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ABSTRACT 
Structural neuroimaging data have been used to compute an estimate of the biological age of 
the brain (brain-age) which has been associated with other biologically and behaviorally 
meaningful measures of brain development and aging. The ongoing research interest in brain-
age has highlighted the need for robust and publicly available brain-age models pre-trained 
on data from large samples of healthy individuals. To address this need we have previously 
released a developmental brain-age model. Here we expand this work to develop, empirically 
validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. 
To achieve this, we selected the best-performing model after systematically examining the 
impact of site harmonization, age range, and sample size on brain-age prediction in a 
discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 
5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset 
generalizability in an independent sample comprising 2,101 healthy individuals (age range: 8-
80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 
healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination 
yielded the following findings: (1) the accuracy of age prediction from morphometry data was 
higher when no site harmonization was applied; (2) dividing the discovery sample into two 
age-bins (5-40 years and 40-90 years) provided a better balance between model accuracy 
and explained age variance than other alternatives; (3) model accuracy for brain-age 
prediction plateaued at a sample size exceeding 1,600 participants. These findings have been 
incorporated into CentileBrain [https://centilebrain.org/#/brainAGE2], an open-science, web-
based platform for individualized neuroimaging metrics. 
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1. INTRODUCTION 
Prior literature has documented extensive age-related changes in brain morphology as 
inferred from structural magnetic resonance imaging (sMRI) studies [Hogstrom et al., 2013; 
Bethlehem et al., 2022; Dima et al., 2022; Frangou et al., 2022; Ge et al., 2023]. Machine 
learning algorithms can model these age-related changes to generate an estimate of the 
biological age of the brain (brain-age) [Baecker et al., 2021; Schulz et al., 2022; More et al., 
2023]. Brain-age estimates derived from healthy individuals can be used to establish a 
normative reference pattern for typical development and aging. In each individual, large 
deviations between brain-age and chronological age indicate atypical development or aging 
[Cole & Franke, 2017; Franke & Gaser, 2019; Ball et al., 2021; Modabbernia et al., 2022]. 
 
Key parameters that influence accuracy in any brain-age prediction workflow comprise the 
type of morphometric input features and machine learning algorithms, the size and age range 
of the sample, and the handling of site-effects, in the case of pooled samples. Input features 
include voxel-wise data [Cole et al., 2020; Baeker et al., 2021], or data derived via 
dimensionality reduction through atlas-based parcellation [Modabbernia et al.,2022] or 
statistical methods (e.g., principal component analysis) [Franke et al., 2013]. Generally, there 
is no advantage to using voxel-wise data or highly granulated parcels [Valizadeh et al., 2017; 
Baeker et al., 2021; Modabbernia et al., 2022]. There are also multiple algorithms for 
computing brain-age that comprise conventional methods, such as linear and Bayesian 
models, tree‐based and kernel-embedded models, and artificial neural networks commonly 

referred to as deep learning networks [Goodfellow et al., 2016]. Studies that have undertaken 
a comparative evaluation of these algorithms on the accuracy of sMRI-derived brain-age 
estimates collectively suggest that conventional methods outperform deep learning networks 
in addition to being computationally more efficient [Couvy-Duschesne et al., 2020; He et al., 
2020; de Lange et al., 2022; Grinstain et al., 2022; Modabbernia et al., 2022; More et al., 2023].   
 
