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Abstract 41 
Single-cell sequencing has revolutionized the scale and resolution of molecular 42 

profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of 43 
the most accessible portion of the mammalian central nervous system, the retina. We 44 
compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, 45 
to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin 46 
accessibility, unveiling over 110 types. Engaging the retina community, we annotated each 47 
cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and 48 
characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell 49 
types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs 50 
across cell types. In addition, we modeled changes in gene expression and chromatin 51 
openness across gender and age. This integrated atlas also enabled the fine-mapping of 52 
GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-53 
donor and cross-lab HRCA, can facilitate a better understanding of retinal function and 54 
pathology. 55 
  56 
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Introduction 57 
The advent of high-throughput single-cell transcriptome technologies has greatly 58 

enhanced our exploration of cellular diversity. In particular, it enables the creation of 59 
comprehensive atlases for healthy tissues, which are crucial for investigating cellular function 60 
and disease mechanisms. In pursuit of these goals, the Human Cell Atlas project (HCA) has 61 
coordinated collaborative initiatives to catalog cell types throughout the entire human body 1,2. 62 
Atlases released to date include the Human Lung Cell Atlas 3 and the Human Breast Cell Atlas 63 
4. 64 

Within the HCA initiative, the Eye Biological Network aims to create a cell atlas for the 65 
human eye. Recent studies have generated atlases of the anterior and posterior segments of 66 
the human eye 5,6. Other studies have generated retinal atlases from multiple species, 67 
including mouse, chick, macaque, and human 7-15. The goal of the work reported here is to 68 
augment previous datasets with additional donors, cells, and methods to generate the first 69 
version of a comprehensive cell atlas of the human retina. In the future, we plan to expand 70 
this effort to encompass the entire eye. 71 

In addition to transcriptomic profiling, the advent of advanced technologies enables the 72 
exploration of individual cells in various modalities, such as the Assay for Transposase-73 
Accessible Chromatin with sequencing (ATAC-seq) 16. Such large-scale multimodal datasets 74 
are crucial in the construction of reference cell atlases as they are essential for identifying rare 75 
cell types and understanding mechanisms previously restricted by individual datasets and 76 
single modality profiling. Additionally, examining the effects of donor traits on each cell type, 77 
e.g., aging, ancestry, and gender, requires a diverse and substantial set of donor samples. 78 
However, integrating extensive datasets is computationally challenging, especially with large 79 
and complex data 17,18. Consequently, the convergence of substantial data resources, cross-80 
donor investigations, and computational prowess represents an essential paradigm for 81 
advancing our comprehension of intricate biological systems and diseases. 82 

This study created a comprehensive multi-omics human retina cell atlas (HRCA) 83 
through an integrated analysis of over 2 million snRNA-seq nuclei or cells and over 370,000 84 
snATAC nuclei. The HRCA encompasses over 110 distinct retinal cell types, achieving nearly 85 
complete molecular characterization and comprehensive chromatin accessibility. The 86 
inclusion of a diverse set of donors revealed molecular changes during aging and between 87 
genders at a cellular resolution, shedding light on potential links to diseases. The chromatin 88 
profiles enabled an in-depth exploration of regulons and regulatory mechanisms governing 89 
cell classes, subclasses, and cell types in the human retina. Furthermore, this integrated atlas 90 
facilitated fine-mapping of causal variants, targeted genes, and regulatory mechanisms 91 
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underlying GWAS and eQTL variants for retinal cell types. Overall, the HRCA provides a 92 
valuable resource for both basic and translational research on the retina. 93 
 94 
Results 95 
Single cell atlas of the human retina 96 

To obtain a comprehensive atlas of cell types in the human retina, we integrated seven 97 
publicly available datasets 7,15,19-23 with newly generated unpublished data (Fig. 1A-B). The 98 
integrated dataset totals 2,070,663 single nuclei from 144 samples taken from 52 donors 99 
(Supplementary Table 1, 2 and 3). Recovered cells included astrocytes, amacrine cells (AC), 100 
bipolar cells (BC), cones, horizontal cells (HC), Müller glia cells (MG), microglia, retinal 101 
ganglion cells (RGC), retinal pigment epithelium (RPE), and rods. Annotation of the major 102 
classes was performed on individual samples by a coarse label prediction method (Methods). 103 
To accommodate the large number of cells, data integration for all cells was employed to 104 
facilitate lineage-specific annotations for BC, AC, and RGC, given their complex cell types. 105 
The major classes were consistently distributed, except for enriched AC and RGC in several 106 
donors from new samples where cell enrichments are performed to increase the proportion of 107 
highly heterogeneous classes (AC, BC, and RGC), enabling the annotation of rare cell types 108 
(Extended Data Fig. 1A-B and Supplementary Table 4). 109 

To facilitate the integrated analysis, an scIB approach 17 was utilized for benchmarking 110 
data integration algorithms, and scVI 24 was selected for the construction of the retinal atlas 111 
(Fig. 1C, Methods and Supplementary Note). Using scVI, we integrated the entire 2 million 112 
cells and embedded them in 2D using UMAP (Extended Data Fig. 1C). We compared the 113 
distribution of scRNA-seq and snRNA-seq within this UMAP and found significant differences 114 
between snRNA-seq and scRNA-seq transcriptomic signatures, precluding their alignment 115 
using scVI (Extended Data Fig. 1C-D). We also benchmarked the conservation of cell type 116 
variation when integrating both data types compared to maintaining separate scRNA-seq and 117 
snRNA-seq references (Methods and Supplementary Fig. 1). We observed that combining 118 
scRNA-seq and snRNA-seq modalities leads to a less accurate representation of cellular 119 
variation (Supplementary Fig. 1C). To compare the transcriptome differences, we visualized 120 
the 144 samples by averaging the expressions using pseudo-bulk analysis and confirmed that 121 
snRNA-seq and scRNA-seq yield distinct transcriptomes (Extended Data Fig. 1E), consistent 122 
with previous reports comparing these sequencing modalities 25. We therefore created two 123 
separate references for snRNA-seq (Fig. 1D) and scRNA-seq (Extended Fig. 1F), respectively. 124 
Both were verified by the expression of canonical marker genes for each cell class (Extended 125 
Fig. 1G). 126 
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To further investigate the transcriptomic differences between the snRNA-seq and 127 
scRNA-seq technologies, cell proportions of major classes were calculated and compared in 128 
fovea, macular and periphery regions (Supplementary Fig. 2, Extended Data Fig. 2A and 129 
Supplementary Note). The most significant differences in cell proportions observed is that 130 
scRNA-seq datasets have a higher proportion of MGs compared to snRNA-seq datasets. Cell 131 
clusters from these two technologies can be readily aligned as they share similar 132 
transcriptomic signatures of major classes (Fig. 1E). However, a large number of differentially 133 
expressed genes (DEGs) were identified between the two technologies (Methods and 134 
Supplemental Note). In total, 1,387 and 3,242 over-expressed genes were identified across 135 
all cell types in snRNA-seq and scRNA-seq datasets, respectively (|log2 fold change| > 1, q-136 
value < 0.05) (Fig. 1F and Supplementary Table 5). These over-represented genes exhibited 137 
distinct yet biologically related enriched gene ontology (GO) biological processes (Extended 138 
Data Fig. 2B-E). For example, genes implicated in biological processes related to 139 
ribonucleoprotein complex or ribosome biogenesis, mitochondrial gene expression, and ATP 140 
synthesis were enriched in scRNA-seq datasets. 141 
 142 
Bipolar cells 143 

Over 422,000 bipolar single nuclei included in the current atlas can be divided into 14 144 
cell types based on marker genes 7,9 (Fig. 2A). One significant difference from previous reports 145 
is that the giant bipolar (GB) and blue bipolar (BB) are separated into two distinct clusters, 146 
primarily due to a significant increase in the cell number (Fig. 2B). To facilitate the annotation 147 
of BC clusters, we conducted a cross-species analysis to align human BC clusters with mouse 148 
and macaque BC types, leveraging both single-cell transcriptomes and protein sequence 149 
embeddings with SATURN 26 (Fig. 2C-D). High concordance with one-to-one mapping was 150 
observed among the three species, consistent with the previous report 7,9. Based on the co-151 
embedding, the human cluster mapped with mouse cell type BC9 is annotated as the BB as 152 
BC9 has been reported to exclusively contact S-cones9, also known as “blue” cones in humans 153 
and macaques12, while the human cluster mapped with BC8 is annotated as GB. Despite high 154 
similarity between GB and BB, 341 genes highly expressed in GB cells, and 887 genes highly 155 
expressed in BB cells were identified (Extended Data Fig. 3D, Supplementary Table 6, 156 
Supplementary Fig. 3A-B, and Supplementary Note). Among them, AGBL1 and SORCS3 157 
showed high specificity for the GB and BB cells, respectively (Fig. 2A, Extended Data Fig. 3B, 158 
and Supplementary Fig. 3C). Consistently, 14 BC corresponding clusters were also observed 159 
from the scRNA-seq dataset (Supplementary Table 1 and Extended Data Fig. 3A-C). 160 
Furthermore, DEGs in GB and BB, including AGBL1 and SORCS3, were confirmed by the 161 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.566105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.566105
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

scRNA-seq (p-value<10-6), showing a 58% overlap in GB and a 12% overlap in BB (Fig. 2A 162 
and E, Extended Data Fig. 3B, Supplementary Fig. 3C, and Supplementary Table 7). 163 

In mice, four BC5 types have been identified: BC5A, BC5B, BC5C, and BC5D 12. 164 
However, how these four closely related BC types correlate with BCs in primates has not been 165 
fully resolved. Previously, only BC5A in mice exhibited a confident mapping to DB4 in 166 
macaques 9. As shown in Fig. 2F, two human BC types, DB4a and DB4b, are closely related 167 
to BC5A in mice and DB4 in macaques, while BC5B and BC5C in mice appeared most similar 168 
to human and macaque DB5. However, the mouse BC5D appears to be an outlier without 169 
closely related BC type in primate. To distinguish the BC types, we identified a set of 55 gene 170 
markers that shows robust performance (Extended Data Fig. 3E, Supplementary Table 8 and 171 
Supplementary Note). 172 
 173 
Amacrine and retinal ganglion cells 174 

A total of 73 AC types was identified among over 380,000 AC nuclei (Fig. 3A, Extended 175 
Data Fig. 4A-B, and Supplementary Table 9), nearly doubling the number of types in a 176 
previous study 7. Two AC pan-markers, PAX6 and TFAP2B, were confirmed to be highly 177 
expressed in these 73 types (Extended Data Fig. 4A). By utilizing makers for GABAergic ACs 178 
(the GABA-synthetic enzymes GAD1 and GAD2) 15 and Glycinergic ACs (the glycine 179 
transporter SLC6A9), we identified 55 GABAergic AC types, accounting for ~65% of ACs, and 180 
11 Glycinergic AC types, accounting for ~23% of ACs. Seven clusters expressed both markers, 181 
classifying them as the “Both” AC types, as previously described in mice 14. Based on 182 
expression of additional previously characterized markers 9,15,27, 14 of the 73 AC clusters could 183 
be annotated as known AC types (Extended Data Fig. 4C-D, Supplementary Fig. 4A and 184 
Supplementary Note). For example, two clusters (HAC10, HAC26) were annotated as 185 
Starburst AC (SAC) by CHAT and ON-SAC/OFF-SAC by MEGF10 and TENM3, respectively. 186 
A set of gene markers to distinguish these 73 AC clusters are identified (Fig. 3B and 187 
Supplementary Table 8). To further annotate AC types, a cross-mapping approach was 188 
utilized to map the identified AC types with external sources with an existing labeling from 189 
public datasets and other species such as macaques and mice (Extended Data Fig. 5A-C, 190 
Supplementary Table 9, Supplementary Fig. 5A-C, and Supplementary Note). As expected, 191 
high concordance between snRNA-seq and scRNA-seq is observed: 92% (23/25) scRNA-seq 192 
clusters can be mapped to this dataset 15. Similarly, 94% (32/34) macaque AC types 9 mapped 193 
to the human dataset. In contrast, only 83% (52/63) mouse AC types mapped to humans 14, 194 
including four non-GABAergic non-Glycinergic (nGnG) types in mice 14,15 to human clusters (3 195 
Glycinergic and 1 GABAergic) (Supplementary Table 9). Eight human clusters (5 GABAergic 196 
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and 3 Both) do not have a clear correspondence to previously annotated types. All of these 197 
clusters appear to be rare cell types, with the most abundant of them comprising only 0.18% 198 
of the AC population (670 nuclei). 199 

