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ABSTRACT

Structural neuroimaging data have been used to compute an estimate of the biological age of
the brain (brain-age) which has been associated with other biologically and behaviorally
meaningful measures of brain development and aging. The ongoing research interest in brain-
age has highlighted the need for robust and publicly available brain-age models pre-trained
on data from large samples of healthy individuals. To address this need we have previously
released a developmental brain-age model. Here we expand this work to develop, empirically
validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan.
To achieve this, we selected the best-performing model after systematically examining the
impact of site harmonization, age range, and sample size on brain-age prediction in a
discovery sample of brain morphometric measures from 35,683 healthy individuals (age range:
5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset
generalizability in an independent sample comprising 2,101 healthy individuals (age range: 8-
80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377
healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination
yielded the following findings: (1) the accuracy of age prediction from morphometry data was
higher when no site harmonization was applied; (2) dividing the discovery sample into two
age-bins (5-40 years and 40-90 years) provided a better balance between model accuracy
and explained age variance than other alternatives; (3) model accuracy for brain-age
prediction plateaued at a sample size exceeding 1,600 participants. These findings have been
incorporated into CentileBrain [https://centilebrain.org/#/brainAGEZ2], an open-science, web-
based platform for individualized neuroimaging metrics.
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1. INTRODUCTION

Prior literature has documented extensive age-related changes in brain morphology as
inferred from structural magnetic resonance imaging (sSMRI) studies [Hogstrom et al., 2013;
Bethlehem et al., 2022; Dima et al., 2022; Frangou et al., 2022; Ge et al., 2023]. Machine
learning algorithms can model these age-related changes to generate an estimate of the
biological age of the brain (brain-age) [Baecker et al., 2021; Schulz et al., 2022; More et al.,
2023]. Brain-age estimates derived from healthy individuals can be used to establish a
normative reference pattern for typical development and aging. In each individual, large
deviations between brain-age and chronological age indicate atypical development or aging
[Cole & Franke, 2017; Franke & Gaser, 2019; Ball et al., 2021; Modabbernia et al., 2022].

Key parameters that influence accuracy in any brain-age prediction workflow comprise the
type of morphometric input features and machine learning algorithms, the size and age range
of the sample, and the handling of site-effects, in the case of pooled samples. Input features
include voxel-wise data [Cole et al.,, 2020; Baeker et al., 2021], or data derived via
dimensionality reduction through atlas-based parcellation [Modabbernia et al.,2022] or
statistical methods (e.g., principal component analysis) [Franke et al., 2013]. Generally, there
is no advantage to using voxel-wise data or highly granulated parcels [Valizadeh et al., 2017;
Baeker et al.,, 2021; Modabbernia et al., 2022]. There are also multiple algorithms for
computing brain-age that comprise conventional methods, such as linear and Bayesian
models, tree-based and kernel-embedded models, and artificial neural networks commonly
referred to as deep learning networks [Goodfellow et al., 2016]. Studies that have undertaken
a comparative evaluation of these algorithms on the accuracy of sMRI-derived brain-age
estimates collectively suggest that conventional methods outperform deep learning networks
in addition to being computationally more efficient [Couvy-Duschesne et al., 2020; He et al.,
2020; de Lange et al., 2022; Grinstain et al., 2022; Modabbernia et al., 2022; More et al., 2023].

