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Abstract

Single-cell sequencing has revolutionized the scale and resolution of molecular
profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of
the most accessible portion of the mammalian central nervous system, the retina. We
compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points,
to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin
accessibility, unveiling over 110 types. Engaging the retina community, we annotated each
cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and
characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell
types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs
across cell types. In addition, we modeled changes in gene expression and chromatin
openness across gender and age. This integrated atlas also enabled the fine-mapping of
GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-
donor and cross-lab HRCA, can facilitate a better understanding of retinal function and

pathology.
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Introduction

The advent of high-throughput single-cell transcriptome technologies has greatly
enhanced our exploration of cellular diversity. In particular, it enables the creation of
comprehensive atlases for healthy tissues, which are crucial for investigating cellular function
and disease mechanisms. In pursuit of these goals, the Human Cell Atlas project (HCA) has
coordinated collaborative initiatives to catalog cell types throughout the entire human body 2.
Atlases released to date include the Human Lung Cell Atlas 2 and the Human Breast Cell Atlas
4.

Within the HCA initiative, the Eye Biological Network aims to create a cell atlas for the
human eye. Recent studies have generated atlases of the anterior and posterior segments of
the human eye %6. Other studies have generated retinal atlases from multiple species,
including mouse, chick, macaque, and human 7-5. The goal of the work reported here is to
augment previous datasets with additional donors, cells, and methods to generate the first
version of a comprehensive cell atlas of the human retina. In the future, we plan to expand
this effort to encompass the entire eye.

In addition to transcriptomic profiling, the advent of advanced technologies enables the
exploration of individual cells in various modalities, such as the Assay for Transposase-
Accessible Chromatin with sequencing (ATAC-seq) 6. Such large-scale multimodal datasets
are crucial in the construction of reference cell atlases as they are essential for identifying rare
cell types and understanding mechanisms previously restricted by individual datasets and
single modality profiling. Additionally, examining the effects of donor traits on each cell type,
e.g., aging, ancestry, and gender, requires a diverse and substantial set of donor samples.
However, integrating extensive datasets is computationally challenging, especially with large
and complex data '7-8. Consequently, the convergence of substantial data resources, cross-
donor investigations, and computational prowess represents an essential paradigm for
advancing our comprehension of intricate biological systems and diseases.

This study created a comprehensive multi-omics human retina cell atlas (HRCA)
through an integrated analysis of over 2 million snRNA-seq nuclei or cells and over 370,000
snATAC nuclei. The HRCA encompasses over 110 distinct retinal cell types, achieving nearly
complete molecular characterization and comprehensive chromatin accessibility. The
inclusion of a diverse set of donors revealed molecular changes during aging and between
genders at a cellular resolution, shedding light on potential links to diseases. The chromatin
profiles enabled an in-depth exploration of regulons and regulatory mechanisms governing
cell classes, subclasses, and cell types in the human retina. Furthermore, this integrated atlas

facilitated fine-mapping of causal variants, targeted genes, and regulatory mechanisms
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92 underlying GWAS and eQTL variants for retinal cell types. Overall, the HRCA provides a

93 valuable resource for both basic and translational research on the retina.

94

95 Results

96 Single cell atlas of the human retina

97 To obtain a comprehensive atlas of cell types in the human retina, we integrated seven

98 publicly available datasets 7:1519-23 with newly generated unpublished data (Fig. 1A-B). The

99 integrated dataset totals 2,070,663 single nuclei from 144 samples taken from 52 donors
100 (Supplementary Table 1, 2 and 3). Recovered cells included astrocytes, amacrine cells (AC),
101  bipolar cells (BC), cones, horizontal cells (HC), Muller glia cells (MG), microglia, retinal
102 ganglion cells (RGC), retinal pigment epithelium (RPE), and rods. Annotation of the major
103 classes was performed on individual samples by a coarse label prediction method (Methods).
104 To accommodate the large number of cells, data integration for all cells was employed to
105 facilitate lineage-specific annotations for BC, AC, and RGC, given their complex cell types.
106  The major classes were consistently distributed, except for enriched AC and RGC in several
107  donors from new samples where cell enrichments are performed to increase the proportion of
108 highly heterogeneous classes (AC, BC, and RGC), enabling the annotation of rare cell types
109 (Extended Data Fig. 1A-B and Supplementary Table 4).
110 To facilitate the integrated analysis, an scIB approach '7 was utilized for benchmarking
111  data integration algorithms, and scVI 2* was selected for the construction of the retinal atlas
112  (Fig. 1C, Methods and Supplementary Note). Using scVI, we integrated the entire 2 million
113  cells and embedded them in 2D using UMAP (Extended Data Fig. 1C). We compared the
114  distribution of scRNA-seq and snRNA-seq within this UMAP and found significant differences
115 between snRNA-seq and scRNA-seq transcriptomic signatures, precluding their alignment
116  using scVI (Extended Data Fig. 1C-D). We also benchmarked the conservation of cell type
117  variation when integrating both data types compared to maintaining separate scRNA-seq and
118 snRNA-seq references (Methods and Supplementary Fig. 1). We observed that combining
119 scRNA-seq and snRNA-seq modalities leads to a less accurate representation of cellular
120  variation (Supplementary Fig. 1C). To compare the transcriptome differences, we visualized
121  the 144 samples by averaging the expressions using pseudo-bulk analysis and confirmed that
122  snRNA-seq and scRNA-seq yield distinct transcriptomes (Extended Data Fig. 1E), consistent
123  with previous reports comparing these sequencing modalities 25. We therefore created two
124  separate references for snRNA-seq (Fig. 1D) and scRNA-seq (Extended Fig. 1F), respectively.
125  Both were verified by the expression of canonical marker genes for each cell class (Extended
126  Fig. 1G).
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127 To further investigate the transcriptomic differences between the snRNA-seq and
128 scRNA-seq technologies, cell proportions of major classes were calculated and compared in
129 fovea, macular and periphery regions (Supplementary Fig. 2, Extended Data Fig. 2A and
130 Supplementary Note). The most significant differences in cell proportions observed is that
131 scRNA-seq datasets have a higher proportion of MGs compared to snRNA-seq datasets. Cell
132 clusters from these two technologies can be readily aligned as they share similar
133 transcriptomic signatures of major classes (Fig. 1E). However, a large number of differentially
134  expressed genes (DEGs) were identified between the two technologies (Methods and
135  Supplemental Note). In total, 1,387 and 3,242 over-expressed genes were identified across
136  all cell types in snRNA-seq and scRNA-seq datasets, respectively (llog2 fold changel > 1, g-
137  value < 0.05) (Fig. 1F and Supplementary Table 5). These over-represented genes exhibited
138 distinct yet biologically related enriched gene ontology (GO) biological processes (Extended
139 Data Fig. 2B-E). For example, genes implicated in biological processes related to
140 ribonucleoprotein complex or ribosome biogenesis, mitochondrial gene expression, and ATP
141  synthesis were enriched in scRNA-seq datasets.

142

143  Bipolar cells

144 Over 422,000 bipolar single nuclei included in the current atlas can be divided into 14
145  cell types based on marker genes 7 (Fig. 2A). One significant difference from previous reports
146 s that the giant bipolar (GB) and blue bipolar (BB) are separated into two distinct clusters,
147  primarily due to a significant increase in the cell number (Fig. 2B). To facilitate the annotation
148  of BC clusters, we conducted a cross-species analysis to align human BC clusters with mouse
149 and macaque BC types, leveraging both single-cell transcriptomes and protein sequence
150 embeddings with SATURN 2¢ (Fig. 2C-D). High concordance with one-to-one mapping was
151  observed among the three species, consistent with the previous report 7°. Based on the co-
152 embedding, the human cluster mapped with mouse cell type BC9 is annotated as the BB as
153 BC9 has been reported to exclusively contact S-cones?, also known as “blue” cones in humans
154  and macaques'2, while the human cluster mapped with BC8 is annotated as GB. Despite high
155  similarity between GB and BB, 341 genes highly expressed in GB cells, and 887 genes highly
156 expressed in BB cells were identified (Extended Data Fig. 3D, Supplementary Table 6,
157  Supplementary Fig. 3A-B, and Supplementary Note). Among them, AGBL1 and SORCS3
158  showed high specificity for the GB and BB cells, respectively (Fig. 2A, Extended Data Fig. 3B,
159  and Supplementary Fig. 3C). Consistently, 14 BC corresponding clusters were also observed
160 from the scRNA-seq dataset (Supplementary Table 1 and Extended Data Fig. 3A-C).
161  Furthermore, DEGs in GB and BB, including AGBL1 and SORCSS3, were confirmed by the
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162 scRNA-seq (p-value<10-%), showing a 58% overlap in GB and a 12% overlap in BB (Fig. 2A
163 and E, Extended Data Fig. 3B, Supplementary Fig. 3C, and Supplementary Table 7).

164 In mice, four BC5 types have been identified: BC5A, BC5B, BC5C, and BC5D 12,
165 However, how these four closely related BC types correlate with BCs in primates has not been
166  fully resolved. Previously, only BC5A in mice exhibited a confident mapping to DB4 in
167 macaques °. As shown in Fig. 2F, two human BC types, DB4a and DB4b, are closely related
168 to BC5A in mice and DB4 in macaques, while BC5B and BC5C in mice appeared most similar
169 to human and macaque DB5. However, the mouse BC5D appears to be an outlier without
170 closely related BC type in primate. To distinguish the BC types, we identified a set of 55 gene
171 markers that shows robust performance (Extended Data Fig. 3E, Supplementary Table 8 and

172  Supplementary Note).

173
174  Amacrine and retinal ganglion cells
175 A total of 73 AC types was identified among over 380,000 AC nuclei (Fig. 3A, Extended

176 Data Fig. 4A-B, and Supplementary Table 9), nearly doubling the number of types in a
177  previous study 7. Two AC pan-markers, PAX6 and TFAP2B, were confirmed to be highly
178  expressed in these 73 types (Extended Data Fig. 4A). By utilizing makers for GABAergic ACs
179  (the GABA-synthetic enzymes GAD1 and GAD2) 5 and Glycinergic ACs (the glycine
180 transporter SLC6A9), we identified 55 GABAergic AC types, accounting for ~65% of ACs, and
181 11 Glycinergic AC types, accounting for ~23% of ACs. Seven clusters expressed both markers,
182  classifying them as the “Both” AC types, as previously described in mice . Based on
183  expression of additional previously characterized markers 21527, 14 of the 73 AC clusters could
184  be annotated as known AC types (Extended Data Fig. 4C-D, Supplementary Fig. 4A and
185  Supplementary Note). For example, two clusters (HAC10, HAC26) were annotated as
186  Starburst AC (SAC) by CHAT and ON-SAC/OFF-SAC by MEGF10 and TENMS3, respectively.
187 A set of gene markers to distinguish these 73 AC clusters are identified (Fig. 3B and
188  Supplementary Table 8). To further annotate AC types, a cross-mapping approach was
189  utilized to map the identified AC types with external sources with an existing labeling from
190 public datasets and other species such as macaques and mice (Extended Data Fig. 5A-C,
191  Supplementary Table 9, Supplementary Fig. 5A-C, and Supplementary Note). As expected,
192  high concordance between snRNA-seq and scRNA-seq is observed: 92% (23/25) scRNA-seq
193 clusters can be mapped to this dataset 5. Similarly, 94% (32/34) macaque AC types ° mapped
194  to the human dataset. In contrast, only 83% (52/63) mouse AC types mapped to humans 4,
195  including four non-GABAergic non-Glycinergic (nGnG) types in mice 415 to human clusters (3

196  Glycinergic and 1 GABAergic) (Supplementary Table 9). Eight human clusters (5 GABAergic
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197 and 3 Both) do not have a clear correspondence to previously annotated types. All of these
198 clusters appear to be rare cell types, with the most abundant of them comprising only 0.18%
199  of the AC population (670 nuclei).

