

1 A single-cell atlas of transcribed *cis*-regulatory elements in the human

2 genome

3 Jonathan Moody¹, Tsukasa Kouno², Miki Kojima³, Ikuko Koya², Julio Leon^{2,4}, Akari Suzuki⁵, Akira
4 Hasegawa⁶, Taishin Akiyama^{7,8}, Nobuko Akiyama^{7,8}, Masayuki Amagai^{9,10}, Jen-Chien Chang¹¹, Ayano
5 Fukushima-Nomura⁹, Mika Handa¹², Kazunori Hino¹³, Mizuki Hino^{14,15}, Tomoko Hirata¹⁶, Yuuki Imai^{17,18},
6 Kazunori Inoue¹⁹, Hiroshi Kawasaki^{20,9,10}, Toshihiro Kimura¹², Tomofumi Kinoshita¹³, Ken-ichiro Kubo^{21,22},
7 Yasuto Kunii^{14,15}, Fernando López-Redondo^{2,23}, Riichiro Manabe¹⁶, Tomohiro Miyai²⁰, Satoru Morimoto²⁴,
8 Atsuko Nagaoka¹⁵, Jun Nakajima²⁵, Shohei Noma¹⁶, Yasushi Okazaki^{16,26}, Kokoro Ozaki¹⁶, Noritaka Saeki^{27,17},
9 Hiroshi Sakai^{17,18}, Kuniaki Seyama^{28,29}, Youtaro Shibayama², Tomohisa Sujino³⁰, Michihira Tagami¹⁶, Hayato
10 Takahashi⁹, Masaki Takao^{31,32}, Masaru Takeshita³³, Tsuyoshi Takiuchi^{12,34}, Chikashi Terao^{35,36,37}, Chi Wai
11 Yip², Satoshi Yoshinaga^{21,22}, Hideyuki Okano^{24,38,39}, Kazuhiko Yahamoto⁵, Takeya Kasukawa⁶, Yoshinari
12 Ando⁴⁰, Piero Carninci^{3,41}, Jay W. Shin^{2,42*}, Chung-Chau Hon^{1,43*}

13

14 Affiliations

15 1. Laboratory for Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama,
16 Kanagawa, Japan

17 2. Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,
18 Kanagawa, Japan

19 3. Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama,
20 Kanagawa, Japan

21 4. Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California,
22 San Francisco, USA

23 5. Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama,
24 Kanagawa, Japan

25 6. Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences,
26 Yokohama, Kanagawa, Japan

27 7. Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama,
28 Kanagawa, Japan

29 8. Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama,
30 Kanagawa, Japan

31 9. Department of Dermatology, Keio University School of Medicine, Tokyo, Japan

32 10. Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa,
33 Japan

34 11. Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama,
35 Kanagawa, Japan

36 12. Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka,
37 Japan

38 13. Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Toon, Ehime,
39 Japan

40 14. Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University,
41 Sendai, Miyagi, Japan

42 15. Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima,
43 Fukushima, Japan

44 16. Laboratory for Comprehensive Genomic Analysis, RIKEN Center of Integrative Medical Science,
45 Yokohama, Kanagawa, Japan

46 17. Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan

47 18. Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan

48 19. Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

49 20. Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama,
50 Kanagawa, Japan

51 21. Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan

52 22. Department of Anatomy, Keio University School of Medicine, Tokyo, Japan

53 23. Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden

54 24. Department of Physiology, Keio University School of Medicine, Tokyo, Japan

55 25. Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan

56 26. Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate
57 School of Medicine, Juntendo University, Tokyo, Japan

58 27. Division of Medical Research Support, Advanced Research Support Center, Ehime University, Toon,
59 Ehime, Japan

60 28. Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of
61 Medicine, Tokyo, Japan

62 29. The Study Group of Pneumothorax and Cystic Lung Diseases, Tokyo, Japan

63 30. Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan.

64 31. Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry,
65 National Center Hospital, Tokyo, Japan

66 32. Department of Neurology, Institute of Brain and Blood Vessels, Mihara Memorial Hospital, Isesaki,
67 Gunma, Japan

68 33. Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo,
69 Japan

70 34. Department of Clinical Genomics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan

71 35. Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences,
72 Yokohama, Kanagawa, Japan

73 36. Clinical Research Center, Shizuoka General Hospital, Shizuoka, Shizuoka, Japan

74 37. The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka,
75 Shizuoka, Shizuoka, Japan
76 38. Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama, Japan
77 39. International Center for Brain Science, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho,
78 Toyoake, Aichi 470-1192, Japan.
79 40. RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
80 41. Genomics Research Center, Fondazione Human Technopole, Milano, Lombardy, Italy
81 42. Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR),
82 Singapore, Republic of Singapore
83 43. Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima,
84 Japan
85
86

87 *** Corresponding authors:**

88 Jay W. Shin, PhD
89 jay.shin@gis.a-star.edu.sg
90
91 Chung-Chau Hon, PhD
92 chungchau.hon@riken.jp

93 **Summary**

94 Transcribed *cis*-regulatory elements (tCREs), such as promoters and enhancers, are fundamental to
95 modulate gene expression and define cell identity. The detailed mapping of tCREs at single-cell
96 resolution is essential for understanding the regulatory mechanisms that govern cellular functions.
97 Prior tCRE catalogs, limited by bulk analysis, have often overlooked cellular heterogeneity. We have
98 constructed a tCRE atlas using single-cell 5'-RNA-seq, capturing over 340,000 single-cells from 23
99 human tissues and annotating more than 175,000 tCREs, substantially enhancing the scope and
100 granularity of existing *cis*-regulatory element annotations in the human genome. This atlas unveils
101 patterns of gene regulation, revealing connections between broadly expressed promoters and cell
102 type-specific distal tCREs. Assessing trait heritability at single-cell resolution with a novel tCRE
103 module-based approach, we uncovered the nuanced trait-gene regulatory relationships across a
104 continuum of cell populations, offering insights beyond traditional gene-level and bulk-sample
105 analyses. Our study bridges the gap between gene regulation and trait heritability, underscoring the
106 potential of single-cell analysis to elucidate the genetic foundations of complex traits. These insights
107 set the stage for future research to investigate the impact of genetic variations on diseases at the
108 individual level, advancing the understanding of cellular and molecular basis of trait heritability.
109

110 **Introduction**

111 The human body comprises diverse and specialized cell types. Gene expression, which defines cell
112 identity, is regulated by *cis*-regulatory elements (CREs), mostly promoters and enhancers. (Zhang *et* *al.*, 2021; Ong and Corces, 2011). CREs control gene expression by recruiting transcription factors
113 (TFs) and RNA polymerase II to initiate transcription of capped-RNA (Cho *et* *al.*, 1997) at both
114 promoters and enhancers (Andersson *et* *al.*, 2014). Sequencing of RNAs 5'-end pinpoints
115 transcriptional start sites (TSS) and thus transcribed CREs (tCREs). tCREs can be categorized based
116 on their proximity to the annotated gene: proximal tCREs (P-tCREs), such as promoters, are close to
117 the gene TSS, while distal tCREs (D-tCREs), like enhancers, are located further away. Previous
118 studies using TSS profiling in bulk samples, notably CAGE (Murata *et* *al.*, 2014), concentrated on
119 tissue samples and a limited number of primary cell types, yielding cell population-averaged
120 information and a restricted scope (Forrest *et* *al.*, 2014 FANTOM5). Existing single-cell atlases,
121 largely based on gene expression, lack alternative promoters and distal CREs (Eraslan *et* *al.*, 2022;
122 Domínguez Conde *et* *al.*, 2022; THE TABULA SAPIENS CONSORTIUM, 2022; Suo *et* *al.*, 2022)
123 limiting our ability to decode the regulatory roles of CREs in defining cell type identity. Genome-
124 wide association studies (GWAS) identified variants associated with traits and diseases (Liu *et* *al.*,
125 2019) that are highly enriched in CREs. Chromatin accessibility assays are routinely employed to
126 identify accessible CRE (aCRE) (Buenrostro *et* *al.*, 2015). Despite this, a significant number of distal
127 aCREs lack the epigenomic marks of active enhancers (Thibodeau *et* *al.*, 2018). Although some of
128 these elements may function as insulators (Kim *et* *al.*, 2007) or silencers (Pang and Snyder, 2020),
129 their overall relevance in gene regulation remains elusive, affecting their interpretability in trait-
130 associated variants annotation.
131

132 Single-cell omics allows the quantification of transcriptome, epigenome, and chromatin
133 interactions among individual cells (Buenrostro *et* *al.*, 2015, Heumos *et* *al.*, 2023; Gaulton *et* *al.*,
134 2023). In particular, single-cell 5' RNA-seq (sc-5'-RNA-seq) enables the concurrent detection and
135 quantification of tCREs, alongside gene expression profiling in single cells (Kouno *et* *al.*, 2019). In
136 this study, we used sc-5'-RNA-seq to annotate 175,032 tCREs across 341,156 cells of 180 distinct

137 cell types from 23 human tissues. Our analysis linked D-tCREs to their target promoters, revealing
138 cell type-specific CRE usage patterns. We characterized tCRE modules and their associations to 63
139 different traits and diseases, highlighting their relevance in cell type-specific gene regulation and in
140 disease predispositions. Based on tCRE module usage in single-cells, we introduced the novel ICE-
141 CREAM score to assess trait heritability enrichment at the single-cell level, revealing nuanced trait-
142 gene regulatory relationships across a continuum of cell populations. Moreover, by analyzing trait-
143 associated variants within tCREs to unravel their regulatory impacts, we have deepened the
144 understanding of how genetic associations contribute to disease at the molecular and cellular levels.

145 Results

146 *Detection of tCREs using sc-5'-RNA-seq*

147 Enhancer RNAs (eRNA) are generally thought to be non-polyadenylated (Andersson *et al.*, 2014);
148 therefore, we assessed the sensitivity of D-tCRE detection by sc-5'-RNA-seq, comparing oligo(dT)
149 (sc-end5-dT) and random hexamer (sc-end5-rand) priming in human dermal fibroblasts (DBFM) and
150 induced pluripotent stem cells (iPSC). Most signals were observed at gene TSSs for both protocols
151 as expected (**Fig. 1a**). Both protocols detected P- and D-tCREs with a high degree of overlap (**Fig.**
152 **1b**) and strong correlation in expression levels (**Fig. 1c**). Moreover, both protocols recapitulated the
153 bidirectional transcription of eRNAs defined by bulk-CAGE in a cell type-specific manner (**Fig. 1d**).
154 The detection of eRNAs by sc-end5-dT is unexpected, and likely can be attributed to internal priming
155 (La Manno *et al.*, 2018; Gaidatzis *et al.*, 2015). Notably, sc-end5-dT demonstrated greater sensitivity
156 at the per-cell level, with similar read distribution profiles (Supplementary Fig. 1,2). These findings
157 affirm the efficacy of sc-end5-dT in detecting both P-tCREs and D-tCREs, including eRNAs.

158 We compared tCREs defined by sc-end5-dT with aCREs defined by sc-ATAC-seq in PBMCs
159 under resting and activated states (Methods). Both methods offered similar cell clustering resolution,
160 cell type specificity for CREs, and motif activity estimates (Supplementary Fig. 3). Using co-activity
161 analysis (Pliner *et al.*, 2018), tCRE pairs with high co-activity showed a greater validation rate via
162 promoter-capture Hi-C (pcHi-C) (Javierre *et al.*, 2016) (**Fig. 1e**). Upon PBMC activation, we
163 identified 123 genes showing significant shifts in alternative promoter transcription, with only
164 minimal changes in accessibility (**Fig. 1f**), as exemplified with the *DHX30* gene in CD8+ T-cells
165 switching from promoter 1 to promoter 2 (**Fig. 1g-h**). This indicates that sc-ATAC-seq may have
166 limited sensitivity in detecting changes in alternative promoter usage. Additionally, we found that
167 increased transcriptional activity at aCREs correlated with enhanced trait heritability enrichment,
168 particularly in distal aCREs (**Fig. 1i**). These findings highlight the capability of sc-end5-dT to capture
169 cell type-specific P- and D-tCRE activities, leading to the creation of a comprehensive tCRE atlas
170 using this approach.

171

172 *Annotating cell type clusters across 23 human tissues*

173 We obtained sc-end5-dT single-cell or single-nuclei data, hereafter referred to as 'single-cell' data,
174 from diverse human tissues via Single Cell Medical Network in Japan and public data (He, S *et al.*,
175 2020) (Supplementary Table 1). Employing a standardized data processing pipeline for dataset
176 integration (Methods), we constructed an atlas of 341,156 single-cells from 23 tissues (**Fig. 2a**). This
177 atlas includes cells categorized into 21 Level 1 (Lv1) cell types (**Fig. 2b-c**, Supplementary Fig. 4) and
178 further sub-clustering yielded 180 Level 2 (Lv2) cell types. To address sparsity and computational
179 load while preserving transcriptional diversity, we created 3,350 meta-cells (**Fig. 2b**) (Supplementary

180 Fig. 5,6). Analyses in this study were predominantly performed at the meta-cell level, unless specified
181 otherwise.

182 To illustrate our cell annotations, we highlighted blood endothelial cells (BECs), distinguishing
183 arterial, capillary, and venous subtypes, their tissue distribution, and marker genes in Level 2 (Lv2)
184 cell types (Fig. 2d-f). For example, general capillary BECs displayed gene expression profiles
185 indicative of inflammatory response and lipid transcytosis, marked by genes such as *BTNL9*, *ITGA1*,
186 and *CD36*. Lung-enriched BEC.Capillary.2 subtypes were characterized by the pulmonary marker
187 *CA4*. Notably, we observed an enrichment of capillaries in the heart and joint (BEC.Capillary.1)
188 whereas venous BECs were enriched in the skin (BEC.Venous.1 and BEC.Venous.4) (Fig. 2e) (He,
189 Y *et al.*, 2022), aligning with the role capillary-to-myofiber interface plays in muscle function
190 (Lemieux and Birot, 2021). Additionally, venous BECs showed higher expression of *CD74*, *CCL14*,
191 *ACKR1* compared to arterial and capillary subtypes, suggesting a role in immune cell migration (Li
192 *et al.*, 2022). Detailed markers and tissue composition maps for Lv2 cell types highlight the diversity
193 captured across immune, neuronal, stromal and endothelial cell types (Supplementary Fig. 6,7). In
194 summary, these results demonstrated the utility and relevance of our cell type clustering and
195 annotations.

