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Summary

Transcribed cis-regulatory elements (tCREs), such as promoters and enhancers, are fundamental to
modulate gene expression and define cell identity. The detailed mapping of tCREs at single-cell
resolution is essential for understanding the regulatory mechanisms that govern cellular functions.
Prior tCRE catalogs, limited by bulk analysis, have often overlooked cellular heterogeneity. We have
constructed a tCRE atlas using single-cell 5’-RNA-seq, capturing over 340,000 single-cells from 23
human tissues and annotating more than 175,000 tCREs, substantially enhancing the scope and
granularity of existing cis-regulatory element annotations in the human genome. This atlas unveils
patterns of gene regulation, revealing connections between broadly expressed promoters and cell
type-specific distal tCREs. Assessing trait heritability at single-cell resolution with a novel tCRE
module-based approach, we uncovered the nuanced trait-gene regulatory relationships across a
continuum of cell populations, offering insights beyond traditional gene-level and bulk-sample
analyses. Our study bridges the gap between gene regulation and trait heritability, underscoring the
potential of single-cell analysis to elucidate the genetic foundations of complex traits. These insights
set the stage for future research to investigate the impact of genetic variations on diseases at the
individual level, advancing the understanding of cellular and molecular basis of trait heritability.

Introduction

The human body comprises diverse and specialized cell types. Gene expression, which defines cell
identity, is regulated by cis-regulatory elements (CREs), mostly promoters and enhancers. (Zhang et
al., 2021; Ong and Corces, 2011). CREs control gene expression by recruiting transcription factors
(TFs) and RNA polymerase II to initiate transcription of capped-RNA (Cho et al., 1997) at both
promoters and enhancers (Andersson et al, 2014). Sequencing of RNAs 5'-end pinpoints
transcriptional start sites (TSS) and thus transcribed CREs (tCREs). tCREs can be categorized based
on their proximity to the annotated gene: proximal tCREs (P-tCREs), such as promoters, are close to
the gene TSS, while distal tCREs (D-tCREs), like enhancers, are located further away. Previous
studies using TSS profiling in bulk samples, notably CAGE (Murata et al., 2014), concentrated on
tissue samples and a limited number of primary cell types, yielding cell population-averaged
information and a restricted scope (Forrest et al., 2014 FANTOMS). Existing single-cell atlases,
largely based on gene expression, lack alternative promoters and distal CREs (Eraslan et al., 2022;
Dominguez Conde et al., 2022; THE TABULA SAPIENS CONSORTIUM, 2022; Suo et al., 2022)
limiting our ability to decode the regulatory roles of CREs in defining cell type identity. Genome-
wide association studies (GWAS) identified variants associated with traits and diseases (Liu et al.,
2019) that are highly enriched in CREs. Chromatin accessibility assays are routinely employed to
identify accessible CRE (aCRE) (Buenrostro et al., 2015). Despite this, a significant number of distal
aCREs lack the epigenomic marks of active enhancers (Thibodeau ef al., 2018). Although some of
these elements may function as insulators (Kim et al., 2007) or silencers (Pang and Snyder, 2020),
their overall relevance in gene regulation remains elusive, affecting their interpretability in trait-
associated variants annotation.

Single-cell omics allows the quantification of transcriptome, epigenome, and chromatin
interactions among individual cells (Buenrostro et al., 2015, Heumos et al., 2023; Gaulton et al.,
2023). In particular, single-cell 5' RNA-seq (sc-5’-RNA-seq) enables the concurrent detection and
quantification of tCREs, alongside gene expression profiling in single cells (Kouno et al., 2019). In
this study, we used sc-5’-RNA-seq to annotate 175,032 tCREs across 341,156 cells of 180 distinct
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cell types from 23 human tissues. Our analysis linked D-tCREs to their target promoters, revealing
cell type-specific CRE usage patterns. We characterized tCRE modules and their associations to 63
different traits and diseases, highlighting their relevance in cell type-specific gene regulation and in
disease predispositions. Based on tCRE module usage in single-cells, we introduced the novel ICE-
CREAM score to assess trait heritability enrichment at the single-cell level, revealing nuanced trait-
gene regulatory relationships across a continuum of cell populations. Moreover, by analyzing trait-
associated variants within tCREs to unravel their regulatory impacts, we have deepened the
understanding of how genetic associations contribute to disease at the molecular and cellular levels.

Results

Detection of tCREs using sc-5’-RNA-seq

Enhancer RNAs (eRNA) are generally thought to be non-polyadenylated (Andersson et al., 2014);
therefore, we assessed the sensitivity of D-tCRE detection by sc-5’-RNA-seq, comparing oligo(dT)
(sc-end5-dT) and random hexamer (sc-end5-rand) priming in human dermal fibroblasts (DBFM) and
induced pluripotent stem cells (iPSC). Most signals were observed at gene TSSs for both protocols
as expected (Fig. 1a). Both protocols detected P- and D-tCREs with a high degree of overlap (Fig.
1b) and strong correlation in expression levels (Fig. 1¢). Moreover, both protocols recapitulated the
bidirectional transcription of eRNAs defined by bulk-CAGE in a cell type-specific manner (Fig. 1d).
The detection of eRNAs by sc-end5-dT is unexpected, and likely can be attributed to internal priming
(La Manno et al., 2018; Gaidatzis et al., 2015). Notably, sc-end5-dT demonstrated greater sensitivity
at the per-cell level, with similar read distribution profiles (Supplementary Fig. 1,2). These findings
affirm the efficacy of sc-end5-dT in detecting both P-tCREs and D-tCREs, including eRNAs.

We compared tCREs defined by sc-end5-dT with aCREs defined by sc-ATAC-seq in PBMCs
under resting and activated states (Methods). Both methods offered similar cell clustering resolution,
cell type specificity for CREs, and motif activity estimates (Supplementary Fig. 3). Using co-activity
analysis (Pliner et al., 2018), tCRE pairs with high co-activity showed a greater validation rate via
promoter-capture Hi-C (pcHi-C) (Javierre et al., 2016) (Fig. 1e). Upon PBMC activation, we
identified 123 genes showing significant shifts in alternative promoter transcription, with only
minimal changes in accessibility (Fig. 1f), as exemplified with the DHX30 gene in CD8+ T-cells
switching from promoter 1 to promoter 2 (Fig. 1g-h). This indicates that sc-ATAC-seq may have
limited sensitivity in detecting changes in alternative promoter usage. Additionally, we found that
increased transcriptional activity at aCREs correlated with enhanced trait heritability enrichment,
particularly in distal aCREs (Fig. 1i). These findings highlight the capability of sc-end5-dT to capture
cell type-specific P- and D-tCRE activities, leading to the creation of a comprehensive tCRE atlas
using this approach.

Annotating cell type clusters across 23 human tissues
We obtained sc-end5-dT single-cell or single-nuclei data, hereafter referred to as 'single-cell' data,
from diverse human tissues via Single Cell Medical Network in Japan and public data (He, S ef al.,
2020) (Supplementary Table 1). Employing a standardized data processing pipeline for dataset
integration (Methods), we constructed an atlas of 341,156 single-cells from 23 tissues (Fig. 2a). This
atlas includes cells categorized into 21 Level 1 (Lv1) cell types (Fig. 2b-¢, Supplementary Fig. 4) and
further sub-clustering yielded 180 Level 2 (Lv2) cell types. To address sparsity and computational
load while preserving transcriptional diversity, we created 3,350 meta-cells (Fig. 2b) (Supplementary
5
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Fig. 5,6). Analyses in this study were predominantly performed at the meta-cell level, unless specified
otherwise.

