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 2 

Abstract  24 

An understanding of cell types is essential for understanding neural circuits, but only when the 25 

response of each type is clearly defined and predictable, as has been observed in the retina1. Recent 26 

work has shown that neural responses in the visual cortex are of high dimensionality, questioning the 27 

validity of defining cell types in the deeper visual system2–4. Here we investigate the dimensionality 28 

of neural responses in the midbrain using two-photon calcium imaging in superficial layers of the 29 

mouse superior colliculus (SC). Responses of individual neurons to closely related stimuli, such as 30 

ON and OFF light signals, were mutually dependent such that the response to one stimulus could be 31 

predicted from the response to the other. In contrast, individual neurons responded to brightness and 32 

motion in a statistically independent manner, maximizing functional diversity but preventing 33 

traditional cell type classification. To capture the globally high, locally low dimensionality of neural 34 

responses, we propose a multidimensional response model, in which classification of cellular 35 

responses is meaningful only in local low-dimensional structures. Our study provides a framework to 36 

investigate the processing of visual information by the SC, which likely requires a high-dimensional 37 

response space structure5,6 to perform higher-order cognitive tasks7–12. 38 

 39 

 40 

Introduction  41 

Classification of neurons according to genetic and functional types has been a powerful way to 42 

understand the functional organization of the nervous system1, enabling targeted recordings and 43 

genetic therapies. The goal of cell type classification has been to uncover a single set of types, such 44 

that each cell belongs to only one type1, and has relied on the assumption that a meta-structure 45 

covering all response features exists. This approach works well in a low dimensional response space, 46 

where features are correlated such that classification based on feature x will be similar to classification 47 

based on feature y. However, in a high dimensional response space, features are uncorrelated, 48 

preventing compression into a single classification. 49 

 50 

Classification of neurons in the retina has been relatively successful13–17. Retinal ganglion cells 51 

(RGCs) have functional, morphological, and molecular features that are well matched13,18,19, 52 

including OnOff direction-selective cells tuned to fast visual stimuli and On direction-selective cells 53 
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tuned to slow stimuli. These cell-type-specific responses are further defined by the depth of dendritic 54 

stratification and synaptic specificity within the inner plexiform layers, according to the complement 55 

of genes expressed. Together, these findings suggest a low-dimensional organization of retinal 56 

response space. In contrast, cell-type classification has been less effective in downstream visual 57 

areas20–22, including the visual cortex, where response space has a relatively high dimensionality2,6.  58 

 59 

The SC is an ancient visual structure in the midbrain that can be divided into a superficial region 60 

(sSC) that relays visual information to the cortex and a deep multimodal part (dSC) that transforms 61 

sensory information into motor commands7,23–28. In mice, it receives retinotopically organized input 62 

from  ~90% of RGCs23,29, of which there are ~40 different types13. However, despite several attempts 63 

at creating a functional classification system for the SC, only 4-5 distinct morpho-physiological types 64 

have been identified20,21,30,31,32. Moreover, the question of response space dimensionality in the SC 65 

has not been addressed. 66 

 67 

We investigated the dimensionality of response space in the SC and examined whether this 68 

dimensionality influences the ability to functionally classify neurons. Using two-photon calcium 69 

imaging of the SC in awake mice, we recorded the responses of 6,872 neurons to different light 70 

stimuli. An overall statistical independence between responses to unrelated stimuli, as well as mutual 71 

dependence between responses to related stimuli, suggested that the SC response space is 72 

multidimensional. Moreover, this multidimensionality limited the ability to cluster neurons according 73 

to cell type. Our results provide a conceptual framework for functional classification in high-74 

dimensional response spaces as well as insight into how retinal information is transformed at the first 75 

central visual structure. 76 

 77 

 78 

Results  79 

Unrelated stimuli drive independent responses 80 

To investigate visual response space in the midbrain, we collected functional responses of sSC 81 

neurons to four visual stimuli that elicit a range of visual responses (Figure 1a-b, Supplementary 82 

Figure 1). The stimuli included: 1) A 10-degree circular chirp-modulated stimulus (chirp); 2) A full-83 

screen sinusoidal grating drifting at 5 degrees per second (d/s) in 12 directions (slow drift); 3) A full-84 
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screen sinusoidal grating drifting at 40 d/s in 12 directions (fast drift); and 4) A full-screen sinusoidal 85 

grating drifting in all combinations of 6 temporal and 8 spatial frequencies in 4 directions (SpaTemp). 86 

We included the chirp stimulus to identify cell types that can detect increases (ON) and decreases 87 

(OFF) in luminance, the drift stimuli to identify cell types that have orientation and/or direction 88 

selectivity13,21,32, and the SpaTemp stimulus to determine the speed preference of cells.  89 

 90 

We extracted 20 features from the responses to the chirp stimulus using sparse principal component 91 

analysis (sPCA) and 16 features from the responses to the two drift stimuli using singular value 92 

decomposition followed by sPCA (Figure 1c, Supplementary Figure 2-3). Mutual information (MI) 93 
33 was then employed to evaluate the degree of dependency between the drift and chirp features (see 94 

Methods). If features x and y have high MI, feature x can provide information about the nature of 95 

feature y in a given cell. However, if there is no or chance MI between two features, any overlap 96 

between two features in a given cell is coincidental, and the fraction of cells with a specific 97 

combination of these features is predictable based on the distribution of two features across the cell 98 

population.  99 

 100 

To test the degree of dependency between responses to drift and chirp, we calculated MI between all 101 

combinations of the 20 chirp features and the 16 drift features and found chance MI in all cases (320 102 

permutation tests, Wilson’s harmonic mean p = 0.11, lowest p-value after Bonferroni-Holm 103 

correction = 0.64, Supplementary Figure 4). MI between chirp and SpaTemp features was also 104 

determined to be at chance level in all cases (100 permutation tests, Wilson’s harmonic mean p = 105 

0.27, all p-values > 1 after Bonferroni-Holm correction). These results suggest that the shape of a 106 

cell’s response to the chirp stimulus is not predictive of its response to either of the drift or the 107 

SpaTemp stimuli.  108 

 109 

We also manually extracted ON/OFF response amplitudes to classify cells as On, Off, or OnOff, and 110 

calculated orientation and direction selectivity indexes (OSi and DSi, respectively) to classify cells 111 

as orientation-selective (OS) or direction-selective (DS) (Supplementary Figure 5A-B). We further 112 

quantified the response to luminance changes by measuring how fast the peak amplitude was reached 113 

(time-to-peak) and how sustained the response was (min-to-peak ratio). Furthermore, because we 114 

used drift stimuli with two different speeds, we could subdivide DS cells into DS Fast (direction-115 

selective only to the fast grating), DS Slow (direction-selective only to the slow grating), and DS 116 
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Universal (direction-selective at both speeds). MI between ON/OFF response amplitudes and 117 

manually defined OS and DS features (DSi, OSi, preferred orientation, and preferred direction) was 118 

at chance-level (16 Wilcoxon’s rank sum tests, Wilson’s harmonic mean p = 0.32, all p-values > 1 119 

after Bonferroni-Holm correction; Supplementary Figure 6). Thus, responses to brightness cannot 120 

predict responses to motion, revealing the independence of responses to unrelated stimuli in the SC.  121 

 122 

If two independent groups exist in the same space, they will overlap predictably (Supplementary 123 

Figure 7). To test if collicular On/Off and OS/DS response types are independent, we investigated 124 

whether the distribution of the combined groups (e.g. On cells that are also DS Universal) could be 125 

predicted from the depth distribution of their separate groups (e.g. On cells and DS Universal cells; 126 

Figure 1e). For all combinations of On/Off and OS/DS subtypes, we found the overlap to be 127 

predictable (Supplementary Figure 8, 12 permutation tests, Wilson’s harmonic mean p = 0.08, lowest 128 

p-value = 0.10 after Bonferroni-Holm correction). 129 

 130 

Having found that all overlaps between On/Off and OS/DS subtypes are predictable, we reasoned that 131 

the response properties of the combined groups should not differ from the response properties of the 132 

remaining cells in the two parent groups. We therefore calculated the distribution of min-to-peak ratio, 133 

time-to-peak, and preferred orientation and direction for all 12 subtype combinations and confirmed 134 

that the distribution of response properties of subtype combinations (e.g., On-DS Universal cells) did 135 

not differ from that of the remaining cells in their parent group (e.g., On-nonDS Universal cells) in 136 

all cases except the On-DS Slow combination, whose response properties deviated less than chance 137 

from the expected distribution (32 Wilcoxon’s rank sum tests for distribution of ON/OFF response 138 

properties, Wilson’s harmonic mean p = 0.21, all p-values > 1 after Bonferroni-Holm correction; 12 139 

t-tests for distribution of OS/DS response properties, p = 0.01 for On-DS Slow after Bonferroni-Holm 140 

correction, Wilson’s harmonic mean p = 0.27 for all other combinations, lowest p-value = 0.74 after 141 

Bonferroni-Holm correction; Supplementary Figure 8). 142 

 143 

We confirmed this observation by subdividing the response types into 12 On/Off subtypes (each On, 144 

Off and OnOff cell classified by sustained, transient, fast or slow responses) and 14 OS/DS subtypes 145 

(each DS Slow, DS Fast, DS Universal, and OS cell classified by the cardinal directions). After 146 

performing the same tests as described above, we found that the proportion of cells and distribution 147 
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of response properties could be predicted from those of the parent groups for all 168 combinations 148 