196

197 ***Building a single-cell tCRE atlas***

198 Utilizing our single-cell data, we built a tCRE atlas comprising 81,829 proximal (P-tCREs) and
199 96,400 distal (D-tCREs) elements (Methods; Moody *et al.*, 2022; Supplementary Table 2). The
200 majority of these tCREs—94.3% of P-tCREs and 88.2% of D-tCREs were supported by candidate
201 CREs from external epigenomic datasets from ENCODE (ENCODE Project Consortium *et al.*, 2020)
202 and a sc-ATAC atlas (Zhang *et al.*, 2021), affirming the validity of our tCREs (Fig. 3a). The
203 remaining unsupported tCREs may represent novel, cell type-specific elements. Notably, only 84.3%
204 of P-tCREs and 46.7% of D-tCREs aligned with FANTOM5 TSS clusters (Forrest *et al.*, 2014),
205 expanding tCRE annotations within the human genome. Our analysis of cell type-specificity revealed
206 a median enrichment of 7.8% for P-tCREs and 11.1% for D-tCREs in Lv1 cell types (Fig. 3b), with
207 glutamatergic neurons displaying the highest specificity, consistent with known chromatin
208 accessibility patterns (Hauberg *et al.*, 2020), indicative of a relatively more complex gene regulatory
209 architecture in glutamatergic neurons. Additionally, we categorized 66.1% of P-tCREs as gene
210 promoters and the remainder as ‘flanking’, identifying 8,791 potential novel alternative promoters
211 not listed in GENCODEv32. Overall, our atlas provides promoter annotations for 31,594 genes,
212 including 12,386 with multiple promoters, averaging 4.4 promoters per gene (Supplementary Table
213 3).

214 Alternative promoter usage is a key mechanism for expanding transcriptome diversity and
215 generating functionally distinct isoforms (Singer *et al.*, 2008). On average 12.9% of multi-promoter
216 genes (n=1,948 in total) exhibited significant alternative promoter usage across Lv1 cell types (Fig.
217 3b; Supplementary Table 4). The *IL1RN* gene, for example, employs distinct promoters for its
218 secreted (P1) and intracellular (P2) isoforms, with P1 enriched in immune cells and P2 in non-
219 secretory epithelial cells (Fig. 3c), indicating cell type-specific functionalities (Butcher *et al.*, 1994)
220 and aligning with the hypothesis that the intracellular form modulates IL-1 production in
221 keratinocytes (Arend and Guthridge, 2000). Additionally, TF binding motif (TFBM) activity
222 estimations suggested that differential promoter usage may be influenced by cell type-specific TF
223 activity, with 48.5% (n=944 of 1,948) of genes with alternative promoters having significantly

224 upregulated TFBMs in corresponding Lv1 cell types (Supplementary Fig. 8), indicating a TF-driven
225 mechanism underpinning cell type-specific promoter usage.

226 We integrated three public chromatin interaction datasets with co-activity data from our atlas to
227 infer Promoter-to-Distal tCRE interactions (PD-links), cataloging 466,079 PD-links for 75% of
228 promoters (n=40,626) (Supplementary Table 5). Notably, 39% of these links were supported by at
229 least two out of four evidence lines (**Fig. 3e**), with promoters connecting to a median of nine D-tCREs
230 at a distance of 137.39 kb (**Fig. 3f-g**). Alternative usage of distal regulatory elements has broad
231 implications for cell type identity, differentiation, and development (Nord *et al.*, 2013). Our findings
232 suggest that promoters with broader expression profiles across Lv2 cell types, indicated by a lower
233 Gini index, are linked to more D-tCREs (**Fig. 3h**), suggesting extensive use of distal elements for
234 regulating genes with a broad cellular activity. Furthermore, 10.4% of genes with multiple D-tCRE
235 links showed significant changes in D-tCRE usage across Lv1 cell types (**Fig. 3b**). For example, the
236 *BCL2A1* gene, pivotal for T cell development and survival (Mandal *et al.*, 2005), exhibited
237 differential D-tCRE usage correlating with its enriched expression pattern across immune cells (**Fig.**
238 **3d**). These results highlight that *BCL2A1* consistently maintains enriched expression across immune
239 cell types, while it harbors unique sets of distal regulatory elements within each cell type, reinforcing
240 the observation in Fig. 3h that the cell type-specific gene regulation is supported by distinct sets of
241 D-tCRE.

242 In our atlas, we observed regions with intense D-tCRE activity and high frequencies of chromatin
243 interactions, termed High Intensity and Frequently Interacting (HIFI) loci, (**Fig. 3k**; Supplementary
244 Table 6), analogous to super-enhancers and FIREs (Schmitt *et al.*, 2016; Hnisz *et al.*, 2013). For
245 example, the *CD44* region contains a HIFI locus (DLOC5040) with 47 D-tCREs spanning 186.6 kb.
246 Most of these D-tCREs display bidirectional transcription and are supported by epigenomic data, with
247 74.4% (35 of 47) linked to the *CD44* promoter, as corroborated by coactivity and chromatin
248 interaction data (**Fig. 3k**). We cataloged 1,229 HIFI loci, with each Lv1 cell type expressing a median
249 of 336 HIFI loci (**Fig. 3l**). These were classified as either cell type-unrestricted (n=377) or -restricted
250 (n=852) based on their expression patterns, correlating well with Gini index distributions (**Fig. 3l-m**).
251 At unrestricted loci, both D-tCREs and their linked promoters showed significantly lower Gini indices
252 compared to restricted loci (**Fig. 3m**), suggesting a role for distal elements in gene expression
253 refinement and specificity across cell types. The unrestricted loci also comprise more D-tCREs and
254 span larger genomic regions, implying a more complex regulatory mechanism at these loci across cell
255 types (**Fig. 3m**).

256 To assess the biological relevance of various tCRE categories, we investigated their enrichment in
257 trait and disease heritability (Finucane *et al.*, 2015). We observed similar enrichment levels for both
258 P- and D-tCREs across Lv1 cell types (Supplementary Fig. 9). In immune cells, tCREs exhibited
259 higher enrichment in Crohn's disease (CD) heritability, particularly D-tCREs (e.g., dendritic cells in
260 **Fig. 3n**), which is consistent with their critical role in microbial recognition and innate immunity
261 (Bates and Diehl, 2014). Additionally, cell-type-specific trait enrichments, such as in BECs and
262 smooth muscle cells (SMCs) for varicose veins, and microglia and oligodendrocyte progenitors for
263 Parkinson's disease (PaD), were observed (Supplementary Fig. 9). CD heritability enrichment was
264 notably higher at HIFI loci compared to non-HIFI loci (**Fig. 3o**), mirroring the enriched disease
265 heritability observed in super-enhancers (Hnisz *et al.*, 2013). Further, cell type-restricted HIFI loci
266 were more enriched in heritability within relevant cell types, like dendritic cells,
267 monocytes/macrophages, and fibroblasts, highlighting the cell type-specific importance of these loci

268 (Fig. 3o; Supplementary Fig. 10 for all other traits). These findings underscore the critical role of
269 distal regulatory elements in the cell type-specific landscape of disease heritability.
270

271 *Inferring regulatory programs with tCRE modules*

272 Applying consensus Non-negative Matrix Factorization (cNMF) to our meta-cell data, we identified
273 150 tCRE regulatory modules that represent independent biological properties in specific cell
274 populations, such as muscle contraction in SMCs (Kotliar *et al.*, 2019) (Fig. 4a,f). These modules are
275 largely cell type-specific (Supplementary Fig. 11), with, for example, M011 being specific to BEC
276 subsets, while M033 is specific to fibroblasts (Fig. 4b-e). Further analysis within the stromal cell
277 subset, including SMCs, lymph endothelial cells (LECs), and chondrocytes, pinpointed modules like
278 M053 and M028 as SMC-specific, related to muscle function and cardiac biology, and notably
279 enriched in myocardial infarction (MI) heritability (Fig. 4f), underscoring the protective role of SMCs
280 in mediating superoxide free radicals within the aortic wall (Zhuge *et al.*, 2020). Additionally,
281 significant MI heritability enrichment was observed in one BEC-associated module (M011) and two
282 fibroblast-associated modules (M012 and M080). These findings provide insights into tCRE module
283 usages within SMCs, BECs, and fibroblasts and suggest their relevance to MI, underscoring the
284 biological significance of the tCRE modules we identified. Moreover, our analysis delineates tissue-
285 specific module-trait relationships across immune, neuronal, and epithelial cells (Supplementary Fig.
286 12-14), reinforcing the intricate cell type-specific nature and disease relevance of these tCRE modules.
287

288 *Assessing trait heritability at single-cell resolution using ICE-CREAM score*

289 Identifying cell types implicated in diseases is crucial for biomedical research. We have developed
290 an analytical framework to assess trait heritability enrichment at the single-cell or meta-cell level
291 based on trait heritability enrichment in tCRE modules. This allows for interrogation of trait
292 heritability in a manner dependent or independent of cell type annotations. In this framework, we
293 calculate a trait heritability enrichment score, the ICE-CREAM score, for each cell by summing the
294 usage of all modules weighted by their heritability enrichment for a trait, then evaluating the
295 significance against a permuted null distribution, with score expressed as $-\log_{10}(p\text{-value})$ (Methods).
296 Applying the ICE-CREAM score to analyze 63 traits across 3,350 meta-cells revealed the specificity
297 of cell types to these traits (Fig. 5a). When projected onto single cells, similar patterns were observed
298 (Data availability). Using Cell-Set Enrichment Analysis (CSEA) to quantify trait enrichment in Lv1
299 cell types (Supplementary Table 8), we identified a link between COVID-19 severity and
300 monocyte/macrophage cells, consistent with their documented recruitment in severe cases (Zhou *et*
301 *al.*, 2020), and with BECs and mast cells, known to be implicated in COVID-related thrombosis
302 (Afrin *et al.*, 2020; Bonaventura *et al.*, 2021). Moreover, our approach revealed the involvement of
303 diverse cell types in complex diseases, as evidenced by the enrichment across immune cells,
304 fibroblasts, SMCs, and endothelial cells in psoriasis (Fig. 5a).

305 Highlighting MI, we noted significant heritability enrichments within Lv1 cell types of BECs,
306 fibroblasts, and SMCs (Fig. 5b-d), aligning with the module enrichments depicted in Fig. 4f. Further
307 CSEA of Lv2 fibroblast cell types pinpointed MI heritability enrichment particularly in Fibroblast.07
308 and Fibroblast.05, which were notably prevalent and significantly enriched in heart tissues (Fig. 5e).
309 These findings illustrate the role of tissue origin and microenvironment in influencing cell subtype
310 specification and their contributions to disease. For a more detailed understanding of cell type-
311 specific trait heritability, we extended the CSEA to Lv2 cell types for all traits studied, offering a

312 high-resolution view of cell type to trait associations (Supplementary Table 9; Supplementary Fig.
313 15-18).

314 A pairwise comparison of ICE-CREAM scores for closely related traits elucidated fine-grained
315 differences in cell type relevance between diseases. For example, when contrasting CD and ulcerative
316 colitis (UC), two related immune disorders affecting different parts of gastrointestinal tract, we found
317 CD heritability to be more enriched in monocyte, macrophage, and fibroblast subtypes (**Fig. 5f**),
318 correlating with the significant role of monocytes in CD (Grip *et al.*, 2007) and fibrogenesis in CD-
319 associated intestinal fibrosis (Burke *et al.*, 2007). In contrast, UC showed higher heritability
320 enrichment in CD8+ memory and NK cells, underscoring the contribution of NKT cells to the atypical
321 TH2 response in UC (Fuss *et al.*, 2004) (**Fig. 5g**). We quantified these differences by applying CSEA
322 to differential ICE-CREAM score rankings between CD and UC, which highlighted CD8.Trm.01 and
323 Fibroblast.04 as the most differentially enriched Lv2 cell types for CD and UC, respectively (**Fig. 5h-
324 j**). Notably, module M050, which is highly specific to Fibroblast.04 and enriched in CD heritability,
325 showed enrichment in epithelium-related gene sets (**Fig. 4f**), aligning with the proposed involvement
326 of epithelial fibroblasts in CD (Burke *et al.*, 2007).

327 Neurological traits such as schizophrenia, insomnia, and neuroticism showed strong associations
328 with GABAergic and glutamatergic neurons, while neurodegenerative diseases like Alzheimer's
329 diseases and PaD correlated with microglial activity (**Fig. 5a**). In contrasting amyotrophic lateral
330 sclerosis (ALS) with PaD, PaD was notably enriched in oligodendrocytes and microglia, aligning
331 with evidence of microglial activation and consequent neuronal damage in PaD (Bae *et al.*, 2023;
332 Long-Smith *et al.*, 2009; Hickman *et al.*, 2018; Muzio *et al.*, 2021), while ALS showed enrichment
333 in dendritic cells and macrophages, known for their inflammatory role in ALS (Rusconi *et al.*, 2017)
334 (Supplementary Fig. 19). Additionally, in contrasting hypertension with varicose veins, the latter
335 showed greater enrichment in subsets of BECs, whereas hypertension was more associated with
336 fibroblasts and SMCs, which is consistent with their roles in vascular function (Touyz *et al.*, 2018)
337 (Supplementary Fig. 20). Overall, these results highlight the value of the ICE-CREAM score in
338 identifying specific cell types contributing to traits, advancing our understanding of disease
339 mechanisms at the cellular level.

