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Abstract

Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders
characterized by a type | interferon response and autoantibodies. Treatment options are
limited due to incomplete understanding of how the disease emerges from dysregulated
cell states across the immune system. We therefore investigated the blood of JDM
patients at different stages of disease activity using single-cell transcriptomics paired with
surface protein expression. By immunophenotyping peripheral blood mononuclear cells,
we observed skewing of the B cell compartment towards an immature naive state as a
hallmark of JDM. Furthermore, we find that these changes in B cells are paralleled by
signatures of Th2-mediated inflammation. Additionally, our work identified SIGLEC-1
expression in monocytes as a composite measure of heterogeneous type | interferon
activity in disease. We applied network analysis to reveal that hyperactivation of the type
| interferon response in all immune populations is coordinated with dysfunctional protein
processing and regulation of cell death programming. This analysis separated the
ubiquitously expressed type | interferon response into a central hub and revealed
previously masked cell states. Together, these findings reveal the coordinated immune
dysregulation underpinning JDM and provide novel insight into strategies for restoring
balance in immune function.
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Intro

Juvenile Dermatomyositis (JDM) is part of a broad group of childhood-onset
autoimmune conditions characterized by a type | interferon (IFN) gene signature and
specific autoantibodies ranging from related systemic conditions like systemic lupus
erythematosus (SLE) to endocrine-specific disorders like type | diabetes (1-4). Despite a
shared IFN signature, JDM is associated with pathognomonic rashes and proximal
muscle weakness resulting in distinct clinical phenotypes. The etiology of JDM is not fully
understood but studies have shown that JDM is autoimmune-mediated and associated
with a combination of genetic and environmental risk factors (5). While mortality is low
with corticosteroid treatment, long-term patient follow-up studies have reported that 60-
70% of patients have cumulative tissue damage (6, 7) with the risk of damage increasing
almost linearly for each year after diagnosis (8). This finding highlights the importance of
early disease intervention, the need to limit the harmful effects of long-term corticosteroid
use in children (9), and the need for a personalized approach to disease management to
improve upon these outcomes.

Clinical management of JDM currently relies on compiled empirical metrics such
as physician global visual analog scale (VAS) of disease activity and muscle strength
quantified via the childhood myositis assessment scale (CMAS) or manual muscle testing
(MMT) (10). However, how these clinically observable phenotypes are rooted in disease
immunopathology remains insufficiently understood. The presence of myositis-specific
antibodies (MSA) that correspond to distinct clinical phenotypes and recent work showing
that MSAs may be pathogenic (11,12) suggest the involvement of B cells (13). The
expansion of naive B cells in JDM has been highlighted by three independent studies
using flow cytometry, mass cytometry, and single-cell RNA sequencing, respectively (14—
16). The adaptive arm of the immune system is further implicated in disease pathogenesis
by several large immunophenotyping studies that demonstrated the expansion of extra-
follicular Th2 memory cells and central memory B cells (17,18). Additionally, the innate
immune system has emerged as a contributor in JDM. Inflamed muscles of JDM patients
exhibited the presence of plasmacytoid dendritic cells and macrophage-secreted proteins
(19, 20), while similarly, biopsies of JDM and adult DM skin lesions showed an increase
in CD14* and CD68* macrophages (21, 22). In peripheral blood, NK cells were found to
be both dysfunctional and hyperproliferative in JDM (15, 23). Together, these findings
highlight the involvement of both the adaptive and innate immune compartments in JDM
across the peripheral immune system and disease-affected tissues. However, it also
raises the question of whether the cause of JDM lies in a single cell type, or is a
manifestation of broadly dysregulated cellular interactions across the immune system.

Systems-level studies based on single-cell measurements are required to reveal
how dysregulated cell populations act individually or cooperatively to produce the
observed chronic inflammation. Accordingly, several groups have turned to single-cell
RNA sequencing as it enables unbiased profiling of tissues at single-cell resolution. In the
first single-cell study of peripheral blood of JDM patients, we previously described a pan-
cell-type IFN gene signature over-expressed in treatment-naive JDM that was most
strongly correlated with disease activity in cytotoxic cell types (16). This signature has
since been independently identified in the peripheral blood of treatment-naive patients
(24). However, these studies have utilized small cohorts and lack adequate controls, in
part due to the rarity of JDM in the human population. Thus, it has been challenging to
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determine which of these cell populations are specific to JDM, how these disease-specific
dysregulated cell states are coordinated with one another, and which of these states
cooperatively change in response to treatment.

In this study, we addressed this challenge by profiling JDM across several stages
of disease activity using multiplexed Cellular Indexing of Transcriptomes and Epitopes by
sequencing (CITEseq) of peripheral blood mononuclear cells (PBMCs) from 15 JDM
patients, totaling 22 samples, and 5 healthy controls (HC). To minimize confounding by
immune suppression, we included 9 treatment-naive samples as well as 6 samples from
patients with inactive disease off medication. We leveraged CITEseq’'s simultaneous
profiling of gene and surface protein expression to gain more insight into cell phenotype
and function, as cell surface proteins are used as diagnostic biomarkers and the targets
of many biologic drugs. We first analyzed the data based on compositional differences in
immune populations and confirmed the disease activity-associated imbalance of naive
and mature lymphocytes. We next performed a multi-modal differential expression
analysis and identified surface protein expression of SIGLEC-1 in CD14" monocytes as
a composite metric of the transcriptional Type | IFN response and clinical disease activity.
To move beyond the identification of disease-specific cell populations and towards an
understanding of immune-scale dysregulation in JDM, we applied a recently developed
computational method DECIPHERseq (25) to infer networks of coordinated cell states
from large cohorts of single-cell data. Importantly, this unsupervised network inference
approach takes advantage of the biological heterogeneity in our entire dataset, improving
upon previous work that relied on traditional pairwise comparisons of subsetted disease
groups. Our analysis revealed immune dysregulation of cell homeostasis processes in
active disease and imbalance of mature and naive lymphocytes expressing signatures
suggestive of extra-follicular reactions as a potential autoimmune mechanism.
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Results
JDM is associated with immunophenotypic differences in B and CD4+ T cell
compartments

In order to gather a dataset with appropriate controls and limited confounding,
patients were selected according to disease activity and medication status (Table 1).
CITEseq was performed on PBMCs to generate single-cell libraries (Figure 1). Surface
protein expression was measured using antibody-derived tags (ADT). Following pre-
processing steps, we identified 29 clusters, which comprised 21 distinct immune cell
populations across 105,827 cells. Clusters were annotated using canonical RNA and
protein markers (Supplemental Figure 1A-B) within all major mononuclear immune cell
compartments (Fig 2A).

We first characterized global changes to cell composition across disease states
comparing treatment-naive JDM, inactive JDM and HC. We quantified the differences in
cell type proportion between disease states and the correlation to disease activity
measures for physician global (PGA), cutaneous, and muscle VAS scores. Within the T
cell compartment, the proportion of regulatory T cells (Tregs) (CD45RO", IL2R*, FOXP3")
was increased in patients with treatment-naive JDM (p = 0.02) consistent with previous
findings (16). CD4* effector T cells (CD45R0O") and gdT cluster 2 (TRDC,TRGC) were
significantly increased in patients with inactive JDM and the proportion of cells from these

populations negatively correlated with disease activity measures (p < 0.05, Spearman).

