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Abstract

An understanding of cell types is essential for understanding neural circuits, but only when the
response of each type is clearly defined and predictable, as has been observed in the retina'. Recent
work has shown that neural responses in the visual cortex are of high dimensionality, questioning the
validity of defining cell types in the deeper visual system?>™*. Here we investigate the dimensionality
of neural responses in the midbrain using two-photon calcium imaging in superficial layers of the
mouse superior colliculus (SC). Responses of individual neurons to closely related stimuli, such as
ON and OFF light signals, were mutually dependent such that the response to one stimulus could be
predicted from the response to the other. In contrast, individual neurons responded to brightness and
motion in a statistically independent manner, maximizing functional diversity but preventing
traditional cell type classification. To capture the globally high, locally low dimensionality of neural
responses, we propose a multidimensional response model, in which classification of cellular
responses is meaningful only in local low-dimensional structures. Our study provides a framework to
investigate the processing of visual information by the SC, which likely requires a high-dimensional

response space structure>® to perform higher-order cognitive tasks’'2.

Introduction

Classification of neurons according to genetic and functional types has been a powerful way to
understand the functional organization of the nervous system!, enabling targeted recordings and
genetic therapies. The goal of cell type classification has been to uncover a single set of types, such
that each cell belongs to only one type!, and has relied on the assumption that a meta-structure
covering all response features exists. This approach works well in a low dimensional response space,
where features are correlated such that classification based on feature x will be similar to classification
based on feature y. However, in a high dimensional response space, features are uncorrelated,

preventing compression into a single classification.

Classification of neurons in the retina has been relatively successful'*!'7. Retinal ganglion cells

(RGCs) have functional, morphological, and molecular features that are well matched!>!%1°,

including OnOff direction-selective cells tuned to fast visual stimuli and On direction-selective cells


https://doi.org/10.1101/2023.11.06.565916
http://creativecommons.org/licenses/by-nc-nd/4.0/

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79

80
81
82
83
84

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.06.565916; this version posted November 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

tuned to slow stimuli. These cell-type-specific responses are further defined by the depth of dendritic
stratification and synaptic specificity within the inner plexiform layers, according to the complement
of genes expressed. Together, these findings suggest a low-dimensional organization of retinal
response space. In contrast, cell-type classification has been less effective in downstream visual

2022 "including the visual cortex, where response space has a relatively high dimensionality?.

areas
The SC is an ancient visual structure in the midbrain that can be divided into a superficial region
(sSC) that relays visual information to the cortex and a deep multimodal part (dSC) that transforms

sensory information into motor commands’-?3-28

. In mice, it receives retinotopically organized input
from ~90% of RGCs?*%, of which there are ~40 different types'3. However, despite several attempts
at creating a functional classification system for the SC, only 4-5 distinct morpho-physiological types
have been identified?%?!3%3132. Moreover, the question of response space dimensionality in the SC

has not been addressed.

We investigated the dimensionality of response space in the SC and examined whether this
dimensionality influences the ability to functionally classify neurons. Using two-photon calcium
imaging of the SC in awake mice, we recorded the responses of 6,872 neurons to different light
stimuli. An overall statistical independence between responses to unrelated stimuli, as well as mutual
dependence between responses to related stimuli, suggested that the SC response space is
multidimensional. Moreover, this multidimensionality limited the ability to cluster neurons according
to cell type. Our results provide a conceptual framework for functional classification in high-
dimensional response spaces as well as insight into how retinal information is transformed at the first

central visual structure.

Results

Unrelated stimuli drive independent responses

To investigate visual response space in the midbrain, we collected functional responses of sSC
neurons to four visual stimuli that elicit a range of visual responses (Figure 1a-b, Supplementary
Figure 1). The stimuli included: 1) A 10-degree circular chirp-modulated stimulus (chirp); 2) A full-
screen sinusoidal grating drifting at 5 degrees per second (d/s) in 12 directions (slow drift); 3) A full-
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85  screen sinusoidal grating drifting at 40 d/s in 12 directions (fast drift); and 4) A full-screen sinusoidal
86  grating drifting in all combinations of 6 temporal and 8 spatial frequencies in 4 directions (SpaTemp).
87  We included the chirp stimulus to identify cell types that can detect increases (ON) and decreases
88  (OFF) in luminance, the drift stimuli to identify cell types that have orientation and/or direction
89  selectivity'*?!32, and the SpaTemp stimulus to determine the speed preference of cells.
90
91  We extracted 20 features from the responses to the chirp stimulus using sparse principal component
92  analysis (SPCA) and 16 features from the responses to the two drift stimuli using singular value
93  decomposition followed by sPCA (Figure 1c, Supplementary Figure 2-3). Mutual information (MI)
94 33 was then employed to evaluate the degree of dependency between the drift and chirp features (see
95  Methods). If features x and y have high MI, feature x can provide information about the nature of
96 feature y in a given cell. However, if there is no or chance MI between two features, any overlap
97 between two features in a given cell is coincidental, and the fraction of cells with a specific
98 combination of these features is predictable based on the distribution of two features across the cell
99  population.
100
101 To test the degree of dependency between responses to drift and chirp, we calculated MI between all
102  combinations of the 20 chirp features and the 16 drift features and found chance MI in all cases (320
103  permutation tests, Wilson’s harmonic mean p = 0.11, lowest p-value after Bonferroni-Holm
104  correction = 0.64, Supplementary Figure 4). MI between chirp and SpaTemp features was also
105  determined to be at chance level in all cases (100 permutation tests, Wilson’s harmonic mean p =
106  0.27, all p-values > 1 after Bonferroni-Holm correction). These results suggest that the shape of a
107  cell’s response to the chirp stimulus is not predictive of its response to either of the drift or the
108  SpaTemp stimuli.
109
110  We also manually extracted ON/OFF response amplitudes to classify cells as On, Off, or OnOfft, and
111 calculated orientation and direction selectivity indexes (OSi and DSi, respectively) to classify cells
112 as orientation-selective (OS) or direction-selective (DS) (Supplementary Figure SA-B). We further
113 quantified the response to luminance changes by measuring how fast the peak amplitude was reached
114  (time-to-peak) and how sustained the response was (min-to-peak ratio). Furthermore, because we
115  used drift stimuli with two different speeds, we could subdivide DS cells into DS Fast (direction-
116  selective only to the fast grating), DS Slow (direction-selective only to the slow grating), and DS
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117  Universal (direction-selective at both speeds). MI between ON/OFF response amplitudes and
118  manually defined OS and DS features (DSi, OSi, preferred orientation, and preferred direction) was
119  at chance-level (16 Wilcoxon’s rank sum tests, Wilson’s harmonic mean p = 0.32, all p-values > 1
120  after Bonferroni-Holm correction; Supplementary Figure 6). Thus, responses to brightness cannot
121 predict responses to motion, revealing the independence of responses to unrelated stimuli in the SC.

122

123 If two independent groups exist in the same space, they will overlap predictably (Supplementary
124 Figure 7). To test if collicular On/Off and OS/DS response types are independent, we investigated
125  whether the distribution of the combined groups (e.g. On cells that are also DS Universal) could be
126  predicted from the depth distribution of their separate groups (e.g. On cells and DS Universal cells;
127  Figure le). For all combinations of On/Off and OS/DS subtypes, we found the overlap to be
128  predictable (Supplementary Figure 8, 12 permutation tests, Wilson’s harmonic mean p = 0.08, lowest
129  p-value = 0.10 after Bonferroni-Holm correction).

130

131  Having found that all overlaps between On/Off and OS/DS subtypes are predictable, we reasoned that
132 the response properties of the combined groups should not differ from the response properties of the
133 remaining cells in the two parent groups. We therefore calculated the distribution of min-to-peak ratio,
134  time-to-peak, and preferred orientation and direction for all 12 subtype combinations and confirmed
135 that the distribution of response properties of subtype combinations (e.g., On-DS Universal cells) did
136  not differ from that of the remaining cells in their parent group (e.g., On-nonDS Universal cells) in
137  all cases except the On-DS Slow combination, whose response properties deviated less than chance
138  from the expected distribution (32 Wilcoxon’s rank sum tests for distribution of ON/OFF response
139  properties, Wilson’s harmonic mean p = 0.21, all p-values > 1 after Bonferroni-Holm correction; 12
140  t-tests for distribution of OS/DS response properties, p =0.01 for On-DS Slow after Bonferroni-Holm
141 correction, Wilson’s harmonic mean p = 0.27 for all other combinations, lowest p-value = 0.74 after
142 Bonferroni-Holm correction; Supplementary Figure 8).