340

341 ***Linking trait-associated variants to relevant cell populations, genes and CREs***

342 To elucidate genetic associations with traits, we prioritized trait-associated variants residing in tCREs
343 using ICE-CREAM scores, genomic context, PD-links, and TFBM activity (Methods). We
344 specifically examined SNPs that disrupt TFBMs in relevant cell types and those within HIFI loci,
345 which exhibit high heritability enrichment (**Fig. 3o**). Approximately 66% of trait-associated loci
346 (median per trait) were annotated with at least one SNP in a tCRE enriched in relevant cell types, as
347 determined by ICE-CREAM score CSEA. In addition, ~56% of trait-associated loci contained at least
348 one SNP disrupting a TFBM correlated with trait heritability (Supplementary Fig. 21, Supplementary
349 Table 10, 11).

350 To illustrate the value of these annotations, consider rheumatoid arthritis (RA), where T cells were
351 identified as the most strongly associated Lv1 cell type (**Fig. 6a**). At RA risk loci, we focused on HIFI
352 loci, particularly DLOC24008 near *PTGER4*, which showed a high correlation with the RA ICE-
353 CREAM score and specificity to T cells (**Fig. 6b,c,e**), in contrast to the broadly expressed *PTGER4*
354 (**Fig. 6d,f**). Interestingly, a large fraction of D-tCREs within DLOC24008 linked to the *PTGER4*
355 promoter (**Fig. 6h**), underscoring how genes with broad expression patterns can achieve cell type-
356 specific regulation through distal tCREs. The RA-associated SNP rs6883964 disrupts an *IRF1* motif

357 within DLOC24008 (**Fig. 6h**) and the *IRF1* motif is highly active in immune cells (**Fig. 6g**). The
358 documented associations of genomic region to multiple immune traits (Libioulle *et al.*, 2007;
359 Rodriguez-Rodriguez *et al.*, 2015) substantiates the functional association of this SNP with *PTGER4*
360 expression specifically in immune cells. This case demonstrates how D-tCREs confer cell type-
361 specific regulation to broadly expressed genes and aids in the interpretation of non-coding SNPs in
362 intergenic regions with cellular contexts.

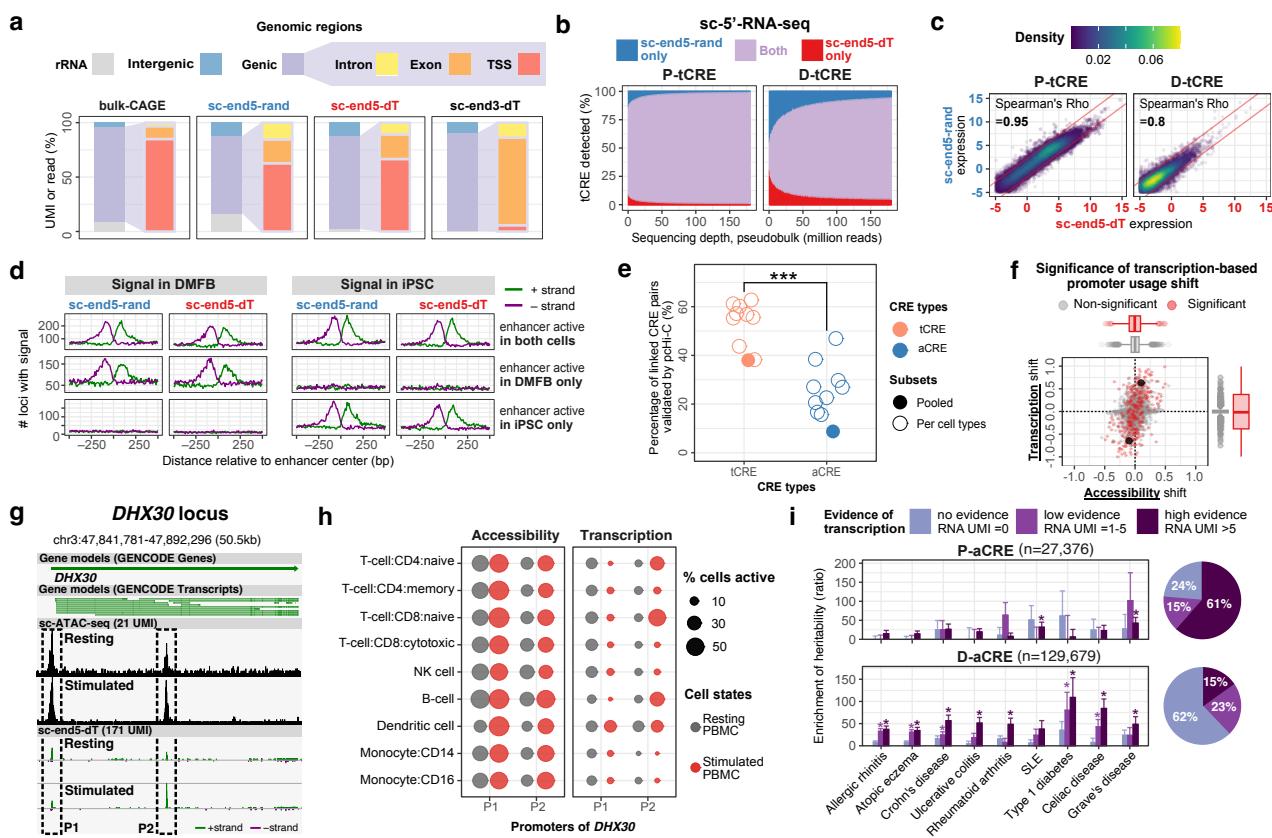
363 We probed trait-associated SNPs in alternative promoters, uncovering significant heritability
364 enrichment for body height trait within fibroblast and chondrocyte Lv1 cell types (**Fig. 6i**),
365 highlighting the crucial role of chondrocytes in endochondral ossification: a process by which
366 growing cartilage is systematically replaced by bone to form the growing skeleton. Chondrocyte
367 meta-cells displayed a gradient of height ICE-CREAM scores that correlate with the expression of
368 essential ossification regulators *SOX9* (Hattori *et al.*, 2010) and *RUNX2* (Chen *et al.*, 2014) (**Fig. 6j-k**).
369 A GSEA, where we ranked the absolute correlation between gene expression and height ICE-
370 CREAM score, further underscored the involvement of biological processes and molecular functions
371 tied to bone biology and the critical components of the TGF- β signaling pathway (**Fig. 6l-m**), e.g.
372 SMAD and extracellular matrix (**Fig. 6r**) (Estrada *et al.*, 2013; Mokuda *et al.*, 2019).

373 The inverse expression patterns and trait correlations between *WWP2* and *SMAD7* in chondrocyte
374 meta-cells underscore the ubiquitination of SMAD7 by WWP2 within the TGF- β pathway (**Fig. 6n-r**).
375 Two promoters lead to different WWP2 isoforms (de Kroon *et al.*, 2017; Soond and Chantry, 2011;
376 Wahl *et al.*, 2019): Promoter 1 (P1) produces a full-length isoform (WWP2-FL) with broad
377 expression, whereas Promoter 2 (P2) generates a chondrocyte-enriched shorter isoform (WWP2-C),
378 with P2 expression strongly correlated with the height ICE-CREAM score, but not P1 (**Fig. 6r-x**).
379 The observed gradient in height ICE-CREAM score may be influenced by the selective binding of
380 SMAD proteins to the WWP2 isoforms, particularly the affinity of WWP2-C for SMAD7, impacting
381 TGF- β signaling in endochondral ossification and ultimately skeletal growth and body height (de
382 Kroon *et al.*, 2017; Wahl *et al.*, 2019) (**Fig. 6r**). These detailed tCRE-based analyses provide a
383 nuanced understanding of trait associations, offering insights beyond traditional gene-level analyses.
384

385 Conclusions

386 This single-cell tCRE atlas marks a considerable advancement over our previous efforts on bulk
387 sample (Forrest *et al.*, 2014), expanding the scope to include a wider array of tCREs and cell types,
388 and enhancing granularity to single-cell resolution. This substantially improved the depth and breadth
389 of tCRE annotations within the human genome. By interrogating distal regulatory elements and their
390 associated promoters, our analyses revealed underlying patterns of gene regulation, such as the
391 connection between broadly expressed promoters and cell type-restricted D-tCREs (**Fig. 3h**). The
392 integration of tCRE information into trait heritability assessments through the ICE-CREAM score
393 reveals subtle trait associations across cell populations (e.g. body height heritability in chondrocytes,
394 **Fig. 6j**; WWP2 promoter effects, **Fig. 6r**), offering fresh insights into gene regulation and trait
395 heritability in continuous cell populations. While current approaches like sc-linker (Jagadeesh *et al.*,
396 2022) and h-magma (Sey *et al.*, 2020) analyze trait-associated SNPs within regulatory elements but
397 overlook a continuum of cell populations, and scDRS (Zhang *et al.*, 2022) considers the continuum
398 but omits regulatory elements, our approach addresses both, providing higher resolution and
399 functional interpretability in a more flexible framework. Although sc-ATAC-seq is a prevalent
400 technique for studying CREs at single-cell resolution, our data indicate that most distal aCREs are
401 not transcribed (**Fig. 1i**), whereas transcribed aCREs show a greater enrichment for trait heritability

402 (Fig. 1i). The functional significance of untranscribed distal aCREs in gene regulation remains to be
403 fully understood, yet our findings underscore the value of transcriptional signals in studying CREs,
404 particularly concerning trait heritability. Looking forward, it is imperative to evaluate the
405 applicability of our findings at the individual level by single-cell tCRE profiling on a population scale
406 and to investigate how genetic variants influence CRE activities and disease predispositions in
407 specific cell types for diagnostic and therapeutic advancements. In conclusion, our work highlights
408 the power of sc-5'-RNA-seq in mapping tCREs across cell types and advancing our understanding of
409 the genetic, molecular and cellular drivers of diseases and traits.