(168 t-tests, 396 Wilcoxon’s rank sum tests, Wilson’s harmonic mean p = 0.2, all p-values > 1 after 149 

Bonferroni-Holm correction).  150 

 151 

Chirp and drift clusters overlap at random 152 

A commonly used strategy to identify clusters of cellular responses is to use a range of stimuli that 153 

cover the largest possible stimulus space13,21. However, such a strategy may not be feasible when 154 

there are statistical independencies within the response space, as independent features reduce the 155 

ability of the clustering algorithm to separate response types and increase the risk of mistaking 156 

coincidental overlap for cell types (Supplementary Figure 7). We tested the ability to identify clusters 157 

in the SC by performing gaussian mixture model clustering of response features to chirp and drift, 158 

both individually and collectively. We identified 50 clusters for drift stimuli, 28 clusters for chirp 159 

stimuli, and 31 clusters for both chirp and drift stimuli (Supplementary Figure 9A-C, 10A-C). All 160 

clusters were stable (median Jaccard similarity score = 0.55 for chirp, 0.56 for drift, and 0.47 for 161 

chirp-drift). 162 

  163 

As expected from the statistical independence between On/Off and OS/DS response features (Figure 164 

1), we found only chance overlap between chirp-derived clusters and drift-derived clusters 165 

(permutation test, p = 0.76; Figure 2a). Chirp and drift clustering is successful at separating On/Off 166 

and OS/DS response types, respectively, but combined chirp-drift clustering performs worse at 167 

separating these response types (Figure 2b-c). Furthermore, drift clustering cannot separate On/Off 168 

response types better than chance (permutation tests, p = 0.95 for On, 0.33 for Off, and 0.98 for 169 

OnOff), and chirp clustering cannot separate OS/DS response types better than chance (permutation 170 

tests versus random data, p = 0.67 for DS Slow, 0.62 for DS Fast, 0.91 for DS Universal, and 0.21 for 171 

OS; Supplementary Figure 11). 172 

 173 

Although On/Off and OS/DS response types are statistically independent and the response properties 174 

of the combined groups do not differ from those of the parent groups, combined chirp-drift clustering 175 

separate OS/DS responses into On, Off, and On-Off subtypes (Figure 2d). Taken together, these 176 

results show an absence of overlap between clusters based on chirp and drift features and that 177 
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combining statistically independent features into a single clustering does a worse job of separating 178 

response types than clustering these features independently. Moreover, clustering based on the 179 

combination of statistically independent features creates meaningless subdivisions of response types 180 

based on coincidental overlap between responses. Indeed, including drift features in chirp clustering, 181 

and vice versa, disrupts the clustering more than adding a similar amount of noise suggesting that the 182 

structures uncovered by drift and chirp are orthogonal (p = 0.02 for adding drift to chirp vs noise to 183 

chirp, p = 0.02 for adding chirp to drift vs adding noise to drift; Supplementary Figure 12).  184 

 185 

Related stimuli can result in local dependencies  186 

If On/Off and OS/DS responses are independent in the SC, but dependent in the retina, it is possible 187 

that the response space structure of the SC is closer to that of the cortex than the retina. Cortical 188 

response space is thought to be  high-dimensional at the global scale but differentiable for related 189 

stimuli at a local scale2. We therefore anticipated local dependencies in the SC despite overall 190 

statistical independence, which we tested by examining dependencies within responses to chirp and 191 

drift. MI between ON and OFF responses to the chirp stimulus was higher than chance (permutation 192 

test, p < 1 x 10-4). Consistent with the high MI we also found that the proportion of OnOff responses 193 

by depth could not be explained as coincidental overlap between significant ON and OFF responses 194 

(t-test versus random permutations, p = 3.5 x 10-124; Figure 3a). 195 

 196 

Because min-to-peak ratio and time-to-peak can be extracted from both ON and OFF responses, 197 

OnOff cells could be labeled as Transient or Sustained and Fast or Slow in relation to both their ON 198 

response (OnOff-ON) and OFF response (OnOff-OFF). We observed that the similarity between the 199 

two OnOff response types is higher than the similarity between OnOff-OFF and Off response types 200 

and between OnOff-ON and On response types, in relation to both subtype composition (Figure 3b) 201 

and anatomical depth (Figure 3c). We also found that min-to-peak ratio (Figure 3e) and time-to-peak 202 

(Figure 3f) for OnOff cells were different to those for On or Off cells (Wilcoxon’s rank sum tests, 203 

time-to-peak p = 5 x 10-44, min-to-peak ratio p = 2 x 10-22 for OnOff-ON vs On; time-to-peak p = 1 x 204 

10-49, min-to-peak ratio p = 6 x 10-7 for OnOff-OFF vs Off). These data are similar to data collected 205 

from OnOff RGCs (Figure 3d)13,34. In both the retina and SC, OnOff responses are faster and more 206 

transient than On and Off responses, and collicular OnOff responses are more similar to retinal OnOff 207 

responses than collicular On or Off responses (Figure 3b and d). Our data provide further support for 208 

the notion that OnOff is a distinct response type in both the SC and retina.  209 
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 210 

As expected for locally low dimensionality, we observed high MI between response features extracted 211 

from fast- and slow-moving gratings (8 t-tests, 1 x 10-188 < p < 1 x 10-82 for slow vs best fitting fast 212 

features). Indeed, overlap between DS cells responding to the slow grating and DS cells responding 213 

to the fast grating was much higher than chance (t-test vs random permutations, p = 5.5 x 10-136; 214 

Figure 4a). The high MI prompted us to test if there were differences in the preferred direction profile 215 

of DS Fast, DS Slow, and DS Universal cells which we found to be the case (Kuiper’s test, Universal 216 

vs Fast p < 0.001, Universal vs Slow p < 0.001; Figure 4b). Furthermore, these preferred direction 217 

profiles showed that DS cells in the SC segregate into the four cardinal directions. By plotting the 218 

change in proportion of preferred direction with depth, we revealed that each cardinal changes 219 

independently with depth and that these changes differ between DS subtypes (Figure 4c). 220 

Furthermore, the SpaTemp stimulus allowed us to estimate the preferred speed of each cell (see 221 

Methods), which differed between cardinals and also changed independently with depth (Figure 4d).  222 

Although OS and DS RGCs form separate mosaics in the retina35–37, there have been reports of both 223 

dependence and independence between preferred orientation and direction in the SC38–40. We therefore 224 

investigated how orientation preference is related to direction preference in the SC and found a clear 225 

difference between how the three DS subtypes overlap with OS cells. Specifically, we found a large 226 

overlap between OS and DS Universal or DS Slow but only a chance-level overlap between OS and 227 

DS Fast (t-tests against random permutations, OS vs DS Universal p = 7 x 10-46, OS vs DS Slow p = 228 

3.7 x 10-5, OS vs DS Fast p = 0.97; Figure 4e). The differences in degree of overlap between these 229 

subtypes was also reflected in the relationship between preferred direction and orientation of cells 230 

that are both OS and DS (Figure 4f). In this case, although DS Universal and DS Slow cells prefer 231 

orientations that are orthogonal to their directional preference, we found no evidence for a relationship 232 

between preferred orientation and direction of DS Fast cells.  233 

Together these findings suggest that any overlap between OS and DS Fast is coincidental, whereas 234 

that between OS and DS Slow or DS Universal is not, revealing the ability to classify OS-DS Slow 235 

and OS-DS Universal as distinct types.  236 

Finally, we found that when taking cells that are DS to the Slow drift stimulus (DS Slow and DS 237 

Universal cells) and plotting their DSi to the Fast drift stimulus, there were two distinct groups, one 238 

with a high DSi to the Fast drift stimulus (DS Universal cells) and one with low DSi (DS Slow cells) 239 
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to the Fast drift stimulus (Figure 4g). Thus, despite the globally high dimensionality of the SC, we 240 

observed local low dimensionality in response to both luminance changes and motion. 241 

 242 

Functional responses are organized by depth  243 

The SC is a layered structure whose superficial region can be divided into the stratum griseum 244 

superficiale (SGS) and stratum opticum (SO). We investigated whether the statistically independent 245 

responses that we had observed might change through these layers by quantifying functional changes 246 

by depth using depth co-clustering correlation matrices for drift and chirp clusters (see Methods). 247 

Briefly, we estimated the functional similarity between two depths by calculating how often a cell 248 

from one depth occurred in the same functional cluster as cells from another depth. We found that 249 

depth co-clustering correlation matrices for chirp and drift have the same structure (Figure 5a-b), 250 

despite having independent response types, features, and clusters. There was a clear functional 251 

difference between the SGS and SO (180–210 μm) in both chirp and drift matrices. Furthermore, cells 252 

within both drift and chirp clusters tended to stem from a narrow layer in depth, indicative of smooth 253 

functional changes across depth within the SGS and SO. Finally, we found that cells from the 254 

superficial SGS (30 μm) and the superficial SO (210 μm) tended to appear in the same clusters (Figure 255 

5c), revealing high functional similarity between these two regions. This furthermore suggested a 256 

‘double drop’ pattern of functionality with depth, comprising a smooth decrease with depth in the 257 

SGS (30-180 μm), a sharp increase between the SGS and SO (180-210 μm), and a second smooth 258 

decrease throughout the SO (210-300 μm) (Figure 5d-f).  259 

 260 

Having already shown that cardinals of DS subtypes change independently with depth, we inspected 261 

cardinal responses throughout the sSC, and observed a tendency for horizontal responses to be 262 

represented in the superficial SGS and SO and vertical responses to be represented in the deep SGS. 263 