143

144  We confirmed this observation by subdividing the response types into 12 On/Off subtypes (each On,
145  Off and OnOff cell classified by sustained, transient, fast or slow responses) and 14 OS/DS subtypes
146  (each DS Slow, DS Fast, DS Universal, and OS cell classified by the cardinal directions). After

147  performing the same tests as described above, we found that the proportion of cells and distribution
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148  of response properties could be predicted from those of the parent groups for all 168 combinations
149 (168 t-tests, 396 Wilcoxon’s rank sum tests, Wilson’s harmonic mean p = 0.2, all p-values > 1 after

150  Bonferroni-Holm correction).
151

152 Chirp and drift clusters overlap at random

153 A commonly used strategy to identify clusters of cellular responses is to use a range of stimuli that
154  cover the largest possible stimulus space'>?'. However, such a strategy may not be feasible when
155  there are statistical independencies within the response space, as independent features reduce the
156  ability of the clustering algorithm to separate response types and increase the risk of mistaking
157  coincidental overlap for cell types (Supplementary Figure 7). We tested the ability to identify clusters
158 in the SC by performing gaussian mixture model clustering of response features to chirp and drift,
159  both individually and collectively. We identified 50 clusters for drift stimuli, 28 clusters for chirp
160  stimuli, and 31 clusters for both chirp and drift stimuli (Supplementary Figure 9A-C, 10A-C). All
161  clusters were stable (median Jaccard similarity score = 0.55 for chirp, 0.56 for drift, and 0.47 for
162  chirp-drift).

163

164  As expected from the statistical independence between On/Off and OS/DS response features (Figure
165 1), we found only chance overlap between chirp-derived clusters and drift-derived clusters
166  (permutation test, p = 0.76; Figure 2a). Chirp and drift clustering is successful at separating On/Off
167 and OS/DS response types, respectively, but combined chirp-drift clustering performs worse at
168  separating these response types (Figure 2b-c). Furthermore, drift clustering cannot separate On/Off
169  response types better than chance (permutation tests, p = 0.95 for On, 0.33 for Off, and 0.98 for
170  OnOff), and chirp clustering cannot separate OS/DS response types better than chance (permutation
171  tests versus random data, p = 0.67 for DS Slow, 0.62 for DS Fast, 0.91 for DS Universal, and 0.21 for
172 OS; Supplementary Figure 11).

173

174  Although On/Off and OS/DS response types are statistically independent and the response properties
175  of the combined groups do not differ from those of the parent groups, combined chirp-drift clustering
176  separate OS/DS responses into On, Off, and On-Off subtypes (Figure 2d). Taken together, these

177  results show an absence of overlap between clusters based on chirp and drift features and that
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178  combining statistically independent features into a single clustering does a worse job of separating
179  response types than clustering these features independently. Moreover, clustering based on the
180 combination of statistically independent features creates meaningless subdivisions of response types
181  based on coincidental overlap between responses. Indeed, including drift features in chirp clustering,
182  and vice versa, disrupts the clustering more than adding a similar amount of noise suggesting that the
183  structures uncovered by drift and chirp are orthogonal (p = 0.02 for adding drift to chirp vs noise to
184  chirp, p = 0.02 for adding chirp to drift vs adding noise to drift; Supplementary Figure 12).

185

186  Related stimuli can result in local dependencies

187  If On/Off and OS/DS responses are independent in the SC, but dependent in the retina, it is possible
188  that the response space structure of the SC is closer to that of the cortex than the retina. Cortical
189  response space is thought to be high-dimensional at the global scale but differentiable for related
190  stimuli at a local scale’>. We therefore anticipated local dependencies in the SC despite overall
191  statistical independence, which we tested by examining dependencies within responses to chirp and
192 drift. MI between ON and OFF responses to the chirp stimulus was higher than chance (permutation
193  test, p <1 x 10#). Consistent with the high MI we also found that the proportion of OnOff responses
194 by depth could not be explained as coincidental overlap between significant ON and OFF responses
195  (t-test versus random permutations, p = 3.5 x 10-'%*; Figure 3a).

196

197  Because min-to-peak ratio and time-to-peak can be extracted from both ON and OFF responses,
198  OnOff cells could be labeled as Transient or Sustained and Fast or Slow in relation to both their ON
199  response (OnOff-ON) and OFF response (OnOff-OFF). We observed that the similarity between the
200  two OnOff response types is higher than the similarity between OnOff-OFF and Off response types
201  and between OnOff-ON and On response types, in relation to both subtype composition (Figure 3b)
202  and anatomical depth (Figure 3¢). We also found that min-to-peak ratio (Figure 3e) and time-to-peak
203  (Figure 3f) for OnOff cells were different to those for On or Off cells (Wilcoxon’s rank sum tests,
204  time-to-peak p = 5 x 10™*, min-to-peak ratio p = 2 x 10-??> for OnOff-ON vs On; time-to-peak p = 1 x
205  10*, min-to-peak ratio p = 6 x 10”7 for OnOff-OFF vs Off). These data are similar to data collected
206  from OnOff RGCs (Figure 3d)'3**. In both the retina and SC, OnOff responses are faster and more
207 transient than On and Off responses, and collicular OnOff responses are more similar to retinal OnOff
208  responses than collicular On or Off responses (Figure 3b and d). Our data provide further support for
209 the notion that OnOff is a distinct response type in both the SC and retina.
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210

211 Asexpected for locally low dimensionality, we observed high MI between response features extracted
212 from fast- and slow-moving gratings (8 t-tests, 1 x 107188 <p <1 x 10" for slow vs best fitting fast
213 features). Indeed, overlap between DS cells responding to the slow grating and DS cells responding
214  to the fast grating was much higher than chance (t-test vs random permutations, p = 5.5 x 10713¢;
215  Figure 4a). The high MI prompted us to test if there were differences in the preferred direction profile
216  of DS Fast, DS Slow, and DS Universal cells which we found to be the case (Kuiper’s test, Universal
217  vs Fast p < 0.001, Universal vs Slow p < 0.001; Figure 4b). Furthermore, these preferred direction
218  profiles showed that DS cells in the SC segregate into the four cardinal directions. By plotting the
219  change in proportion of preferred direction with depth, we revealed that each cardinal changes
220 independently with depth and that these changes differ between DS subtypes (Figure 4c).
221 Furthermore, the SpaTemp stimulus allowed us to estimate the preferred speed of each cell (see

222 Methods), which differed between cardinals and also changed independently with depth (Figure 4d).

223 Although OS and DS RGCs form separate mosaics in the retina®>=’, there have been reports of both
224  dependence and independence between preferred orientation and direction in the SC3**°. We therefore
225  investigated how orientation preference is related to direction preference in the SC and found a clear
226  difference between how the three DS subtypes overlap with OS cells. Specifically, we found a large
227  overlap between OS and DS Universal or DS Slow but only a chance-level overlap between OS and
228 DS Fast (t-tests against random permutations, OS vs DS Universal p = 7 x 106, OS vs DS Slow p =
229 3.7x 1073, OS vs DS Fast p = 0.97; Figure 4¢). The differences in degree of overlap between these
230  subtypes was also reflected in the relationship between preferred direction and orientation of cells
231 that are both OS and DS (Figure 4f). In this case, although DS Universal and DS Slow cells prefer
232 orientations that are orthogonal to their directional preference, we found no evidence for a relationship

233 between preferred orientation and direction of DS Fast cells.

234  Together these findings suggest that any overlap between OS and DS Fast is coincidental, whereas
235  that between OS and DS Slow or DS Universal is not, revealing the ability to classify OS-DS Slow
236 and OS-DS Universal as distinct types.

237  Finally, we found that when taking cells that are DS to the Slow drift stimulus (DS Slow and DS
238  Universal cells) and plotting their DSi to the Fast drift stimulus, there were two distinct groups, one

239  with a high DSi to the Fast drift stimulus (DS Universal cells) and one with low DSi (DS Slow cells)
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240  to the Fast drift stimulus (Figure 4g). Thus, despite the globally high dimensionality of the SC, we

241  observed local low dimensionality in response to both luminance changes and motion.

242

243 Functional responses are organized by depth

244  The SC is a layered structure whose superficial region can be divided into the stratum griseum
245  superficiale (SGS) and stratum opticum (SO). We investigated whether the statistically independent
246  responses that we had observed might change through these layers by quantifying functional changes
247 by depth using depth co-clustering correlation matrices for drift and chirp clusters (see Methods).
248  Briefly, we estimated the functional similarity between two depths by calculating how often a cell
249  from one depth occurred in the same functional cluster as cells from another depth. We found that
250  depth co-clustering correlation matrices for chirp and drift have the same structure (Figure 5a-b),
251  despite having independent response types, features, and clusters. There was a clear functional
252  difference between the SGS and SO (180210 um) in both chirp and drift matrices. Furthermore, cells
253 within both drift and chirp clusters tended to stem from a narrow layer in depth, indicative of smooth
254  functional changes across depth within the SGS and SO. Finally, we found that cells from the
255  superficial SGS (30 um) and the superficial SO (210 um) tended to appear in the same clusters (Figure
256  5c¢), revealing high functional similarity between these two regions. This furthermore suggested a
257  ‘double drop’ pattern of functionality with depth, comprising a smooth decrease with depth in the
258  SGS (30-180 pum), a sharp increase between the SGS and SO (180-210 um), and a second smooth
259  decrease throughout the SO (210-300 um) (Figure 5d-f).

