

1 **An acidophilic fungus is integral to prey digestion in a
2 carnivorous plant**

3

4 Pei-Feng Sun^{1,2,3}, Min R. Lu¹, Yu-Ching Liu¹, Yu-fei Lin¹, Daphne Z. Hoh¹,
5 Huei-Mien Ke⁴, I-Fan Wang⁵, Mei-Yeh Jade Lu¹, Roland Kirschner⁶, Ying-
6 Chung Jimmy Lin^{7,8}, Ying-Lan Chen⁵ and Isheng Jason Tsai^{1,2,3}

7

8 ¹Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan

9 ²Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and
10 National Taiwan Normal University, Taipei, Taiwan

11 ³Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei,
12 Taiwan

13 ⁴Department of Microbiology, Soochow University, Taipei, Taiwan

14 ⁵Department of Biotechnology and Bioindustry Sciences, College of Bioscience and
15 Biotechnology, National Cheng Kung University, Tainan, Taiwan.

16 ⁶School of Forestry and Resource Conservation, National Taiwan University, 10617
17 Taipei, Taiwan

18 ⁷Department of Life Sciences, College of Life Science, National Taiwan University,
19 Taipei, Taiwan.

20 ⁸Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei,
21 Taiwan.

22 Correspondence: ijtsai@gate.sinica.edu.tw

23

24

25

26

27

28 **Abstract**

29

30 Carnivorous plant leaves, such as those of the spoon-leaved sundew *Drosera*
31 *spatulata*, secrete mucilage which hosts microorganisms potentially aiding in
32 prey digestion. We characterised the mucilage microbial communities and
33 identified the acidophilic fungus *Acrodontium crateriforme* as the ecologically
34 dominant species. The fungus grows and sporulates on sundew glands as its
35 preferred acidic environment. We show that the *A. crateriforme* has a reduced
36 genome similar to that of other symbiotic fungi. Based on the transcriptomes
37 when encountering prey insects, we revealed a high degree of genes co-option
38 in each species during fungus-plant coexistence and digestion. Expression
39 patterns of the holobiont during digestion further revealed synergistic effects in
40 several gene families including fungal aspartic and sedolisin peptidases,
41 facilitating the digestion of sundew's prey, as well as transporters and dose-
42 dependent responses in plant genes involved in jasmonate signalling pathway.
43 This study establishes that botanical carnivory is defined by multidimensional
44 adaptations correlated with interspecies interactions.

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66 Botanical carnivory has evolved independently at least 11 times in the plant
67 kingdom, each showcasing distinct unique molecular adaptations to attract,
68 capture and digest insects¹. Many carnivorous plants constitute iconic research
69 models since the era of Charles Darwin² to understand the evolutionary and
70 molecular basis of their predatory abilities, which are frequently confined within
71 a highly modified leaf organ. These specialised leaves secrete digestive
72 exudates that contain a diverse array of microorganisms. Although the
73 significance of microbiota in vertebrate digestion is widely established³, the
74 symbiotic interplay between carnivorous plants and their associated microbiota
75 is emerging in research⁴, and the underlying molecular responses to which
76 microorganisms facilitate or enhance plant carnivory remain to be elucidated.

77

78 Plant-microbe interactions are highly dynamic and can impact plant fitness
79 through many mechanisms⁵. Previous studies using metabarcoding suggested
80 that the digestive mucilage encapsulated by the modified leaves, known as
81 traps, is colonised by diverse communities of microorganisms (**Extended Data**
82 **Table 1**). In bladderwort, corkscrew and pitcher plants, there were no dominant
83 species present within the traps, but they can be broadly grouped into major
84 bacterial phyla⁶⁻¹¹. Bacterial diversity and biomass were found to improve prey
85 decomposition rates in the pitcher plant *Darlingtonia californica* by increasing
86 host leaves' nitrogen uptake efficiency¹¹. Meta-transcriptomic profiling of
87 *Genlisea* species revealing non-host transcripts were dominated by metazoan
88 hydrolases, suggesting a role in phosphate supplementation¹². In addition, the
89 composition of the microbiota appears to be highly time-dependent and
90 influenced by factors such as host¹¹, surrounding environment¹³, prey-
91 associated bacteria¹³ and enhanced species dispersal capabilities⁷,
92 highlighting the complex interplay of factors that shape these microbial
93 communities.

94

95 Species of *Drosera*, known as sundews and part of the second largest
96 carnivorous family after Lentibulariaceae¹⁴, have 'flypaper' leaves with tentacle-
97 like trichomes¹⁵ that secrete mucilage to trap prey, with *D. spatulata* leaves
98 enveloping the prey during digestion. After successful capture, the tentacles

99 rapidly envelop the prey, which is then degraded and mineralised by the
100 secreted digestive enzymes. This complex behaviour is stimulus specific, i.e.,
101 not activated by water droplets¹⁶, and is mediated by regulation of the
102 jasmonate (JA) signalling pathway which was pre-established in non-
103 carnivorous plants¹⁶. Recent sequencing and comparative genomics of
104 carnivorous plants has revealed expansion and clade-specific gene families
105 involved in carnivory. Members of these genes have been co-opted¹⁷ by
106 acquiring new roles from ancestral processes ranging from defence, such as
107 JA metabolism and signalling, to different stages of the capturing cycles
108 including peptidases and hydrolases for prey digestion¹⁸. The extent to which
109 these genes still retain their ancestral functions remains to be elucidated.
110 Another outstanding question is whether the outcome of the inter-species
111 interactions also drives genomic and transcriptomic adaptations to the
112 microbes in the holobiont¹⁹.

113

114 To investigate the potential inter-species interactions, we focus on *Drosera*
115 *spatulata*²⁰ (**Fig. 1a**), a sundew native to tropical regions including Taiwan. The
116 fascinating mechanism of trap movement in sundews, associated with prey
117 digestion, has long attracted scientific curiosity due to its complex operational
118 intricacies²¹, but importantly, act as a tractable response to diverse stimuli²² in
119 both natural and laboratory settings. This species, with its sequenced genome¹⁸
120 and documented microbial presence on its phyllosphere — where surface yeast
121 has been shown to promote growth²³ — collectively present a model microbial
122 ecosystem to experimentally interrogate the underlying molecular details. We
123 sought to characterise the mucilage microbial community and assess their
124 impact on digestion. By exploring these aspects, our research aims to shed
125 light on the intricate symbiotic interactions between carnivorous plants and their
126 resident microbes.

127

128

129

130

131

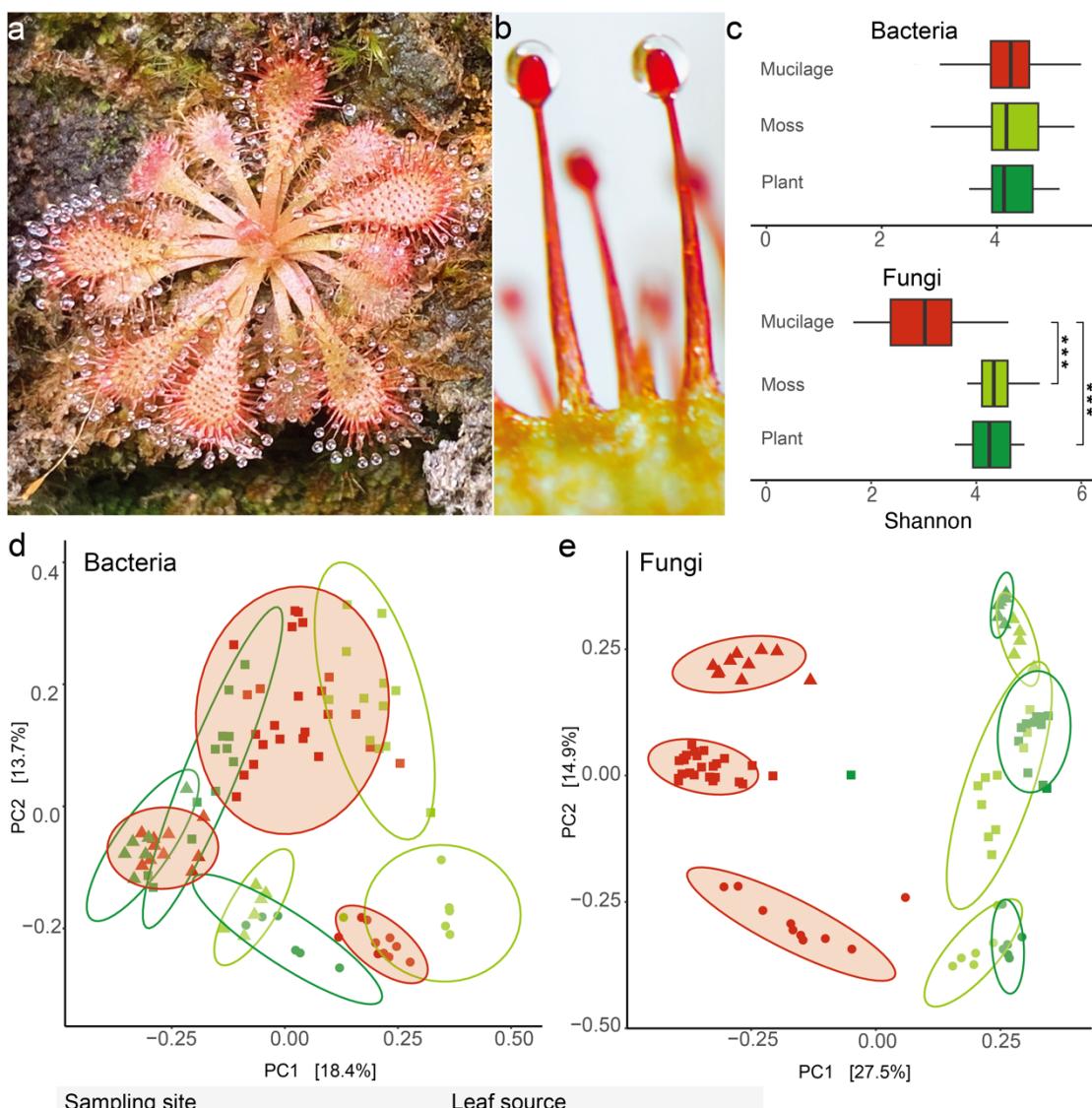
132

133 **Results**

140

141 **Fungal communities in *Drosera mucilage* were different to surrounding**
142 **environment**

143


144 To better understand the microbial diversity and composition of the
145 mucilage found on the sundew *Drosera spatulata*, we employed sterilised filter
146 papers to collect mucilage from sundews (**Fig. 1b**) and surrounding plants
147 typically found on cliff habitats of Northern Taiwan (**Supplementary Fig. 1**). A
148 total of 92 samples were subjected to 16S and ITS amplicon metabarcoding
149 (**Supplementary Table 1**). Each sample had average of 546 and 445 bacterial
150 and fungal operational taxonomic units (OTUs), respectively. The bacterial
151 species evenness was comparable between the sundew mucilage and leaf
152 surfaces of surrounding plants (**Fig. 1c**, Wilcoxon rank sum test, $P=0.81$). In
153 contrast, the fungal communities in mucilage had a significantly reduced
154 species evenness (**Fig. 1c**). Beta diversity of microbial communities estimated
155 using the Bray-Curtis index indicated no discernible differences in bacterial
156 communities between leaf surfaces (**Fig. 1d**, PERMANOVA, Leaf surface:
157 $R^2=0.12$, $P=0.06$). 42.9% of OTUs corresponding to 53.8-99.9% relative
158 abundance of mucilage microbiome were also found in the adjacent samples
159 (**Supplementary Table 2**), implying that the mucilage bacterial community
160 resembled that of the surrounding environments. However, the mucilage fungal
161 community was significant different compared to surrounding samples (**Fig. 1e**,
162 PERMANOVA, Leaf surface: $R^2=0.30$, $P=0.001$). These results suggest the
163 presence of a dominant fungal species in the *D. spatulata* mucilage.