To illustrate our cell annotations, we highlighted blood endothelial cells (BECs), distinguishing
arterial, capillary, and venous subtypes, their tissue distribution, and marker genes in Level 2 (Lv2)
cell types (Fig. 2d-f). For example, general capillary BECs displayed gene expression profiles
indicative of inflammatory response and lipid transcytosis, marked by genes such as BTNLY, ITGAI,
and CD36. Lung-enriched BEC.Capillary.2 subtypes were characterized by the pulmonary marker
CA4. Notably, we observed an enrichment of capillaries in the heart and joint (BEC.Capillary.1)
whereas venous BECs were enriched in the skin (BEC.Venous.1 and BEC.Venous.4) (Fig. 2e) (He,
Y et al., 2022), aligning with the role capillary-to-myofiber interface plays in muscle function
(Lemieux and Birot, 2021). Additionally, venous BECs showed higher expression of CD74, CCL14,
ACKRI compared to arterial and capillary subtypes, suggesting a role in immune cell migration (Li
et al.,2022). Detailed markers and tissue composition maps for Lv2 cell types highlight the diversity
captured across immune, neuronal, stromal and endothelial cell types (Supplementary Fig. 6,7). In
summary, these results demonstrated the utility and relevance of our cell type clustering and
annotations.

Building a single-cell tCRE atlas

Utilizing our single-cell data, we built a tCRE atlas comprising 81,829 proximal (P-tCREs) and
96,400 distal (D-tCREs) elements (Methods; Moody et al., 2022; Supplementary Table 2). The
majority of these tCREs—94.3% of P-tCREs and 88.2% of D-tCREs were supported by candidate
CREs from external epigenomic datasets from ENCODE (ENCODE Project Consortium ef al., 2020)
and a sc-ATAC atlas (Zhang et al., 2021), affirming the validity of our tCREs (Fig. 3a). The
remaining unsupported tCREs may represent novel, cell type-specific elements. Notably, only 84.3%
of P-tCREs and 46.7% of D-tCREs aligned with FANTOMS TSS clusters (Forrest et al., 2014),
expanding tCRE annotations within the human genome. Our analysis of cell type-specificity revealed
a median enrichment of 7.8% for P-tCREs and 11.1% for D-tCREs in Lv1 cell types (Fig. 3b), with
glutamatergic neurons displaying the highest specificity, consistent with known chromatin
accessibility patterns (Hauberg et al., 2020), indicative of a relatively more complex gene regulatory
architecture in glutamatergic neurons. Additionally, we categorized 66.1% of P-tCREs as gene
promoters and the remainder as ‘flanking’, identifying 8,791 potential novel alternative promoters
not listed in GENCODEv32. Overall, our atlas provides promoter annotations for 31,594 genes,
including 12,386 with multiple promoters, averaging 4.4 promoters per gene (Supplementary Table
3).

Alternative promoter usage is a key mechanism for expanding transcriptome diversity and
generating functionally distinct isoforms (Singer et al., 2008). On average 12.9% of multi-promoter
genes (n=1,948 in total) exhibited significant alternative promoter usage across Lv1 cell types (Fig.
3b; Supplementary Table 4). The ILIRN gene, for example, employs distinct promoters for its
secreted (P1) and intracellular (P2) isoforms, with P1 enriched in immune cells and P2 in non-
secretory epithelial cells (Fig. 3¢), indicating cell type-specific functionalities (Butcher et al., 1994)
and aligning with the hypothesis that the intracellular form modulates IL-1 production in
keratinocytes (Arend and Guthridge, 2000). Additionally, TF binding motif (TFBM) activity
estimations suggested that differential promoter usage may be influenced by cell type-specific TF
activity, with 48.5% (n=944 of 1,948) of genes with alternative promoters having significantly
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upregulated TFBMs in corresponding Lv1 cell types (Supplementary Fig. 8), indicating a TF-driven
mechanism underpinning cell type-specific promoter usage.

We integrated three public chromatin interaction datasets with co-activity data from our atlas to
infer Promoter-to-Distal tCRE interactions (PD-links), cataloging 466,079 PD-links for 75% of
promoters (n=40,626) (Supplementary Table 5). Notably, 39% of these links were supported by at
least two out of four evidence lines (Fig. 3e), with promoters connecting to a median of nine D-tCREs
at a distance of 137.39 kb (Fig. 3f-g). Alternative usage of distal regulatory elements has broad
implications for cell type identity, differentiation, and development (Nord et al., 2013). Our findings
suggest that promoters with broader expression profiles across Lv2 cell types, indicated by a lower
Gini index, are linked to more D-tCREs (Fig. 3h), suggesting extensive use of distal elements for
regulating genes with a broad cellular activity. Furthermore, 10.4% of genes with multiple D-tCRE
links showed significant changes in D-tCRE usage across Lv1 cell types (Fig. 3b). For example, the
BCL2A1 gene, pivotal for T cell development and survival (Mandal et al, 2005), exhibited
differential D-tCRE usage correlating with its enriched expression pattern across immune cells (Fig.
3d). These results highlight that BCL2A1 consistently maintains enriched expression across immune
cell types, while it harbors unique sets of distal regulatory elements within each cell type, reinforcing
the observation in Fig. 3h that the cell type-specific gene regulation is supported by distinct sets of
D-tCRE.

In our atlas, we observed regions with intense D-tCRE activity and high frequencies of chromatin
interactions, termed High Intensity and Frequently Interacting (HIFI) loci, (Fig. 3k; Supplementary
Table 6), analogous to super-enhancers and FIREs (Schmitt et al., 2016; Hnisz et al., 2013). For
example, the CD44 region contains a HIFI locus (DLOC5040) with 47 D-tCREs spanning 186.6 kb.
Most of these D-tCREs display bidirectional transcription and are supported by epigenomic data, with
74.4% (35 of 47) linked to the CD44 promoter, as corroborated by coactivity and chromatin
interaction data (Fig. 3k). We cataloged 1,229 HIFI loci, with each Lv1 cell type expressing a median
of 336 HIFTI loci (Fig. 31). These were classified as either cell type-unrestricted (n=377) or -restricted
(n=852) based on their expression patterns, correlating well with Gini index distributions (Fig. 31-m).
Atunrestricted loci, both D-tCREs and their linked promoters showed significantly lower Gini indices
compared to restricted loci (Fig. 3m), suggesting a role for distal elements in gene expression
refinement and specificity across cell types. The unrestricted loci also comprise more D-tCREs and
span larger genomic regions, implying a more complex regulatory mechanism at these loci across cell
types (Fig. 3m).

To assess the biological relevance of various tCRE categories, we investigated their enrichment in
trait and disease heritability (Finucane ef al., 2015). We observed similar enrichment levels for both
P- and D-tCREs across Lvl1 cell types (Supplementary Fig. 9). In immune cells, tCREs exhibited
higher enrichment in Crohn’s disease (CD) heritability, particularly D-tCREs (e.g., dendritic cells in
Fig. 3n), which is consistent with their critical role in microbial recognition and innate immunity
(Bates and Diehl, 2014). Additionally, cell-type-specific trait enrichments, such as in BECs and
smooth muscle cells (SMCs) for varicose veins, and microglia and oligodendrocyte progenitors for
Parkinson’s disease (PaD), were observed (Supplementary Fig. 9). CD heritability enrichment was
notably higher at HIFI loci compared to non-HIFI loci (Fig. 30), mirroring the enriched disease
heritability observed in super-enhancers (Hnisz et al., 2013). Further, cell type-restricted HIFI loci
were more enriched in heritability within relevant cell types, like dendritic cells,
monocytes/macrophages, and fibroblasts, highlighting the cell type-specific importance of these loci
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(Fig. 30; Supplementary Fig. 10 for all other traits). These findings underscore the critical role of
distal regulatory elements in the cell type-specific landscape of disease heritability.