260

261  Having already shown that cardinals of DS subtypes change independently with depth, we inspected
262  cardinal responses throughout the sSC, and observed a tendency for horizontal responses to be
263  represented in the superficial SGS and SO and vertical responses to be represented in the deep SGS.
264  For all DS subtypes, the ratio of vertical to horizontal responses tended to increase with depth in the
265  SGS and then decreased between the deep SGS and the superficial SO, but only significantly for DS
266 Universal cells (p = 5 x 107 for the SGS increase and p = 0.0053 for the SO decrease). We also
267  observed a double drop in the proportions of anterior motion preferring DS Slow cells throughout the
268  sSC (Figure 5f).

269
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Finally, we plotted the preferred spatial frequency of all cells as a function of their preferred temporal
frequency and found a tendency for cells to be located along an orthogonal to the speed isoline
(Supplementary Figure 13). We quantified this tendency by dividing the spread of the population in
the anti iso-speed direction by the spread in the iso-speed direction to generate the population speed
spread at a given depth. This revealed an increase in population speed spread with depth in the SGS,
peaking at 180 um, and then a decline between the deep SGS and the superficial SO (Figure 5g). We
additionally found a similar pattern of speed preference with depth (Figure 5h). Thus, we uncovered

a relationship between the functional responses of SC neurons and their depth in this brain structure.

10
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279 Discussion
280  The purpose of multidimensionality in the SC

281  The current classification of SC cells into a handful of morpho-genetic types presumes a low-
282  dimensional organization of morphological and genetic spaces. If that classification system was to be
283  extended into the functional domain, it would require a low dimensional organization of collicular
284  response space. Here we found that collicular response space is at least multidimensional by
285  demonstrating that neuronal responses to Drift and Chirp stimuli are independent on feature, response
286  type, and clustering levels. A high-dimensional response space would be beneficial to collicular
287  processing in several ways. First, an increase in dimensionality would increase the number of
288  partitions that can be implemented by a downstream linear decoder*, resulting in higher
289  computational power. Second, reducing correlations increases efficiency by making the neural code
290 less redundant’. Finally, the complex behavior and higher cognitive processes carried out by the

291  SC’%*12 Jikely require a high-dimensional response space structure®*®,

292 Prior RGC classification studies have suggested that Drift and Chirp responses are mutually
293 dependent in the retina®*324?, although this has to be validated experimentally in the future. Based on
294  this assumption, we hypothesize that decoupling must take place at the retinocollicular synapse
295  (Figure 6a). One potential mechanism underlying the decoupling is the functional clustering of local
296  dendritic inputs described at the retinogeniculate synapse®. Beyond increasing the dimensionality of
297  response space, decoupling could serve as a preparatory step for general pattern separation or mixed

298  selectivity processes that have been shown in other brain regions**,

299  Classification by response types, not cell types

300 While the multidimensional structure of collicular response space is problematic for the cell type
301 model, it still has clear structure that merits defining types (Figures 3-4). For this purpose, we propose
302 a response type model where the target for classification is the response itself rather than the cell
303 carrying the response (Figure 6b). The response type model has several advantages over a cell type
304 model. First, it is more concise as it scales additively with each additional independent response
305  whereas the cell type model scales multiplicatively (Figure 6¢). We here only tested two responses,
306  butitis possible that many more independencies will be uncovered as more stimuli are tested. Second,
307 if you know that two responses are independent, naming the specific combination of responses in

308 each cell yields no additional information, the additional complexity of the cell type model offers no

11
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309 advantage over the response type model. Third, the response type model allows classification to be
310 used within the framework of the neural network doctrine® by allowing cells to engage in multiple
311  independent pathways. Finally, response types are more in line with the intuitive definition of a type

46 since functional

312  as an “evolutionary unit with the potential for independent evolutionary change
313  responses directly influence survival whereas functional cell types only influence survival through its
314 impact on the carried functional responses. Together with the capacity of cells for subcellular
315  plasticity****, our finding of response space independencies suggest that the true evolutionary units

316  in collicular response space are response types (Figure 6d).
317  Morphology and genetics may not hard-code response types

318  Our finding of independence among responses predicts that genetic and morphological types cannot
319  have predefined responses to both luminance and motion. Indeed, studies have found a high degree
320 of functional diversity within each genetic subtype in the SC3%°!. For instance, even the Cbln4-
321  positive cells, which had the highest concentration of direction-selective cells, contained one-third of
322 the cells that were not directionally selective’!. We hypothesize, that while a cell’s morphology and
323 position in depth are likely determined genetically?’, a cell-type-specific connectivity with retinal
324  ganglion cells and/or local dendritic clustering of retinal inputs are determined stochastically guided
325 by local plasticity rules’?. This hypothesis would mean that genes set the stage by increasing the
326 likelihood that a cell will have a particular response type without enforcing a fixed functional role.
327  Given that functional inputs and characteristics vary with depth, it is not surprising that such local

328  stochastic mechanisms lead to marked functional differences among cells from the same genetic type.
329  The influence of retinal inputs and anatomical layers

330  Previous studies have found that collicular direction selectivity is likely inherited from the retina®*>*.
331  Direct inheritance of direction selectivity is consistent with our finding that collicular DS cells are
332 sensitive to motion in the four cardinal directions detected by the retina (but see®”). In this respect,
333  our finding that DS subtypes with distinct differences in preferred directions and speed preferences
334  appear to constitute unique response types raises the question of whether a similar subdivision may

335  exist at the retinal level.

336  We found functional changes with depth in the SC that were common to both Chirp and Drift
337  responses. Specifically, a continuous functional change through the SGS, a steep reset between the

338  SGS and SO, and a second continuous change through the SO. The steep reset leads to a high degree

12


https://doi.org/10.1101/2023.11.06.565916
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.06.565916; this version posted November 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

339  of similarity in depth-related functional organization between the superficial SGS and superficial SO,
340  suggesting that a computational process performed by the SGS is repeated in the SO. A feature
341  showing this pattern of change across depth is the ratio of vertical to horizontal DS responses; cells
342  in the superficial SGS and SO prefers horizontal motion and cells in the deeper SGS and SO prefers
343  vertical motion. This finding aligns well with the finding that, posterior motion-preferring OnOff-DS
344  RGCs project specifically to the superficial SGS®¢, whereas upward motion-preferring Off-DS RGCs
345  project more broadly throughout the SGS*’. Similar depth-related changes in preferred motion,
346  supported by DS RGC projection patterns, have been described in the dLGN37>628,

347  Finally, scatterplots of spatial and temporal preferences in the SC (Supplementary Figure 13) suggest
348 that a selection process pushes collicular cells to respond to a large range of speeds. This tendency is
349  much stronger in the deep SGS than in the superficial SGS and SO, suggesting that speed is more
350 actively selected for in the deep SGS than in other parts of the sSC.

351

352 As well as providing insight into the processing of visual information by different layers of the sSC,
353  our findings reveal the limitations of using one-dimensional classification in functionally complex
354  brain structures. As an alternative, we highlight how multidimensional response types can be used to

355  classify high-dimensional response spaces at a functional level.

356
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483  Figure 1 Global Independencies

484  a) Left: Illustration of mouse brain with silicone plug (blue), displacing sinuses (red) to create accessible visual
485  field of superior colliculus cells. Middle: zoom-in of a field of view in two-photon microscope. Right: traces
486  of four cells (outlined on middle image) responding to changes in luminance of the chirp stimulus and moving
487  gratings at two different speeds. b) Response matrices for the chirp (left) and slow grating (right) stimuli. c)
488  Matrices showing the weight of each chirp (left) and drift (right) feature. Blue indicates negative weight and
489  yellow indicates positive weight. d) Mutual information for four example chirp features vs the drift feature
490  with which they had the highest MI (dashed blue lines) plotted on top of histograms of 500 calculations of MI
491  after the order of the drift feature had been randomized relative to the order of the chirp feature. ) Example of
492  a predictable relationship between response types. Top left: Proportion of On cells across depth. Top right:
493  Proportion of DS Universal cells across depth. Bottom left: Actual On-DS Universal proportions across depth
494  (black) vs expected proportion (blue) and random permutations (gray). Bottom right: Histogram of the summed
495  deviation from the expected proportion of each random permutation with the actual summed deviation shown

496 as a dashed blue line.
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Figure 2 Clustering Independencies

a) Median Jaccard Similarity score for chirp compared to 90% chirp subsamples (grey diamond), for drift
compared to 90 % drift subsamples (blue diamond), and for chirp clustering compared to drift clustering (black
diamond). Boxplot shows median Jaccard Similarity score for chirp clusters compared to 500 random
permutations of the drift cluster tags. b) Proportion across clusters of On (left), OnOff (middle), and Off (right)
for the chirp clustering (top) and chirp-drift clustering (bottom). Dashed blue line indicates expected value if
distribution is random. ¢) A clustering’s ability to separate On/Off and OS/DS response types can be quantified
as the absolute difference between the actual and the expected proportion of the given response type averaged
across clusters. For all measured response types, the ability to separate types is lower in the combined clustering
(right) than in the separate clusterings (left). d) Left: Actual distribution of On-DS Universal cells across
clusters (black) is different from expected distribution if sampling is random (blue, p = 1.8e-6). 500 random
permutations are shown in gray. Middle: Same as left for the OnOff-DS Universal population (p = 0.0051).
Right: Sum of the absolute difference between On-DS Universal cluster proportions and OnOft-DS Universal
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512 cluster proportions (dashed blue line, p = 6.6e-5) plotted on top of a histogram of 500 sums of the absolute
513  difference between a random sample of On cells of equal size and depth distribution as On-DS Universal cells
514  (gray lines in left figure) and a random sample of On cells of equal size and depth distribution as OnOff-DS
515  Universal cells (gray lines in middle figure).