410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

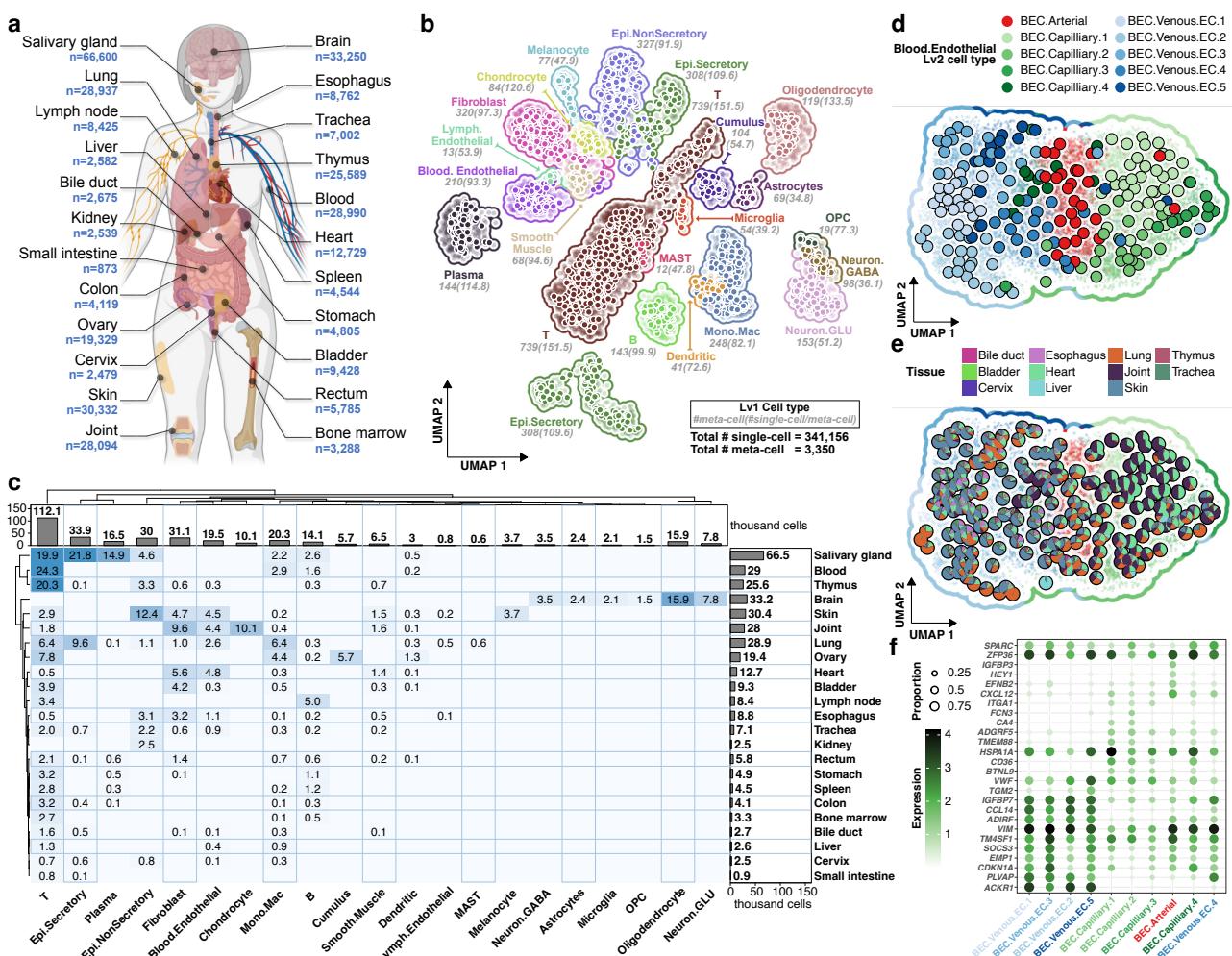
425

426

427

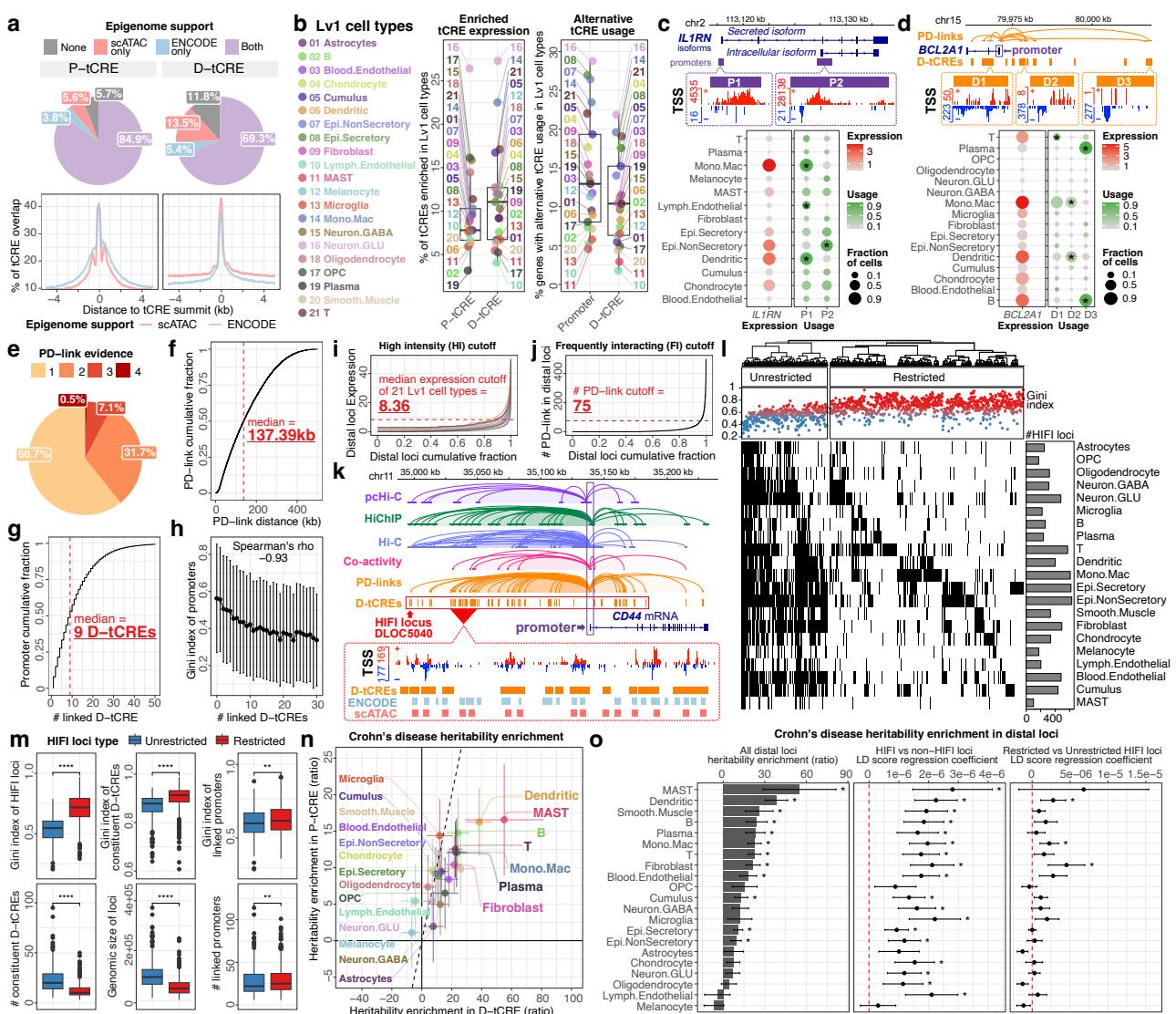
428

Figure 1: Detection of tCREs using sc-5'-RNA-seq. **a)** Distribution of reads aligning to the whole genome or to genic regions in bulk-CAGE and 5'-end random primed, 5'-end oligo(dT) primed and 3'-end oligo(dT) primed 10x single-cell RNA-seq. **b)** Proportion of overlap in tCRE detected in sc-end5-seq pseudo-bulk from 1 to 150 million reads. **c)** Correlation of tCRE levels between the pseudo-bulk data of the two sc-end5-seq methods. Red line, ± 2 -fold differences. UPM, UMI per million. **d)** TSS signal of sc-end5-dT and sc-end5-rand at bidirectionally transcribed enhancer loci defined in bulk-CAGE in iPSC and DMFB. **e)** Percentage of linked CRE pairs (co-activity score ≥ 0.2) validated (by pcHi-C) for tCRE (orange) and aCRE (blue), for per PBMC cell type (hollow circles) and for all cells pooled (solid circles). T-test for difference of tCRE and aCRE means shown. $p < 7 \times 10^{-6}$, paired t -test for cell types. **f)** Shifts in alternative promoter usage upon stimulation for genes with multiple P-tCRE in CD8 T Cells. X-axis, change in accessibility (ratio of proportion of signal in sc-ATAC-seq) within tCRE upon stimulation; Y-axis, mean change in expression (ratio of proportion of signal in sc-end5-dT) of tCRE across meta-cells ($k=50$) upon stimulation. P, t -test for change in tCRE usage shown. Black dots highlight DHX30 promoters shown in g,h. **g)** Alternative promoter usage shift at DHX30 locus, modified from Zenbu genome browser view. **h)** Cell type-specific shift in alternative promoter usage at DHX30 locus. Proportion of cells with accessible aCRE (left) and transcribing tCRE (right) colored by stimulation state. **i)** Enrichment of heritability in aCREs with various levels of evidence of transcription. Y-axis, enrichment of heritability is measured as the ratio of proportion of heritability to proportion of SNP, estimated by LDSC. Error bars, standard error of the estimate. Asterisks, significant enrichments with $p < 0.05$.



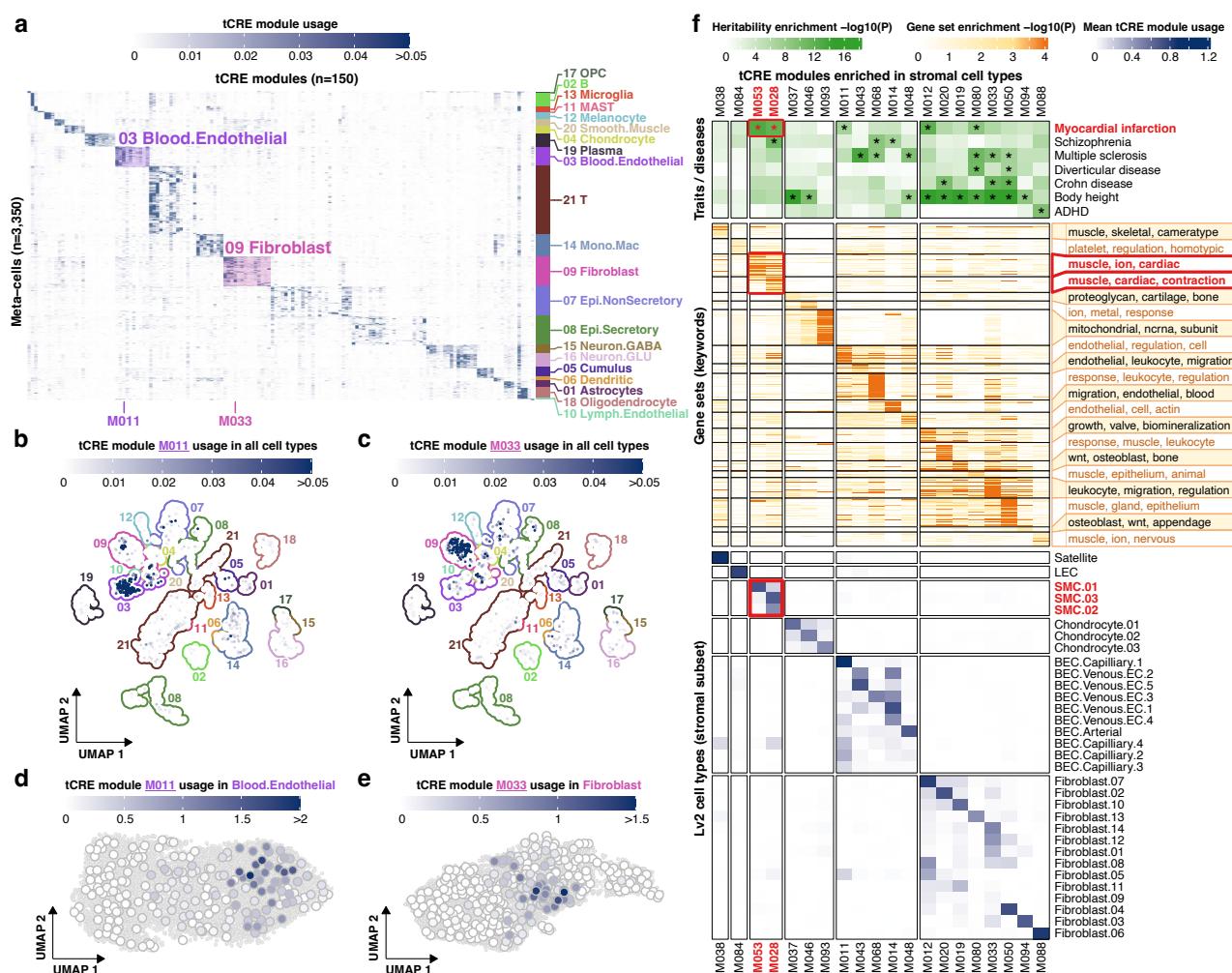
429
430
431
432
433
434
435

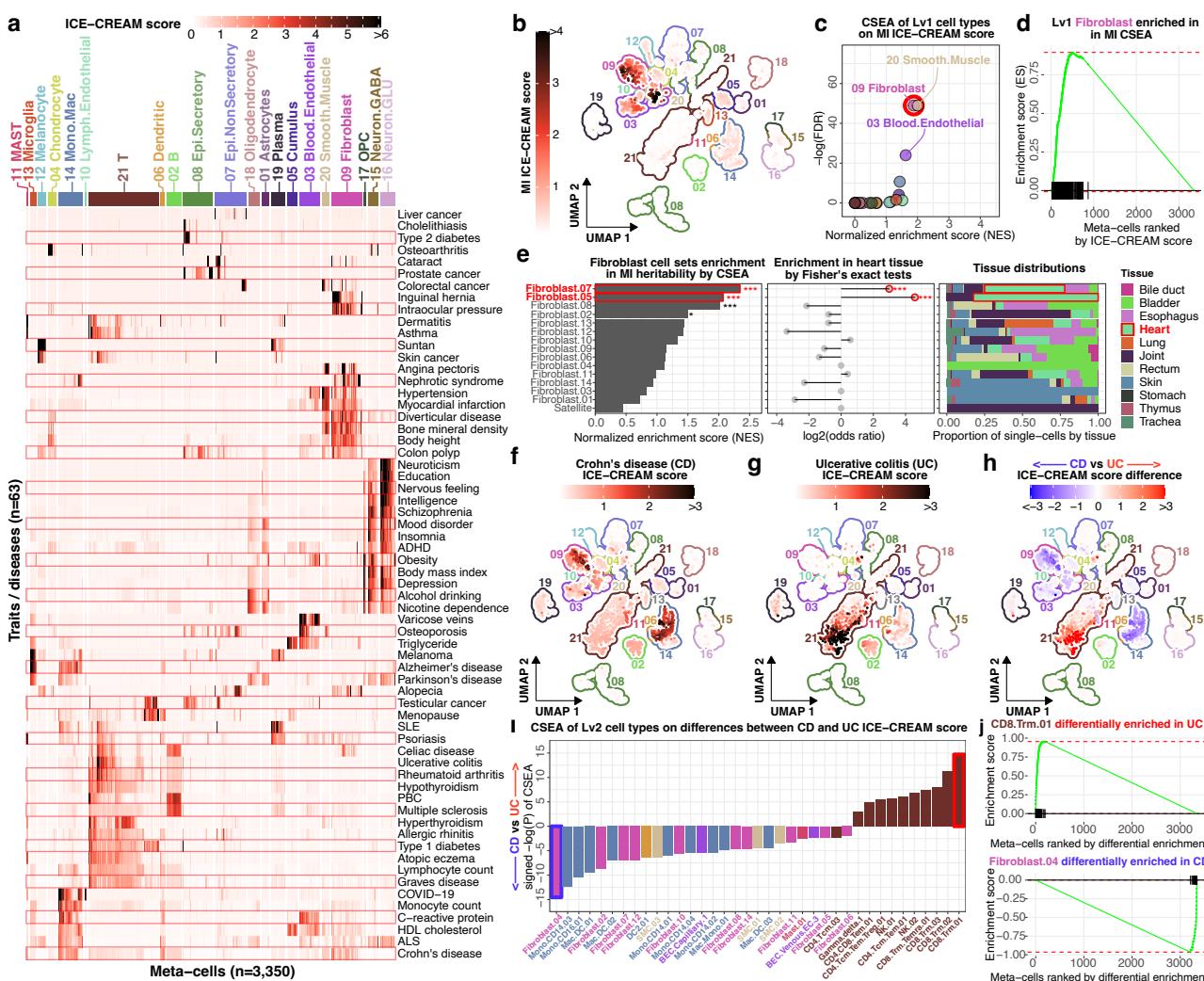
Figure 2: Annotating cell type clusters across 23 human tissues. **a)** Schematic with tissues of origin and number of included cells. **b)** Single-cell (small points) and meta-cell (large points) UMAP colored by Lv1 cell type clustering, meta-cells are positioned by the average UMAP positions of their single-cells, #meta-cells and average cells per meta-cell shown for each Lv1 cluster. **c)** Tissue of origin (rows) for cells in each Lv1 cell type (columns, in thousands of cells). **d,e)** Lv1 BEC subset reclustered and colored by Lv2 cell type cluster (d) and tissue of origin (e). **f)** Dotplot displaying top differentially expressed genes for each BEC Lv2 cluster.



