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Abstract

The multiplexity of current antibody-based imaging is limited by the number of reporters that can be detected
simultaneously. Compressed sensing can be used to recover high-dimensional information from low-dimensional
measurements when the data has a structure that allows sparse representation. Previously, in composite in situ
imaging (CISI) of transcriptomic data, compressed sensing leveraged the gene co-regulation structure that allows
sparse representation and recovered spatial expression of 37 RNA species with the measurement of 11 fluorescent
channels. Here, we extended the compressed sensing framework to protein expression data measured by imaging
mass cytometry (IMC). CISI-IMC accurately recovered spatial expression of 16 proteins from the images of 8
composite channels, which in effect expanded the current multiplexity limit of IMC by 8 channels. With this ratio,
up to 80 protein markers could be compressed into currently available 40 isotope channels. Training the CISI-IMC
framework using data collected on tissues from various locations in the human body enabled the decompression of
composite data from a wide range of tissue types. Our work laid the foundation for much higher plex protein imaging
by using CISI.

Introduction

Antibody-based protein imaging allows profiling the spatial distribution of cell phenotypes across tissues, therefore
forming a crucial basis to understand the pathology of diseases. However, detecting biomolecules in standard
immunofluorescence imaging is limited by the number of available fluorescent channels, typically five, due to
spectral overlap.

This multiplexity limitation has been overcome by performing iterative staining and de-staining cycles using few
fluorescently-labeled antibodies in each cycle. In most protein imaging methods, each channel in each round of
staining corresponds to a specific marker' . The iterative methods such as CODEX, 4i, and CyCIF can achieve up
to 60-plex imaging>*’. Higher multiplexity has been achieved using combinatorial barcoding, where the sequence
of channels over the rounds for each target molecule creates a unique barcode. For example, CosMx, which employs
combinatorial barcoding, has been used to image 108 proteins in a tissue sample®. Limitations of these methods are
autofluorescence and tissue damage caused by repeated staining cycles. In addition, the combinatorial barcoding
approach requires the single molecule detection of each target molecule for accurate decoding and thus is
confounded by molecular crowding. Even higher multiplexity can be achieved by sequencing-based approaches, in
which antibodies are labeled with a DNA tag that carries a barcode that can be sequenced to identify the location on
the slide’. For example, 300-plex imaging was demonstrated with spatial CITE-seq'®. Sequencing-based methods
do not suffer from autofluorescence and do not require repeated staining cycles, but currently the resolution is too
low to allow single-cell analyses (25 um for spatial CITE-seq).

In contrast to the fluorescent-based and sequencing-based methods, mass spectrometry-based imaging methods such
as imaging mass cytometry (IMC) and multiplex ion beam imaging (MIBI) enables up to 40-plex imaging without
sequential staining cycles at a spatial resolution of 1 pum or higher'"'?, In IMC, antibodies are tagged with metal
isotopes that are simultaneously detected by laser ablation and subsequent mass spectrometry. The multiplexity of
IMC is limited by the number of available channels that are used to detect individual metal isotopes. Since IMC is
a destructive imaging method, iterative staining cannot be used to expand the multiplexity. Combinatorial barcoding
could be implemented by labeling each antibody with a unique combination of metal isotopes, but the current IMC
resolution of 1 um is too low to achieve single-molecule detection that is required for accurate decoding. Expanding
IMC beyond 40-plex would be possible with a method that achieves the decoding of combinatorial barcoding
without the need for single-molecule detection.

In the RNA imaging field, composite in situ imaging (CISI) achieves such a decoding of combinatorial barcodes
without single-molecule detection by using prior knowledge of transcriptome profiles'>!*. Leveraging the biological
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principle of gene co-regulation, CISI constructs a dictionary of gene expression modules from training data, which
enables the decoding of the combinatorial barcode imaging data into the spatial expression data of individual genes.
By using a dictionary of gene expression modules obtained by training on single-cell RNA sequencing (scRNA-
seq) data, CISI accurately recovered the spatial abundance of 37 RNA species from the combinatorial barcode
imaging data of only 11 channels (3 and 2/3 rounds of iterative staining, 3 colors each round)'*. Importantly, CISI
decoding can be performed on the single-cell level (or pixel-level when using an autoencoder), and therefore only
requires resolution high enough for single cell analysis.