200 We identified 15 RGC clusters are identified from over 99,000 RGC nuclei included in
201  the atlas (Fig. 3C and Supplementary Table 9). Utilizing previously characterized markers from
202 macaque, five clusters can be annotated (Extended Data Fig. 6A), OFF midget RGC
203 (MG_OFF) by TBR1 (HRGC1), ON midget RGC (MG_ON) by TPBG (HRGC2), OFF parasol
204 RGC (PG_OFF) by FABP4 (HRGCS6), ON parasol RGC (PG_ON) by CHRNA2 (HRGC7), and
205 an intrinsically photosensitive RGC (ipRGC) by OPN4 (HRGC10). Consistent with previous
206 findings, the distribution of RGC types in human is highly skewed, with midgets accounting for
207  87.9% of all RGCs. Parasol RGCs, which accounts for 1.8%, are relatively low compared to
208  previous reports 15 due to experimental enrichments (Extended Data Fig. 6B). Cross-species
209  comparisons among humans, macaques and mice reveal that RGC types are highly divergent
210  (Fig. 3D and Extended Data Fig. 6C-D, Supplementary Fig. 6A-C, Supplementary Table 9,
211  and Supplementary Note). As primate RGC types (approximately 18 types) 28 are significantly
212  less diverse compared to mouse RGCs (45 molecularly distinct types) 3, making it challenging
213  to perform cell cluster mapping between humans and mice (Supplementary Table 9 and
214  Extended Data Fig. 6D). Lastly, a set of novel markers for RGC clusters are identified using
215 the binary classification approach (Fig. 3E and Supplementary Table 8).

216

217 HRCA: chromatin accessibility landscape

218 To decipher the gene regulatory programs for retinal cell types, 372,967 snATAC
219  nuclei from 52 samples of 26 donors were profiled (Supplementary Table 10 and 11). These
220 nuclei were classified into six neuronal and three glial classes (Fig. 4A-B). Expression of
221 genome-wide genes including canonical marker genes was highly correlated with local
222  chromatin accessibility and inferred gene activity in all cell classes (Fig. 4C, Extended Data
223  Fig. 7A).

224 Based on this dataset, 670,736 open chromatin regions (OCRs) were identified, with
225 70,909 to 237,748 OCRs per cell class (Fig. 4D, Supplementary Table 12). To evaluate the
226  quality of these OCRs, we compared them with the OCRs detected by retinal bulk ATAC-seq.
227  The snATAC-seq OCRs captured most (77.7%) of OCRs detected by bulk ATAC-seq. More
228 importantly, many cell class-specific OCRs absent from bulk ATAC-seq analysis were present
229 inthe snATAC dataset, resulting in a three-fold increase in the total number of OCRs (Fig. 4E-
230  F). Although many OCRs are shared among multiple cell classes, 4.14% to 24.4% (9,361 to

231  24,338) of the OCRs per cell class showed differential accessibility depending on cell classes,
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232  suggesting potential roles in cell class-specific gene regulation; we refer to these OCRs as
233 differentially accessible regions (DARs) (Extended Data Fig. 7B-C). By calculating the
234  correlation between gene expression or promoter accessibility and chromatin accessibility of
235  surrounding OCRs (-/+250kb), 162,481 linked OCR-gene pairs were identified (Fig. 4G).
236 These linked OCRs are candidate cis regulatory elements (CREs) and the linked genes are
237 likely to be the targets of the CREs. To further validate these putative CRESs, particularly those
238 potentially associated with human disease, we conducted massively parallel reporter assays
239 (MPRAs) 2230 on 1,820 CREs that were linked to inherited retinal disease (IRD) genes, utilizing
240 the mouse retina as an ex vivo system (Methods). Confirming the gene regulation activity of
241  the identified CREs, 27.3% and 6.6% of the CREs displayed strong enhancer and silencer
242  activities, respectively (Fig. 4H, Extended Data Fig. 7D, Supplementary Table 12). In addition,
243  we identified transcription factors (TFs) for major classes by integrating snRNA-seq and
244  snATAC-seq data using SCENIC+ 31 (Fig. 41, Supplementary Table 13). A significant portion
245  of the identified TFs have been implicated in specification of individual retinal cell classes,
246  such as OTX2and CRX for photoreceptor cells, NR2E3 for rods, RAX2 for cones, NEUROD4
247  for BCs, ONECUT1 and ONECUTZ2 for HCs, TFAP2A for ACs, and NFIB and LHX2 for MGs
248 3238 Many novel TFs were also identified (Supplementary Table 13).

249 To annotate cell types within classes, we co-embedded snATAC-seq and snRNA-seq
250 data with GLUE and used a logistic regression model to predict the cell type of snATAC-seq
251  cells based on snRNA-seq annotation 3° (Methods). For example, 14 BC types corresponding
252  to the 14 cell types by snRNA-seq were identified (Extended Data Fig. 8A-B). Consistently,
253 two snATAC-seq cell clusters were identified for GB/BB and predicted as GB and BB,
254  respectively. Local chromatin accessibility of the marker genes of GB and BB, UTRN and
255  SORCS3 (identified by snRNA-seq, Extended Data Figure 3D-E) also showed high specificity
256 in the corresponding snATAC-seq cell clusters, suggesting gene regulation of UTRN and
257  SORCS3indeed differ in GB and BB (Extended Data Fig. 8C-D). Similarly, cell types in other
258  heterogenous cell classes, i.e., AC, HC, cone and RGC, as well as non-neuronal cell classes,
259 MG, astrocyte, and microglia cells were distinguished (Extended Data Fig. 8E-H,
260  Supplementary Fig. 7A-B and Supplementary Note).

261

262 The HRCA enables uncovering cell-type-specific gene regulatory circuits

263 To investigate gene regulatory programs governing individual cell types or groups of
264  types (subclasses) within classes, we performed further SCENIC+ 3! analysis (Methods). The
265 identified regulons show high specificity in distinguishing subclasses within the corresponding

266  major cell class, with a maximum regulon specificity score (RSS) 3' > 0.8 (Extended Fig. 9A-
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267 D, Supplementary Table 13, Supplementary Note). Interestingly, these subclass specific
268  regulons are distinct from the regulons that distinguish their respective major cell class. Some
269  subclasses in different classes share the same TFs. For example, ISL1 specifically regulates
270  ON-BCs within the BC class and the HC1 type within the HC class. Similarly, NFIX is specific
271  for ON-BCs within the BC class and Glycinergic-ACs within the AC class. These findings
272  suggest that cell identity is established through a multiple-layered, hierarchical regulation
273  involving combinations of TFs, with individual TFs playing context-dependent roles.

274 Using regulons of individual BC types as an example, a set of high-quality regulons
275 that exhibit strong correlation between expression level of TFs and chromatin accessibility of
276  TF target regions across BC types were identified (Pearson correlation rho > 0.70 or <-0.75,
277  Fig. 5A, Supplementary Table 13). It appears that each cell type is under the control of a
278  combination of activators and repressors. For example, ISL1 and SMADJ are activators, while
279 MEF2C serves as both activator and repressor for RBC. Importantly, we identified the
280  regulons potentially governing BB and GB, two closely related BC types discerned in this study.
281  Specifically, ELK4 and SALL4 appear as activators for BB and GB, DMBX1 as both activator
282 and repressor for GB, and PBX71 as both activator and repressor for BB (Fig. 5A,
283  Supplementary Fig. 8A-B). This aligns with the DEG analysis, where PBX1 showed
284  significantly higher expression in BB compared to GB (log2FC=-1.43, p-adjust= 5.68 x 107>%,
285  Supplementary Table 6).

286 It is worth noting that the cell type regulons show reduced cell type specificity
287  compared to those at the cell class and subclass levels, with a maximum RSS lower than 0.5
288 (Extended Data Fig. 9E, Supplementary Table 13). Indeed, we observed potential TF
289  cooperativity, exhibited as overlap of the target regions and target genes among these TFs
290 (Fig. 5B-C, Supplementary Note). For example, a subset of NFIA target regions and target
291 genes overlap with those of MEIS2 and NEUROGT, while their target regions are highly
292  accessible and their gene expression level are high in DB3b. Interestingly, NFIA target regions
293 and target genes also show overlap with those of NFIX and POU6F2, while the accessibility
294  of their target regions and their gene expression level are high in DB4b. (Figure 5A-C). Thus,
295 as is the case for classes, the same TF can collaborate with different TFs in distinct types.
296  Consistently, regulon network analysis revealed interconnections among these regulons,
297  demonstrated by the mutual or directional regulation among TFs and their regulation of the
298 shared target regions and target genes (Fig. 5D).

299 To further evaluate the identified TFs, we utilized chromatin accessibility of the target
300 regions of these TFs to predict the cell type via a logistic regression model and a Support

301  Vector Machine (SVM) model (Methods). The logistic regression model achieved a high ROC-

10
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302 AUC value of 0.98 (Figure 5E, Methods), supporting our findings. We also calculated the
303 correlation of regulons based on the regulon activity, which was measured by target region
304  AUC values associated with cell type identities, resulting in 10 regulon modules (Methods, Fig.
305 5F, Supplementary Table 13). Most of these regulon modules have higher AUC values for
306  specific subsets of BC types, particularly those that are more similar in transcriptome profiles
307 (Extended Data Fig. 9F and Fig. 2D, Supplementary Fig. 8C). In summary, these observations
308 suggest that each cell type is defined by a unique TF combination code, established through
309 precise modulation of both TF expression and the chromatin state of their target regions in
310 each type.

311

312  Differential gene expression associated with age and sex

313 Differences in retinal functions and disease risks have been associated with individual
314 traits such as age and sex 4041, We sought molecular correlates of these differences in a set
315  of 135 samples from 57 donors (39 male and 18 female) aged 10 to 91 years (Methods and
316  Supplementary Note), including 24 newly profiled samples from 14 young adult donors
317  (Supplementary Table 14, Extended Data Fig. 10A). We identified 465 to 2,693 genes per cell
318 class with age-dependent expression, utilizing a linear mixed effect model (LMM) (g-value <
319 0.05, Fig. 6A-B and Extended Data Fig. 10B, Supplementary Table 15, Methods). Notably,
320 surges of gene expression changes were observed around the ages of 30, 60, and 80 across
321  major classes, revealed by a sliding window analysis (Fig. 6C, Supplementary Table 16,
322 Methods). Although the dynamic patterns of gene expression changes were similar across
323 classes, many DEGs (on average 37.6% per cell class) were specific to single classes (Fig.
324 6B, Extended Data Fig. 10C). Gene set enrichment analysis of the age-dependent DEGs
325  pinpointed several pathways activated across cell types (Fig. 6D-E, Supplementary Table 17,
326 FDR < 0.1). They include complement and coagulation cascades, steroid hormone
327  biosynthesis, adaptive immune response, and regulation of calcium ion import (Fig. 6D-E,
328  Supplementary Table 17). Complement pathways have been shown to play important roles in
329 the pathogenesis of age-related macular degeneration (AMD) 4247, and alterations in steroid
330 hormone homeostasis have been linked to glaucoma 4849, In contrast, the common
331  suppressed pathways included ribosome, cytoplasmic translation, mitochondrial gene
332  expression, and ribonucleoprotein complex assembly, aligning with findings in a fly aging
333  study %° (Fig. 6D, Extended Data Fig. 10D). Suppression of oxidative phosphorylation, protein
334 folding and modification process, ATP metabolic process, and several pathways involved in

335 multiple neurodegeneration diseases were observed in RGC (Fig. 6D-E). These results
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336 highlight age-related changes in gene expression that may contribute to age-dependent
337 incidence of major retinal diseases.