516
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517

518  Figure 3 Local dependencies in ON/OFF Response Space

519  a) Proportion of above threshold ON (left) and OFF responses (middle) across depth. Right: Actual proportion
520  of OnOff cells across depth (black) compared to expected proportions if ON-OFF overlap was coincidental
521  (blue) with 500 random permutations of linear combinations of On and Off shown in gray. b) On/Off subtype
522 composition in the SC: Composition of Fast-Transient (FT), Slow-Transient (ST), Fast-Sustained (FS), and
523  Slow-Sustained (SS) subtypes across On, Off, and OnOff cells. Because subtypes can be determined in relation
524  to both the ON and OFF phase, the subtype composition for OnOff cells is shown for each phase separately.
525  c¢) Left: Proportions across depth of OnOff-ON FT cells (green) and OnOff-OFF FT cells (magenta). Middle:
526  Proportions across depth of OnOff-ON FT cells (green) and On FT cells (black). Right: Proportions across
527  depth of OnOff-OFF FT cells (magenta) and Off FT cells (grey). d) On/Off subtype composition in the Retina:
528  Shown as in b). Data was extracted from http:/retinal-functomics.net/ **. e) Distribution of min-to-peak ratio
529  for On (top left), Off (top right), OnOff-ON (bottom left) and OnOff-OFF (bottom right).

530 ) Distribution of time-to-peak for On (top left), Off (top right), OnOff-ON (bottom left) and OnOff-OFF
531  (bottom right).

532

24


https://doi.org/10.1101/2023.11.06.565916
http://creativecommons.org/licenses/by-nc-nd/4.0/

533
534

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.06.565916; this version posted November 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

a DS at5d/s DS at 40 d/s e OS - DS Slow OS - DS Fast OS - DS Universal
0.6 0.4- 0.12
0. 08 mmm Expected overlap
5 04 = wm Actual overlap
o= U =]
£ 0 g
202 g 004
~ &
0 0
60 180 300 60 180 300 60 180 300 0 60 60 180 300
Depth in pm Depth in pm
DS Slow DS Fast DS Universal OS - DS Slow OS - DS Fast OS - DS Universal
=
U U U % 1 . '. o o 1 LI 1 {e. o..: ’ ..:#
g e, e Cop o °
0.05 0.03 0.03 2 A i.' o0 3 S x' <8 S ¢ J .:' °e
Sl B el - . B
A § P A P A P ERR t.:..".' EIPCIRAES R I A
5 »1e 0e 20 o o 8 , °
3 D) . L R L
SN 7 ST RS - S PR L A PR S, |
D D D > A <« § > > ) = ¥ > > j) = ¥ >
g Preferred direction
DS Slow DS Fast DS Universal
| 200 8
0.12 0.04 0.06 = Up
B === Down = -
.g 0.08 0.04 \ mm Posterior g g
. Anterior
= 0.02 © 100 S 4
2 o =
A 0.04 : 0.02 © o]
'*-7\'\ P
0 ~ — 0 Y = 0 0
60 180 300 60 180 300 60 180 300 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Depth in pm DSi at 40 d/s DSiat5d/s
d up Down
—— S —
-] —_— i — 801 1 80
£ —k—
S 801 T ——%—
2 k= —_—
= —%= T
& PooT i 40 a0 T P
g 40 EI LT - BEQ : T T
2 7
5 : z B
: |ITE= 190e  [F 0 5 il
0 oL 4 N e
Up Down Post Ant 60 120 180 60 124 180
Preferred direction Depth in pm

Figure 4 Local Dependencies in OS/DS Response Space

a) Proportion of cells with a direction selective response at 5 d/s (left) and 40 d/s (middle) across depth.
Right: Actual proportion of DS Universal cells across depth (black) compared to expected proportions if DS
Universal responses were a linear combination of DS at 5 d/s and DS at 40 d/s proportions (blue) with 500
random permutations of linear combinations shown in gray. b) Polar plots of preferred direction in DS Slow
(left), DS Fast (middle) and DS Universal cells (right). ¢) Proportions across depth of the four cardinal
directions for DS Slow (left), DS Fast (middle), and DS Universal (right). d) Left: Box plot of preferred
speed across DS Universal cardinals. Upward selective cells preferred higher speeds than Downward (p = 3e-
14) and Posterior (p = 2e-35) selective cells. Downward selective cells preferred higher speeds than Posterior
selective cells (p =4e-21) and lower speeds than Anterior selective cells (p = 4e-13). Posterior selective cells
preferred lower speeds than Anterior selective cells (p = 6e-36). All tests were Wilcoxon’s Rank Sum tests.
Middle: Box plots of preferred speed across the depth of SGS for Upward selective DS Universal cells.
Right: Box plots of preferred speed across the depth of SGS for Downward selective DS Universal cells. The
preferred speed for Upward selective DS Universal cells decreases across the SGS (30 pm vs 180 um: p =
1.1e-4) while the preferred speed for Downward selective cells increases across the SGS (30 pm vs 180 pm:
p = 0.03). p-values of less than 0.001 are marked by a *. e) Proportions across depth of OS-DS Slow (left),
OS-DS Fast (middle), and OS-DS Universal (right) shown in black. Expected proportions if OS-DS overlap
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551  was coincidental shown in blue with 500 random permutations of linear combinations of OS-DS proportions
552 shown in gray. Overlap is at chance level for DS Fast (p = 0.97), and higher than chance for DS Slow (p =
553  4e-5) and DS Universal (p = 7e-46). f) Scatter plots of preferred direction (x-axis) and preferred orientation
554  (y-axis) for OS-DS Slow (left), OS-DS Fast (middle), and OS-DS Universal (right). g) Left: Histogram of
555  DSimeasured at 40 d/s for all cells that are DS at 5 d/s. Right: Histogram of DSi measured at 5 d/s for all
556  cells that are DS at 40 d/s.

557
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a) Depth co-clustering correlation matrix for the chirp clustering. Black dashed line indicates the transition

between the SGS and the SO. b) Depth co-clustering correlation matrix for the chirp clustering presented as in

a). ¢) Example histograms of drift (left) and chirp (right) clusters showing co-clustering of superficial SGS and

superficial SO cells. Blue dashed line indicates transition between the SGS and the SO. d) Violin plots of the

On/Off Ratio across depth. Blue dashed line indicates the mean across the whole population. e) Same as d) but

for On min-to-peak ratio. f) Proportion of DS Slow Anterior cells across depth. The proportion falls between

superficial (30 um) and deep (180 um) SGS (p = 4e-7), increases between deep SGS and superficial (210 um)

SO (p =0.003), and decreases between superficial and deep (300 um) SO (p = 0.02). g) Top left: Plot of mean

population speed spread across depth with mean value shown as a dashed blue line. Population speed spread

is higher than mean at 180 pm (p < 0.001). Scatter plots of preferred temporal and spatial frequency for cells
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570  at depths of 60 um (top right), 180 um (bottom left), and 240 pm (bottom right). h) Box plots of speed
571  preference across depth. Preferred speed increases from superficial SGS (30 um) to deep SGS (180 um): p =
572 9e-65. Preferred speed decreases from deep SGS to the SO (200+ pm): p = 2e-4. Both tests were Wilcoxon’s
573  Rank Sum tests.

574
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576  Figure 6 Retino-collicular information transfer

577  a) Model of decoupling of functional responses at the retino-collicular synapse. Such a decoupling would
578  explain why responses that are coupled in the retina are independent in the SC and would allow the generation
579  ofnew combinations such as ON DS posterior. b) Demonstration of the differences between the cell type model
580  and the response type model. Four cells carrying different combinations of responses are depicted on the left.
581  Whereas the cell type model would identify each cell as its own type (middle column), the response type model
582  would identify four responses (right column) with each response type being distributed across several cells
583  (colored dashed lines in the depiction on the left). ¢) Due to the independence of the decoupled responses, all
584  combinations of independent responses will exist. As a result, describing response types is simpler than
585  describing cell types. d) Left: Blue and red dots represent the responses of two hypothetical groups of cells.
586  The red group has had their receptive field size changed due to a selection pressure. This pressure did not

587  change the ON/OFF ratio or the Spatial Tuning Index of the group. Right: The selection pressure that caused
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588  differences in preferred speed between groups also caused differences in preferred direction and orientation.
589  This in turn lead to higher-than-chance Mutual Information between preferred speed, direction, and orientation.
590 If independencies in response space exist, then selection pressures must be able to act on a subcellular level
591  making response types more tightly aligned with the definition of an evolutionary unit than cell types.