Here, we implemented CISI for IMC to expand its multiplexity over the number of available isotope channels. We
reasoned that a protein expression dictionary for IMC data could be constructed since proteins are also co-regulated.
Further, the current IMC resolution of 1 pm is sufficient to perform CISI on the single-cell level. We performed 16-
plex standard IMC imaging of multiple tissues using antibodies that mainly identify immune and stromal cells for
training data and constructed a protein expression dictionary. We then implemented combinatorial barcoding by
mixing 16 antibodies each labeled with unique combination of 8 metal isotopes. We demonstrated that the obtained
8-channel CISI-IMC images for five different tumor tissues were accurately decoded back to 16-plex spatial single-
cell protein expression data using our optimized CISI algorithm.

Results

CISI-IMC principles

Using CISI applied in IMC, we recover high-dimensional single-cell protein expression data from low-dimensional
single-cell composite data obtained by combinatorial barcoding of antibodies. To obtain low-dimensional single-
cell composite data in IMC, antibodies targeting p proteins are labeled with unique combinations of m isotopes,
where m < p (Fig. 1a). The barcoding matrix A describes the combination of isotopes labeled for each antibody.
By measuring a tissue stained with the barcoded antibodies by IMC, single-cell protein expression of p proteins is
linearly combined and compressed into single-cell composite data with m channels (Fig. 1a). The matrix X contains
single-cell protein expression profiles and the matrix Y describes the single-cell intensity profile of composite
isotope channels.

To aid the decompression, single-cell protein expression X is decomposed into two matrices; one is a dictionary of
protein-expression modules and the other is single-cell module activity (Fig. 1b). The protein-expression module
describes a pattern of protein expression, and the dictionary stores different protein-expression modules. For each
cell, a few modules are selected from the dictionary and linearly combined to approximate the single-cell protein
expression. The dictionary U describes protein expression patterns for each module, and the single-cell module
activity W describes which module is active for each cell (Fig. 1b). In CISI, the dictionary U is pre-defined using a
training dataset. The decompression task is facilitated by the sparsity constraint of W which defines that only a few
modules can be active for each cell.

Obtained single-cell composite data Y is decompressed back to individual protein expression data by decomposing
Y into the barcoding matrix 4, the dictionary U, and single-cell module activity W, using the previous two equations
from compression and decomposition (Fig. 1c). Since the barcoding matrix A and the dictionary U are known and
the single-cell module activity W has to be sparse, it becomes mathematically possible to estimate W, and to
reconstruct single-cell protein expression X by X = UW.

CISI-IMC workflow

The CISI-IMC workflow consists of four major steps: dictionary training, barcoding matrix training, barcoded
antibody labeling, and CISI-IMC measurement and decompression into individual protein expression (Fig. 1d). In
the dictionary training step, single-cell protein expression data obtained from IMC measurements of various tissue
samples were used as a training dataset. The sparse module activity factorization (SMAF) algorithm was used to
construct a dictionary that well-approximates single-cell protein expression with sparse single-cell module activity.
In the following barcoding matrix training step, another portion of the training dataset was used to simulate the
single-cell composite data using randomly generated barcoding matrices. Simulated single-cell composite data were
then decompressed into single-cell protein expression data that was compared against the original single-cell protein
expression data. The barcoding matrix with the best decompressing performance was selected for the next steps. In
the barcoded antibody synthesis step, antibodies were labeled with metal isotopes according to the selected
barcoding matrix. Finally, CISI-IMC measurements were carried out: Tissues of interest were stained with the
barcoded antibody mix and imaged with IMC, and obtained composite images were segmented into single-cell
composite data, which were decompressed into single-cell protein expression data using the pre-trained dictionary.
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Fig. 1| CISI-IMC workflow. a, Schematic of the compression process using CISI-IMC. The barcoding matrix encodes the
scheme for barcoding of p antibodies with unique combinations of m composite channels. By selecting an m smaller than p,
single-cell protein expression data of p proteins can be compressed into single-cell composite data of m composite channels. b,
Schematic of the sparse decomposition using CISI-IMC. To enable the decompression, single-cell protein expression data of p
proteins is decomposed into a dictionary of d protein-expression modules and single-cell module activity with sparse activation
of the modules for each cell. ¢, Schematic of decompression using CISI-IMC. By combining the equations for compression and
sparse decomposition, composite data can be decomposed into a barcoding matrix, a dictionary, and a single-cell module activity
matrix. Decompression is performed by estimating the sparse single-cell module activity using the known barcoding matrix and
the dictionary. d, CISI-IMC experimental workflow. (i) The dictionary is trained using single-cell IMC data from a training
dataset and the SMAF algorithm. (ii) The barcoding matrix is trained on a portion of the training dataset by simulating the single-
cell composite data with randomly generated barcoding matrices. Simulated single-cell composite data are then decompressed
back to single-cell protein expression data, which are compared to the original single-cell protein expression data, and the
barcoding matrix with the best decompressing performance is selected for the next steps. (iii) Antibodies are labeled with the
specific combinations of metal isotopes according to the selected barcoding matrix. (iv) Tissues of interest are stained with the
barcoded antibodies and imaged with IMC. Obtained composite images are segmented into single-cell composite data that is
decompressed back to single-cell protein expression data using the pre-trained dictionary.