338 We also observed transcriptomic differences between males and females across cell
339 classes (Supplementary Table 18, Supplementary Note). The majority (87.7%) of DEGs (g-
340 value < 0.05, llog2FCI >0.5) were identified on the autosomes while the remaining (12.3%)
341  were on the X or Y chromosomes. Similar to the DEGs associated with aging, many DEGs
342 between males and females (average 53.6% per cell class) are cell class specific (Fig. 6F)
343 and enriched of both cell type specific and shared GO terms (FDR < 0.1, Fig. 6G, Extended
344  Data Fig. 10E, Supplementary Table 17, Supplementary Note). For example, immune-related
345  genes such as those involved in cytokine-mediated signaling pathways, viral processes, and
346 innate immune responses are up-regulated in females specifically in MG (Fig. 6G, Extended
347  Data Fig. 10E). This finding aligns with the sexual dimorphism observed in the mammalian
348 immune system, where females have higher levels of immune responsiveness than males 552
349 5854,

350 Finally, expression of some genes exhibits sex-dependent aging changes driven by
351 sex-age interaction. (Supplementary Table 17 and 19, FDR < 0.1). For examples, genes
352 involved in complement and coagulation cascades, e.g., A2M and F2RL2, show more
353 significant activation during aging in females compared to males in cones and ACs (Fig. 6H-
354 I). This result aligns with the previous studies suggesting F2RL2’s role in progression to
355 advanced macular disease with neovascularization 5% and higher prevalence of neovascular
356  age-related macular degeneration in females than males 5. Conversely, genes involved in
357 autophagy exhibit more significant up-regulation over aging in males compared to females in
358 RGCs and ACs (e.g., ATG4A, CTSD, PRKCD, ULK1 in RGC, Fig. 6H-1). Interestingly,
359 autophagy has been found to play a crucial role in glaucoma 57:58, which is more prevalent in

360 males than females 5960,

361
362 Leveraging the HRCA to study GWAS and eQTL loci
363 The HRCA provided a unique opportunity to prioritize candidate causal variants, genes,

364  and affected cell types underlying GWAS traits in a multimodal way. To demonstrate this utility,
365 we first identified enriched cell classes associated with GWAS traits based on cell class
366  specific OCRs and gene expression using LDSC 6" and MAGMA 62, respectively (Fig. 7A,
367  Supplementary Fig. 9A, g-value < 0.05). Consistent results are obtained from both snRNA-
368 seq and snATAC-seq datasets. We observed significant enrichment of age-related macular
369 degeneration (AMD)-associated loci in Retinal Pigment Epithelium (RPE) and Microglia €.

370 Loci linked to the thickness of the outer segment (OST), inner segment (IST), and outer
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371 nuclear layer (ONL) exhibited enrichment in rods, cones, and MGs %*. Loci associated with
372 traits related to open-angle glaucoma were enriched in MGs and Astrocytes 6567. Refractive
373  error and myopia loci showed enrichment across most retinal cell classes 6. As a negative
374  control, bone mineral density loci did not display enrichment in any of the retinal cell classes
375 99,

376 To further identify candidate causal variants, target genes, and affected cell types for
377 GWAS loci, we performed fine-mapping of GWAS loci associated with seven retinal GWAS
378  traits: OST %4, IST %, ONL ¢4, POAG %, AMD 68, refraction error/myopia ¢, and diabetic
379  retinopathy 7°. Based on summary statistics and linkage disequilibrium of genome-wide
380 variants analyzed in previous GWAS studies, we identified 18,959 variants that fell within the
381  95% credible sets of these GWAS loci (Fig. 7B and Supplementary Table 20). Notably, a
382  substantial proportion (19.4%, n=3,673) of the variants were found within OCRs (i.e., snATAC-
383 seqpeaks). Additionally, small subsets of variants were mapped in regions where target genes
384  could be inferred: 4.2% (796) were within linked CREs, 3.1% (592) within promoter regions,
385 and 2.9% (553) within exonic, 3° UTR and/or 5’ UTR regions, resulting in 1,784 variants linked
386 to 691 potential target genes (Table 1). By cross-referencing these GWAS variant-gene pairs
387  with eQTL-eGene pairs identified in bulk retina tissue, we found that 130 GWAS genes were
388 eGenes of the GWAS variants, reinforcing the validity of our findings. Furthermore, a
389 significant proportion of the identified target genes are marker genes of disease relevant cell
390 classes, known genes linked to complex diseases or inherited retinal diseases (Table 1).
391  Specifically, we uncovered well-known AMD related genes such as APOE, C2, and C3. In the
392 case of POAG, our findings included EFEMP1 7, which has been linked to familial juvenile-
393 onset open-angle glaucoma, as well as TMCO1 and SIX6, known to be associated with POAG
394 72 For diabetic retinopathy, ABCF1 was identified as a regulator of RPE cell phagocytosis 73
395 and as one of the proteomic biomarkers of retinal inflammation in diabetic retinopathy 74. For
396 target genes linked to retinal layer thickness, we pinpointed ATOH7, PAX6, VSX2, and RAX,
397  all of which have been implicated in retinogenesis 7576. Additionally, we identified genes like
398 MKKS, FSCN2, PDE6G, PRPH2, RDH5, RHO, SAG, RP1L1, and RLBP1, known to be
399  associated with inherited retinal diseases. Similarly, we fine-mapped retinal eQTLs using a
400 comparable method (Fig. 7C). A significant portion of eQTL variants was also found within
401  OCRs, while eQTLs exhibited greater enrichment in promoter regions than GWAS variants
402  (two-sided binomial test, p = 4.94 x 107324, Supplementary Table 21). Moreover, these fine-
403 mapped variants provided candidates to study regulatory mechanism of GWAS loci
404  (Supplementary Note). As an example, one POAG variant (rs3777588) was fine-mapped
405  (posterior inclusion probability [PIP]=0.72) to a LCRE of CLIC5 (Fig. 7D), a region specifically
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406 open in MG. Consistently, CLIC5 is highly expressed in MG among retinal cell classes.
407  Furthermore, the GWAS signal was colocalized with retinal eQTL signal of CLIC5 through this
408 variant (H4=1.00 and Methods). Notably, this variant was also predicted to strength the binding
409  of the transcription factor HSF1.

410

411 Discussion

412 In this study, we introduced HRCA version 1, an integrated multi-omics single-cell atlas
413  of the human retina, which marks the first multi-omics reference atlas in the HCA framework
414 12 The HRCA provides a comprehensive view of the transcriptomic and chromatin profiles of
415  retinal cells, comprising data from more than 2 million sn-/sc-RNA-seq cells and over 370,000
416  snATAC-seq cells. Our cross-donor and cross-lab atlas provides a model for future HCA
417  atlases. The HRCA is accessible for the community through numerous interactive platforms,
418 including CELLXGENE 77, UCSC Cell Browser 78, and Single Cell Portal 7, and can therefore
419  serve as a common reference for advancing research on human eye health and diseases.
420 Given the large number of cells profiled, coupled with targeted cell enrichment, the
421 HRCA is nearly saturated for retinal cell types. The integrated analysis of over 2 million single
422  cell/nuclei, including 1.4 million unpublished data points, revealed over 110 cell types in the
423  human retina, nearly doubling the number reported in previous studies 7. For example, the
424  HRCA separates two rare and closely related BC types, GB and BB, which co-clustered in
425  previous analyses 7915, Cross-species comparisons among humans, macaques, and mice
426  augment those reported previously 7915, especially with additional species 8, improving cell
427  type annotation and providing guidance for translational studies in rodents of human vision
428  disorders. Further annotation of this atlas by experts from the community will be used to
429  update the HRCA.

430 The HRCA also provides a comprehensive gene regulatory landscape of the human
431 retina at single-cell resolution, uncovering over 670K open chromatin regions, and revealing
432  potential CREs in individual cell type contexts. These results enable the identification of GRNs
433 defining cellular identities at the class, subclass, and cell type levels, revealing a multiple-
434  layered, hierarchical regulation principle involving combinations of TFs. Hundreds of CREs
435 linked to IRD genes were validated through a high-throughput functional assay in an ex vivo
436 mouse model system. However, a high proportion of inactive sequences were observed in
437  validation, which may result from a combination of limited experimental sensitivity, divergent
438 human-mouse CRE activity, and inactive or false enhancers. Silencers in scrambled CRE

439  sequences could result from retained motif content but low motif diversity 8°.
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440 Intriguingly, the HRCA also enabled the discovery of dynamic patterns of transcriptome
441  during aging, where DEG surging patterns were consistent across cell types, but the individual
442  genes were mostly differentially expressed in only one or two cell classes. A subset of aging-
443  related DEGs is overlapped with GWAS genes of aging-related diseases, e.g., C3in Rod and
444  VEGFA In Cone, and aging-related biological pathways include some known to be associated
445  with age-related diseases, such as age-related macular degeneration. Similarly, we detected
446  cell type specific transcriptomic and pathway difference between sexes beyond sex
447  chromosomes, including immune response-related dimorphisms in autosomal genes
448  expression. Interestingly, certain genes show sex-specific aging patterns, which may shed
449  light on gender differences in certain age-related diseases.

450 Finally, the HRCA facilitated a comprehensive functional annotation of disease-related
451  variants, and exploration of the regulatory mechanisms of causal variants. By combining
452  HRCA with fine-mapping, we identified potential causal variants, target genes, and the acting
453 cell types associated with GWAS and eQTL loci, providing testable hypotheses about the
454  action mode of GWAS variants. Additionally, we offer utilities designed to automate the
455  annotation of cell types for new samples using scArches 8' (Supplementary Fig. 10 and
456  Supplementary Note). In summary, the HRCA represents a comprehensive reference of the
457  human retina and facilitates future analysis across cell types, individuals, and diseases for the
458  human eye.

459

460 Methods

461 Human retina sample collection

462 Tissues not described in previous publications were obtained from 28 individuals within
463 6 hours post-mortem from the Utah Lions Eye Bank. Detailed donor information can be found
464 in Supplementary Table 2. The procedure for dissecting the eyes followed the established
465  protocol 8. Macular samples were collected using disposable biopsy punches measuring 6
466 mm in diameter. Subsequently, the retinal tissues were flash-frozen in liquid nitrogen and
467  stored at -80 °C until nuclei isolation. Only healthy donors with no recorded medical history of
468 retinal diseases were included in this study. Post-mortem phenotyping using OCT was
469 conducted to confirm the absence of disease phenotypes, such as drusen or atrophy, as
470  described in the previous study 7. Institutional approval for the patient tissue donation consent
471  was obtained from the University of Utah, adhering to the tenets of the Declaration of Helsinki.
472  Each tissue was de-identified in accordance with HIPAA Privacy Rules.

473

474  Nuclei isolation and sorting
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475 The frozen retinal tissues were resuspended and triturated in a freshly prepared, pre-
476  chilled RNase-free lysis buffer (10 mM Tris-HCI, 10 mM NaCl, 3mM MgCI2, 0.02% NP40) with
477  aWheaton™ Dounce Tissue Grinder to obtain nuclei. To enrich the retinal ganglion cell nuclei,
478  isolated macular retinal nuclei were stained with a mouse anti-NeuN monoclonal antibody
479  (1:5000, Alexa Flour 488 Conjugate MAB377X, Millipore, Billerica, Massachusetts, United
480  States) in staining buffer (1% BSA in PBS, 0.2U/ul RNAse inhibitor) for 30 minutes at 4°C.
481  After centrifugation at 500g 4°C for 5 minutes, nuclei were resuspended in staining buffer and
482 filtered with a 40um Flowmi Cell Strainer. DAPI (4',6-diamidino-2-phenylindole, 10 pg/ml) was

483  added before fluorescent cytometry sorting.

484 The stained nuclei were sorted with a BD (Becton Dickinson, San Jose, CA) Aria Il
485 flow sorter (70um nozzle). Gating was performed based on flow analysis of events and
486  strengths of DAPI (450-nm/40-nm-band pass barrier filter) and FITC (530-nm/30-nm-band
487  passfilter) signals. The sorting rate was 50 events per second based on side scatter (threshold
488 value > 200). The nuclei group with strongest 5% FITC signal was collected for RGC
489 enrichment, specifically, while all DAPI-positive nuclei were collected for general retinal nuclei
490  study.