For all DS subtypes, the ratio of vertical to horizontal responses tended to increase with depth in the 264 

SGS and then decreased between the deep SGS and the superficial SO, but only significantly for DS 265 

Universal cells (p = 5 x 10-7 for the SGS increase and p = 0.0053 for the SO decrease). We also 266 

observed a double drop in the proportions of anterior motion preferring DS Slow cells throughout the 267 

sSC (Figure 5f). 268 

 269 
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Finally, we plotted the preferred spatial frequency of all cells as a function of their preferred temporal 270 

frequency and found a tendency for cells to be located along an orthogonal to the speed isoline 271 

(Supplementary Figure 13). We quantified this tendency by dividing the spread of the population in 272 

the anti iso-speed direction by the spread in the iso-speed direction to generate the population speed 273 

spread at a given depth. This revealed an increase in population speed spread with depth in the SGS, 274 

peaking at 180 μm, and then a decline between the deep SGS and the superficial SO (Figure 5g). We 275 

additionally found a similar pattern of speed preference with depth (Figure 5h). Thus, we uncovered 276 

a relationship between the functional responses of SC neurons and their depth in this brain structure. 277 

  278 
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Discussion  279 

The purpose of multidimensionality in the SC 280 

The current classification of SC cells into a handful of morpho-genetic types presumes a low-281 

dimensional organization of morphological and genetic spaces. If that classification system was to be 282 

extended into the functional domain, it would require a low dimensional organization of collicular 283 

response space. Here we found that collicular response space is at least multidimensional by 284 

demonstrating that neuronal responses to Drift and Chirp stimuli are independent on feature, response 285 

type, and clustering levels. A high-dimensional response space would be beneficial to collicular 286 

processing in several ways. First, an increase in dimensionality would increase the number of 287 

partitions that can be implemented by a downstream linear decoder41, resulting in higher 288 

computational power. Second, reducing correlations increases efficiency by making the neural code 289 

less redundant2. Finally, the complex behavior and higher cognitive processes carried out by the 290 

SC7,10,12 likely require a high-dimensional response space structure2,5,6. 291 

Prior RGC classification studies have suggested that Drift and Chirp responses are mutually 292 

dependent in the retina13,32,42, although this has to be validated experimentally in the future. Based on 293 

this assumption, we hypothesize that decoupling must take place at the retinocollicular synapse 294 

(Figure 6a). One potential mechanism underlying the decoupling is the functional clustering of local 295 

dendritic inputs described at the retinogeniculate synapse43. Beyond increasing the dimensionality of 296 

response space, decoupling could serve as a preparatory step for general pattern separation or mixed 297 

selectivity processes that have been shown in other brain regions4,44. 298 

Classification by response types, not cell types 299 

While the multidimensional structure of collicular response space is problematic for the cell type 300 

model, it still has clear structure that merits defining types (Figures 3-4). For this purpose, we propose 301 

a response type model where the target for classification is the response itself rather than the cell 302 

carrying the response (Figure 6b). The response type model has several advantages over a cell type 303 

model. First, it is more concise as it scales additively with each additional independent response 304 

whereas the cell type model scales multiplicatively (Figure 6c). We here only tested two responses, 305 

but it is possible that many more independencies will be uncovered as more stimuli are tested. Second, 306 

if you know that two responses are independent, naming the specific combination of responses in 307 

each cell yields no additional information, the additional complexity of the cell type model offers no 308 
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advantage over the response type model. Third, the response type model allows classification to be 309 

used within the framework of the neural network doctrine45 by allowing cells to engage in multiple 310 

independent pathways. Finally, response types are more in line with the intuitive definition of a type 311 

as an “evolutionary unit with the potential for independent evolutionary change”46 since functional 312 

responses directly influence survival whereas functional cell types only influence survival through its 313 

impact on the carried functional responses. Together with the capacity of cells for subcellular 314 

plasticity43,47–49, our finding of response space independencies suggest that the true evolutionary units 315 

in collicular response space are response types (Figure 6d). 316 

Morphology and genetics may not hard-code response types 317 

Our finding of independence among responses predicts that genetic and morphological types cannot 318 

have predefined responses to both luminance and motion. Indeed, studies have found a high degree 319 

of functional diversity within each genetic subtype in the SC50,51. For instance, even the Cbln4-320 

positive cells, which had the highest concentration of direction-selective cells, contained one-third of 321 

the cells that were not directionally selective51. We hypothesize, that while a cell’s morphology and 322 

position in depth are likely determined genetically20, a cell-type-specific connectivity with retinal 323 

ganglion cells and/or local dendritic clustering of retinal inputs are determined stochastically guided 324 

by local plasticity rules52. This hypothesis would mean that genes set the stage by increasing the 325 

likelihood that a cell will have a particular response type without enforcing a fixed functional role. 326 

Given that functional inputs and characteristics vary with depth, it is not surprising that such local 327 

stochastic mechanisms lead to marked functional differences among cells from the same genetic type.  328 

The influence of retinal inputs and anatomical layers 329 

Previous studies have found that collicular direction selectivity is likely inherited from the retina53,54. 330 

Direct inheritance of direction selectivity is consistent with our finding that collicular DS cells are 331 

sensitive to motion in the four cardinal directions detected by the retina (but see55). In this respect, 332 

our finding that DS subtypes with distinct differences in preferred directions and speed preferences 333 

appear to constitute unique response types raises the question of whether a similar subdivision may 334 

exist at the retinal level. 335 

We found functional changes with depth in the SC that were common to both Chirp and Drift 336 

responses. Specifically, a continuous functional change through the SGS, a steep reset between the 337 

SGS and SO, and a second continuous change through the SO. The steep reset leads to a high degree 338 
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of similarity in depth-related functional organization between the superficial SGS and superficial SO, 339 

suggesting that a computational process performed by the SGS is repeated in the SO. A feature 340 

showing this pattern of change across depth is the ratio of vertical to horizontal DS responses; cells 341 

in the superficial SGS and SO prefers horizontal motion and cells in the deeper SGS and SO prefers 342 

vertical motion. This finding aligns well with the finding that, posterior motion-preferring OnOff-DS 343 

RGCs project specifically to the superficial SGS56, whereas upward motion-preferring Off-DS RGCs 344 

project more broadly throughout the SGS57. Similar depth-related changes in preferred motion, 345 

supported by DS RGC projection patterns, have been described in the dLGN37,56,58. 346 

Finally, scatterplots of spatial and temporal preferences in the SC (Supplementary Figure 13) suggest 347 

that a selection process pushes collicular cells to respond to a large range of speeds. This tendency is 348 

much stronger in the deep SGS than in the superficial SGS and SO, suggesting that speed is more 349 

actively selected for in the deep SGS than in other parts of the sSC. 350 

 351 

As well as providing insight into the processing of visual information by different layers of the sSC, 352 

our findings reveal the limitations of using one-dimensional classification in functionally complex 353 

brain structures. As an alternative, we highlight how multidimensional response types can be used to 354 

classify high-dimensional response spaces at a functional level. 355 

  356 
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 482 
Figure 1 Global Independencies 483 

a) Left: Illustration of mouse brain with silicone plug (blue), displacing sinuses (red) to create accessible visual 484 

field of superior colliculus cells. Middle: zoom-in of a field of view in two-photon microscope. Right: traces 485 

of four cells (outlined on middle image) responding to changes in luminance of the chirp stimulus and moving 486 

gratings at two different speeds. b) Response matrices for the chirp (left) and slow grating (right) stimuli. c) 487 

Matrices showing the weight of each chirp (left) and drift (right) feature. Blue indicates negative weight and 488 

yellow indicates positive weight. d) Mutual information for four example chirp features vs the drift feature 489 

with which they had the highest MI (dashed blue lines) plotted on top of histograms of 500 calculations of MI 490 

after the order of the drift feature had been randomized relative to the order of the chirp feature. e) Example of 491 

a predictable relationship between response types. Top left: Proportion of On cells across depth. Top right: 492 

Proportion of DS Universal cells across depth. Bottom left: Actual On-DS Universal proportions across depth 493 

(black) vs expected proportion (blue) and random permutations (gray). Bottom right: Histogram of the summed 494 

deviation from the expected proportion of each random permutation with the actual summed deviation shown 495 

as a dashed blue line.  496 
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 497 

 498 
Figure 2 Clustering Independencies 499 

a) Median Jaccard Similarity score for chirp compared to 90% chirp subsamples (grey diamond), for drift 500 

compared to 90 % drift subsamples (blue diamond), and for chirp clustering compared to drift clustering (black 501 

diamond). Boxplot shows median Jaccard Similarity score for chirp clusters compared to 500 random 502 

permutations of the drift cluster tags. b) Proportion across clusters of On (left), OnOff (middle), and Off (right) 503 

for the chirp clustering (top) and chirp-drift clustering (bottom). Dashed blue line indicates expected value if 504 

distribution is random. c) A clustering’s ability to separate On/Off and OS/DS response types can be quantified 505 

as the absolute difference between the actual and the expected proportion of the given response type averaged 506 

across clusters. For all measured response types, the ability to separate types is lower in the combined clustering 507 

