define trait-associated SNPs, genome-wide significant lead variants (p < 5×10−8) were extracted 801 
from the 63 summary statistics listed in Supplementary Table 7. To increase coverage, additional 802 
genome-wide significant lead SNPs for each trait (by matching of ontology terms listed in 803 
Supplementary Table 7) were also extracted from extra GWAS studies from NHGRI-EBI GWAS 804 
Catalog (https://www.ebi.ac.uk/gwas/) (release r2023-06-03). The SNPs within the LD block of the 805 
GWAS lead SNPs (i.e., proxy SNPs) were searched for using PLINK v1.9 with an r2 ≥0.2 within 806 
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±500kb in matched population panels of Phase 3 1000 Genomes Project downloaded from MAGMA 807 
website ( http://ctg.cncr.nl/software/MAGMA/ref_data/). These lead and proxy SNPs are referred to 808 
as trait associated SNPs. Trait associated SNPs residing in a tCRE are then linked to a gene if the 809 
tCRE is the gene promoter or is a D-tCRE linked to genes through the mentioned P-D links. SNPs, 810 
and tCRE are further filtered to be enriched within trait relevant cell types - significant in Lv1 cell 811 
type CSEA to select relevant cell types, tCRE defined as enriched in cell type by significant Wilcoxon 812 
test or Pearson’s correlation with trait ICE-CREAM score > 0.5 across the whole atlas. Log 813 
normalized tCRE expression, gene expression, and distal loci expression are correlated with ICE-814 
CREAM scores across meta-cells. Filtering for SNPs within relevant motifs: SNPs scored as 815 
disrupting TFBM by motifbreakR are listed as motif disrupting if the motif activity score across the 816 
atlas by chromVAR are significantly enriched in the same trait relevant cell types. 817 
 818 
Data availability 819 
Data used in the initial cell line and PBMC comparisons are available in the ArrayExpress database 820 
(http://www.ebi.ac.uk/arrayexpress) under accession numbers: E-MTAB-10385 (sc-end5-dT, sc-end5-rand 821 
and sc-end3-dT for DMFB, iPSC), E-MTAB-10378 (sc-end5-dT for PBMC), E-MTAB-10381 (bulk-ATAC-822 
seq for DMFB, iPSC), E-MTAB-10382 (sc-ATAC-seq for PBMC), E-MTAB-10383 (bulk-RNA-seq for 823 
DMFB, iPSC), E-MTAB-10384 (bulk-CAGE for DMFB, iPSC). 824 
 825 
A genome browser view for the tCRE atlas are available at: https://jon-bioinfo.github.io/TCRE_Atlas/igv.html  826 
 827 
Supplementary figures and tables are available at: https://doi.org/10.6084/m9.figshare.c.6926944 828 
 829 
A cellxgene web portal, the processed data and the codes for data analyses will be made available for upon 830 
publication of the manuscript in a journal.  831 
 832 
Due to patient data confidentiality sequencing data from the Single Cell Medical Network in Japan are not 833 
provided.  834 
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