491 For single nuclei ATAC profiling, nuclei were isolated in fresh-made pre-chilled lysis
492  buffer (10 mM Tris-HCI, 10mM NaCl, 3mM MgCI2, 0.02% NP40, 1%BSA) with a Wheaton™
493  Dounce Tissue Grinder until no tissue pieces were visible. After being washed at 500g, 4C for
494  5min twice in a pre-coated 5ml round bottom Falcon tube (wash buffer: 10 mM Tris-HCI, 10 mM
495 NaCl, 3mM MgCI2, 1%BSA; coating buffer: 10mM Tris-HCI, 10mM NaCl, 3mM MgCI2,
496  4%BSA; Falcon tube Cat. NO. 352054), the nuclei were resuspended in 1X diluted nuclei
497  buffer (10X PN-2000153, PN-2000207) with a final concentration of 3000-5000 nuclei/ul.
498

499  Single-nuclei RNA and ATAC sequencing

500 All single-nuclei RNA and single-nuclei ATAC sequencing was conducted at the Single
501 Cell Genomics Core at Baylor College of Medicine in this study. The library preparation and
502 sequencing of single-nuclei cDNA were carried out following the manufacturer's protocols
503 (https://www.10xgenomics.com). To obtain single cell GEMS (Gel Beads-In-Emulsions) for
504 the reaction, single-nuclei suspension was loaded onto a Chromium controller. The library for
505 single nuclei RNA-seq was prepared with the Chromium Next GEM Single Cell 3' Kit v3.1 (10x
506  Genomics), while the library of single nuclei ATAC-seq was prepared with the Chromium Next
507 GEM Single Cell ATAC Library and Gel Bead Kit v1.1 (10x Genomics). The constructed
508 libraries were subsequently sequenced on an lllumina Novaseq 6000

509 (https://www.illumina.com).
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510

511 Data preprocessing of unpublished and public datasets

512 Raw sequencing reads were first downloaded for all the curated public datasets. Along
513  with unpublished generated datasets, data samples were processed using the same versions
514  of software and databases by a quality control pipeline (https://github.com/lijinbio/cellgc). Raw
515 sequencing reads were first analyzed using 10x Genomics Cell Ranger (version 7.0.1) 83
516 utilizing the hg38 genome reference  obtained  from 10x  Genomics
517  (https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz). The
518 resulting feature count matrices were retained for downstream quality control. Cell Ranger
519 implemented EmptyDrops to filter empty droplets in experiments based on significant
520 deviations from a background model of low-count cells 84. To further eliminate potential empty
521 droplets from the filtered feature count matrices by Cell Ranger, dropkick was utilized to
522  construct dataset-specific training labels by applying a logistic regression for real cells, with a
523 threshold based on the total number of transcript counts in cells 8. The real cells retained
524  were those identified by both EmptyDrops and dropkick, and they were preserved for
525  downstream analysis. To correct for the background transcript measurements derived from
526 ambient RNAs that are not endogenous to cells, SoupX was used to estimate a global
527  contamination fraction across cells and to correct gene expression profiles by subtracting the
528 contaminations 8. To exclude potential multiplets, DoubletFinder simulated artificial doublets
529 and ranked real cells based on the proportion of artificial neighbors 87. Cells predicted to be
530 multiplets with high proportions of artificial neighbors were ruled out. Following cell filtering
531  criteria of = 300 features, = 500 transcript counts, and <10% (or < 5% for snRNA) of reads
532 mapped to mitochondrial genes, the retained cells constituted the clean cells for downstream
533 analysis.

534 To annotate major retinal cell classes, a pre-trained multi-class classifier was applied
535 using scPred to predict a type for each cell 8. The training data was constructed in-house by
536 collecting cells with ten major annotated cell classes, including amacrine cells (AC), bipolar
537  cells (BC), horizontal cells (HC), retinal ganglion cells (RGC), retinal pigment epithelium (RPE),
538 astrocytes, muller glia (MG), microglia, rods and cones. Raw gene expression counts were
539 initially log-normalized and scaled using Seurat. The scaled matrix was decomposed through
540 principal component analysis. The principal component embeddings were the features utilized
541  for training binary-SVM classifiers (one-versus-all) for cell types. During prediction, the raw
542  counts matrix of test data was also initially log-normalized and scaled using Seurat 89, The
543 scaled data were then projected into the principal component coordinate basis established by

544  the training data. The projected principal components served as features for prediction against
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545 the trained classifiers. Positive cell types were predicted based on classification probabilities
546 > 0.9, and doublets were identified if cells were classified into multiple types.

547

548 Integration benchmarking of single cell and single nuclei RNA-seq sequencing

549 An integration benchmarking of retina datasets was conducted based on previous work,
550  such as scIB 7 and the the Human Lung Cell Atlas v1 3. Briefly, cells from each donor and
551 sample were independently annotated using one of nine major class cell types using scPred,
552 and then these datasets were concatenated as a single input object, with annotations for
553 batches, cell types, and technologies (sc or sn). We tested two levels of feature selection,
554 1,000 and 3,000 highly variable genes (HVGs), we only tested raw counts without rescaling
555  based on previous insights.

556 To allow batch correction comparisons between single-cell and single-nuclei datasets,
557  we performed three integration pipelines: one with only single-cell RNA-seq datasets (sc), one
558  with only single-nuclei RNA-seq datasets (sn), and one with both dataset types combined
559 (sn+sc). This allowed measuring the integration quality of cells based on matched cells from
560 the combined technologies, with respect to each technology alone.

561 Due to scaling limitations while running methods for the largest single-cell datasets,
562 (more than two million cells), we limited our tests to Python methods with a scalable
563 implementation. Empirically, methods were discarded if output was not generated in 48 h as
564  a single task, with 150GB of memory, 4 CPUs, and one GPU if required. Based on these
565 criteria, we were able to generate batch-corrected objects for 7 methods using 1,000 HVGs,
566 including scANVI, scVI, scGen, scanorama, BBKNN, Harmony (harmonpy), and combat.
567  When using 3,000 HVGs and sn-datasets, scanorama and BBKNN were discarded. When
568 benchmarking sn+sc datasets, scGen and Combat were discarded due to running times.
569 The calculation of some metrics requires a non-linear time with respect to the number
570 of cells, and this makes their computing expensive for the largest datasets. As an improvement
571  during the metrics calculation step, we incorporated into our pipeline a metrics approach to
572  allow fixed subsamples of the full object, with custom percentage sub-samples set up as 3, 5,
573 and 6 percent. This allows measuring integration quality with a sample representative of the
574  full object, and in a shorter computational time, while recovering best methods with a lower
575  computational effort.

576

577 Integration of single cell and single nuclei transcriptome data

578 From the benchmark results, scVI?* outperformed all the label-agnostic methods in our

579  benchmark results. Therefore, scVI was selected for integrating the transcriptome data. On
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580 the entire 2 million cells, the major cell classes are well integrated, but the subclass clusters
581  within the major classes are mixed. For example, many clusters of the AC class are intermixed
582  with clusters of the BC class (Extended Data Fig. 1C). We compared the cell distribution of
583 snRNA-seq and scRNA-seq and found that many cell clusters overlap between the two
584  technologies, while a few do not (Extended Data Fig. 1D). Therefore, separate integrations for
585 single-nuclei and single-cell samples were conducted to account for the differences in
586 dissociation technologies. For integrating data specific to BC, AC, and RGC types, only
587  subsets of cell type-specific cells for subclass integration were retained. To capture the
588 nuanced similarities between cell clusters, the top 10,000 highly variable genes was calculated
589 using the “samplelD” as the batch key with the Scanpy Python package °'. The “samplelD”
590 was also used as the batch variable in the scVI modeling. In scVI, two hidden layers for
591 encoder and decoder neural networks and a 30-dimensional latent space were calculated to
592 represent cells after removing sample batches. The number of epochs was adjusted based
5983  on the total number of cells in the subclass integration and a minimum of 20 epochs was used
594  for the variational autoencoder training. The trained latent representation was used to
595 measure the distance among cells. These distances were used to calculate the cell clustering
596 using the Leiden algorithm 9. To facilitate the inspection of integrated cell clusters, 2D
597  visualization was generated using UMAP 93, To determine the optimal resolution for the Leiden
598 clustering, a range of resolution values were evaluated and manually examined by the
599  resulting cell clusters using a UMAP plot. To assess and mitigate potential over-clustering, the
600 self-projection accuracy of the clustering was computed using the SCCAF Python package .
601 Furthermore, a two-level clustering method was used to capture the cellular diversities of BC,
602 AC, and RGC when performing subclass clustering. Various resolutions were tested for
603 clustering, and the first-level resolution was selected to achieve initial clustering without over-
604  clustering, as confirmed by UMAP visualization. In the second-level clustering, various
605 resolutions were also tested to refine any under-clustering and achieve optimal clustering
606  without over-clustering on UMAP. Ultimately, the two-level clustering approach determined
607  the number of clusters in the atlases.

608

609 Comparison between snRNA-seq and scRNA-seq

610 To evaluate the differences between snRNA-seq and scRNA-seq, the cell proportions
611  of major cell classes were computed in each sample using both technologies. The samples
612  were categorized into fovea, macular, and periphery tissue regions for both approaches. To
613 address any potential cell proportion bias arising from experimental enrichment in a subset of

614  snRNA-seq samples, only samples without enrichment were included. Subsequently, bar plots
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615  were generated to compare the cell proportions of major classes across tissue regions for the
616  two technologies.

617 To examine the cell type similarities of major classes between the two technologies,
618 raw counts of the complete cells were first aggregated into pseudo-bulk for each major class
619 across samples. The resulting pseudo-bulk measurement has three metadata columns: the
620 “samplelD,” which represents unique sample IDs in the atlas; “dataset,” indicating whether the
621 sample is from “snBRNA” or “scRNA” technologies; and the “majorclass,” which denotes the
622  annotated major class cell types. Utilizing the pseudo-bulk count matrix, cell type similarities
623 were calculated using the MetaNeighbor R package %. Specifically, highly variable genes
624  were detected using the “variableGenes()” function with “dataset” as the source of samples,
625 and the mean AUROC matrix was calculated for “dataset” and “majorclass” using the
626 “MetaNeighborUS()” function with the calculated variable genes.

627 To identify differentially expressed genes in two technologies, the DESeq2 R package
628 9% was applied to the aggregated pseudo-bulk count matrix. To account for major class cell
629 type information during the statistical test, the design formula used “~ majorclass + dataset”.
630 The Wald test was employed to calculate p-values of gene expression differences between
631 the two technologies. The contrast used in the “results()” function was “contrast=c(‘dataset’,
632 ‘snRNA’, ‘scRNA’)” to derive differentially expressed genes after regressing out major classes
633 by “majorclass”. To enhance the statistical power, genes with average expressions less than
634 10 among pseudo-bulk samples were excluded from the analysis. For calculating adjusted g-
635 values from the p-values, we employed the Benjamini-Hochberg procedure °7. Subsequently,
636 differentially expressed genes were identified under llog2 fold changel>1 and g-value<0.05.
637  Enriched Gene Ontology (GO) terms were identified using the “enrichGO()” function of the
638 clusterProfiler R package % on the differentially expressed genes. To investigate gene
639 expression changes among major class cell types between the two technologies, the count
640 matrix was subsetted per major class and subjected to differential gene expression analysis
641 using the design formula “~ dataset” in a similar manner. To explore the shared differentially
642  expressed genes across major classes, an UpSetR image was produced using the “upset()”
643 function from the UpSetR R package %.