164

165

166

167

168
169 **Fig. 1. Microbial Communities of *Drosera spatulata* mucilage and**
170 **surrounding environment. a. *Drosera spatulata* and b. close up of stalk**
171 **glands with secreted mucilage. c. Bacterial and fungal species evenness**
172 **in sundew mucilage versus neighbouring plant leaf surfaces. Asterisk denote**
173 **significant difference from Wilcoxon rank sum test (*** indicate $P<0.001$). Beta**
174 **diversity (Bray-Curtis index) of d. bacterial and e. fungal communities. Eclipses**
175 **were drawn at 95% confidence level within samples of same source and site.**

176

177

178

179

180

181

182

183

184 **Ecological dominance of *A. crateriforme* in *D. spatulata* mucilage**

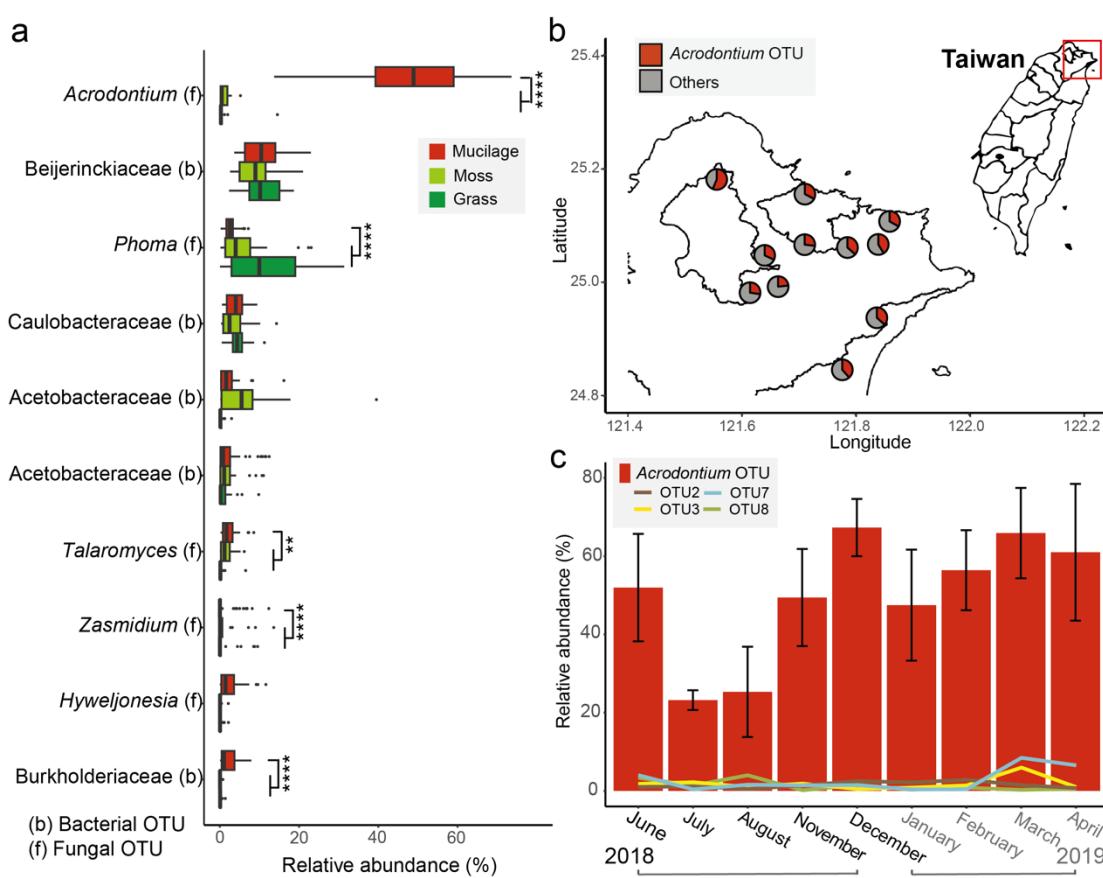
185

186 We examined the relative abundances of the top five major bacterial and
187 fungal taxa among leaf surfaces and revealed a single dominant fungal
188 operational taxonomic unit (OTU) in the mucilage samples averaging 46.6%
189 relative abundance (**Fig. 2a**). Reanalysis of beta diversity excluding this OTU
190 have rendered the fungal communities with no significant differences between
191 leaf hosts (**Supplementary Fig. 2**; PERMANOVA, $R^2=0.1197$, $P=0.06$
192 suggesting that this OTU was the main biotic factor affecting the fungal
193 community structures.

194

195 The taxonomic placement of the dominant fungal OTU belonged to the
196 genus *Acrodontium*. By re-analysing the available information from
197 Globalfungi²⁴ database, it was revealed 1.2% of 57,184 samples harboured
198 *Acrodontium* from forests (77.3%), followed by grasslands (12.2%), with the
199 majority of relative abundances being less than 1% (**Supplementary Fig. 3**
200 and **Supplementary Table 3**). *Acrodontium* appeared to be preferentially
201 located in more acidic samples (**Supplementary Fig. 4**), which is considered
202 an ancestral trait as it is phylogenetically closely related to a group of fungi that
203 can thrive at low pH²⁵. To investigate the extent of *Acrodontium* dominance in
204 *D. spatulata*, additional sequencing of mucilage samples spanning ~45 km of
205 Northern Taiwan revealed its remarkable dominance in all samples with an
206 average relative abundance of 30.8% (**Fig. 2b**). Continuous sampling of
207 mucilage across two sites for nine months revealed that *Acrodontium*
208 maintained its status as the most dominant fungus species despite a reduced
209 15.7% relative abundance during July and August (**Fig. 2c**). This further
210 validates the ecologically dominance of *Acrodontium* in the mucilage of *D.*
211 *spatulata* irrespective of spatial and temporal factors.

212


213

214

215

216

217

218

219 **Fig. 2. Ecologically dominance of *Acrodontium* OTU in *D. spatulata***
220 **mucilage. a.** Relative abundances of the top ten dominant bacterial [marked
221 as (b)] or fungal [marked as (f)] taxa among leaf surfaces, showcasing the
222 *Acrodontium* OTU as the dominant species in the mucilage. **b.** Relative
223 abundance of *Acrodontium* in 52 additional sundew mucilage samples across
224 Northern Taiwan. Red colour in pie chart denotes relative abundance of
225 *Acrodontium* OTU **c.** Temporal variation of *Acrodontium* and the next four major
226 OTUs' relative abundance in mucilage over nine months between 2018-2019
227 at two sites.

228

229

230

231

232

233

234

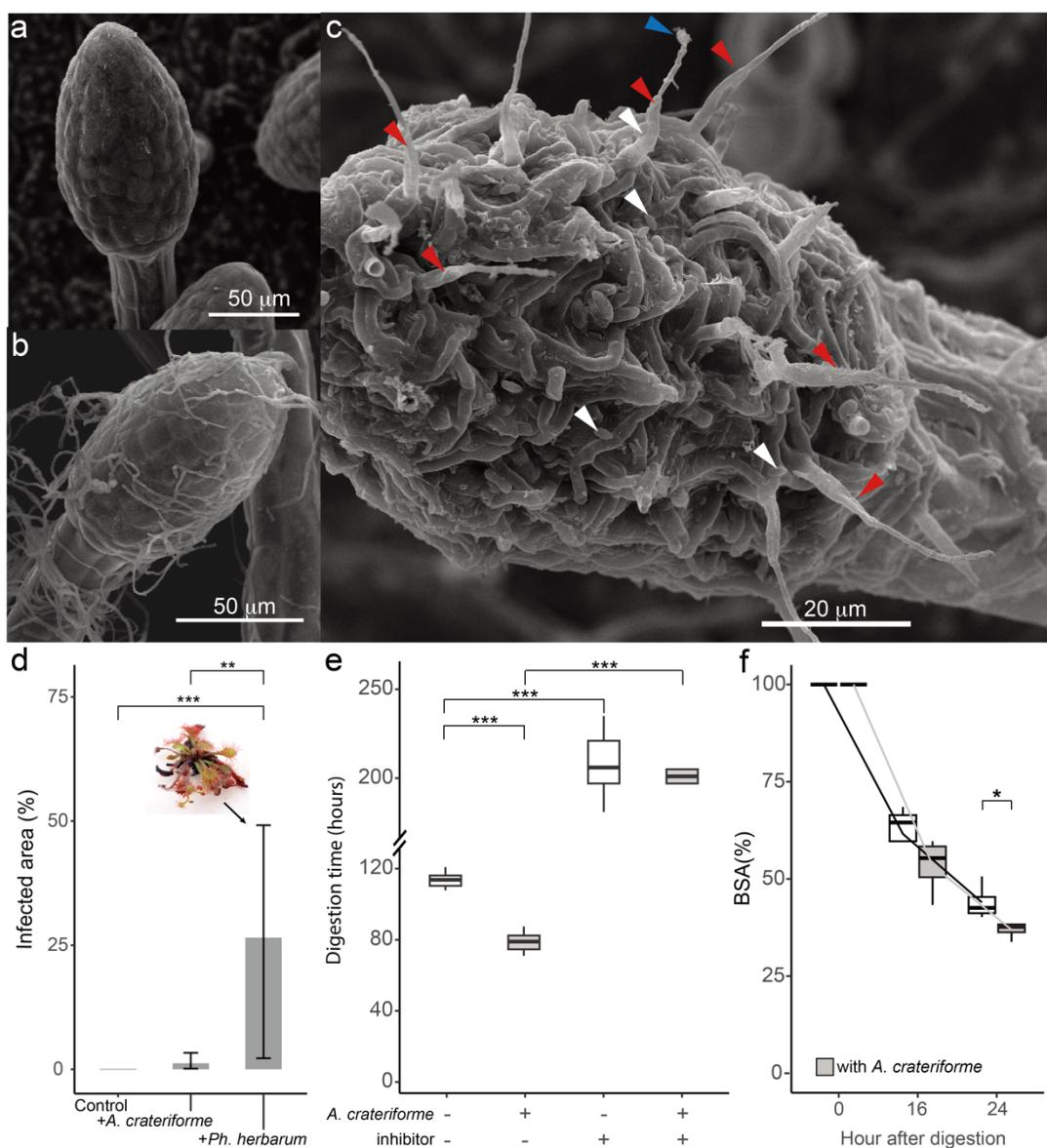
235 To investigate the roles of fungi to the carnivorous plant host, we isolated
236 the two most dominant OTUs from fresh mucilage of *D. spatulata* and identified
237 them as *Acrodontium crateriforme* and *Phoma herbarum* of the families
238 Teratosphaeriaceae and Didymellaceae, respectively (**Supplementary Fig. 5**
239 **and 6**). The latter is a plant pathogen causing leaf spot in various crops²⁶, while
240 *A. crateriforme* is cosmopolitan in nature found in soil²⁷, plant material^{28,29},
241 compost³⁰, air³¹ and rock surfaces³². Interestingly, *A. crateriforme* was isolated
242 in the digestive fluid of the Indian pitcher plant *Nepenthes khasiana*³³ and
243 preferred nitrogen-rich substrates³⁴. We reanalysed 14 published fungal
244 metabarcoding datasets of carnivorous plants, and detected its presence in
245 purple pitcher plant *Sarracenia purpurea*³⁵. Despite having a lower relative
246 abundance of 0.2-1.4% (**Extended Data Table 1**), there was a general
247 presence of *A. crateriforme* in carnivorous plants.