We have previously shown that Support Vector Regression (SVR) with Radial Basis Function 
(RBF) Kernel is preferable to parametric and nonparametric, Bayesian, linear and nonlinear, 
and other kernel‐based models particularly because of its resilience to extreme outliers 
[Modabbernia et al. 2022]. We adopted this algorithm to build a developmental brain-age 
model based on morphometric data from healthy youth aged 5-22 years [Modabbernia et al., 
2022] and made this freely available to the scientific community through a web platform 
dedicated to providing models for individual-level neuroimaging measures 
[https://centilebrain.org/#/brainAGE]. Here we extend our previous work to construct brain-age 
prediction models that are empirically validated and provide greater coverage of the human 
lifespan. To achieve this, we pooled brain morphometric data from 35,683 healthy individuals 
(aged 5-90 years), as the discovery sample, and data from an independent sample totaling 
2,102 healthy individuals (aged 27.74 years, as the replication sample. We evaluated the 
effect of age and sample composition on model performance as there is no consensus 
regarding the optimal method for integrating these parameters into brain-age models. It is 
acknowledged that site harmonization strategies [Lombardi et al., 2020] significantly affect the 
performance of brain-age models. Moreover, brain-age studies have focused either on youth 
[Ball et al., 2021; Brower et al., 2021; Luna et al., 2021] or on middle-aged and elderly 
individuals [Cole & Franke, 2017; Elliot et al., 2021]. Thus, the workflow required for reliable 
brain-age estimates in samples that cover most of the lifespan remains unclear. To address 
these knowledge gaps, we empirically evaluated the performance of the SVR-RBF algorithm 
in our discovery sample using diverse site harmonization strategies and by resampling the 
discovery model to produce subsets of different sizes and age ranges. The resulting models 
were then tested on the replication sample for cross-sample performance and longitudinal 
consistency. We outline our method in detail while codes and the best-performing models are 
freely available on our dedicated web platform [https://centilebrain.org/#/brainAGE2]. 
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2. METHODS 
2.1 Samples 
Different independent samples were used for discovery, replication, and longitudinal 
consistency. These samples included pooled multisite sMRI data from Australia, East Asia, 
Europe, and North America (supplementary section S1, Figure S1). The discovery sample 
comprised 35,683 healthy individuals (53.59% female, age range 5-90 years; Table S1). The 
replication sample comprised a total of 2101 healthy individuals (55.35% female, age range 
8-80 years; Table S2). The longitudinal consistency sample included data from 377 healthy 
individuals (age range: 9-25 years; 49.87% female; Table S2) participating in the Southwest 
Longitudinal Imaging Multimodal Study (SLIM) and the Queensland Twin Adolescent Brain 
Study (QTAB). Only high-quality morphometric measures (supplementary section S2) were 
included from participants who were free of psychiatric, medical, and neurological morbidity 
and cognitive impairment at the time of scanning. 
 
2.2 Brain Morphometric Input Features  
Morphometric feature extraction from whole-brain T1-weighted images was implemented 
using the standard pipelines in the FreeSurfer image analysis suite 
(http://surfer.nmr.mgh.harvard.edu/) to yield a total of 150 morphometric features that have 
been extensively utilized in prior models for predicting brain age [Elliott et al., 2021; Han et 
al.2021; de Lange et al.,2022]. These comprised Desikan-Killiany atlas measures of cortical 
thickness (n=68), cortical surface area (n=68) [Desikan et al., 2006], and regional subcortical 
volumes (n=14) based on the Aseg atlas [Fischl et al., 2002].    
 
2.3 Evaluation of Brain-Age Models 
2.3.1 Core Elements 
(i) All brain-age models evaluated were sex-specific because of the known sex differences in 
brain morphometry. The method of evaluation was identical for both sexes. 
(ii) All models used the same 150 input features described above. 
(iii) All models used the SVR-RBF which we adopted as our algorithm of choice as we have 
demonstrated its favorable performance in terms of accuracy, computational efficiency, and 
robustness to outliers when compared to other machine learning algorithms [Modabbernia et 
al., 2022]. This choice is supported by independent studies that have undertaken a 
comparative evaluation of multiple algorithms [Beheshti et al., 2022; More et al., 2023]. 
(iv) The primary performance measures for all models were the mean absolute error (MAE), 
which represents the absolute difference between brain-age and chronological age, and the 
correlation coefficient (CORR) between brain-age and chronological age. 
(v) Brain-age is often overestimated in younger individuals and underestimated in older people 
[Liang et al., 2019; de Lange & Cole, 2020]. To counter this bias, we implemented a robust 
approach to adjust this age-related bias following Beheshti and colleagues [Beheshti et al., 
2019]. However, as age bias-corrected metrics often reflect elevated accuracy, even for 
models with poor performance [de Lange et al., 2022], we focus primarily on uncorrected 
model performance. 
 
2.3.2 Analysis Workflow  
The procedures used to generate optimized sex-specific models are illustrated in Figure 1. 
For all models, hyper-parameter tuning (C and sigma) was performed in the discovery sample 
using a grid search approach in a 10-fold cross-validation scheme across five repetitions. In 
each cross-validation, 90% of the discovery sample was used to train the model and 10% was 
used to test the model parameters; subsequently, the model was retrained on the entire 
discovery sample using the optimal hyperparameters identified from the cross-validation 
process. As detailed in the subsequent sections, first, we tested three different strategies for 
handling site effects. The site-harmonization strategy used in the subsequent procedures was 
selected based on its superior performance, as indicated by the lowest within-sample cross-
validation MAE (MAECV) and the highest CORR (CORRCV) in the discovery sample. The model 
with the lowest replication MAE and highest replication CORR in the replication sample 
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(referred to MAER and CORRR) and in the longitudinal consistency samples was chosen as 
the preferred model. 
 