(right) than in the separate clusterings (left). d) Left: Actual distribution of On-DS Universal cells across 508 

clusters (black) is different from expected distribution if sampling is random (blue, p = 1.8e-6). 500 random 509 

permutations are shown in gray. Middle: Same as left for the OnOff-DS Universal population (p = 0.0051). 510 

Right: Sum of the absolute difference between On-DS Universal cluster proportions and OnOff-DS Universal 511 
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cluster proportions (dashed blue line, p = 6.6e-5) plotted on top of a histogram of 500 sums of the absolute 512 

difference between a random sample of On cells of equal size and depth distribution as On-DS Universal cells 513 

(gray lines in left figure) and a random sample of On cells of equal size and depth distribution as OnOff-DS 514 

Universal cells (gray lines in middle figure). 515 

  516 
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 517 
Figure 3 Local dependencies in ON/OFF Response Space 518 

a) Proportion of above threshold ON (left) and OFF responses (middle) across depth. Right: Actual proportion 519 

of OnOff cells across depth (black) compared to expected proportions if ON-OFF overlap was coincidental 520 

(blue) with 500 random permutations of linear combinations of On and Off shown in gray. b) On/Off subtype 521 

composition in the SC: Composition of Fast-Transient (FT), Slow-Transient (ST), Fast-Sustained (FS), and 522 

Slow-Sustained (SS) subtypes across On, Off, and OnOff cells. Because subtypes can be determined in relation 523 

to both the ON and OFF phase, the subtype composition for OnOff cells is shown for each phase separately. 524 

c) Left: Proportions across depth of OnOff-ON FT cells (green) and OnOff-OFF FT cells (magenta). Middle: 525 

Proportions across depth of OnOff-ON FT cells (green) and On FT cells (black). Right: Proportions across 526 

depth of OnOff-OFF FT cells (magenta) and Off FT cells (grey). d) On/Off subtype composition in the Retina: 527 

Shown as in b). Data was extracted from http://retinal-functomics.net/ 34. e) Distribution of min-to-peak ratio 528 

for On (top left), Off (top right), OnOff-ON (bottom left) and OnOff-OFF (bottom right).  529 

f) Distribution of time-to-peak for On (top left), Off (top right), OnOff-ON (bottom left) and OnOff-OFF 530 

(bottom right).  531 

 532 
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 533 
Figure 4 Local Dependencies in OS/DS Response Space 534 

a) Proportion of cells with a direction selective response at 5 d/s (left) and 40 d/s (middle) across depth. 535 

Right: Actual proportion of DS Universal cells across depth (black) compared to expected proportions if DS 536 

Universal responses were a linear combination of DS at 5 d/s and DS at 40 d/s proportions (blue) with 500 537 

random permutations of linear combinations shown in gray. b) Polar plots of preferred direction in DS Slow 538 

(left), DS Fast (middle) and DS Universal cells (right). c) Proportions across depth of the four cardinal 539 

directions for DS Slow (left), DS Fast (middle), and DS Universal (right). d) Left: Box plot of preferred 540 

speed across DS Universal cardinals. Upward selective cells preferred higher speeds than Downward (p = 3e-541 

14) and Posterior (p = 2e-35) selective cells. Downward selective cells preferred higher speeds than Posterior 542 

selective cells (p = 4e-21) and lower speeds than Anterior selective cells (p = 4e-13). Posterior selective cells 543 

preferred lower speeds than Anterior selective cells (p = 6e-36). All tests were Wilcoxon’s Rank Sum tests. 544 

Middle: Box plots of preferred speed across the depth of SGS for Upward selective DS Universal cells. 545 

Right: Box plots of preferred speed across the depth of SGS for Downward selective DS Universal cells. The 546 

preferred speed for Upward selective DS Universal cells decreases across the SGS (30 µm vs 180 µm: p = 547 

1.1e-4) while the preferred speed for Downward selective cells increases across the SGS (30 µm vs 180 µm: 548 

p = 0.03). p-values of less than 0.001 are marked by a *. e) Proportions across depth of OS-DS Slow (left), 549 

OS-DS Fast (middle), and OS-DS Universal (right) shown in black. Expected proportions if OS-DS overlap 550 
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was coincidental shown in blue with 500 random permutations of linear combinations of OS-DS proportions 551 

shown in gray. Overlap is at chance level for DS Fast (p = 0.97), and higher than chance for DS Slow (p = 552 

4e-5) and DS Universal (p = 7e-46). f) Scatter plots of preferred direction (x-axis) and preferred orientation 553 

(y-axis) for OS-DS Slow (left), OS-DS Fast (middle), and OS-DS Universal (right). g) Left: Histogram of 554 

DSi measured at 40 d/s for all cells that are DS at 5 d/s. Right: Histogram of DSi measured at 5 d/s for all 555 

cells that are DS at 40 d/s. 556 

  557 
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 558 
Figure 5 Global Depth Changes 559 

a) Depth co-clustering correlation matrix for the chirp clustering. Black dashed line indicates the transition 560 

between the SGS and the SO. b) Depth co-clustering correlation matrix for the chirp clustering presented as in 561 

a). c) Example histograms of drift (left) and chirp (right) clusters showing co-clustering of superficial SGS and 562 

superficial SO cells. Blue dashed line indicates transition between the SGS and the SO. d) Violin plots of the 563 

On/Off Ratio across depth. Blue dashed line indicates the mean across the whole population. e) Same as d) but 564 

for On min-to-peak ratio. f) Proportion of DS Slow Anterior cells across depth. The proportion falls between 565 

superficial (30 µm) and deep (180 µm) SGS (p = 4e-7), increases between deep SGS and superficial (210 µm) 566 

SO (p = 0.003), and decreases between superficial and deep (300 µm) SO (p = 0.02). g) Top left: Plot of mean 567 

population speed spread across depth with mean value shown as a dashed blue line. Population speed spread 568 

is higher than mean at 180 µm (p < 0.001). Scatter plots of preferred temporal and spatial frequency for cells 569 
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at depths of 60 µm (top right), 180 µm (bottom left), and 240 µm (bottom right). h) Box plots of speed 570 

preference across depth. Preferred speed increases from superficial SGS (30 µm) to deep SGS (180 µm): p = 571 

9e-65. Preferred speed decreases from deep SGS to the SO (200+ µm): p = 2e-4. Both tests were Wilcoxon’s 572 

Rank Sum tests.  573 

  574 
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  575 
Figure 6 Retino-collicular information transfer 576 

a) Model of decoupling of functional responses at the retino-collicular synapse. Such a decoupling would 577 

explain why responses that are coupled in the retina are independent in the SC and would allow the generation 578 

of new combinations such as ON DS posterior. b) Demonstration of the differences between the cell type model 579 

and the response type model. Four cells carrying different combinations of responses are depicted on the left. 580 

Whereas the cell type model would identify each cell as its own type (middle column), the response type model 581 

would identify four responses (right column) with each response type being distributed across several cells 582 

(colored dashed lines in the depiction on the left). c) Due to the independence of the decoupled responses, all 583 

combinations of independent responses will exist. As a result, describing response types is simpler than 584 

describing cell types. d) Left: Blue and red dots represent the responses of two hypothetical groups of cells. 585 

The red group has had their receptive field size changed due to a selection pressure. This pressure did not 586 

change the ON/OFF ratio or the Spatial Tuning Index of the group. Right: The selection pressure that caused 587 
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differences in preferred speed between groups also caused differences in preferred direction and orientation. 588 

This in turn lead to higher-than-chance Mutual Information between preferred speed, direction, and orientation. 589 

If independencies in response space exist, then selection pressures must be able to act on a subcellular level 590 

making response types more tightly aligned with the definition of an evolutionary unit than cell types. 591 

 592 
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Methods  609 

Experimental Methods 610 

Animals 611 

All experimental procedures were approved by the Danish National Animal Experiment Committee 612 

(License number: 2020-15-0201-00452). Twenty-one 12- to 18 weeks old wild-type mice (C57BL/6J 613 

from Janvier Labs) of both sexes were used. The mice were housed in a heat-regulated room in groups 614 

of two to four per cage with easily accessible food and water. The mice were kept on a standard 12-615 

hour day/night schedule and looked after daily by animal caretakers. Since the mice were at least 12 616 

weeks old when imaging was performed, cells in both the retina and the SC were fully mature 59. 617 

Pre- and Post-Procedure Protocol  618 

All procedures were performed in a sterile and aseptic environment. Before procedures, mice were 619 

anesthetized with a fentanyl (0.05 mg/kg body weight), midazolam (5.0 mg/kg body weight), and 620 

medetomidine (0.5 mg/kg body weight) mixture injected intraperitoneally. Dexamethasone (0.2 621 

mg/kg body weight) were administered subcutaneously to prevent edema during and after surgery. 622 

During procedures mouse body temperature was kept stable by using a heating plate and their eyes 623 

were protected from dehydration using eye ointment (Viscotears, Novartis). 624 

Post procedure protocol included administration of carprofen (0.08ml subcutaneous) and 625 

buprenorphine (0.03ml intramuscular) every 8 hours until the mice no longer showed signs of being 626 

in pain for up to 48 hours). Anesthesia was reversed by injecting a mixture of Flumazenil (0.5 mg/kg 627 

body weight) and Atipamezole (2.5 mg/kg body weight). The mouse was allowed to slowly wake on 628 

the heating plate in its cage. 629 

Viral Injection 630 

The mice were anesthetized as described. After the head was shaved, the mouse was held steady by 631 

ear bars and the skin was disinfected with 70% ethanol. A sagittal (anterior-posterior) cut in the skin 632 

was made 1-2 mm left of the midline until lambda and the injection site was visible. Connective tissue 633 

covering the skull was removed and a small burr hole was drilled 0.5-0.7 mm caudal to the interaural 634 
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line 0.3-0.7 mm left of the midline. Skull debris was removed continuously using absorption spears 635 