248

249 Like *D. spatulata*, *A. crateriforme* is well suited to grow under laboratory
250 conditions, and can be cultivated using PDA and MS media. *A. crateriforme*
251 grows optimally at pH 4–5 mirroring the acidity of *D. spatulata* mucilage³⁶⁻³⁸
252 (**Supplementary Fig. 7**), suggesting its acidophilic nature. In contrast, *Ph.*
253 *herbarum* preferred a more neutral pH. The optimal culture temperature for *A.*
254 *crateriforme* is 25°C (**Supplementary Fig. 8**), aligning with *D. spatulata*'s
255 growth range (7–32°C) and the average monthly temperature of 22.0°C at the
256 sampling sites (**Supplementary Fig. 9**). The summer temperature peaks (29–
257 35°C) at the sites may, combined with biotic factors such as optimal growth of
258 *Ph. herbarum* at this higher temperature range (**Supplementary Fig. 8**),
259 explain the reduced abundance of *A. crateriforme* at higher temperature (**Fig.**
260 **2c**).

261

262


263 **Plant-fungus coexistence increases digestive performance of sundews**

264 Examining the stalk glands of *D. spatulata* growing in a sterilised
265 environment using a scanning electron microscope (SEM) revealed clear
266 surfaces (**Fig. 3a** and **Extended Data Fig. 1a-c**). Inoculating the sundew with
267 *A. crateriforme* revealed hyphae that grew over the glands (**Fig. 3b** and

268 **Extended Data Fig. 1d-f**), while conidiophores and detached conidia were
269 observed in glands collected from the wild (**Fig. 3c**). This observation
270 demonstrates that *A. crateriforme* colonises and reproduces on the sundew
271 stalk glands³⁹, and the mucilage harbours free hyphae or conidiophores. The
272 cultivation of *A. crateriforme* is positively correlated with the amount of
273 *Polyrhachis dives* ant powder added to the medium, suggesting that the fungus
274 can utilise insects as a growth supplement (**Supplementary Fig. 10**).
275

276 To establish the potential contribution of *A. crateriforme* to the sundew host,
277 *A. crateriforme* was first inoculated onto the *D. spatulata* leaves and there were
278 no significant differences in the plant morphology and net weight after one
279 month (**Fig. 3d** and **Supplementary Fig. 11**). Conversely, inoculating *Ph.*
280 *herbarum* with the same concentration resulted in plant wilt (**Fig. 3d**),
281 suggesting stable plant-fungus coexistence between *A. crateriforme* and *D.*
282 *spatulata*. When supplementing leaves with ant powder, the times when the
283 stalk glands fully covered the prey and when they returned to their original
284 position were recorded. The period between these two points of time indicates
285 the reopening of the trap and completion of digestion. The inoculated samples'
286 trap re-opening was 26.4% earlier than in non-inoculated samples (averaging
287 106.2 versus 78.1 hours; **Fig. 3e**), demonstrating the fungus's direct
288 involvement in sundew digestion. The addition of protease inhibitor significantly
289 lengthened the reopening time in both treatments, corroborating previous
290 findings that the peptidases were primarily involved during the digestion
291 process⁴⁰⁻⁴². Application of biotinylated bovine serum albumin on the collected
292 mucilage showed a declining trend during digestion and was significantly
293 reduced after 24 hours from the *A. crateriforme* inoculated-samples (inoculated
294 sample: 36.9 % vs without: 44.0%, $P=0.03$, Wilcoxon rank sum exact test, **Fig.**
295 **3f and Supplementary Fig. 12**), emphasising that more proteins were being
296 digested during this time with the presence of *A. crateriforme*. Together, the
297 results suggest that *A. crateriforme* is part of the sundew holobiont and
298 enhanced the digestion process.
299

300

301

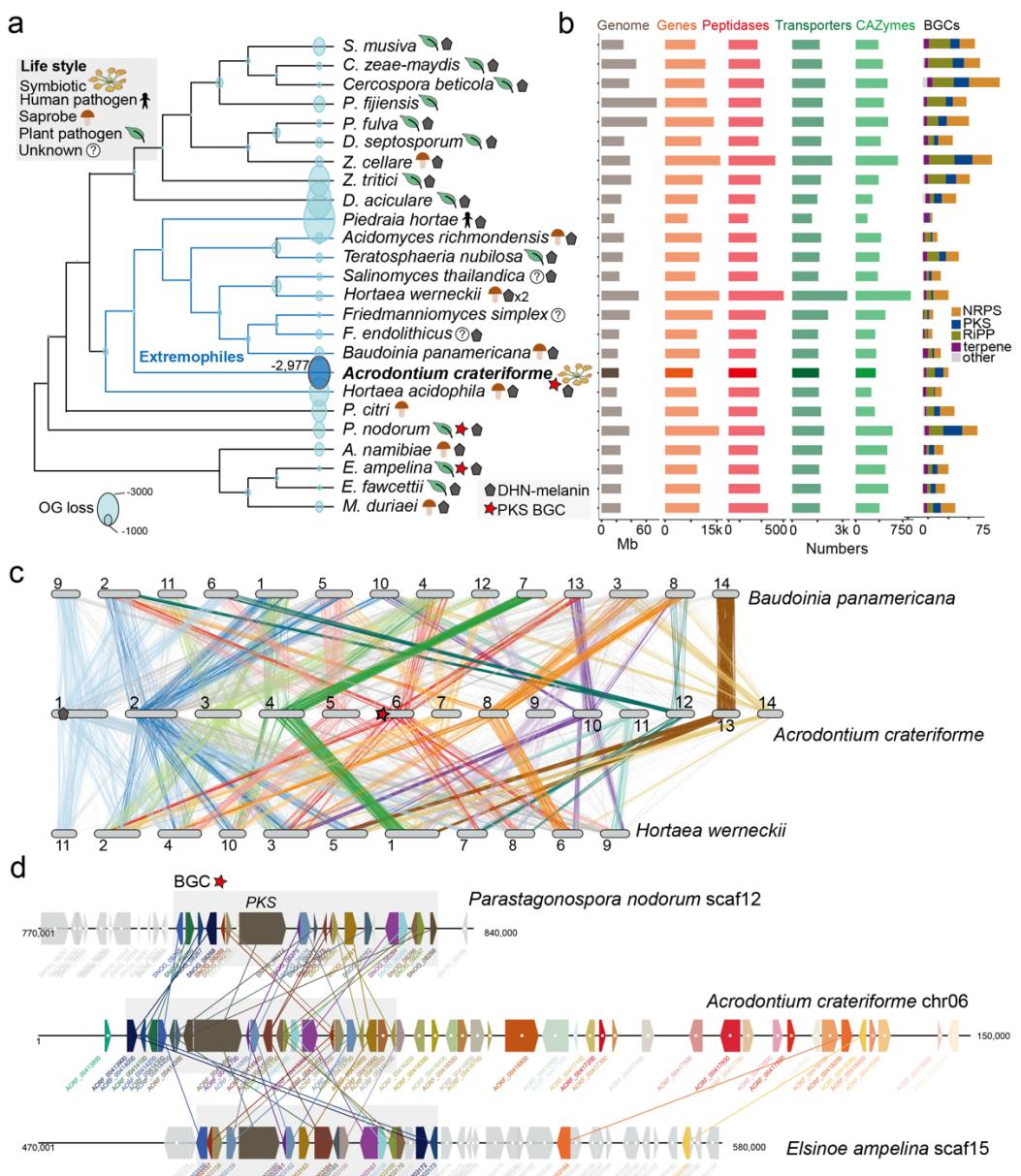
302 **Fig. 3. The *A. crateriforme*-*Drosera spatulata* holobiont.** Scanning electron
303 microscope (SEM) image of sundew stalk glands under **a.** sterilised conditions,
304 **b.** inoculated with *A. crateriforme*, and **c.** natural habitat. Different arrow colour
305 denote conidiophores from which conidia were already detached (red), a
306 conidium attached to the tip of a conidiophore (blue), and detached conidia
307 (white). **d.** Effects on *D. spatulata* post-inoculation with *A. crateriforme* and *Ph.*
308 *herbarum*. A photo showing wilt of *D. spatulata* as a result of *Ph. herbarum*. **e.**
309 Re-opening time of sundew traps supplementing with ant powder in different
310 treatments. **f.** Application of biotin-labelled BSA during sundew digestion.
311 Asterisk denote P values from Wilcoxon-rank sum test (* P<0.05, ** P<0.01, ***
312 P<0.001). + and – denote presence and absence of treatment, respectively.
313
314

315 **Genome of *A. crateriforme* as an extremophilic fungus**

316

317 We sequenced and assembled the *A. crateriforme* genome using 10.5Gb
318 of Oxford Nanopore long reads and polished the consensus sequences with
319 Illumina reads. The final assembly resulted in 14 contigs, with 13 containing
320 TTAGGG copies at both ends corresponding to gapless chromosomes
321 (**Supplementary Table 4**). The assembly size of 23.1 Mb represented the first
322 genome from the genus *Acrodontium*. We predicted 8,030 gene models using
323 MAKER pipeline⁴³ aided by RNAseq as hints. Of these, 97.3% of the predicted
324 gene models were found to be orthologous to at least one of the 25
325 representative species in the order Capnodiales (**Supplementary Table 5**),
326 suggesting a conserved core genome with potential unique adaptations. A
327 species phylogeny was constructed by coalescing 9,757 orthogroup trees,
328 which placed *A. crateriforme* within a group of extremophilic species (**Fig. 4a**)
329 including well-known acidophiles such as *Acidomyces richnondensis* and
330 *Hortaea acidophila*⁴⁴.