Inferring regulatory programs with tCRE modules

Applying consensus Non-negative Matrix Factorization (¢c(NMF) to our meta-cell data, we identified
150 tCRE regulatory modules that represent independent biological properties in specific cell
populations, such as muscle contraction in SMCs (Kotliar et al., 2019) (Fig. 4a,f). These modules are
largely cell type-specific (Supplementary Fig. 11), with, for example, MO11 being specific to BEC
subsets, while M033 is specific to fibroblasts (Fig. 4b-e). Further analysis within the stromal cell
subset, including SMCs, lymph endothelial cells (LECs), and chondrocytes, pinpointed modules like
MO053 and M028 as SMC-specific, related to muscle function and cardiac biology, and notably
enriched in myocardial infarction (MI) heritability (Fig. 4f), underscoring the protective role of SMCs
in mediating superoxide free radicals within the aortic wall (Zhuge et al., 2020). Additionally,
significant MI heritability enrichment was observed in one BEC-associated module (M011) and two
fibroblast-associated modules (M012 and M080). These findings provide insights into tCRE module
usages within SMCs, BECs, and fibroblasts and suggest their relevance to MI, underscoring the
biological significance of the tCRE modules we identified. Moreover, our analysis delineates tissue-
specific module-trait relationships across immune, neuronal, and epithelial cells (Supplementary Fig.
12-14), reinforcing the intricate cell type-specific nature and disease relevance of these tCRE modules.

Assessing trait heritability at single-cell resolution using ICE-CREAM score

Identifying cell types implicated in diseases is crucial for biomedical research. We have developed
an analytical framework to assess trait heritability enrichment at the single-cell or meta-cell level
based on trait heritability enrichment in tCRE modules. This allows for interrogation of trait
heritability in a manner dependent or independent of cell type annotations. In this framework, we
calculate a trait heritability enrichment score, the ICE-CREAM score, for each cell by summing the
usage of all modules weighted by their heritability enrichment for a trait, then evaluating the
significance against a permuted null distribution, with score expressed as —log10(p-value) (Methods).
Applying the ICE-CREAM score to analyze 63 traits across 3,350 meta-cells revealed the specificity
of cell types to these traits (Fig. Sa). When projected onto single cells, similar patterns were observed
(Data availability). Using Cell-Set Enrichment Analysis (CSEA) to quantify trait enrichment in Lv1
cell types (Supplementary Table 8), we identified a link between COVID-19 severity and
monocyte/macrophage cells, consistent with their documented recruitment in severe cases (Zhou et
al., 2020), and with BECs and mast cells, known to be implicated in COVID-related thrombosis
(Afrin et al., 2020; Bonaventura et al., 2021). Moreover, our approach revealed the involvement of
diverse cell types in complex diseases, as evidenced by the enrichment across immune cells,
fibroblasts, SMCs, and endothelial cells in psoriasis (Fig. 5a).

Highlighting MI, we noted significant heritability enrichments within Lv1 cell types of BECs,
fibroblasts, and SMCs (Fig. Sb-d), aligning with the module enrichments depicted in Fig. 4f. Further
CSEA of Lv2 fibroblast cell types pinpointed MI heritability enrichment particularly in Fibroblast.07
and Fibroblast.05, which were notably prevalent and significantly enriched in heart tissues (Fig. Se).
These findings illustrate the role of tissue origin and microenvironment in influencing cell subtype
specification and their contributions to disease. For a more detailed understanding of cell type-
specific trait heritability, we extended the CSEA to Lv2 cell types for all traits studied, offering a
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high-resolution view of cell type to trait associations (Supplementary Table 9; Supplementary Fig.
15-18).

A pairwise comparison of ICE-CREAM scores for closely related traits elucidated fine-grained
differences in cell type relevance between diseases. For example, when contrasting CD and ulcerative
colitis (UC), two related immune disorders affecting different parts of gastrointestinal tract, we found
CD heritability to be more enriched in monocyte, macrophage, and fibroblast subtypes (Fig. 5f),
correlating with the significant role of monocytes in CD (Grip et al., 2007) and fibrogenesis in CD-
associated intestinal fibrosis (Burke et al., 2007). In contrast, UC showed higher heritability
enrichment in CD8+ memory and NK cells, underscoring the contribution of NKT cells to the atypical
TH2 response in UC (Fuss ef al., 2004) (Fig. 5g). We quantified these differences by applying CSEA
to differential ICE-CREAM score rankings between CD and UC, which highlighted CD8.Trm.01 and
Fibroblast.04 as the most differentially enriched Lv2 cell types for CD and UC, respectively (Fig. Sh-
j)- Notably, module M050, which is highly specific to Fibroblast.04 and enriched in CD heritability,
showed enrichment in epithelium-related gene sets (Fig. 4f), aligning with the proposed involvement
of epithelial fibroblasts in CD (Burke et al., 2007).

Neurological traits such as schizophrenia, insomnia, and neuroticism showed strong associations
with GABAergic and glutamatergic neurons, while neurodegenerative diseases like Alzheimer’s
diseases and PaD correlated with microglial activity (Fig. Sa). In contrasting amyotrophic lateral
sclerosis (ALS) with PaD, PaD was notably enriched in oligodendrocytes and microglia, aligning
with evidence of microglial activation and consequent neuronal damage in PaD (Bae et al., 2023;
Long-Smith et al., 2009; Hickman et al., 2018; Muzio et al., 2021), while ALS showed enrichment
in dendritic cells and macrophages, known for their inflammatory role in ALS (Rusconi et al., 2017)
(Supplementary Fig. 19). Additionally, in contrasting hypertension with varicose veins, the latter
showed greater enrichment in subsets of BECs, whereas hypertension was more associated with
fibroblasts and SMCs, which is consistent with their roles in vascular function (Touyz et al., 2018)
(Supplementary Fig. 20). Overall, these results highlight the value of the ICE-CREAM score in
identifying specific cell types contributing to traits, advancing our understanding of disease
mechanisms at the cellular level.

Linking trait-associated variants to relevant cell populations, genes and CREs

To elucidate genetic associations with traits, we prioritized trait-associated variants residing in tCREs
using ICE-CREAM scores, genomic context, PD-links, and TFBM activity (Methods). We
specifically examined SNPs that disrupt TFBMs in relevant cell types and those within HIFT loci,
which exhibit high heritability enrichment (Fig. 30). Approximately 66% of trait-associated loci
(median per trait) were annotated with at least one SNP in a tCRE enriched in relevant cell types, as
determined by ICE-CREAM score CSEA. In addition, ~56% of trait-associated loci contained at least
one SNP disrupting a TFBM correlated with trait heritability (Supplementary Fig. 21, Supplementary
Table 10, 11).