(SUGI, AgnTho’s) lightly soaked in saline. 636 

Virus (AAV1.Syn.GCaMP6f.WPRE.SV40, 2.13 × 1013 vg/ml, Penn Vector Core #100837-AAV1) 637 

was injected with a glass pipette through the burr hole with the pipette holder tilted ~25 degrees 638 

posterior to ensure expression reached far enough rostrally. A total of 600 nl was injected across five 639 

depths (1.65, 1.5, 1.35, 1.2, and 1.05 mm below skull surface) using as low pressure (Picospritzer III, 640 

Parker) as possible over a total of 15 minutes. To avoid backflow, we waited further 5-10 minutes 641 

before fully retracting the pipette. The skin was then sutured, and post procedure protocol was 642 

followed as described above. 643 

Head Plate Surgery 644 

To gain visual access to the SC without removing part of the cortex and thereby potentially altering 645 

the response of collicular cells 60, we adapted a method designed to expose the collicular surface by 646 

displacing the transverse sinus with a silicone plug 61. The transverse sinus is assumed to not be 647 

essential for healthy brain function, as ablation of the sinus has been shown to cause minimal to no 648 

neurological symptoms in humans 62. With this method, we gain visual access to approximately 15-649 

25% of the posteromedial surface of the SC.  650 

14-21 days after injection the mouse’s head was shaved and the mouse was placed in an ear bar holder. 651 

The shaved skin was disinfected with 70% ethanol and a 1-1.5 cm circular patch of skin, including 652 

underlying tissue and a portion of neck muscles was removed to expose the skull above lambda and 653 

the injection site. To increase glue binding strength superficial cuts in the skull were then made. A 654 

custom-made metal head plate was placed on the skull centered on lambda and attached with glue 655 

(Super Glue Power Gel/Flex, Loctite). The function of the head plate was to enable stabilization of 656 

the mouse's head during imaging. 657 

Silicone Plug Surgery 658 

For the plug surgery, the anesthetized mouse was placed in a head plate holder. A round cranial 659 

window slightly smaller than 4mm centered on the point of the sinus divergence was made using a 660 

drill. Skull debris was removed continuously with a suction needle and the exposed brain was kept 661 

soaked in sterile phosphate buffered saline (PBS). The dura above the SC was removed and a 662 
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triangular silicone plug (Kwik-sil, World Precision Instruments) attached to a 4 mm round glass 663 

window (0.15 mm thickness, Warner Instruments) was inserted above the SC and slowly pushed 664 

forward displacing the left transverse sinus and creating visible access to the SC. The glass plate was 665 

then glued to the edge of the skull and the headplate. After the glue had dried, normal post-procedure 666 

protocol was followed. Optics remained clear for at least 3 months following plug surgery. 667 

In Vivo two Photon Calcium Imaging 668 

A minimum of 7 days after surgery and before performing awake two-photon imaging, the mice were 669 

trained to remain calm in the imaging setup by completing four training sessions of increasing 670 

duration over a period of four days. During the sessions the mice were placed on the imaging stage 671 

with their head fixated to the head plate holder with their body protected by a padded cylindrical 672 

cover 63. During and after each session the mouse was rewarded with chocolate paste to create positive 673 

association and habituation to the imaging area. 674 

Each imaging session lasted 1-2 hours with breaks every 15-25 minutes depending on stimulus length. 675 

Animals were kept awake during imaging by offering chocolate paste rewards during breaks. 676 

Imaging was performed using a resonant scanning microscope (VivoScope, Scientifica) controlled 677 

by SciScan version 1.2 running 30.9 frames per second at a resolution of 512x512 pixels covering an 678 

area of 500x500 um. Dispersion-compensated 940 nm light was provided by a mode-locked 679 

Ti:Sapphire laser (MaiTai DeepSee. Spectra-Physics) through a 16x water-immersion objective 680 

(Nikon, 0.8 NA). We imaged up to 10 depths per mouse, from 30 μm under the surface, at 30 μm 681 

intervals, to ensure no cells were recorded twice, down to a maximum of 300 μm which was the 682 

deepest position where we still had adequate signal-to-noise ratio. In our recordings the border 683 

between the SGS and the SO was consistently found between 185 and 205 μm below the surface 684 

(Supplementary Figure 14). We identified it during imaging by locating the shift in cell body size 685 

between lower SGS and SO (Supplementary Figure 14a-c). To determine if the shift in cell body size 686 

indeed marked the border between the SGS and SO we imaged Ntsr1-Cre-labeled cells as these cells 687 

are known to only reside in the SO 20. A quantification of the depth distribution of Ntsr1-Cre cell 688 

bodies shows that the emergence of Ntsr1-Cre cells coincides with the shift in average cell body size 689 

(Supplementary Figure 14c-d). As such 180 μm was always the deepest SGS layer and 210 μm the 690 

shallowest SO layer. For each layer one to three non-overlapping fields of view were imaged.  691 
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After fixating the mouse on the imaging stage, the two-photon microscope was moved into place, by 692 

putting water on the tip of the microscope and slowly lowering it onto the cranial window glass 693 

surface until the surface tension broke, creating a cylinder-shaped water connection between the 694 

microscope and the cranial glass window. After this, a layer of black tape was attached covering the 695 

open space between the microscope and the metal head plate. This ensured no light contamination 696 

from the stimulus screen entered the microscope and slowed down the rate of evaporation of the 697 

immersion water. Each imaging session lasted approximately 2 hours, during which the mouse was 698 

rewarded with chocolate paste twice, in connection with refilling the water between the microscope 699 

objective and the glass window.  700 

Screen Positioning 701 

A 47.7 x 26.9 cm 60 Hz screen (Dell, U2212HMc) was positioned 22 cm away from the right eye, 702 

angled such that the mean receptive field position of all cells within the field of view was at the center 703 

of the screen. Light intensity was measured to 0.051 mW/cm2 with a power meter (PM200, Thorlabs). 704 

The position of the screen was optimized by testing various screen positions before each imaging 705 

session. 706 

 707 

Stimulus Battery 708 

Mice were presented with the following stimulus battery: 709 

1. Sparse noise: Black or white squares covering 10x10 degrees of the visual field were flashed 710 

one at a time for 0.1 seconds at all possible xy-positions of a roughly 20-by-10 grid using 5-711 

degree increments in pseudo-random order to determine receptive field position. Grid size 712 

was set to the smallest possible size that fully covered the receptive fields of all responsive 713 

cells within the field of view. 714 

2. Drifting Grating (Drift): A full-field sinusoidal grating (100% contrast, 0.08 cycles per 715 

degree) drifting at a speed of 5 or 40 degrees per second, each presented at 12 equally spaced 716 

angles. 717 

3. Chirp stimulus: A 10 degree in diameter circular spot was presented in 7-12 different 718 

positions on the screen. The chirp stimulus was presented after estimation of receptive fields 719 
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with the sparse noise stimulus such that the positioning of the chirp circular spot could be 720 

optimized to cover the receptive field center of as many cells as possible. The stimulus has 721 

three phases. 1. A step phase where the stimulus switched between black and white, 2. A chirp 722 

phase where sinusoidal shifts between black and white occurred with frequency increasing in 723 

steps, 3. A contrast phase where sinusoidal shifts occur with increasing contrast.  724 

4. Spatio- Temporal Gratings (SpaTemp): A full-field sinusoidal grating drifting at all 725 

combinations of 8 spatial frequencies (0.04-0.32 cycles per degree, linear increments) and 6 726 

temporal frequencies (0.5-16 Hz, logarithmic increments), each presented at 4 equally spaced 727 

angles. 728 

Stimuli were presented in the above-mentioned order, but internally the order of each stimulus was 729 

pseudo-random. Between each trial there were 3 seconds without stimuli to allow the cell calcium 730 

signals to return to baseline. All stimuli conditions were repeated across 6 trials. 731 

Stimulus Size 732 

We chose the size of both the sparse noise (10x10 degree square) and the Chirp stimulus (circle with 733 

a 10 degree diameter) based on results from Wang and colleagues 64. 734 

Data Analysis 735 

Correction of x-, y-, z-axis movement 736 

We manually performed z-axis corrections during imaging by recording a template image before the 737 

start of each imaging session and performing re-alignment to the template between each stimulus. 738 

Trials with z-movement where at least 5 % of cells showed a simultaneous decrease in fluorescence 739 

were discarded.  740 

We performed xy-movement registration by calculating a template using the 20 imaging frames with 741 

the highest internal correlation and then using this template to perform correlation-based image 742 

registration 65. Rigid motion correction was performed with a custom script based on the MATLAB 743 

xcorr function. We record images at 30.9 frames per second, hence motion across the frame is uniform 744 

enough to use rigid plane correction 65.  745 
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Neuropil Decontamination and Baseline Calculation 746 