SMAF optimization for CISI-IMC

We first examined whether the SMAF algorithm from the CISI framework'* can be applied to protein expression
data as generated by IMC. Here we used protein expression data across six different tumors and three different
healthy tissues from various organs. We developed a panel of 16 protein markers to detect various cell types that
could be found across tissues (Supplementary Table 1). SMAF decomposes single-cell protein expression data X
into a dictionary of protein expression modules U and a single-cell module activity matrix W, while enforcing
sparsity for both U and Wwithin the provided error tolerance (that is, the distance between X and UW). U and
Wwere calculated by iteratively finding the sparse solution for one while fixing the other (Extended Data Fig. 1a).
The Lasso algorithm was used to calculate U from a fixed W. Lasso and orthogonal matching pursuit (OMP) were
tested for calculating W from a fixed U. Lasso calculates the sparsest solution within the provided error tolerance
coefficient I[da. OMP finds the best fit solution within the provided sparsity k (that is, up to k modules per cell are
non-zero). We found that 100 iterations were sufficient to obtain stable solutions for most of the conditions tested
(Extended Data Fig. 1b, c). After 100 iterations, SMAF was able to find sparse Uand W within the error tolerance
(Extended Data Fig. 1d-k). As expected, a looser error tolerance coefficient for calculating U (larger ldaU) resulted
in sparser U and reduced the total number of modules in U (Extended Data Fig. 1d, e, h, i). In addition, reducing
the error for calculating W (smaller l[daW or larger k) also resulted in sparser U, likely because denser W allows
sparser U within the same error tolerance in total (Extended Data Fig. 1d, f, h, j). Separating cells in X into blocks
based on the vector size when calculating W (specified by Num_blocks_W) slightly reduced the sparsity of U
(Extended Data Fig. 1d, e). Although SMAF produces slightly different U values over experimental replicates, the
difference was minimal when the Lasso error tolerance coefficients (that is, [daW and ldaU) were not overly
stringent (Extended Data Fig. 2).

Simulating CISI-IMC for optimizing the training protocol

Next, we simulated the single-cell composite data Y using randomly generated barcoding matrices A on the single-
cell training data X. Since each composite channel in Y is a linear sum of proteins defined by A, we simply
multiplied X by A to obtain simulated Y. The obtained Ywas decompressed back into X using Lasso on Y with AU
(that is, Y = Lasso(X, AU)). Decompression performance was evaluated for each protein by calculating the
Pearson’s correlation coefficient between the decompressed X and the original X. Each protein in a randomly
generated A was restricted to have only one or two composite channel entries to minimize the complexity during
the antibody labeling. Since the number of non-zero composite channels per protein in A is equivalent to how many
different isotopes are used to label a certain antibody, the imposed restriction guarantees that each antibody was
labeled with no more than two isotopes. We observed that denser A generally resulted in better decompression
performance and that increasing the maximum composite channels per protein to three or four did not improve the
performance for the tested compression rate of 16 proteins into 8 composite channels (Extended Data Fig. 3).
Therefore, we used no more than two isotope labels per protein and the number of proteins with only one composite
channel in randomly generated barcoding matrices was restricted to no more than four to enforce the denser A.
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Normalizing proteins in X, that is, protein-wise scaling to enforce each protein data in X to have the same vector
size, when simulating Y improved the decompression performance (Extended Data Fig. 4a, b). This was expected
since X was also normalized for proteins when calculating U via SMAF, thus the values of proteins in each module,
which would be linearly combined to approximate X for decompression, was based on the normalized intensity.
However, normalizing proteins in X in actual CISI-IMC staining is not straightforward. Considering that there exist
positive and negative cell populations for each protein marker, we need to account for two main factors that affect
the norm of X: the signal intensity of positive cell population and the density of positive cell population. In other
words, a protein expressed only on a rare cell population should have higher signal intensity than a protein expressed
on a common cell type in order to accurately normalize proteins in X. Although the signal intensity for each marker
can be adjusted by antibody titration, the abundance of a cell type is dependent on the tissue sampled. Adjusting
signal intensity based on cell type abundance observed in a training dataset hinders the applicability of the method
to various tissue types. Therefore, we aimed for uniform signal intensity for each marker-positive cell population,
which should minimize the effect of varying cell type abundance. We prepared another training data X using titrated
antibodies on the same tissues as used in the original training dataset. Simulating decompression using this training
data indeed showed improved performance (Extended Data Fig. 4c, d).