We have previously shown that Support Vector Regression (SVR) with Radial Basis Function
(RBF) Kernel is preferable to parametric and nonparametric, Bayesian, linear and nonlinear,
and other kernel-based models particularly because of its resilience to extreme outliers
[Modabbernia et al. 2022]. We adopted this algorithm to build a developmental brain-age
model based on morphometric data from healthy youth aged 5-22 years [Modabbernia et al.,
2022] and made this freely available to the scientific community through a web platform
dedicated to providing models for individual-level neuroimaging measures
[https://centilebrain.org/#/brainAGE]. Here we extend our previous work to construct brain-age
prediction models that are empirically validated and provide greater coverage of the human
lifespan. To achieve this, we pooled brain morphometric data from 35,683 healthy individuals
(aged 5-90 years), as the discovery sample, and data from an independent sample totaling
2,102 healthy individuals (aged 27.74 years, as the replication sample. We evaluated the
effect of age and sample composition on model performance as there is no consensus
regarding the optimal method for integrating these parameters into brain-age models. It is
acknowledged that site harmonization strategies [Lombardi et al., 2020] significantly affect the
performance of brain-age models. Moreover, brain-age studies have focused either on youth
[Ball et al., 2021; Brower et al., 2021; Luna et al., 2021] or on middle-aged and elderly
individuals [Cole & Franke, 2017; Elliot et al., 2021]. Thus, the workflow required for reliable
brain-age estimates in samples that cover most of the lifespan remains unclear. To address
these knowledge gaps, we empirically evaluated the performance of the SVR-RBF algorithm
in our discovery sample using diverse site harmonization strategies and by resampling the
discovery model to produce subsets of different sizes and age ranges. The resulting models
were then tested on the replication sample for cross-sample performance and longitudinal
consistency. We outline our method in detail while codes and the best-performing models are
freely available on our dedicated web platform [hitps://centilebrain.org/#/brainAGEZ2].
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2. METHODS

2.1 Samples

Different independent samples were used for discovery, replication, and longitudinal
consistency. These samples included pooled multisite SMRI data from Australia, East Asia,
Europe, and North America (supplementary section S1, Figure S1). The discovery sample
comprised 35,683 healthy individuals (53.59% female, age range 5-90 years; Table S1). The
replication sample comprised a total of 2101 healthy individuals (55.35% female, age range
8-80 years; Table S2). The longitudinal consistency sample included data from 377 healthy
individuals (age range: 9-25 years; 49.87% female; Table S2) participating in the Southwest
Longitudinal Imaging Multimodal Study (SLIM) and the Queensland Twin Adolescent Brain
Study (QTAB). Only high-quality morphometric measures (supplementary section S2) were
included from participants who were free of psychiatric, medical, and neurological morbidity
and cognitive impairment at the time of scanning.

2.2 Brain Morphometric Input Features

Morphometric feature extraction from whole-brain T1-weighted images was implemented
using the standard pipelines in the FreeSurfer image analysis suite
(http://surfer.nmr.mgh.harvard.edu/) to yield a total of 150 morphometric features that have
been extensively utilized in prior models for predicting brain age [Elliott et al., 2021; Han et
al.2021; de Lange et al.,2022]. These comprised Desikan-Killiany atlas measures of cortical
thickness (n=68), cortical surface area (n=68) [Desikan et al., 2006], and regional subcortical
volumes (n=14) based on the Aseg atlas [Fischl et al., 2002].

2.3 Evaluation of Brain-Age Models

2.3.1 Core Elements

(i) All brain-age models evaluated were sex-specific because of the known sex differences in
brain morphometry. The method of evaluation was identical for both sexes.

(i) All models used the same 150 input features described above.

(iif) All models used the SVR-RBF which we adopted as our algorithm of choice as we have
demonstrated its favorable performance in terms of accuracy, computational efficiency, and
robustness to outliers when compared to other machine learning algorithms [Modabbernia et
al.,, 2022]. This choice is supported by independent studies that have undertaken a
comparative evaluation of multiple algorithms [Beheshti et al., 2022; More et al., 2023].

(iv) The primary performance measures for all models were the mean absolute error (MAE),
which represents the absolute difference between brain-age and chronological age, and the
correlation coefficient (CORR) between brain-age and chronological age.

(v) Brain-age is often overestimated in younger individuals and underestimated in older people
[Liang et al., 2019; de Lange & Cole, 2020]. To counter this bias, we implemented a robust
approach to adjust this age-related bias following Beheshti and colleagues [Beheshti et al.,
2019]. However, as age bias-corrected metrics often reflect elevated accuracy, even for
models with poor performance [de Lange et al., 2022], we focus primarily on uncorrected
model performance.