Regions of interest (ROIs) were drawn manually in ImageJ. Neuropil decontamination was performed 747 

using FISSA 66. For chirp responses, baseline was extracted by running a 0.75 second moving mean, 748 

followed by a 60 second 10th percentile filter, and finally another 0.75 second moving mean on the 749 

neuropil subtracted fluorescence trace. In the baseline calculation for all other stimuli the 10th 750 

percentile filter was replaced with a 20 second moving minimum filter. 751 

Finally, because FISSA in some cases will cause zero values in response amplitude, ΔF/F was 752 

calculated by dividing the baseline subtracted response with the median response amplitude of the 753 

pre-neuropil removal pre-stimulus phase. 754 

Quality Control 755 

Cells were included if one of the following criteria were met:  756 

1. R2 > 0.5 for a 2D gaussian fitted to the response to sparse noise, and Chirp stimulus presented 757 

such that it covered the receptive field center of the cell. 758 

2. Chirp Quality Index > 0.45 759 

3. Drifting Quality Index > 0.45, R2 > 0.5 for a 2D gaussian fitted to the pre-neuropil removal 760 

response to sparse noise, and Chirp stimulus presented such that it covered the receptive field 761 

center of the cell. 762 

Quality Indexes were calculated as implemented before 13. Briefly, if c is the r by t response matrix, 763 

r is the number of repetitions of the stimulus, t is the response across time, and 〈〉x and Var[]x denotes 764 

the mean and variance across the indicated dimension, respectively, then the quality index (QI) 765 

becomes: 766 

QI = 	!"#[〈&〉"]#〈!"#[&]#〉"
  (1) 767 

When defined as such a QI can take values between 1/r and 1 with a value of 1 indicating that the 768 

exact same signal was recorded across all trials and a value of 1/r indicating no correlation across 769 

trials. 770 

sPCA based Feature Extraction 771 
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We used the same method as Baden and colleagues to extract features from Chirp and Drift 13. We 772 

extracted 20 Chirp features with 10 non-zero time bins (Supplementary Figure 2) by applying sparse 773 

principal component analysis (sPCA) 67 using elastic net regression as implemented in the SPaSM 774 

toolbox for MATLAB 68. Before sPCA data was normalized by using the normalize function in 775 

MATLAB on the mean response across trials. 776 

To extract Drift features, we first performed a singular value decomposition on the normalized mean 777 

response across trials. We then used sPCA on the first column (accounting for 86 % of variance) of 778 

the resulting temporal components to extract 8 features with 5 non-zero-time bins (Supplementary 779 

Figure 3) for both drifting speeds. After extraction the features were z-scored using the zscore 780 

function in MATLAB. 781 

Response properties from the Drift Stimulus 782 

We defined a cell as direction-selective (DS) if it had a direction selectivity index (DSi) greater than 783 

0.25 and a permutation test found a p-value of less than 0.05.  784 

The direction selectivity index (DSi) was calculated as defined by Mazurek and colleagues 69: 785 

DSi	 = (∑ *(,$)% ./0(1,$)
∑ *(,$)%

(  (2) 786 

where R(θ2) is the maximum response amplitude during the drifting phase minus the mean response 787 

during the final 0.5 seconds of the static phase (Supplementary Figure 1b) for direction θk (Using 788 

directions 0-330 degrees in 30 degree intervals). 789 

A cell was defined as DS Slow if it had a DS response to the slow grating but not to the fast grating. 790 

Similarly, a cell was defined as DS Fast if it had a DS response to the fast grating but not to the slow 791 

grating. Finally, a cell was defined as DS Universal if it had a DS response at both speeds. As such, 792 

DS Slow, DS Fast, and DS Universal are mutually exclusive. 793 

We defined a cell as orientation-selective (OS) if it had an orientation selectivity index (OSi) greater 794 

than 0.25 and a permutation test found a p-value of less than 0.05.  795 

The orientation selectivity index (OSi) was calculated as defined by Mazurek and colleagues 69: 796 
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OSi	 = (∑ *(,$)% ./0(31,$)
∑ *(,$)%

(  (3) 797 

where R(θ2) is the maximum response amplitude during the static phase minus the mean response 798 

during the final 0.5 seconds of the pre-stimulus phase (Supplementary Figure 1b) for direction θk 799 

(Using directions 0-330 degrees at 30-degree intervals). 800 

For both orientation- and direction selectivity the preferred orientation/direction was calculated as the 801 

angle of the summed vector. 802 

Permutation tests were done by shuffling responses across all trials and directions 1000 times, 803 

calculating the DSi/OSi of each shuffle, and performing t-tests on the actual DSi/OSi vs the DSi/OSi 804 

of the shuffled responses. 805 

 806 

Response properties from the Chirp Stimulus 807 

We used the first six seconds of the mean response across trials to the Chirp stimulus to define On/Off 808 

subtypes. The first two seconds of the response were used to quantify baseline response and standard 809 

deviation, the following two seconds quantified the ON response, and the last two seconds quantified 810 

the OFF response (Supplementary Figure 1c-d). 811 

We define ON response as the maximum response amplitude during ON phase minus the mean 812 

response during the last 0.5 second of pre-stimulus phase, and OFF response as the maximum 813 

response amplitude during OFF phase minus the mean response amplitude during the last 0.5 second 814 

of the ON phase (Supplementary Figure 1c-d). 815 

The ON-OFF ratio for a cell was defined as follows: 816 

𝑂𝑁 − 𝑂𝐹𝐹	𝑟𝑎𝑡𝑖𝑜 = 	 45	789:;<98	=4>>	789:;<98
45	789:;<98	?	4>>	789:;<98

 (4) 817 

A cell was defined as an On cell if the ON response was at least 2.75 standard deviations above 818 

baseline and the OFF response was at most 1.5 standard deviations above baseline. A cell was defined 819 

as an Off cell if the OFF response was at least 2.75 standard deviations above baseline and the ON 820 

response was at most 1.5 standard deviations above baseline. Finally, a cell was defined as an OnOff 821 
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cell if both the ON and the OFF response were at least 2.75 standard deviations above baseline. The 822 

2.75 standard deviation threshold was chosen because it was the point at which the chance of getting 823 

a false positive was 1 % when using normally distributed random data under the same conditions. 824 

The 1.5 standard deviation cutoff was set after testing a wide variety of values and manually 825 

inspecting responses of the resulting On and Off cells. Specifically, using a higher cutoff value caused 826 

the mean response of the Off population to have visible ON responses and the mean response of the 827 

On population to have visible OFF responses (Supplementary Figure 15). All statistical tests based 828 

on definitions of On and Off cells were run using both a 1.5 and a 2.75 cutoff. We found no differences 829 

in the results of the tests between the two conditions. 830 

We further extracted two parameters that quantified the dynamics of the ON and OFF response:  831 

1. time-to-peak measures how long time it takes from the onset of the stimulus until at least 90 832 

% of peak amplitude is reached (Supplementary Figure 1d). 833 

2. min-to-peak ratio measures how much of peak amplitude was lost 0.5 seconds following the 834 

peak (Supplementary Figure 1d) and was calculated as follows for On, Off, and OnOff ON 835 

responses: 836 

𝑀𝑖𝑛𝑇𝑜𝑃𝑒𝑎𝑘	𝑅𝑎𝑡𝑖𝑜 = 	 @A<A@B@	C@:DAEBF8=GC98DA<8
@CHA@B@	C@:DAEBF8=GC98DA<8

  (5) 837 

where maximum amplitude is the maximum amplitude during the given phase, minimum amplitude is 838 

the minimum amplitude during the 0.5 seconds following the maximum amplitude, and baseline is 839 

the mean response during the last 0.5 seconds before the onset of the given phase. 840 

Min-to-peak ratio for OnOff OFF responses were calculated using the same method but the baseline 841 

used were the mean response during the last 0.5 seconds of the pre-stimulus period to avoid loss of 842 

amplitude of sustained ON responses to cause the min-to-peak ratio to get high negative values 843 

(Supplementary Figure 1d). 844 

On/Off responses have often been divided into Fast/Slow and Transient/Sustained based on response 845 

dynamics 13,32. To do the same, we performed k-means clustering with the number of clusters set to 846 

two, on the min-to-peak ratio and time-to-peak data for On, Off, and OnOff cells (Supplementary 847 

Figure 16). The resulting segregation of Sustained and Transient responses is supported by visual 848 

inspection of the histograms (Supplementary Figure 16a). The k-means clustering processes were 849 

restarted 50 times and the stability of the resulting clusters were assessed. In all cases the threshold 850 
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changed less than 0.01 between restarts. The application of k-means to the time-to-peak data did not 851 

align with the visual data, as visual inspection of the histograms indicated a need for a different, 852 

potentially a further, subdivision (Supplementary Figure 16b). Furthermore, the thresholds set by 853 

clustering showed considerable changes across restarts (shifts in threshold of up to 0.26 seconds). On 854 

this basis we manually defined a further border based on the visual inspection (Supplementary Figure 855 

16c) and plotted depth distributions of the three subdivisions (Fast, Medium, Slow) for all four On/Off 856 

responses (Supplementary Figure 16d). Since the Medium group was more similar in depth 857 

distribution to the Slow group for On, OnOff-ON, and OnOff-OFF, we chose to place the Slow/Fast 858 

division along the Medium/Fast border rather than at the Medium/Slow border. 859 

Statistical significance of differences in ON/OFF response properties between DS and non-DS cells 860 

were calculated using a Wilcoxon’s rank sum test corrected for multiple comparisons by Bonferoni-861 