Training a barcoding matrix and a dictionary for CISI-IMC

To finalize the dictionary U, we calculated Us with 12 different SMAF parameter conditions on 75% of the training
data using titrated antibodies and simulated Y. On the rest of the trainings data, we evaluated decompression
performance using 200 randomly generated As (Extended Data Fig. 5a). In addition, performance stability across
tissues was assessed by evaluating the decompression performance for each tissue using a U calculated on the
training data excluding the data from the tissue of interest (Extended Data Fig. 5b). The final SMAF parameters
were selected based on this experiment and on the performance stability across different normalization weights for
training data, which simulates the variability in antibody titration (Extended Data Fig. 5c). The final U was obtained
using these finalized SMAF parameters ( algorithm_for W: Lasso, ldaU:0.02, ldaW:0.02,
Num_blocks_W: 1) (Extended Data Fig. 5d).

To finalize the barcoding matrix A, we generated random As barcoding 16 proteins in 8 composite channels, with
each protein maximally using 2 channels. We simulated Y and observed decompression performance using 2,000
randomly generated As on 25% of training data using U calculated with the finalized SMAF parameters on the rest
of the training data. We performed the simulation four-fold and selected the top 50 As from each based on the
Pearson’s correlation for the worst performing protein, which resulted in 200 candidates from 8,000 As tested.
Finally, we performed another set of simulations fixing the 200 A candidates and selected the best A based on the
highest minimum protein correlation averaged over the four-fold simulations. For the best 4, the simulated average
protein correlation coefficient was 0.924 and minimum protein correlation coefficient was 0.864. We also tested the
As with 7 and 9 composite channels. As expected, increasing the number of composite channels improved the
decoding results (Extended Data Fig. 6a). We selected 8 composite channels to balance performance and efficiency
of the decompression (Extended Data Fig. 6b).

Actual CISI-IMC experiment compressing 16 proteins into 8 channels

Barcoded antibodies compressing 16 proteins into 8 composite channels were labeled according to the finalized A.
All unique antibody-isotope pairs were conjugated and titrated separately and pooled together as a barcoded
antibody mix. To evaluate the decompression performance of CISI-IMC experimentally, we stained five tumor
tissues with the barcoded antibody mix together with a ground-truth antibody mix, which were antibodies each
conjugated to a single isotope. Hence, the obtained evaluation dataset of five tumor tissues contained single-cell
composite data Y with matching ground-truth single-cell protein expression X. The ground-truth X was used to
evaluate the accuracy of decompressed X and to produce a simulated Y to assess the accuracy of the simulation. For
the decompression of the evaluation dataset, we used the dictionary U calculated from the training dataset, because
we hypothesized that U from a diverse training dataset would be sufficient for the decompression of different tissues
provided that the expression patterns for the selected 16 cell type protein markers were stable across tissues.