436

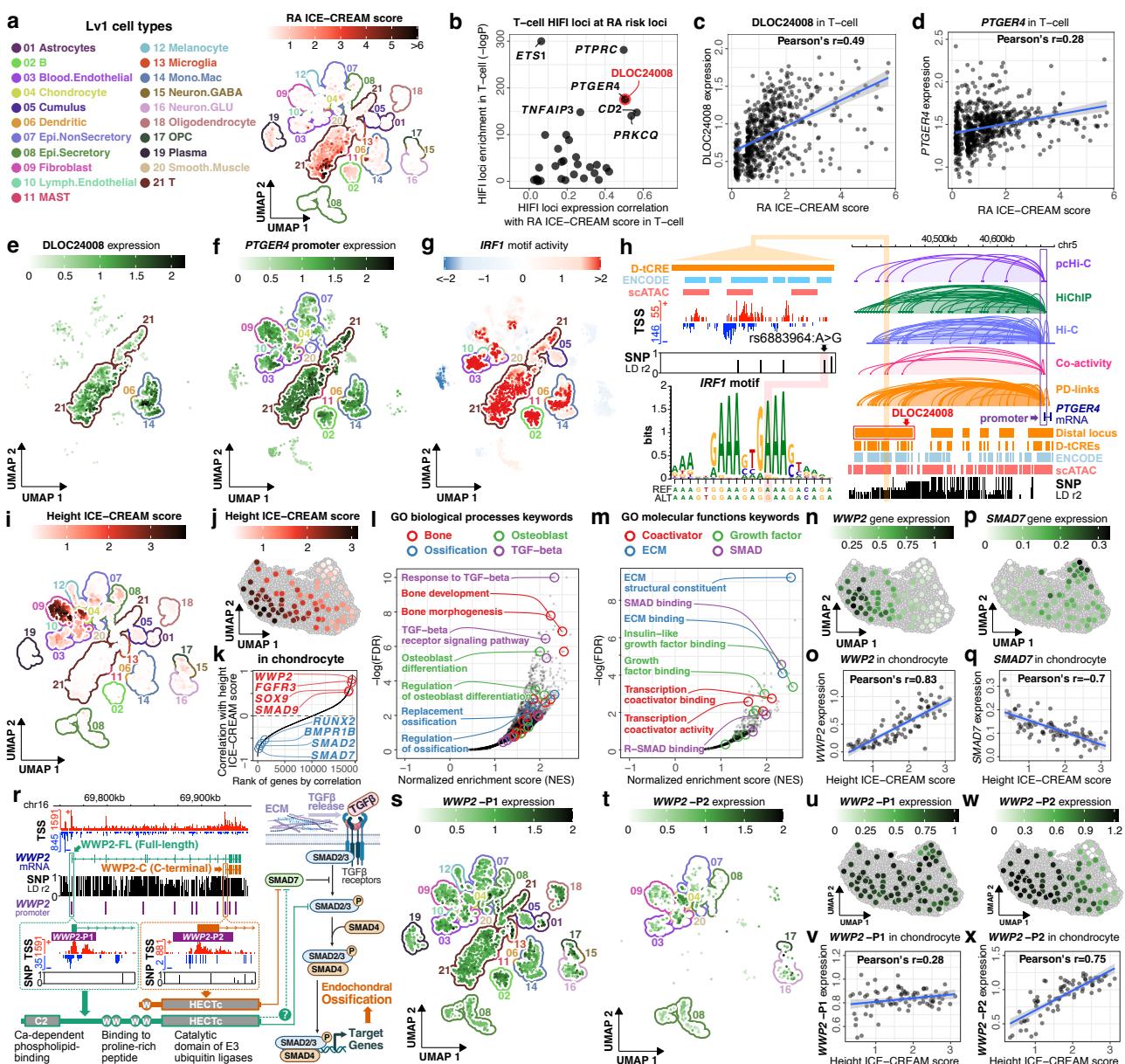
437 **Figure 3: Building a single-cell tCRE atlas.** **a**) Epigenome support of the tCREs. Percentages (upper) and
438 coverage pattern (lower) of P-tCREs and D-tCREs overlap with ENCODE and sc-ATAC CREs. **b**) Cell type-
439 specific expression of tCREs. Left, percentage of active P-tCREs and D-tCREs significantly enriched in Lv1
440 cell types; Right, percentage of genes with significant alternative usage of promoters and linked D-tCREs in
441 Lv1 cell types. ($p < 0.05$, Wilcoxon test) **c**) Alternative promoter usage by *IL1RN*. An asterisk represents
442 significant alternative promoter usage ($p < 0.05$, Wilcoxon test). **d**) Alternative D-tCRE at *BCL2A1*. An
443 asterisk represents significant alternative D-tCRE usage ($p < 0.05$, Wilcoxon test). **e**) Corroboration of PD-
444 links by pcHi-C, HiChIP, Hi-C, and Co-activity. **f**) Genomic distance of PD-links. **g**) Number of D-tCRE
445 linked per promoter. **h**) Number of D-tCRE linked to promoters stratified by promoter Gini index. **i**)
446 Expression cutoffs for high intensity distal loci, lines for each Lv1 cell type. Red dotted line, median of the
447 cutoffs. **j**) Number of PD-link cutoffs for frequently interacting distal loci. **k**) HIFI locus at *CD44* region. **l**)
448 Expression of HIFI loci. Right, the number of active HIFI loci in each Lv1 cell type. Heatmap k-mean clustered
449 with $k=2$. Top, the Gini index of each HIFI locus from expression across Lv2 cell types. **m**) Comparisons
450 between cell type-unrestricted and -restricted HIFI loci. Wilcoxon test. **n**) CD heritability enrichment in P-
451 tCREs and D-tCREs. tCREs active in each Lv1 cell type were used to estimate heritability enrichment. **o**) CD
452 heritability at distal loci. Left, heritability enrichment of all distal loci active in each Lv1 cell type. Middle, LD
453 score regression coefficient comparing HIFI loci against non-HIFI loci. Right, LD score regression coefficient
454 comparing restricted HIFI loci against unrestricted HIFI loci. Dots and error bars, estimated values and
455 standard errors. An asterisk represents $p < 0.05$ in all cases. Selected transcripts shown. All boxes represent
456 25th, 50th and 75th percentile of the data.





465

466 **Figure 5: Assessing trait heritability at single-cell resolution using ICE-CREAM score. a)** Heatmap of
467 ICE-CREAM score for traits (rows) in meta-cells (columns) colored by Lv1 cell type clusters (above). **b)**
468 UMAP of MI ICE-CREAM score in meta-cells. **c)** Lv1 CSEA for MI, x-axis NES, y-axis -log10(FDR) **d)**
469 Ranking fibroblast meta-cells for MI enrichment in Lv1 CSEA. **e)** (left) Lv2 fibroblast cell type enrichment
470 for MI in CSEA, (center) Enrichment for Heart cells, an asterisk represents significant enrichment ($p < 0.05$),
471 Fisher's exact test) (right) tissue of origin proportion. **f)** UMAP of CD ICE-CREAM score. **g)** UMAP of UC
472 ICE-CREAM score. **h)** UMAP of difference between CD and UC ICE-CREAM score. **i)** Lv2 cell type clusters
473 with significant difference in ICE-CREAM scores. **j)** CSEA of meta-cells corresponding to the most divergent
474 Lv2 cell type clusters in (h,i).



475

476 **Figure 6: Linking trait-associated variants to relevant cell populations, genes and CREs. a)** RA ICE-
477 CREAM score UMAP, **b)** HIFI loci scatter plot on x-axis correlation with RA ICE-CREAM score, y-axis
478 enrichment within T-cells (Wilcoxon rank-sum test). **c)** HIFI locus DLOC24008 Pearson's correlation with
479 RA ICE-CREAM score in meta-cells. **d)** PTGER4 promoter Pearson's correlation with RA ICE-CREAM score
480 in meta-cells. **e)** HIFI locus DLOC24008 expression UMAP, summed expression of contained D-tCRE. **f)**
481 PTGER4 promoter expression UMAP. **g)** IRF1 motif activity UMAP. **h)** PTGER4 gene and DLOC24008
482 genome browser view. **i)** Height ICE-CREAM score UMAP. **j)** Height ICE-CREAM score in chondrocyte
483 Lv1 cluster. **k)** Ranked gene expression Pearson's correlation with height ICE-CREAM score in chondrocyte
484 meta-cells. **l,m)** GSEA enrichment for GO biological processes (l) and GO molecular functions (m) ranked by
485 abs(gene expression) correlation with height ICE-CREAM score in chondrocyte Lv1 cluster. **n)** WWP2 gene
486 expression in chondrocyte Lv1 cluster. **o)** Pearson's correlation of WWP2 and height ICE-CREAM score in
487 chondrocyte Lv1 cluster. **p)** Ranked gene expression Pearson's correlation with height ICE-CREAM score in
488 chondrocyte meta-cells. **q)** Pearson's correlation of SMAD7 and height ICE-CREAM score in chondrocyte Lv1 cluster. **r)** WWP2 genome browser view (left) with
489 TSS signal, highlighting P1 and P2 producing the WWP2-FL and WWP2-C isoforms respectively. (right)
490 Schematic of WWP2 regulation of SMAD degradation in TGF- β signaling. **s,t)** WWP2 P1 (s) and P2 (t)
491 expression UMAP. **u,w)** WWP1 P1 (u) and P2 (w) expression in the chondrocyte Lv1 cluster. **v,x)** WWP1 P1
492 (v) and P2 (x) Pearson's correlation with ICE-CREAM score in chondrocyte Lv1 cluster meta-cells.

494 **Methods**

495 **Human Subjects**

496 All human samples examined in this study were either exempted material or were obtained with
497 informed consent and covered under the following research protocols: RIKEN Yokohama Campus
498 (no. H28-24, H30-9, H30-26), Ehime University Hospital (1812005), Keio University Hospital
499 (20170302, 20160377), Keio University School of Medicine (2019-0212), The Jikei University
500 School of Medicine (33-438(11065)), Osaka University Hospital (21113-2), the University of Tokyo
501 (2018192G-(4)). Written informed consent on sample collection, data acquisition and usage, and
502 publication was obtained from all the participants.

503

504 **Single-cell 3' and 5' RNA-seq**

505 Freshly prepared iPSC and DMFB cells were loaded onto the ChromiumTM Controller (10x
506 Genomics®) on different days. Cell number and viability were measured by CountessTM II
507 Automated Cell Counter (Thermo Fisher®). Final cell density was adjusted to 1.0×10^6 cells/ml
508 with >95% viability. Both cells were targeting ~5,000 cells per reaction. For sc-end3-dT libraries, we
509 used ChromiumTM Single Cell 3' Library kit v2 (10x Genomics®). Briefly, single-cell suspensions
510 were mixed with the Single-cell Master Mix using Reverse transcription (RT) Primer
511 (AAGCAGTGGTATCAACGCAGAGTACATr-GrGrG) and loaded together with 3' gel beads and
512 partitioning oil into a Single Cell A Chips according to the manufacturer's instructions (10x
513 Genomics®). For sc-end5-dT and sc-end5-rand libraries, we used ChromiumTM Single Cell 5'
514 Library kit v1.1 (10x Genomics®). Single-cell suspension was mixed with Single-cell Master Mix
515 using oligo(dT) RT primer (AAGCAGTGGTATCAACGCAGAGTACGAGAC-T(30)-VN) or
516 random hexamer RT primer (AAGCAGTGGTATCAACGCAGAGTACNNNNNN) and loaded
517 together with 5' gel beads and partitioning oil into a Single Cell A Chips according to the
518 manufacturer's instructions. RNAs within single-cells were uniquely barcoded and reverse
519 transcribed within droplets. Both methods used VeritiTM Thermal Cycler (Applied Biosystems®)
520 for RT reaction. After collecting cDNAs prepared from each method, they were amplified using
521 cDNA primer mix from the kit, followed by the standard steps according to manufacturer's
522 instructions. For iPSC and DMFB, six libraries (i.e. 3 methods \times 2 cell lines) were barcoded by
523 different indexes from i7 sample index plate (10x Genomics®). The libraries were examined in
524 BioanalyzerTM (Agilent®) for size profiles and quantified by KAPATM Library Quantification Kits
525 (Kapa Biosystems®). All libraries were sequenced on HiSeqTM 2500 (Illumina®) as 75 bp paired-
526 end reads.

527

528 **Single-cell ATAC-seq**

529 Freshly prepared resting and stimulated PBMCs were subjected to sc-end5-dT (Single Cell 5' Library
530 kit v1.1) and sc-ATAC-seq (Single Cell ATAC kit v1.1) library construction on the same day using
531 the ChromiumTM platform according to manufacturer's instructions (10x Genomics®). About 5,000
532 cells/nuclei were targeted per reaction. sc-end5-dT and sc-ATAC-seq libraries were sequenced on
533 HiSeqTM 2500 (Illumina®) as 75bp and 100bp paired-end reads respectively.

534

535 **PBMC stimulation**

536 Human PBMCs were prepared from the whole blood of a male healthy donor with LeucosepTM
537 (Greiner®). Isolated 2×10^6 PBMC cells were incubated with PMA/ionomycin (i.e. stimulated) (Cell
538 Activation Cocktail with Brefeldin A, Biolegend®), or DMSO as control (i.e. resting), for six hours.