644

645 Cross-species analysis

646 To conduct cross-species analysis, the SATURN algorithm26 was utilized to compare
647 human, mouse, and macaque cell clusters and cell types. The human cell clusters were
648 identified from clean cells, while the mouse reference was generated from an integrated

649 analysis of collected mouse samples available at the data portal of Baylor College of Medicine
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650 (https://mouseatlas.research.bocm.edu/). Raw single cell measurements and cell labeling for
651 the macaque reference were obtained from the GEO repository (accession GSE118546)°. To
652  ensure accurate alignment of cell clusters, we randomly sampled up to 2,000 cells per cell
653 cluster and cell type. Protein embeddings for human, mouse and macaque are retrieved from
654  the respective SATURN repositories. To capture nuanced similarities among cell clusters,
655 SATURN feature aggregation employs a set of 5,000 macrogenes. Additionally, during pre-
656 training, “samplelD”s are utilized as non-species batch keys to effectively reduce batch effects
657 caused by samples. The trained 256-dimensional latent representations were utilized to
658  compute cell dissimilarities and generate UMAP for visualizations.

659

660 Differential gene expression analysis for bipolar cells

661 The DESeq2 R package® was utilized to identify genes that were highly expressed in
662  specific cell types, e.g., GB and BB cell types. First, a pseudo-bulk measurement was
663 calculated by summing the gene expressions of single cells within each cell type for each
664 sample, excluding samples with less than 2,000 cells. The pseudo-bulk datasets were then
665 used in a paired test, incorporating sample information in the design formula “~ samplelD +
666 celltype”. Lowly expressed genes with an average expression less than 10 were filtered out to
667 improve computation speed and statistical power. A Wald test was used to calculate p-values
668 for differential testing, comparing gene expression changes between BB and GB by
669 contrasting the “celltype” factor using the DESeq2 package's “results()” function. The adjusted
670 gvalue was calculated from p-values using the Benjamini-Hochberg procedure 7. The
671 EnhancedVolcano R package'® was used to visualize the distribution of log2 fold change and
672  g-values. Differentially expressed genes were identified based on criteria of llog2 fold
673 changel>1 and g-value<0.05. Enriched Gene Ontology (GO) terms were identified using the
674  “enrichGO()” function of the clusterProfiler R package® on the changed genes.

675 To identify the top-ranked genes in GB and BB between the snRNA-seq and scRNA-
676 seq datasets, we normalized and transformed raw count matrices from the two technologies
677  using the “normalized_total()”and “log1p()” functions within the Scanpy Python package °'. To
678  expedite the computation, 10,000 highly variable genes were calculated using the “seurat”
679 flavor with the batch key set as the “samplelD”. Subsequently, the highly variable genes were
680 tested for top-ranked genes via the Wilcoxon test. Top-ranked genes were identified by g-
681 value < 0.05. To visualize the overlapped genes, a venn diagram was generated using the
682  “venn.diagram()” function from the VennDiagram °' R package. Fisher’s exact test was used
683  to calculate the significance of the overlap of top ranked genes between GB and BB in snRNA-

684  seq and scRNA-seq, with 10,000 genes as the background for gene expression.
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685 To evaluate the cell type similarities between DB4a, DB4b, and DB5 in humans and
686 their corresponding mapped cell types in mice and macaques, gene symbols of the raw count
687  matrices of mouse and macaque data were converted into human orthologs using the MGl 102
688 and HGNC 193 databases. Utilizing human gene symbols and orthologs, cell type similarities
689  were computed in a manner similar to the comparison of cell types between snRNA-seq and
690 scRNA-seq datasets utilizing the MetaNeighbor R package .

691

692 Marker identification by binary classification analysis

693 To identify novel markers for BC, AC, and RGC types, a binary classification approach
694  was applied to detect 2- or 3-marker combinations for each type's. To mitigate classification
695 bias resulting from unbalanced cell type abundances, up to 2000 cells were randomly sampled
696  for BC types, and up to 500 cells were sampled for AC and RGC clusters. First, the raw counts
697  were normalized, and the top 50 ranked genes were calculated for each cell type using the
698  Scanpy package 9'. Support vector classifiers were then trained by considering combinations
699 of the top-ranked genes for each cell type. The “SVC()” function with “kernel=rbf’ was
700 employed from the scikit-learn Python package '%. Combinations of markers were ranked
701 based on several classification metrics, including precision, recall, F1 score, and AUROC.
702

703  Annotation of snATAC-seq cells and co-embedding of shnATAC-seq and snRNA-seq
704  cells

705 To annotate cell types for snATAC-seq, the low-quality cells and doublets were first
706 filtered out, and the retained cells were clustered with ArchR 195 (minTSS=4, minFrags=1000,
707  filterRatio=1). By integrating with snRNA-seq data, six major neuron cell classes and a mixed
708  non-neuron cell class were identified through ArchR. Then peaks were called by MACS2 106
709 through ArchR and cell by peak fragment count matrices were generated for each of the major
710  cell classes and across major cell classes via Seurat 8 and Signac 7. The co-embedding of
711 snRNA-seq and snATAC-seq was performed with the GLUE algorithm?3°. Specifically, to
712  integrate major cell class annotation, all sSnATAC-seq cells were co-embedded with the down-
713  sampled snRNA-seq cells by scGlue under the supervised mode, since major cell classes
714 from both snATAC-seq and snRNA-seq were already annotated. However, to identify cell
715  types per major class, the snATAC-seq cells were co-embedded with the snRNA-seq cells for
716  a major class by scGlue under the unsupervised mode. A logistic regression model and an
717  SVM model were then trained using the GLUE embedding and annotation of snRNA-seq cells
718  to predict the cell types of snATAC-seq cells using the scikit-learn python package. The ROC-

719  AUC of the logistic regression model was consistently higher than that of SVM model, so the
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720  logistic regression model was used to annotate snATAC-seq cells. The peaks were called by
721  MACS2 through ArchR for snATAC-seq cell classes and types. Differentially accessible
722  regions (DARs) and linked CREs were identified across cell classes and types using ArchR.
723 The linked CREs were the union set of peak-gene pairs identified through the correlation of
724  accessibility between snATAC-seq peaks (-/+ 250kb surrounding TSS) and promoters (co-
725  accessibility), as well as the correlation between gene expression and the accessibility of
726  snATAC-seq peaks (-/+ 250kb surrounding TSS).

727

728 Identification of regulon of retinal cell types

729 Regulons were identified for each of major cell classes, subclasses, and cell types
730  respectively utilizing SCENIC+ 3. Since SCENIC+ is memory-demanding, up to 1,000, 2,000,
731  or 4,000 cells per cell type (depending on specific cell class/subclass/type) were down-
732  sampled for snATAC-seq cells and snRNA-seq cells respectively. The down-sampled cell by
733 gene matrices and cell by peak matrices were then submitted to SCENIC+. Transcription
734  factors (TF), target regions of TFs, and target genes of TFs were also identified across cell
735 types. The transcription factors that showed significant correlation between gene expression
736  and chromatin accessibility of the target regions across cell types were further selected as
737  candidate TFs. From these TFs, eRegulon Specificity Score (RSS) was also computed for the
738  TFsthat were identified as activators in the corresponding cell type. Furthermore, the TFs that
739 displayed a significant correlation between the accessibility of target regions and the
740  expression level of target genes were identified. Subsequently, TF modules displaying a
741  significant correlation in the region-based AUC between TFs were identified.

742

743  Massively parallel reporter assays

744 We developed a MPRA library, which contains the sequences of 1,820 CRE
745  candidates linked to inherited retinal disease genes identified in the rod cells, along with 20
746  control cis-regulatory elements (CREs) with a variety of activity that have been previously
747  validated &, and negative controls (i.e., 300 scrambled sequences, and a basal promoter
748  without CRE). Each CRE or control sequence was labeled with three unique barcodes, and
749 25 barcodes were assigned to the basal promoter. Oligonucleotides (oligos) were synthesized
750 as follows: 5 priming sequence /EcoRl site/Library sequence (224-bp)/Spel site/C/Sphl
751  site/Barcode sequence (9-bp)/Notl site/3’ priming sequence. These oligomers were ordered
752 from TWIST BIOSCIENCE (South San Francisco, CA) and cloned upstream of a
753  photoreceptor-specific Crx promoter, which drives the expression of a DsRed reporter gene.

754  The resulting plasmid library was then electroporated into three retinal explants of C57BL/6J
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755  mice at postnatal day 0 (PO) in four replicates. On Day 8, DNA and RNA were extracted from
756  the cultured explants and next-generation sequencing was conducted. The activity of each
757  CRE was calculated based on the ratio of RNA/DNA read counts and was normalized to the
758 activity of the basal Crx promoter. The bioinformatics analysis of the MPRA result followed the
759  previously published pipeline®.

760

761  Differential gene expression analysis during aging and between genders

762 We conducted two types of differential gene expression analysis during aging. First,
763  for each cell class, raw read counts were aggregated per gene per sample. Only the samples
764  containing at least 100 cells in the corresponding cell class were considered. Additionally, the
765 samples that had < 0.75 correlation in read counts with > 65% of samples were considered
766  as outliers and were not included in subsequent analysis. Genes with low expression in the
767  corresponding cell classes were filtered out, resulting in about 18,003 genes retained per cell
768 class for further analysis. Based on the filtered genes and samples, the genes significantly
769  correlated with aging and different between sexes were identified using a mixed linear effect
770  model via edgeR 1% and variancePartition 1°° R packages. The formula we applied were: ~
771  age + sex + race + tissue + seq+ (1lbatch) for age and sex effect, and ~ age + sex + race +
772  tissue + seg+ (age:sex) + (1lbatch) for the interaction between age and sex. Log2 fold change
773 and p-values were extracted for all genes for the covariate of interest, i.e., age, sex, and
774  interaction between age and sex. In addition, a sliding window analysis was conducted over
775 aging, and DEGs between two adjacent time windows were identified per cell class utilizing
776 the DEswan R package '°. The read counts of the filtered genes were normalized based on
777 the library size of each sample per cell class via the edgeR R package. The sliding window
778 analysis was conducted over aging, considering batch and sex as covariates at the age: 20,
779 30, 40, 50, 60, 70, 80, and 90, with the bucket size = 20 years. In all time windows (10-year
780 interval) except three windows in RGC, there are more than three samples per cell class,
781  ensuring statistical robustness. Enriched pathways and GO terms were identified through
782  gene set enrichment analysis of the differentially expressed genes utilizing the clusterProfiler
783 R package . The significance cutoff for enriched gene sets was set at FDR < 0.1.

784

785  Cell type enrichment underlying GWAS locus

786 Cell class enrichment underlying GWAS loci was identified based on both chromatin
787  accessibility and gene expression. For chromatin accessibility, the heritability of GWAS traits
788  were partitioned into cell class specific ShATAC-seq peaks using stratified LD score regression
789  via LDSC ¢'. Initially, GWAS SNPs that overlapped with HapMap3 SNPs were annotated
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790  based on whether they were in OCRs in each cell class. Subsequently, LD-scores of these
791  SNPs within 1 cM windows were calculated based on the 1000 Genome data. The LD-scores
792  of these SNPs were integrated with those from the baseline model, which included non-cell
793  type specific annotation (downloaded from https://alkesgroup.broadinstitute.org/LDSCORE/).
794  Finally, the heritability in the annotated genomic regions was estimated and compared with
795 the baseline model to determine if regions in each cell class were enriched with the heritability
796  of the corresponding GWAS trait. For gene expression, the linear positive correlation between
797  cell class specificity of gene expression and gene-level genetic association with GWAS
798  studies were assessed by using the MAGMA.Celltype R package %. GWAS summary
799  statistics were formatted with the “MungeSumstats” R package ''' based on SNPs in -
800  35kb/+10kb of each gene and 1000 genome “eur” population. snRNA-seq expression data
801 was formatted with the “EWCE” R package '*2. Linear enrichment was detected using the
802 MAGMA.Celltype R package. To correct for multiple testing, the Benjamini-Hochberg method
803 was applied to the enrichment p-value based on chromatin accessibility and gene expression
804  respectively, considering the number of cell types and GWAS studies tested.