592
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609 Methods

610 Experimental Methods

611 Animals

612  All experimental procedures were approved by the Danish National Animal Experiment Committee
613  (License number: 2020-15-0201-00452). Twenty-one 12- to 18 weeks old wild-type mice (C57BL/6J
614  from Janvier Labs) of both sexes were used. The mice were housed in a heat-regulated room in groups
615  of two to four per cage with easily accessible food and water. The mice were kept on a standard 12-
616  hour day/night schedule and looked after daily by animal caretakers. Since the mice were at least 12

617  weeks old when imaging was performed, cells in both the retina and the SC were fully mature >°.
618 Pre- and Post-Procedure Protocol

619  All procedures were performed in a sterile and aseptic environment. Before procedures, mice were
620 anesthetized with a fentanyl (0.05 mg/kg body weight), midazolam (5.0 mg/kg body weight), and
621  medetomidine (0.5 mg/kg body weight) mixture injected intraperitoneally. Dexamethasone (0.2
622  mg/kg body weight) were administered subcutaneously to prevent edema during and after surgery.
623  During procedures mouse body temperature was kept stable by using a heating plate and their eyes

624  were protected from dehydration using eye ointment (Viscotears, Novartis).

625  Post procedure protocol included administration of carprofen (0.08ml subcutaneous) and
626  buprenorphine (0.03ml intramuscular) every 8 hours until the mice no longer showed signs of being
627  in pain for up to 48 hours). Anesthesia was reversed by injecting a mixture of Flumazenil (0.5 mg/kg
628  body weight) and Atipamezole (2.5 mg/kg body weight). The mouse was allowed to slowly wake on
629 the heating plate in its cage.

630 Viral Injection

631  The mice were anesthetized as described. After the head was shaved, the mouse was held steady by
632  ear bars and the skin was disinfected with 70% ethanol. A sagittal (anterior-posterior) cut in the skin
633  was made 1-2 mm left of the midline until lambda and the injection site was visible. Connective tissue

634  covering the skull was removed and a small burr hole was drilled 0.5-0.7 mm caudal to the interaural
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635  line 0.3-0.7 mm left of the midline. Skull debris was removed continuously using absorption spears

636  (SUGI, AgnTho’s) lightly soaked in saline.

637  Virus (AAV1.Syn.GCaMP6f WPRE.SV40, 2.13 x 10'3 vg/ml, Penn Vector Core #100837-AAV1)
638  was injected with a glass pipette through the burr hole with the pipette holder tilted ~25 degrees
639  posterior to ensure expression reached far enough rostrally. A total of 600 nl was injected across five
640  depths (1.65, 1.5, 1.35, 1.2, and 1.05 mm below skull surface) using as low pressure (Picospritzer III,
641  Parker) as possible over a total of 15 minutes. To avoid backflow, we waited further 5-10 minutes
642  before fully retracting the pipette. The skin was then sutured, and post procedure protocol was

643  followed as described above.

644 Head Plate Surgery

645  To gain visual access to the SC without removing part of the cortex and thereby potentially altering
646  the response of collicular cells ®°, we adapted a method designed to expose the collicular surface by
647  displacing the transverse sinus with a silicone plug °'. The transverse sinus is assumed to not be
648  essential for healthy brain function, as ablation of the sinus has been shown to cause minimal to no
649  neurological symptoms in humans 2. With this method, we gain visual access to approximately 15-

650  25% of the posteromedial surface of the SC.

651  14-21 days after injection the mouse’s head was shaved and the mouse was placed in an ear bar holder.
652  The shaved skin was disinfected with 70% ethanol and a 1-1.5 cm circular patch of skin, including
653  underlying tissue and a portion of neck muscles was removed to expose the skull above lambda and
654  the injection site. To increase glue binding strength superficial cuts in the skull were then made. A
655  custom-made metal head plate was placed on the skull centered on lambda and attached with glue
656  (Super Glue Power Gel/Flex, Loctite). The function of the head plate was to enable stabilization of

657  the mouse's head during imaging.

658  Silicone Plug Surgery

659  For the plug surgery, the anesthetized mouse was placed in a head plate holder. A round cranial
660  window slightly smaller than 4mm centered on the point of the sinus divergence was made using a
661  drill. Skull debris was removed continuously with a suction needle and the exposed brain was kept

662  soaked in sterile phosphate buffered saline (PBS). The dura above the SC was removed and a
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663  triangular silicone plug (Kwik-sil, World Precision Instruments) attached to a 4 mm round glass
664  window (0.15 mm thickness, Warner Instruments) was inserted above the SC and slowly pushed
665  forward displacing the left transverse sinus and creating visible access to the SC. The glass plate was
666  then glued to the edge of the skull and the headplate. After the glue had dried, normal post-procedure

667  protocol was followed. Optics remained clear for at least 3 months following plug surgery.
668 In Vivo two Photon Calcium Imaging

669 A minimum of 7 days after surgery and before performing awake two-photon imaging, the mice were
670 trained to remain calm in the imaging setup by completing four training sessions of increasing
671  duration over a period of four days. During the sessions the mice were placed on the imaging stage
672  with their head fixated to the head plate holder with their body protected by a padded cylindrical
673  cover %, During and after each session the mouse was rewarded with chocolate paste to create positive

674  association and habituation to the imaging area.

675  Each imaging session lasted 1-2 hours with breaks every 15-25 minutes depending on stimulus length.

676  Animals were kept awake during imaging by offering chocolate paste rewards during breaks.

677  Imaging was performed using a resonant scanning microscope (VivoScope, Scientifica) controlled
678 by SciScan version 1.2 running 30.9 frames per second at a resolution of 512x512 pixels covering an
679 area of 500x500 um. Dispersion-compensated 940 nm light was provided by a mode-locked
680  Ti:Sapphire laser (MaiTai DeepSee. Spectra-Physics) through a 16x water-immersion objective
681  (Nikon, 0.8 NA). We imaged up to 10 depths per mouse, from 30 um under the surface, at 30 um
682 intervals, to ensure no cells were recorded twice, down to a maximum of 300 um which was the
683  deepest position where we still had adequate signal-to-noise ratio. In our recordings the border
684  between the SGS and the SO was consistently found between 185 and 205 um below the surface
685  (Supplementary Figure 14). We identified it during imaging by locating the shift in cell body size
686  between lower SGS and SO (Supplementary Figure 14a-c). To determine if the shift in cell body size
687 indeed marked the border between the SGS and SO we imaged Ntsr1-Cre-labeled cells as these cells
688  are known to only reside in the SO 2°. A quantification of the depth distribution of Ntsr1-Cre cell
689  bodies shows that the emergence of Ntsr1-Cre cells coincides with the shift in average cell body size
690  (Supplementary Figure 14c-d). As such 180 um was always the deepest SGS layer and 210 um the

691  shallowest SO layer. For each layer one to three non-overlapping fields of view were imaged.
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After fixating the mouse on the imaging stage, the two-photon microscope was moved into place, by
putting water on the tip of the microscope and slowly lowering it onto the cranial window glass
surface until the surface tension broke, creating a cylinder-shaped water connection between the
microscope and the cranial glass window. After this, a layer of black tape was attached covering the
open space between the microscope and the metal head plate. This ensured no light contamination
from the stimulus screen entered the microscope and slowed down the rate of evaporation of the
immersion water. Each imaging session lasted approximately 2 hours, during which the mouse was
rewarded with chocolate paste twice, in connection with refilling the water between the microscope

objective and the glass window.
Screen Positioning

A 47.7 x 26.9 cm 60 Hz screen (Dell, U2212HMc) was positioned 22 cm away from the right eye,
angled such that the mean receptive field position of all cells within the field of view was at the center
of the screen. Light intensity was measured to 0.051 mW/cm? with a power meter (PM200, Thorlabs).
The position of the screen was optimized by testing various screen positions before each imaging

session.

Stimulus Battery

Mice were presented with the following stimulus battery:

1. Sparse noise: Black or white squares covering 10x10 degrees of the visual field were flashed
one at a time for 0.1 seconds at all possible xy-positions of a roughly 20-by-10 grid using 5-
degree increments in pseudo-random order to determine receptive field position. Grid size
was set to the smallest possible size that fully covered the receptive fields of all responsive
cells within the field of view.

2. Drifting Grating (Drift): A full-field sinusoidal grating (100% contrast, 0.08 cycles per
degree) drifting at a speed of 5 or 40 degrees per second, each presented at 12 equally spaced
angles.

3. Chirp stimulus: A 10 degree in diameter circular spot was presented in 7-12 different

positions on the screen. The chirp stimulus was presented after estimation of receptive fields
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720 with the sparse noise stimulus such that the positioning of the chirp circular spot could be
721 optimized to cover the receptive field center of as many cells as possible. The stimulus has
722 three phases. 1. A step phase where the stimulus switched between black and white, 2. A chirp
723 phase where sinusoidal shifts between black and white occurred with frequency increasing in
724 steps, 3. A contrast phase where sinusoidal shifts occur with increasing contrast.