2.3.2 Analysis Workflow

The procedures used to generate optimized sex-specific models are illustrated in Figure 1.
For all models, hyper-parameter tuning (C and sigma) was performed in the discovery sample
using a grid search approach in a 10-fold cross-validation scheme across five repetitions. In
each cross-validation, 90% of the discovery sample was used to train the model and 10% was
used to test the model parameters; subsequently, the model was retrained on the entire
discovery sample using the optimal hyperparameters identified from the cross-validation
process. As detailed in the subsequent sections, first, we tested three different strategies for
handling site effects. The site-harmonization strategy used in the subsequent procedures was
selected based on its superior performance, as indicated by the lowest within-sample cross-
validation MAE (MAEcy) and the highest CORR (CORRcy) in the discovery sample. The model
with the lowest replication MAE and highest replication CORR in the replication sample
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(referred to MAEr and CORRR) and in the longitudinal consistency samples was chosen as
the preferred model.

2.3.3 Evaluation of Site Effects and Age Range in the Discovery Sample

We evaluated three site handling strategies in each of five scenarios after partitioning the
discovery sample into different age bins as follows: (i) a single bin with the full sample age
range (5-90 years); (ii) nine bins each covering sequential 10-year intervals, i.e., age<10 years,
10<age<20 years, 20<age<30 years, 30<age<40 years, 40<age<50 years, 50<age<60 years,
60<age<70 years, 70<age<80 years, and 80<age<90 years; (iii) four bins each covering
sequential 20-year intervals, i.e., age<20 years, 20<age<40 years, 40<age<60 years, and
60<age<80 years; (iv) three bins each covering sequential 30-year intervalsi.e., age<30 years,
30=<age<60 years, and 60<age<90 years; (v) two age bins each covering sequential 40-year
intervals, i.e., age<40 years, and 40<age<80 years. The following three site handling
strategies were applied to each bin: (i) data residualisation with respect to the scanning site
using Combat-GAM [Pomponio et al., 2020]; (i) data residualization with respect to the
scanning site using a generalized linear model [de Lange et al., 2022], and (iii) no site
harmonization. The approach and age partition with the best-performing MAEcy and CORRcy
values were considered for further evaluation.

2.3.4 Evaluation of Site Effects and Age Range in the Replication Sample

The replication sample was partitioned in age bins similarly to the discovery sample and the
pre-trained models were applied. The age bin partition that yielded the highest performing
MAERr and CORRRg values was identified as the preferred age bins.

2.3.5 Estimation of the Minimum Sample Size

Subsequently, the discovery sample was randomly partitioned into 30 sex-specific subsets,
ranging from 200 to 6,000 participants in increments of 200, without replacement. The
robustness of the optimised sex-specific models to sample size in terms of CORRcy and
MAEcy was assessed in each partition using 10-fold cross-validation with five repetitions. This
analysis was performed individually for each of the preferred age bins according to section
2.3.4.

2.3.6 Longitudinal Consistency

The longitudinal consistency sample included T1-weighted scans from a total of 377
participants scanned twice with an average interval of 1.89 (0.56) years. This sample was also
divided into the preferred age bins as in the discovery and replication samples in section 2.3.4.
The percentage change in MAE and CORR between the second scan and the first scan was
evaluated in each age bin.
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3. RESULTS

3.1 Site and Sample Age Range

Figure 2 illustrates cross-validated model performance within the distinct age bins of the
discovery sample and Figure 3 illustrates the results of employing these pre-trained models in
the independent replication sample. For simplicity, both figures display the results averaged
across sexes as the sex-specific results were identical for males and females (Figures S2-S4,
and Table S3-S6). For both sexes, omitting any site correction consistently demonstrated
superior performance in terms of attaining the lowest MAEcy values and highest CORRcy
values across the age bins.

Both in the discovery and the replication sample, the CORR and MAE were generally higher
in age bins that included a wider age range. In other words, models based on a wider age
range accounted for more of the variance in age but were less accurate. Therefore, in order
to achieve a balance between CORR and MAE, we selected the two-bin partition with
sequential 40-year intervals (i.e., 5-40 years and 40-90 years). By adopting this approach, we
managed to attain a relatively low MAE while maintaining a relatively high CORR across sexes
and age bins. Specifically, the respective average MAEcy and CORRcy were 3.55 (1.17) years
and 0.79 (0.10) (Figures S2-S3, Tables S3-S4) and the average MAEr and CORRRr were 5.28
years and 0.68 (Figure S4-S5, Tables S5-S6).