There was an overall decrease in innate populations, including CD56°"9" and CD56%™
NK cells and classical dendritic cells (cDCs) in treatment-naive JDM compared to HC and
inactive JDM, and the proportion of these cell types also correlated negatively with
disease activity (p < 0.05, Spearman).

Compared to healthy controls and patients with inactive disease, treatment-naive
patients had higher proportions of multiple naive B cell populations, including B_naive1
(IgM*1IgD*CD38*CD24*CD10*) corresponding to an immature naive B population,
B _naive2 (IgM,*IlgD*CD38°CD24"), and B_naive3 (IgM*lgD*CD38*CD24*), and the
proportion of these populations positively correlated with multiple disease activity
measures (p < 0.05, Spearman) (Fig 2C). The proportion of B_mem cells, characterized
by TNFRSF13B (encoding TACI) expression, negatively correlated with the muscle VAS
score (p < 0.05, Spearman). B_naive4 consisted solely of cells from one treatment-naive
patient and one healthy control and was excluded from the analysis, and clustering was
weighted highly for RNA, suggesting a distinct gene signature was driving this separation.
An orthogonal analysis clustering all B cells by ADT alone resolved patient-specific
clustering and confirmed expansion of the immature naive B population
(IgM*1IgD*CD38*CD24*CD10*) and relative decrease of memory B populations in
treatment-naive JDM highlighting skewing of the B cell compartment toward an immature
state at disease onset (Supplemental Figure 2). The immature naive B population in
both analyses had higher expression of CD38 (both RNA and protein) and MZB1, two
genes essential for plasma cell differentiation, than all other B cell clusters (26, 27).

Given the observed imbalance of lymphocytes in treatment-naive JDM, we next
sought to immunophenotype B cell and CD4" T cell subsets in JDM at the proteomic level
to gain molecular insight into cell states. Differential protein analysis of immature naive B
cells comparing treatment-naive JDM to HC identified increased expression of CD325
and MICA-MICB and decreased expression of CD1C, BAFF-R and PD-L1 (Supplemental
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Table 1). Within the CD4" T compartment (Supplemental Figure 3A), CD4*Tregs from
TNJDM had higher expression of Tim-3, ICOS, CD164 and CD38 and down-regulation
of CD101, a molecule which decreases pro-inflammatory T cell responses (28). CD4*Teff
in patients with treatment-naive JDM had higher surface expression of CD164 and PD-1
and down regulation of KLRG1, an inhibitory molecule (Supplemental Figure 3B). The
over-expression of PD-1 on the cell surface suggested that peripheral T helper cells might
be present in JDM (29, 30). However, while ICOS expression was higher (Benjamini-
Hochberg (BH) p < 0.05), no difference was found in surface expression of CXCR5
between CD45ROMPD-1"CD4* T cells and CD45R0O"°PD-1"°CD4"* T cells, and these cells
were not significantly expanded in JDM (Supplemental Figure 3C-E). Taken together,
these compositional and immunophenotyping observations add to the growing body of
work showing that JDM in the treatment-naive state is characterized by relative
imbalances of naive and mature lymphocyte states (16, 24), reduced innate immune
populations (23) and distinct CD4* T and B cell immunophenotypes (17,18).

SIGLEC-1 expression is a composite measure of the IFN gene signature in JDM

We next compared gene and protein expression between treatment-naive JDM
and HC samples in all cell types based on the hypothesis that certain cell types may not
be altered in composition but may be functionally altered at the molecular level.
Monocytes displayed the highest number of differentially expressed genes (n = 211)
and proteins (n = 19) in our pairwise analysis including CD169 (SIGLEC-1), CD107a
(LAMP-1), and CD164 (Supplemental Figure 4). SIGLEC-1 is a monocyte-restricted IFN-
induced protein that was recently identified as a potential biomarker in JDM (31). Both
CD107a and CD164 are cell adhesion molecules involved in trafficking of activated
mononuclear cells and adhesion to vascular endothelium (32).

A common finding across all cell types was overexpression of genes enriched in
Type | IFN processes, which was previously reported in bulk expression data (33, 34) and
confirmed in single-cell studies (Supplemental Figure 5) (16, 24). Taking advantage of
our richer dataset, we also identified that the strength of the IFN gene signature varied
widely across both patients (Fig 3c) and cell types. Using an IFN gene score derived from
the transcriptional data (Supplemental Figure 6), we plotted the average score per patient
per cell type and applied hierarchical clustering, which identified a cluster of “IFN-hi”
patients and “IFN-lo” patients. The group of “IFN-I0” patients included two treatment-naive
JDM patients that clustered with inactive and HC patients. This heterogeneity of the IFN
gene signature was, in part, explained by disease activity level (Fig 3d) as a bulk IFN
gene score significantly correlated with disease activity (R=0.69, Spearman), but also
highlights that some patients with JDM have little to no IFN gene expression detectable
in PBMCs suggesting heterogeneity of this gene signature in a subset of patients with
JDM.

Given that SIGLEC-1 is a type | IFN-induced protein, we next wanted to determine
if patterns of type | IFN stimulated gene expression were reflected at the protein level, as
protein biomarkers are more amenable for clinical lab-based testing. SIGLEC-1
expression in CD14" monocytes correlated with disease activity to a similar degree as the
IFN gene signature (Fig 3e and 3f), and SIGLEC-1 expression was itself highly correlated
with the IFN gene signature in monocytes (Fig 3g). This suggests that SIGLEC-1
expression in CD14* monocytes is a representative composite measure of the IFN gene
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signature in JDM and supports the role of type | IFN in the immunopathology of JDM.
Overall, these results underscore the potential of SIGLEC-1 as a biomarker of IFN
response in JDM that may be useful for stratifying disease severity and tracking disease
activity.

Unsupervised network analysis reveals coordinated cell states shared among
immune cells in JDM

Given that differential expression analysis relies on pairwise comparisons between
only subsets of the data, we next aimed to identify biological features of JDM that are
shared across stages of disease activity. We therefore applied an unsupervised network
inference method, DECIPHERSseq, to the 6 major cell types annotated in the dataset: B
cells, CD4T, CD8T, NK cells, gdT cells, and myeloid cells. These cell populations were
chosen to pass thresholds of at least 100 cells of a given cell type in each sample.
DECIPHERseq relies on non-negative matrix factorization (NMF) (35-37) to first break
the dataset down into gene sets that represent distinct states of biological activity, or
‘activity programs’, and then constructs a network of gene expression programs (GEPs)
based on how expression of the programs covaries across patient samples (Figure 4A).
After outlier filtering, NMF identified 76 activity programs (Figure 4B).