331


332 We functionally annotated the *A. crateriforme* proteome to identify genes
333 and gene families associated to its ecology and metabolism (**Fig. 4b**). PCA of
334 protein family domain numbers from each species first differentiated the
335 extremophiles *Friedmanniomyces simplex* and *Hortaea werneckii* from others
336 with their partial⁴⁵ or whole⁴⁶ duplicated genome (**Supplementary Fig. 13a**). *A.*
337 *crateriforme* was positioned between its extremophile relatives and outgroup
338 plant pathogens (**Supplementary Fig. 13b**), suggesting that gene family
339 dynamics were influenced by adaptation to an acidic environment as well as
340 plant association. Although *A. crateriforme* contained relatively fewer gene
341 models, it was not a reflection of assembly quality, with 98.9% completeness
342 based on BUSCO^{47,48} (**Supplementary Table 5**) and encodes a similar number
343 of CAZymes, peptidases, transporters and BGCs to its sister species (**Fig. 4b**).
344 Amongst the extremophiles, inference of gene family dynamics indicated a
345 relatively high number of losses in *A. crateriforme* compared to the human
346 dermatophyte *Piedraia hortae* (**Fig. 4a**). *A. crateriforme* have lost members of
347 glycoside hydrolase 6, 11, 28, and 43 which degrade plant cell wall and their
348 losses have been implicated as signatures of symbiotic fungi⁴⁹ such as
349 ectomycorrhizal fungi⁵⁰ (**Supplementary Fig. 14 and Supplementary Table**
350 **6**). Further specialisations of *A. crateriforme* include a higher number of
351 polyketide synthase clusters within this group of species (**Fig. 4b**) Most of the
352 identified BGCs in *A. crateriforme* were unique and not shared with other

353 representative species, implying its distinct profile of secondary metabolites,
354 particularly the polyketides (**Supplementary Fig. 15**). Interestingly, *A.*
355 *crateriforme* encodes two Neprosin domain-containing genes (**Supplementary**
356 **Fig. 16**), which were absent in all representative species and rare in fungi (149
357 versus 8,118 in Viridiplantae; InterPro, last assessed October 2023). Neprosin
358 was first discovered in Raffles' pitcher plant *Nepenthes rafflesiana* as a novel
359 peptidase capable of digesting proteins at low concentrations without substrate
360 size restriction⁵¹, hinting at its potential involvement in prey digestion.

361

362 The role of genomic rearrangements, especially in subtelomeric regions,
363 in fungal evolution has been well-documented, particularly in pathogenic
364 species^{52,53}. We sought to characterise the mode of genome evolution in this
365 group of extremophilic fungi, and identified on average 4,747 pairwise single
366 copy orthologs between *A. crateriforme* and sister extremophiles. Clustering of
367 these orthologs with corresponding *A. crateriforme* chromosomes identified
368 only one one-to-one linkage group of chromosome 13 (**Fig. 4c**), suggesting
369 frequent chromosomal fusions and fissions since their last common ancestor.
370 Gene order within linkage groups has been lost (**Supplementary Fig. 17**),
371 suggesting extensive intra-chromosomal rearrangements, which appear to be
372 a hallmark of genome evolution in the Capnodiales⁵⁴. Such high genomic
373 plasticity often led to the high turnover of gene family dynamics or emergence
374 of biosynthetic gene clusters (BGCs) capable of producing novel secondary
375 metabolites⁵⁵. In the case of *A. crateriforme*, BGCs were enriched at
376 subtelomeres (12/26 in subtelomeres with Observed to Expected ratio of 4.7;
377 **Supplementary Fig. 18**). We identified a case of one polyketide cluster located
378 on the end of chromosome six, which is shared with the plant pathogens
379 *Elsinoe ampelina* and *Parastagonospora nodorum* (**Fig. 4d**), presumably as a
380 result of *A. crateriforme* constantly encountering a plant-associated
381 environment.

382

383

384 **Fig. 4 Genomic features of *A. crateriforme***

385 **a.** Phylogenetic placement of *A. crateriforme* among extremophilic fungi
 386 denoted in blue branches, highlighting its association with known acidophiles.
 387 All nodes have a 100% bootstrap support. Number next to *A. crateriforme*
 388 denote number of lost OGs inferred by DOLLOP. **b.** Genome description and
 389 functional annotations of the *A. crateriforme* proteome. **c.** Chromosomal
 390 rearrangements amongst extremophiles through clustering of single copy
 391 ortholog pairs. Colour designate *A. crateriforme* **d.** Synteny between a
 392 subtelomeric polyketide cluster on *A. crateriforme* chromosome six and plant
 393 pathogens *E. ampelina* and *P. nodorum*. *A. crateriforme* genes and orthologs
 394 were coloured sequentially.

395

396 **Digestion-related genes were co-opted and retained ancestral expression**
397 **trends from plant-microbial coexistence**

398

399 To dissect how sundew and *A. crateriforme* respond to each other or
400 encountering insect at the transcriptome level, we first generated gene
401 expression data from both species cultured under minimal nutrient conditions.
402 This baseline data was then compared to two scenarios: application to ant
403 powder indicative of digestion and fungal inoculation onto sundew leaves
404 denoting coexistence (**Supplementary Fig. 19**). Remarkably, 61.3–63.9% of
405 differentially expressed genes (DEGs) identified during the digestion phase for
406 each species were co-expressed in the coexistence phase (**Fig. 5a**),
407 suggesting an intrinsic regulatory synergy between the two processes. Gene
408 ontology (GO) analysis revealed that more than half of the GO term enrichment
409 of the up-regulated genes overlapped between the two conditions in *D. spatulata*, with the most significant terms including secondary metabolic
410 process, response to chemical and other organism (**Supplementary Fig. 20**
411 and **Supplementary Table 7**). This suggests that the majority of plant genes
412 that were involved in defence mechanisms^{56,57} have been co-opted in the
413 digestion process but still retained their ancestral functions. An example include
414 members of plant chitinase (GH18 and GH19) (**Supplementary Fig. 21**), which
415 have roles in digestion and original functions in defence against
416 phytopathogen^{58,59}. However, this degree of overlap was not observed in *A. crateriforme* (**Supplementary Table 8**), reflecting independent specialisations
417 between the two species. The coexistence phase yielded more DEGs
418 compared to the digestion phase (**Fig. 5a**), consistent with that the former
419 process being ancestral⁶⁰. Interestingly, despite showing increased expression
420 in both digestion and coexistence phases, the *D. spatulata* ammonium
421 transporters which are central to NH₄⁺ uptake during digestion⁶¹ exhibited a
422 higher expression in the latter (**Supplementary Fig. 22**). The *A. crateriforme*
423 ammonium transporters as well as nitrate reductase also exhibited the same
424 expression trends (**Supplementary Fig. 22**), suggesting active ammonium
425 exchange and utilisation already taking place within the plant-fungus holobiont.

426

427

428

429

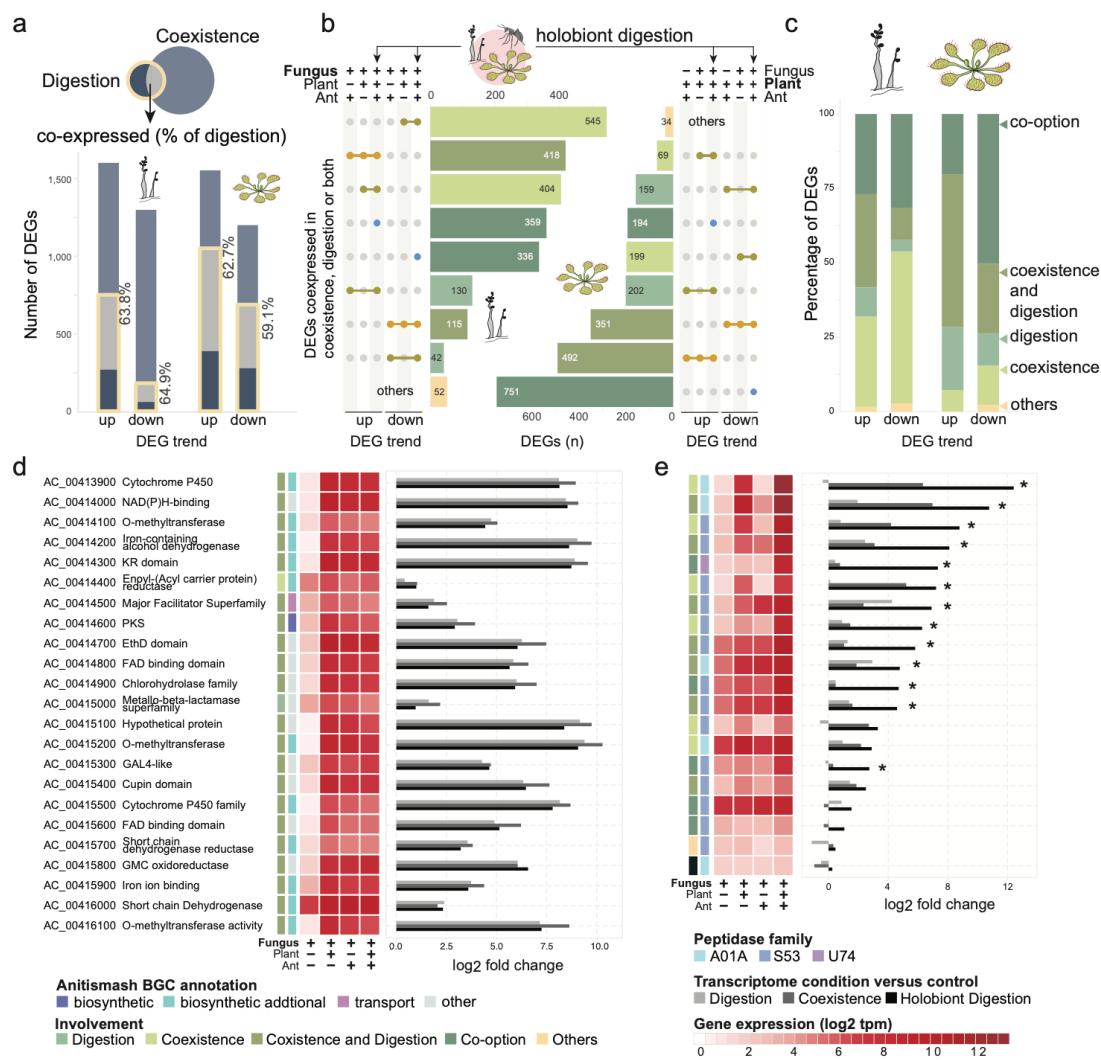
430

431

432

433

434 **Transcriptome dynamic of holobiont digestion in nature**


435

436 In nature, the digestion of insects took place in the mucilage of *D. spatulata*,
437 with arthropod remains adhering to the stalk glands, where *A. crateriforme* was
438 observed growing over the insect surface (**Extended Data Fig. 2**). To elucidate
439 the mechanisms of carnivorous holobiont digestion in nature, we further
440 characterised the holobiont transcriptome when supplemented with ant powder
441 (**Supplementary Fig. 19**). We identified 3,554 and 3,662 DEGs in *A.*
442 *crateriforme* and *D. spatulata*, respectively, with the majority of these genes
443 exhibiting the same expression trend in at least one of the digestion or
444 coexistence phases (**Fig. 5b**). These observations led us to propose a scenario
445 in which the DEGs were concerned with one or both processes. In addition, we
446 defined a new gene-option category in which the genes were only significantly
447 differentially expressed when stimuli from both the interacting partner and the
448 exogenous nutrient were present (**Fig. 5c**). More than half of upregulated DEGs
449 in both species were designated having multiple or gene-opted, suggesting co-
450 evolution and optimisation of the plant holobiont transcriptome as a result of
451 constantly encountering each other and insect prey¹⁹. The *D. spatulata* DEGs
452 had a higher proportion of multi-function and additive DEGs than the fungus,
453 consistent with the optimisation of the genes repurposed to involve digestion¹⁸
454 while the majority still retained the ancestral function of species interaction.