539

540 Bulk CAGE, RNA-seq and ATAC-seq library construction and sequencing for DMFB and 541 iPSC

542 Bulk CAGE libraries were generated by the nAnT-iCAGE (Murata *et al.*, 2014) method as previously
543 described and sequenced on HiSeqTM 2500 (Illumina®) as 50bp single-end reads. Bulk RNA-seq
544 libraries were generated as previously described (Andersson *et al.*, 2014) and sequenced on HiSeqTM
545 2500 (Illumina®) as 100bp paired-end reads. Bulk ATAC-seq was performed as previously described
546 (Buenrostro *et al.*, 2015) with slight modifications. Briefly, 2.5×10⁴ cells/ml were used for library
547 preparation. Due to the more resistant membrane properties of DMFB, 0.25% IGEPALTM CA- 630
548 (Sigma-Aldrich®) were used for cell lysis. Transposase reaction was carried out as described in the
549 protocol followed by 10 to 12 cycles of PCR amplification. Amplified DNA fragments were purified
550 with MinEluteTM PCR Purification Kit (QIAGEN®) and size-selected with AMPureTM XP
551 (Beckman Coulter®). All libraries were examined in BioanalyzerTM (Agilent®) for size profiles and
552 quantified by KAPATM Library Quantification Kits (Kapa Biosystems®). Bulk ATAC-seq libraries
553 were sequenced on HiSeqTM 2500 (Illumina®) as 50bp paired-end reads.

554

555 Processing sc-end5-dT data for PBMC

556 Reads were aligned to hg19 with *Cell Ranger* and the gene-based expression matrixes were processed
557 with *Seurat* v3. Briefly, cells were excluded with ≥ 4 median absolute deviation from the mean for
558 number of features, UMI count, and percentage of mitochondrial UMI. Top 2,000 variable features
559 were selected. Resting and stimulated PBMC samples were integrated with Canonical correlation
560 analysis (CCA) implemented in *Seurat* using principal component (PC) 1 to 20 based on gene-based
561 expression matrix. Bam files were processed with *SCAFE* (v1.0.0) to generate filtered CTSS bed files
562 and *de novo* define tCRE. tCRE-based expression matrices from *SCAFE* were added to the *Seurat*
563 object for downstream analysis. Cell annotation was performed by manually combining annotations
564 from *scMatch* (Hou *et al.*, 2019) (version at 2020-10-10) and known marker genes. cell type-
565 specificity and stimulation-specificity of tCREs were calculated with *Seurat FindMarkers* function
566 with min.pct=0, return.thresh=Inf, logfc.threshold=0, min.cells.group=0.

567

568 Processing sc-ATAC-seq data for PBMC

569 Reads were aligned to hg19 with *Cell Ranger ATAC* v1.2 (10x Genomics) and the data were processed
570 with *SnapATAC* (Fang *et al.*, 2020) v1.0.0 using default parameters, selecting cells with $\geq 40\%$ reads
571 in ATAC peaks. Resting and stimulated cells were integrated with *Harmony* v1.0 using PC 1 to 20.
572 sc-ATAC-seq and sc-end5-dT were integrated using *SnapATAC FindTransferAnchors* and
573 *TransferData* functions to transfer cell cluster annotations from the sc-end5-dT cells to the sc-ATAC-
574 seq cells. sc-ATAC-seq peaks were defined per cell type using *SnapATAC runMACS*, then merged.
575 These merged peaks were referred to as aCREs and these aCREs were annotated using *SCAFE*. Cell
576 type-specificity and stimulation-specificity of aCREs were calculated with *SnapATAC findDAR*.

577

578 Analysis of DMFB, iPSC and PBMC data in Figure 1, Supplementary Figures 1-3.

579 Reads were aligned to hg19 with *Cell Ranger* v3.1.0 (10x Genomics), and bam files were processed
580 with *SCAFE* to generate filtered CTSS bed files and *de novo* define tCRE. Annotation counts were
581 produced by intersecting CTSS bed files with GENCODE gene models. Metagene plots from
582 overlapping CTSS bed files with exons binned with Bioconductor *equisplit* using *foverlaps*.
583 Enrichment of genesets in sc-end5-dT versus sc-end5-rand was tested using *fgsea* v1.16.0 with

584 nperm=1000. Genesets were defined as: 1) cytoplasmic, nucleoplasmic, and chromatin-bound RNAs:
585 log₂ fold-change ≥ 2 in fractionated CAGE data compared to total CAGE data, 2) long and short RNAs:
586 maximum transcript length per gene $\geq 25,000$ nt and $< 1,000$ nt, 3) Non-polyA histone RNAs: histone
587 RNAs with log₂ fold-change ≥ 2 in non-polyA fraction in a previous study (Yang et al., 2011)
588 *ChromVAR v1.12.0* was used to estimate per-cell TF motif activities for the JASPAR2018 core motif
589 set for tCRE or aCRE excluding chrM. The tCRE expression matrix was binarized prior to running.
590 *Cicero v1.3.4.11* was used to calculate the co-activity score between CRE pairs using default
591 parameters. Only tCREs and aCREs present in ≥ 3 cells were considered. Co-activity scores were
592 estimated separately using cells within individual cell types (cell type sets) or all cells (pooled set).
593 A pair of CREs with co-activity score ≥ 0.2 is defined as “linked”. pcHi-C connections (without
594 cutoffs) from all cell types were pooled and used for validation of co-activity linked CREs pairs. For
595 comparisons of validation rates between tCREs and aCREs, only a subset of CREs that are overlapped
596 between tCREs and aCREs and CRE pairs located ≥ 10 kb apart was used. Detecting shifts in
597 alternative promoter use: For each cell type (excluding dendritic cells due to low cell count), knn
598 clustering of the *Seurat* SNN matrix (k=50) was used to generate meta-cells. The proportion of UMI
599 in each gene arising from P-tCREs was calculated for each meta-cell. cell type-specific tCRE
600 switching events were identified using a *t*-test for differences in the proportion of UMI in gene
601 contributed from each tCRE between meta-cells of selected cell type and a background of all other
602 cell types. sc-ATAC-seq signal (UMI per millions) at a tCRE was defined as the maximum signal in
603 cell type bigwig files generated with *SnapATAC runMACS*.
604

605 tCRE atlas scRNA alignment, filtering, doublet removal, processing

606 Fastq from the Single Cell Medical Network in Japan were aligned to hg38 using cellranger versions
607 3.1.0 to 6.1.2 as data was generated. Samples from He, S et al., 2020 were re-processed from
608 downloaded fastq files. Gene expression counts were corrected for ambient RNA using cellbender
609 (Fleming et al., 2023) v0.2.0, using 0.6x and 2.5x cellranger identified cell count as --expected-cells
610 and --total-droplets-included. Doublet removal was performed with scrublet (Wolock et al., 2019),
611 cells with fewer than 500 umi, 300 genes, or more than 10% mitochondrial UMI were removed.
612 Variable genes were identified using *scipy.pp.highly_variable_genes* flavour=*seurat_v3*,
613 batch_key=*project*, span=0.5. Gene counts were normalized to 1e4 per cell and log transformed. 20
614 PCs were used for bbknn(Polański et al., 2020) batch correction. Corrected nearest-neighbors graph
615 were used in UMAP projection and leiden clustering.
616

617 Cell annotation

618 Cells were annotated with various references as input for manual curation: cello (Bernstein et al.,
619 2021), Azimuth PBMC, Azimuth BBMC, Azimuth Motor cortex (Hao et al., 2021), celltypist
620 Immune_All_High, Immune_All_Low (Dominguez Conde et al., 2022). Leiden clustering with high
621 resolution plus manual annotation to merge clusters annotated to the same broad cell types or with
622 few differential genes was used to assign cells to Lv1 annotations. After annotation of Lv1 cell types,
623 each was sub-clustered to assign cells to Lv2 cell types following the same procedure as for the whole
624 atlas Lv1 annotation with the difference of applying harmony batch correction.
625

626 Meta-cells

627 Meta-cells were created within each Lv2 cell type using SEACells (Persad *et al.*, 2023) v0.2.0
628 creating $\text{sqrt}(n_cells) * 2$ meta-cells. UMI within genes or tCRE were summed from cells for each
629 meta-cell and re-log-normalized.

630

631 **Annotation and quantification of tCREs in the atlas**

632 To identify tCRE in the atlas data, the SCAFE *v1.0.0* (Moody *et al.*, 2022) pipeline was applied to
633 define and annotate tCREs. Briefly, for each library, the single nucleotide resolution 5'Cap TSS
634 (CTSS) signals, including the number of UMI with unencoded Gs, were extracted from the alignment
635 bam files generated from *cellranger*. The CTSS signals for all libraries of each “project” (as listed in
636 Supplementary Table 1) were aggregated and used to define a set of TSS clusters for each project.
637 For each project, the pooled CTSS signals were clustered using *parachu* within SCAFE (Moody *et*
638 *al.*, 2022) using default parameters, with a cutoff set to ≥ 3 UMI of encoded-G supported TSS per TSS
639 cluster. TSS clusters that are potentially strand invasion artifacts were removed (Moody *et al.*, 2022).
640 The remaining TSS clusters were further filtered using a logistic regression classifier trained with
641 matched sc-5'-RNASeq and ATAC-Seq data implemented in SCAFE (Moody *et al.*, 2022) at the
642 logistic probability cutoff of 0.9. These remaining TSS clusters from each project, multiple hard filters
643 were applied to remove the potentially artifactual clusters on the sense strand of the intronic and
644 exonic regions of annotated genes, with ≥ 5 UMI within the cluster and ≥ 3 UMI at TSS cluster summit.
645 A slightly more stringent cutoff was applied to the single nuclei libraries from project HCAJ0029
646 Brain tissues, with ≥ 10 UMI within the cluster, ≥ 5 UMI at TSS cluster summit and ≥ 5 UMI of
647 encoded-G supported CTSS. These sets of filtered TSS clusters from all projects were merged using
648 *bedtools merge* in a strand specific manner. The merged TSS clusters located within ± 500 nt of gene
649 TSS annotated in GENCODEv32 were classified as proximal, or as distal otherwise. All TSS clusters
650 were then extended 400nt upstream and 100nt downstream. These extended ranges were merged
651 using *bedtools*, in a strand-specific manner for proximal TSS clusters and non-strand-specific manner
652 for distal TSS clusters, as proximal-tCRE (P-tCREs) and distal tCREs (D-tCREs) respectively. The
653 P-tCREs with its CTSS summit within 500nt of annotated gene TSS on the same strand would be
654 annotated as promoter P-tCREs, and otherwise as flanking P-tCREs. It is noted that most flanking P-
655 tCREs are on the opposite strand of the promoters, resembling promoter upstream antisense
656 transcripts. For the D-tCREs that are located within the introns or exons of annotated genes, it will
657 be “rescued” as promoter P-tCREs if, 1) its expression levels (number of UMIs within its TSS clusters)
658 $\geq 5\%$ of the expression levels of the corresponding gene (total number of UMI of all annotated
659 promoter P-tCREs of the gene) and 2) $\geq 75\%$ of its UMIs are on the same strand of the corresponding
660 gene. In total, 8,791 D-tCRE were rescued as promoter P-tCREs, which can be considered as novel
661 alternative promoters that are not annotated in GENCODEv32. In total, the above process yielded
662 81,829 P-tCREs and 96,400 D-tCRE, with 54,149 of 81,829 P-tCREs annotated as promoters. The
663 average size of P-tCREs and D-tCREs are 771.12 nt and 608.01 nt, respectively. Expression of tCREs
664 is quantified by counting the number of CTSS UMIs overlap with its constituent TSS clusters on the
665 same strand.

666

667 **Defining of distal loci and HIFI loci**

668 Distal loci is defined as a stretch of closely situated D-tCRE with a distance limit and P-tCREs were
669 excluded from this analysis. To estimate an optimal distance, the closest distance of a D-tCRE to
670 another was plotted against the rank and the tangle line of the curve was used to identify a cutoff at
671 17,065 nt. D-tCREs within this cutoff were ‘stitched’ together and defined 34,120 distal loci, which

672 ~31.% of them (n=10,547) contains ≥ 3 D-tCREs. A metric, “spreadness”, which quantifies the extent
673 of evenness of UMI distribution across the constituent D-tCREs, is calculated as ratio of (the fraction
674 of the the total number of UMI in the loci contributed by the highest expressed D-tCRE in) to the
675 (total number D-tCREs in the loci). A distal locus with spreadness ≥ 4 is defined as evenly spread.
676 The expression level of a distal locus is defined as the sum of the expression level of their constituent
677 D-tCREs. To identify high intensity distal loci in each Lv1 cell type, the expression levels (log-
678 normalized values) of each active distal loci (UMI count ≥ 1) were plotted against their ranks and the
679 tangle line of the curve was used to identify a cutoff in each Lv 1 cell type, with a median of 8.36
680 among Lv1 cell types (Fig. 3i). Frequently interacting distal loci are defined in a cell type agnostic
681 manner as distal loci with total number linked promoters (from its constituent D-tCREs) passing a
682 cutoff of 75 (Fig. 3j), determined the same way as high intensity distal loci but plotting the number
683 of linked promoters instead of expression levels. A distal locus that is 1) evenly spread, 2) frequently
684 interacting, and 3) high intensity in one of the Lv 1 cell types were defined a HIFI loci, yielding 1,229
685 HIFI loci in total. Cell type-unrestricted and -restricted HIFI loci were defined by *k-mean* clustering
686 of their binary presence/absence among Lv1 cell types with n=2 (Fig. 3l).

687

688 **Gini index**

689 Gini index of all tCREs and all distal loci were calculated from the respective expression matrices on
690 Lv2 cell types (n=180), using the *gini()* function implemented in the ‘ineq’ R package.