Holm correction and Wilson's Harmonic Mean. 862 

Features from the SpaTemp Stimulus 863 

Responses to the SpaTemp stimulus were first averaged across trials and directions. Then the response 864 

amplitude for each spatio-temporal frequency combination was calculated by extracting the max 865 

response during the drifting phase and subtracting the mean response during the pre-stim phase 866 

(Supplementary Figure 1e) resulting in an x by y matrix of response amplitudes for each cell where 867 

x and y are the number of temporal and spatial frequencies respectively. Five features were extracted 868 

from this matrix: 869 

1. Temporal Tuning is a measure of how selective a cell is with respect to temporal frequencies 870 
70. It was extracted by first calculating the mean of the response amplitude matrix across 871 

spatial frequencies, resulting in a 1 by x matrix for each cell where x is the number of temporal 872 

frequencies (from here on out called the temporal response curve). Then for each cell we 873 

found the maximum response amplitude of the temporal response curve and divided it by the 874 

sum of the curve. 875 

2. Spatial Tuning is a measure of how selective a cell is with respect to spatial frequencies. It 876 

was extracted in the same way as temporal tuning with the exception that because we 877 

measured spatial tuning at linear intervals, we first converted the spatial frequencies to log 878 

intervals by subsampling. 879 
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3. Temporal preference is a measure of a cell’s preferred temporal frequency. It was calculated 880 

by extracting the temporal response curve, up-sampling it by a factor of 1000, and finding the 881 

equal-area point of the up-sampled curve. To reduce the influence of noise a small constant 882 

was added to the temporal response curve before up sampling. This forces unresponsive cells 883 

to have a temporal preference of around 1 divided by the number of temporal frequencies 884 

instead of having a random temporal frequency decided by noise. Forcing unresponsive cells 885 

to have similar values is desirable for features used for clustering as it causes unresponsive 886 

cells to end up in the same cluster instead of being spread out across all clusters randomly. 887 

The value of the added constant was set to 0.001 dF/F as this was the median response 888 

amplitude across all conditions of unresponsive cells. 889 

4. Spatial preference is a measure of a cell’s preferred spatial frequency. It was calculated in 890 

the same way as temporal preference. 891 

5. Speed preference is a measure of a cell’s preferred speed. It was calculated by taking a cell's 892 

preferred temporal frequency and dividing it by its preferred spatial frequency. 893 

Functional Clustering 894 

We used Gaussian Mixture Modeling (GMM) 71 for our cluster analyses with Bayesian Information 895 

Criterion (BIC) 72 as a penalizing term to avoid overfitting when choosing the optimal number of 896 

clusters. The BIC was calculated as: 897 

𝐵𝐼𝐶 = 𝑀 log[𝑁] − 2 log[𝐿]  (6) 898 

where M is the number of parameters estimated by the model, N is the number of cells, and L is the 899 

likelihood of the model. 900 

Our full clustering procedure consisted of the following five steps (Supplementary Figure 9A-C): 901 

1. The extracted features were fitted with a GMM (as implemented in the MATLAB fitgmdist 902 

function) ten times with predefined numbers of clusters ranging from 1 to 100. The BIC was 903 

then evaluated for each number of clusters across the ten repeats, and the number of clusters 904 

that yielded the lowest BIC was selected . 905 
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2. Using the model selected by the BIC evaluation we performed a further 30 GMM clusterings 906 

and extracted a co-clustering matrix (an n by n matrix where point (x,y) lists how often cell x 907 

and cell y ended up in the same cluster across the 30 repeats). 908 

3. We then sorted the co-clustering matrix by performing agglomerative hierarchical clustering, 909 

as implemented in the MATLAB linkage function, on the matrix and used a custom-made 910 

script to define new clusters based on their co-clustering score. The script first reduced the 911 

matrix by excluding loosely clustered cells defined as cells that end up in the same cluster as 912 

their 10 most similar cells less than ⅔ of the time. Then cluster edges were detected in the 913 

reduced co-clustering matrix and used to define the borders of the new co-clustering score-914 

based clusters. Finally, the loosely clustered cells were re-introduced by adding them to the 915 

cluster with which they had the highest mean co-clustering score. 916 

4. We then generated 25 random subsamples each containing 90 % of the cells from the original 917 

dataset and repeated steps 1-3 to generate 25 subsample clusterings and calculated the Jaccard 918 

similarity score (see section 2.2.4.3) between each cluster in the original clustering and the 919 

most similar cluster in each of the 25 subsamples. Clusters with a mean Jaccard similarity 920 

score of less than 0.5 across the subsamples were discarded and their cells re-assigned to the 921 

cluster with which the merging cell had the highest average co-clustering score. 922 

5. Finally, dendrograms were created by using agglomerative hierarchical clustering (as 923 

implemented in the MATLAB linkage function) on the mean feature values of each cluster 924 

with distance defined as average unweighted distance.  925 

Steps 1, 4, and 5 are commonly used in functional clustering studies 13,22. In addition to this “standard” 926 

method we added steps 2 and 3 because we noticed that, even though individual clusters changed 927 

between clusterings, the same “meta-structure” was present across all clusterings (e.g., OS/DS 928 

subtypes and On/Off subtypes were always placed on separate branches). A key reason for running 929 

these clusterings was that we wanted to compare Drift and Chirp clusterings to see if there was a 930 

larger than chance overlap between the clusters defined by the two feature sets. Such an overlap could 931 

easily be overlooked if repeat-to-repeat variability is high so we chose to focus on the cross-repeat 932 

meta-structure to maximize the likelihood that we would find any existing overlap between Chirp and 933 

Drift clusters.  934 

To ensure that adding steps that emphasize the meta-structure of the data did not generate non-existing 935 

structure by overfitting the data, we tested it on normally distributed random noise to see if our method 936 
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would generate clusters in random data. However, the GMM followed by BIC consistently (and 937 

correctly) estimated the number of clusters to one. Therefore, we tested the model again, but this time 938 

ignored the BIC by forcing the GMM to fit the same number of clusters as our real data. Following 939 

steps 2-5 we ended with a model that identified four “clusters” in the random data that all had a lower 940 

Jaccard score than the 0.5 cutoff we set for the real data (Supplementary Figure 17). 941 

Batch effect analysis 942 

Whenever a functional imaging study uses data collected across multiple sessions there is a risk of 943 

batch effects causing functional responses of cells to differ between sessions. In our case, data was 944 

collected across 83 sessions where each session consisted of recording responses from all cells within 945 

a single field of view. Because our imaging plane is oriented in parallel to the surface of the SC cells 946 

recorded within the same session are from the same depth within the SC. Given that the SC is a 947 

layered structure with clear functional changes between layers this would cause you to expect 948 

functional differences between sessions. 949 

To test for batch effects, we therefore developed a method that can differentiate between functional 950 

differences stemming from batch effects from ones stemming from depth differences. We did this by 951 

calculating the session proportions for each cluster as follows: 952 

𝑃(IDB9E87,K899A;<) =
<('()*#+",-+**./0)

<('()*#+")
  (7) 953 

where n("#$%&'(,%'%%*+,)  is the number of cells in the cluster stemming from a given session and 954 

n("#$%&'() is the total number of cells in the cluster. To assess whether a cluster’s session proportions 955 

deviate from chance, we did a permutation test where the cluster tags were randomized within depth 956 

(i.e. cluster tags of cells with their cell body placed at a certain depth below the SC surface were 957 

permuted separate from other cells at other depths). For each of these permutations we calculated the 958 

session proportions as stated in equation (7) and extracted the expected session proportions for a 959 

cluster with the given depth composition by calculating the mean session proportions across 960 

permutations for each cluster. We then used the expected session proportions to calculate a deviation 961 

from expectation for each cluster as follows: 962 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(IDB9E87) = ∑ |𝑃CLE	(IDB9E87,A) − 𝑃./0(IDB9E87,A)|M
ANO   (8) 963 
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where 𝑃./0	(2345067,8) is the actual proportion of cells from the given cluster that stemmed from session 964 

i and 𝑃'9:(2345067,8) is the expected proportion. Finally, we tested the significance of the deviation by 965 

calculating the deviation from the expected session proportions of each random permutation and 966 

performing a t-test of these values against the actual deviation. 967 

Using this method, we found that 13 of 50 drift clusters and 14 of 28 chirp clusters deviated more 968 

than chance from the expected session proportion (Supplementary Figure 18A-B) possibly indicating 969 

batch effects. 970 

Looking across all clusters the Drift clustering deviated on average by 0.8 percentage points from the 971 

expected session proportion whereas the random permutations deviated by 0.65 percentage points. 972 

For the Chirp clustering the numbers were 0.68 percentage points and 0.51 percentage points, 973 

respectively. 974 

Assessing whether these numbers are concerning in relation to the conclusions of our study is difficult 975 

for at least three reasons. First, even though a higher-than-chance deviation could stem from 976 

influences that should be irrelevant to the functional classification of a cell (such as time of day of the 977 

recording, or age and sex of the mouse), it could also stem from differences that are relevant to 978 

functional classification such as position of the cell in the visual field as this type of difference would 979 

also be correlated with session number. Second, we have not been able to find data on whether this 980 

amount of potential batch effect is higher than other similar studies as these do not report 981 

considerations regarding batch effects 13,21,22. Third, even if a batch effect is biasing our results, it is 982 

not given it would affect our main findings as these are based primarily on comparisons between 983 