We identified 15 RGC clusters are identified from over 99,000 RGC nuclei included in 200 
the atlas (Fig. 3C and Supplementary Table 9). Utilizing previously characterized markers from 201 
macaque, five clusters can be annotated (Extended Data Fig. 6A), OFF midget RGC 202 
(MG_OFF) by TBR1 (HRGC1), ON midget RGC (MG_ON) by TPBG (HRGC2), OFF parasol 203 
RGC (PG_OFF) by FABP4 (HRGC6), ON parasol RGC (PG_ON) by CHRNA2 (HRGC7), and 204 
an intrinsically photosensitive RGC (ipRGC) by OPN4 (HRGC10). Consistent with previous 205 
findings, the distribution of RGC types in human is highly skewed, with midgets accounting for 206 
87.9% of all RGCs. Parasol RGCs, which accounts for 1.8%, are relatively low compared to 207 
previous reports 9,15 due to experimental enrichments (Extended Data Fig. 6B). Cross-species 208 
comparisons among humans, macaques and mice reveal that RGC types are highly divergent 209 
(Fig. 3D and Extended Data Fig. 6C-D, Supplementary Fig. 6A-C, Supplementary Table 9, 210 
and Supplementary Note). As primate RGC types (approximately 18 types) 28 are significantly 211 
less diverse compared to mouse RGCs (45 molecularly distinct types) 13, making it challenging 212 
to perform cell cluster mapping between humans and mice (Supplementary Table 9 and 213 
Extended Data Fig. 6D). Lastly, a set of novel markers for RGC clusters are identified using 214 
the binary classification approach (Fig. 3E and Supplementary Table 8). 215 
 216 
HRCA: chromatin accessibility landscape 217 

To decipher the gene regulatory programs for retinal cell types, 372,967 snATAC 218 
nuclei from 52 samples of 26 donors were profiled (Supplementary Table 10 and 11). These 219 
nuclei were classified into six neuronal and three glial classes (Fig. 4A-B). Expression of 220 
genome-wide genes including canonical marker genes was highly correlated with local 221 
chromatin accessibility and inferred gene activity in all cell classes (Fig. 4C, Extended Data 222 
Fig. 7A). 223 

Based on this dataset, 670,736 open chromatin regions (OCRs) were identified, with 224 
70,909 to 237,748 OCRs per cell class (Fig. 4D, Supplementary Table 12). To evaluate the 225 
quality of these OCRs, we compared them with the OCRs detected by retinal bulk ATAC-seq. 226 
The snATAC-seq OCRs captured most (77.7%) of OCRs detected by bulk ATAC-seq. More 227 
importantly, many cell class-specific OCRs absent from bulk ATAC-seq analysis were present 228 
in the snATAC dataset, resulting in a three-fold increase in the total number of OCRs (Fig. 4E-229 
F). Although many OCRs are shared among multiple cell classes, 4.14% to 24.4% (9,361 to 230 
24,338) of the OCRs per cell class showed differential accessibility depending on cell classes, 231 
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suggesting potential roles in cell class-specific gene regulation; we refer to these OCRs as 232 
differentially accessible regions (DARs) (Extended Data Fig. 7B-C). By calculating the 233 
correlation between gene expression or promoter accessibility and chromatin accessibility of 234 
surrounding OCRs (-/+250kb), 162,481 linked OCR-gene pairs were identified (Fig. 4G). 235 
These linked OCRs are candidate cis regulatory elements (CREs) and the linked genes are 236 
likely to be the targets of the CREs. To further validate these putative CREs, particularly those 237 
potentially associated with human disease, we conducted massively parallel reporter assays 238 
(MPRAs) 29,30 on 1,820 CREs that were linked to inherited retinal disease (IRD) genes, utilizing 239 
the mouse retina as an ex vivo system (Methods). Confirming the gene regulation activity of 240 
the identified CREs, 27.3% and 6.6% of the CREs displayed strong enhancer and silencer 241 
activities, respectively (Fig. 4H, Extended Data Fig. 7D, Supplementary Table 12). In addition, 242 
we identified transcription factors (TFs) for major classes by integrating snRNA-seq and 243 
snATAC-seq data using SCENIC+ 31 (Fig. 4I, Supplementary Table 13). A significant portion 244 
of the identified TFs have been implicated in specification of individual retinal cell classes, 245 
such as OTX2 and CRX for photoreceptor cells, NR2E3 for rods, RAX2 for cones, NEUROD4 246 
for BCs, ONECUT1 and ONECUT2 for HCs, TFAP2A for ACs, and NFIB and LHX2 for MGs 247 
32-38. Many novel TFs were also identified (Supplementary Table 13). 248 

To annotate cell types within classes, we co-embedded snATAC-seq and snRNA-seq 249 
data with GLUE and used a logistic regression model to predict the cell type of snATAC-seq 250 
cells based on snRNA-seq annotation 39 (Methods). For example, 14 BC types corresponding 251 
to the 14 cell types by snRNA-seq were identified (Extended Data Fig. 8A-B). Consistently, 252 
two snATAC-seq cell clusters were identified for GB/BB and predicted as GB and BB, 253 
respectively. Local chromatin accessibility of the marker genes of GB and BB, UTRN and 254 
SORCS3 (identified by snRNA-seq, Extended Data Figure 3D-E) also showed high specificity 255 
in the corresponding snATAC-seq cell clusters, suggesting gene regulation of UTRN and 256 
SORCS3 indeed differ in GB and BB (Extended Data Fig. 8C-D). Similarly, cell types in other 257 
heterogenous cell classes, i.e., AC, HC, cone and RGC, as well as non-neuronal cell classes, 258 
MG, astrocyte, and microglia cells were distinguished (Extended Data Fig. 8E-H, 259 
Supplementary Fig. 7A-B and Supplementary Note). 260 
 261 
The HRCA enables uncovering cell-type-specific gene regulatory circuits 262 

To investigate gene regulatory programs governing individual cell types or groups of 263 
types (subclasses) within classes, we performed further SCENIC+ 31 analysis (Methods). The 264 
identified regulons show high specificity in distinguishing subclasses within the corresponding 265 
major cell class, with a maximum regulon specificity score (RSS) 31 > 0.8 (Extended Fig. 9A-266 
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D, Supplementary Table 13, Supplementary Note). Interestingly, these subclass specific 267 
regulons are distinct from the regulons that distinguish their respective major cell class. Some 268 
subclasses in different classes share the same TFs. For example, ISL1 specifically regulates 269 
ON-BCs within the BC class and the HC1 type within the HC class. Similarly, NFIX is specific 270 
for ON-BCs within the BC class and Glycinergic-ACs within the AC class. These findings 271 
suggest that cell identity is established through a multiple-layered, hierarchical regulation 272 
involving combinations of TFs, with individual TFs playing context-dependent roles. 273 

Using regulons of individual BC types as an example, a set of high-quality regulons 274 
that exhibit strong correlation between expression level of TFs and chromatin accessibility of 275 
TF target regions across BC types were identified (Pearson correlation rho > 0.70 or <-0.75, 276 
Fig. 5A, Supplementary Table 13). It appears that each cell type is under the control of a 277 
combination of activators and repressors. For example, ISL1 and SMAD9 are activators, while 278 
MEF2C serves as both activator and repressor for RBC. Importantly, we identified the 279 
regulons potentially governing BB and GB, two closely related BC types discerned in this study. 280 
Specifically, ELK4 and SALL4 appear as activators for BB and GB, DMBX1 as both activator 281 
and repressor for GB, and PBX1 as both activator and repressor for BB (Fig. 5A, 282 
Supplementary Fig. 8A-B). This aligns with the DEG analysis, where PBX1 showed 283 
significantly higher expression in BB compared to GB (log2FC=-1.43, p-adjust= 5.68 × 10!"", 284 
Supplementary Table 6). 285 

It is worth noting that the cell type regulons show reduced cell type specificity 286 
compared to those at the cell class and subclass levels, with a maximum RSS lower than 0.5 287 
(Extended Data Fig. 9E, Supplementary Table 13). Indeed, we observed potential TF 288 
cooperativity, exhibited as overlap of the target regions and target genes among these TFs 289 
(Fig. 5B-C, Supplementary Note). For example, a subset of NFIA target regions and target 290 
genes overlap with those of MEIS2 and NEUROG1, while their target regions are highly 291 
accessible and their gene expression level are high in DB3b. Interestingly, NFIA target regions 292 
and target genes also show overlap with those of NFIX and POU6F2, while the accessibility 293 
of their target regions and their gene expression level are high in DB4b. (Figure 5A-C). Thus, 294 
as is the case for classes, the same TF can collaborate with different TFs in distinct types. 295 
Consistently, regulon network analysis revealed interconnections among these regulons, 296 
demonstrated by the mutual or directional regulation among TFs and their regulation of the 297 
shared target regions and target genes (Fig. 5D). 298 

To further evaluate the identified TFs, we utilized chromatin accessibility of the target 299 
regions of these TFs to predict the cell type via a logistic regression model and a Support 300 
Vector Machine (SVM) model (Methods). The logistic regression model achieved a high ROC-301 
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AUC value of 0.98 (Figure 5E, Methods), supporting our findings. We also calculated the 302 
correlation of regulons based on the regulon activity, which was measured by target region 303 
AUC values associated with cell type identities, resulting in 10 regulon modules (Methods, Fig. 304 
5F, Supplementary Table 13). Most of these regulon modules have higher AUC values for 305 
specific subsets of BC types, particularly those that are more similar in transcriptome profiles 306 
(Extended Data Fig. 9F and Fig. 2D, Supplementary Fig. 8C). In summary, these observations 307 
suggest that each cell type is defined by a unique TF combination code, established through 308 
precise modulation of both TF expression and the chromatin state of their target regions in 309 
each type. 310 
 311 
Differential gene expression associated with age and sex 312 

Differences in retinal functions and disease risks have been associated with individual 313 
traits such as age and sex 40,41. We sought molecular correlates of these differences in a set 314 
of 135 samples from 57 donors (39 male and 18 female) aged 10 to 91 years (Methods and 315 
Supplementary Note), including 24 newly profiled samples from 14 young adult donors 316 
(Supplementary Table 14, Extended Data Fig. 10A). We identified 465 to 2,693 genes per cell 317 
class with age-dependent expression, utilizing a linear mixed effect model (LMM) (q-value < 318 
0.05, Fig. 6A-B and Extended Data Fig. 10B, Supplementary Table 15, Methods). Notably, 319 
surges of gene expression changes were observed around the ages of 30, 60, and 80 across 320 
major classes, revealed by a sliding window analysis (Fig. 6C, Supplementary Table 16, 321 
Methods). Although the dynamic patterns of gene expression changes were similar across 322 
classes, many DEGs (on average 37.6% per cell class) were specific to single classes (Fig. 323 
6B, Extended Data Fig. 10C). Gene set enrichment analysis of the age-dependent DEGs 324 
pinpointed several pathways activated across cell types (Fig. 6D-E, Supplementary Table 17, 325 
FDR < 0.1). They include complement and coagulation cascades, steroid hormone 326 
biosynthesis, adaptive immune response, and regulation of calcium ion import (Fig. 6D-E, 327 
Supplementary Table 17). Complement pathways have been shown to play important roles in 328 
the pathogenesis of age-related macular degeneration (AMD) 42-47, and alterations in steroid 329 
hormone homeostasis have been linked to glaucoma 48,49. In contrast, the common 330 
suppressed pathways included ribosome, cytoplasmic translation, mitochondrial gene 331 
expression, and ribonucleoprotein complex assembly, aligning with findings in a fly aging 332 
study 50 (Fig. 6D, Extended Data Fig. 10D). Suppression of oxidative phosphorylation, protein 333 
folding and modification process, ATP metabolic process, and several pathways involved in 334 
multiple neurodegeneration diseases were observed in RGC (Fig. 6D-E). These results 335 
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highlight age-related changes in gene expression that may contribute to age-dependent 336 
incidence of major retinal diseases. 337 

We also observed transcriptomic differences between males and females across cell 338 
classes (Supplementary Table 18, Supplementary Note). The majority (87.7%) of DEGs (q-339 
value < 0.05, |log2FC| ≥0.5) were identified on the autosomes while the remaining (12.3%) 340 
were on the X or Y chromosomes. Similar to the DEGs associated with aging, many DEGs 341 
between males and females (average 53.6% per cell class) are cell class specific (Fig. 6F) 342 
and enriched of both cell type specific and shared GO terms (FDR < 0.1, Fig. 6G, Extended 343 
Data Fig. 10E, Supplementary Table 17, Supplementary Note). For example, immune-related 344 
genes such as those involved in cytokine-mediated signaling pathways, viral processes, and 345 
innate immune responses are up-regulated in females specifically in MG (Fig. 6G, Extended 346 
Data Fig. 10E). This finding aligns with the sexual dimorphism observed in the mammalian 347 
immune system, where females have higher levels of immune responsiveness than males 51,52 348 
53,54. 349 