On average, age-bias adjustment improved the CORRcy and MAEcy by 79.67% and 35.56%,
respectively in the discovery sample (Table S3 and Table S4) and improved the CORRg and
MAER by 287.06% and 41.79% in the replication sample (Table S5 and Table S6).

3.3 Effect of Sample Size

Figure 4 illustrates the effect of sample size in the discovery and replication samples using
pre-trained models that were tested in 30 sex-specific subsets, ranging from 200 to 6,000
participants in increments of 200, without replacement. In the discovery sample, the CORRcy
improved in line with sample increase up to a size of 1,600 participants and it plateaued
thereafter; the MAEcy on the other hand exhibited smaller variation across varying sample
sizes and stabilized around 1,000 participants (Figure S6 for sex-specific results). Similarly, in
the replication sample, the CORRRr increased and MAERg decreased as a function of the sample
size until it reached 1,600 participants and plateaued thereafter.

3.4 Longitudinal Consistency

Figure 5 illustrates the stability of the pre-trained models in each age bin using the longitudinal
consistency sample. The results indicated that models utilizing the two-bin patrtition (i.e., 5-40
years and 40-90 years) achieved optimal consistency on the longitudinal data. Sex-specific
results are shown in supplementary Figures S7-S8 and Table S7-S8. On average, age-bias
adjustment improved the CORR and MAE by 63.50% and 30.54%, respectively in the first
scan of the longitudinal consistency sample; and age-bias adjustment improved the CORR
and MAE by 73.39% and 20.87%, respectively in the second scan of the longitudinal
consistency sample (Table S7 and Table S8).

3.4 Data and Model Availability

Information about data availability is provided in Tables S1 and S2. Our dedicated web portal
freely provides the optimal model parameters to be applied to any user-specified dataset in
the context of open science. In addition to the pre-trained sex-specific models, the website
provides tutorials and codes (https://centilebrain.org/#/tutorial4).
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4. DISCUSSION

There is increased emphasis on the potential translational value of individualized
neuroimaging measures such as brain-age that can be used to track deviation from typical
brain development and brain aging [Cole & Franke, 2017; Franke & Gaser, 2019; Ball et al.,
2021; Modabbernia et al., 2022]. The literature on morphometry-derived brain-age models
from healthy individuals shows performance heterogeneity that is predicated on
methodological differences in the specific features used, the algorithm employed, the handling
of site-effects, the sample size and age distribution. The aim of the current investigation was
to provide a resource to be used as a normative reference for brain-age by the scientific
community. Having such a resource accomplishes at least four important objectives. First, it
enables harmonization of the methods and models available for brain-age computation across
studies. Second, it empowers researchers who do not have access to large normative
datasets to generate reliable brain-age estimates in their own datasets. Third, it supports rigor
and reproducibility in brain-age research. Fourth, together with our developmental brain-age
model [Moddabenia et al., 2022], also available through our web platform, it provides models
that cover most of the human lifespan (5-90 years) thus meeting the needs of researchers
working in development or aging.

Following a systematic empirical evaluation, we selected SVR-RBF as the key algorithm
[Modabbernia et al., 2022], and in this study, we determined the optimal site handling method
for our model as well as the optimal age distribution for brain-age computation across most of
the lifespan. This detailed evaluation was necessary as multiple prior studies have shown that
site harmonization strategies as well as sample age distribution and size can influence model
performance [de Lange et al., 2022]. As in previous reports, we found an inverse association
between the age range of a sample, the MAE of the model, and the coefficient of correlation
between brain-age and chronological age [de Lange et al., 2022]. MAE is generally lower in
samples with a narrower age range which is attributable to the minimization of errors when
the predicted brain-age approximates the mean chronological age of a sample. Concomitantly,
the correlation between brain-age and chronological age becomes lower the narrower the age
range of a sample [de Lange et al., 2022]. Previous reports have also shown that model
accuracy for brain-age is generally better with larger sample sizes [de Lange et al., 2022].
Here we confirm this observation, but we also show that this relationship plateaus in samples
with over 1,600 participants. This finding is particularly useful for evaluating the robustness of
other existing models and for planning future studies.