805

806 Fine-mapping of GWAS and eQTL variants

807 GWAS loci were fine-mapped based on the summary statistics of GWAS studies. For
808 each GWAS study, the SNPs with p < 5 x 1078 and present in 1000 genome (phase 3)
809 European population were considered and were categorized into the LD blocks identified by
810  a previous study. Within each LD block, the posterior inclusion probability (PIP) of each SNP
811  and credible set of SNPs were calculated using the susieR package (L=10) ''3. Similarly, eQTL
812 variants were fine-mapped based on the summary statistics of bulk retinal eQTLs. The
813  colocalization analysis of GWAS signal and bulk eQTL signal was conducted using the coloc
814 R package ''*. The motif disrupt effect of SNPs was predicted by the motifboreakR R package
815 115

816

817  Query to reference mapping using scArches

818 The HRCA cell type labeling enables automated cell type annotation using scArches
819 8. We trained query-to-reference models using scArches, using default parameters as
820 recommended in their core tutorials. Models were trained during 20 epochs for scVI, scANVI,
821 and label transfer on sc and sn cells from the healthy reference and using batch information
822  during the integration benchmark. Additional cell type sub-annotations were used, based on
823 clustering and marker-based selection per major classes. Only healthy donors were

824  considered to generate reference models.
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825 To test the cell mapping and uncertainty estimations in new samples, we used age-
826 related macular degeneration samples (AMD) related to 17 donors. As validation of the label
827  transfer accuracy, we pre-annotated one of the disease samples using scPred, obtaining 98%
828 agreement in labels. Label uncertainties per major class mapped on AMD donors were
829 analyzed as a single-variable distribution, and we defined a percentile threshold of 97.5% to
830 label cells as high- or low-uncertainty based on this value. Selection of visualization of marker
831 genes across categories was done on each cell type, between both uncertainty categories,
832  using Scanpy °'. Overlap between selected marker genes AMD-related genes was inspected
833  using the ontology term Macular Degeneration (DOID:4448) from the DISEASES database 116.
834

835 Data availability

836 The landing page of the HRCA data resources is accessible at
837  https://rchenlab.github.io/resources/human-atlas.html. Raw sequencing data files, processed
838 Cell Ranger data files, and sample metadata information files of the HRCA have been
839 deposited in the HCA DCP. Additionally, raw and normalized count matrices, cell type
840  annotations, and multi-omics embeddings are also publicly available through the CELLXGENE
841  collection (https://cellxgene.cziscience.com/collections/4c6eaf5c-6d57-4c76-b1e9-
842 60df8c655f1e). The HRCA is also accessible at the UCSC Cell Browser (https://cells-
843 test.gi.ucsc.edu/?ds=retina-atlas+rna-seq+chen) and the Single Cell Portal.

844

845 Code availability

846 All code used for the HRCA project can be found in the HRCA reproducibility GitHub
847  repository (https://github.com/RCHENLAB/HRCA_reproducibility). The pipeline to process the
848 unpublished and collected public datasets is accessible at https:/github.com/lijinbio/cellgc.
849  Scripts related to the benchmark study, integration pipeline, and label transfer using scArches
850 are available at https://github.com/theislab/HRCA-reproducibility.
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1239  Figure legends

1240

1241  Figure 1. Overview of single cell atlas of the human retina

1242 A. The integrated study for the atlas involves compiling public datasets and in-house
1243  generated data, integrating datasets, annotating cell clusters, utilizing chromatin profiles for
1244  multi-omics, and demonstrating the utility by applications. B. Collected retinal datasets
1245  comprising of both in-house newly generated and seven publicly available datasets. C. Five
1246  data integration algorithms are benchmarked for data harmonization. The algorithms are
1247  evaluated using 14 metrics, with the rows representing the algorithms and columns
1248  corresponding to the metrics. The algorithms are ranked based on their overall score. D. The
1249  atlas of snRNA-seq datasets is visualized in a UMAP plot at a major class resolution, with
1250  cells colored based on their major classes. E. Cell type similarities of major classes between
1251  snRNA-seq (in coral) and scRNA-seq (in blue). The color key is the average AUROC of self-
1252  projection for cell types. F. Volcano plot of genes over-expressed in snRNA-seq datasets (on
1253  the right) and scRNA-seq (on the left). The x-axis is log2 fold change, and the y-axis is —log10
1254  g-value. Differentially expressed genes were identified under llog2 fold changel>1 and g-
1255  value<0.05 and are depicted as red dots. Selected gene symbols point to the DEGs, including
1256  seven genes encoding protocadherin proteins on the right: PCDHGB2, PCDHGB3, PCDHGBA,
1257 PCDHGA2, PCDHA2, PCDHGA11, PCDHAS; and five genes encoding ribosomal proteins on
1258 the left: RPL7, RPL13A, RPS8, RPS15, RPS17.

1259

1260 Figure 2. Bipolar cells

1261  A. Distribution of marker genes for BC types. BC subclasses are in RB, OFF and ON. NETO1,
1262 OTX2, and VSX2 were used as BC pan-markers. GRIK1 and GRM6 were used as OFF and
1263  ON markers, respectively. Rows represent marker genes, and columns represent BC types.
1264 The names of BC types are extracted from macaque BC types. B. UMAP visualization of
1265 human BC cells. Cell clusters are colored by the annotated cell types. C. Co-embedding of
1266  human, mouse, and macaque BC cells. To differentiate between cell types from three species,
1267  prefixes were added to the names: “h” for human, “m” for mouse, and “a” for macaque. D.
1268  Hierarchical clustering of mouse BC cell types. Expanded leaf nodes are the correspondent
1269 cell types from human and macaque BC cell types. E. The overlap between the top-ranked
1270 genes of human GB and BB is examined using snRNA-seq and scRNA-seq datasets. Fisher’s
1271  exact test was used to calculate the significance of the overlap of top ranked genes in GB (p-
1272  value=7.5x102%) and BB (p-value=1.7x10'3") between snRNA-seq and scRNA-seq. F. Cell
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1273  type similarities among mouse BC5A, BC5B, BC5C, and BC5D, and mapped types in humans
1274  and macaques.

1275

1276  Figure 3. Amacrine cells and retinal ganglion cells

1277  A. UMAP visualization of the identified 73 AC cell clusters. Cluster IDs are placed on top of
1278  clusters, and cells are colored by the cluster IDs, where 14 clusters have annotated types. B.
1279 Dot plot of predicted markers for AC cell types. C. UMAP visualization of RGC cell types with
1280 labels on top of cells. D. Sankey diagram illustrating RGC types alignment between humans
1281  (left column) and macaques (right column). E. Dot plot of predicted markers for RGC cell types.
1282

1283  Figure 4. A high resolution shATAC-seq cell atlas of the human retina

1284  A. Uniform Manifold Approximation and Projection (UMAP) of co-embedded cells from
1285 snRNA-seq and snATAC-seq showing cells are clustered into major retinal cell classes. B. Pie
1286  chart showing the cell proportion distribution of major retinal cell classes in this study. C. Dot
1287  plot showing marker gene expression measured by snRNA-seq and marker gene activity
1288  score derived from snATAC-seq are specific in the corresponding cell class. D. Bar plot
1289  showing the number of open chromatin regions (OCRs) identified in each major cell class. E.
1290 The Venn Diagram showing the overlapped OCRs detected by retinal snATAC-seq and bulk
1291  ATAC-seq. F. Pie chart showing cell type specificity of OCRs identified from retinal snATAC-
1292  seq (left) and bulk ATAC-seq (right). The color codes the number of cell types where the OCRs
1293  were observed. G. Heatmap showing chromatin accessibility (left) and gene expression (right)
1294  of 149,273 significantly linked CRE-gene pairs identified by the correlation between gene
1295  expression and OCR accessibility. Rows represented CRE-gene pairs grouped in clusters by
1296 correlations. H. Volcano plot showing the logzFC value (comparison between activity of each
1297  tested sequence and the activity of a basal CRX promoter, X axis) and the —logioFDR value
1298 (Y axis) of each tested sequence by MPRAs (IRD CREs n=1,820, control CREs with a variety
1299  of activities n=20, Scrambled CREs n=300). Each dot corresponds to a tested sequence,
1300 colored by the activity of the sequence. |. Scatter plot showing the eRegulon specificity score
1301  for each transcription factor (TF) and the corresponding regulon across major retinal cell
1302 classes. The top five TF and eRegulon are highlighted in red.

1303

1304  Figure 5. Regulon of the human bipolar cell types

1305 A. Heatmap showing the identified regulons where the gene expression level (color scale) of
1306 transcription factors and the enrichment (dot size) of TF motifs in the snATAC peaks are highly

1307 correlated. The rows represent BC cell types, and the columns represent the identified
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1308 regulons. B. Jaccard heatmap showing the intersection of target regions of the identified TFs.
1309  Each cell in the heatmap represents the Jaccard index of target regions between a pair of TFs.
1310 C. Jaccard heatmap showing the intersection of target genes of the identified TFs. Each cell
1311 in the heatmap represents the Jaccard index of target genes between a pair of TFs. D.
1312  Network plot showing the regulons and interactions between them in DB3a, DB3b, BB and
1313  GB. Each regulon includes the TF, target regions and target genes. E. ROC-AUC of logistic
1314  regression model and SVM model to predict BC cell type based on the accessibility of target
1315  regions of identified TFs. F. Heatmap showing the correlation in target-regions-based AUC of
1316 the identified regulons.

1317

1318 Figure 6. Differential gene expression associated with sex and age.

1319 A. Heatmap showing gene expression level of differentially expressed genes (DEGs) during
1320 aging in Rod identified with linear mixed effect model (LMM). B. UpSet plot showing the
1321  number of cell type specific and common DEGs across major retinal cell classes. C. The
1322 number of DEGs identified through sliding window analysis at each age stage. D. The selected
1323 KEGG pathways significantly enriched (FDR <0.1) of DEGs during aging identified by LMM
1324  across retinal cell classes. E. The examples of DEG during aging involved in the enriched
1325 KEGG pathways. F. The number of DEGs between male and female across major retinal cell
1326 classes. G. The selected GO terms significantly enriched (FDR < 0.1) of DEGs between male
1327 and female across retinal cell classes. H. The selected KEGG pathways significantly enriched
1328 (FDR < 0.1) of DEGs with gender dependent aging effect. I. The examples of DEGs with
1329  gender dependent aging effect involved in the enriched KEGG pathways.

1330

1331 Figure 7. Leveraging multi-omics data to study GWAS and eQTL loci

1332 A. Cell class enrichment of GWAS loci based on chromatin accessibility with LDSC (left) and
1333 gene expression with MAGMA (right). Rows represent enriched GWAS traits, and columns
1334  represent retinal cell classes. The highlight dot indicates the enrichment g-value < 0.05. B.
1335  Categorization of fine-mapped GWAS variants located in various genomic regions. Categories
1336 include peak (i.e., open chromatin regions), linked cis-regulatory elements (CREs),
1337 differentially accessible regions (DARs), promoter, exon, 5_UTR and 3_UTR of gene
1338 annotation. C. Categorization of fine-mapped eQTL variants located in various genomic
1339 regions. D. Visualization of fine-mapped loci in CLIC5 region.

1340
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1341 Extended Data Figure legends

1342

1343 Extended Data Figure 1. Overview of the HRCA.

1344  A. Cell proportion distribution of major classes among donors. The x-axis corresponds to each
1345 donor, and the y-axis is the cell proportion of major classes. The last bar is the cell proportion
1346  across total cells. B. A pie chart illustrating the number of cells for major classes and their
1347  proportions. C. Integration of datasets from snRNA-seq and scRNA-seq datasets. The cells
1348 are colored by major classes. D. The atlas is colored by the two technologies: snRNA-seq (in
1349 coral) and scRNA-seq (in blue). E. The distribution of transcriptomic data for 152 samples
1350 obtained from snRNA-seq and scRNA-seq technologies. Each sample is colored by the
1351 technology used. F. The atlas of scRNA-seq data, with major classes represented using
1352  different colors. G. Dot plots illustrating the distribution of expression levels of marker genes
1353  for major cell classes in snRNA-seq (on the left) and scRNA-seq data (on the right).