To illustrate the value of these annotations, consider rheumatoid arthritis (RA), where T cells were
identified as the most strongly associated Lv1 cell type (Fig. 6a). At RA risk loci, we focused on HIFI
loci, particularly DLOC24008 near PTGER4, which showed a high correlation with the RA ICE-
CREAM score and specificity to T cells (Fig. 6b,c,e), in contrast to the broadly expressed PTGER4
(Fig. 6d,f). Interestingly, a large fraction of D-tCREs within DLOC24008 linked to the PTGER4
promoter (Fig. 6h), underscoring how genes with broad expression patterns can achieve cell type-
specific regulation through distal tCREs. The RA-associated SNP rs6883964 disrupts an /RF'/ motif
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within DLOC24008 (Fig. 6h) and the /RF/ motif is highly active in immune cells (Fig. 6g). The
documented associations of genomic region to multiple immune traits (Libioulle et al., 2007;
Rodriguez-Rodriguez et al., 2015) substantiates the functional association of this SNP with PTGER4
expression specifically in immune cells. This case demonstrates how D-tCREs confer cell type-
specific regulation to broadly expressed genes and aids in the interpretation of non-coding SNPs in
intergenic regions with cellular contexts.

We probed trait-associated SNPs in alternative promoters, uncovering significant heritability
enrichment for body height trait within fibroblast and chondrocyte Lvl cell types (Fig. 6i),
highlighting the crucial role of chondrocytes in endochondral ossification: a process by which
growing cartilage is systematically replaced by bone to form the growing skeleton. Chondrocyte
meta-cells displayed a gradient of height ICE-CREAM scores that correlate with the expression of
essential ossification regulators SOX9 (Hattori et al., 2010) and RUNX2 (Chen et al., 2014) (Fig. 6j-
k). A GSEA, where we ranked the absolute correlation between gene expression and height ICE-
CREAM score, further underscored the involvement of biological processes and molecular functions
tied to bone biology and the critical components of the TGF-f signaling pathway (Fig. 61-m), e.g.
SMAD and extracellular matrix (Fig. 6r) (Estrada ef al., 2013; Mokuda et al., 2019).

The inverse expression patterns and trait correlations between WWP2 and SMAD?7 in chondrocyte
meta-cells underscore the ubiquitination of SMAD7 by WWP2 within the TGF-§ pathway (Fig. 6n-
r). Two promoters lead to different WWP2 isoforms (de Kroon et al., 2017; Soond and Chantry, 2011;
Wahl et al., 2019): Promoter 1 (P1) produces a full-length isoform (WWP2-FL) with broad
expression, whereas Promoter 2 (P2) generates a chondrocyte-enriched shorter isoform (WWP2-C),
with P2 expression strongly correlated with the height ICE-CREAM score, but not P1 (Fig. 6r-x).
The observed gradient in height ICE-CREAM score may be influenced by the selective binding of
SMAD proteins to the WWP2 isoforms, particularly the affinity of WWP2-C for SMAD7, impacting
TGF-p signaling in endochondral ossification and ultimately skeletal growth and body height (de
Kroon et al., 2017; Wahl et al., 2019) (Fig. 6r). These detailed tCRE-based analyses provide a
nuanced understanding of trait associations, offering insights beyond traditional gene-level analyses.

Conclusions

This single-cell tCRE atlas marks a considerable advancement over our previous efforts on bulk
sample (Forrest et al., 2014), expanding the scope to include a wider array of tCREs and cell types,
and enhancing granularity to single-cell resolution. This substantially improved the depth and breadth
of tCRE annotations within the human genome. By interrogating distal regulatory elements and their
associated promoters, our analyses revealed underlying patterns of gene regulation, such as the
connection between broadly expressed promoters and cell type-restricted D-tCREs (Fig. 3h). The
integration of tCRE information into trait heritability assessments through the ICE-CREAM score
reveals subtle trait associations across cell populations (e.g. body height heritability in chondrocytes,
Fig. 6j; WWP2 promoter effects, Fig. 6r), offering fresh insights into gene regulation and trait
heritability in continuous cell populations. While current approaches like sc-linker (Jagadeesh et al.,
2022) and h-magma (Sey et al., 2020) analyze trait-associated SNPs within regulatory elements but
overlook a continuum of cell populations, and scDRS (Zhang et al., 2022) considers the continuum
but omits regulatory elements, our approach addresses both, providing higher resolution and
functional interpretability in a more flexible framework. Although sc-ATAC-seq is a prevalent
technique for studying CREs at single-cell resolution, our data indicate that most distal aCREs are
not transcribed (Fig. 1i), whereas transcribed aCREs show a greater enrichment for trait heritability
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(Fig. 1i). The functional significance of untranscribed distal aCREs in gene regulation remains to be
fully understood, yet our findings underscore the value of transcriptional signals in studying CREs,
particularly concerning trait heritability. Looking forward, it is imperative to evaluate the
applicability of our findings at the individual level by single-cell tCRE profiling on a population scale
and to investigate how genetic variants influence CRE activities and disease predispositions in
specific cell types for diagnostic and therapeutic advancements. In conclusion, our work highlights
the power of sc-5’-RNA-seq in mapping tCREs across cell types and advancing our understanding of
the genetic, molecular and cellular drivers of diseases and traits.
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Figure 1: Detection of tCREs using sc-5’-RNA-seq. a) Distribution of reads aligning to the whole genome
or to genic regions in bulk-CAGE and 5’-end random primed, 5’-end oligo(dT) primed and 3’-end oligo(dT)
primed 10x single-cell RNA-seq. b) Proportion of overlap in tCRE detected in sc-end5-seq pseudo-bulk from
1 to 150 million reads. ¢) Correlation of tCRE levels between the pseudo-bulk data of the two sc-end5-seq
methods. Red line, +2-fold differences. UPM, UMI per million. d) TSS signal of sc-end5-dT and sc-end5-rand
at bidirectionally transcribed enhancer loci defined in bulk-CAGE in iPSC and DMFB. e) Percentage of linked
CRE pairs (co-activity score >0.2) validated (by pcHi-C) for tCRE (orange) and aCRE (blue), for per PBMC
cell type (hollow circles) and for all cells pooled (solid circles). T-test for difference of tCRE and aCRE means
shown. p <7x107°, paired -test for cell types. f) Shifts in alternative promoter usage upon stimulation for genes
with multiple P-tCRE in CD8 T Cells. X-axis, change in accessibility (ratio of proportion of signal in sc-
ATAC-seq) within tCRE upon stimulation; Y-axis, mean change in expression (ratio of proportion of signal
in sc-end5-dT) of tCRE across meta-cells (k=50) upon stimulation. P, t-test for change in tCRE usage shown.
Black dots highlight DHX30 promoters shown in g,h. g) Alternative promoter usage shift at DHX30 locus,
modified from Zenbu genome browser view. h) Cell type-specific shift in alternative promoter usage at
DHX30 locus. Proportion of cells with accessible aCRE (left) and transcribing tCRE (right) colored by
stimulation state. i) Enrichment of heritability in aCREs with various levels of evidence of transcription. Y-
axis, enrichment of heritability is measured as the ratio of proportion of heritability to proportion of SNP,
estimated by LDSC. Error bars, standard error of the estimate. Asterisks, significant enrichments with p <0.05.
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Figure 2: Annotating cell type clusters across 23 human tissues. a) Schematic with tissues of origin and
number of included cells. b) Single-cell (small points) and meta-cell (large points) UMAP colored by Lv1 cell
type clustering, meta-cells are positioned by the average UMAP positions of their single-cells, #meta-cells and
average cells per meta-cell shown for each Lvl cluster. ¢) Tissue of origin (rows) for cells in each Lvl cell
type (columns, in thousands of cells). d,e) Lvl BEC subset reclustered and colored by Lv2 cell type cluster (d)
and tissue of origin (e). f) Dotplot displaying top differentially expressed genes for each BEC Lv2 cluster.
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Figure 3: Building a single-cell tCRE atlas. a) Epigenome support of the tCREs. Percentages (upper) and
coverage pattern (lower) of P-tCREs and D-tCREs overlap with ENCODE and sc-ATAC CREs. b) Cell type-
specific expression of tCREs. Left, percentage of active P-tCREs and D-tCRE:s significantly enriched in Lv1
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Lv1 cell types. (p < 0.05, Wilcoxon test) ¢) Alternative promoter usage by /L/RN. An asterisk represents
significant alternative promoter usage (p < 0.05, Wilcoxon test). d) Alternative D-tCRE at BCL2A41. An
asterisk represents significant alternative D-tCRE usage (p < 0.05, Wilcoxon test). e) Corroboration of PD-
links by pcHi-C, HiChIP, Hi-C, and Co-activity. f) Genomic distance of PD-links. g) Number of D-tCRE
linked per promoter. h) Number of D-tCRE linked to promoters stratified by promoter Gini index. i)
Expression cutoffs for high intensity distal loci, lines for each Lv1 cell type. Red dotted line, median of the
cutoffs. j) Number of PD-link cutoffs for frequently interacting distal loci. k) HIFI locus at CD44 region. 1)
Expression of HIFI loci. Right, the number of active HIFI loci in each Lv1 cell type. Heatmap k-mean clustered
with k=2. Top, the Gini index of each HIFI locus from expression across Lv2 cell types. m) Comparisons
between cell type-unrestricted and -restricted HIFI loci. Wilcoxon test. n) CD heritability enrichment in P-
tCREs and D-tCREs. tCREs active in each Lv1 cell type were used to estimate heritability enrichment. o) CD
heritability at distal loci. Left, heritability enrichment of all distal loci active in each Lv1 cell type. Middle, LD
score regression coefficient comparing HIFI loci against non—HIFI loci. Right, LD score regression coefficient
comparing restricted HIFI loci against unrestricted HIFI loci. Dots and error bars, estimated values and
standard errors. An asterisk represents p < 0.05 in all cases. Selected transcripts shown. All boxes represent
25th, 50th and 75th percentile of the data.
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Figure 4: Inferring regulatory programs with tCRE modules. a) Heatmap of module usage in 150 tCRE
modules (columns) in meta-cells (rows) annotated (right) with Lv1 cell type clusters. b) UMAP plot of module
MO11 usage. ¢) UMAP plot of module M033 usage. d) UMAP plot of MO11 usage within the Lvl BEC cluster.
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Figure 6: Linking trait-associated variants to relevant cell populations, genes and CREs. a) RA ICE-
CREAM score UMAP, b) HIFI loci scatter plot on x-axis correlation with RA ICE-CREAM score, y-axis
enrichment within T-cells (Wilcoxon rank-sum test). ¢) HIFI locus DLOC24008 Pearson’s correlation with
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Methods