455

456 Within *A. crateriforme*, the highest number of DEGs were categorised as
457 involved in coexistence, suggesting its primary role in species interaction.
458 Nevertheless, 21.1% of fungal DEGs were multi-functional. An example of this
459 is the aforementioned BGC on chromosome six (**Fig. 4d**), which showed a
460 consistent upregulation across all three phases (**Fig. 5d**) highlighting the need
461 to effectively respond to multiple stimuli in natural environments. Interestingly,
462 GO term enrichment of condition-specific genes revealed an opposite trend of
463 up- and down-regulation of genes involved in the fungal and plant cell cycle,
464 respectively (**Supplementary Table 9**), suggesting divergent responses in both
465 species when faced with similar environment.

466

467

468 **Fig 5. Transcriptome of the *D. spatulata*-*A. crateriforme* holobiont during**

469 **digestion.** a. Overlap of DEGs during digestion and coexistence for both

470 species. b. Transcriptome profiling of the plant-fungus holobiont during

471 digestion. DEGs were compared whether the same trends were observed in

472 either digestion or coexistence process. c. Schematic representation of the role

473 of the DEGs involved in the holobiont digestion. d. Upregulation of a BGC on

474 chromosome six in *A. crateriforme*. e. Expression of representative fungal

475 peptidases in a co-expression module (module 2 in **Supplementary Figure 23**)

476 showing synergistic effects when both plant and insect prey are present.

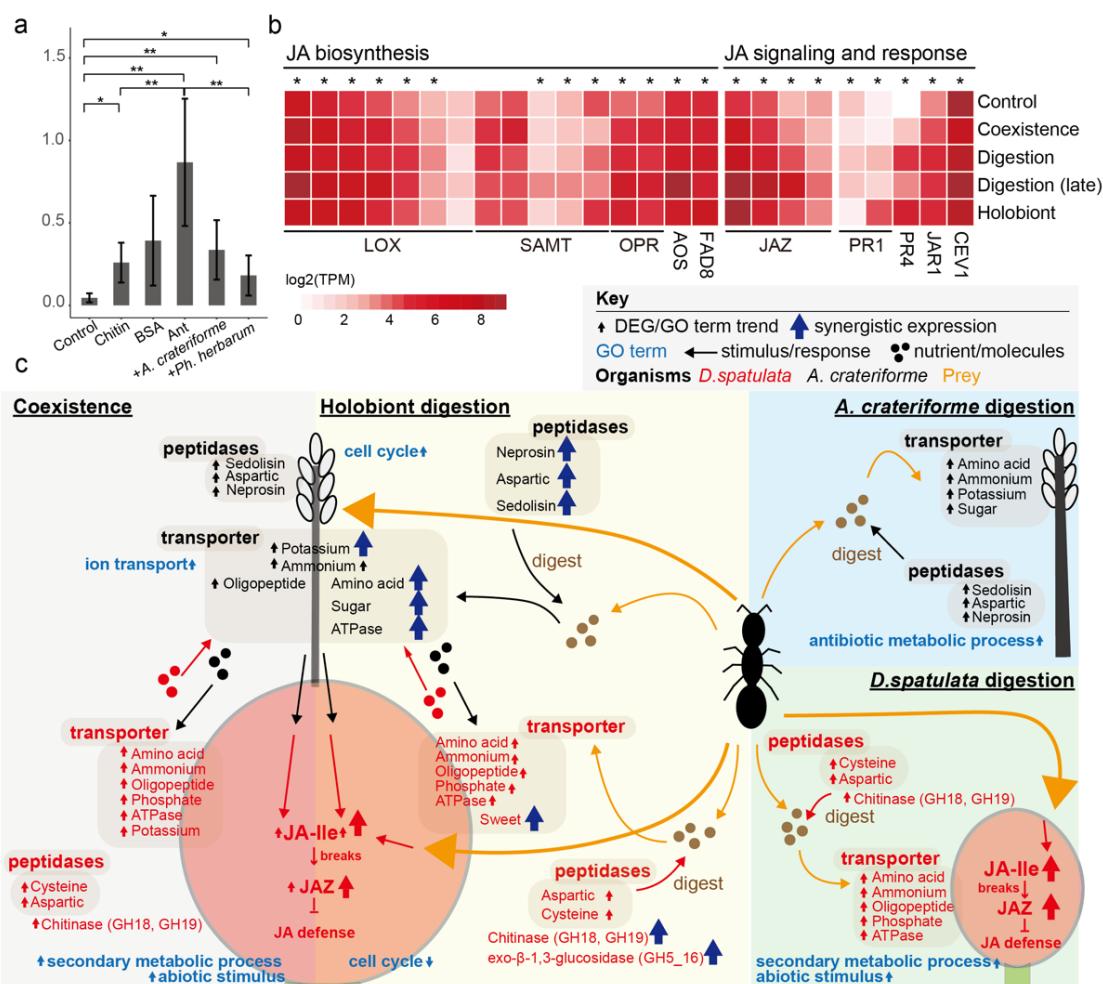
477 Asterisks indicate significantly upregulated expression determined by DEseq2

478 (adjusted $P < 0.05$) between holobiont digestion and either digestion or

479 coexistence phase.

480

481


482

483 **Synergistic expression in fungal peptidases and transporters**

484

485 Insect digestion in carnivorous plants is a well-coordinated process, first
486 by synthesis and secretion of digestive enzymes to break down nutrients,
487 followed by assimilation of nutrients with specialised transporters^{61,62}. To
488 investigate the putative roles of digestion in these gene families, additional
489 transcriptome sequencing was performed in *D. spatulata* towards the end of
490 digestion process (**Methods**). The regulation of peptidases during the different
491 phases was determined using weighted correlation network analysis (WGCNA)
492 ⁶³, which identified five and nine co-expression modules in *A. crateriforme* and
493 *D. spatulata*, respectively (**Supplementary Fig. 23 and 24**). The most
494 dominant secreted peptidases in *D. spatulata* belonged to the cysteine
495 (MEROPS⁶⁴: C1) and aspartic families (MEROPS: A1). Droserasin, which has
496 been implicated in digestion^{22,40}, was contained in two co-expression modules
497 (**Supplementary Fig. 24**). The two modules differed in that one module include
498 genes that were constitutively up-regulated across conditions, whereas the
499 other module contained genes that were only up-regulated during digestion by
500 its own. In contrast, most of the highly expressed peptidases in *A. crateriforme*
501 belonged to a co-expression module harbouring two copies of aspartic
502 peptidase (AC_00151800 and AC_00417900), the entire sedolisin⁶⁵ family
503 (14/14 copies; MEROPS: S53) associated with increasing acidity and plant-
504 associated lifestyle⁶⁶, and a fungal copy with the aforementioned Neprosin
505 domain (**Supplementary Fig. 23**). These genes demonstrated a synergistic
506 effect in expression in prey digestion during co-existence, for instance the
507 aspartic peptidases emerged as the dominant and third dominant entities
508 across the entire transcriptome, with their expression levels increasing up to
509 sixfold compared to either condition (**Fig. 5e**). The same trend was also
510 observed in potassium, amino acid, oligopeptide and sugar transporters
511 (**Supplementary Fig. 25**). Taken together, the results indicated *A.*
512 *crateriforme*'s potential role in facilitating and benefiting from digestion in
513 response to the combined signal of host and nutrient.

514

515

516 **Figure 6: Interactions within the *D. spatulata*-*A. crateriforme* holobiont. a.**
517 Accumulation of Jasmonoyl-L-isoleucine (JA-Ile) levels in *D. spatulata* following
518 various treatments. (Wilcoxon rank sum test; * P<0.05. ** P<0.01, *** P<0.001)
519 **b.** Expression of genes involved in the JA signalling pathway during different
520 phases. Asterisk denote genes that exhibited highest expression in the
521 digestion phase. **c.** Holobiont response with each other and during digestion. A
522 schematic diagram of *D. spatulata* stalk gland and *A. crateriforme* conidiophore
523 with a summary of gene expression changes identified in this study are shown.
524 Genes that are co-expressed in different phases are shown multiple times.

525

526

527 **Dosage dependent response of genes involved in Jasmonate (JA)**
528 **signalling pathway**

529

530 How carnivorous plant respond specifically either to symbiotic microbe or prey
531 can be challenging, as the phytohormones are accumulated to elicit pathogen
532 resistance in plants which induce genes that were also involved in digestion to

533 prey stimuli^{22,56}. We quantified the changes in *D. spatulata* phytohormone level
534 after treatment with insect or different fungi. The application of both ant powder
535 and microbes on the leaves have significantly increased the amount of
536 Jasmonoyl-L-isoleucine (JA-Ile), a bioactive molecule of JA, after two hours
537 (**Fig. 6a**) representing early response. In contrast, differences in salicylic acid
538 and abscisic acid between control and treatments were not observed
539 (**Supplementary Fig. 26**). The presence of *A. crateriforme* has increased JA-
540 Ile at the level between ant prey and the plant pathogen *Ph. herbarum*,
541 suggesting a dose-dependent effect of JA in response to different biotic stimuli.
542 We found that genes involved in JA signalling pathways were co-expressed in
543 both coexistence and digestion phases (**Fig. 6b**), with the latter exhibiting
544 heightened expressions as a late response towards the end of digestion
545 process.

546

547

548 **Discussion**

549 In this study, we elucidate a definitive symbiotic interaction between the
550 carnivorous sundew *Drosera spatulata* and the acidophilic fungus *A.*
551 *crateriforme* (**Fig. 6c**), providing insights that reshape views of plant versus
552 prey in botanical carnivory since Darwin's foundational work². We show that the
553 digestion time of insects by sundews was reduced by almost a quarter in the
554 presence of the fungus, and that such cooperation is likely rooted in the
555 common adaptative challenges that both carnivorous plants and extremophilic
556 fungi face in harsh environments with minimal nutrients. This dynamic plant-
557 fungus interplay reveals a multi-dimensional adaptation that goes beyond the
558 conventional understanding of botanical carnivory.