1354

1355 Extended Data Figure 2. Comparison between single-nuclei and single-cell
1356 technologies.

1357  A. Cell proportion of major class of samples between snRNA-seq and scRNA-seq in fovea,
1358 macular, and periphery tissue regions. The red bar represents cell proportions of major
1359 classes in snRNA-seq samples, and the blue bar represents cell proportions of scRNA-seq
1360 samples. B. Enriched GO BPs of 1,387 over-expressed genes in snRNA-seq data. C.
1361  Enriched GO BPs of 3,242 over-expressed genes in scRNA-seq data. D. Shared genes over-
1362 expressed in snRNA-seq data among major cell classes. The "Full” (in red) is genes over-
1363 expressed in snRNA-seq data regardless of cell classes. E. Shared of genes derived from
1364 scRNA-seq data.

1365

1366 Extended Data Figure 3. transcriptomic signature of bipolar cells

1367  A. UMAP visualization of BC cells based on single-cell transcriptome data. B. Dot plot of the
1368 distribution of marker gene expression by the single-cell measurements. C. Co-embedding
1369 between snRNA-seq and scRNA-seq cells. The label names are prefixed by “n” for snRNA
1370 and “c” for scRNA. D. Volcano plot of differentially expressed genes between GB and BB of
1371 the snRNA-seq datasets. Differentially expressed genes were identified under llog2 fold
1372 changel>1 and g-value<0.05. E. Predicted markers per BC cell type by the binary classification
1373 analysis using snRNA-seq datasets. Rows are BC cell types, and columns represent novel
1374  markers.

1375
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1376

1377 Extended Data Figure 4. Annotation of amacrine cells.

1378  A. Dot plot of AC cell clusters by markers to identify AC subclasses for GABAergic, Glycinergic,
1379 and Both. PAX6 and TFAP2B were used as AC pan-markers. GAD1/GAD2 were used for
1380 GABAergic ACs, and SLC6A9 was used for the Glycinergic ACs. MEIS2, TCF4, and EBF1
1381  were also included in the dot plot. B. UMAP of AC cells, colored by the four AC groups. C. Dot
1382 plot of 14 AC cell clusters with known markers. The cell type names are indicated in
1383 parentheses next to the cluster IDs. D. UMAP visualization of AC cells, colored by the 14
1384 clusters with cell type names. The rest of the clusters are colored as “unknown” without
1385  existing names.

1386

1387 Extended Data Figure 5. Cross-mapping for human amacrine cells.

1388 A. SATURN co-embedding visualization of AC cell types between snRNA-seq and scRNA-
1389 seq. AC cells are colored by the two technologies. B. The same SATURN co-embedding with
1390 AC type labels color-coded on top of clusters. Labels are prefixed with “n” for snRNA-seq
1391  datasets and “c” for scRNA-seq data. C. SATURN co-embedding visualization of AC types
1392  across human, macaque and mouse species. AC cell labels for the three species are overlaid
1393 on clusters. Labels are prefixed with “h” for human, “a” for macaque, and “m” for mouse.
1394

1395 Extended Data Figure 6. Annotation of retinal ganglion cells.

1396 A. Dot plot of RGC cell clusters with existing markers. B. The proportion of parasol RGCs
1397  within the RGC population in the samples. Samples enriched by NeuN experiments are
1398 highlighted in green. C. Sankey diagram depicting the relationship between RGC clusters from
1399 snRNA-seq datasets and the public labeling of RGC types from scRNA-seq datasets. The
1400  width of the lines is proportional to the number of cells in the mapping. D. Sankey diagram
1401 illustrating RGC types alignment between humans (left column) and mice (right column).
1402

1403 Extended Data Figure 7. A high resolution shATAC-seq cell atlas of the human retina
1404  A. Scatter plot showing the correlation between gene expression derived from snRNA-seq (X
1405  axis) and gene activity score derived from snATAC-seq (Y axis) from major retinal cell classes.
1406 B. Heatmap showing the chromatin accessibility of differential accessible regions (DARs)
1407 identified in major retinal cell classes. Rows represented chromatin regions specific to certain
1408 major classes, and columns corresponded to major classes. C. Genome track of the RHO
1409 locus showing the cell type specific chromatin accessibility in the promoter and linked cis-

1410 regulatory elements of this gene. D. Density plot showing the activity (log2FC value of
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1411  comparison between activity of each tested sequence and the activity of a basal CRX promoter)
1412  distribution of the tested sequences by MPRAs. IRD CREs n=1,820 (green), control CREs
1413  with a variety of activities n=20 (red), Scrambled CREs n=300 (blue).

1414

1415  Extended Data Figure 8. Multi-omics atlas of the human retinal subclass cell types
1416  A. UMAP showing the co-embedding of bipolar cells (BC) from snRNA-seq and snATAC-seq
1417  were clustered into BC cell types. B. Dot plot showing marker gene expression measured by
1418 snRNA-seq and marker gene activity score derived from snATAC-seq are specific in the
1419  corresponding BC cell types. C. Genome track of SORCS3 showing the promoter of SORCS3
1420 s specifically open in BB. D. Genome track of UTRN showing the local chromatin of UTRN is
1421  specifically open in GB. E. UMAP showing the co-embedding of amacrine cells (AC) from
1422 snRNA-seq and snATAC-seq were clustered into AC cell types. F. Dot plot showing marker
1423 gene expression measured by snRNA-seq and marker gene activity score derived from
1424  snATAC-seq are specific in the corresponding sub classes of AC types. G. UMAP showing
1425 the co-embedding of cone cells (Cone) from snRNA-seq and snATAC-seq were clustered in
1426  Cone cell types. H. Dot plot showing marker gene expression measured by snRNA-seq and
1427  marker gene activity score derived from snATAC-seq are specific in the corresponding Cone
1428  cell types.

1429

1430 Extended Data Figure 9. Regulon of the human retinal subclass cell types

1431  A. Dot plot showing the distribution of regulon specificity score of regulons identified in ML-
1432 and S-Cone. B. Dot plot showing the distribution of regulon specificity score of regulons
1433 identified in OFF- and ON-BC (ON-BC include ON-Cone BC and Rod BC). C. Dot plot showing
1434  the distribution of regulon specificity score of regulons identified in GABAergic-, Glycinergic-
1435 and Both-AC. D. Dot plot showing the distribution of regulon specificity score of regulons
1436 identified in HCO and HC1. E. Dot plot showing the distribution of regulon specificity score of
1437  regulons identified in 14 BC cell types. F. Boxplot showing the average AUC values of the
1438 regulon modules identified in BC cell types. The BC cell types with the highest AUC values
1439  were labeled in the title of each regulon module.

1440

1441 Extended Data Figure 10. Differential gene expression during aging and associated with
1442  sex.

1443 A. Age and sex distribution of the analyzed samples. B. Heatmap showing gene expression
1444  level of differentially expressed genes (DEGs) during aging in major retinal cell classes
1445 identified with linear mixed effect model (LMM). C. UpSet plot showing the overlap of DEGs
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1446  identified by LMM and sliding-window analysis at the age of 30, 60 and 80 in Rod. UpSet plot
1447  showing the number of DEGs across major retinal cell classes at the age of 30, 60 and 80,
1448 respectively. D. The GO terms significantly enriched (FDR <0.1) of DEGs during aging
1449 identified by LMM across retinal cell classes. E. The examples of DEGs between male and

1450 female associated with the enriched GO terms.
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Figure 1. Overview of single cell atlas of the human retina

A. The integrated study for the atlas involves compiling public datasets and in-house generated data,
integrating datasets, annotating cell clusters, utilizing chromatin profiles for multi-omics, and demonstrating
the utility by applications. B. Collected retinal datasets comprising of both in-house newly generated and
seven publicly available datasets. C. Five data integration algorithms are benchmarked for data
harmonization. The algorithms are evaluated using 14 metrics, with the rows representing the algorithms
and columns corresponding to the metrics. The algorithms are ranked based on their overall score. D. The
atlas of snRNA-seq datasets is visualized in a UMAP plot at a major class resolution, with cells colored based
on their major classes. E. Cell type similarities of major classes between snRNA-seq (in coral) and scRNA-seq
(in blue). The color key is the average AUROC of self-projection for cell types. F. Volcano plot of genes over-
expressed in snRNA-seq datasets (on the right) and scRNA-seq (on the left). The x-axis is log2 fold change,
and the y-axis is —log10 g-value. Differentially expressed genes were identified under |log2 fold change|>1
and g-value<0.05 and are depicted as red dots. Selected gene symbols point to the DEGs, including seven
genes encoding protocadherin proteins on the right: PCOHGB2, PCDHGB3, PCDHGB4, PCDHGA2, PCDHA?2,
PCDHGA11, PCDHAS; and five genes encoding ribosomal proteins on the left: RPL7, RPL13A, RPS8, RPS15,
RPS17.
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Figure 2. Bipolar cells

A. Distribution of marker genes for BC types. BC subclasses are in RB, OFF and ON. NETO1, OTX2, and VSX2
were used as BC pan-markers. GRIK1 and GRM6 were used as OFF and ON markers, respectively. Rows
represent marker genes, and columns represent BC types. The names of BC types are extracted from
macaque BC types. B. UMAP visualization of human BC cells. Cell clusters are colored by the annotated cell
types. C. Co-embedding of human, mouse, and macaque BC cells. To differentiate between cell types from
three species, prefixes were added to the names: “h” for human, “m” for mouse, and “a” for macaque. D.
Hierarchical clustering of mouse BC cell types. Expanded leaf nodes are the correspondent cell types from
human and macaque BC cell types. E. The overlap between the top-ranked genes of human GB and BB is
examined using snRNA-seq and scRNA-seq datasets. Fisher’s exact test was used to calculate the
significance of the overlap of top ranked genes in GB (p-value=7.5x10"2%3) and BB (p-value=1.7x10131)
between snRNA-seq and scRNA-seq. F. Cell type similarities among mouse BC5A, BC5B, BC5C, and BC5D,
and mapped types in humans and macaques.
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Figure 3. Amacrine cells and retinal ganglion cells
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Figure 3. Amacrine cells and retinal ganglion cells

A. UMAP visualization of the identified 73 AC cell clusters. Cluster IDs are placed on top of clusters, and cells
are colored by the cluster IDs, where 14 clusters have annotated types. B. Dot plot of predicted markers for
AC cell types. C. UMAP visualization of RGC cell types with labels on top of cells. D. Sankey diagram
illustrating RGC types alighment between humans (left column) and macaques (right column). E. Dot plot of
predicted markers for RGC cell types.
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Figure 4. A high resolution snATAC-seq cell atlas of the human retina
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Figure 4. A high resolution snATAC-seq cell atlas of the human retina

A. Uniform Manifold Approximation and Projection (UMAP) of co-embedded cells from snRNA-seq and
SsnATAC-seq showing cells are clustered into major retinal cell classes. B. Pie chart showing the cell
proportion distribution of major retinal cell classes in this study. C. Dot plot showing marker gene
expression measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in
the corresponding cell class. D. Bar plot showing the number of open chromatin regions (OCRs) identified
in each major cell class. E. The Venn Diagram showing the overlapped OCRs detected by retinal snATAC-seq
and bulk ATAC-seq. F. Pie chart showing cell type specificity of OCRs identified from retinal snATAC-seq (left)
and bulk ATAC-seq (right). The color codes the number of cell types where the OCRs were observed. G.
Heatmap showing chromatin accessibility (left) and gene expression (right) of 149,273 significantly linked
CRE-gene pairs identified by the correlation between gene expression and OCR accessibility. Rows
represented CRE-gene pairs grouped in clusters by correlations. H. Volcano plot showing the log,FC value
(comparison between activity of each tested sequence and the activity of a basal CRX promoter, X axis) and
the -log,oF DR value (Y axis) of each tested sequence by MPRAs (IRD CREs n=1,820, control CREs with a
variety of activities n=20, Scrambled CREs n=300). Each dot corresponds to a tested sequence, colored by
the activity of the sequence. I. Scatter plot showing the eRegulon specificity score for each transcription
factor (TF) and the corresponding regulon across major retinal cell classes. The top five TF and eRegulon are
highlighted in red.
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Figure 5. Regulon of the human bipolar cell types

A. Heatmap showing the identified regulons where the gene expression level (color scale) of transcription
factors and the enrichment (dot size) of TF motifs in the snATAC peaks are highly correlated. The rows
represent BC cell types, and the columns represent the identified regulons. B. Jaccard heatmap showing the
intersection of target regions of the identified TFs. Each cell in the heatmap represents the Jaccard index of
target regions between a pair of TFs. C. Jaccard heatmap showing the intersection of target genes of the
identified TFs. Each cell in the heatmap represents the Jaccard index of target genes between a pair of TFs.
D. Network plot showing the regulons and interactions between them in DB3a, DB3b, BB and GB. Each
regulon includes the TF, target regions and target genes. E. ROC-AUC of logistic regression model and SVM
model to predict BC cell type based on the accessibility of target regions of identified TFs. F. Heatmap
showing the correlation in target-regions-based AUC of the identified regulons.
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Figure 6. Differential gene expression during aging and associated with sex.
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Figure 6. Differential gene expression associated with age and sex.