Next, a force-directed network graph from the correlation matrix of activity
programs was constructed where each node represents a program, and each edge
represents a statistically significant positive correlation between two nodes. Correlations
between programs are accounted for in the network visualization such that further apart
nodes can be interpreted as being negatively correlated and closer nodes can be
interpreted as being positively correlated programs (Figure 4C). Using DECIPHERseq's
community detection algorithm, we identified 6 hubs of inter-connected activity programs
or ‘modules.” All modules contained multiple cell types, highlighting that many biological
processes in JDM are coordinated across several immune cell types. We annotated each
node using gene set enrichment analysis (38, 39) of gene ontology terms (GO) (40) on
each program’s ranked gene list (Supplemental Table 2, Supplemental Figures 7-12).

DECIPHERseq’s module enrichment analysis identified consensus biological
themes for each module in an unsupervised manner by quantifying the likelihood of a GO
term being shared across the programs in a module if programs were randomly sampled
from the entire network by chance (Figure 4D, Supplemental Table 3). Module 1 was
enriched for Type | IFN response programs including gene sets such as ‘Response to
Virus’ and ‘Response to Type | IFN’. Module 2 consisted of programs enriched for protein
assembly genes used in ribosomal processes including ‘Translational Initiation’ and
‘Ribosomal Large Subunit Biogenesis’. Module 3 was comprised of mostly lymphocyte
programs with strong correlations to Type | IFN response programs in Module 1. Module
3 was significantly enriched for gene sets related to cell adhesion and migration
suggesting that this module identified programs that represent lymphocyte extravasation
to tissue. Module 4 represented cells’ steady state processes as it was enriched for gene
sets like ‘Circadian Rhythm’. Module 5 was annotated as a Stress Response module
because it was enriched for ‘Cellular Response to Inorganic Substance’ and ‘Cellular
Response to Chemical Stress’. Module 6 contained very few gene sets that were unique
to the module, as it consisted of programs enriched for programs intrinsic to eukaryotic
cells like ‘DNA Packaging’ and ‘Chromatin Organization.’
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JDM CDA4T cells express Th-2 programming coordinated with B cell and IFN
responses

Next, we aimed to interpret the annotated network in the context of GEPs associated with
JDM compared to healthy control patients irrespective of disease activity. In the
annotated network, we first focused on Module 1, which was enriched in type | IFN
responses and many programs in this module were increased in TN-JDM, as expected
(Figure 5A). All 6 major cell types expressed an IFN gene program which were highly
correlated to one another, as shown by the closely connected hub at the center of module
1. This IFN hub was associated with JDM as compared to HC patients (t-test, p<0.05).
Using DECIPHER-seq, we identified additional coordinated gene programs in Modules 1-
3 expressed more highly in all JDM patients compared to HCs, irrespective of disease
activity. This is a strength of DECIPHER-seq, which uses NMF to uncover co-occurring
activity programs that were previously obscured in DGE analysis by the high number of
overexpressed IFN-related genes.

Reflecting the altered composition of lymphocytes in JDM, several lymphocyte
programs were significantly associated with JDM (p<0.05). In addition to IFN gene
programs, JDM patients more highly expressed two B cell programs: B5 in Module 1 (IFN
Response) was enriched in mRNA metabolic processing, RNA splicing, chromatin
organization and modification and cell cycle and B14 in Module 3 (Cell Adhesion and
Migration) was enriched in chromatin remodeling and cytoskeletal organization
(Supplemental Figures 7, 9). These enriched biological processes suggest that a
subpopulation of B cells are more transcriptionally active and undergoing epigenetic
regulation in JDM relative to healthy controls. In Module 3, correlated to B14, CD4T1
(enriched in cell migration, adhesion, activation, and secretion) was expressed more
highly in JDM and in the region of the UMAP corresponding to CD4*Teff cells. This
CDA4T1 program expressed by CD4*Teff cells contained several genes (GATA3, CCRA4,
PRDM1) that indicate skewing towards a Th2 subset while expression of PRDM1 (Blimp-
1) suggests participation in extra-follicular reactions. Th2 CD4* T cells were previously
found to be expanded in JDM and associated with extra-follicular B-T cell help (17, 18).
We observed similar expression of Th2 genes (GATA3, CCR4, PRDM1) in CD4T10, a
Treg program (FOXP3, IKZF2, IL2RA) expressed more highly in JDM. Notably, CD4T17
was negatively associated with JDM; this program was enriched in protein targeting to
the membrane and endoplasmic reticulum indicating that these processes may be
dysfunctional in CD4T cells of children with JDM. Together, these results suggest that
though CD4"T cells are skewed towards a Th2 phenotype with the capacity to help B cells
via extra-follicular B-T cell interactions, protein processing of these cells may be
dysfunctional. DECIPHERseq revealed that this Th2 alteration in the CD4" Treg and Teff
cells is accompanied by the emergence of a transcriptionally active subpopulation of B
cells, suggesting coordinated alterations in JDM lymphocytes.

Novel cell states are correlated with IFN gene expression in treatment-naive JDM
We next wanted to identify modules and gene programs associated with stages of
disease activity in JDM (HC, Inactive and Active JDM, and treatment-naive JDM). To do
so, we performed a 4 group ANOVA on each program in the network and post-hoc
pairwise analysis using the Tukey test (Figure 6A). We identified programs in Module 1,
2 and 5 that were significantly associated with disease activity (ANOVA p<0.05). The IFN
gene programs were also significantly overexpressed in treatment-naive JDM patients,
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as expected. Notably, expression of the central Module 1 IFN hub GEPs in all six major
cell types more strongly correlated to the clinically evaluated PGA than the pseudobulk
IFN gene score derived from pairwise DEG analysis (Supplemental Figure 13),
underscoring the utility of an integrative approach like DECIPHERseq in uncovering
clinically relevant gene signatures.

By isolating these IFN GEPs in each cell type, we were able to determine disease
activity-associated programs correlated with the IFN hub, some of which corroborate
previous findings (Figure 6A, C). We identified B9, an immature naive B cell program
(CD24, CD38, MME)), to be significantly associated with disease activity (Figure 6B). This
gene program shared several top markers (TCL1A, SOX4, NEIL1) with the immature B
cell population that we and others previously found to be expanded in treatment-naive
JDM (16, 24). Notably, expression of this activated immature B cell program could be
attributed to the B_naive1 cluster that we observed to be increased in treatment-naive
JDM during our previous compositional analysis (Supplemental Figure 14). Similarly
correlated with the IFN hub, NK12 was associated with treatment-naive JDM compared
to active and inactive disease (p<0.05, Tukey). NK12 (MKI67, HIST1H1B) was enriched
for gene sets related to cell proliferation and epigenetic regulation, confirming findings
that a subset of NK cells in JDM are highly activated and proliferative (Figure 6C) (15,
23).