The decompression algorithm from the previous publication'* was able to recover individual protein expression
with the protein average Pearson’s correlation coefficient of 0.746 between decompressed X and ground truth X
(Extended Data Fig. 7a, b). However, some proteins such as MPO were not accurately decompressed (Pearson
correlation coefficient of 0.255). These correlation values were lower than the simulated values in the training
dataset (the average protein correlation coefficient was 0.924 and the minimum protein correlation coefficient was
0.864). We hypothesized that the inaccurate decompression arises due to two reasons. First, the dictionary U
calculated from the training dataset might not have been broadly applicable enough to decompress the evaluation
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dataset. Second, the actual Y obtained from barcoded antibodies might not have been accurately simulated during
the training steps.

To test the first hypothesis, we prepared another dictionary U calculated on the evaluation dataset itself.
Decompression performance of the evaluation dataset did not improve substantially when using the U from the
evaluation dataset itself, suggesting that the weak performance for a few proteins was not caused by the used training
dataset (Extended Data Fig. 7a, b).

To test the second hypothesis, we simulated Y using ground truth X from the evaluation dataset and compared it
against the actual Y. We observed that the composite channel containing MPO had a lower correlation coefficient
(0.646) between the actual Y and the simulated Y compared to the other composite channels (Extended Data Fig.
7¢). In addition, proteins that poorly performed in the actual decompression, including MPO, were decompressed
more accurately when using the simulated Y, suggesting that the reduced performance of a few proteins is at least
partially due to the discrepancy between the actual Y and the simulated Y (Extended Data Fig. 7a, b). We further
speculated that the actual Y was not accurately simulated because the weights in the barcoding matrix A were not
reflecting the actual weight of signal intensity of each antibody-isotope conjugate. Since evaluating signal intensities
of all antibody-isotope conjugates used in the barcoding matrix A for each tissue is not practical for highly
multiplexed CISI-IMC, we developed an algorithm to reweight A post-hoc. By iteratively calculating the reweighted
barcoding matrix A and the module expression W during the decompression until the decomposition error (that is,
the distance between Y and AUW) was minimized, we obtained a reweighted A that can more accurately simulate
the actual Y (Extended Data Fig. 7c). Using the reweighted A, the decompression performance of actual CISI-IMC
in the evaluation dataset improved to a protein average correlation coefficient of 0.800 and a minimum protein
correlation coefficient of 0.507 (Fig. 2a, b). To evaluate if the decompressed single-cell expression data can be used
for downstream analyses, we clustered cells using Phenograph on either ground truth X or decompressed X. Each
cluster was manually annotated into specific cell types based on known marker expression. All cell types assigned
using ground truth X could also be assigned using decompressed X (Extended Data Fig. 8a, b) and the decompressed
X well-preserved the separation between cell types in UMAP embedding (Extended Data Fig. 8c, d). Finally, we
assessed if the decompressed X can accurately classify cell types by comparing the annotated cell types using
decompressed X against those using ground truth X (Fig. 2c). All cell types were well recovered using
decompressed X with average F1 score of 0.564 (Fig. 2d).

Fig. 2| Performance of CISI-IMC on tumor tissues compressing 16-plex proteins into 8-plex composite channels. a,
Example images of ground-truth cell image and decompressed cell image from immune-cell rich region of melanoma (top) and
lung adenocarcinoma (bottom). Displayed protein markers are indicated on top of the images. Scale bars are 100 um. b, Pearson
correlations between decompressed and ground-truth single-cell expression data for each protein. ¢, (top) Proportions of
annotated cell types based on decompressed data displayed for each annotated cell type based on ground truth data. (bottom)
Proportions of annotated cell types based on ground truth data displayed for each annotated cell type based on decompressed
data. d, F1-score, Precision, and Recall for each annotated cell type.
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Discussion

Here we demonstrated that CISI can extend the multiplexity of IMC beyond the number of available isotope
channels. The SMAF algorithm was used to create a dictionary of protein expression modules based on a training
dataset, and single-cell expression data for 16 proteins were accurately recovered from the measurement of 8
composite channels. In effect, this expands the multiplexity of IMC by 8 channels. We also demonstrated that use
of a training dataset based on images of different tumor and healthy tissues resulted in a dictionary universal to
different tissue types.