2.3.3 Evaluation of Site Effects and Age Range in the Discovery Sample 
We evaluated three site handling strategies in each of five scenarios after partitioning the 
discovery sample into different age bins as follows: (i) a single bin with the full sample age 
range (5-90 years); (ii) nine bins each covering sequential 10-year intervals, i.e., age<10 years, 
10≤age<20 years, 20≤age<30 years, 30≤age<40 years, 40≤age<50 years, 50≤age<60 years, 
60≤age<70 years, 70≤age<80 years, and 80≤age<90 years; (iii) four bins each covering 
sequential 20-year intervals, i.e., age<20 years, 20≤age<40 years, 40≤age<60 years, and 
60≤age≤80 years; (iv) three bins each covering sequential 30-year intervals i.e., age<30 years, 
30≤age<60 years, and 60≤age≤90 years; (v) two age bins each covering sequential 40-year 
intervals, i.e., age<40 years, and 40≤age≤80 years. The following three site handling 
strategies were applied to each bin: (i) data residualisation with respect to the scanning site 
using Combat-GAM [Pomponio et al., 2020]; (ii) data residualization with respect to the 
scanning site using a generalized linear model [de Lange et al., 2022], and (iii) no site 
harmonization. The approach and age partition with the best-performing MAECV and CORRCV 
values were considered for further evaluation. 
 
2.3.4 Evaluation of Site Effects and Age Range in the Replication Sample 
The replication sample was partitioned in age bins similarly to the discovery sample and the 
pre-trained models were applied. The age bin partition that yielded the highest performing 
MAER and CORRR values was identified as the preferred age bins. 
 
2.3.5 Estimation of the Minimum Sample Size 
Subsequently, the discovery sample was randomly partitioned into 30 sex-specific subsets, 
ranging from 200 to 6,000 participants in increments of 200, without replacement. The 
robustness of the optimised sex-specific models to sample size in terms of CORRCV and 
MAECV was assessed in each partition using 10-fold cross-validation with five repetitions. This 
analysis was performed individually for each of the preferred age bins according to section 
2.3.4. 
 
2.3.6 Longitudinal Consistency 
The longitudinal consistency sample included T1-weighted scans from a total of 377 
participants scanned twice with an average interval of 1.89 (0.56) years. This sample was also 
divided into the preferred age bins as in the discovery and replication samples in section 2.3.4. 
The percentage change in MAE and CORR between the second scan and the first scan was 
evaluated in each age bin. 
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3. RESULTS 
3.1 Site and Sample Age Range 
Figure 2 illustrates cross-validated model performance within the distinct age bins of the 
discovery sample and Figure 3 illustrates the results of employing these pre-trained models in 
the independent replication sample. For simplicity, both figures display the results averaged 
across sexes as the sex-specific results were identical for males and females (Figures S2-S4, 
and Table S3-S6). For both sexes, omitting any site correction consistently demonstrated 
superior performance in terms of attaining the lowest MAECV values and highest CORRCV 
values across the age bins. 
 
Both in the discovery and the replication sample, the CORR and MAE were generally higher 
in age bins that included a wider age range. In other words, models based on a wider age 
range accounted for more of the variance in age but were less accurate. Therefore, in order 
to achieve a balance between CORR and MAE, we selected the two-bin partition with 
sequential 40-year intervals (i.e., 5-40 years and 40-90 years). By adopting this approach, we 
managed to attain a relatively low MAE while maintaining a relatively high CORR across sexes 
and age bins. Specifically, the respective average MAECV and CORRCV were 3.55 (1.17) years 
and 0.79 (0.10) (Figures S2-S3, Tables S3-S4) and the average MAER and CORRR were 5.28 
years and 0.68 (Figure S4-S5, Tables S5-S6). 
 