Given our ability to identify cell states shown in prior work to be relevant in JDM
with this approach, we next focused our attention on the novel disease activity-associated
programs that DECIPHERseq identified as correlated with the Module 1 IFN hub. We
identified CD4T10—significantly associated with disease relative to HCs in both
treatment-naive JDM and all JDM cases suggesting a central role in JDM (Figures 6B,
7C)—as a proliferative Treg program which includes signatures of activated Th2 effector
cells implicated in extra-follicular B-T interactions (FOXP3, IL2RA, PRDM1, MKI67,
GATA3, CCR4) (41). CD4T10 also was characterized by high expression of IKZF2, an
important transcription factor for thymocyte development, indicating that cells that express
CD4T10 are thymically generated Tregs (tTreg) as opposed to peripherally induced Tregs
(42—44). Notably, CD4T10 included the marker CCR4, a chemokine receptor highly
expressed in Tregs that are preferentially recruited to skin under inflammatory conditions
(45). Expression of CD4T10 co-localized with surface protein expression of CCR4 in the
UMAP as well (Figure 5D), highlighting the advantage of this multi-modal sequencing
approach in identifying functional markers of transcriptomic signatures.

We also identified the program gdT4, a cytotoxic Th1 polarized gdT program
(GZMB, CX3CR1, TBX21) that was also correlated with the central IFN hub and was
significantly increased in treatment-naive patients compared to both active and inactive
JDM and HC (p<0.05, Tukey). High expression of TRGC1 and TBX21, encoding the
transcription factor T-bet responsible for regulating IFNG expression, specifically
identified cells expressing this program as Th1-like TCRVd1 gdT cells (46, 47). A similar
subpopulation of gdT cells was found to be increased in synovial fluid and blood of
juvenile idiopathic arthritis patients, another disease thought to be mediated by
autoantibody-driven recruitment of autoreactive immune cells to tissue (48, 49). This
points to gdT4 as an important inflammatory cell state specific to treatment-naive disease
that is potentially up- or downstream of the Type | IFN response broadly upregulated
across immune cell populations in JDM. Together, CD4T10 and gdT4 highlight the utility
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of dimensionality reduction-based methods like DECIPHERseq in furthering our ability to
interpret novel cell states in noisy high-dimensional data.

Cell homeostasis processes are dysregulated across many immune cell types in
JDM

All of the novel disease activity programs that were highly expressed in treatment-
naive JDM were components of Module 1 which was enriched for Type | IFN and its
associated immune processes. The network-wide ANOVA analysis also revealed disease
activity-associated programs in Module 2 and Module 5, which were significantly anti-
correlated with Module 1 (Figure 7A) and expressed at lower levels in treatment-naive
JDM patients compared to healthy controls and other JDM patients. Module 2 was
significantly enriched for gene ontology terms like ‘ribosome assembly’ and ‘translational
initiation’ while Module 5 was enriched for terms like ‘regulation of cell death’ and ‘cellular
response to chemical stress’ (module enrichment p<0.005) (Figure 7B). The disease-
associated programs within these modules were expressed significantly lower in
treatment-naive JDM, suggesting dysfunction of cellular processes that underpin
ribosomal activity and cell stress response in at disease onset (Figure 7D).

Notably, disease activity-associated programs CD8T11, NK8 and gdT15 (FOS,
JUN, NFKBIA, CXCR4, SOCS1) in Module 5 share their top 5 expressed genes (Figure
7C) and are each individually enriched in ‘regulation of cell death’ and ‘regulation of cell
cycle’ (Supplemental Figure 11). We quantified the overlap in gene expression between
activity programs by Fisher’s exact test and confirmed the high gene loading similarity
between programs in Stress Response Module 5 (Figure 7C). All three of these programs
are expressed at lower levels in active and treatment-naive JDM and negatively
correlated with activated cytotoxic cell signatures identified in Module 1 (Supplemental
Figure 15). In addition to these three disease activity-associated programs, our gene
loading similarity analysis revealed that the programs CD4T9 and B10 also share top
marker genes (FOS, JUN, NFKBIA). This suggests that regulatory mechanisms of cell
death are disrupted in cytotoxic cell populations in patients with active disease and these
processes are also disrupted in lymphocytes.

In the NK cell compartment, Program 9 was characterized by CD160, an important
regulatory molecule on NK cells, CCL4, and CX3CR1 which is implicated in the
recruitment of NK cells to inflamed tissues (50). Notably, processes enriched in NK9 such
as ribosome assembly and protein targeting to the ER were also found to be
downregulated in treatment-naive JDM (23). Program 8 and 9 were broadly expressed
programs in the NK cells (Figure 7D) and were expressed lower in treatment-naive JDM,
suggesting dysfunctional cell signaling in NK cells may play a role in JDM as other studies
have shown (15).

In Module 2, CD4T17 was enriched in several gene sets related to protein
processing such as protein targeting to the ER. Interestingly, this program was also
characterized by high expression of several genes encoding members of the actin protein
family (ACTB, ACTG1). Given the crucial role actin filaments play in antigen recognition
during the formation of the immune synapse, dysfunction in components of that protein
machinery could have significant effects on the immune system. Among other disease
activity-associated programs, differential expression of CD4T17 between HCs and JDM
patients persisted even in inactive disease. Taken together, disease activity-associated
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programs in Modules 2 and 5 highlight shared cellular processes that may be under-active
in JDM, providing new insights into potential cellular mechanisms that accompany the
known signature of overactive IFN-response in JDM.
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Discussion

Multiple components of the adaptive and innate immune compartments have been
implicated in the pathogenesis of JDM. However, previous studies have been unable to
uncover how multiple disease-associated cell states are coordinated to produce the
observed autoimmune signature. Here in the largest single-cell study of JDM to date, we
provide an unbiased, comprehensive picture of immune dysregulation. We first show that
immune dysregulation in JDM manifests at the level of compositional imbalance of
immune populations and that these compositional changes are correlated to clinical
metrics of disease activity. Next, we identify distinct disease-associated molecular
signatures of lymphocyte and myeloid subsets through differential analysis and
demonstrate that of these markers, surface expression of SIGLEC-1 in CD14+ monocytes
is a composite metric of disease activity and reflects the heterogeneous type | IFN
response in disease (34, 51-53). Finally, using DECIPHERseq to integrate disease-
associated programs, we uncover how this type | IFN response is coordinated with known
signatures and novel cell states, generating new hypotheses for disease etiology.

Broadly, we observe that the composition of PBMCs changes in JDM, with an
under-representation of innate immune cells and an expansion of lymphocytes with bias
toward immature naive populations over memory phenotypes in B and CD4T cells. Within
the B cell compartment, the distinctive transcriptomic and proteomic signature of
immature naive B cells is consistent with what we and others previously reported in
treatment-naive disease (16, 24). Given that autoantibodies are thought to play a role in
disease pathogenesis, this skewing of the B cell compartment would seem
counterintuitive. However, given recent findings emphasizing the importance of extra-
follicular B cell differentiation pathways through which autoreactive “activated naive” B
cells are precursors to antibody-secreting cells, we hypothesize that this skewing may be
suggestive of extra-follicular reactions in JDM (29, 30, 54). In fact, the expanded immature
naive population had higher expression of CD38 and MZB1, genes important for plasma
cell differentiation. While these data indicate that naive B cell populations expanded are
in JDM, the overall low expression of CD27 and CXCRS5 across all B cells made it difficult
for to conclude that this population matches the double negative B cell population
associated with SLE. However, recentimmunophenotyping work in a large cohort of JDM
patients that found simultaneous expansion of CXCR5- central memory B cells and Th2
cells provides support for further investigation into extra-follicular B-T cell help in JDM
(17).