Finally, expression of some genes exhibits sex-dependent aging changes driven by 350 
sex-age interaction. (Supplementary Table 17 and 19, FDR < 0.1). For examples, genes 351 
involved in complement and coagulation cascades, e.g., A2M and F2RL2, show more 352 
significant activation during aging in females compared to males in cones and ACs (Fig. 6H-353 
I). This result aligns with the previous studies suggesting F2RL2’s role in progression to 354 
advanced macular disease with neovascularization 55 and higher prevalence of neovascular 355 
age-related macular degeneration in females than males 56. Conversely, genes involved in 356 
autophagy exhibit more significant up-regulation over aging in males compared to females in 357 
RGCs and ACs (e.g., ATG4A, CTSD, PRKCD, ULK1 in RGC, Fig. 6H-I). Interestingly, 358 
autophagy has been found to play a crucial role in glaucoma 57,58, which is more prevalent in 359 
males than females 59,60. 360 
 361 
Leveraging the HRCA to study GWAS and eQTL loci 362 

The HRCA provided a unique opportunity to prioritize candidate causal variants, genes, 363 
and affected cell types underlying GWAS traits in a multimodal way. To demonstrate this utility, 364 
we first identified enriched cell classes associated with GWAS traits based on cell class 365 
specific OCRs and gene expression using LDSC 61 and MAGMA 62, respectively (Fig. 7A, 366 
Supplementary Fig. 9A, q-value < 0.05). Consistent results are obtained from both snRNA-367 
seq and snATAC-seq datasets. We observed significant enrichment of age-related macular 368 
degeneration (AMD)-associated loci in Retinal Pigment Epithelium (RPE) and Microglia 63. 369 
Loci linked to the thickness of the outer segment (OST), inner segment (IST), and outer 370 
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nuclear layer (ONL) exhibited enrichment in rods, cones, and MGs 64. Loci associated with 371 
traits related to open-angle glaucoma were enriched in MGs and Astrocytes 65-67. Refractive 372 
error and myopia loci showed enrichment across most retinal cell classes 68. As a negative 373 
control, bone mineral density loci did not display enrichment in any of the retinal cell classes 374 
69. 375 

To further identify candidate causal variants, target genes, and affected cell types for 376 
GWAS loci, we performed fine-mapping of GWAS loci associated with seven retinal GWAS 377 
traits: OST 64, IST 64, ONL 64, POAG 65, AMD 68, refraction error/myopia 68, and diabetic 378 
retinopathy 70. Based on summary statistics and linkage disequilibrium of genome-wide 379 
variants analyzed in previous GWAS studies, we identified 18,959 variants that fell within the 380 
95% credible sets of these GWAS loci (Fig. 7B and Supplementary Table 20). Notably, a 381 
substantial proportion (19.4%, n=3,673) of the variants were found within OCRs (i.e., snATAC-382 
seq peaks). Additionally, small subsets of variants were mapped in regions where target genes 383 
could be inferred: 4.2% (796) were within linked CREs, 3.1% (592) within promoter regions, 384 
and 2.9% (553) within exonic, 3’ UTR and/or 5’ UTR regions, resulting in 1,784 variants linked 385 
to 691 potential target genes (Table 1). By cross-referencing these GWAS variant-gene pairs 386 
with eQTL-eGene pairs identified in bulk retina tissue, we found that 130 GWAS genes were 387 
eGenes of the GWAS variants, reinforcing the validity of our findings. Furthermore, a 388 
significant proportion of the identified target genes are marker genes of disease relevant cell 389 
classes, known genes linked to complex diseases or inherited retinal diseases (Table 1). 390 
Specifically, we uncovered well-known AMD related genes such as APOE, C2, and C3. In the 391 
case of POAG, our findings included EFEMP1 71, which has been linked to familial juvenile-392 
onset open-angle glaucoma, as well as TMCO1 and SIX6, known to be associated with POAG 393 
72. For diabetic retinopathy, ABCF1 was identified as a regulator of RPE cell phagocytosis 73 394 
and as one of the proteomic biomarkers of retinal inflammation in diabetic retinopathy 74. For 395 
target genes linked to retinal layer thickness, we pinpointed ATOH7, PAX6, VSX2, and RAX, 396 
all of which have been implicated in retinogenesis 75,76. Additionally, we identified genes like 397 
MKKS, FSCN2, PDE6G, PRPH2, RDH5, RHO, SAG, RP1L1, and RLBP1, known to be 398 
associated with inherited retinal diseases. Similarly, we fine-mapped retinal eQTLs using a 399 
comparable method (Fig. 7C). A significant portion of eQTL variants was also found within 400 
OCRs, while eQTLs exhibited greater enrichment in promoter regions than GWAS variants 401 
(two-sided binomial test, * = 4.94 × 10!#$%, Supplementary Table 21). Moreover, these fine-402 
mapped variants provided candidates to study regulatory mechanism of GWAS loci 403 
(Supplementary Note). As an example, one POAG variant (rs3777588) was fine-mapped 404 
(posterior inclusion probability [PIP]=0.72) to a LCRE of CLIC5 (Fig. 7D), a region specifically 405 
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open in MG. Consistently, CLIC5 is highly expressed in MG among retinal cell classes. 406 
Furthermore, the GWAS signal was colocalized with retinal eQTL signal of CLIC5 through this 407 
variant (H4=1.00 and Methods). Notably, this variant was also predicted to strength the binding 408 
of the transcription factor HSF1. 409 
 410 
Discussion 411 

In this study, we introduced HRCA version 1, an integrated multi-omics single-cell atlas 412 
of the human retina, which marks the first multi-omics reference atlas in the HCA framework 413 
1,2. The HRCA provides a comprehensive view of the transcriptomic and chromatin profiles of 414 
retinal cells, comprising data from more than 2 million sn-/sc-RNA-seq cells and over 370,000 415 
snATAC-seq cells. Our cross-donor and cross-lab atlas provides a model for future HCA 416 
atlases. The HRCA is accessible for the community through numerous interactive platforms, 417 
including CELLxGENE 77, UCSC Cell Browser 78, and Single Cell Portal 79, and can therefore 418 
serve as a common reference for advancing research on human eye health and diseases. 419 

Given the large number of cells profiled, coupled with targeted cell enrichment, the 420 
HRCA is nearly saturated for retinal cell types. The integrated analysis of over 2 million single 421 
cell/nuclei, including 1.4 million unpublished data points, revealed over 110 cell types in the 422 
human retina, nearly doubling the number reported in previous studies 7. For example, the 423 
HRCA separates two rare and closely related BC types, GB and BB, which co-clustered in 424 
previous analyses 7,9,15. Cross-species comparisons among humans, macaques, and mice 425 
augment those reported previously 7,9,15, especially with additional species 8, improving cell 426 
type annotation and providing guidance for translational studies in rodents of human vision 427 
disorders. Further annotation of this atlas by experts from the community will be used to 428 
update the HRCA. 429 

The HRCA also provides a comprehensive gene regulatory landscape of the human 430 
retina at single-cell resolution, uncovering over 670K open chromatin regions, and revealing 431 
potential CREs in individual cell type contexts. These results enable the identification of GRNs 432 
defining cellular identities at the class, subclass, and cell type levels, revealing a multiple-433 
layered, hierarchical regulation principle involving combinations of TFs. Hundreds of CREs 434 
linked to IRD genes were validated through a high-throughput functional assay in an ex vivo 435 
mouse model system. However, a high proportion of inactive sequences were observed in 436 
validation, which may result from a combination of limited experimental sensitivity, divergent 437 
human-mouse CRE activity, and inactive or false enhancers. Silencers in scrambled CRE 438 
sequences could result from retained motif content but low motif diversity 80. 439 
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Intriguingly, the HRCA also enabled the discovery of dynamic patterns of transcriptome 440 
during aging, where DEG surging patterns were consistent across cell types, but the individual 441 
genes were mostly differentially expressed in only one or two cell classes. A subset of aging-442 
related DEGs is overlapped with GWAS genes of aging-related diseases, e.g., C3 in Rod and 443 
VEGFA In Cone, and aging-related biological pathways include some known to be associated 444 
with age-related diseases, such as age-related macular degeneration. Similarly, we detected 445 
cell type specific transcriptomic and pathway difference between sexes beyond sex 446 
chromosomes, including immune response-related dimorphisms in autosomal genes 447 
expression. Interestingly, certain genes show sex-specific aging patterns, which may shed 448 
light on gender differences in certain age-related diseases. 449 

Finally, the HRCA facilitated a comprehensive functional annotation of disease-related 450 
variants, and exploration of the regulatory mechanisms of causal variants. By combining 451 
HRCA with fine-mapping, we identified potential causal variants, target genes, and the acting 452 
cell types associated with GWAS and eQTL loci, providing testable hypotheses about the 453 
action mode of GWAS variants. Additionally, we offer utilities designed to automate the 454 
annotation of cell types for new samples using scArches 81 (Supplementary Fig. 10 and 455 
Supplementary Note). In summary, the HRCA represents a comprehensive reference of the 456 
human retina and facilitates future analysis across cell types, individuals, and diseases for the 457 
human eye. 458 
 459 
Methods 460 
Human retina sample collection 461 

Tissues not described in previous publications were obtained from 28 individuals within 462 
6 hours post-mortem from the Utah Lions Eye Bank. Detailed donor information can be found 463 
in Supplementary Table 2. The procedure for dissecting the eyes followed the established 464 
protocol 82. Macular samples were collected using disposable biopsy punches measuring 6 465 
mm in diameter. Subsequently, the retinal tissues were flash-frozen in liquid nitrogen and 466 
stored at -80 °C until nuclei isolation. Only healthy donors with no recorded medical history of 467 
retinal diseases were included in this study. Post-mortem phenotyping using OCT was 468 
conducted to confirm the absence of disease phenotypes, such as drusen or atrophy, as 469 
described in the previous study 7. Institutional approval for the patient tissue donation consent 470 
was obtained from the University of Utah, adhering to the tenets of the Declaration of Helsinki. 471 
Each tissue was de-identified in accordance with HIPAA Privacy Rules. 472 
 473 
Nuclei isolation and sorting 474 
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The frozen retinal tissues were resuspended and triturated in a freshly prepared, pre-475 
chilled RNase-free lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.02% NP40) with 476 
a Wheaton™ Dounce Tissue Grinder to obtain nuclei. To enrich the retinal ganglion cell nuclei, 477 
isolated macular retinal nuclei were stained with a mouse anti-NeuN monoclonal antibody 478 
(1:5000, Alexa Flour 488 Conjugate MAB377X, Millipore, Billerica, Massachusetts, United 479 
States) in staining buffer (1% BSA in PBS, 0.2U/μl RNAse inhibitor) for 30 minutes at 4°C. 480 
After centrifugation at 500g 4°C for 5 minutes, nuclei were resuspended in staining buffer and 481 
filtered with a 40μm Flowmi Cell Strainer. DAPI (4′,6-diamidino-2-phenylindole, 10 μg/ml) was 482 

added before fluorescent cytometry sorting. 483 
The stained nuclei were sorted with a BD (Becton Dickinson, San Jose, CA) Aria II 484 

flow sorter (70μm nozzle). Gating was performed based on flow analysis of events and 485 
strengths of DAPI (450-nm/40-nm-band pass barrier filter) and FITC (530-nm/30-nm-band 486 
pass filter) signals. The sorting rate was 50 events per second based on side scatter (threshold 487 
value > 200). The nuclei group with strongest 5% FITC signal was collected for RGC 488 
enrichment, specifically, while all DAPI-positive nuclei were collected for general retinal nuclei 489 
study. 490 

For single nuclei ATAC profiling, nuclei were isolated in fresh-made pre-chilled lysis 491 
buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.02% NP40, 1%BSA) with a Wheaton™ 492 
Dounce Tissue Grinder until no tissue pieces were visible. After being washed at 500g, 4C for 493 
5min twice in a pre-coated 5ml round bottom Falcon tube (wash buffer: 10 mM Tris-HCl, 10 mM 494 
NaCl, 3 mM MgCl2, 1%BSA; coating buffer: 10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 495 
4%BSA; Falcon tube Cat. NO. 352054), the nuclei were resuspended in 1X diluted nuclei 496 
buffer (10X PN-2000153, PN-2000207) with a final concentration of 3000-5000 nuclei/ul. 497 
 498 
Single-nuclei RNA and ATAC sequencing 499 