On/Off and OS/DS responses which were both recorded within all sessions and as such should be 984 

affected equally by batch effects. 985 

While avoiding batch effects entirely would be preferable it is difficult to implement in large scale 986 

imaging studies that require collecting data across multiple sessions. Given that other similar studies 987 

are not reporting taking steps to address bias stemming from batch effects this could mean that going 988 

into more detail with these effects could lead to important improvements of functional clustering 989 

studies. Given more time it would have been beneficial to do a more thorough test to try to identify 990 

the source of this potential bias by controlling for things such as xy-position of the FoV, time of day 991 

of imaging, age and sex of mouse, mental state of mouse (anxious or relaxed etc.), amount of subdural 992 

bleeding during surgery, etc. 993 
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Calculations and statistical tests 994 

Controlling for Depth 995 

The SC is known to be a highly layered structure. All features we measured had clear changes in 996 

values across depth. To avoid these depth changes biasing our tests, all permutations tests were done 997 

such that the depth distribution of cells in the random permutations matched the depth distribution in 998 

the tested subpopulation. 999 

Corrections for Multiple Comparisons 1000 

To counteract the problem of multiple comparisons we used the Bonferroni-Holm method 73, and 1001 

then, to further increase statistical power, also calculated Wilsons harmonic mean 74.  1002 

Mutual information 1003 

One way to evaluate the degree of dependency between variables is to calculate their mutual 1004 

information (MI) 33. MI can be defined as follows: 1005 

𝑀𝐼(𝑋; 𝑌) = 	∑ ∑ 𝑃(P,Q)(𝑥, 𝑦) ∗ log	(
R(2,3)(H,S)

R(2)(H)∗R(3)(S)
)H∈PS∈Q       (9) 1006 

where 𝑃(;,<) is the joint probability function and 𝑃(;) and 𝑃(<) are the marginal probability functions 1007 

75. This means that if the joint probability is equal to the product of the marginal probabilities MI will 1008 

be zero. In other words, if MI between two features is zero or at chance level the features are 1009 

independent, and consequently any overlap between subpopulations based on those features will be 1010 

coincidental.  1011 

MI was calculated in MATLAB using the mi_cont_cont function 76. To test for significance of the MI 1012 

between two features, A and B, we made 500 random permutations of B, calculated MI between A 1013 

and B and A and the random permutations, and calculated the p-value as the proportion of 1014 

permutations with higher MI than the actual MI. This calculation is “saturated” at a p value of 1 1015 

divided by the number of permutations. In those cases, we increased the number of permutations until 1016 

the test no longer saturated. 1017 
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Proportions and expected proportions 1018 

The proportion of a given group of cells at a given depth was calculated as: 1019 

𝑝(45678,9:8;<) =	
=("#$%&,()&*+)

=(()&*+)
  (10) 1020 

Where n(=(+$:,>':&?)  is the number of cells belonging to the given group at the given depth and 1021 

n(>':&?) is the total number of cells at that depth. 1022 

The expected proportion of a given combination of groups at a given depth was calculated as: 1023 

𝑝𝐸𝑥𝑝(45678	?	&	45678	A,9:8;<) =	𝑝(45678	?,9:8;<) ∗ 	𝑝(45678	A,9:8;<) (11) 1024 

The actual proportion of a given combination of groups at a given depth was calculated as in (10) 1025 

with 𝑛(@7A4B,C6B0D) defined as the number of cells belonging to both groups at the given depth. 1026 

The summed deviation between actual and expected proportions was calculated as: 1027 

𝑆𝑢𝑚𝑚𝑒𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 	∑ |𝑝𝐸𝑥𝑝(B) − 𝑝𝐴𝑐𝑡(B)|C
BDE  (12) 1028 

where 𝑝𝐸𝑥𝑝(B) is the expected proportion at depth i, 𝑝𝐴𝑐𝑡(B) is the actual proportion at depth i, and k is 1029 

the number of depths. Tests for statistical significance was carried out by permuting group A and 1030 

group B tags relative to each other within each depth, calculating the summed deviation between each 1031 

permutation against the expected proportion, and running a t-test of the actual summed deviation vs 1032 

the summed deviations from the random permutations. 1033 

The proportion of a given response type in each cluster was calculated as: 1034 

𝑝(789:;<98	ES:8,LDB9E87) =	
<("+*F/0*+	#GF+,H()*#+")

<(H()*#+")
  (13) 1035 

Where n(('%:+,%'	&E:',"#$%&'()	is the number of cells in the cluster belonging to the given response type 1036 

and 𝑛(/345067) is the total number of cells in the cluster. 1037 

The difference between On-DS Universal and OnOff-DS Universal cluster proportions were 1038 

quantified as follows: 1039 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 	∑ |𝑝(4<=VK	W<AX879CD,A) − 𝑝(4<4YY=VK	W<AX879CD,A)|M
ANO  (14) 1040 
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where 𝑝(FGHIJ	KG8L675.3,8)  is the proportion of On-DS Universal cells in cluster i, 1041 

𝑝(FGFMMHIJ	KG8L675.3,8) is the proportion of OnOff-DS Universal cells in cluster i, and k is the number 1042 

of clusters in the Chirp-Drift clustering. The significance of the difference was estimated by 1043 

calculating the summed difference in cluster proportions between 500 random samples of On cells of 1044 

the same size and depth distribution as On-DS Universal cells vs 500 random samples of On cells of 1045 

the same size and depth distribution as OnOff-DS Universal cells and running a t-test. 1046 

Jaccard scores 1047 

When evaluating the stability of our clusterings and when comparing the similarity of different 1048 

clusterings we used Jaccard Similarity Score 77. The Jaccard similarity score between two clusters, A 1049 

and B, is defined as: 1050 

𝐽(𝐴, 𝐵) = 	 |[∩]|
|[∪]|

  (15) 1051 

where |A∩B|	and |A∪B| denotes the number of cells belonging to both clusters and the number of 1052 

cells belonging to either cluster, respectively. When used in the context of clustering, it quantifies 1053 

how similar two clusters are on a scale from 0 to 1 where a value of 1 indicates that the clusters 1054 

contain the exact same cells 78. The significance of the similarity between two clusterings was 1055 

calculated by permuting the cluster tags relative to each other, calculating the median Jaccard score 1056 

of the permuted clusters and doing a t-test of the permuted scores vs the actual score.  1057 

We wanted to evaluate whether adding orthogonal features or noise to a single feature set would 1058 

disrupt the clustering more. This was done by comparing the Jaccard score between the chirp 1059 

clustering and the chirp-drift clustering to the Jaccard scores between the chirp clustering and a 1060 

number of chirp-noise clusterings. The significance between the difference in Jaccard score was 1061 

calculated using a t-test. The noise was generated by randomly permuting the n-by-y matrix where n 1062 

is the number of cells and y is the number of drift features. 1063 

Clustering ability to separate response types 1064 

A clustering’s ability to separate response types was quantified in an analogous manner to summed 1065 

deviation (12) with the addition of being weighted by 1 over the number of clusters to get the mean 1066 

separation per cluster.  1067 
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𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔	𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(5:I86=I:	;J8:) =	
E
C
∗ ∑ |𝑝(5:I86=I:	;J8:) − 𝑝(5:I86=I:	;J8:,B)|C

BDE  (16) 1068 

where 𝑝(765BAG56	0NB6)  is the proportion of cells with the given response type across the full 1069 

dataset,  𝑝(765BAG56	0NB6,8) is the proportion of cells with the given response type within cluster i, and 1070 

k is the number of clusters in the clustering. Significance of the clustering separations was tested by 1071 

t-testing against 500 random permutations.  1072 

Circular statistics 1073 

DS cell cardinal directions were found by fitting a von Mises mixture model 79 with four components 1074 

to each of the three circular histograms shown in 7b and assigning a cell to a component if it was 1075 

within 22.5 degrees of the center.  1076 

Comparisons of preferred direction profiles were carried out by using a two-sample Kuiper test as 1077 

implemented in circ_kuipertest from the Circular Statistics Toolbox for MATLAB 80. 1078 

Depth co-clustering correlation matrix 1079 

The quantification of how often cells from depths A and B end up in the same cluster was done as 1080 

follows. First, we counted the number of cells from each depth for each cluster. Since there were 1081 

differences in how many cells that were recorded from each depth, we corrected for this by dividing 1082 

the number of cells at each depth with the proportion of cells recorded at that depth across all clusters 1083 

and rounding the results. We then quantified the number of “connections” between depths by counting 1084 

across all clusters how many times a cell from depth A appeared in the same cluster as a cell from 1085 

depth B and normalized the outcome so each row in the matrix sums to one. Since this quantification 1086 

scales with the number of cells in the cluster squared, we normalized the cluster size before calculating 1087 

the number of connections in order to avoid large clusters having a disproportionately heavy influence 1088 

on the outcome. 1089 

Population speed spread  1090 

Population speed spread was calculated as follows: 1091 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑠𝑝𝑒𝑒𝑑	𝑠𝑝𝑟𝑒𝑎𝑑 = 	_C7([<EA=`9;)
_C7(`9;)

         (17) 1092 
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where 𝑉𝑎𝑟(𝐼𝑠𝑜) denotes the variance of the population after projecting it onto the iso-speed line and 1093 

𝑉𝑎𝑟(𝐴𝑛𝑡𝑖 − 𝐼𝑠𝑜) denotes the variance of the population after projecting it into a line orthogonal to 1094 

the iso-speed line. 1095 

  1096 
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