559

560 The ecological dominance of *A. crateriforme* in sundews represents a rare
561 case of intimate plant-fungus coexistence besides plant parasitism, as foliar
562 microbiota are strongly influenced by both abiotic and biotic factors including
563 leaf area, niche variability and the available resources¹³. The restrictive nature
564 of *D. spatulata* mucilage's acidity could potentially constrain its microbial
565 interaction spectrum, a phenomenon echoed by observations of selective
566 microbial compositions in adverse environments⁶⁷. As an acidophilic species,
567 resisting this biotic selection may be a first step in establishing the relationship.
568 The dominance of a fungus in the *Drosera* microbiome that was not observed
569 in other carnivorous plants may be correlated with constant drought stress by
570 air-exposure of the stalked glands in contrast to the greater extent liquid

571 medium contained in the traps of other carnivorous plants. Once colonising the
572 leaf glands, *A. crateriforme* underwent a series of genomic changes to cope
573 with the symbiotic life style and may increase the number of preys captured by
574 reducing digestion time, implying that the coexistence is cooperative and may
575 be mutualistic, as the level of prey capture is positively associated with plant
576 fitness⁶⁸ and may be more relevant as carnivorous plants are considered sit-
577 and-wait predators. Considering that nutrient uptake efficiency in carnivorous
578 plants is usually low, for example nitrogen uptake was less than half (29–42%)⁶⁹,
579 it is quite likely that *A. crateriforme* is able to utilise the unspent prey nutrients
580 together with other microbial members. As fungi act as mediators between host
581 and ecosystems⁷⁰, it remains to be seen whether *A. crateriforme* will exhibit a
582 context-dependent trophic level during its life cycle in *D. spatulata* and other
583 carnivorous plant³³. Inter-species interactions will be an important component
584 in future cost-benefit models to explain how carnivorous plants survive the
585 harsh habitat⁷¹.

586

587 Although it is generally accepted that plant carnivory genes are evolved
588 from defence mechanisms, the availability of symbiotic *A. crateriforme* and
589 single or dual-species transcriptomic landscape during the digestion phase
590 enabled us to delineate the relative contribution of fungus and plant as well as
591 the role of each gene. The extent of co-opted genes appeared more
592 pronounced in *D. spatulata*, many of which maintained their expression trends
593 in both digestion and coexistence phases. This suggests that *D. spatulata*
594 employs the same set of genes to mediate defence in response to biotic stimuli
595 from microorganisms and prioritises over digestion in the presence of prey
596 which may be regulated by JA pathways. From a microbe's perspective, the
597 proteome of *A. crateriforme* also shows gene co-option as well as synergistic
598 expression suggesting that the fungus has co-evolved with the sundew host to
599 actively facilitate both processes in the shared environment¹⁹. For example,
600 fungal sedolisins have been associated with increasing acidity and a plant-
601 associated lifestyle⁶⁶. The collective peptidases of both species can be utilised
602 to degrade large proteins/peptides on acidic mucilage to generate nutrients in
603 decomposing insect prey, potentially increasing overall digested nutrient levels.

604

605 In summary, our results provide direct evidence that microorganisms are
606 integral to prey digestion in carnivorous plants (**Fig. 6c**). Our work supports the
607 idea that plant-microbial interactions have been selected during evolution to
608 increase the overall fitness of holobiont¹⁹. *Drosera-Acrodontium* is an amenable

609 laboratory system, since both can be grown separately and together in the
610 laboratory. We hypothesise just like plant carnivory has been independently
611 evolved with convergence in different plant groups, plant-microbial interactions
612 capable of facilitating the process digestion are likely to emerge in different
613 carnivorous plants. Microbial ecosystems in other carnivorous plants can be
614 highly complex that contain predators of microorganisms amongst inquilines⁷²,
615 and we provide an initial framework for detangling these relationships.

616

617 **Methods and materials**

618

619 More detailed information on the materials and methods used in this study are
620 provided in **Supplementary Information**.

621

622 **Genomic DNA extraction and metabarcoding of environmental samples**

623 Details of sampling are provided in the **Supplementary Information**. Total
624 genomic DNA was extracted from filter papers using modified
625 cetyltrimethylammonium bromide (CTAB) DNA extraction protocol. For cell lysis,
626 5ml CTAB buffer (0.1 M Tris, 0.7 M NaCl, 10 mM EDTA, 1% CTAB, 1% beta-
627 mercaptoethanol) was added into 15 ml tube containing sample. After
628 incubation at 65°C for 30 min, an equal volume of chloroform was added. The
629 mixture was centrifuged at 10,000 rpm for 10 minutes and the supernatant was
630 mixed with an equal volume of isopropanol. After centrifugation at 10,000 rpm
631 for 30 minutes at 4°C, the supernatant was discarded and the pellet was
632 washed twice with 70% and 90% ethanol. DNA was eluted with 50 µl elution
633 buffer (Qiagen).

634 Internal transcribed spacer (ITS) and 16S rRNA amplicons were generated
635 using barcode primer pairs ITS3ngs(mix)/ITS4⁷³ and V3/V4⁷⁴, respectively.
636 Amplicon levels were standardised using the SequalPrep Normalization Plate
637 96 Kit (Invitrogen Corporation, Carlsbad, CA, USA, Cat. #A10510-01).
638 Concentration of pooled and standardised amplicons was performed using
639 Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA, Cat.
640 #A63881). All amplicon libraries were sequenced with Illumina MiSeq PE300
641 using 2 x 300 bp paired-end chemistry performed by the NGS High Throughput
642 Genomics Core at the Biodiversity Research Center, Academia Sinica, Taiwan.

643

644 **Construction of OTU table from amplicon reads**

645 Samples were demultiplexed using *sabre* with one nucleotide mismatch
646 (v1.0; <https://github.com/najoshi/sabre>) with their respective barcodes. Adaptor
647 and primer sequences were trimmed using USEARCH⁷⁵ (v10). Sequence reads
648 were processed according to the UPARSE⁷⁶ pipeline. Forward and reverse
649 reads were merged and filtered using USEARCH. Operational taxonomic units
650 (OTUs) were clustered at 97% sequence identity with a minimum of 8 reads per
651 cluster to denoise the data and remove singletons. The OTU table was
652 generated using the *usearch_global* option and analysed with the *phyloseq*⁷⁷
653 package (v1.28.0) detailed in **Supplementary Information**. SINTAX⁷⁸
654 algorithm was used to classify the OTU sequence taxonomy against the RDP⁷⁹
655 training set (v16) and the UNITE⁸⁰ database (v7.1).

656

657 **Morphology observation of *D. spatulata* stalk gland**

658 The stalk glands of *D. spatulata* were photographed using an Olympus
659 microscope (Olympus CX31) and digital camera (Nikon D7000). Staining was
660 performed using cotton blue reagent as described⁸¹. Scanning electron
661 microscopy (SEM) of the *D. spatulata* stalks were prepared as follows. Leaves
662 tissues were fixed at 4 degrees for 1 hour with P4G5 solution (4%
663 paraformaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate buffer). After
664 three washes with 0.1 M phosphate buffer, secondary fixation was performed
665 in a 1% solution of osmium tetroxide for 2 hours at room temperature. The fixed
666 samples were passed through a series of dehydration step in 30, 50, 70, 80,
667 90, 95, 100, 100 and 100% alcohol before drying in a critical point dryer (Hitachi
668 model HCP-2). The dried samples were then coated with a layer of gold using
669 a sputter coater (Cressington model 108). SEM observations of *Drosera*
670 leaves grown under different conditions (laboratory condition, inoculated with *A.*
671 *crateriforme* and from wild) were performed on a JSM-7401F scanning electron
672 microscope (JEOL) at the Institute of the Plant and Microbial Biology, Academia
673 Sinica, Taiwan.

674

675

676 **Inoculation experiment**

677 We used *D. spatulata* plants derived from tissue culture in vermiculite with
678 ddH₂O as our control samples. We inoculated *A. crateriforme* and *Ph. herbarum*
679 on *D. spatulata* leaves and incubated the plants at 25 degrees for 30 days.
680 Photographs of *D. spatulata* in different treatments including control plants were
681 taken daily and the area of leaf displaying symptoms of infection was quantified
682 every two days using ImageJ⁸². Whole *D. spatulata* plants were dried with
683 tissue paper and weighted on the first and 30th day of the experiment.

684

685 **Feeding experiment of *D. spatulata***

686 10⁻⁵ g of sterilised ant powder was added on a single leaf of an individual
687 *D. spatulata* plant with or without *A. crateriforme* inoculated. The capture time
688 (from the time ant substrate was added until the tentacles fully covered the prey)
689 and digestion time (from the time tentacles fully covered the prey until the trap
690 reopened) of five replicates were recorded. The same set of experiments were
691 repeated with additional application of Protease Inhibitor Cocktail (#P9599,
692 Sigma). To compare the effect of protein digestion in mucilage from *D. spatulata*
693 with and without *Acrodontium*, mucilage from 30 plants in each treatment were
694 collected prior to the experiment. We mixed mucilage with BSA labelled with
695 HSP-biotin at both 25 degrees for 16 hours and 24 hours. Western blot was
696 made (**Supplementary Information**) and the amount of protein digestion was
697 quantified using ImageJ⁸².

698

699 **Comparative genomics and phylogenomics**

700 The assembly and annotation of *A. crateriforme* are detailed in the
701 **Supplementary Info**. A total on 32 genomes from representative fungi and
702 plants were downloaded from JGI and NCBI databases (**Supplementary Table**
703 **5**). For each gene, only the longest isoforms were selected for subsequent
704 analysis. Orthogroups (OGs) were identified using Orthofinder⁸³ (ver. 2.5.5).
705 For each orthogroup, an alignment of the amino acid sequences each gene
706 was produced using mafft⁸⁴ (version 7.741). A maximum likelihood orthogroup
707 tree was made from the alignment using IQtree⁸⁵ (version 2.2.2.6). A species
708 phylogeny was constructed from all orthogroup trees with ASTRAL-III⁸⁶ (ver.
709 5.7.1). OG gains and losses at each node of the species phylogeny were
710 inferred using DOLLOP⁸⁷ (ver. 3.69.650).

711

712 Transcriptome analysis

713 Total RNA of were extracted from *D. spatulata* and underwent
714 transcriptome sequencing (**Supplementary Info**). RNA-Seq raw reads were
715 trimmed using fastp⁸⁸ (v0.23.2) to remove the adaptor and low-quality
716 sequences. The trimmed reads were mapped to the corresponding genome
717 using STAR⁸⁹ (v 2.7.10b) and assigned to gene count using featureCounts⁹⁰ (v
718 2.0.3.). Notably, the reads from coexistence treatment, with or without ant
719 powder, were mapped to both *A. crateriforme* and *D. spatulata* genome¹⁸. To
720 prevent the false positive of gene expressions, sequences mapped to both
721 genomes and had low mapping qualities were excluded from further analyses.
722 The samples of *D. spatulata* exposed to ant powder which obtained in two
723 different time points were grouped as digestion sample. The differentially
724 expressed genes (DEGs) of different conditions comparing to control, were
725 inferred by DESeq2⁹¹ (v1.38.3; padj < 0.05 & |log2FD| > 1). The gene ontology
726 enrichment of comparisons was identified using topGO⁹² (v2.50.0). We also
727 performed weighted gene co-expression network analysis (WGCNA) to further
728 categorise the expression patterns of peptidases respectively in *A. crateriforme*
729 and *D. spatulata*. Due to the present of peptidase without any expressions
730 across conditions in *D. spatulata*, we removed the 30% lowest-expressed
731 genes in each transcriptome using the sum of samples. The descriptions and
732 annotations of every DEG in *A. crateriforme* and *D. spatulata* are available in
733 **Supplementary Table 10 and 11**, respectively.