All single-nuclei RNA and single-nuclei ATAC sequencing was conducted at the Single 500 
Cell Genomics Core at Baylor College of Medicine in this study. The library preparation and 501 
sequencing of single-nuclei cDNA were carried out following the manufacturer's protocols 502 
(https://www.10xgenomics.com). To obtain single cell GEMS (Gel Beads-In-Emulsions) for 503 
the reaction, single-nuclei suspension was loaded onto a Chromium controller. The library for 504 
single nuclei RNA-seq was prepared with the Chromium Next GEM Single Cell 3' Kit v3.1 (10x 505 
Genomics), while the library of single nuclei ATAC-seq was prepared with the Chromium Next 506 
GEM Single Cell ATAC Library and Gel Bead Kit v1.1 (10x Genomics). The constructed 507 
libraries were subsequently sequenced on an Illumina Novaseq 6000 508 
(https://www.illumina.com). 509 
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 510 
Data preprocessing of unpublished and public datasets 511 

Raw sequencing reads were first downloaded for all the curated public datasets. Along 512 
with unpublished generated datasets, data samples were processed using the same versions 513 
of software and databases by a quality control pipeline (https://github.com/lijinbio/cellqc). Raw 514 
sequencing reads were first analyzed using 10x Genomics Cell Ranger (version 7.0.1) 83 515 
utilizing the hg38 genome reference obtained from 10x Genomics 516 
(https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz). The 517 
resulting feature count matrices were retained for downstream quality control. Cell Ranger 518 
implemented EmptyDrops to filter empty droplets in experiments based on significant 519 
deviations from a background model of low-count cells 84. To further eliminate potential empty 520 
droplets from the filtered feature count matrices by Cell Ranger, dropkick was utilized to 521 
construct dataset-specific training labels by applying a logistic regression for real cells, with a 522 
threshold based on the total number of transcript counts in cells 85. The real cells retained 523 
were those identified by both EmptyDrops and dropkick, and they were preserved for 524 
downstream analysis. To correct for the background transcript measurements derived from 525 
ambient RNAs that are not endogenous to cells, SoupX was used to estimate a global 526 
contamination fraction across cells and to correct gene expression profiles by subtracting the 527 
contaminations 86. To exclude potential multiplets, DoubletFinder simulated artificial doublets 528 
and ranked real cells based on the proportion of artificial neighbors 87. Cells predicted to be 529 
multiplets with high proportions of artificial neighbors were ruled out. Following cell filtering 530 
criteria of ≥ 300 features, ≥ 500 transcript counts, and ≤10% (or ≤ 5% for snRNA) of reads 531 
mapped to mitochondrial genes, the retained cells constituted the clean cells for downstream 532 
analysis. 533 

To annotate major retinal cell classes, a pre-trained multi-class classifier was applied 534 
using scPred to predict a type for each cell 88. The training data was constructed in-house by 535 
collecting cells with ten major annotated cell classes, including amacrine cells (AC), bipolar 536 
cells (BC), horizontal cells (HC), retinal ganglion cells (RGC), retinal pigment epithelium (RPE), 537 
astrocytes, muller glia (MG), microglia, rods and cones. Raw gene expression counts were 538 
initially log-normalized and scaled using Seurat. The scaled matrix was decomposed through 539 
principal component analysis. The principal component embeddings were the features utilized 540 
for training binary-SVM classifiers (one-versus-all) for cell types. During prediction, the raw 541 
counts matrix of test data was also initially log-normalized and scaled using Seurat 89,90. The 542 
scaled data were then projected into the principal component coordinate basis established by 543 
the training data. The projected principal components served as features for prediction against 544 
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the trained classifiers. Positive cell types were predicted based on classification probabilities 545 
≥ 0.9, and doublets were identified if cells were classified into multiple types. 546 
 547 
Integration benchmarking of single cell and single nuclei RNA-seq sequencing 548 

An integration benchmarking of retina datasets was conducted based on previous work, 549 
such as scIB 17 and the the Human Lung Cell Atlas v1 3. Briefly, cells from each donor and 550 
sample were independently annotated using one of nine major class cell types using scPred, 551 
and then these datasets were concatenated as a single input object, with annotations for 552 
batches, cell types, and technologies (sc or sn). We tested two levels of feature selection, 553 
1,000 and 3,000 highly variable genes (HVGs), we only tested raw counts without rescaling 554 
based on previous insights. 555 

To allow batch correction comparisons between single-cell and single-nuclei datasets, 556 
we performed three integration pipelines: one with only single-cell RNA-seq datasets (sc), one 557 
with only single-nuclei RNA-seq datasets (sn), and one with both dataset types combined 558 
(sn+sc). This allowed measuring the integration quality of cells based on matched cells from 559 
the combined technologies, with respect to each technology alone. 560 

Due to scaling limitations while running methods for the largest single-cell datasets, 561 
(more than two million cells), we limited our tests to Python methods with a scalable 562 
implementation. Empirically, methods were discarded if output was not generated in 48 h as 563 
a single task, with 150GB of memory, 4 CPUs, and one GPU if required. Based on these 564 
criteria, we were able to generate batch-corrected objects for 7 methods using 1,000 HVGs, 565 
including scANVI, scVI, scGen, scanorama, BBKNN, Harmony (harmonpy), and combat. 566 
When using 3,000 HVGs and sn-datasets, scanorama and BBKNN were discarded. When 567 
benchmarking sn+sc datasets, scGen and Combat were discarded due to running times. 568 

The calculation of some metrics requires a non-linear time with respect to the number 569 
of cells, and this makes their computing expensive for the largest datasets. As an improvement 570 
during the metrics calculation step, we incorporated into our pipeline a metrics approach to 571 
allow fixed subsamples of the full object, with custom percentage sub-samples set up as 3, 5, 572 
and 6 percent. This allows measuring integration quality with a sample representative of the 573 
full object, and in a shorter computational time, while recovering best methods with a lower 574 
computational effort. 575 
 576 
Integration of single cell and single nuclei transcriptome data 577 

From the benchmark results, scVI24 outperformed all the label-agnostic methods in our 578 
benchmark results. Therefore, scVI was selected for integrating the transcriptome data. On 579 
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the entire 2 million cells, the major cell classes are well integrated, but the subclass clusters 580 
within the major classes are mixed. For example, many clusters of the AC class are intermixed 581 
with clusters of the BC class (Extended Data Fig. 1C). We compared the cell distribution of 582 
snRNA-seq and scRNA-seq and found that many cell clusters overlap between the two 583 
technologies, while a few do not (Extended Data Fig. 1D). Therefore, separate integrations for 584 
single-nuclei and single-cell samples were conducted to account for the differences in 585 
dissociation technologies. For integrating data specific to BC, AC, and RGC types, only 586 
subsets of cell type-specific cells for subclass integration were retained. To capture the 587 
nuanced similarities between cell clusters, the top 10,000 highly variable genes was calculated 588 
using the “sampleID” as the batch key with the Scanpy Python package 91. The “sampleID” 589 
was also used as the batch variable in the scVI modeling. In scVI, two hidden layers for 590 
encoder and decoder neural networks and a 30-dimensional latent space were calculated to 591 
represent cells after removing sample batches. The number of epochs was adjusted based 592 
on the total number of cells in the subclass integration and a minimum of 20 epochs was used 593 
for the variational autoencoder training. The trained latent representation was used to 594 
measure the distance among cells. These distances were used to calculate the cell clustering 595 
using the Leiden algorithm 92. To facilitate the inspection of integrated cell clusters, 2D 596 
visualization was generated using UMAP 93. To determine the optimal resolution for the Leiden 597 
clustering, a range of resolution values were evaluated and manually examined by the 598 
resulting cell clusters using a UMAP plot. To assess and mitigate potential over-clustering, the 599 
self-projection accuracy of the clustering was computed using the SCCAF Python package 94. 600 
Furthermore, a two-level clustering method was used to capture the cellular diversities of BC, 601 
AC, and RGC when performing subclass clustering. Various resolutions were tested for 602 
clustering, and the first-level resolution was selected to achieve initial clustering without over-603 
clustering, as confirmed by UMAP visualization. In the second-level clustering, various 604 
resolutions were also tested to refine any under-clustering and achieve optimal clustering 605 
without over-clustering on UMAP. Ultimately, the two-level clustering approach determined 606 
the number of clusters in the atlases. 607 
 608 
Comparison between snRNA-seq and scRNA-seq 609 

To evaluate the differences between snRNA-seq and scRNA-seq, the cell proportions 610 
of major cell classes were computed in each sample using both technologies. The samples 611 
were categorized into fovea, macular, and periphery tissue regions for both approaches. To 612 
address any potential cell proportion bias arising from experimental enrichment in a subset of 613 
snRNA-seq samples, only samples without enrichment were included. Subsequently, bar plots 614 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.566105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.566105
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

were generated to compare the cell proportions of major classes across tissue regions for the 615 
two technologies. 616 

To examine the cell type similarities of major classes between the two technologies, 617 
raw counts of the complete cells were first aggregated into pseudo-bulk for each major class 618 
across samples. The resulting pseudo-bulk measurement has three metadata columns: the 619 
“sampleID,” which represents unique sample IDs in the atlas; “dataset,” indicating whether the 620 
sample is from “snRNA” or “scRNA” technologies; and the “majorclass,” which denotes the 621 
annotated major class cell types. Utilizing the pseudo-bulk count matrix, cell type similarities 622 
were calculated using the MetaNeighbor R package 95. Specifically, highly variable genes 623 
were detected using the “variableGenes()” function with “dataset” as the source of samples, 624 
and the mean AUROC matrix was calculated for “dataset” and “majorclass” using the 625 
“MetaNeighborUS()” function with the calculated variable genes. 626 

To identify differentially expressed genes in two technologies, the DESeq2 R package 627 
96 was applied to the aggregated pseudo-bulk count matrix. To account for major class cell 628 
type information during the statistical test, the design formula used “~ majorclass + dataset”. 629 
The Wald test was employed to calculate p-values of gene expression differences between 630 
the two technologies. The contrast used in the “results()” function was “contrast=c(‘dataset’, 631 
‘snRNA’, ‘scRNA’)” to derive differentially expressed genes after regressing out major classes 632 
by “majorclass”. To enhance the statistical power, genes with average expressions less than 633 
10 among pseudo-bulk samples were excluded from the analysis. For calculating adjusted q-634 
values from the p-values, we employed the Benjamini-Hochberg procedure 97. Subsequently, 635 
differentially expressed genes were identified under |log2 fold change|>1 and q-value<0.05. 636 
Enriched Gene Ontology (GO) terms were identified using the “enrichGO()” function of the 637 
clusterProfiler R package 98 on the differentially expressed genes. To investigate gene 638 
expression changes among major class cell types between the two technologies, the count 639 
matrix was subsetted per major class and subjected to differential gene expression analysis 640 
using the design formula “~ dataset” in a similar manner. To explore the shared differentially 641 
expressed genes across major classes, an UpSetR image was produced using the “upset()” 642 
function from the UpSetR R package 99. 643 
 644 
Cross-species analysis 645 

To conduct cross-species analysis, the SATURN algorithm26 was utilized to compare 646 
human, mouse, and macaque cell clusters and cell types. The human cell clusters were 647 
identified from clean cells, while the mouse reference was generated from an integrated 648 
analysis of collected mouse samples available at the data portal of Baylor College of Medicine 649 
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(https://mouseatlas.research.bcm.edu/). Raw single cell measurements and cell labeling for 650 
the macaque reference were obtained from the GEO repository (accession GSE118546)9. To 651 
ensure accurate alignment of cell clusters, we randomly sampled up to 2,000 cells per cell 652 
cluster and cell type. Protein embeddings for human, mouse and macaque are retrieved from 653 
the respective SATURN repositories. To capture nuanced similarities among cell clusters, 654 
SATURN feature aggregation employs a set of 5,000 macrogenes. Additionally, during pre-655 
training, “sampleID”s are utilized as non-species batch keys to effectively reduce batch effects 656 
caused by samples. The trained 256-dimensional latent representations were utilized to 657 
compute cell dissimilarities and generate UMAP for visualizations. 658 
 659 
Differential gene expression analysis for bipolar cells 660 