Human Subjects

All human samples examined in this study were either exempted material or were obtained with
informed consent and covered under the following research protocols: RIKEN Yokohama Campus
(no. H28-24, H30-9, H30-26), Ehime University Hospital (1812005), Keio University Hospital
(20170302, 20160377), Keio University School of Medicine (2019-0212), The Jikei University
School of Medicine (33-438(11065)), Osaka University Hospital (21113-2), the University of Tokyo
(2018192G-(4)). Written informed consent on sample collection, data acquisition and usage, and
publication was obtained from all the participants.

Single-cell 3’ and 5’ RNA-seq

Freshly prepared iPSC and DMFB cells were loaded onto the ChromiumTM Controller (10x
Genomics®) on different days. Cell number and viability were measured by CountessTM II
Automated Cell Counter (Thermo Fisher®). Final cell density was adjusted to 1.0x106cells/ml
with >95% viability. Both cells were targeting ~5,000 cells per reaction. For sc-end3-dT libraries, we
used ChromiumTM Single Cell 3" Library kit v2 (10x Genomics®). Briefly, single-cell suspensions
were mixed with the Single-cell Master Mix using Reverse transcription (RT) Primer
(AAGCAGTGGTATCAACGCAGAGTACATr—GrGrG) and loaded together with 3’ gel beads and
partitioning oil into a Single Cell A Chips according to the manufacturer's instructions (10x
Genomics®). For sc-end5-dT and sc-end5-rand libraries, we used ChromiumTM Single Cell 5’
Library kit v1.1 (10x Genomics®). Single-cell suspension was mixed with Single-cell Master Mix
using oligo(dT) RT primer (AAGCAGTGGTATCAACGCAGAGTACGAGAC-T(30)-VN) or
random hexamer RT primer (AAGCAGTGGTATCAACGCAGAGTACNNNNNN) and loaded
together with 5’ gel beads and partitioning oil into a Single Cell A Chips according to the
manufacturer's instructions. RNAs within single-cells were uniquely barcoded and reverse
transcribed within droplets. Both methods used VeritiTM Thermal Cycler (Applied Biosystems®)
for RT reaction. After collecting cDNAs prepared from each method, they were amplified using
cDNA primer mix from the kit, followed by the standard steps according to manufacturer’s
instructions. For iPSC and DMFB, six libraries (i.e. 3 methods x 2 cell lines) were barcoded by
different indexes from i7 sample index plate (10x Genomics®). The libraries were examined in
BioanalyzerTM (Agilent®) for size profiles and quantified by KAPATM Library Quantification Kits
(Kapa Biosystems®). All libraries were sequenced on HiSeqTM 2500 (Illumina®) as 75 bp paired-
end reads.

Single-cell ATAC-seq

Freshly prepared resting and stimulated PBMCs were subjected to sc-end5-dT (Single Cell 5’ Library
kit v1.1) and sc-ATAC-seq (Single Cell ATAC kit v1.1) library construction on the same day using
the ChromiumTM platform according to manufacturer’s instructions (10x Genomics®). About 5,000
cells/nuclei were targeted per reaction. sc-end5-dT and sc-ATAC-seq libraries were sequenced on
HiSeqTM 2500 (Illumina®) as 75bp and 100bp paired-end reads respectively.

PBMC stimulation

Human PBMCs were prepared from the whole blood of a male healthy donor with LeucosepTM

(Greiner®). Isolated 2x106 PBMC cells were incubated with PMA/ionomycin (i.e. stimulated) (Cell

Activation Cocktail with Brefeldin A, Biolegend®), or DMSO as control (i.e. resting), for six hours.
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Bulk CAGE, RNA-seq and ATAC-seq library construction and sequencing for DMFB and
iPSC

Bulk CAGE libraries were generated by the nAnT-iCAGE (Murata et al., 2014) method as previously
described and sequenced on HiSeqTM 2500 (Illumina®) as 50bp single-end reads. Bulk RNA-seq
libraries were generated as previously described (Andersson et al., 2014) and sequenced on HiSeqTM
2500 (Illumina®) as 100bp paired-end reads. Bulk ATAC-seq was performed as previously described
(Buenrostro et al., 2015) with slight modifications. Briefly, 2.5x104 cells/ml were used for library
preparation. Due to the more resistant membrane properties of DMFB, 0.25% IGEPALTM CA- 630
(Sigma-Aldrich®) were used for cell lysis. Transposase reaction was carried out as described in the
protocol followed by 10 to 12 cycles of PCR amplification. Amplified DNA fragments were purified
with MinEluteTM PCR Purification Kit (QIAGEN®) and size-selected with AMPureTM XP
(Beckman Coulter®). All libraries were examined in BioanalyzerTM (Agilent®) for size profiles and
quantified by KAPATM Library Quantification Kits (Kapa Biosystems®). Bulk ATAC-seq libraries
were sequenced on HiSeqTM 2500 (Illumina®) as 50bp paired-end reads.