734

735 Phytohormone analysis

736 We loaded different treatments (1g/L of BSA, chitin, BSA+chitin, and ants,
737 10⁶ spores/ml of *A. crateriforme*, and 10⁵ spores/ml of *A. crateriforme*) to *D. spatulata* leaves for 2 hours. Then, leaves were cut and washed in de-ionized
738 water to remove residue. Then, leaves were rapidly frozen using liquid nitrogen.
739 The time from cutting to freezing consistently remained under 30 seconds. The
740 prepared samples were then ready for the metabolite extraction.

742

743 The metabolite extraction used 1 mL CHCl₃:MeOH (2:1) as extraction
744 solvent with Dihydrojasmonic acid (H₂JA) (7.5 ng for 0.3 g leaf tissue) adding
745 as internal standards. Equal volumes of the supernatant were stored at -80 °C.
746 Samples were reconstituted in 50 µL of 20 % aqueous methanol each. The
747 samples were analysed by the Vanquish UHPLC system coupled with a Dual-
748 Pressure Ion Trap Mass Spectrometer (Velos Pro, Thermo Fisher Scientific).

749 Jasmonoyl-L-isoleucine (JA-Ile) and its standard H₂JA were separated by an
750 HSS T3 column (Waters ACQUITY HSS T3 100Å, 1.8 µm, 100 × 2.1 mm) at
751 40°C using the mobile buffer consisted of 2% ACN/0.1% FA (Buffer A) with an
752 eluting buffer of 100% ACN/0.1% FA (Buffer B) with a 11 min gradient of 0.5-
753 30% Buffer B at 0-6 min, 30-50% B at 6-7 min, 50-99.5% B at 7-7.5 min, 99.5-
754 0.1% B at 9.5-10 min and then equilibrated by 0.1% B at 10-11 min. The
755 selected m/z 322.20 to 130.09 for JA-Ile and 211.13 to 59.01 for H₂JA⁹³.

756

757 **Data Availability**

758 All sequences generated from this study were deposited on NCBI under
759 BioProject PRJNA1034788 and accession numbers of individual samples can
760 be found in **Supplementary Table 1 and 12**.

761

762 **Funding**

763 This work was supported by National Science and Technology Council (112-
764 2628-B-001-005-) to IJT. PFS is supported by the doctorate fellowship of the
765 Taiwan International Graduate Program, Academia Sinica of Taiwan.

766

767 **Acknowledgements**

768 We thank Ting, See-Yeun, Shen-Feng Sheng, Chia-Lin Chung for initial
769 discussions and encouragements. We thank Ko-Hsuan Chen for reading and
770 commenting of the manuscript. We thank Hsin-Han Lee for producing an initial
771 version of the *A. crateriforme* assembly. We thank Mitsuyasu Hasebe for advice
772 on experiments on *Drosera spatulata*.

773

774 **Author contributions**

775 IJT conceived the study; PFS carried out the sampling and the experiments
776 with guidance from YFL, HMK, YCJL and YLC. PFS performed and analysed
777 the amplicons with guidance from YFL and DZH. MJL sequenced the amplicons.
778 PFS and RK identified the *A. crateriforme* strains. HMK carried out ONT
779 sequencing. IJT carried out the *A. crateriforme* genome assembly and
780 annotation. PFS, MRL, YCL, and IJT carried out comparative genomic and
781 transcriptomic analyses. PFS, IFW and YLC quantified the phytohormones.
782 PFS and IJT wrote the manuscript with input from MRL, YCL, RK, YCJL, YLC
783 and others. All authors read and approved the final manuscript.

784

785

786

787 **References**

788

789 1 Freund, M. *et al.* The digestive systems of carnivorous plants. *Plant physiology*
790 190, 44-59 (2022).

791 2 Darwin, C. & Darwin, F. *Insectivorous plants.* (J. Murray, 1888).

792 3 Alessandri, G., Rizzo, S. M., Ossiprandi, M. C., van Sinderen, D. & Ventura, M.
793 Creating an atlas to visualize the biodiversity of the mammalian gut microbiota.
794 *Current Opinion in Biotechnology* 73, 28-33 (2022).

795 4 Sirová, D. *et al.* Microbial community development in the traps of aquatic
796 Utricularia species. *Aquatic Botany* 90, 129-136 (2009).

797 5 O'Brien, A. M., Ginnan, N. A., Rebollo-Gómez, M. & Wagner, M. R. Microbial
798 effects on plant phenology and fitness. *American Journal of Botany* 108, 1824-
799 1837 (2021).

800 6 Sickel, W., Grafe, T. U., Meuche, I., Steffan-Dewenter, I. & Keller, A. Bacterial
801 diversity and community structure in two Bornean *Nepenthes* species with
802 differences in nitrogen acquisition strategies. *Microbial ecology* 71, 938-953
803 (2016).

804 7 Takeuchi, Y. *et al.* Bacterial diversity and composition in the fluid of pitcher
805 plants of the genus *Nepenthes*. *Systematic and applied microbiology* 38, 330-
806 339 (2015).

807 8 Chan, X. Y., Hong, K. W., Yin, W. F. & Chan, K. G. Microbiome and Biocatalytic
808 Bacteria in Monkey Cup (*Nepenthes* Pitcher) Digestive Fluid. *Sci Rep* 6, 20016,
809 doi:10.1038/srep20016 (2016).

810 9 Krieger, J. R. & Kourtev, P. S. Bacterial diversity in three distinct sub-habitats
811 within the pitchers of the northern pitcher plant, *Sarracenia purpurea*. *FEMS*
812 *microbiology ecology* 79, 555-567 (2012).

813 10 Caravieri, F. A. *et al.* Bacterial community associated with traps of the
814 carnivorous plants *Utricularia hydrocarpa* and *Genlisea filiformis*. *Aquatic*
815 *botany* 116, 8-12 (2014).

816 11 Armitage, D. W. Linking the development and functioning of a carnivorous
817 pitcher plant's microbial digestive community. *The ISME journal* 11, 2439-2451
818 (2017).

819 12 Cao, H. X. *et al.* Metatranscriptome analysis reveals host-microbiome
820 interactions in traps of carnivorous *Genlisea* species. *Frontiers in microbiology*
821 6, 526 (2015).

822 13 Grothjan, J. J. & Young, E. B. Bacterial recruitment to carnivorous pitcher plant
823 communities: identifying sources influencing plant microbiome composition
824 and function. *Frontiers in Microbiology* 13, 791079 (2022).

825 14 Fleischmann, A., Cross, A., Gibson, R., Gonella, P. & Dixon, K. in *Carnivorous*
826 *plants: physiology, ecology, and evolution* 45-57 (2018).

827 15 Poppinga, S., Hartmeyer, S. R., Masselter, T., Hartmeyer, I. & Speck, T. Trap
828 diversity and evolution in the family Droseraceae. *Plant Signal Behav* **8**,
829 e24685, doi:10.4161/psb.24685 (2013).

830 16 Pavlovič, A., Vrobel, O. & Tarkowski, P. Water Cannot Activate Traps of the
831 Carnivorous Sundew Plant *Drosera capensis*: On the Trail of Darwin's 150-
832 Years-Old Mystery. *Plants* **12**, 1820 (2023).

833 17 True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological
834 evolution. *Annual review of cell and developmental biology* **18**, 53-80 (2002).

835 18 Palfalvi, G. *et al.* Genomes of the venus flytrap and close relatives unveil the
836 roots of plant carnivory. *Current Biology* **30**, 2312-2320. e2315 (2020).

837 19 Mesny, F., Hacquard, S. & Thomma, B. P. Co-evolution within the plant
838 holobiont drives host performance. *EMBO reports* **24**, e57455 (2023).

839 20 Nakano, M., Kinoshita, E. & Ueda, K. Life history traits and coexistence of an
840 amphidiploid, *Drosera tokaiensis*, and its parental species, *D. rotundifolia* and
841 *D. spatulata* (Droseraceae). *Plant Species Biology* **19**, 59-72 (2004).

842 21 Procko, C. *et al.* Dynamic calcium signals mediate the feeding response of the
843 carnivorous sundew plant. *Proceedings of the National Academy of Sciences*
844 **119**, e2206433119 (2022).

845 22 Krausko, M. *et al.* The role of electrical and jasmonate signalling in the
846 recognition of captured prey in the carnivorous sundew plant *Drosera capensis*.
847 *New Phytologist* **213**, 1818-1835 (2017).

848 23 Fu, S.-F. *et al.* Plant growth-promoting traits of yeasts isolated from the
849 phyllosphere and rhizosphere of *Drosera spatulata* Lab. *Fungal biology* **120**,
850 433-448 (2016).

851 24 Větrovský, T. *et al.* GlobalFungi, a global database of fungal occurrences from
852 high-throughput-sequencing metabarcoding studies. *Scientific Data* **7**, 1-14
853 (2020).

854 25 Coleine, C., Stajich, J. E. & Selbmann, L. Fungi are key players in extreme
855 ecosystems. *Trends in ecology & evolution* (2022).

856 26 Deb, D., Khan, A. & Dey, N. *Phoma* diseases: Epidemiology and control. *Plant*
857 *Pathology* **69**, 1203-1217 (2020).

858 27 Zhdanova, N. *et al.* Peculiarities of soil mycobiota composition in Chernobyl
859 NPP. *Ukrayins' kij Botanyichnij Zhurnal* **51**, 134-144 (1994).

860 28 Luque, J., Parladé, J. & Pera, J. Pathogenicity of fungi isolated from *Quercus*
861 *suber* in Catalonia (NE Spain). *Forest Pathology* **30**, 247-263 (2000).

862 29 Tokumasu, S. Mycofloral succession on *Pinus densiflora* needles on a moder

863 site. *Mycoscience* **37**, 313-321 (1996).

864 30 Tiscornia, S., Segui, C. & Bettucci, L. Composition and characterization of
865 fungal communities from different composted materials. *Cryptogamie Mycol* **30**,
866 363-376 (2009).

867 31 Nagano, Y. *et al.* Comparison of techniques to examine the diversity of fungi in
868 adult patients with cystic fibrosis. *Medical mycology* **48**, 166-176 (2010).

869 32 Ruibal, C., Platas, G. & Bills, G. High diversity and morphological convergence
870 among melanised fungi from rock formations in the Central Mountain System
871 of Spain. *Persoonia: Molecular Phylogeny and Evolution of Fungi* **21**, 93 (2008).

872 33 Prabhugaonkar, A. & Pratibha, J. Isolation of *Acrodontium crateriforme* as a
873 pitcher trap inquiline. *Curr. Res. Environ. Appl. Mycol* **7**, 203-207 (2017).

874 34 Sa'diyah, W., Hashimoto, A., Okada, G. & Ohkuma, M. Notes on some
875 interesting sporocarp-inhabiting fungi isolated from xylarialean fungi in Japan.
876 *Diversity* **13**, 574 (2021).

877 35 Boynton, P. J., Peterson, C. N. & Pringle, A. Superior dispersal ability can lead
878 to persistent ecological dominance throughout succession. *Applied and
879 environmental microbiology* **85**, e02421-02418 (2019).

880 36 Erni, P., Varagnat, M. & McKinley, G. H. in *AIP Conference Proceedings*. 579-
881 581 (American Institute of Physics).