The reduced decompression performance for some markers was attributed to the discrepancy between the actual
composite data and the simulated composite data rather than to the difference of protein expression pattern in the
training dataset and the evaluation dataset. Previous application of CISI to RNA imaging has shown that transcripts
that are rarely expressed and lowly abundant transcripts were less accurately recovered. In this work, we did not
increase the intensity for rare and low-abundance proteins by increasing antibody concentration, since expression
levels differ between tissues. However, we selected antibody concentrations that resulted in similar signal intensities
for cells positive for each protein. In addition, reweighting the barcoding matrix during the decompression largely
improved the performance for the poorly recovered proteins.

To implement CISI-IMC, standard IMC data (or other highly-multiplexed imaging data) can be used to simulate
CISI and predict the decompression performance for the selected proteins. After obtaining the dictionary and the
barcoding matrix from training on the standard IMC data, antibodies can be barcoded and the tissue of interest can
be stained and imaged. Obtained composite data can be decompressed back to individual protein expression data
using the pre-trained dictionary.

Increasing the number of composite channels resulted in improved decompression performance in our simulation.
Therefore, depending on the accuracy of decompression required for a project, the compression ratio can be adjusted.
In this manuscript, we used two-fold compression from 16 proteins into 8 composite channels. With this ratio, up
to 80 protein markers can be compressed into currently available 40 isotope channels.

We reason that cell-level decompression will be sufficient for most multiplexed IMC protein analyses, since standard
IMC data are almost always aggregated within each cell mask and spatial analyses are performed on the single-cell
level. In previous work, pixel-level decompression using deep learning models has been demonstrated'*!3, and this
strategy could theoretically be implemented for IMC. In cases where subcellular localization of protein expression
is of interest, pixel-level decompression would be beneficial.

In summary, CISI-IMC is a highly multiplexed imaging approach that allows simultaneous detection of 48 protein
markers and potentially up to 80-plex or even higher number of proteins. Current multiplexed protein imaging
techniques with single-cell resolution can achieve approximately 60-plex imaging, but all rely on iterative imaging
cycles, which requires complex image processing steps. IMC and MIBI are the exceptions that do not require
iterative imaging cycles, but their multiplexities are limited to about 40 plex due to the number of available isotope
channels. CISI-IMC retains the non-cyclic nature of IMC but expands the multiplexity over the limited number of
isotope channels.
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Methods

FFPE sections of human tumor samples for training and evaluation datasets

The training dataset was derived from six human tumor tissues (lung adenocarcinoma, lung squamous cell carcinoma,
colon adenocarcinoma, invasive lobular breast carcinoma, and two breast cancer) and three human healthy tissues (tonsil,
lung, and appendix). The evaluation dataset was derived from five human tumor tissues (lung adenocarcinoma, lung
squamous carcinoma, clear cell renal cell carcinoma, melanoma, and ovarian cancer). FFPE sections were prepared at
University Hospital Zurich. All the FFPE sections were kept at room temperature for short-term storage or at -20 °C for
long-term storage. Use of samples received from University Hospital Zurich was approved by the Ethikkommission
Kanton Ziirich (KEK-ZH-Nr. 2014-0604, 100TO).

Antibody labelling with metal isotope

Isotope-labeled antibodies were used for IMC staining of training samples and evaluation samples. Antibodies were
labeled with an isotope using the MaxPar X8 Antibody labelling kit (Fluidigm) according to the protocol supplied by the
manufacturer. First, chelation was completed by incubating MaxPar X8 polymer, which carries terminal maleimide
functionality and multiple chelators for lanthanide ions, in 2.5 mM lanthanide chloride solution (Fluidigm) at 37 °C for
30 min. The product was purified into C-buffer, provided with the MaxPar X8 Antibody labeling kit, using 0.5-ml, 3-kDa
Amicon Ultra Filters (Millipore). In parallel, antibody was partially reduced in 0.8 mM TCEP at 37 °C for 30 min and
was purified into C-buffer using 0.5-ml, 50-kDa Amicon Ultra Filters. Isotope-loaded polymer was added into partially
reduced antibody and was incubated at 37 °C for 90 min. Conjugated product was purified over 0.5-ml, 50-kDa Amicon
Ultra Filters. For CISI-IMC, each pair of isotope and antibody was separately conjugated and purified. Antibodies with
different isotope labels were combined to produce the barcoded antibody mix.