Processing sc-end5-dT data for PBMC

Reads were aligned to hg19 with Cell Ranger and the gene-based expression matrixes were processed
with Seurat v3. Briefly, cells were excluded with >4 median absolute deviation from the mean for
number of features, UMI count, and percentage of mitochondrial UMI. Top 2,000 variable features
were selected. Resting and stimulated PBMC samples were integrated with Canonical correlation
analysis (CCA) implemented in Seurat using principal component (PC) 1 to 20 based on gene-based
expression matrix. Bam files were processed with SCAFE (v1.0.0) to generate filtered CTSS bed files
and de novo define tCRE. tCRE-based expression matrices from SCAFE were added to the Seurat
object for downstream analysis. Cell annotation was performed by manually combining annotations
from scMatch (Hou et al., 2019) (version at 2020-10-10) and known marker genes. cell type-
specificity and stimulation-specificity of tCREs were calculated with Seurat FindMarkers function
with min.pct=0, return.thresh=Inf, logfc.threshold=0, min.cells.group=0.

Processing sc-ATAC-seq data for PBMC

Reads were aligned to hg19 with Cell Ranger ATAC v1.2 (10x Genomics) and the data were processed
with SnapATAC (Fang et al., 2020) v1.0.0 using default parameters, selecting cells with >40% reads
in ATAC peaks. Resting and stimulated cells were integrated with Harmony vI.0 using PC 1 to 20.
sc-ATAC-seq and sc-end5-dT were integrated using SnapATAC FindTransferAnchors and
TransferData functions to transfer cell cluster annotations from the sc-end5-dT cells to the sc-ATAC-
seq cells. sc-ATAC-seq peaks were defined per cell type using SnapATAC runMACS, then merged.
These merged peaks were referred to as aCREs and these aCREs were annotated using SCAFE. Cell
type-specificity and stimulation-specificity of aCREs were calculated with SnapATAC findDAR.

Analysis of DMFB, IPSC and PBMC data in Figure 1, Supplementary Figures 1-3.

Reads were aligned to hg19 with Cell Ranger v3.1.0 (10x Genomics), and bam files were processed
with SCAFE to generate filtered CTSS bed files and de novo define tCRE. Annotation counts were
produced by intersecting CTSS bed files with GENCODE gene models. Metagene plots from
overlapping CTSS bed files with exons binned with Bioconductor equisplit using foverlaps.
Enrichment of genesets in sc-end5-dT versus sc-end5-rand was tested using fgsea vI.16.0 with
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nperm=1000. Genesets were defined as: 1) cytoplasmic, nucleoplasmic, and chromatin-bound RNAs:
log> fold-change >2 in fractionated CAGE data compared to total CAGE data, 2) long and short RNAs:
maximum transcript length per gene >25,000nt and <1,000nt, 3) Non-polyA histone RNAs: histone
RNAs with log2 fold-change >2 in non-polyA fraction in a previous study (Yang et al., 2011)
ChromVAR v1.12.0 was used to estimate per-cell TF motif activities for the JASPAR2018 core motif
set for tCRE or aCRE excluding chrM. The tCRE expression matrix was binarized prior to running.
Cicero vi.3.4.11was used to calculate the co-activity score between CRE pairs using default
parameters. Only tCREs and aCREs present in >3 cells were considered. Co-activity scores were
estimated separately using cells within individual cell types (cell type sets) or all cells (pooled set).
A pair of CREs with co-activity score >0.2 is defined as “linked”. pcHi-C connections (without
cutoffs) from all cell types were pooled and used for validation of co-activity linked CREs pairs. For
comparisons of validation rates between tCREs and aCREs, only a subset of CREs that are overlapped
between tCREs and aCREs and CRE pairs located >10kb apart was used. Detecting shifts in
alternative promoter use: For each cell type (excluding dendritic cells due to low cell count), knn
clustering of the Seurat SNN matrix (k=50) was used to generate meta-cells. The proportion of UMI
in each gene arising from P-tCREs was calculated for each meta-cell. cell type-specific tCRE
switching events were identified using a #-test for differences in the proportion of UMI in gene
contributed from each tCRE between meta-cells of selected cell type and a background of all other
cell types. sc-ATAC-seq signal (UMI per millions) at a tCRE was defined as the maximum signal in
cell type bigwig files generated with SnapATAC runMACS.

tCRE atlas scRNA alignment, filtering, doublet removal, processing

Fastq from the Single Cell Medical Network in Japan were aligned to hg38 using cellranger versions
3.1.0 to 6.1.2 as data was generated. Samples from He, S et al., 2020 were re-processed from
downloaded fastq files. Gene expression counts were corrected for ambient RNA using cellbender
(Fleming et al., 2023) v0.2.0, using 0.6x and 2.5x cellranger identified cell count as --expected-cells
and --total-droplets-included. Doublet removal was performed with scrublet (Wolock et al., 2019),
cells with fewer than 500 umi, 300 genes, or more than 10% mitochondrial UMI were removed.
Variable genes were identified using scanpy.pp.highly variable genes flavour=seurat v3,
batch key=project, span=0.5. Gene counts were normalized to 1e4 per cell and log transformed. 20
PCs were used for bbknn(Polanski et al., 2020) batch correction. Corrected nearest-neighbors graph
were used in UMAP projection and leiden clustering.

Cell annotation

Cells were annotated with various references as input for manual curation: cello (Bernstein et al.,
2021), Azimuth PBMC, Azimuth BBMC, Azimuth Motor cortex (Hao et al., 2021), celltypist
Immune_All High, Immune All Low (Dominguez Conde et al., 2022). Leiden clustering with high
resolution plus manual annotation to merge clusters annotated to the same broad cell types or with
few differential genes was used to assign cells to Lv1 annotations. After annotation of Lv1 cell types,
each was sub-clustered to assign cells to Lv2 cell types following the same procedure as for the whole
atlas Lv1 annotation with the difference of applying harmony batch correction.

Meta-cells
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Meta-cells were created within each Lv2 cell type using SEACells (Persad et al., 2023) v0.2.0
creating sqrt(n_cells) *2 meta-cells. UMI within genes or tCRE were summed from cells for each
meta-cell and re-log-normalized.