The DESeq2 R package96 was utilized to identify genes that were highly expressed in 661 
specific cell types, e.g., GB and BB cell types. First, a pseudo-bulk measurement was 662 
calculated by summing the gene expressions of single cells within each cell type for each 663 
sample, excluding samples with less than 2,000 cells. The pseudo-bulk datasets were then 664 
used in a paired test, incorporating sample information in the design formula “~ sampleID + 665 
celltype”. Lowly expressed genes with an average expression less than 10 were filtered out to 666 
improve computation speed and statistical power. A Wald test was used to calculate p-values 667 
for differential testing, comparing gene expression changes between BB and GB by 668 
contrasting the “celltype” factor using the DESeq2 package's “results()” function. The adjusted 669 
q-value was calculated from p-values using the Benjamini-Hochberg procedure 97. The 670 
EnhancedVolcano R package100 was used to visualize the distribution of log2 fold change and 671 
q-values. Differentially expressed genes were identified based on criteria of |log2 fold 672 
change|>1 and q-value<0.05. Enriched Gene Ontology (GO) terms were identified using the 673 
“enrichGO()” function of the clusterProfiler R package98 on the changed genes. 674 

To identify the top-ranked genes in GB and BB between the snRNA-seq and scRNA-675 
seq datasets, we normalized and transformed raw count matrices from the two technologies 676 
using the “normalized_total()”and “log1p()” functions within the Scanpy Python package 91. To 677 
expedite the computation, 10,000 highly variable genes were calculated using the “seurat” 678 
flavor with the batch key set as the “sampleID”. Subsequently, the highly variable genes were 679 
tested for top-ranked genes via the Wilcoxon test. Top-ranked genes were identified by q-680 
value < 0.05. To visualize the overlapped genes, a venn diagram was generated using the 681 
“venn.diagram()” function from the VennDiagram 101 R package. Fisher’s exact test was used 682 
to calculate the significance of the overlap of top ranked genes between GB and BB in snRNA-683 
seq and scRNA-seq, with 10,000 genes as the background for gene expression. 684 
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To evaluate the cell type similarities between DB4a, DB4b, and DB5 in humans and 685 
their corresponding mapped cell types in mice and macaques, gene symbols of the raw count 686 
matrices of mouse and macaque data were converted into human orthologs using the MGI 102 687 
and HGNC 103 databases. Utilizing human gene symbols and orthologs, cell type similarities 688 
were computed in a manner similar to the comparison of cell types between snRNA-seq and 689 
scRNA-seq datasets utilizing the MetaNeighbor R package 95. 690 
 691 
Marker identification by binary classification analysis 692 

To identify novel markers for BC, AC, and RGC types, a binary classification approach 693 
was applied to detect 2- or 3-marker combinations for each type13. To mitigate classification 694 
bias resulting from unbalanced cell type abundances, up to 2000 cells were randomly sampled 695 
for BC types, and up to 500 cells were sampled for AC and RGC clusters. First, the raw counts 696 
were normalized, and the top 50 ranked genes were calculated for each cell type using the 697 
Scanpy package 91. Support vector classifiers were then trained by considering combinations 698 
of the top-ranked genes for each cell type. The “SVC()” function with “kernel=rbf” was 699 
employed from the scikit-learn Python package 104. Combinations of markers were ranked 700 
based on several classification metrics, including precision, recall, F1 score, and AUROC. 701 
 702 
Annotation of snATAC-seq cells and co-embedding of snATAC-seq and snRNA-seq 703 
cells 704 

To annotate cell types for snATAC-seq, the low-quality cells and doublets were first 705 
filtered out, and the retained cells were clustered with ArchR 105 (minTSS=4, minFrags=1000, 706 
filterRatio=1). By integrating with snRNA-seq data, six major neuron cell classes and a mixed 707 
non-neuron cell class were identified through ArchR. Then peaks were called by MACS2 106 708 
through ArchR and cell by peak fragment count matrices were generated for each of the major 709 
cell classes and across major cell classes via Seurat 89 and Signac 107. The co-embedding of 710 
snRNA-seq and snATAC-seq was performed with the GLUE algorithm39. Specifically, to 711 
integrate major cell class annotation, all snATAC-seq cells were co-embedded with the down-712 
sampled snRNA-seq cells by scGlue under the supervised mode, since major cell classes 713 
from both snATAC-seq and snRNA-seq were already annotated. However, to identify cell 714 
types per major class, the snATAC-seq cells were co-embedded with the snRNA-seq cells for 715 
a major class by scGlue under the unsupervised mode. A logistic regression model and an 716 
SVM model were then trained using the GLUE embedding and annotation of snRNA-seq cells 717 
to predict the cell types of snATAC-seq cells using the scikit-learn python package. The ROC-718 
AUC of the logistic regression model was consistently higher than that of SVM model, so the 719 
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logistic regression model was used to annotate snATAC-seq cells. The peaks were called by 720 
MACS2 through ArchR for snATAC-seq cell classes and types. Differentially accessible 721 
regions (DARs) and linked CREs were identified across cell classes and types using ArchR. 722 
The linked CREs were the union set of peak-gene pairs identified through the correlation of 723 
accessibility between snATAC-seq peaks (-/+ 250kb surrounding TSS) and promoters (co-724 
accessibility), as well as the correlation between gene expression and the accessibility of 725 
snATAC-seq peaks (-/+ 250kb surrounding TSS). 726 
 727 
Identification of regulon of retinal cell types 728 

Regulons were identified for each of major cell classes, subclasses, and cell types 729 
respectively utilizing SCENIC+ 31. Since SCENIC+ is memory-demanding, up to 1,000, 2,000, 730 
or 4,000 cells per cell type (depending on specific cell class/subclass/type) were down-731 
sampled for snATAC-seq cells and snRNA-seq cells respectively. The down-sampled cell by 732 
gene matrices and cell by peak matrices were then submitted to SCENIC+. Transcription 733 
factors (TF), target regions of TFs, and target genes of TFs were also identified across cell 734 
types. The transcription factors that showed significant correlation between gene expression 735 
and chromatin accessibility of the target regions across cell types were further selected as 736 
candidate TFs. From these TFs, eRegulon Specificity Score (RSS) was also computed for the 737 
TFs that were identified as activators in the corresponding cell type. Furthermore, the TFs that 738 
displayed a significant correlation between the accessibility of target regions and the 739 
expression level of target genes were identified. Subsequently, TF modules displaying a 740 
significant correlation in the region-based AUC between TFs were identified. 741 
 742 
Massively parallel reporter assays 743 

We developed a MPRA library, which contains the sequences of 1,820 CRE 744 
candidates linked to inherited retinal disease genes identified in the rod cells, along with 20 745 
control cis-regulatory elements (CREs) with a variety of activity that have been previously 746 
validated 80, and negative controls (i.e., 300 scrambled sequences, and a basal promoter 747 
without CRE). Each CRE or control sequence was labeled with three unique barcodes, and 748 
25 barcodes were assigned to the basal promoter. Oligonucleotides (oligos) were synthesized 749 
as follows: 5’ priming sequence /EcoRI site/Library sequence (224-bp)/SpeI site/C/SphI 750 
site/Barcode sequence (9-bp)/NotI site/3’ priming sequence. These oligomers were ordered 751 
from TWIST BIOSCIENCE (South San Francisco, CA) and cloned upstream of a 752 
photoreceptor-specific Crx promoter, which drives the expression of a DsRed reporter gene. 753 
The resulting plasmid library was then electroporated into three retinal explants of C57BL/6J 754 
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mice at postnatal day 0 (P0) in four replicates. On Day 8, DNA and RNA were extracted from 755 
the cultured explants and next-generation sequencing was conducted. The activity of each 756 
CRE was calculated based on the ratio of RNA/DNA read counts and was normalized to the 757 
activity of the basal Crx promoter. The bioinformatics analysis of the MPRA result followed the 758 
previously published pipeline80. 759 
 760 
Differential gene expression analysis during aging and between genders 761 

We conducted two types of differential gene expression analysis during aging. First, 762 
for each cell class, raw read counts were aggregated per gene per sample. Only the samples 763 
containing at least 100 cells in the corresponding cell class were considered. Additionally, the 764 
samples that had < 0.75 correlation in read counts with > 65% of samples were considered 765 
as outliers and were not included in subsequent analysis. Genes with low expression in the 766 
corresponding cell classes were filtered out, resulting in about 18,003 genes retained per cell 767 
class for further analysis. Based on the filtered genes and samples, the genes significantly 768 
correlated with aging and different between sexes were identified using a mixed linear effect 769 
model via edgeR 108 and variancePartition 109 R packages. The formula we applied were: ~ 770 
age + sex + race + tissue + seq+ (1|batch) for age and sex effect, and ~ age + sex + race + 771 
tissue + seq+ (age:sex) + (1|batch) for the interaction between age and sex. Log2 fold change 772 
and p-values were extracted for all genes for the covariate of interest, i.e., age, sex, and 773 
interaction between age and sex. In addition, a sliding window analysis was conducted over 774 
aging, and DEGs between two adjacent time windows were identified per cell class utilizing 775 
the DEswan R package 110. The read counts of the filtered genes were normalized based on 776 
the library size of each sample per cell class via the edgeR R package. The sliding window 777 
analysis was conducted over aging, considering batch and sex as covariates at the age: 20, 778 
30, 40, 50, 60, 70, 80, and 90, with the bucket size = 20 years. In all time windows (10-year 779 
interval) except three windows in RGC, there are more than three samples per cell class, 780 
ensuring statistical robustness. Enriched pathways and GO terms were identified through 781 
gene set enrichment analysis of the differentially expressed genes utilizing the clusterProfiler 782 
R package 98. The significance cutoff for enriched gene sets was set at FDR < 0.1. 783 
 784 
Cell type enrichment underlying GWAS locus 785 

Cell class enrichment underlying GWAS loci was identified based on both chromatin 786 
accessibility and gene expression. For chromatin accessibility, the heritability of GWAS traits 787 
were partitioned into cell class specific snATAC-seq peaks using stratified LD score regression 788 
via LDSC 61. Initially, GWAS SNPs that overlapped with HapMap3 SNPs were annotated 789 
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based on whether they were in OCRs in each cell class. Subsequently, LD-scores of these 790 
SNPs within 1 cM windows were calculated based on the 1000 Genome data. The LD-scores 791 
of these SNPs were integrated with those from the baseline model, which included non-cell 792 
type specific annotation (downloaded from https://alkesgroup.broadinstitute.org/LDSCORE/). 793 
Finally, the heritability in the annotated genomic regions was estimated and compared with 794 
the baseline model to determine if regions in each cell class were enriched with the heritability 795 
of the corresponding GWAS trait. For gene expression, the linear positive correlation between 796 
cell class specificity of gene expression and gene-level genetic association with GWAS 797 
studies were assessed by using the MAGMA.Celltype R package 62. GWAS summary 798 
statistics were formatted with the “MungeSumstats” R package 111 based on SNPs in -799 
35kb/+10kb of each gene and 1000 genome “eur” population. snRNA-seq expression data 800 
was formatted with the “EWCE” R package 112. Linear enrichment was detected using the 801 
MAGMA.Celltype R package. To correct for multiple testing, the Benjamini-Hochberg method 802 
was applied to the enrichment p-value based on chromatin accessibility and gene expression 803 
respectively, considering the number of cell types and GWAS studies tested. 804 
 805 
Fine-mapping of GWAS and eQTL variants 806 

GWAS loci were fine-mapped based on the summary statistics of GWAS studies. For 807 
each GWAS study, the SNPs with * < 5 × 10!&  and present in 1000 genome (phase 3) 808 
European population were considered and were categorized into the LD blocks identified by 809 
a previous study. Within each LD block, the posterior inclusion probability (PIP) of each SNP 810 
and credible set of SNPs were calculated using the susieR package (L=10) 113. Similarly, eQTL 811 
variants were fine-mapped based on the summary statistics of bulk retinal eQTLs. The 812 
colocalization analysis of GWAS signal and bulk eQTL signal was conducted using the coloc 813 
R package 114. The motif disrupt effect of SNPs was predicted by the motifbreakR R package 814 
115. 815 
 816 
Query to reference mapping using scArches 817 