Accompanying these imbalances in B cells, we observe complementary
dysregulation in the T cell compartment that lends further support to the hypothesis of
extra-follicular interactions in JDM. In populations of peripheral blood FOXP3* Tregs and
CD4* effector T cells, we identify a common signature of Th2 activation expressing genes
associated with extra-follicular T cell responses (GATA3, CCR4, PRDMT1) that is
associated with JDM compared to HC, and treatment-naive JDM when disease activity is
considered. These findings are consistent with previous work, which identified skewing of
CD4* T cells toward a Th2 phenotype in JDM and showed in vitro that peripheral Th2
cells were efficient in helping B cells, including stimulating antibody production (18). Other
studies have reported that Tregs are expanded in muscle while peripheral blood
percentages remain unchanged and that these Tregs in JDM have diminished
suppressive capacity, raising the possibility of these cells being exhausted in disease
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(55). In contrast, our results show that the expanded population of peripheral Tregs are
proliferative and activated (MKI67, IL2RA, IRF4), taking on a Th2 signature.

One possible explanation for these seemingly discordant findings is that Tregs in
JDM may coopt the transcriptional machinery of effector cells for Th2-specific
suppression, which was proposed by Zheng et al. based on the observation that the
transcription factor IRF4 is constitutively expressed in Tregs and is necessary for
suppression of Th2-mediated activity (56). Similar instances of Tregs’ strategy of co-
opting transcriptional pathways characteristic of effector T cells have been observed for
Th1 and Th17 suppression (57, 58). Though the exact mechanism remains elusive, it
has been posited that Tregs use components of effector T-cell differentiation as a strategy
to ‘program’ their deployment to specific inflammatory microenvironments (59). Our data
is consistent with this model based on two observations. First, the Th2 signature we
identified in Tregs contains high expression of IKZF2 indicating that this population of
Tregs, that is expanded in JDM, originate from the thymus (42—44). Second, the same
subset of Tregs upregulate transcriptomic and proteomic expression of CCR4—paralleled
by increased expression of CCR4 in CD4" effector T cells— which is preferentially
expressed in Tregs recruited to the skin (45). Thus, we speculate that this expanded
population of Th2-like Tregs in JDM could represent a peripheral response to site-specific
Th2-mediated inflammation in disease-affected tissue potentially driven by autoantibody-
producing extra-follicular B-T cell interactions. Future studies should focus on validating
expansion of these CCR4" Treg and CCR4" Teff populations in the blood of a larger
cohort of JDM patients and functional in vitro studies of Tregs isolated from JDM tissue
to determine their suppressive capacity as Treg dysfunction lies at the heart of many
autoimmune conditions. Spatial profiling of target tissues would also be insightful to
determine the architectural organization, presence of tertiary lymphoid structures, and
cell-cell interactions of lymphocytes in JDM muscle and skin.

The observation that type | IFN responses are seen in every immune cell type and
increase with clinical metrics of disease activity adds to the growing body of work
suggesting that disease activity in JDM correlates with this transcriptional signature (16,
51, 60). However, given the time and cost, it remains infeasible to use transcriptomic
sequencing as a lab-based clinical diagnostic tool. Our data points to surface expression
of SIGLEC-1 in monocytes is a composite measure of the IFN gene signature in JDM and
correlates to clinical disease activity. Together with a recent independent study of JDM in
a cohort of similar size, we provide external validation that SIGLEC-1 is a suitable
biomarker for disease monitoring to pursue in larger immunophenotyping validation
studies given the lower cost and ease of implementing screening by flow cytometry (31).
Although profiling blood limits the mechanistic insight compared to skin or muscle, it is a
more suitable sample type for biomarker discovery, particularly in a pediatric disease that
requires longitudinal monitoring. Importantly, we show that SIGLEC-1 directly reflects the
IFN gene signature using paired gene and protein expression measurements,
strengthening support for its use as a biomarker. Finally, our work highlights that the IFN
gene signature is heterogeneous in JDM. This suggests that SIGLEC-1 levels could also
be used to stratify and nominate patients who may benefit from IFN-directed therapies.
Further study of this biomarker, and the role of SIGLEC-1 in disease, is an important step
toward precision care of JDM.
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Finally, we show that integrative approaches like DECIPHERseq can be used to
consolidate disparate findings into a systems-level understanding of how interactions
among cell states could manifest in disease. Here, our network analysis revealed that a
module of hyper-activated IFN response across cell types is coordinated with dysfunction
in ribosomal biogenesis, protein processing, and the regulation of cell death that is also
shared across many cell types. This model contextualizes recent work that has identified
ribosomal dysfunction in NK cells as a disease signature in JDM but also raises the
possibility that defective translational machinery is not unique to that cell population (15,
23). Given that Type | IFN directly promotes the activation and proliferation of NK cells
(61-63), we speculate that NK cells in JDM are unable to properly translate cytolytic
protein machinery required for effector function in response to IFN signaling, potentially
perpetuating the IFN response. Similarly, the shared program between CD8T, gdT, and
NK cells that describes regulation of cell death and cellular stress response suggests a
common dysfunction across cytotoxic cell populations in JDM. Given the importance of
cytotoxic cells in clearing cellular debris including autoantigenic neutrophil extracellular
traps shown to be pathogenic in JDM (12), dysfunctional cytotoxic populations could
result in accumulation of such debris thereby triggering an autoimmune response
mediated by lymphocytes. Future work is required to parse the mechanism by which
these cells acquire these defects and characterize downstream effects in other immune
populations.

These findings should be interpreted in the context of the study’s limitations. First,
despite being the largest single-cell study in JDM to date, sample numbers are limited
when compared to cohorts used in immunophenotyping studies. Larger studies are
necessary to validate SIGLEC-1 expression as a biomarker of IFN-mediated disease
activity and confirm expansion of CCR4" CD4" T cell subsets as well as capture the
phenotypic heterogeneity of JODM. Additionally, this study lacked data from matched JDM
skin and muscle which would have enabled insight into how dysregulated cell states in
blood might influence local microenvironments in disease-affected tissue.