691

692 **Inferring Promoter-to-D-tCRE interactions (PD-links)**

693 PD-links were inferred by integrating public chromatin interaction datasets with our tCRE atlas,
694 including 1) Hi-C from ENCODE (ENCODE Project Consortium *et al.*, 2020) (n=172), 2) H3K27ac
695 HiChIP from HiChIPdb ((Zeng *et al.*, 2023), n=129), and 3) pcHi-C from 3DIV (Yang *et al.*, 2018)
696 (n=28). Together with 4) tCRE co-activity estimated from our atlas (Methods). For 1), 2) and 3), the
697 significant (FDR < 0.05) loops (at various resolutions) were taken as provided by the original sources.
698 The details of the used chromatin interaction datasets were listed in Supplementary Table 12. For 1)
699 and 3), the provided significant loops are at mixed resolutions, with mean of 5157.99 bp and
700 10739.5bp in 1) and 3) respectively. For 2), interactions at 5,000bp were chosen for our analyses. For
701 4), we estimated the co-activity of all tCRE pairs among all meta-cells across the whole atlas as well
702 as the meta-cells within each Lv1 cell type, using *Cicero v1.3.4.11*, with the expression matrix of
703 tCREs as input and ran in a non-binarized manner. For each pair of tCREs, the highest co-activity
704 score among the above-mentioned scope was taken as the representative. A pair of promoter and D-
705 tCRE is inferred as linked if both tCREs overlap a significant loop in 1), 2) or 3), or having a
706 representative co-activity score ≥ 0.2 . This analysis yields 466,079 linked promoter-D-tCRE pairs,
707 involving 40,626 promoters with a median of 9 D-tCREs linked.

708

709 **Defining tCRE modules**

710 tCRE modules are defined using cNMF (Kotliar *et al.*, 2019) using the prepare, factorize, combine,
711 consensus workflow for meta-cell tCRE expression. We used values of k from 50 to 250 in increments
712 of 10, examining the stability/error plots to maximize the stability and number of components,
713 selecting k=150 to define 150 modules providing tCRE spectra scores quantifying the contribution of
714 each tCRE to the module.

715

716

717 **Processing of GWAS summary statistics**

718 All GWAS summary statistics (n=63 traits and diseases) are listed in Supplementary Table 7. Briefly,
719 GWAS summary statistics were obtained from (1) UK biobank heritability browser
720 (https://nealelab.github.io/UKBB_ldsc/index.html), (2) Dr. Alkes Price group site
721 (<https://alkesgroup.broadinstitute.org/>) and (3) other sources (refer to Supplementary Table 7).
722 Summary statistics obtained from (1) and (2) were directly used for heritability enrichment analyses,
723 while the summary statistics obtained from (3) were pre-processed using “*munge_sumstats.py*”
724 scripts in LDSC software.

725

726 **Trait heritability enrichment in CREs**

727 For analysis in Fig. 1i, Fig. 3n, Fig. 3o left column, Supplementary Fig. 9 and Supplementary Fig. 10,
728 enrichment of trait heritability in CREs was assessed by stratified LD score regression (S-LDSC)
729 implemented in LDSC software. Annotation files and LD score files were generated for each set of
730 CREs using the “*make_annot.py*” and “*ldsc.py*” scripts using default parameters. Each set of CREs
731 was added onto the 97 annotations of the baseline-LD model v2.2 and heritability enrichment (i.e.,
732 ratio of proportion of heritability to proportion of SNP) for each trait was estimated using the “*ldsc.py*”
733 script with “*--h2*” flag in default parameters. For analysis in Fig. 3o, middle and right column, as
734 well as the heritability enrichment in modules (described below), which involve the comparison of
735 relative heritability enrichment between two sets of CREs, we used the “specifically expressed genes”
736 approach (LDSC-SEG) implemented in LDSC software. Briefly, two sets of tCREs, one defined as
737 “foreground” e.g. HIFI loci, was compared against a “background” tCRE set, e.g. non-HIFI loci.
738 Annotation files and LD score files were generated for each set of “foreground” and “background”
739 tCREs using the “*make_annot.py*” and “*ldsc.py*” scripts using default parameters. These foreground
740 and background annotations were added onto the 53 annotations of baseline-LD model v1.2 and the
741 contribution of “foreground” tCREs to trait heritability (i.e., regression coefficient) for each trait was
742 estimated using the “*ldsc.py*” script with “*--h2-cts*” flag in default parameters.

743

744 **Trait heritability enrichment in modules**

745 The extent of heritability enrichment for each trait in each module was quantified using the LDSC-
746 SEG approach similar to the approach mentioned above, with the 53 annotations baseline-LD model
747 v1.2. Briefly, for each module, the top 15000 tCREs ranked by the module contribution score (i.e.
748 spectra) derived from cNMF was used as the ‘foreground’ and the rest of the tCREs were used as the
749 ‘background’. The ‘foreground’ tCRE regions were compared against the ‘background’ tCRE
750 regions by running *ldsc.py --h2-cts*, yielding a p-value and a regression coefficient for each trait-
751 module pair. The value of $-\log_{10}(P)$ was as a score which is then further trimmed, scaled and powered
752 within each trait as follows: 1) score of the modules with regression coefficient < 0 or p-value > 0.1
753 were set to zero; 2) the trimmed score was raised to the power of 1.5 to increase the contrast of high
754 and low levels of heritability enrichment; 3) the powered score was scaled to the maximum score
755 within the trait. This yields a value of 0 to 1 within each trait across all modules, which was then used
756 as the weight to calculate the weighted sum of module usage for ICE-CREAM score described below.

757

758 **ICE-CREAM score**

759 In essence, the ICE-CREAM (Individual Cell Enrichment of CRE Activity Module) score, for a
760 particular trait in a particular single-cell (or meta-cell) was calculated as the sum of module usage,
761 each weighted by the extent of trait heritability enrichment in the corresponding module. Briefly,

762 module usages were calculated for meta-cells (or single-cells) by running *cnmf_obj.refit_usage*(expr,
763 spectra). The usage for each module in a cell is then weighted (i.e. multiplied) by the extent of
764 heritability enrichment (explained above) for the corresponding module for a given trait. The
765 weighted sum of all modules thus yields a score for each trait in each cell. To quantify the statistical
766 significance of this score, a null distribution of the score is generated by permutation of the module
767 usage. Briefly, the tCRE expression values were shuffled within 5 expression bins 1000 times to
768 generate 1000 expression levels-matched random expression matrices as the input for rerunning
769 *cnmf_obj.refit_usage*, yielding 1000 permuted module usage matrices. Weighted sums were then
770 recalculated for 1000 times, while keeping the extent of heritability enrichment fixed, yielding a null
771 distribution of the score. The observed score for a given trait in a cell was then compared against the
772 corresponding null distribution, yielding a Z-score and thus a one-tailed p-value (P), using
773 *scipy.stats.norm.sf*. The ICE-CREAM score is then calculated as $-\log_{10}(P)$ yielding a non-negative
774 value.

775

776 **Differential gene/tCRE expression and differential tCRE usage**

777 Differential expression for gene or tCRE at Lv1 and Lv2 cell types were performed with
778 *scanpy.tl.rank_genes_groups* with method='t-test'. In promoter usage analysis, promoters were
779 considered if they had more than 10 UMI and $\geq 5\%$ of the UMI when summing all promoters
780 assigned to a gene. The proportion of UMI from each promoter was calculated per meta-cell to give
781 a promoter usage score. This score was visualized and used as input for differential expression testing
782 to assign cell type enriched usage. Similarly to promoter usage, D-tCRE usage was calculated for each
783 gene, using all D-tCRE that were linked with a gene promoter.

784

785 **Motif analysis**

786 ChromVAR (Schep *et al.*, 2017) using JASPAR2018 (Khan *et al.*, 2018) motifs was applied to the
787 tCRE meta-cell based matrix to estimate motif activity in each meta-cell. The motifbreakR R package
788 (Coetzee *et al.*, 2015) was used to assess the severity of SNP disruption of JASPAR2018 TFBMs.

789

790 **Gene Set Enrichment Analysis (GSEA)**

791 fgsea v1.28 (Korotkevich *et al.*, 2021) was used to score enrichment of gene sets from MSigDB
792 (Hallmarks, Reactome, KEGG, GO biological processes and molecular functions) using maximum
793 cNMF 'gene spectra' scores from promoters assigned to genes to rank genes.

794

795 **Cell Set Enrichment Analysis (CSEA)**

796 fgsea was applied to groups of meta-cells within the atlas ranked by trait scores at two levels: Lv1
797 cell types within the ranking of the whole atlas, or Lv2 cell types within subsets of the atlas (stromal,
798 immune, neural, epithelial).

799

800 **Defining trait associated SNPs, tCREs and genes with functional contexts**

801 To define trait-associated SNPs, genome-wide significant lead variants ($p < 5 \times 10^{-8}$) were extracted
802 from the 63 summary statistics listed in Supplementary Table 7. To increase coverage, additional
803 genome-wide significant lead SNPs for each trait (by matching of ontology terms listed in
804 Supplementary Table 7) were also extracted from extra GWAS studies from NHGRI-EBI GWAS
805 Catalog (<https://www.ebi.ac.uk/gwas/>) (release r2023-06-03). The SNPs within the LD block of the
806 GWAS lead SNPs (i.e., proxy SNPs) were searched for using *PLINK v1.9* with an $r^2 \geq 0.2$ within

807 ±500kb in matched population panels of Phase 3 1000 Genomes Project downloaded from MAGMA
808 website (http://ctg.cncr.nl/software/MAGMA/ref_data/). These lead and proxy SNPs are referred to
809 as trait associated SNPs. Trait associated SNPs residing in a tCRE are then linked to a gene if the
810 tCRE is the gene promoter or is a D-tCRE linked to genes through the mentioned P-D links. SNPs,
811 and tCRE are further filtered to be enriched within trait relevant cell types - significant in Lv1 cell
812 type CSEA to select relevant cell types, tCRE defined as enriched in cell type by significant Wilcoxon
813 test or Pearson's correlation with trait ICE-CREAM score > 0.5 across the whole atlas. Log
814 normalized tCRE expression, gene expression, and distal loci expression are correlated with ICE-
815 CREAM scores across meta-cells. Filtering for SNPs within relevant motifs: SNPs scored as
816 disrupting TFBM by motifbreakR are listed as motif disrupting if the motif activity score across the
817 atlas by chromVAR are significantly enriched in the same trait relevant cell types.
818

819 **Data availability**

820 Data used in the initial cell line and PBMC comparisons are available in the ArrayExpress database
821 (<http://www.ebi.ac.uk/arrayexpress>) under accession numbers: E-MTAB-10385 (sc-end5-dT, sc-end5-rand
822 and sc-end3-dT for DMFB, iPSC), E-MTAB-10378 (sc-end5-dT for PBMC), E-MTAB-10381 (bulk-ATAC-
823 seq for DMFB, iPSC), E-MTAB-10382 (sc-ATAC-seq for PBMC), E-MTAB-10383 (bulk-RNA-seq for
824 DMFB, iPSC), E-MTAB-10384 (bulk-CAGE for DMFB, iPSC).
825

826 A genome browser view for the tCRE atlas are available at: https://jon-bioinfo.github.io/TCRE_Atlas/igv.html
827

828 Supplementary figures and tables are available at: <https://doi.org/10.6084/m9.figshare.c.6926944>
829

830 A cellxgene web portal, the processed data and the codes for data analyses will be made available for upon
831 publication of the manuscript in a journal.
832

833 Due to patient data confidentiality sequencing data from the Single Cell Medical Network in Japan are not
834 provided.
835

835 Acknowledgements

836 This publication is part of the Human Cell Atlas (www.humancellatlas.org/publications) and the Single Cell
837 Medical Network of Japan. This research was supported by a research grant to the RIKEN Center for
838 Integrative Medical Sciences (IMS) from the Ministry of Education, Culture, Sports, Science and Technology
839 (MEXT). We would like to extend our thanks to Chitose Takahashi, Nozomi Moritsugu, Hiroko Kinoshita,
840 Tsugumi Kawashima from RIKEN IMS for assistance in single-cell RNA sequencing, to Teruaki Kitakura and
841 Nobuyuki Takeda from RIKEN IMS for their contribution in the information infrastructure management for
842 this project, and to Shihoh Nakamura, Fumiko Ozawa, Mitsutoshi Tano for technical supports. We further
843 acknowledge the Japan Science and Technology Agency (CREST-JPMJCR2011 to Taishin Akiyama; Forrest-
844 21457195 to Tomohisa Sujino; JPMJHI1504 to Hiroshi Kawasaki), Grants-in-Aid from the Japanese Society
845 for the Promotion of Science (JSPS) (21K18272 and 23H02899 to Tomohisa Sujino; 22K15736 and 21H05278
846 to Satoru Morimoto; 21H02853 to Ken-ichiro Kubo; 22K15203 to Satoshi Yoshinaga), Japan Agency for
847 Medical Research and Development (AMED) (JP22ek0410079 and JP19ek0410046 to Hiroshi Kawasaki;
848 JP22ek0109616, JP23ek0109651, JP23ek0109648, JP23kk0305024, JP23bm1423020, JP23bm1123046 and
849 JP23bm1423002 to Satoru Morimoto and Hideyuki Okano; JP21wm0425019 to Masaki Takao). National
850 Center of Neurology and Psychiatry (NCNP) biobank is partly supported by a grant from AMED (GAPFREE4-
851 JP21ak0101151) and Intramural Research Grant (3-1) for Neurological and Psychiatric Disorders of NCNP.

852 Author contributions

853 JW.S, CC.H. (Coordination, manuscript writing, study design, analysis), J.M. (Manuscript writing, data
854 analysis), Y.A., P.C. (Coordination, study design), JC.C., J.L., C.T., CW.Y. (Data analysis), A.H., Mi.T., Ta.K.
855 (Data management and coordination), Tu.K., M.K., I.K., T.H., S.N., Ko.O., F. LR., Y.S. (Performed
856 experiments), T.A., N.A., M.A., A.FN., Mi.H., K.H., Mi.H., Y.I., K.I., H.K., Tos.K., Tom.K., K.K., Y.K.,
857 R.M., T.M., S.M., A.N., J.N., Hi.O., Ya.O., N.S., H.S., K.S., T.S., A.S., H.T., M.Taka, M.Take, T.T., K.Y.,
858 S.Y. (Sample procurement)
859

860 Declaration of interests

861 The authors declare no competing interests.

862 References

863 Afrin,L.B. *et al.* (2020) Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell
864 activation syndrome. *International Journal of Infectious Diseases*, **100**, 327–332.