882 37 Rost, K. & Schauer, R. Physical and chemical properties of the mucin secreted
883 by *Drosera capensis*. *Phytochemistry* **16**, 1365-1368 (1977).

884 38 Takahashi, K., Matsumoto, K., Nishii, W., Muramatsu, M. & Kubota, K.
885 Digestive fluids of *Nepenthes*, *Cephalotus*, *Dionaea*, AND *Drosera*.

886 39 de Hoog, G. S. The genera *Beauveria*, *Isaria*, *Tritirachium* and *Acrodontium*
887 gen. nov. *Stud. Mycol.* **1**, 1-41 (1972).

888 40 Sprague-Piercy, M. A. *et al.* The Droserasin 1 PSI: a membrane-interacting
889 antimicrobial peptide from the carnivorous plant *Drosera capensis*.
890 *Biomolecules* **10**, 1069 (2020).

891 41 Ravee, R., Salleh, F. I. M. & Goh, H.-H. Discovery of digestive enzymes in
892 carnivorous plants with focus on proteases. *PeerJ* **6**, e4914 (2018).

893 42 Buch, F., Kaman, W. E., Bikker, F. J., Yilamujiang, A. & Mithöfer, A. Nepenthesin
894 protease activity indicates digestive fluid dynamics in carnivorous *Nepenthes*
895 plants. *PLoS One* **10**, e0118853 (2015).

896 43 Cantarel, B. L. *et al.* MAKER: an easy-to-use annotation pipeline designed for
897 emerging model organism genomes. *Genome research* **18**, 188-196 (2008).

898 44 Selbmann, L. *et al.* Drought meets acid: three new genera in a dothidealean
899 clade of extremotolerant fungi. *Studies in mycology* **61**, 1-20 (2008).

900 45 Coleine, C. *et al.* Peculiar genomic traits in the stress-adapted cryptoendolithic

901 Antarctic fungus *Friedmanniomyces endolithicus*. *Fungal biology* **124**, 458-467
902 (2020).

903 46 Romeo, O. *et al.* Whole genome sequencing and comparative genome analysis
904 of the halotolerant deep sea black yeast *Hortaea werneckii*. *Life* **10**, 229 (2020).

905 47 Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly
906 and annotation completeness. *Gene prediction: methods and protocols*, 227-
907 245 (2019).

908 48 Huang, N. & Li, H. compleasm: a faster and more accurate reimplementation
909 of BUSCO. *Bioinformatics* **39**, btad595 (2023).

910 49 Bradley, E. L. *et al.* Secreted glycoside hydrolase proteins as effectors and
911 invasion patterns of plant-associated fungi and oomycetes. *Frontiers in Plant
912 Science* **13**, 853106 (2022).

913 50 Miyauchi, S. *et al.* Large-scale genome sequencing of mycorrhizal fungi
914 provides insights into the early evolution of symbiotic traits. *Nature
915 communications* **11**, 5125 (2020).

916 51 Lee, L., Zhang, Y., Ozar, B., Sensen, C. W. & Schriemer, D. C. Carnivorous
917 nutrition in pitcher plants (*Nepenthes* spp.) via an unusual complement of
918 endogenous enzymes. *Journal of proteome research* **15**, 3108-3117 (2016).

919 52 Gan, P. *et al.* Subtelomeric regions and a repeat-rich chromosome harbor
920 multicopy effector gene clusters with variable conservation in multiple plant
921 pathogenic *Colletotrichum* species. *bioRxiv*, 2020.2004. 2028.061093 (2020).

922 53 Goodwin, S. B. *et al.* Finished genome of the fungal wheat pathogen
923 *Mycosphaerella graminicola* reveals dispensome structure, chromosome
924 plasticity, and stealth pathogenesis. *PLoS genetics* **7**, e1002070 (2011).

925 54 Ohm, R. A. *et al.* Diverse lifestyles and strategies of plant pathogenesis
926 encoded in the genomes of eighteen Dothideomycetes fungi. *PLoS pathogens*
927 **8**, e1003037 (2012).

928 55 Cairns, T. & Meyer, V. In silico prediction and characterization of secondary
929 metabolite biosynthetic gene clusters in the wheat pathogen *Zymoseptoria
930 tritici*. *BMC genomics* **18**, 1-16 (2017).

931 56 Pavlovič, A. & Mithöfer, A. Jasmonate signalling in carnivorous plants: copycat
932 of plant defence mechanisms. *Journal of experimental botany* **70**, 3379-3389
933 (2019).

934 57 Pavlovič, A., Jakšová, J. & Novák, O. Triggering a false alarm: wounding
935 mimics prey capture in the carnivorous Venus flytrap (*Dionaea muscipula*).
936 *New Phytologist* **216**, 927-938 (2017).

937 58 Chase, M. W., Christenhusz, M. J., Sanders, D. & Fay, M. F. Murderous plants:
938 Victorian Gothic, Darwin and modern insights into vegetable carnivory.

939 59 *Botanical Journal of the Linnean Society* **161**, 329-356 (2009).

940 59 Jopcik, M. *et al.* Structural and functional characterisation of a class I
941 endochitinase of the carnivorous sundew (*Drosera rotundifolia* L.). *Planta* **245**,
942 313-327 (2017).

943 60 Hedrich, R. & Fukushima, K. On the origin of carnivory: molecular physiology
944 and evolution of plants on an animal diet. *Annual review of plant biology* **72**,
945 133-153 (2021).

946 61 Scherzer, S. *et al.* The *Dionaea muscipula* ammonium channel DmAMT1
947 provides NH₄⁺ uptake associated with Venus flytrap's prey digestion. *Current*
948 *Biology* **23**, 1649-1657 (2013).

949 62 Schulze, W., Frommer, W. B. & Ward, J. M. Transporters for ammonium, amino
950 acids and peptides are expressed in pitchers of the carnivorous plant
951 *Nepenthes*. *The Plant Journal* **17**, 637-646 (1999).

952 63 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation
953 network analysis. *BMC bioinformatics* **9**, 1-13 (2008).

954 64 Rawlings, N. D., Barrett, A. J. & Bateman, A. MEROPS: the peptidase database.
955 *Nucleic acids research* **38**, D227-D233 (2010).

956 65 Reichard, U. *et al.* Sedolisins, a new class of secreted proteases from
957 *Aspergillus fumigatus* with endoprotease or tripeptidyl-peptidase activity at
958 acidic pHs. *Applied and Environmental Microbiology* **72**, 1739-1748 (2006).

959 66 Muszewska, A. *et al.* Fungal lifestyle reflected in serine protease repertoire.
960 *Scientific Reports* **7**, 9147 (2017).

961 67 Chaudhry, V. *et al.* Shaping the leaf microbiota: plant–microbe–microbe
962 interactions. *Journal of Experimental Botany* **72**, 36-56 (2021).

963 68 Alcalá, R. E. & Domínguez, C. A. Patterns of prey capture and prey availability
964 among populations of the carnivorous plant *Pinguicula moranensis*
965 (Lentibulariaceae) along an environmental gradient. *American Journal of*
966 *Botany* **90**, 1341-1348 (2003).

967 69 Hanslin, H. & Karlsson, P. Nitrogen uptake from prey and substrate as affected
968 by prey capture level and plant reproductive status in four carnivorous plant
969 species. *Oecologia* **106**, 370-375 (1996).

970 70 Bahram, M. & Netherway, T. Fungi as mediators linking organisms and
971 ecosystems. *FEMS Microbiology Reviews* **46**, fuab058 (2022).

972 71 Ellison, A. M. & Gotelli, N. J. Evolutionary ecology of carnivorous plants. *Trends*
973 *in ecology & evolution* **16**, 623-629 (2001).

974 72 Miller, T. E., Bradshaw, W. E., Holzapfel, C. M., Ellison, A. & Adamec, L. Pitcher-
975 plant communities as model systems for addressing fundamental questions in
976 ecology and evolution. *Carnivorous Plants: Physiology, Ecology, and Evolution*,

977 333-348 (2018).

978 73 Tedersoo, L. *et al.* Global diversity and geography of soil fungi. *Science* **346**,
979 1256688, doi:10.1126/science.1256688 (2014).

980 74 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D.
981 Development of a dual-index sequencing strategy and curation pipeline for
982 analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.
983 *Appl Environ Microbiol* **79**, 5112-5120, doi:10.1128/AEM.01043-13 (2013).

984 75 Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
985 *Bioinformatics* **26**, 2460-2461, doi:10.1093/bioinformatics/btq461 (2010).

986 76 Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial
987 amplicon reads. *Nat Methods* **10**, 996-998, doi:10.1038/nmeth.2604 (2013).

988 77 McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible
989 interactive analysis and graphics of microbiome census data. *PLoS One* **8**,
990 e61217, doi:10.1371/journal.pone.0061217 (2013).

991 78 Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS
992 sequences. *PeerJ* **6**, e4652, doi:10.7717/peerj.4652 (2018).

993 79 Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and
994 ITS sequences. *biorxiv*, 074161 (2016).

995 80 Abarenkov, K. *et al.* The UNITE database for molecular identification of fungi—
996 recent updates and future perspectives. *The New Phytologist* **186**, 281-285
997 (2010).

998 81 Leck, A. Preparation of lactophenol cotton blue slide mounts. *Community Eye
999 Health* **12**, 24 (1999).

1000 82 Rueden, C. T. *et al.* ImageJ2: ImageJ for the next generation of scientific image
1001 data. *BMC bioinformatics* **18**, 1-26 (2017).

1002 83 Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
1003 comparative genomics. *Genome Biol* **20**, 238, doi:10.1186/s13059-019-1832-y
1004 (2019).

1005 84 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software
1006 version 7: improvements in performance and usability. *Mol Biol Evol* **30**, 772-
1007 780, doi:10.1093/molbev/mst010 (2013).

1008 85 Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast
1009 and effective stochastic algorithm for estimating maximum-likelihood
1010 phylogenies. *Molecular biology and evolution* **32**, 268-274 (2015).

1011 86 Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time
1012 species tree reconstruction from partially resolved gene trees. *BMC
1013 bioinformatics* **19**, 15-30 (2018).

1014 87 Baum, B. R. (JSTOR, 1989).

1015 88 Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
1016 preprocessor. *Bioinformatics* **34**, i884-i890 (2018).

1017 89 Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. *Curr Protoc*
1018 *Bioinformatics* **51**, 11 14 11-11 14 19, doi:10.1002/0471250953.bi1114s51
1019 (2015).

1020 90 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose
1021 program for assigning sequence reads to genomic features. *Bioinformatics* **30**,
1022 923-930 (2014).

1023 91 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
1024 dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 1-21,
1025 doi:10.1186/s13059-014-0550-8 (2014).

1026 92 Alexa, A. & Rahnenführer, J. Gene set enrichment analysis with topGO.
1027 *Bioconductor Improv* **27**, 1-26 (2009).

1028 93 Chen, Y.-L. *et al.* Quantitative peptidomics study reveals that a wound-induced
1029 peptide from PR-1 regulates immune signaling in tomato. *The Plant Cell* **26**,
1030 4135-4148 (2014).

1031