In summary, using CITEseq to profile compositional and functional imbalance
throughout changes in disease activity, we provide a comprehensive map of the
coordinated immune dysregulation underlying JDM. We identify a candidate biomarker
that reflects the broadly shared overactive IFN response and provide support for its
potential utility in disease management. Furthermore, we reveal novel cell states
potentially upstream of this IFN signature that generate new hypotheses for the role of
extra-follicular interactions in disease pathogenesis, drawing parallels to other
autoimmune diseases. Importantly, these findings pose a new paradigm to how we
approach JDM treatment. The dysregulation of processes simultaneously with
hyperactivation of other cell states necessitates that we identify therapeutic strategies that
restore balance to the dynamic interactions between immune populations rather than
simply turning off a set of pathways. Taken together, our work sets the stage for improving
clinical management of JDM by providing a foundation for systems-level inquiry into the
cellular basis of this disease. More broadly, application of a similar analytical strategy
could provide insight into the immunologic basis of other childhood-onset autoimmune
diseases characterized by a type | IFN gene signature.
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Methods

Study Cohort & Sample Processing

Patients were recruited to the Juvenile Myositis Precision Medicine Biorepository between
2018 and 2021 and underwent informed consent. This study was approved by the UCSF
IRB. Clinical data was collected by study investigators and recorded in a secure REDCap
database. Treatment-naive JDM was defined as a new diagnosis of JDM as deemed by
the treating clinician with no systemic immune suppressant use in the prior 4 weeks.
Inactive JDM was defined as normal CK, MMT82=78 and Physician Global VAS score<0.5
to reflect PRINTO clinically inactive disease definitions but with some modifications based
on the data available. Active disease was defined as Physician Global VAS score=0.5
and taking immune suppressive medication. Healthy controls were enrolled who had no
prior autoimmunity, no known or suspected genetic disorders, immunodeficiency, active
cancer, or history of organ or bone marrow transplantation, no infection or antibiotics in
the prior 4 weeks, no chronic systemic immunomodulatory medication use and no
vaccinations in the prior 6 weeks. Peripheral blood samples were collected at each study
visit and processed by the Pediatric Clinical Research Core Sample Processing Lab.
PBMCs were collected in SepMate tubes (n=9) using Ficoll separation or CPT tubes
(n=15), isolated per manufacturer’s guidelines, and cryopreserved in liquid nitrogen.

CITE-seq of human PBMCs

Our experimental protocol followed protocol from our previous study (16) with certain
modifications to account for confounding time-related and batch effects. Note these
experiments were carried out using early access kits from BD Genomics before the
implementation of commercially-available single-cell protein/RNA assays (e.g. Feature
Barcoding, 10x Genomics; BD Abseq, BD Genomics, Supplemental Table 4), and
researchers are recommended to use those newer solutions for any follow-up studies as
the techniques and reagents have been refined. PBMCs from 27 distinct samples were
gently thawed in a 37°C water bath and re-suspended using a pipette set to 1 mL. Cell
counts and viability were determined using a Cellometer Vision (Nexcelcom) with AOPI
staining (Nexcelcom cat. CS2-0106-5ML). Cells were multiplexed into four pools: one “cross
pool” with all samples that consisted of only one time point and three pools consisting of
longitudinal samples. Longitudinal samples from the same individual were assigned to
separate pools to enable genetic demultiplexing. After pooling, cells were resuspended in
90 ul of 1% BSA in PBS and Fc blocked with 10 pl Human Trustain FcX (Biolegend cat.
422302) for 10 minutes on ice then stained on ice for 45 minutes with a pool of 268
antibodies in 100 pl, for a final staining volume of 200 pl. Antibodies were pooled on ice
with 2.2 pl per antibody per 1x106 cells (BD Genomics). Cells were quenched with 2 ml
1% BSA in PBS and spun at 350xg for 5 minutes and further washed two more times with
2 ml of 1% BSA in PBS. After the final wash, cells were resuspended in 100 ul and
strained through a 40 uM filter (SP Bel-Art cat. H13680-0040). Each longitudinal pool was
split across two 10X lanes while the “cross pool” was split across six 10X lanes (6 wells
total, 5x10° cells/well). The 10x Chromium was run and post-GEM RT and cleanup were
done according to manufacturer’s protocol (10X Genomics 3’ Kit V3). Starting at cDNA
amplification, modifications to the protocol were made: 1 yl of 2 yM additive primer (BD
Genomics, beta kit) specific to the antibodies tags was added to the amplification mixture.
During the 0.6X SPRIselect (Beckman Coulter, B23318) isolation of the post-cDNA
amplification reaction cleanup, the supernatant fraction was retained for ADT library
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generation. Subsequent library preparation of the cDNA SPRI-select pellet was done
exactly according to protocol, using unique SI PCR Primers (10X Genomics). For the ADT
supernatant fraction, a 1.8X SPRI was done to isolate ADTs from other non-specifically
amplified sequences, followed by sample index PCR. Sample index PCR for the ADTs
was done using the cycling conditions as outlined in the standard protocol (15 cycles) but
using unique SI-PCR Primers such that all libraries could be mixed and sequenced
together. Subsequent SPRI selection was performed, and all libraries were quantified and
analyzed via Qubit 2.0 (Fisher) and Bioanalyzer (Agilent), respectively, for quality control.
We sequenced the libraries on 2 lanes of a NovaSeq S4 (lllumina), aligned using
CellRanger (10X Genomics) to generate feature barcode matrices.

Sequencing data pre-processing and integration

Data was demultiplexed using genotypes with demuxlet (64) and doublets were
filtered using DoubletFinder (65). Next, the data were filtered to remove genes with < 3
cells. Additional filters were applied to the cells, removing cells with greater than 5000
ADT counts to avoid antibody aggregates and with >60% ribosomal or >15%
mitochondrial DNA (mtDNA) reads. For the ADT data, cells were additionally filtered to
remove those with fewer than 70 antibodies detected, and with any antibody isotype
control measurements greater than 50. To remove background ambient RNA signal, we
ran SoupX separately on each of the six RNA libraries and then merged them (66).
Aggregated data was log-normalized and scaled, regressing out percent mtDNA, percent
ribosomal DNA, and cell cycle (S, G2M) (67). Data was then integrated with Harmony,
with 20 max iterations and 30 max iterations per cluster (68).

DSB was run on all six ADT libraries individually, using default parameters except
for more stringent quantile clipping (0.01, 0.99) (69). The background distribution of empty
droplets was defined as suggested in the DSB vignette. Isotype controls were then
removed from the dataset, and RPCA was used to integrate the DSB-normalized ADT
data across libraries. Following RPCA, the data was re-scaled and cell cycle scores (S,
G2M genes) and the number of ADT counts and features were regressed out. The
harmonized RNA and RPCA corrected ADT were combined using Weighted Nearest
Neighbors, with default parameters except for prune.SNN = 1/20. Leiden clustering was
run on the resulting graph (method = igraph), at a 1.4 resolution (70). Two clusters were
removed with low to no expression of ADT and the object was reclustered with the same
parameters. The Seurat function ‘FindAllMarkers’ was used to identify the top 5 markers
per cluster.

We removed an additional 3 clusters: 2 were very small clusters with a
transcriptomic profile consistent with doublets (original Leiden clusters 26 and 29,
Supplementary Figure 16), and 1 diffusely expressed cluster (original Leiden cluster 19).
We further sub-clustered 3 clusters that expressed genes representative of more than
one cell type: original Leiden clusters 16, 17 and 23. Sub-clustering was performed using
Seurat’s ‘FindSubCluster’ function using the lowest possible resolution to divide the
population into two clusters. Based on minimal transcriptional differences between them,
original Leiden clusters 1, 5, 9, 11 and 15 were merged into a single CD4*T naive
population, clusters 3 and 10 into a single naive CD8*T population, and cluster 7 and part
of the subsetted cluster 23 CD569™ NK population. Due to interpersonal heterogeneity in
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monocytes, all CD14* monocyte clusters were merged into one CD14" monocyte
population (71, 72).