The HRCA cell type labeling enables automated cell type annotation using scArches 818 
81. We trained query-to-reference models using scArches, using default parameters as 819 
recommended in their core tutorials. Models were trained during 20 epochs for scVI, scANVI, 820 
and label transfer on sc and sn cells from the healthy reference and using batch information 821 
during the integration benchmark. Additional cell type sub-annotations were used, based on 822 
clustering and marker-based selection per major classes. Only healthy donors were 823 
considered to generate reference models. 824 
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To test the cell mapping and uncertainty estimations in new samples, we used age-825 
related macular degeneration samples (AMD) related to 17 donors. As validation of the label 826 
transfer accuracy, we pre-annotated one of the disease samples using scPred, obtaining 98% 827 
agreement in labels. Label uncertainties per major class mapped on AMD donors were 828 
analyzed as a single-variable distribution, and we defined a percentile threshold of 97.5% to 829 
label cells as high- or low-uncertainty based on this value. Selection of visualization of marker 830 
genes across categories was done on each cell type, between both uncertainty categories, 831 
using Scanpy 91. Overlap between selected marker genes AMD-related genes was inspected 832 
using the ontology term Macular Degeneration (DOID:4448) from the DISEASES database 116. 833 
 834 
Data availability 835 

The landing page of the HRCA data resources is accessible at 836 
https://rchenlab.github.io/resources/human-atlas.html. Raw sequencing data files, processed 837 
Cell Ranger data files, and sample metadata information files of the HRCA have been 838 
deposited in the HCA DCP. Additionally, raw and normalized count matrices, cell type 839 
annotations, and multi-omics embeddings are also publicly available through the CELLxGENE 840 
collection (https://cellxgene.cziscience.com/collections/4c6eaf5c-6d57-4c76-b1e9-841 
60df8c655f1e). The HRCA is also accessible at the UCSC Cell Browser (https://cells-842 
test.gi.ucsc.edu/?ds=retina-atlas+rna-seq+chen) and the Single Cell Portal. 843 
 844 
Code availability 845 

All code used for the HRCA project can be found in the HRCA reproducibility GitHub 846 
repository (https://github.com/RCHENLAB/HRCA_reproducibility). The pipeline to process the 847 
unpublished and collected public datasets is accessible at https://github.com/lijinbio/cellqc. 848 
Scripts related to the benchmark study, integration pipeline, and label transfer using scArches 849 
are available at https://github.com/theislab/HRCA-reproducibility. 850 
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Figure legends 1239 
 1240 
Figure 1. Overview of single cell atlas of the human retina 1241 
A. The integrated study for the atlas involves compiling public datasets and in-house 1242 
generated data, integrating datasets, annotating cell clusters, utilizing chromatin profiles for 1243 
multi-omics, and demonstrating the utility by applications. B. Collected retinal datasets 1244 
comprising of both in-house newly generated and seven publicly available datasets. C. Five 1245 
data integration algorithms are benchmarked for data harmonization. The algorithms are 1246 
evaluated using 14 metrics, with the rows representing the algorithms and columns 1247 
corresponding to the metrics. The algorithms are ranked based on their overall score. D. The 1248 
atlas of snRNA-seq datasets is visualized in a UMAP plot at a major class resolution, with 1249 
cells colored based on their major classes. E. Cell type similarities of major classes between 1250 
snRNA-seq (in coral) and scRNA-seq (in blue). The color key is the average AUROC of self-1251 
projection for cell types. F. Volcano plot of genes over-expressed in snRNA-seq datasets (on 1252 
the right) and scRNA-seq (on the left). The x-axis is log2 fold change, and the y-axis is –log10 1253 
q-value. Differentially expressed genes were identified under |log2 fold change|>1 and q-1254 
value<0.05 and are depicted as red dots. Selected gene symbols point to the DEGs, including 1255 
seven genes encoding protocadherin proteins on the right: PCDHGB2, PCDHGB3, PCDHGB4, 1256 
PCDHGA2, PCDHA2, PCDHGA11, PCDHA8; and five genes encoding ribosomal proteins on 1257 
the left: RPL7, RPL13A, RPS8, RPS15, RPS17. 1258 
 1259 
Figure 2. Bipolar cells 1260 
A. Distribution of marker genes for BC types. BC subclasses are in RB, OFF and ON. NETO1, 1261 
OTX2, and VSX2 were used as BC pan-markers. GRIK1 and GRM6 were used as OFF and 1262 
ON markers, respectively. Rows represent marker genes, and columns represent BC types. 1263 
The names of BC types are extracted from macaque BC types.  B. UMAP visualization of 1264 
human BC cells. Cell clusters are colored by the annotated cell types. C. Co-embedding of 1265 
human, mouse, and macaque BC cells. To differentiate between cell types from three species, 1266 
prefixes were added to the names: “h” for human, “m” for mouse, and “a” for macaque. D. 1267 
Hierarchical clustering of mouse BC cell types. Expanded leaf nodes are the correspondent 1268 
cell types from human and macaque BC cell types. E. The overlap between the top-ranked 1269 
genes of human GB and BB is examined using snRNA-seq and scRNA-seq datasets. Fisher’s 1270 
exact test was used to calculate the significance of the overlap of top ranked genes in GB (p-1271 
value=7.5×10-293) and BB (p-value=1.7×10-131) between snRNA-seq and scRNA-seq. F. Cell 1272 
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type similarities among mouse BC5A, BC5B, BC5C, and BC5D, and mapped types in humans 1273 
and macaques.  1274 
 1275 
Figure 3. Amacrine cells and retinal ganglion cells  1276 
A. UMAP visualization of the identified 73 AC cell clusters. Cluster IDs are placed on top of 1277 
clusters, and cells are colored by the cluster IDs, where 14 clusters have annotated types. B. 1278 
Dot plot of predicted markers for AC cell types. C. UMAP visualization of RGC cell types with 1279 
labels on top of cells. D. Sankey diagram illustrating RGC types alignment between humans 1280 
(left column) and macaques (right column). E. Dot plot of predicted markers for RGC cell types. 1281 
 1282 
Figure 4. A high resolution snATAC-seq cell atlas of the human retina 1283 
A. Uniform Manifold Approximation and Projection (UMAP) of co-embedded cells from 1284 
snRNA-seq and snATAC-seq showing cells are clustered into major retinal cell classes. B. Pie 1285 
chart showing the cell proportion distribution of major retinal cell classes in this study. C. Dot 1286 
plot showing marker gene expression measured by snRNA-seq and marker gene activity 1287 
score derived from snATAC-seq are specific in the corresponding cell class. D.  Bar plot 1288 
showing the number of open chromatin regions (OCRs) identified in each major cell class. E. 1289 
The Venn Diagram showing the overlapped OCRs detected by retinal snATAC-seq and bulk 1290 
ATAC-seq. F.  Pie chart showing cell type specificity of OCRs identified from retinal snATAC-1291 
seq (left) and bulk ATAC-seq (right). The color codes the number of cell types where the OCRs 1292 
were observed. G. Heatmap showing chromatin accessibility (left) and gene expression (right) 1293 
of 149,273 significantly linked CRE-gene pairs identified by the correlation between gene 1294 
expression and OCR accessibility. Rows represented CRE-gene pairs grouped in clusters by 1295 
correlations. H. Volcano plot showing the log212 value (comparison between activity of each 1296 
tested sequence and the activity of a basal CRX promoter, X axis) and the −log10134 value 1297 
(Y axis) of each tested sequence by MPRAs (IRD CREs n=1,820, control CREs with a variety 1298 
of activities n=20, Scrambled CREs n=300). Each dot corresponds to a tested sequence, 1299 
colored by the activity of the sequence. I. Scatter plot showing the eRegulon specificity score 1300 
for each transcription factor (TF) and the corresponding regulon across major retinal cell 1301 
classes. The top five TF and eRegulon are highlighted in red. 1302 
 1303 
Figure 5. Regulon of the human bipolar cell types 1304 
A. Heatmap showing the identified regulons where the gene expression level (color scale) of 1305 
transcription factors and the enrichment (dot size) of TF motifs in the snATAC peaks are highly 1306 
correlated. The rows represent BC cell types, and the columns represent the identified 1307 
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regulons. B. Jaccard heatmap showing the intersection of target regions of the identified TFs. 1308 
Each cell in the heatmap represents the Jaccard index of target regions between a pair of TFs. 1309 
C. Jaccard heatmap showing the intersection of target genes of the identified TFs. Each cell 1310 
in the heatmap represents the Jaccard index of target genes between a pair of TFs. D. 1311 
Network plot showing the regulons and interactions between them in DB3a, DB3b, BB and 1312 
GB. Each regulon includes the TF, target regions and target genes. E. ROC-AUC of logistic 1313 
regression model and SVM model to predict BC cell type based on the accessibility of target 1314 
regions of identified TFs. F. Heatmap showing the correlation in target-regions-based AUC of 1315 
the identified regulons.  1316 
 1317 
Figure 6. Differential gene expression associated with sex and age. 1318 
A. Heatmap showing gene expression level of differentially expressed genes (DEGs) during 1319 
aging in Rod identified with linear mixed effect model (LMM). B. UpSet plot showing the 1320 
number of cell type specific and common DEGs across major retinal cell classes. C. The 1321 
number of DEGs identified through sliding window analysis at each age stage. D. The selected 1322 
KEGG pathways significantly enriched (FDR <0.1) of DEGs during aging identified by LMM 1323 
across retinal cell classes. E. The examples of DEG during aging involved in the enriched 1324 
KEGG pathways. F. The number of DEGs between male and female across major retinal cell 1325 
classes. G. The selected GO terms significantly enriched (FDR < 0.1) of DEGs between male 1326 
and female across retinal cell classes. H. The selected KEGG pathways significantly enriched 1327 
(FDR < 0.1) of DEGs with gender dependent aging effect. I. The examples of DEGs with 1328 
gender dependent aging effect involved in the enriched KEGG pathways. 1329 
 1330 
Figure 7. Leveraging multi-omics data to study GWAS and eQTL loci 1331 
A. Cell class enrichment of GWAS loci based on chromatin accessibility with LDSC (left) and 1332 
gene expression with MAGMA (right). Rows represent enriched GWAS traits, and columns 1333 
represent retinal cell classes. The highlight dot indicates the enrichment q-value < 0.05. B. 1334 
Categorization of fine-mapped GWAS variants located in various genomic regions. Categories 1335 
include peak (i.e., open chromatin regions), linked cis-regulatory elements (CREs), 1336 
differentially accessible regions (DARs), promoter, exon, 5_UTR and 3_UTR of gene 1337 
annotation. C. Categorization of fine-mapped eQTL variants located in various genomic 1338 
regions. D. Visualization of fine-mapped loci in CLIC5 region. 1339 
  1340 
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Extended Data Figure legends 1341 
 1342 
Extended Data Figure 1. Overview of the HRCA. 1343 
A. Cell proportion distribution of major classes among donors. The x-axis corresponds to each 1344 
donor, and the y-axis is the cell proportion of major classes. The last bar is the cell proportion 1345 
across total cells. B. A pie chart illustrating the number of cells for major classes and their 1346 
proportions. C. Integration of datasets from snRNA-seq and scRNA-seq datasets. The cells 1347 
are colored by major classes. D. The atlas is colored by the two technologies: snRNA-seq (in 1348 
coral) and scRNA-seq (in blue). E. The distribution of transcriptomic data for 152 samples 1349 
obtained from snRNA-seq and scRNA-seq technologies. Each sample is colored by the 1350 
technology used. F. The atlas of scRNA-seq data, with major classes represented using 1351 
different colors. G. Dot plots illustrating the distribution of expression levels of marker genes 1352 
for major cell classes in snRNA-seq (on the left) and scRNA-seq data (on the right). 1353 
 1354 
Extended Data Figure 2. Comparison between single-nuclei and single-cell 1355 
technologies. 1356 
A. Cell proportion of major class of samples between snRNA-seq and scRNA-seq in fovea, 1357 
macular, and periphery tissue regions. The red bar represents cell proportions of major 1358 
classes in snRNA-seq samples, and the blue bar represents cell proportions of scRNA-seq 1359 
samples. B. Enriched GO BPs of 1,387 over-expressed genes in snRNA-seq data. C. 1360 
Enriched GO BPs of 3,242 over-expressed genes in scRNA-seq data. D. Shared genes over-1361 
expressed in snRNA-seq data among major cell classes. The ”Full” (in red) is genes over-1362 
expressed in snRNA-seq data regardless of cell classes. E. Shared of genes derived from 1363 
scRNA-seq data. 1364 
 1365 
Extended Data Figure 3. transcriptomic signature of bipolar cells 1366 
A. UMAP visualization of BC cells based on single-cell transcriptome data. B. Dot plot of the 1367 
distribution of marker gene expression by the single-cell measurements. C. Co-embedding 1368 
between snRNA-seq and scRNA-seq cells. The label names are prefixed by “n” for snRNA 1369 
and “c” for scRNA. D. Volcano plot of differentially expressed genes between GB and BB of 1370 
the snRNA-seq datasets. Differentially expressed genes were identified under |log2 fold 1371 
change|>1 and q-value<0.05. E. Predicted markers per BC cell type by the binary classification 1372 
analysis using snRNA-seq datasets. Rows are BC cell types, and columns represent novel 1373 
markers. 1374 
 1375 
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 1376 
Extended Data Figure 4. Annotation of amacrine cells. 1377 
A. Dot plot of AC cell clusters by markers to identify AC subclasses for GABAergic, Glycinergic, 1378 
and Both. PAX6 and TFAP2B were used as AC pan-markers. GAD1/GAD2 were used for 1379 
GABAergic ACs, and SLC6A9 was used for the Glycinergic ACs. MEIS2, TCF4, and EBF1 1380 
were also included in the dot plot. B. UMAP of AC cells, colored by the four AC groups. C. Dot 1381 
plot of 14 AC cell clusters with known markers. The cell type names are indicated in 1382 
parentheses next to the cluster IDs. D. UMAP visualization of AC cells, colored by the 14 1383 
clusters with cell type names. The rest of the clusters are colored as “unknown” without 1384 
existing names. 1385 
 1386 
Extended Data Figure 5. Cross-mapping for human amacrine cells. 1387 
A. SATURN co-embedding visualization of AC cell types between snRNA-seq and scRNA-1388 
seq. AC cells are colored by the two technologies. B. The same SATURN co-embedding with 1389 
AC type labels color-coded on top of clusters. Labels are prefixed with “n” for snRNA-seq 1390 
datasets and “c” for scRNA-seq data.  C. SATURN co-embedding visualization of AC types 1391 
across human, macaque and mouse species. AC cell labels for the three species are overlaid 1392 
on clusters. Labels are prefixed with “h” for human, “a” for macaque, and “m” for mouse.  1393 
 1394 
Extended Data Figure 6. Annotation of retinal ganglion cells. 1395 
A. Dot plot of RGC cell clusters with existing markers. B. The proportion of parasol RGCs 1396 
within the RGC population in the samples. Samples enriched by NeuN experiments are 1397 
highlighted in green. C. Sankey diagram depicting the relationship between RGC clusters from 1398 
snRNA-seq datasets and the public labeling of RGC types from scRNA-seq datasets. The 1399 
width of the lines is proportional to the number of cells in the mapping. D. Sankey diagram 1400 
illustrating RGC types alignment between humans (left column) and mice (right column). 1401 
 1402 
Extended Data Figure 7. A high resolution snATAC-seq cell atlas of the human retina 1403 
A. Scatter plot showing the correlation between gene expression derived from snRNA-seq (X 1404 
axis) and gene activity score derived from snATAC-seq (Y axis) from major retinal cell classes. 1405 
B. Heatmap showing the chromatin accessibility of differential accessible regions (DARs) 1406 
identified in major retinal cell classes. Rows represented chromatin regions specific to certain 1407 
major classes, and columns corresponded to major classes. C. Genome track of the RHO 1408 
locus showing the cell type specific chromatin accessibility in the promoter and linked cis-1409 
regulatory elements of this gene. D. Density plot showing the activity (log212 value of 1410 
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comparison between activity of each tested sequence and the activity of a basal CRX promoter) 1411 
distribution of the tested sequences by MPRAs. IRD CREs n=1,820 (green), control CREs 1412 
with a variety of activities n=20 (red), Scrambled CREs n=300 (blue). 1413 
 1414 
Extended Data Figure 8. Multi-omics atlas of the human retinal subclass cell types 1415 
A. UMAP showing the co-embedding of bipolar cells (BC) from snRNA-seq and snATAC-seq 1416 
were clustered into BC cell types. B. Dot plot showing marker gene expression measured by 1417 
snRNA-seq and marker gene activity score derived from snATAC-seq are specific in the 1418 
corresponding BC cell types. C. Genome track of SORCS3 showing the promoter of SORCS3 1419 
is specifically open in BB. D. Genome track of UTRN showing the local chromatin of UTRN is 1420 
specifically open in GB. E. UMAP showing the co-embedding of amacrine cells (AC) from 1421 
snRNA-seq and snATAC-seq were clustered into AC cell types. F. Dot plot showing marker 1422 
gene expression measured by snRNA-seq and marker gene activity score derived from 1423 
snATAC-seq are specific in the corresponding sub classes of AC types. G. UMAP showing 1424 
the co-embedding of cone cells (Cone) from snRNA-seq and snATAC-seq were clustered in 1425 
Cone cell types. H. Dot plot showing marker gene expression measured by snRNA-seq and 1426 
marker gene activity score derived from snATAC-seq are specific in the corresponding Cone 1427 
cell types. 1428 
 1429 
Extended Data Figure 9. Regulon of the human retinal subclass cell types 1430 
A. Dot plot showing the distribution of regulon specificity score of regulons identified in ML- 1431 
and S-Cone. B. Dot plot showing the distribution of regulon specificity score of regulons 1432 
identified in OFF- and ON-BC (ON-BC include ON-Cone BC and Rod BC). C. Dot plot showing 1433 
the distribution of regulon specificity score of regulons identified in GABAergic-, Glycinergic- 1434 
and Both-AC. D. Dot plot showing the distribution of regulon specificity score of regulons 1435 
identified in HC0 and HC1. E. Dot plot showing the distribution of regulon specificity score of 1436 
regulons identified in 14 BC cell types. F. Boxplot showing the average AUC values of the 1437 
regulon modules identified in BC cell types. The BC cell types with the highest AUC values 1438 
were labeled in the title of each regulon module. 1439 
 1440 
Extended Data Figure 10. Differential gene expression during aging and associated with 1441 
sex. 1442 
A. Age and sex distribution of the analyzed samples. B. Heatmap showing gene expression 1443 
level of differentially expressed genes (DEGs) during aging in major retinal cell classes 1444 
identified with linear mixed effect model (LMM). C. UpSet plot showing the overlap of DEGs 1445 
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 42 