Annotation and quantification of tCREs in the atlas

To identify tCRE in the atlas data, the SCAFE v1.0.0 (Moody et al., 2022) pipeline was applied to
define and annotate tCREs. Briefly, for each library, the single nucleotide resolution 5’Cap TSS
(CTSS) signals, including the number of UMI with unencoded Gs, were extracted from the alignment
bam files generated from cellranger. The CTSS signals for all libraries of each “project” (as listed in
Supplementary Table 1) were aggregated and used to define a set of TSS clusters for each project.
For each project, the pooled CTSS signals were clustered using paraclu within SCAFE (Moody et
al., 2022) using default parameters, with a cutoff set to >3 UMI of encoded-G supported TSS per TSS
cluster. TSS clusters that are potentially strand invasion artifacts were removed (Moody et al., 2022).
The remaining TSS clusters were further filtered using a logistic regression classifier trained with
matched sc-5’-RNASeq and ATAC-Seq data implemented in SCAFE (Moody et al., 2022) at the
logistic probability cutoff of 0.9. These remaining TSS clusters from each project, multiple hard filters
were applied to remove the potentially artifactual clusters on the sense strand of the intronic and
exonic regions of annotated genes, with >5 UMI within the cluster and >3 UMI at TSS cluster summit.
A slightly more stringent cutoff was applied to the single nuclei libraries from project HCAJ0029
Brain tissues, with >10 UMI within the cluster, >5 UMI at TSS cluster summit and >5 UMI of
encoded-G supported CTSS. These sets of filtered TSS clusters from all projects were merged using
bedtools merge in a strand specific manner. The merged TSS clusters located within £500nt of gene
TSS annotated in GENCODEV32 were classified as proximal, or as distal otherwise. All TSS clusters
were then extended 400nt upstream and 100nt downstream. These extended ranges were merged
using bedtools, in a strand-specific manner for proximal TSS clusters and non-strand-specific manner
for distal TSS clusters, as proximal-tCRE (P-tCREs) and distal tCREs (D-tCREs) respectively. The
P-tCREs with its CTSS summit within 500nt of annotated gene TSS on the same strand would be
annotated as promoter P-tCREs, and otherwise as flanking P-tCREs. It is noted that most flanking P-
tCREs are on the opposite strand of the promoters, resembling promoter upstream antisense
transcripts. For the D-tCREs that are located within the introns or exons of annotated genes, it will
be “rescued” as promoter P-tCREs if, 1) its expression levels (number of UMIs within its TSS clusters)
>5% of the expression levels of the corresponding gene (total number of UMI of all annotated
promoter P-tCREs of the gene) and 2) >75% of its UMISs are on the same strand of the corresponding
gene. In total, 8,791 D-tCRE were rescued as promoter P-tCREs, which can be considered as novel
alternative promoters that are not annotated in GENCODEV32. In total, the above process yielded
81,829 P-tCREs and 96,400 D-tCRE, with 54,149 of 81,829 P-tCREs annotated as promoters. The
average size of P-tCREs and D-tCREs are 771.12 nt and 608.01 nt, respectively. Expression of tCREs
is quantified by counting the number of CTSS UMIs overlap with its constituent TSS clusters on the
same stand.

Defining of distal loci and HIFI loci

Distal loci is defined as a stretch of closely situated D-tCRE with a distance limit and P-tCREs were
excluded from this analysis. To estimate an optimal distance, the closest distance of a D-tCRE to
another was plotted against the rank and the tangle line of the curve was used to identify a cutoff at
17,065 nt. D-tCREs within this cutoff were ‘stitched’ together and defined 34,120 distal loci, which
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~31.% of them (n=10,547) contains > 3 D-tCREs. A metric, “spreadness”, which quantifies the extent
of evenness of UMI distribution across the constituent D-tCREs, is calculated as ratio of (the fraction
of the the total number of UMI in the loci contributed by the highest expressed D-tCRE in ) to the
(total number D-tCREs in the loci). A distal locus with spreadness > 4 is defined as evenly spread.
The expression level of a distal locus is defined as the sum of the expression level of their constituent
D-tCREs. To identify high intensity distal loci in each Lvl cell type, the expression levels (log-
normalized values) of each active distal loci (UMI count > 1) were plotted against their ranks and the
tangle line of the curve was used to identify a cutoff in each Lv 1 cell type, with a median of 8.36
among Lv1 cell types (Fig. 31). Frequently interacting distal loci are defined in a cell type agnostic
manner as distal loci with total number linked promoters (from its constituent D-tCREs) passing a
cutoff of 75 (Fig. 3j), determined the same way as high intensity distal loci but plotting the number
of linked promoters instead of expression levels. A distal locus that is 1) evenly spread, 2) frequently
interacting, and 3) high intensity in one of the Lv 1 cell types were defined a HIFI loci, yielding 1,229
HIFT loci in total. Cell type-unrestricted and -restricted HIFI loci were defined by k-mean clustering
of their binary presence/absence among Lv1 cell types with n=2 (Fig. 31).

Gini index
Gini index of all tCREs and all distal loci were calculated from the respective expression matrices on
Lv2 cell types (n=180), using the gini() function implemented in the ‘ineq’ R package.

Inferring Promoter-to-D-tCRE interactions (PD-links)

PD-links were inferred by integrating public chromatin interaction datasets with our tCRE atlas,
including 1) Hi-C from ENCODE (ENCODE Project Consortium et al., 2020) (n=172), 2) H3K27ac
HiChIP from HiChIPdb ((Zeng et al., 2023), n=129), and 3) pcHi-C from 3DIV (Yang et al., 2018)
(n=28). Together with 4) tCRE co-activity estimated from our atlas (Methods). For 1), 2) and 3), the
significant (FDR < 0.05) loops (at various resolutions) were taken as provided by the original sources.
The details of the used chromatin interaction datasets were listed in Supplementary Table 12. For 1)
and 3), the provided significant loops are at mixed resolutions, with mean of 5157.99 bp and
10739.5bp in 1) and 3) respectively. For 2), interactions at 5,000bp were chosen for our analyses. For
4), we estimated the co-activity of all tCRE pairs among all meta-cells across the whole atlas as well
as the meta-cells within each Lv1 cell type, using Cicero vi1.3.4.11, with the expression matrix of
tCREs as input and ran in a non-binarized manner. For each pair of tCREs, the highest co-activity
score among the above-mentioned scope was taken as the representative. A pair of promoter and D-
tCRE is inferred as linked if both tCREs overlap a significant loop in 1), 2) or 3), or having a
representative co-activity score > 0.2. This analysis yields 466,079 linked promoter-D-tCRE pairs,
involving 40,626 promoters with a median of 9 D-tCREs linked.

Defining tCRE modules
tCRE modules are defined using cNMF (Kotliar et al., 2019) using the prepare, factorize, combine,
consensus workflow for meta-cell tCRE expression. We used values of k from 50 to 250 in increments
of 10, examining the stability/error plots to maximize the stability and number of components,
selecting k=150 to define 150 modules providing tCRE spectra scores quantifying the contribution of
each tCRE to the module.
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Processing of GWAS summary statistics

All GWAS summary statistics (n=63 traits and diseases) are listed in Supplementary Table 7. Briefly,
GWAS summary statistics were obtained from (1) UK biobank heritability browser
(https://nealelab.github.io/UKBB_ldsc/index.html), (2) Dr. Alkes Price group site
(https://alkesgroup.broadinstitute.org/) and (3) other sources (refer to Supplementary Table 7).
Summary statistics obtained from (1) and (2) were directly used for heritability enrichment analyses,

while the summary statistics obtained from (3) were pre-processed using “munge sumstats.py”
scripts in LDSC software.