725 4. Spatio- Temporal Gratings (SpaTemp): A full-field sinusoidal grating drifting at all
726 combinations of 8 spatial frequencies (0.04-0.32 cycles per degree, linear increments) and 6
727 temporal frequencies (0.5-16 Hz, logarithmic increments), each presented at 4 equally spaced
728 angles.

729  Stimuli were presented in the above-mentioned order, but internally the order of each stimulus was
730  pseudo-random. Between each trial there were 3 seconds without stimuli to allow the cell calcium

731  signals to return to baseline. All stimuli conditions were repeated across 6 trials.
732 Stimulus Size

733 We chose the size of both the sparse noise (10x10 degree square) and the Chirp stimulus (circle with

734  a 10 degree diameter) based on results from Wang and colleagues .

735 Data Analysis

736  Correction of x-, y-, z-axis movement

737  We manually performed z-axis corrections during imaging by recording a template image before the
738  start of each imaging session and performing re-alignment to the template between each stimulus.
739  Trials with z-movement where at least 5 % of cells showed a simultaneous decrease in fluorescence

740  were discarded.

741  We performed xy-movement registration by calculating a template using the 20 imaging frames with
742 the highest internal correlation and then using this template to perform correlation-based image
743  registration %, Rigid motion correction was performed with a custom script based on the MATLAB
744 xcorr function. We record images at 30.9 frames per second, hence motion across the frame is uniform

745  enough to use rigid plane correction .
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746  Neuropil Decontamination and Baseline Calculation

747  Regions of interest (ROIs) were drawn manually in ImageJ. Neuropil decontamination was performed
748  using FISSA . For chirp responses, baseline was extracted by running a 0.75 second moving mean,
749  followed by a 60 second 10™ percentile filter, and finally another 0.75 second moving mean on the
750  neuropil subtracted fluorescence trace. In the baseline calculation for all other stimuli the 10™

751  percentile filter was replaced with a 20 second moving minimum filter.

752 Finally, because FISSA in some cases will cause zero values in response amplitude, AF/F was
753  calculated by dividing the baseline subtracted response with the median response amplitude of the

754  pre-neuropil removal pre-stimulus phase.
755  Quality Control

756  Cells were included if one of the following criteria were met:

757 1. R2>0.5 for a 2D gaussian fitted to the response to sparse noise, and Chirp stimulus presented
758 such that it covered the receptive field center of the cell.

759 2. Chirp Quality Index > 0.45

760 3. Drifting Quality Index > 0.45, R? > 0.5 for a 2D gaussian fitted to the pre-neuropil removal
761 response to sparse noise, and Chirp stimulus presented such that it covered the receptive field
762 center of the cell.

763  Quality Indexes were calculated as implemented before 3. Briefly, if ¢ is the r by t response matrix,
764  ris the number of repetitions of the stimulus, t is the response across time, and ()x and Var[]x denotes
765  the mean and variance across the indicated dimension, respectively, then the quality index (QI)

766  becomes:

_ Varf(c)]e
%7 U= Warldo, )

768  When defined as such a QI can take values between 1/r and 1 with a value of 1 indicating that the
769  exact same signal was recorded across all trials and a value of 1/r indicating no correlation across

770  trials.

771  sPCA based Feature Extraction
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772 We used the same method as Baden and colleagues to extract features from Chirp and Drift '3. We
773 extracted 20 Chirp features with 10 non-zero time bins (Supplementary Figure 2) by applying sparse
774  principal component analysis (SPCA) ¢ using elastic net regression as implemented in the SPaSM
775  toolbox for MATLAB . Before sSPCA data was normalized by using the normalize function in

776  MATLAB on the mean response across trials.

777  To extract Drift features, we first performed a singular value decomposition on the normalized mean
778  response across trials. We then used sPCA on the first column (accounting for 86 % of variance) of
779  the resulting temporal components to extract 8 features with 5 non-zero-time bins (Supplementary
780  Figure 3) for both drifting speeds. After extraction the features were z-scored using the zscore

781  function in MATLAB.

782 Response properties from the Drift Stimulus

783  We defined a cell as direction-selective (DS) if it had a direction selectivity index (DSi) greater than
784  0.25 and a permutation test found a p-value of less than 0.05.

785  The direction selectivity index (DSi) was calculated as defined by Mazurek and colleagues ¢°:

786 DSI — ZkR(ek)eXp(iek) (2)

2k R(Bk)

787  where R(0}) is the maximum response amplitude during the drifting phase minus the mean response

788  during the final 0.5 seconds of the static phase (Supplementary Figure 1b) for direction 0y (Using
789  directions 0-330 degrees in 30 degree intervals).

790 A cell was defined as DS Slow if it had a DS response to the slow grating but not to the fast grating.
791  Similarly, a cell was defined as DS Fast if it had a DS response to the fast grating but not to the slow
792  grating. Finally, a cell was defined as DS Universal if it had a DS response at both speeds. As such,
793 DS Slow, DS Fast, and DS Universal are mutually exclusive.

794  We defined a cell as orientation-selective (OS) if it had an orientation selectivity index (OSi) greater

795  than 0.25 and a permutation test found a p-value of less than 0.05.

796  The orientation selectivity index (OSi) was calculated as defined by Mazurek and colleagues :
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OSI — Zk R(ek)exp(Ziek) (3)

797
2k R(Ok)

798  where R(0}) is the maximum response amplitude during the static phase minus the mean response

799  during the final 0.5 seconds of the pre-stimulus phase (Supplementary Figure 1b) for direction 6.
800  (Using directions 0-330 degrees at 30-degree intervals).

801  For both orientation- and direction selectivity the preferred orientation/direction was calculated as the

802 angle of the summed vector.

803  Permutation tests were done by shuffling responses across all trials and directions 1000 times,
804  calculating the DSi/OSi of each shuffle, and performing t-tests on the actual DSi/OSi vs the DSi1/0OSi
805  of the shuffled responses.

806
807 Response properties from the Chirp Stimulus

808  We used the first six seconds of the mean response across trials to the Chirp stimulus to define On/Off
809  subtypes. The first two seconds of the response were used to quantify baseline response and standard
810  deviation, the following two seconds quantified the ON response, and the last two seconds quantified

811  the OFF response (Supplementary Figure 1c-d).

812  We define ON response as the maximum response amplitude during ON phase minus the mean
813  response during the last 0.5 second of pre-stimulus phase, and OFF response as the maximum
814  response amplitude during OFF phase minus the mean response amplitude during the last 0.5 second

815  of the ON phase (Supplementary Figure 1c-d).

816  The ON-OFF ratio for a cell was defined as follows:

ON response —OFF response

817 ON — OFF ratio =

“4)

ON response + OFF response

818 A cell was defined as an On cell if the ON response was at least 2.75 standard deviations above
819  baseline and the OFF response was at most 1.5 standard deviations above baseline. A cell was defined
820 as an Off cell if the OFF response was at least 2.75 standard deviations above baseline and the ON

821  response was at most 1.5 standard deviations above baseline. Finally, a cell was defined as an OnOff
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822  cell if both the ON and the OFF response were at least 2.75 standard deviations above baseline. The
823  2.75 standard deviation threshold was chosen because it was the point at which the chance of getting
824  a false positive was 1 % when using normally distributed random data under the same conditions.
825 The 1.5 standard deviation cutoff was set after testing a wide variety of values and manually
826  inspecting responses of the resulting On and Off cells. Specifically, using a higher cutoff value caused
827  the mean response of the Off population to have visible ON responses and the mean response of the
828  On population to have visible OFF responses (Supplementary Figure 15). All statistical tests based
829  on definitions of On and Off cells were run using both a 1.5 and a 2.75 cutoff. We found no differences

830 in the results of the tests between the two conditions.

831  We further extracted two parameters that quantified the dynamics of the ON and OFF response:

832 1. time-to-peak measures how long time it takes from the onset of the stimulus until at least 90
833 % of peak amplitude is reached (Supplementary Figure 1d).

834 2. min-to-peak ratio measures how much of peak amplitude was lost 0.5 seconds following the
835 peak (Supplementary Figure 1d) and was calculated as follows for On, Off, and OnOff ON
836 responses:

minimum amplitude—baseline

837 MinToPeak Ratio =

)

maximum amplitude—baseline

838  where maximum amplitude is the maximum amplitude during the given phase, minimum amplitude is
839  the minimum amplitude during the 0.5 seconds following the maximum amplitude, and baseline is
840 the mean response during the last 0.5 seconds before the onset of the given phase.
841  Min-to-peak ratio for OnOff OFF responses were calculated using the same method but the baseline
842  used were the mean response during the last 0.5 seconds of the pre-stimulus period to avoid loss of
843  amplitude of sustained ON responses to cause the min-to-peak ratio to get high negative values

844  (Supplementary Figure 1d).