identified by LMM and sliding-window analysis at the age of 30, 60 and 80 in Rod. UpSet plot 1446 
showing the number of DEGs across major retinal cell classes at the age of 30, 60 and 80, 1447 
respectively. D. The GO terms significantly enriched (FDR <0.1) of DEGs during aging 1448 
identified by LMM across retinal cell classes. E. The examples of DEGs between male and 1449 
female associated with the enriched GO terms. 1450 
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Figure 1. Overview of single cell atlas of the human retina
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Figure 1. Overview of single cell atlas of the human retina
A. The integrated study for the atlas involves compiling public datasets and in-house generated data, 
integrating datasets, annotating cell clusters, utilizing chromatin profiles for multi-omics, and demonstrating 
the utility by applications. B. Collected retinal datasets comprising of both in-house newly generated and 
seven publicly available datasets. C. Five data integration algorithms are benchmarked for data 
harmonization. The algorithms are evaluated using 14 metrics, with the rows representing the algorithms 
and columns corresponding to the metrics. The algorithms are ranked based on their overall score. D. The 
atlas of snRNA-seq datasets is visualized in a UMAP plot at a major class resolution, with cells colored based 
on their major classes. E. Cell type similarities of major classes between snRNA-seq (in coral) and scRNA-seq 
(in blue). The color key is the average AUROC of self-projection for cell types. F. Volcano plot of genes over-
expressed in snRNA-seq datasets (on the right) and scRNA-seq (on the left). The x-axis is log2 fold change, 
and the y-axis is –log10 q-value. Differentially expressed genes were identified under |log2 fold change|>1 
and q-value<0.05 and are depicted as red dots. Selected gene symbols point to the DEGs, including seven 
genes encoding protocadherin proteins on the right: PCDHGB2, PCDHGB3, PCDHGB4, PCDHGA2, PCDHA2, 
PCDHGA11, PCDHA8; and five genes encoding ribosomal proteins on the left: RPL7, RPL13A, RPS8, RPS15, 
RPS17.
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Figure 2. Bipolar cells
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Figure 2. Bipolar cells
A. Distribution of marker genes for BC types. BC subclasses are in RB, OFF and ON. NETO1, OTX2, and VSX2 
were used as BC pan-markers. GRIK1 and GRM6 were used as OFF and ON markers, respectively. Rows 
represent marker genes, and columns represent BC types. The names of BC types are extracted from 
macaque BC types.  B. UMAP visualization of human BC cells. Cell clusters are colored by the annotated cell 
types. C. Co-embedding of human, mouse, and macaque BC cells. To differentiate between cell types from 
three species, prefixes were added to the names: “h” for human, “m” for mouse, and “a” for macaque. D. 
Hierarchical clustering of mouse BC cell types. Expanded leaf nodes are the correspondent cell types from 
human and macaque BC cell types. E. The overlap between the top-ranked genes of human GB and BB is 
examined using snRNA-seq and scRNA-seq datasets. Fisher’s exact test was used to calculate the 
significance of the overlap of top ranked genes in GB (p-value=7.5×10-293) and BB (p-value=1.7×10-131) 
between snRNA-seq and scRNA-seq. F. Cell type similarities among mouse BC5A, BC5B, BC5C, and BC5D, 
and mapped types in humans and macaques. 
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Figure 3. Amacrine cells and retinal ganglion cells 
A. UMAP visualization of the identified 73 AC cell clusters. Cluster IDs are placed on top of clusters, and cells 
are colored by the cluster IDs, where 14 clusters have annotated types. B. Dot plot of predicted markers for 
AC cell types. C. UMAP visualization of RGC cell types with labels on top of cells. D. Sankey diagram 
illustrating RGC types alignment between humans (left column) and macaques (right column). E. Dot plot of 
predicted markers for RGC cell types.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.566105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.566105
http://creativecommons.org/licenses/by-nc-nd/4.0/