On average, age-bias adjustment improved the CORRCV and MAECV by 79.67% and 35.56%, 
respectively in the discovery sample (Table S3 and Table S4) and improved the CORRR and 
MAER by 287.06% and 41.79% in the replication sample (Table S5 and Table S6). 
 
3.3 Effect of Sample Size 
Figure 4 illustrates the effect of sample size in the discovery and replication samples using 
pre-trained models that were tested in 30 sex-specific subsets, ranging from 200 to 6,000 
participants in increments of 200, without replacement. In the discovery sample, the CORRCV 
improved in line with sample increase up to a size of 1,600 participants and it plateaued 
thereafter; the MAECV on the other hand exhibited smaller variation across varying sample 
sizes and stabilized around 1,000 participants (Figure S6 for sex-specific results). Similarly, in 
the replication sample, the CORRR increased and MAER decreased as a function of the sample 
size until it reached 1,600 participants and plateaued thereafter. 
 
3.4 Longitudinal Consistency 
Figure 5 illustrates the stability of the pre-trained models in each age bin using the longitudinal 
consistency sample. The results indicated that models utilizing the two-bin partition (i.e., 5-40 
years and 40-90 years) achieved optimal consistency on the longitudinal data. Sex-specific 
results are shown in supplementary Figures S7-S8 and Table S7-S8. On average, age-bias 
adjustment improved the CORR and MAE by 63.50% and 30.54%, respectively in the first 
scan of the longitudinal consistency sample; and age-bias adjustment improved the CORR 
and MAE by 73.39% and 20.87%, respectively in the second scan of the longitudinal 
consistency sample (Table S7 and Table S8). 
 
3.4 Data and Model Availability 
Information about data availability is provided in Tables S1 and S2. Our dedicated web portal 
freely provides the optimal model parameters to be applied to any user-specified dataset in 
the context of open science. In addition to the pre-trained sex-specific models, the website 
provides tutorials and codes (https://centilebrain.org/#/tutorial4). 
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4. DISCUSSION 
There is increased emphasis on the potential translational value of individualized 
neuroimaging measures such as brain-age that can be used to track deviation from typical 
brain development and brain aging [Cole & Franke, 2017; Franke & Gaser, 2019; Ball et al., 
2021; Modabbernia et al., 2022]. The literature on morphometry-derived brain-age models 
from healthy individuals shows performance heterogeneity that is predicated on 
methodological differences in the specific features used, the algorithm employed, the handling 
of site-effects, the sample size and age distribution. The aim of the current investigation was 
to provide a resource to be used as a normative reference for brain-age by the scientific 
community. Having such a resource accomplishes at least four important objectives. First, it 
enables harmonization of the methods and models available for brain-age computation across 
studies. Second, it empowers researchers who do not have access to large normative 
datasets to generate reliable brain-age estimates in their own datasets. Third, it supports rigor 
and reproducibility in brain-age research. Fourth, together with our developmental brain-age 
model [Moddabenia et al., 2022], also available through our web platform, it provides models 
that cover most of the human lifespan (5-90 years) thus meeting the needs of researchers 
working in development or aging. 
 
Following a systematic empirical evaluation, we selected SVR-RBF as the key algorithm 
[Modabbernia et al., 2022], and in this study, we determined the optimal site handling method 
for our model as well as the optimal age distribution for brain-age computation across most of 
the lifespan. This detailed evaluation was necessary as multiple prior studies have shown that 
site harmonization strategies as well as sample age distribution and size can influence model 
performance [de Lange et al., 2022]. As in previous reports, we found an inverse association 
between the age range of a sample, the MAE of the model, and the coefficient of correlation 
between brain-age and chronological age [de Lange et al., 2022]. MAE is generally lower in 
samples with a narrower age range which is attributable to the minimization of errors when 
the predicted brain-age approximates the mean chronological age of a sample.  Concomitantly, 
the correlation between brain-age and chronological age becomes lower the narrower the age 
range of a sample [de Lange et al., 2022]. Previous reports have also shown that model 
accuracy for brain-age is generally better with larger sample sizes [de Lange et al., 2022]. 
Here we confirm this observation, but we also show that this relationship plateaus in samples 
with over 1,600 participants. This finding is particularly useful for evaluating the robustness of 
other existing models and for planning future studies. 
 