IMC protocol

FFPE sections were left at room temperature for 15 min after removal from storage. Deparaffinization was carried out
using an AS-2 (Pathisto). The slides were placed into HIER buffer and heated at 95 °C for 30 min in a decloaking chamber
(BioCare Medical) for epitope retrieval. Slides were cooled at room temperature for 20 min, washed in PBS for 15 min,
and regions of interest were outlined with a hydrophobic pen (Vector Laboratories). Samples were then incubated with
blocking buffer for 1 h at room temperature in a humidified chamber. Isotope-labeled antibody diluent was prepared in
blocking buffer and incubated for overnight at 4 °C. Details of antibodies and their isotope labels are in Supplementary
Table 1. Samples were washed in TBS for 15 min and incubated with 1:1000 dilution of 500 uM MaxPar Intercalator-Ir
(Fluidigm) in PBS for 5-10 min, followed by a 15-min wash in TBS at room temperature. Slides were then dipped into
deionized water for a few seconds, dried immediately using pressured air flow, and stored at room temperature until
measurements. IMC images were acquired using a Hyperion Imaging System (Fluidigm). Laser ablation frequency was
at 200 Hz, and pre-processing of the raw data into med files was completed using commercially available acquisition
software (Fluidigm). Automated tuning of the argon flow and helium flow was performed on daily basis using a tuning
slide coated with isotope-containing polymer (Fludigm).

Data processing of IMC images into single-cell expression data

Steinbock v0.16.0 (https://github.com/BodenmillerGroup/steinbock) was used to convert the ion count raw data obtained
from IMC software into single-cell expression data'¢. Briefly, DeepCell was used to segment the IMC images into single-
cell masks. Aggregated images of cytoplasmic markers were used as cytoplasmic input, and iridium images were used as
nuclei input. For CISI-IMC images, aggregated images of composite channels with cytoplasmic makers were used as
cytoplasmic input. Single-cell expression data were obtained by calculating mean signal intensity for each channel in each
cellular region defined by the cell mask. For the evaluation dataset, non-specific bright spots were observed in CD3
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ground truth staining and to a lesser extend in other channels. Manual thresholding was applied to remove the cells with
non-specific signal.

SMAF algorithm

The dictionaries of protein expression modules were constructed from the training dataset using the SMAF algorithm.
SMAF creates the dictionary by decomposing the training single-cell protein expression data (X € RP*™) into a dictionary
of protein expression modules (U € RP*?) and single-cell module activity (W € R%*™), where p is the number of proteins,
n is the number of cells, and d is the number of modules in the dictionary. The steps of SMAF are as follows: (1) Initialize
U and W by non-negative matrix factorization. The initial number of modules d, = 80 was used for this work. (2) Fix U
and calculate a sparse solution for W using Lasso or OMP. When using Lasso, the error tolerance coefficient ldaW is
provided to calculate the sparsest W within the error tolerance defined by ldaW (= A,) where miny, ||W||; s.t.||1X —
UW|% < Ay |IX|I5. When using OMP, the sparsity k is provided to calculate the best fit solution, and up to k modules can
be active (non-zero) for each cell u,in U where miny||X — UW||5 s. t.Vn: ||u,|l; < k. (2) Fix W and calculate the sparse
solution for U using Lasso with the error tolerance coefficient of ldalU (= Ay) where miny||U||; s.t.||X — UW]|3 <
AyllX11%. (3) Module-wise L2-normalization of U, that is, each module in U was scaled to the same vector size of 1. (4)
Repeat steps (1), (2), and (3) for defined times. In this work, 100 iterations were used.

CISI-IMC simulation protocol

We tested different dictionaries (U € RP*?) and barcoding matrices (A € R™*P) by simulating the CISI-IMC workflow
using single-cell protein expression data (X € RP*™) and evaluating the decompression performance, where p is the
number of proteins, d is the number of modules in the dictionary, m is the number of composite channels, and n is the
number of cells. CISI-IMC was simulated using the following steps: (1) Simulate single-cell composite data (Y € R™*™)
by compressing X using the barcoding matrix 4 by simple multiplication of Y = AX. (2) Calculate a sparse solution for
W using Lasso. Note that the simulated composite data Y can be decomposed into Y = AUW, since Y = AX and X =
UW according to the equations from compression and SMAF. As A and U are known, Lasso calculates the sparsest W
within the error tolerance defined by lda (= 1) where miny, ||W||; s.t.||[Y — AUW||3 < A, |IY]l3. (3) Reconstruct
decompressed single-cell protein expression data X by calculation of X = UW. (4) Evaluate the decompression accuracy
by calculating the correlation between the original X and the decompressed X. Pearson’s correlation coefficients were
calculated separately for each protein and the mean and minimum of the correlations were typically used for evaluation,
denoted as mean protein correlations and minimum protein correlations, respectively. The mean of correlations calculated
separately for each cell was also used and are referred to as mean cell correlations.