A. Heatmap showing gene expression level of differentially expressed genes (DEGs) during aging in Rod
identified with linear mixed effect model (LMM). B. UpSet plot showing the number of cell type specific and
common DEGs across major retinal cell classes. C. The number of DEGs identified through sliding window
analysis at each age stage. D. The selected KEGG pathways significantly enriched (FDR <0.1) of DEGs during
aging identified by LMM across retinal cell classes. E. The examples of DEG during aging involved in the
enriched KEGG pathways. F. The number of DEGs between male and female across major retinal cell
classes. G. The selected GO terms significantly enriched (FDR < 0.1) of DEGs between male and female
across retinal cell classes. H. The selected KEGG pathways significantly enriched (FDR < 0.1) of DEGs with
gender dependent aging effect. |. The examples of DEGs with gender dependent aging effect involved in the
enriched KEGG pathways.
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Figure 7. Leveraging multi-omics data to study GWAS and eQTL loci
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Figure 7. Leveraging multi-omics data to study GWAS and eQTL loci

A. Cell class enrichment of GWAS loci based on chromatin accessibility with LDSC (left) and gene expression
with MAGMA (right). Rows represent enriched GWAS traits, and columns represent retinal cell classes. The
highlight dot indicates the enrichment g-value < 0.05. B. Categorization of fine-mapped GWAS variants
located in various genomic regions. Categories include peak (i.e., open chromatin regions), linked cis-
regulatory elements (CREs), differentially accessible regions (DARs), promoter, exon, 5_UTR and 3_UTR of
gene annotation. C. Categorization of fine-mapped eQTL variants located in various genomic regions. D.
Visualization of fine-mapped loci in CLIC5 region.
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Table 1. Summary of fine-mapped GWAS loci associated with the seven GWAS traits.

AMD Myopia POAG Diabetic ONL IST OST
retinopathy | thickness | thickness thickness
Number of 56 391 74 3 81 25 61
fine-mapped
genes
Overlapped 8 67 11 0 23 8 13
with eQTLs
Examples APOE PAX6 TFAP2B ABCF1 ATOH7 CNGB3 MKKS
C2 PDE6G PLEKHA7 MIR4640 MAPT VSX2 FSCN2
C3 RDH5 EFEMP1 DDR1 PAX6 RP1L1 PDE6G
CRB1 TGFBR1 THSD7A RAX PRPH2
RDH5 TOMM40 | TMCO1 RBP3 RDH5
TGFBR1 | KCNA4 CLIC5 RDH5 RHO
LHX3 SIX6 VSX2 RP1L1
SAG

RLBP1
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Extended Data Figure 1. Overview of the HRCA.

A. Cell proportion distribution of major classes among donors. The x-axis corresponds to each donor, and
the y-axis is the cell proportion of major classes. The last bar is the cell proportion across total cells. B. A pie
chart illustrating the number of cells for major classes and their proportions. C. Integration of datasets from
snRNA-seq and scRNA-seq datasets. The cells are colored by major classes. D. The atlas is colored by the
two technologies: snRNA-seq (in coral) and scRNA-seq (in blue). E. The distribution of transcriptomic data
for 152 samples obtained from snRNA-seq and scRNA-seq technologies. Each sample is colored by the
technology used. F. The atlas of scRNA-seq data, with major classes represented using different colors. G.
Dot plots illustrating the distribution of expression levels of marker genes for major cell classes in snRNA-
seq (on the left) and scRNA-seq data (on the right).
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Extended Data Figure 2. Comparison between single-nuclei and single-cell technologies.
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Extended Data Figure 2. Comparison between single-nuclei and single-cell technologies.

A. Cell proportion of major class of samples between snRNA-seq and scRNA-seq in fovea, macular, and
periphery tissue regions. The red bar represents cell proportions of major classes in snRNA-seq samples,
and the blue bar represents cell proportions of scRNA-seq samples. B. Enriched GO BPs of 1,387 over-
expressed genes in snRNA-seq data. C. Enriched GO BPs of 3,242 over-expressed genes in scRNA-seq data.
D. Shared genes over-expressed in snRNA-seq data among major cell classes. The ”Full” (in red) is genes
over-expressed in snRNA-seq data regardless of cell classes. E. Shared of genes derived from scRNA-seq
data.
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Extended Data Figure 3. transcriptomic signature of bipolar cells
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Extended Data Figure 3. transcriptomic signature of bipolar cells

A. UMAP visualization of BC cells based on single-cell transcriptome data. B. Dot plot of the distribution of
marker gene expression by the single-cell measurements. C. Co-embedding between snRNA-seq and scRNA-
seq cells. The label names are prefixed by “n” for snRNA and “c” for scRNA. D. Volcano plot of differentially
expressed genes between GB and BB of the snRNA-seq datasets. Differentially expressed genes were
identified under |log2 fold change|>1 and g-value<0.05. E. Predicted markers per BC cell type by the binary
classification analysis using snRNA-seq datasets. Rows are BC cell types, and columns represent novel
markers.
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Extended Data Figure 4. Annotation of amacrine cells.
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Extended Data Figure 4. Annotation of amacrine cells.

A. Dot plot of AC cell clusters by markers to identify AC subclasses for GABAergic, Glycinergic, and Both.
PAX6 and TFAP2B were used as AC pan-markers. GAD1/GAD2 were used for GABAergic ACs, and SLC6A9
was used for the Glycinergic ACs. MEIS2, TCF4, and EBF1 were also included in the dot plot. B. UMAP of AC
cells, colored by the four AC groups. C. Dot plot of 14 AC cell clusters with known markers. The cell type
names are indicated in parentheses next to the cluster IDs. D. UMAP visualization of AC cells, colored by the
14 clusters with cell type names. The rest of the clusters are colored as “unknown” without existing names.
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Extended Data Figure 5. Cross-mapping for human amacrine cells.

A. SATURN co-embedding visualization of AC cell types between snRNA-seq and scRNA-seq. AC cells are
colored by the two technologies. B. The same SATURN co-embedding with AC type labels color-coded on
top of clusters. Labels are prefixed with “n” for snRNA-seq datasets and “c” for scRNA-seq data. C. SATURN
co-embedding visualization of AC types across human, macaque and mouse species. AC cell labels for the
three species are overlaid on clusters. Labels are prefixed with “h” for human, “a” for macaque, and “m” for
mouse.
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Extended Data Figure 6. Annotation of retinal ganglion cells.
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Extended Data Figure 6. Annotation of retinal ganglion cells.

A. Dot plot of RGC cell clusters with existing markers. B. The proportion of parasol RGCs within the RGC
population in the samples. Samples enriched by NeuN experiments are highlighted in green. C. Sankey
diagram depicting the relationship between RGC clusters from snRNA-seq datasets and the public labeling
of RGC types from scRNA-seq datasets. The width of the lines is proportional to the number of cells in the
mapping. D. Sankey diagram illustrating RGC types alignment between humans (left column) and mice (right

column).
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Extended Data Figure 7. A high resolution snATAC-seq cell atlas of the human retina
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Extended Data Figure 7. A high resolution snATAC-seq cell atlas of the human retina

A. Scatter plot showing the correlation between gene expression derived from snRNA-seq (X axis) and gene
activity score derived from snATAC-seq (Y axis) from major retinal cell classes. B. Heatmap showing the
chromatin accessibility of differential accessible regions (DARs) identified in major retinal cell classes. Rows
represented chromatin regions specific to certain major classes, and columns corresponded to major
classes. C. Genome track of the RHO locus showing the cell type specific chromatin accessibility in the
promoter and linked cis-regulatory elements of this gene. D. Density plot showing the activity (log2FC value
of comparison between activity of each tested sequence and the activity of a basal CRX promoter )
distribution of the tested sequences by MPRAs. IRD CREs n=1,820 (green), control CREs with a variety of
activities n=20 (red), Scrambled CREs n=300 (blue).
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Extended Data Figure 8. Multi-omics atlas of the human retinal subclass cell types
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Extended Data Figure 8. Multi-omics atlas of the human retinal subclass cell types

A. UMAP showing the co-embedding of bipolar cells (BC) from snRNA-seq and snATAC-seq were clustered
into BC cell types. B. Dot plot showing marker gene expression measured by snRNA-seq and marker gene
activity score derived from snATAC-seq are specific in the corresponding BC cell types. C. Genome track of
SORCS3 showing the promoter of SORCS3 is specifically open in BB. D. Genome track of UTRN showing the
local chromatin of UTRN is specifically open in GB. E. UMAP showing the co-embedding of amacrine cells
(AC) from snRNA-seq and snATAC-seq were clustered into AC cell types. F. Dot plot showing marker gene
expression measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in
the corresponding sub classes of AC types. G. UMAP showing the co-embedding of cone cells (Cone) from
snRNA-seq and snATAC-seq were clustered in Cone cell types. H. Dot plot showing marker gene expression
measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in the
corresponding Cone cell types.
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Extended Data Figure 9. Regulon of the human retinal subclass cell types
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Extended Data Figure 9. Regulon of the human retinal subclass cell types

A. Dot plot showing the distribution of regulon specificity score of regulons identified in ML- and S-Cone. B.
Dot plot showing the distribution of regulon specificity score of regulons identified in OFF- and ON-BC (ON-
BC include ON-Cone BC and Rod BC). C. Dot plot showing the distribution of regulon specificity score of
regulons identified in GABAergic-, Glycinergic- and Both-AC. D. Dot plot showing the distribution of regulon
specificity score of regulons identified in HCO and HC1. E. Dot plot showing the distribution of regulon
specificity score of regulons identified in 14 BC cell types. F. Boxplot showing the average AUC values of the
regulon modules identified in BC cell types. The BC cell types with the highest AUC values were labeled in
the title of each regulon module.
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Extended Data Figure 10. Differential gene expression during aging and associated with sex.
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Extended Data Figure 10. Differential gene expression during aging and associated with sex.

A. Age and sex distribution of the analyzed samples. B. Heatmap showing gene expression level of
differentially expressed genes (DEGs) during aging in major retinal cell classes identified with linear mixed
effect model (LMM). C. UpSet plot showing the overlap of DEGs identified by LMM and sliding-window
analysis at the age of 30, 60 and 80 in Rod. UpSet plot showing the number of DEGs across major retinal cell
classes at the age of 30, 60 and 80, respectively. D. The GO terms significantly enriched (FDR <0.1) of DEGs
during aging identified by LMM across retinal cell classes. E. The examples of DEGs between male and
female associated with the enriched GO terms.
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