865 Andersson,R. *et al.* (2014) An atlas of active enhancers across human cell types and tissues. *Nature*, **507**, 455–
866 461.

867 Arend,W.P. and Guthridge,C.J. (2000) Biological role of interleukin 1 receptor antagonist isoforms. *Ann
868 Rheum Dis*, **59 Suppl 1**, i60-64.

869 Bae,E.-J. *et al.* (2023) Changes in oligodendroglial subpopulations in Parkinson’s disease. *Mol Brain*, **16**, 65.

870 Bates,J. and Diehl,L. (2014) Dendritic cells in IBD pathogenesis: an area of therapeutic opportunity? *J Pathol*,
871 **232**, 112–120.

872 Bernstein,M.N. *et al.* (2021) CellO: comprehensive and hierarchical cell type classification of human cells
873 with the Cell Ontology. *iScience*, **24**, 101913.

874 Bonaventura,A. *et al.* (2021) Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms
875 in COVID-19. *Nat Rev Immunol*, **21**, 319–329.

876 Buenrostro,J.D. *et al.* (2015) Single-cell chromatin accessibility reveals principles of regulatory variation.
877 *Nature*, **523**, 486–490.

878 Burke,J.P. *et al.* (2007) Fibrogenesis in Crohn’s disease. *Am J Gastroenterol*, **102**, 439–448.

879 Butcher,C. *et al.* (1994) Comparison of two promoters controlling expression of secreted or intracellular IL-1
880 receptor antagonist. *J Immunol*, **153**, 701–711.

881 Chen,H. *et al.* (2014) Runx2 regulates endochondral ossification through control of chondrocyte proliferation
882 and differentiation. *J Bone Miner Res*, **29**, 2653–2665.

883 Cho,E.J. *et al.* (1997) mRNA capping enzyme is recruited to the transcription complex by phosphorylation of
884 the RNA polymerase II carboxy-terminal domain. *Genes Dev*, **11**, 3319–3326.

885 Coetzee,S.G. *et al.* (2015) motifbreakR: an R/Bioconductor package for predicting variant effects at
886 transcription factor binding sites. *Bioinformatics*, **31**, 3847–3849.

887 Domínguez Conde,C. *et al.* (2022) Cross-tissue immune cell analysis reveals tissue-specific features in humans.
888 *Science*, **376**, eabl5197.

889 ENCODE Project Consortium *et al.* (2020) Expanded encyclopaedias of DNA elements in the human and
890 mouse genomes. *Nature*, **583**, 699–710.

891 Estrada,K.D. *et al.* (2013) Smad7 regulates terminal maturation of chondrocytes in the growth plate. *Dev Biol*,
892 **382**, 375–384.

893 Eraslan,G. *et al.* (2022) Single-nucleus cross-tissue molecular reference maps toward understanding disease
894 gene function. *Science*, **376**, eabl4290.

895 Fang,R. *et al.* (2020) SnapATAC: A Comprehensive Analysis Package for Single Cell ATAC-seq. *bioRxiv*,
896 615179.

897 Finucane,H.K. *et al.* (2018) Heritability enrichment of specifically expressed genes identifies disease-relevant
898 tissues and cell types. *Nat Genet*, **50**, 621–629.

899 Finucane,H.K. *et al.* (2015) Partitioning heritability by functional annotation using genome-wide association
900 summary statistics. *Nature Genetics*, **47**, 1228–1235.

901 Fleming,S.J. *et al.* (2023) Unsupervised removal of systematic background noise from droplet-based single-
902 cell experiments using CellBender. *Nat Methods*, **20**, 1323–1335.

903 Forrest,A.R.R. *et al.* (2014) A promoter-level mammalian expression atlas. *Nature*, **507**, 462–470.

904 Frankish,A. *et al.* (2019) GENCODE reference annotation for the human and mouse genomes. *Nucleic Acids
905 Res*, **47**, D766–D773.

906 Fuss,I.J. *et al.* (2004) Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2
907 response in ulcerative colitis. *J Clin Invest*, **113**, 1490–1497.

908 Gaulton,K.J. *et al.* (2023) Interpreting non-coding disease-associated human variants using single-cell
909 epigenomics. *Nat Rev Genet*, **24**, 516–534.

910 Gaidatzis,D. et al. (2015) Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional
911 and post-transcriptional regulation. *Nature Biotechnology*, **33**, 722–729.

912 Grip,O. et al. (2007) Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with
913 active Crohn's disease. *Inflamm Bowel Dis*, **13**, 566–572.

914 Hao,Y. et al. (2021) Integrated analysis of multimodal single-cell data. *Cell*, **184**, 3573–3587.e29.

915 Hattori,T. et al. (2010) SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation
916 and endochondral ossification. *Development*, **137**, 901–911.

917 Hauberg,M.E. et al. (2020) Common schizophrenia risk variants are enriched in open chromatin regions of
918 human glutamatergic neurons. *Nat Commun*, **11**, 5581.

919 He,S. et al. (2020) Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. *Genome
920 Biology*, **21**, 294.

921 He,Y. et al. (2022) Mediators of Capillary-to-Venule Conversion in the Chronic Inflammatory Skin Disease
922 Psoriasis. *Journal of Investigative Dermatology*.

923 Hickman,S. et al. (2018) Microglia in neurodegeneration. *Nat Neurosci*, **21**, 1359–1369.

924 Hnisz,D. et al. (2013) Super-enhancers in the control of cell identity and disease. *Cell*, **155**, 934–947.

925 Hou,R. et al. (2019) scMatch: a single-cell gene expression profile annotation tool using reference datasets.
926 *Bioinformatics*, **35**, 4688–4695.

927 Heumos,L. et al. (2023) Best practices for single-cell analysis across modalities. *Nat Rev Genet*, **24**, 550–572.

928 Jagadeesh,K.A. et al. (2022) Identifying disease-critical cell types and cellular processes by integrating single-
929 cell RNA-sequencing and human genetics. *Nat Genet*, **54**, 1479–1492.

930 Javierre,B.M. et al. (2016) Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease
931 Variants to Target Gene Promoters. *Cell*, **167**, 1369–1384.e19.

932 Khan,A. et al. (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles
933 and its web framework. *Nucleic Acids Res*, **46**, D260–D266.

934 Kim,T.H. et al. (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome.
935 *Cell*, **128**, 1231–1245.

936 Korotkevich,G. et al. (2021) Fast gene set enrichment analysis. *bioRxiv*, 060012.

937 Kotliar,D. et al. (2019) Identifying gene expression programs of cell-type identity and cellular activity with
938 single-cell RNA-Seq. *eLife*, **8**, e43803.

939 Kouno,T. et al. (2019) C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution.
940 *Nature Communications*, **10**, 360.

941 de Kroon,L.M.G. et al. (2017) SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced
942 chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. *Sci Rep*, **7**, 43164.

943 Lemieux,P. and Birot,O. (2021) Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to
944 Hypoxia: A Complex Story. *Front Physiol*, **12**, 735557.

945 Li,H. et al. (2018) WWP2 is a physiological ubiquitin ligase for phosphatase and tensin homolog (PTEN) in
946 mice. *J Biol Chem*, **293**, 8886–8899.

947 Li,Z. et al. (2022) Single-cell RNA sequencing depicts the local cell landscape in thyroid-associated
948 ophthalmopathy. *Cell Rep Med*, **3**, 100699.

949 Libioulle,C. et al. (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene
950 desert on 5p13.1 and modulates expression of PTGER4. *PLoS Genet*, **3**, e58.

951 Liu,B. et al. (2019) Abundant associations with gene expression complicate GWAS follow-up. *Nat Genet*, **51**,
952 768–769.

953 Long-Smith,C.M. et al. (2009) The influence of microglia on the pathogenesis of Parkinson's disease. *Prog
954 Neurobiol*, **89**, 277–287.

955 Mandal,M. et al. (2005) The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival.
956 *J Exp Med*, **201**, 603–614.

957 La Manno,G. et al. (2018) RNA velocity of single cells. *Nature*, **560**, 494–498.

958 Mokuda,S. et al. (2019) Wwp2 maintains cartilage homeostasis through regulation of Adamts5. *Nat Commun*,
959 **10**, 2429.

960 Moody,J. et al. (2022) SCAFE: a software suite for analysis of transcribed cis-regulatory elements in single
961 cells. *Bioinformatics*, btac644.

962 Murata,M. et al. (2014) Detecting expressed genes using CAGE. *Methods Mol Biol*, **1164**, 67–85.

963 Muzio,L. et al. (2021) Microglia in Neuroinflammation and Neurodegeneration: From Understanding to
964 Therapy. *Front Neurosci*, **15**, 742065.

965 Nord,A.S. et al. (2013) Rapid and pervasive changes in genome-wide enhancer usage during mammalian
966 development. *Cell*, **155**, 1521–1531.

967 Ong,C.-T. and Corces,V.G. (2011) Enhancer function: new insights into the regulation of tissue-specific gene
968 expression. *Nat Rev Genet*, **12**, 283–293.

969 Pang,B. and Snyder,M.P. (2020) Systematic identification of silencers in human cells. *Nat Genet*, **52**, 254–263.

970 Persad,S. et al. (2023) SEACells infers transcriptional and epigenomic cellular states from single-cell genomics
971 data. *Nat Biotechnol*, 1–12.

972 Pliner,H.A. et al. (2018) Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin
973 Accessibility Data. *Molecular Cell*, **71**, 858-871.e8.

974 Polański,K. et al. (2020) BBKNN: fast batch alignment of single cell transcriptomes. *Bioinformatics*, **36**, 964–
975 965.

976 Rodriguez-Rodriguez,L. et al. (2015) PTGER4 gene variant rs76523431 is a candidate risk factor for
977 radiological joint damage in rheumatoid arthritis patients: a genetic study of six cohorts. *Arthritis Res
978 Ther*, **17**, 306.

979 Rusconi,M. et al. (2017) Inflammatory role of dendritic cells in Amyotrophic Lateral Sclerosis revealed by an
980 analysis of patients' peripheral blood. *Sci Rep*, **7**, 7853.

981 Schep,A.N. et al. (2017) chromVAR: inferring transcription-factor-associated accessibility from single-cell
982 epigenomic data. *Nat Methods*, **14**, 975–978.

983 Schmitt,A.D. et al. (2016) A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in
984 the Human Genome. *Cell Rep*, **17**, 2042–2059.

985 Sey,N.Y.A. et al. (2020) A computational tool (H-MAGMA) for improved prediction of brain-disorder risk
986 genes by incorporating brain chromatin interaction profiles. *Nat Neurosci*, **23**, 583–593.

987 Singer,G.A.C. et al. (2008) Genome-wide analysis of alternative promoters of human genes using a custom
988 promoter tiling array. *BMC Genomics*, **9**, 349.

989 Soond,S.M. and Chantry,A. (2011) Selective targeting of activating and inhibitory Smads by distinct WWP2
990 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT. *Oncogene*, **30**, 2451–
991 2462.

992 Suo,C. et al. (2022) Mapping the developing human immune system across organs. *Science*, **376**, eab00510.

993 THE TABULA SAPIENS CONSORTIUM (2022) The Tabula Sapiens: A multiple-organ, single-cell
994 transcriptomic atlas of humans. *Science*, **376**, eabl4896.

995 Thibodeau,A. et al. (2018) A neural network based model effectively predicts enhancers from clinical ATAC-
996 seq samples. *Sci Rep*, **8**, 16048.

997 Touyz,R.M. et al. (2018) Vascular smooth muscle contraction in hypertension. *Cardiovascular Research*, **114**,
998 529–539.

999 Wahl,L.C. et al. (2019) Smad7 Binds Differently to Individual and Tandem WW3 and WW4 Domains of
1000 WWP2 Ubiquitin Ligase Isoforms. *Int J Mol Sci*, **20**, 4682.

1001 Wakabayashi,K. et al. (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and
1002 oligodendrocytes of Parkinson's disease brains. *Acta Neuropathol*, **99**, 14–20.

1003 Wolock,S.L. et al. (2019) Scrublet: Computational Identification of Cell Doublets in Single-Cell
1004 Transcriptomic Data. *Cell Syst*, **8**, 281-291.e9.

1005 Yang,D. et al. (2018) 3DIV: A 3D-genome Interaction Viewer and database. *Nucleic Acids Res*, **46**, D52–D57.

1006 Yang,L. et al. (2011) Genomewide characterization of non-polyadenylated RNAs. *Genome Biology*, **12**, R16.

1007 1007 Zeng,W. *et al.* (2023) HiChIPdb: a comprehensive database of HiChIP regulatory interactions. *Nucleic Acids*
1008 *Res*, **51**, D159–D166.

1009 1009 Zhang,K. *et al.* (2021) A single-cell atlas of chromatin accessibility in the human genome. *Cell*, **184**, 5985–
1010 6001.e19.

1011 1011 Zhang,M.J. *et al.* (2022) Polygenic enrichment distinguishes disease associations of individual cells in single-
1012 cell RNA-seq data. *Nat Genet*, **54**, 1572–1580.

1013 1013 Zhou,Z. *et al.* (2020) Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients.
1014 *Cell Host & Microbe*, **27**, 883–890.e2.

1015 1015 Zhuge,Y. *et al.* (2020) Role of smooth muscle cells in Cardiovascular Disease. *Int J Biol Sci*, **16**, 2741–2751.