Normalizing single-cell protein expression data for simulating antibody titration

Only when simulating the antibody titration, we normalized X with weight wt, denoted as X,,,, before simulating
composite data. When weight is 1, protein-wise L2-normalization is performed, that is, each protein x,, in X, has the same
vector size. When 0 < wt < 1, the weighted mean of X and X; was calculated using the following equation: X,,, =
wtX; + (1 — wt)X.

Finalizing the dictionary

Twelve SMAF parameter conditions were tested on the training dataset according to the CISI-IMC simulation protocol.
For each condition, 200 randomly generated barcoding matrices were used. For general assessment of correlations
between the original X and the decompressed X, 25% of the training dataset was used for simulating CISI-IMC and the
rest of the training dataset was used for SMAF dictionary calculation. The same strategy was used for assessing the
performance on original X with weighted normalization. For testing the performance stability in different tissues in the
training dataset, the CISI-IMC simulation was separately performed on data from each tissue, and the dataset excluding
the tissue was used for SMAF dictionary calculation. Correlations between the original X and the decompressed X were
calculated for each tissue and were averaged across tissues. Final SMAF parameters were selected based on the overall
performance of general assessment, stability across tissues, and stability across different normalization weight for X. The
finalized dictionary was obtained with the selected SMAF parameters ( algorithm_for W:
Lasso,ldaU: 0.02,ldaW:0.02, Num_blocks_W': 1) calculated on the entire training dataset.

Finalizing the barcoding matrix

To finalize the barcoding matrix 4, random As barcoding 16 proteins in 8 composite channels were generated with the
restriction that each protein maximally used 2 composite channels. The selection process was separated into two rounds.
In the first round, decompression performance of 2000 randomly generated As was evaluated on 25% of the training data
according to the CISI-IMC simulation protocol. U was calculated using the finalized SMAF parameters on the rest of the
training data. The simulation was performed four times, and the top 50 As were selected from each simulation based on
the minimum protein correlations, which resulted in 200 A candidates from 8000 As tested. For the second round, another
four simulations were performed, except that the 200 A candidates were fixed for each. Minimum protein correlations for
each A were averaged across the simulations for the selection of the best A.
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CISI-IMC data acquisition and decompression using the evaluation dataset

The barcoded antibody mix for CISI-IMC was combined with the ground-truth antibody mix for the evaluation dataset.
Co-staining of the ground-truth antibody mix provided the matched ground-truth X to compare against the decompressed
X. Evaluation of actual CISI-IMC was performed as follows: (1) IMC data were obtained from tissues co-stained with
the barcoded antibody mix and the ground-truth antibody mix. (2) IMC data analysis and single-cell segmentation yielded
composite data Y and matched ground-truth X. (3) The sparse solution for W from Y was calculated using Lasso. Using
known A and U, the sparsest W within the error tolerance defined by lda (= 1) where miny, ||W||; s.t.||[Y — AUW||3 <
AllY |3, was determined using Lasso. (4) (skip to step 7 when not reweighting A) Reweight A with Lasso using known
W and U . Lasso calculates the sparsest A within the error tolerance defined by ldaA(=A,) where
miny ||Ally s.t.|IY — AUW|I3 < 2,|IY]I3. (5) Set all values to 0 in A where original value of A was 0. (6) Repeat
step 3 to 5, until the decomposition error (that is, ||[Y — AUW||3) is minimized. In this work, we performed 6
iterations. Decompressed single-cell protein expression data X was reconstructed by X = UW . (7) Decompression
accuracy was evaluated by comparing ground-truth X and decompressed X.

Data availability

Tiff files for IMC data and single cell data used in this manuscript will be made available on Zenodo upon acceptance.

Code availability
All code used for preprocessing IMC data, SMAF dictionary calculation, and decompressing composite data are available
at https://github.com/BodenmillerGroup/CISI-IMC _publication
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