Trait heritability enrichment in CREs

For analysis in Fig. 11, Fig. 3n, Fig. 30 left column, Supplementary Fig. 9 and Supplementary Fig. 10,
enrichment of trait heritability in CREs was assessed by stratified LD score regression (S-LDSC)
implemented in LDSC software. Annotation files and LD score files were generated for each set of
CREs using the “make_annot.py” and “ldsc.py” scripts using default parameters. Each set of CREs
was added onto the 97 annotations of the baseline-LD model v2.2 and heritability enrichment (i.e.,
ratio of proportion of heritability to proportion of SNP) for each trait was estimated using the “/dsc.py”
script with “--h2” flag in default parameters. For analysis in Fig. 30, middle and right column, as
well as the heritability enrichment in modules (described below), which involve the comparison of
relative heritability enrichment between two sets of CREs, we used the “specifically expressed genes”
approach (LDSC-SEG) implemented in LDSC software. Briefly, two sets of tCREs, one defined as
“foreground” e.g. HIFI loci, was compared against a “background” tCRE set, e.g. non-HIFI loci.
Annotation files and LD score files were generated for each set of “foreground” and “background”
tCREs using the “make_annot.py” and “ldsc.py” scripts using default parameters. These foreground
and background annotations were added onto the 53 annotations of baseline-LD model v1.2 and the
contribution of “foreground” tCREs to trait heritability (i.e., regression coefficient) for each trait was
estimated using the “ldsc.py” script with “--h2-cts” flag in default parameters.

Trait heritability enrichment in modules

The extent of heritability enrichment for each trait in each module was quantified using the LDSC-
SEG approach similar to the approach mentioned above, with the 53 annotations baseline-LD model
v1.2. Briefly, for each module, the top 15000 tCREs ranked by the module contribution score (i.e.
spectra) derived from cNMF was used as the ‘foreground’ and the rest of the tCREs were used as the
‘background’. The ‘‘foreground’ tCRE regions were compared against the ‘background’ tCRE
regions by running Ildsc.py --h2-cts, yielding a p-value and a regression coefficient for each trait-
module pair. The value of —log10(P) was as a score which is then further trimmed, scaled and powered
within each trait as follows: 1) score of the modules with regression coefficient < 0 or p-value > 0.1
were set to zero; 2) the trimmed score was raised to the power of 1.5 to increase the contrast of high
and low levels of heritability enrichment; 3) the powered score was scaled to the maximum score
within the trait. This yields a value of 0 to 1 within each trait across all modules, which was then used
as the weight to calculate the weighted sum of module usage for ICE-CREAM score described below.

ICE-CREAM score

In essence, the ICE-CREAM (Individual Cell Enrichment of CRE Activity Module) score, for a
particular trait in a particular single-cell (or meta-cell) was calculated as the sum of module usage,
each weighted by the extent of trait heritability enrichment in the corresponding module. Briefly,
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module usages were calculated for meta-cells (or single-cells) by running cnmf obj.refit usage(expr,
spectra). The usage for each module in a cell is then weighted (i.e. multiplied) by the extent of
heritability enrichment (explained above) for the corresponding module for a given trait. The
weighted sum of all modules thus yields a score for each trait in each cell. To quantify the statistical
significance of this score, a null distribution of the score is generated by permutation of the module
usage. Briefly, the tCRE expression values were shuffled within 5 expression bins 1000 times to
generate 1000 expression levels-matched random expression matrices as the input for rerunning
cnmf obj.refit usage, yielding 1000 permuted module usage matrices. Weighted sums were then
recalculated for 1000 times, while keeping the extent of heritability enrichment fixed, yielding a null
distribution of the score. The observed score for a given trait in a cell was then compared against the
corresponding null distribution, yielding a Z-score and thus a one-tailed p-value (P), using
scipy.stats.norm.sf. The ICE-CREAM score is then calculated as —log10(P) yielding a non-negative
value.

Differential gene/tCRE expression and differential tCRE usage

Differential expression for gene or tCRE at Lvl and Lv2 cell types were performed with
scanpy.tl.rank genes groups with method=‘t-test’. In promoter usage analysis, promoters were
considered if they had more than 10 UMI and >=5% of the UMI when summing all promoters
assigned to a gene. The proportion of UMI from each promoter was calculated per meta-cell to give
a promoter usage score. This score was visualized and used as input for differential expression testing
to assign cell type enriched usage.Similarly to promoter usage, D-tCRE usage was calculated for each
gene, using all D-tCRE that were linked with a gene promoter.

Motif analysis

ChromVAR (Schep ef al., 2017) using JASPAR2018 (Khan ef al., 2018) motifs was applied to the
tCRE meta-cell based matrix to estimate motif activity in each meta-cell. The motifbreakR R package
(Coetzee et al., 2015) was used to assess the severity of SNP disruption of JASPAR2018 TFBMs.

Gene Set Enrichment Analysis (GSEA)

fgsea v1.28 (Korotkevich et al., 2021) was used to score enrichment of gene sets from MSigDB
(Hallmarks, Reactome, KEGG, GO biological processes and molecular functions) using maximum
cNMF ‘gene spectra’ scores from promoters assigned to genes to rank genes.

Cell Set Enrichment Analysis (CSEA)

fgsea was applied to groups of meta-cells within the atlas ranked by trait scores at two levels: Lvl
cell types within the ranking of the whole atlas, or Lv2 cell types within subsets of the atlas (stromal,
immune, neural, epithelial).

Defining trait associated SNPs, tCREs and genes with functional contexts

To define trait-associated SNPs, genome-wide significant lead variants (p < 5x107%) were extracted
from the 63 summary statistics listed in Supplementary Table 7. To increase coverage, additional
genome-wide significant lead SNPs for each trait (by matching of ontology terms listed in
Supplementary Table 7) were also extracted from extra GWAS studies from NHGRI-EBI GWAS
Catalog (https://www.ebi.ac.uk/gwas/) (release r2023-06-03). The SNPs within the LD block of the
GWAS lead SNPs (i.e., proxy SNPs) were searched for using PLINK v1.9 with an r*>>0.2 within
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+500kb in matched population panels of Phase 3 1000 Genomes Project downloaded from MAGMA
website ( http://ctg.cncr.nl/software/MAGMA /ref data/). These lead and proxy SNPs are referred to
as trait associated SNPs. Trait associated SNPs residing in a tCRE are then linked to a gene if the
tCRE is the gene promoter or is a D-tCRE linked to genes through the mentioned P-D links. SNPs,
and tCRE are further filtered to be enriched within trait relevant cell types - significant in Lv1 cell
type CSEA to select relevant cell types, tCRE defined as enriched in cell type by significant Wilcoxon
test or Pearson’s correlation with trait ICE-CREAM score > (.5 across the whole atlas. Log
normalized tCRE expression, gene expression, and distal loci expression are correlated with ICE-
CREAM scores across meta-cells. Filtering for SNPs within relevant motifs: SNPs scored as
disrupting TFBM by motifbreakR are listed as motif disrupting if the motif activity score across the
atlas by chromVAR are significantly enriched in the same trait relevant cell types.

Data availability

Data used in the initial cell line and PBMC comparisons are available in the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress) under accession numbers: E-MTAB-10385 (sc-end5-dT, sc-endS-rand
and sc-end3-dT for DMFB, iPSC), E-MTAB-10378 (sc-end5-dT for PBMC), E-MTAB-10381 (bulk-ATAC-
seq for DMFB, iPSC), E-MTAB-10382 (sc-ATAC-seq for PBMC), E-MTAB-10383 (bulk-RNA-seq for
DMFB, iPSC), E-MTAB-10384 (bulk-CAGE for DMFB, iPSC).

A genome browser view for the tCRE atlas are available at: https://jon-bioinfo.github.io/TCRE_Atlas/igv.html

Supplementary figures and tables are available at: https://doi.org/10.6084/m9.figshare.c.6926944

A cellxgene web portal, the processed data and the codes for data analyses will be made available for upon
publication of the manuscript in a journal.

Due to patient data confidentiality sequencing data from the Single Cell Medical Network in Japan are not
provided.
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