E

D

G
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

groupBy groupBy

ATAC Z−Scores
149273 P2GLinks

−2 2

RNA Z−Scores
149273 P2GLinks

−2 2
groupBy

AC
Astrocyte
BC
Cone

HC
MG
RGC
Rod

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

groupBy groupBy

ATAC Z−Scores
149273 P2GLinks

−2 2

RNA Z−Scores
149273 P2GLinks

−2 2
groupBy

AC
Astrocyte
BC
Cone

HC
MG
RGC
Rod

F

H

0

50000

100000

150000

200000

RG
C AC BC

Co
ne M
G HC Ro
d

As
tro

cy
te

M
icr

og
lia

Nu
m

be
r o

f O
CR

s

OCR type
Distal
Exonic
Intronic
Promoter

type
AC
Astrocyte
BC
Cone
HC
MG
Microglia
RGC
Rod

44K

1.5K

66K

9K
9K 27K

0.7K

29K

185K

Total 373K after QC

snATAC−seq OCRs bulkATAC−seq OCRs

Number of cell types 1
2

3
4

5
6

7
8

9

I

A B

C

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

groupBy groupBy

ATAC Z−Scores
149273 P2GLinks

−2 2

RNA Z−Scores
149273 P2GLinks

−2 2
groupBy

AC
Astrocyte
BC
Cone

HC
MG
RGC
Rod

% gene activity

Gene activity

0.0

0.5

1.0

100

80

40

60

20

snATAC-seq

1.0

0.5

0.0
% expressing

Expression

20

40

60

80

100

snRNA-seq

snATAC-seq snRNA-seq

Figure 4. A high resolution snATAC-seq cell atlas of the human retina

Scrambled CREs

Control CREs IRD CREs

−10 −5 0 5

−10 −5 0 5

1

2

1

2

Log2FC

−
Lo

g 1
0F

D
R CRE activity

Enhancer
Silencer
Inactive

n=1202n=9

n=240

n=59

n=121n=1 n=497n=10

n=1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.566105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.566105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. A high resolution snATAC-seq cell atlas of the human retina
A. Uniform Manifold Approximation and Projection (UMAP) of co-embedded cells from snRNA-seq and 
snATAC-seq showing cells are clustered into major retinal cell classes. B. Pie chart showing the cell 
proportion distribution of major retinal cell classes in this study. C. Dot plot showing marker gene 
expression measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in 
the corresponding cell class. D.  Bar plot showing the number of open chromatin regions (OCRs) identified 
in each major cell class. E. The Venn Diagram showing the overlapped OCRs detected by retinal snATAC-seq 
and bulk ATAC-seq. F.  Pie chart showing cell type specificity of OCRs identified from retinal snATAC-seq (left) 
and bulk ATAC-seq (right). The color codes the number of cell types where the OCRs were observed. G. 
Heatmap showing chromatin accessibility (left) and gene expression (right) of 149,273 significantly linked 
CRE-gene pairs identified by the correlation between gene expression and OCR accessibility. Rows 
represented CRE-gene pairs grouped in clusters by correlations. H. Volcano plot showing the log2!" value 
(comparison between activity of each tested sequence and the activity of a basal CRX promoter, X axis) and 
the −log10!#$ value (Y axis) of each tested sequence by MPRAs (IRD CREs n=1,820, control CREs with a 
variety of activities n=20, Scrambled CREs n=300). Each dot corresponds to a tested sequence, colored by 
the activity of the sequence. I. Scatter plot showing the eRegulon specificity score for each transcription 
factor (TF) and the corresponding regulon across major retinal cell classes. The top five TF and eRegulon are 
highlighted in red.
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Figure 5. Regulon of the human bipolar cell types
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Figure 5. Regulon of the human bipolar cell types
A. Heatmap showing the identified regulons where the gene expression level (color scale) of transcription 
factors and the enrichment (dot size) of TF motifs in the snATAC peaks are highly correlated. The rows 
represent BC cell types, and the columns represent the identified regulons. B. Jaccard heatmap showing the 
intersection of target regions of the identified TFs. Each cell in the heatmap represents the Jaccard index of 
target regions between a pair of TFs. C. Jaccard heatmap showing the intersection of target genes of the 
identified TFs. Each cell in the heatmap represents the Jaccard index of target genes between a pair of TFs. 
D. Network plot showing the regulons and interactions between them in DB3a, DB3b, BB and GB. Each 
regulon includes the TF, target regions and target genes. E. ROC-AUC of logistic regression model and SVM 
model to predict BC cell type based on the accessibility of target regions of identified TFs. F. Heatmap 
showing the correlation in target-regions-based AUC of the identified regulons. 
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Figure 6. Differential gene expression during aging and associated with sex.
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Figure 6. Differential gene expression associated with age and sex.
A. Heatmap showing gene expression level of differentially expressed genes (DEGs) during aging in Rod 
identified with linear mixed effect model (LMM). B. UpSet plot showing the number of cell type specific and 
common DEGs across major retinal cell classes. C. The number of DEGs identified through sliding window 
analysis at each age stage. D. The selected KEGG pathways significantly enriched (FDR <0.1) of DEGs during 
aging identified by LMM across retinal cell classes. E. The examples of DEG during aging involved in the 
enriched KEGG pathways. F. The number of DEGs between male and female across major retinal cell 
classes. G. The selected GO terms significantly enriched (FDR < 0.1) of DEGs between male and female 
across retinal cell classes. H. The selected KEGG pathways significantly enriched (FDR < 0.1) of DEGs with 
gender dependent aging effect. I. The examples of DEGs with gender dependent aging effect involved in the 
enriched KEGG pathways.
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Figure 7. Leveraging multi-omics data to study GWAS and eQTL loci
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Figure 7. Leveraging multi-omics data to study GWAS and eQTL loci
A. Cell class enrichment of GWAS loci based on chromatin accessibility with LDSC (left) and gene expression 

with MAGMA (right). Rows represent enriched GWAS traits, and columns represent retinal cell classes. The 

highlight dot indicates the enrichment q-value < 0.05. B. Categorization of fine-mapped GWAS variants 

located in various genomic regions. Categories include peak (i.e., open chromatin regions), linked cis-

regulatory elements (CREs), differentially accessible regions (DARs), promoter, exon, 5_UTR and 3_UTR of 

gene annotation. C. Categorization of fine-mapped eQTL variants located in various genomic regions. D. 

Visualization of fine-mapped loci in CLIC5 region.
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AMD Myopia POAG Diabetic 
retinopathy

ONL 
thickness

IST
thickness

OST
thickness

Number of 
fine-mapped 
genes

56 391 74 3 81 25 61

Overlapped 
with eQTLs

8 67 11 0 23 8 13

Examples APOE
C2
C3
CRB1
RDH5
TGFBR1

PAX6
PDE6G
RDH5
TGFBR1
TOMM40
KCNA4
LHX3

TFAP2B
PLEKHA7
EFEMP1
THSD7A
TMCO1
CLIC5
SIX6

ABCF1
MIR4640
DDR1

ATOH7
MAPT
PAX6
RAX
RBP3
RDH5
VSX2

CNGB3
VSX2
RP1L1

MKKS
FSCN2
PDE6G
PRPH2
RDH5
RHO
RP1L1
SAG
RLBP1

Table 1. Summary of fine-mapped GWAS loci associated with the seven GWAS traits.
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Extended Data Figure 1. Overview of the HRCA.
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Extended Data Figure 1. Overview of the HRCA.
A. Cell proportion distribution of major classes among donors. The x-axis corresponds to each donor, and 
the y-axis is the cell proportion of major classes. The last bar is the cell proportion across total cells. B. A pie 
chart illustrating the number of cells for major classes and their proportions. C. Integration of datasets from 
snRNA-seq and scRNA-seq datasets. The cells are colored by major classes. D. The atlas is colored by the 
two technologies: snRNA-seq (in coral) and scRNA-seq (in blue). E. The distribution of transcriptomic data 
for 152 samples obtained from snRNA-seq and scRNA-seq technologies. Each sample is colored by the 
technology used. F. The atlas of scRNA-seq data, with major classes represented using different colors. G. 
Dot plots illustrating the distribution of expression levels of marker genes for major cell classes in snRNA-
seq (on the left) and scRNA-seq data (on the right).
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Extended Data Figure 2. Comparison between single-nuclei and single-cell technologies.
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Extended Data Figure 2. Comparison between single-nuclei and single-cell technologies.
A. Cell proportion of major class of samples between snRNA-seq and scRNA-seq in fovea, macular, and 
periphery tissue regions. The red bar represents cell proportions of major classes in snRNA-seq samples, 
and the blue bar represents cell proportions of scRNA-seq samples. B. Enriched GO BPs of 1,387 over-
expressed genes in snRNA-seq data. C. Enriched GO BPs of 3,242 over-expressed genes in scRNA-seq data. 
D. Shared genes over-expressed in snRNA-seq data among major cell classes. The ”Full” (in red) is genes 
over-expressed in snRNA-seq data regardless of cell classes. E. Shared of genes derived from scRNA-seq 
data.
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Extended Data Figure 3. transcriptomic signature of bipolar cells

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.566105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.566105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figure 3. transcriptomic signature of bipolar cells
A. UMAP visualization of BC cells based on single-cell transcriptome data. B. Dot plot of the distribution of 
marker gene expression by the single-cell measurements. C. Co-embedding between snRNA-seq and scRNA-
seq cells. The label names are prefixed by “n” for snRNA and “c” for scRNA. D. Volcano plot of differentially 
expressed genes between GB and BB of the snRNA-seq datasets. Differentially expressed genes were 
identified under |log2 fold change|>1 and q-value<0.05. E. Predicted markers per BC cell type by the binary 
classification analysis using snRNA-seq datasets. Rows are BC cell types, and columns represent novel 
markers.
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Extended Data Figure 4. Annotation of amacrine cells.
A. Dot plot of AC cell clusters by markers to identify AC subclasses for GABAergic, Glycinergic, and Both. 
PAX6 and TFAP2B were used as AC pan-markers. GAD1/GAD2 were used for GABAergic ACs, and SLC6A9 
was used for the Glycinergic ACs. MEIS2, TCF4, and EBF1 were also included in the dot plot. B. UMAP of AC 
cells, colored by the four AC groups. C. Dot plot of 14 AC cell clusters with known markers. The cell type 
names are indicated in parentheses next to the cluster IDs. D. UMAP visualization of AC cells, colored by the 
14 clusters with cell type names. The rest of the clusters are colored as “unknown” without existing names.
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Extended Data Figure 5. Cross-mapping for human amacrine cells.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.566105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.566105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figure 5. Cross-mapping for human amacrine cells.
A. SATURN co-embedding visualization of AC cell types between snRNA-seq and scRNA-seq. AC cells are 
colored by the two technologies. B. The same SATURN co-embedding with AC type labels color-coded on 
top of clusters. Labels are prefixed with “n” for snRNA-seq datasets and “c” for scRNA-seq data.  C. SATURN 
co-embedding visualization of AC types across human, macaque and mouse species. AC cell labels for the 
three species are overlaid on clusters. Labels are prefixed with “h” for human, “a” for macaque, and “m” for 
mouse. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.566105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.566105
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C

Extended Data Figure 6. Annotation of retinal ganglion cells.
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Extended Data Figure 6. Annotation of retinal ganglion cells.
A. Dot plot of RGC cell clusters with existing markers. B. The proportion of parasol RGCs within the RGC 
population in the samples. Samples enriched by NeuN experiments are highlighted in green. C. Sankey 
diagram depicting the relationship between RGC clusters from snRNA-seq datasets and the public labeling 
of RGC types from scRNA-seq datasets. The width of the lines is proportional to the number of cells in the 
mapping. D. Sankey diagram illustrating RGC types alignment between humans (left column) and mice (right 
column).
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Extended Data Figure 7. A high resolution snATAC-seq cell atlas of the human retina
A. Scatter plot showing the correlation between gene expression derived from snRNA-seq (X axis) and gene 
activity score derived from snATAC-seq (Y axis) from major retinal cell classes. B. Heatmap showing the 
chromatin accessibility of differential accessible regions (DARs) identified in major retinal cell classes. Rows 
represented chromatin regions specific to certain major classes, and columns corresponded to major 
classes. C. Genome track of the RHO locus showing the cell type specific chromatin accessibility in the 
promoter and linked cis-regulatory elements of this gene. D. Density plot showing the activity (log2𝐹𝐶 value 
of comparison between activity of each tested sequence and the activity of a basal CRX promoter ) 
distribution of the tested sequences by MPRAs. IRD CREs n=1,820 (green), control CREs with a variety of 
activities n=20 (red), Scrambled CREs n=300 (blue).
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Extended Data Figure 8. Multi-omics atlas of the human retinal subclass cell types
A. UMAP showing the co-embedding of bipolar cells (BC) from snRNA-seq and snATAC-seq were clustered 
into BC cell types. B. Dot plot showing marker gene expression measured by snRNA-seq and marker gene 
activity score derived from snATAC-seq are specific in the corresponding BC cell types. C. Genome track of 
SORCS3 showing the promoter of SORCS3 is specifically open in BB. D. Genome track of UTRN showing the 
local chromatin of UTRN is specifically open in GB. E. UMAP showing the co-embedding of amacrine cells 
(AC) from snRNA-seq and snATAC-seq were clustered into AC cell types. F. Dot plot showing marker gene 
expression measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in 
the corresponding sub classes of AC types. G. UMAP showing the co-embedding of cone cells (Cone) from 
snRNA-seq and snATAC-seq were clustered in Cone cell types. H. Dot plot showing marker gene expression 
measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in the 
corresponding Cone cell types.
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Extended Data Figure 9. Regulon of the human retinal subclass cell types
A. Dot plot showing the distribution of regulon specificity score of regulons identified in ML- and S-Cone. B. 
Dot plot showing the distribution of regulon specificity score of regulons identified in OFF- and ON-BC (ON-
BC include ON-Cone BC and Rod BC). C. Dot plot showing the distribution of regulon specificity score of 
regulons identified in GABAergic-, Glycinergic- and Both-AC. D. Dot plot showing the distribution of regulon 
specificity score of regulons identified in HC0 and HC1. E. Dot plot showing the distribution of regulon 
specificity score of regulons identified in 14 BC cell types. F. Boxplot showing the average AUC values of the 
regulon modules identified in BC cell types. The BC cell types with the highest AUC values were labeled in 
the title of each regulon module.
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Extended Data Figure 10. Differential gene expression during aging and associated with sex.
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Extended Data Figure 10. Differential gene expression during aging and associated with sex.
A. Age and sex distribution of the analyzed samples. B. Heatmap showing gene expression level of 
differentially expressed genes (DEGs) during aging in major retinal cell classes identified with linear mixed 
effect model (LMM). C. UpSet plot showing the overlap of DEGs identified by LMM and sliding-window 
analysis at the age of 30, 60 and 80 in Rod. UpSet plot showing the number of DEGs across major retinal cell 
classes at the age of 30, 60 and 80, respectively. D. The GO terms significantly enriched (FDR <0.1) of DEGs 
during aging identified by LMM across retinal cell classes. E. The examples of DEGs between male and 
female associated with the enriched GO terms. 
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