The model proposed here suggests that an optimal balance between MAE and CORR is 
achieved when the lifespan sample is partitioned into two sequential age bins, 5-40 years and 
40-90 years. The age-bias corrected MAE and CORR values for females in the 5-40 years 
age bin were 3.53 and 0.83 respectively, and in the 40-90 years age bin they were 4.45 and 
0.86 respectively (also Table S5). In males, the age-bias corrected MAE and CORR values 
for females in the 5-40 years age bin were 3.60 and 0.84 respectively, and in the 40-90 years 
age-bin, they were 4.09 and 0.87 respectively (also Table S6). These values are well within 
the range reported in other studies that have evaluated different computational approaches to 
brain-age in healthy individuals. For example, More and colleagues [More et al., 2023] 
reported a range of MAE values between 4-8 years. 
 
We appreciate that brain morphometric features are not the only type of neuroimaging 
measures that can be used to derive brain-age estimates. Other studies have used 
neuroimaging data from different modalities [Goyal et al., 2019; Beck et al., 2021; Lund et al., 
2022; Zhou et al., 2023] or combinations of modalities [Cole, 2020; Niu et al., 2021; Rokiki et 
al., 2021]. Although it is important for the field to have a range of options for computing brain-
age that can accommodate a variety of scientific questions, the wide availability and relative 
ease of acquiring and extracting brain morphometric data contribute to the popularity and 
preponderance of brain-age studies that use such data. 
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In conclusion, we present empirically validated models for brain-age that can accommodate 
studies using data across most of the lifespan. We have outlined the methodological choices 
that have led to these models as well as their performance within and across samples as well 
as longitudinally. 
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6. FIGURE CAPTIONS 
Figure 1. Flowchart of brain age model optimization: after conducting the analysis with FreeSurfer and stratifying the samples by sex, the study 
proceeded as follows. (1) The discovery sample was utilized to evaluate the impact of site-harmonization strategies and age range. This analysis 
yielded the optimal site-harmonization strategy, and this optimal site-harmonization strategy was highlighted with a gray background. (2) The 
independent replication sample was employed to further investigate the influence of age range. The outcome of this analysis led to the 
determination of the optimal age bins and final models, with the chosen optimal age bins being highlighted in gray. (3) The independent 
longitudinal consistency sample was utilized to assess the longitudinal consistency of the pre-trained optimal models. 
 
Figure 2. Performance metrics derived from repeated cross-validation in different age bins of the discovery sample. Each line represents one of 
the three site handling methods: Red=no site correction; Blue=site harmonization with Combat-GAM; Green=site data residualization using a 
generalized linear model (GLM); CORR, correlation coefficient between brain-age and chronological age; MAE: mean absolute error between 
brain-age and chronological age. Sex-specific results in Supplementary Figures S1 and S2. 
 
Figure 3. Performance metrics derived from the application of the models pre-trained on different age bins of the discovery sample to the 
corresponding age bins of the replication sample. CORR values averaged across sexes were 0.23 for 10-year interval bins; 0.42 for 20-year 
interval bins; 0.54 for 30-year interval bins; 0.68 for 40-year interval bins; and 0.86 for the full age range of the sample. MAE values averaged 
across sexes were 2.21 years for 10-year interval bins; 5.92 years for 20-year interval bins, 5.22 years for 30-year interval bins; 5.28 years for 
40-year interval bins; and 8.52 years for the full age range of the sample. Sex-specific results are presented in supplementary Figure S4. CORR: 
correlation coefficient between brain-age and chronological age; MAE: mean absolute error between brain-age and chronological age. 
 
Figure 4. Model performance as a function of the discovery sample size in the two age bins (5-40 years and 40-90 years) of the discovery sample 
(left column) and replication sample (right column). Model parameters for each bin were obtained by randomly resampling the discovery sample 
without replacement generating subsets of 200-6,000 participants. The results are shown here as averages across sexes and the sex-specific 
findings are presented in supplementary Figure S6. CORR: correlation coefficient between brain-age and chronological age; MAE: mean absolute 
error between brain-age and chronological age. 
 
Figure 5. Model performance in longitudinal data. The left panel presents the CORR and MAE values for the first and second MRI scans, while 
the right panel exhibits the percentage changes (%) in CORR and MAE for the second scan compared to the first scan. The results were generated 
by employing models that had been trained on discovery samples from each age range division and then applied to the longitudinal consistency 
sample. CORR: correlation coefficient between brain-age and chronological age; MAE: mean absolute error between brain age and chronological 
age. 
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