The model proposed here suggests that an optimal balance between MAE and CORR is
achieved when the lifespan sample is partitioned into two sequential age bins, 5-40 years and
40-90 years. The age-bias corrected MAE and CORR values for females in the 5-40 years
age bin were 3.53 and 0.83 respectively, and in the 40-90 years age bin they were 4.45 and
0.86 respectively (also Table S5). In males, the age-bias corrected MAE and CORR values
for females in the 5-40 years age bin were 3.60 and 0.84 respectively, and in the 40-90 years
age-bin, they were 4.09 and 0.87 respectively (also Table S6). These values are well within
the range reported in other studies that have evaluated different computational approaches to
brain-age in healthy individuals. For example, More and colleagues [More et al., 2023]
reported a range of MAE values between 4-8 years.

We appreciate that brain morphometric features are not the only type of neuroimaging
measures that can be used to derive brain-age estimates. Other studies have used
neuroimaging data from different modalities [Goyal et al., 2019; Beck et al., 2021; Lund et al.,
2022; Zhou et al., 2023] or combinations of modalities [Cole, 2020; Niu et al., 2021; Rokiki et
al., 2021]. Although it is important for the field to have a range of options for computing brain-
age that can accommodate a variety of scientific questions, the wide availability and relative
ease of acquiring and extracting brain morphometric data contribute to the popularity and
preponderance of brain-age studies that use such data.
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In conclusion, we present empirically validated models for brain-age that can accommodate
studies using data across most of the lifespan. We have outlined the methodological choices
that have led to these models as well as their performance within and across samples as well

as longitudinally.
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6. FIGURE CAPTIONS

Figure 1. Flowchart of brain age model optimization: after conducting the analysis with FreeSurfer and stratifying the samples by sex, the study
proceeded as follows. (1) The discovery sample was utilized to evaluate the impact of site-harmonization strategies and age range. This analysis
yielded the optimal site-harmonization strategy, and this optimal site-harmonization strategy was highlighted with a gray background. (2) The
independent replication sample was employed to further investigate the influence of age range. The outcome of this analysis led to the
determination of the optimal age bins and final models, with the chosen optimal age bins being highlighted in gray. (3) The independent
longitudinal consistency sample was utilized to assess the longitudinal consistency of the pre-trained optimal models.

Figure 2. Performance metrics derived from repeated cross-validation in different age bins of the discovery sample. Each line represents one of
the three site handling methods: Red=no site correction; Blue=site harmonization with Combat-GAM,; Green=site data residualization using a
generalized linear model (GLM); CORR, correlation coefficient between brain-age and chronological age; MAE: mean absolute error between
brain-age and chronological age. Sex-specific results in Supplementary Figures S1 and S2.

Figure 3. Performance metrics derived from the application of the models pre-trained on different age bins of the discovery sample to the
corresponding age bins of the replication sample. CORR values averaged across sexes were 0.23 for 10-year interval bins; 0.42 for 20-year
interval bins; 0.54 for 30-year interval bins; 0.68 for 40-year interval bins; and 0.86 for the full age range of the sample. MAE values averaged
across sexes were 2.21 years for 10-year interval bins; 5.92 years for 20-year interval bins, 5.22 years for 30-year interval bins; 5.28 years for
40-year interval bins; and 8.52 years for the full age range of the sample. Sex-specific results are presented in supplementary Figure S4. CORR:
correlation coefficient between brain-age and chronological age; MAE: mean absolute error between brain-age and chronological age.

Figure 4. Model performance as a function of the discovery sample size in the two age bins (5-40 years and 40-90 years) of the discovery sample
(left column) and replication sample (right column). Model parameters for each bin were obtained by randomly resampling the discovery sample
without replacement generating subsets of 200-6,000 participants. The results are shown here as averages across sexes and the sex-specific
findings are presented in supplementary Figure S6. CORR: correlation coefficient between brain-age and chronological age; MAE: mean absolute
error between brain-age and chronological age.

Figure 5. Model performance in longitudinal data. The left panel presents the CORR and MAE values for the first and second MRI scans, while
the right panel exhibits the percentage changes (%) in CORR and MAE for the second scan compared to the first scan. The results were generated
by employing models that had been trained on discovery samples from each age range division and then applied to the longitudinal consistency
sample. CORR: correlation coefficient between brain-age and chronological age; MAE: mean absolute error between brain age and chronological
age.
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