While annotating, we discovered that the FOXP3-signature normally attributed to
Tregs was only present in a subset of the cluster and FindSubCluster did not appropriately
isolate the FOXP3* cells. We therefore subsetted the cluster and re-ran
‘FindVariableFeatures’, ‘ScaleData’, ‘RunPCA’, ‘FindNeighbours’, ‘FindClusters’ with the
Louvain algorithm and a resolution of 0.8, and ‘RunUMAP’. This enabled us to subset a
smaller group of cells with a statistically significant expression of FOXP3 compared to
other clusters using FindAllMarkers, which we hence annotated T regulatory cells.
Annotation of the remaining clusters was performed using both canonical gene and
protein markers. One B cell population consisted almost solely of cells from two donors.
This was annotated as B_naive4, and was not used in downstream analysis, but included
in UMAPs.

Cell type proportion analysis

Cell type proportion was calculated as the proportion of each cell type for each individual
and was compared for: treatment-naive JDM compared to HC, treatment-naive JDM
compared to inactive JDM and inactive JDM compared to HC using Kruskal-Wallis test
with Dunn’s post-test. To determine the association between cell abundance and disease
activity, the Spearman correlation coefficient between cell type proportion and physician
global VAS scores was calculate and p values were adjusted using BH.

Differential gene and protein expression analysis

The DGE and DPE analysis were completed using DESeq2. Size factors were set using
the function ‘computeSumFactors’ from the scran package. We used the default settings
for single cell data, namely test="LRT’, useT = T, minmu = 1e-6, fitType = ‘gimGamPor’,
and minReplicatesForReplace = Inf in the ‘DESeq’ function. Batch was included as a co-
variate using the ‘reduced’ argument. We filtered genes and proteins that were not
expressed in at least 5% of cells and analyzed only cell types where there were at least
100 cells in each group. We used cutoffs of |LFC| = 1 for genes, |[LFC| = 0.5 for proteins,
and BH p < 0.05. Over-representation analysis was performed on up- and downregulated
genes per cell type using the clusterProfiler package with GOBP as reference and
adjusted p < 0.05 (). For the PD1/CD45R0-subanalysis, we compared groups using
Seurat’'s FindMarkers with test.use = ‘MAST’, latent.vars = ‘well’, |[LFC| = 0.5, and BH
p<0.05.

Identification of global IFN signature

We created a list of IFN genes by excluding cell types with less than 100 cells in either
HC or treatment-naive JDM and then collected genes differentially expressed in at least
2 cell types. The average gene expression was calculated using Seurat’s
‘AverageExpression’ function. Expression was averaged per sample for each cell type.
The expression was visualized using dittoSeq’s ‘dittoHeatmap’ (73) with default,
unsupervised clustering settings of both rows and columns, and the dendrograms ordered
using the dendsort package (74). The clustering organized the genes into 7 distinct
modules, where Module 1 consisted exclusively of IFN-related genes. Average Module 1
scores for each cell type were then calculated using Seurat’s ‘AddModuleScore’ with
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default settings. Correlations between disease activity and IFN score was calculated
using Spearman correlation and visualized using ggplot2 (75).

Network inference from RNA data using DECIPHERseq

We applied NMF to the raw RNA count data as implemented in the DECIPHERseq
method with default parameters (25). The main output of NMF is a set of two orthogonal
vectors: gene loadings that represent how much a given gene contributes to that activity
program, and cell loadings that represent how strongly that program is expressed in a
given cell. The NMF rank, k, was chosen using the weighted subtrees metric based on
phylogenetic clustering, as described by Murrow et al. The final choices of rank k for each
cell type were ks=17, kcpat=17, Kcost=14, Kga1=13, Kmye0ida=17, knk=11 according to the
saturation point in the elbow plots (Supplemental Figure 17). Network clustering was
performed on the per-sample averaged program scores with default parameters as
described by Murrow et al. The corresponding gene loading vectors for each GEP were
analyzed as described by Kotliar et al. to quantify the strength of an individual gene’s
contribution to that program, referred to as ‘marker gene scores’ (36). GSEA was
performed on the resultant ranked gene lists using the fgsea (76) package in R with GO
and Hallmark gene sets. Module themes were assigned by calculating module enrichment
p-values using the ‘Get_enrichment_pvals’ function in DECIPHERseq with default
parameters. Module and gene set enrichment results were visualized using
ClusterProfiler (77).
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Statistics

All statistical analyses and visualization of results were performed using open-sourced R
(version 4.2.3). Pairwise comparisons of cell proportions between patient groups were
performed using a Kruskal-Wallis test with post-hoc Dunn comparison, with p-values
adjusted for multiple comparisons by Holm correction. Significance of Pearson
correlations between GEPs used for network construction was calculated using
bootstrapping as implemented in DECIPHERseq. Analyses of disease association with
GEPs was performed using two-tailed unpaired t-test or ANOVA with post-hoc Tukey test.
False discovery rates for GSEA annotation and module enrichment across programs
were calculated and corrected at the cutoff FDR < 0.01 as described by Murrow et al.
Gene loading similarity was calculated as the Pearson correlation between gene loadings
for each activity program and all other activity programs in the same module with p-values
calculated by permutation testing. Correlation methods used in specific figures are
described in the corresponding legends and in Methods, and significance for statistical
tests was set at the threshold P < 0.05.

Study approval

This study was approved by the UCSF IRB #17-24003. Written informed consent to
participate in this study was provided by the participant or the participants’ legal guardian
depending on the age of the participant. Assent was obtained when appropriate.

Data availability

The datasets presented in this study are deposited in the CZ CELLXGENE Discover
resource as ‘CITEseq of JDM PBMCs’
(https://cellxgene.cziscience.com/collections/c672834e-c3e3-49cb-81a5-
4c844be4a975). The code used for this analysis will be made publicly available on Github
at “grabadam-cal/j[dm_crosslong” upon manuscript acceptance.
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https://doi.org/10.1101/2023.11.07.566033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.07.566033; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Table 1. Disease Characteristics

available under aCC-BY-ND 4.0 International license.