845  On/Off responses have often been divided into Fast/Slow and Transient/Sustained based on response
846  dynamics '3*2. To do the same, we performed k-means clustering with the number of clusters set to
847  two, on the min-to-peak ratio and time-to-peak data for On, Off, and OnOff cells (Supplementary
848  Figure 16). The resulting segregation of Sustained and Transient responses is supported by visual
849  inspection of the histograms (Supplementary Figure 16a). The k-means clustering processes were

850 restarted 50 times and the stability of the resulting clusters were assessed. In all cases the threshold
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851  changed less than 0.01 between restarts. The application of k-means to the time-to-peak data did not
852  align with the visual data, as visual inspection of the histograms indicated a need for a different,
853  potentially a further, subdivision (Supplementary Figure 16b). Furthermore, the thresholds set by
854  clustering showed considerable changes across restarts (shifts in threshold of up to 0.26 seconds). On
855 this basis we manually defined a further border based on the visual inspection (Supplementary Figure
856  16¢) and plotted depth distributions of the three subdivisions (Fast, Medium, Slow) for all four On/Off
857  responses (Supplementary Figure 16d). Since the Medium group was more similar in depth
858  distribution to the Slow group for On, OnOff-ON, and OnOff-OFF, we chose to place the Slow/Fast
859  division along the Medium/Fast border rather than at the Medium/Slow border.

860  Statistical significance of differences in ON/OFF response properties between DS and non-DS cells
861  were calculated using a Wilcoxon’s rank sum test corrected for multiple comparisons by Bonferoni-

862  Holm correction and Wilson's Harmonic Mean.

863 Features from the SpaTemp Stimulus

864  Responses to the SpaTemp stimulus were first averaged across trials and directions. Then the response
865 amplitude for each spatio-temporal frequency combination was calculated by extracting the max
866  response during the drifting phase and subtracting the mean response during the pre-stim phase
867  (Supplementary Figure 1e) resulting in an x by y matrix of response amplitudes for each cell where
868  x and y are the number of temporal and spatial frequencies respectively. Five features were extracted

869  from this matrix:

870 1. Temporal Tuning is a measure of how selective a cell is with respect to temporal frequencies
871 701t was extracted by first calculating the mean of the response amplitude matrix across
872 spatial frequencies, resulting in a 1 by x matrix for each cell where x is the number of temporal
873 frequencies (from here on out called the temporal response curve). Then for each cell we
874 found the maximum response amplitude of the temporal response curve and divided it by the
875 sum of the curve.

876 2. Spatial Tuning is a measure of how selective a cell is with respect to spatial frequencies. It
877 was extracted in the same way as temporal tuning with the exception that because we
878 measured spatial tuning at linear intervals, we first converted the spatial frequencies to log
879 intervals by subsampling.
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3. Temporal preference is a measure of a cell’s preferred temporal frequency. It was calculated
by extracting the temporal response curve, up-sampling it by a factor of 1000, and finding the
equal-area point of the up-sampled curve. To reduce the influence of noise a small constant
was added to the temporal response curve before up sampling. This forces unresponsive cells
to have a temporal preference of around 1 divided by the number of temporal frequencies
instead of having a random temporal frequency decided by noise. Forcing unresponsive cells
to have similar values is desirable for features used for clustering as it causes unresponsive
cells to end up in the same cluster instead of being spread out across all clusters randomly.
The value of the added constant was set to 0.001 dF/F as this was the median response
amplitude across all conditions of unresponsive cells.

4. Spatial preference is a measure of a cell’s preferred spatial frequency. It was calculated in
the same way as temporal preference.

5. Speed preference is a measure of a cell’s preferred speed. It was calculated by taking a cell's

preferred temporal frequency and dividing it by its preferred spatial frequency.
Functional Clustering

We used Gaussian Mixture Modeling (GMM) 7! for our cluster analyses with Bayesian Information
Criterion (BIC) 7? as a penalizing term to avoid overfitting when choosing the optimal number of

clusters. The BIC was calculated as:
BIC = M log[N] — 2log][L] (6)

where M is the number of parameters estimated by the model, N is the number of cells, and L is the

likelihood of the model.
Our full clustering procedure consisted of the following five steps (Supplementary Figure 9A-C):

1. The extracted features were fitted with a GMM (as implemented in the MATLAB fitgmdist
function) ten times with predefined numbers of clusters ranging from 1 to 100. The BIC was
then evaluated for each number of clusters across the ten repeats, and the number of clusters

that yielded the lowest BIC was selected .
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906 2. Using the model selected by the BIC evaluation we performed a further 30 GMM clusterings
907 and extracted a co-clustering matrix (an n by n matrix where point (x,y) lists how often cell x
908 and cell y ended up in the same cluster across the 30 repeats).

909 3. We then sorted the co-clustering matrix by performing agglomerative hierarchical clustering,
910 as implemented in the MATLAB linkage function, on the matrix and used a custom-made
911 script to define new clusters based on their co-clustering score. The script first reduced the
912 matrix by excluding loosely clustered cells defined as cells that end up in the same cluster as
913 their 10 most similar cells less than % of the time. Then cluster edges were detected in the
914 reduced co-clustering matrix and used to define the borders of the new co-clustering score-
915 based clusters. Finally, the loosely clustered cells were re-introduced by adding them to the
916 cluster with which they had the highest mean co-clustering score.

917 4. We then generated 25 random subsamples each containing 90 % of the cells from the original
918 dataset and repeated steps 1-3 to generate 25 subsample clusterings and calculated the Jaccard
919 similarity score (see section 2.2.4.3) between each cluster in the original clustering and the
920 most similar cluster in each of the 25 subsamples. Clusters with a mean Jaccard similarity
921 score of less than 0.5 across the subsamples were discarded and their cells re-assigned to the
922 cluster with which the merging cell had the highest average co-clustering score.

923 5. Finally, dendrograms were created by using agglomerative hierarchical clustering (as
924 implemented in the MATLAB linkage function) on the mean feature values of each cluster
925 with distance defined as average unweighted distance.

926  Steps 1,4, and 5 are commonly used in functional clustering studies '*%2. In addition to this “standard”
927 method we added steps 2 and 3 because we noticed that, even though individual clusters changed
928  between clusterings, the same “meta-structure” was present across all clusterings (e.g., OS/DS
929  subtypes and On/Off subtypes were always placed on separate branches). A key reason for running
930 these clusterings was that we wanted to compare Drift and Chirp clusterings to see if there was a
931 larger than chance overlap between the clusters defined by the two feature sets. Such an overlap could
932 casily be overlooked if repeat-to-repeat variability is high so we chose to focus on the cross-repeat
933  meta-structure to maximize the likelihood that we would find any existing overlap between Chirp and

934  Drift clusters.

935  To ensure that adding steps that emphasize the meta-structure of the data did not generate non-existing

936 structure by overfitting the data, we tested it on normally distributed random noise to see if our method
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937  would generate clusters in random data. However, the GMM followed by BIC consistently (and
938 correctly) estimated the number of clusters to one. Therefore, we tested the model again, but this time
939 ignored the BIC by forcing the GMM to fit the same number of clusters as our real data. Following
940  steps 2-5 we ended with a model that identified four “clusters” in the random data that all had a lower

941  Jaccard score than the 0.5 cutoff we set for the real data (Supplementary Figure 17).
942  Batch effect analysis

943  Whenever a functional imaging study uses data collected across multiple sessions there is a risk of
944  batch effects causing functional responses of cells to differ between sessions. In our case, data was
945  collected across 83 sessions where each session consisted of recording responses from all cells within
946  asingle field of view. Because our imaging plane is oriented in parallel to the surface of the SC cells
947  recorded within the same session are from the same depth within the SC. Given that the SC is a
948 layered structure with clear functional changes between layers this would cause you to expect

949  functional differences between sessions.

950 To test for batch effects, we therefore developed a method that can differentiate between functional
951 differences stemming from batch effects from ones stemming from depth differences. We did this by

952  calculating the session proportions for each cluster as follows:

__ N(Cluster,Session)

953 P(cluster,session) = M crusten (7

954  where ncyster,session) 18 the number of cells in the cluster stemming from a given session and
955  N(custer) 18 the total number of cells in the cluster. To assess whether a cluster’s session proportions
956  deviate from chance, we did a permutation test where the cluster tags were randomized within depth
957  (i.e. cluster tags of cells with their cell body placed at a certain depth below the SC surface were
958  permuted separate from other cells at other depths). For each of these permutations we calculated the
959  session proportions as stated in equation (7) and extracted the expected session proportions for a
960 cluster with the given depth composition by calculating the mean session proportions across
961  permutations for each cluster. We then used the expected session proportions to calculate a deviation

962  from expectation for each cluster as follows:

. s vk
963 DeVLatlon(Cluster) - Zi:l |Pact (Cluster,i) — Pexp(Cluster,i)l (3
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964  where Pyt (cruster,iy 18 the actual proportion of cells from the given cluster that stemmed from session
965  iand Peyp(cruster,i) 18 the expected proportion. Finally, we tested the significance of the deviation by

966 calculating the deviation from the expected session proportions of each random permutation and

967  performing a t-test of these values against the actual deviation.

968  Using this method, we found that 13 of 50 drift clusters and 14 of 28 chirp clusters deviated more
969 than chance from the expected session proportion (Supplementary Figure 18A-B) possibly indicating
970  batch effects.

971  Looking across all clusters the Drift clustering deviated on average by 0.8 percentage points from the
972  expected session proportion whereas the random permutations deviated by 0.65 percentage points.
973  For the Chirp clustering the numbers were 0.68 percentage points and 0.51 percentage points,
974  respectively.

975  Assessing whether these numbers are concerning in relation to the conclusions of our study is difficult
976  for at least three reasons. First, even though a higher-than-chance deviation could stem from
977 influences that should be irrelevant to the functional classification of a cell (such as time of day of the
978 recording, or age and sex of the mouse), it could also stem from differences that are relevant to
979  functional classification such as position of the cell in the visual field as this type of difference would
980 also be correlated with session number. Second, we have not been able to find data on whether this
981 amount of potential batch effect is higher than other similar studies as these do not report
982  considerations regarding batch effects '3!22, Third, even if a batch effect is biasing our results, it is
983  not given it would affect our main findings as these are based primarily on comparisons between
984  On/Off and OS/DS responses which were both recorded within all sessions and as such should be
985 affected equally by batch effects.

986  While avoiding batch effects entirely would be preferable it is difficult to implement in large scale
987  imaging studies that require collecting data across multiple sessions. Given that other similar studies
988 are not reporting taking steps to address bias stemming from batch effects this could mean that going
989 into more detail with these effects could lead to important improvements of functional clustering
990 studies. Given more time it would have been beneficial to do a more thorough test to try to identify
991 the source of this potential bias by controlling for things such as xy-position of the FoV, time of day
992  ofimaging, age and sex of mouse, mental state of mouse (anxious or relaxed etc.), amount of subdural

993  bleeding during surgery, etc.
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994 Calculations and statistical tests

995  Controlling for Depth

996  The SC is known to be a highly layered structure. All features we measured had clear changes in
997  values across depth. To avoid these depth changes biasing our tests, all permutations tests were done
998  such that the depth distribution of cells in the random permutations matched the depth distribution in
999 the tested subpopulation.

1000  Corrections for Multiple Comparisons

1001  To counteract the problem of multiple comparisons we used the Bonferroni-Holm method 73, and

1002  then, to further increase statistical power, also calculated Wilsons harmonic mean 74,

1003 Mutual information

1004 One way to evaluate the degree of dependency between variables is to calculate their mutual

1005  information (MI) 33. MI can be defined as follows:

Pxy)(x,y) )

1006 MI(X;Y) = Xyey Xxex Pxy)(x, ) * log (P<x)(x)*P<y)(3’)

)

1007  where P(x y) is the joint probability function and P(xy and Py, are the marginal probability functions

1008  7°. This means that if the joint probability is equal to the product of the marginal probabilities MI will
1009  be zero. In other words, if MI between two features is zero or at chance level the features are
1010 independent, and consequently any overlap between subpopulations based on those features will be

1011  coincidental.

1012 MI was calculated in MATLAB using the mi_cont cont function 7°. To test for significance of the MI
1013  between two features, A and B, we made 500 random permutations of B, calculated MI between A
1014 and B and A and the random permutations, and calculated the p-value as the proportion of
1015  permutations with higher MI than the actual MI. This calculation is “saturated” at a p value of 1
1016  divided by the number of permutations. In those cases, we increased the number of permutations until

1017  the test no longer saturated.
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1018  Proportions and expected proportions

1019  The proportion of a given group of cells at a given depth was calculated as:

__ N(group,depth)
1020 p(group,depth) - N (depth) (10)

1021 Where N(group,depth) 18 the number of cells belonging to the given group at the given depth and

1022 n(gepth) 1 the total number of cells at that depth.
1023  The expected proportion of a given combination of groups at a given depth was calculated as:

1024 pExp(group A & group B,depth) = p(group A,depth) * p(group B,depth) (1 1)

1025  The actual proportion of a given combination of groups at a given depth was calculated as in (10)

1026 with n(group,aepen) defined as the number of cells belonging to both groups at the given depth.

1027  The summed deviation between actual and expected proportions was calculated as:
1028 Summed deviation = ¥¥_, |PExp(iy — pAct(y| (12)

1029  where pExpy; is the expected proportion at depth 7, pAct ;) is the actual proportion at depth 7, and & is

1030  the number of depths. Tests for statistical significance was carried out by permuting group A and
1031  group B tags relative to each other within each depth, calculating the summed deviation between each
1032  permutation against the expected proportion, and running a t-test of the actual summed deviation vs

1033  the summed deviations from the random permutations.

1034  The proportion of a given response type in each cluster was calculated as:

N(response type,cluster)

(13)

1035 p(response type,cluster) — N (cluster)

1036  Where N(response type,cluster) 18 the number of cells in the cluster belonging to the given response type

1037 and ncpyseery 18 the total number of cells in the cluster.

1038  The difference between On-DS Universal and OnOff-DS Universal cluster proportions were
1039  quantified as follows:

: —_ k
1040 dlfference - Zi:l |p(0n—DS Universal,i) ~— p(OnOff—DS Universal,i)l (14)
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1041  where Pon-psuniversar,iy 18 the proportion of On-DS Universal cells in cluster i,
1042 Ponoff-ps universali) 18 the proportion of OnOff-DS Universal cells in cluster 7, and & is the number
1043  of clusters in the Chirp-Drift clustering. The significance of the difference was estimated by
1044  calculating the summed difference in cluster proportions between 500 random samples of On cells of
1045  the same size and depth distribution as On-DS Universal cells vs 500 random samples of On cells of

1046  the same size and depth distribution as OnOff-DS Universal cells and running a t-test.
1047  Jaccard scores

1048  When evaluating the stability of our clusterings and when comparing the similarity of different
1049  clusterings we used Jaccard Similarity Score 77. The Jaccard similarity score between two clusters, A
1050 and B, is defined as:

|ANB|
|AUB|

1051 J(4,B) = (15)

1052  where |ANB| and |AUB| denotes the number of cells belonging to both clusters and the number of
1053  cells belonging to either cluster, respectively. When used in the context of clustering, it quantifies
1054  how similar two clusters are on a scale from 0 to 1 where a value of 1 indicates that the clusters
1055  contain the exact same cells 7®. The significance of the similarity between two clusterings was
1056  calculated by permuting the cluster tags relative to each other, calculating the median Jaccard score

1057  of the permuted clusters and doing a t-test of the permuted scores vs the actual score.

1058  We wanted to evaluate whether adding orthogonal features or noise to a single feature set would
1059  disrupt the clustering more. This was done by comparing the Jaccard score between the chirp
1060  clustering and the chirp-drift clustering to the Jaccard scores between the chirp clustering and a
1061 number of chirp-noise clusterings. The significance between the difference in Jaccard score was
1062  calculated using a t-test. The noise was generated by randomly permuting the n-by-y matrix where n

1063  is the number of cells and y is the number of drift features.
1064  Clustering ability to separate response types

1065 A clustering’s ability to separate response types was quantified in an analogous manner to summed
1066  deviation (12) with the addition of being weighted by 1 over the number of clusters to get the mean

1067  separation per cluster.
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. . 1
1068 Clustermg Separatlon(response type) = ; * Z{'c=1 |p(response type) — p(response type,i)l (16)

1069  where P(response typey 18 the proportion of cells with the given response type across the full
1070  dataset, P(response type,i) 18 the proportion of cells with the given response type within cluster 7, and

1071  kis the number of clusters in the clustering. Significance of the clustering separations was tested by

1072 t-testing against 500 random permutations.
1073 Circular statistics

1074 DS cell cardinal directions were found by fitting a von Mises mixture model 7 with four components
1075  to each of the three circular histograms shown in 7b and assigning a cell to a component if it was

1076  within 22.5 degrees of the center.

1077  Comparisons of preferred direction profiles were carried out by using a two-sample Kuiper test as

1078  implemented in circ_kuipertest from the Circular Statistics Toolbox for MATLAB #,
1079  Depth co-clustering correlation matrix

1080  The quantification of how often cells from depths A and B end up in the same cluster was done as
1081  follows. First, we counted the number of cells from each depth for each cluster. Since there were
1082  differences in how many cells that were recorded from each depth, we corrected for this by dividing
1083  the number of cells at each depth with the proportion of cells recorded at that depth across all clusters
1084  and rounding the results. We then quantified the number of “connections” between depths by counting
1085  across all clusters how many times a cell from depth A appeared in the same cluster as a cell from
1086  depth B and normalized the outcome so each row in the matrix sums to one. Since this quantification
1087  scales with the number of cells in the cluster squared, we normalized the cluster size before calculating
1088  the number of connections in order to avoid large clusters having a disproportionately heavy influence

1089  on the outcome.
1090 Population speed spread

1091  Population speed spread was calculated as follows:

Var(Anti—Iso)

1092 Population speed spread = Var(iso)

(17)
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1093  where Var(Iso) denotes the variance of the population after projecting it onto the iso-speed line and
1094  Var(Anti — Iso) denotes the variance of the population after projecting it into a line orthogonal to

1095  the iso-speed line.

1096
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