TNJDM Active Inactive HC
(N=9) (N=7) (N=6) (N=5)
Sex
Female 3 (33.3%) 4 (57.1%) 5 (83.3%) 2 (40.0%)
Male 6 (66.7%) 3 (42.9%) 1(16.7%) 3 (60.0%)
Age (years)
Median [min-max] 7.0 [2.0-15] 13 [5.0-18] 16 [5.0-18] 3.0 [1.0-16]
Prednisolone treatment — no. (%) 0 (0%) 1(14.3%) 0 (0%)
Methyl prednisolone treatment — no. (%) 0 (0%) 1(14.3%) 0 (0%)
Methotrexate treatment — no. (%) 0 (0%) 4 (57.1%) 0 (0%)
HQL treatment — no. (%) 0 (0%) 4 (57.1%) 0 (0%)
IVIG treatment — no. (%) 0 (0%) 1 (14.3%) 0 (0%)
Physician Global VAS
Median [min-max] 5.0 [1.5-7.5] 1.5[0.50-8.0] 0 [0-0.10]
Muscle VAS
Median [min-max] 4.0 [0.50-8.5] 0.50 [0-3.5] 0 [0-0]
Cutaneous VAS
Median [min-max] 4.0 [1.5-7.0] 1.0 [0-7.0] 0 [0-0.20]
Patient/Parent Global VAS
Median [min-max] 5.0 [2.0-8.2] 2.0 [0-8.0] 0 [0-0.40]
Missing 2 (22.2%) 0 (0%) 0 (0%)
CDASIACT
Median [min-max] 16 [4.0-35] 2.0 [0-8.0] 0[0-1.0]
CHAQ-score
Median [min-max] 1.0 [0-2.4] 0[0-1.3] 0 [0-0.38]
Missing 2 (22.2%) 0 (0%) 0 (0%)
MMT8-score
Median [min-max] 70 [59-76] 80 [67-80] 80 [79-80]
Missing 4 (44.4%) 0 (0%) 0 (0%)
MSA
MDAS5 1(11.1%) 0 (0%) 0 (0%)
NEG 1(11.1%) 1(14.3%) 1(16.7%)
NXP2 1(11.1%) 4 (57.1%) 2 (33.3%)
TIF1y 6 (66.7%) 2 (28.6%) 2 (33.3%)
UNK 0 (0%) 0 (0%) 1(16.7%)
Muscle enzyme elevation Present — no. (%) 8 (88.9%) 3 (42.9%) 1(16.7%)

Overview of clinical characteristics from the 15 patients with JDM and 5 healthy controls, totalling 27 samples. Some patients had longitudinal sampling at different
disease stages. Myositis specific antibodies were sent to Oklahoma Myositis Research Foundation for testing. TNJDM = treatment-naive JDM, Active = Active JDM
defined by Physician global visual analog score (VAS) = 0.5 and on medication, Inactive = Inactive JDM defined by physician global VAS < 0.5 and off medication, HC =
healthy control, HQL = Hydroxychloroquine, VAS = Visual Analogue Scale, CDASIACT = Cutaneous Dermatomyositis Disease Area and Severity Index Activity Score,

CHAQ = Childhood Health Assessment Questionnaire, MMT = Manual Muscle Testing, MSA = Myositis Specific Antibodies.
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Figure 2. Cell types associated with JDM in peripheral blood. (A)UMAP constructed using weighted-nearest neighbors (wnn) clustering
colored by cell type. pDCs=plasmacytoid dendritic cells, cDCs=classical dendritic cells, PBs=plasmablasts. B_mem = memory B cells.

(B) Heatmap with top 2 markers per cluster. (C) Boxplot shows cell type proportion by disease group, using Kruskal-Wallis test with Dunn’s
post hoc test comparing TNJDM to HC, TNJDM to inactive JDM and inactive to HC (Holm p.adj < 0.05). The dotplot above shows the
Spearman correlation between corresponding cell type proportion in boxplot and Physician Global VAS, where the size of the dot indicates
the correlation, the color indicates the direction of the correlation, and the border weight indicates significance (p.adj < 0.05).
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Figure 3. Type | IFN-induced gene and protein expression is associated with disease activity in JDM (A) Heatmap of average IFN
score per cell type and sample. Hierarchical clustering was performed using Euclidean distance and the complete clustering method. IFN
score was calculated based on average expression of IFN across all cells per sample. (B) Spearman correlation between IFN score and
Physician Global VAS colored by disease group.(C) Scatter plot showing Spearman correlation between CD169 (SIGLEC-1) expression and
IFN score for CD14+ monocytes.(D) Scatter plot showing Spearman correlation between CD169 (SIGLEC-1) expression and Physician Global
VAS for CD14+ monocytes. (E) Scatter plot showing Spearman correlation between IFN-score and Physician Global VAS for CD14+
monocytes.
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Figure 4. DECIPHERseq reveals network of coordinated GEPS from scRNAseq data in JDM. (A) Overview of the DECIPHERseq workflow. (B) Heatmap showing
6 major clusters of GEPs identified by DECIPHERseq (Pearson). GEPs are clustered into modules, with isolated GEPs filtered out (greyscale). (C) Force-directed
network constructed from correlated GEPs in PBMCs from JDM patients and healthy controls. Nodes represent programs in the given cell types and edges represent
positive significant correlations (Pearson, p<0.05). (D) Dotplot showing selected gene sets found to be enriched within specific modules compared to the rest of the
network. Color corresponds to module enrichment p value and size corresponds to a set’s rank in list of significantly enriched gene sets for that given module ordered
by ascending module enrichment p-value. All gene sets shown fall in the top 10 terms for their respective modules (total gene sets: 626).
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Figure 5. JDM is associated with a central IFN hub and cell specific gene programs in the B and CD4T compartments (A) Zoomed in
graph of Module 1. GSEA results for Response to Type | IFN GO term shown with each node colored according to FDR. Adjusted p-value of
module enrichment is also shown. (B) Boxplots showing significant differences in expression of selected programs between HC (n=5) and
JDM patients (n=22). (* p<0.05, ** p<0.01) (C)Network graph showing case-control analysis of each program’s expression, with node size
scaled according to p-value and colored according to strength of the association between disease status and program expression (t-test).
(D) wnnUMAPs showing expression of GEPs CD4T1 and CD4T10 with co-expression of surface protein CCR4.
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Figure 6. Disease activity in JDM is associated with central hub of IFN response in network, correlated with novel cell states. (A) Network graph showing
results of 4-group ANOVA of each program’s expression, with node size scaled according to p-value and colored according to strength of the association between
disease status and program expression. (B) Heatmaps showing top 10 marker genes for selected disease-associated programs for CD4T and B cells. Colored
according to Pearson correlation between gene expression and program expression in the indicated cell type. (C) Boxplots showing significant differences in
expression of selected programs between HC (n=5), Inactive JDM (n=6), Active JDM (n=7), and TNJDM patients (n=9). (* p<0.05, ** p<0.01, ***p<0.001).
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Figure 7. Protein processing and regulatory cell death programs are dysregulated in JDM. (A) Subset of Modules 1, 2, and 5 from original heatmap in

Figure 4B highlighting the negative correlations. (B) Heatmaps showing top 10 marker genes for selected disease-associated programs for NK and gdT cells.
Colored according to Pearson correlation between gene expression and program expression in the indicated cell type (p<0.05). C) Selected network modules are
colored by FDR of enrichment for indicated gene ontology set ((FDR<0.01) or gene loading similarity within Module 5. D) wnnUMAPs showing single-cell expression
of NK programs 8 and 9, and boxplots showing per-sample expression (4-way ANOVA p<0.05, Tukey *p<0.05).
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