

Genomic insights into the evolution of secondary metabolism of *Escovopsis* and its allies, specialized fungal symbionts of fungus-farming ants

Aileen Berasategui^{1,2,3,4}, Hassan Salem^{1,3}, Abraham G. Moller⁵, Yuliana Christopher⁶, Quimi Vidaurre-Montoya⁷, Caitlin Conn^{1,8}, Timothy D. Read⁵, Andre Rodrigues⁷, Nadine Ziemert^{2,9} and Nicole Gerardo¹

¹Department of Biology, Emory University, Atlanta, 30322, USA.

²Cluster of Excellence-Controlling microbes to fight infections, University of Tübingen, 72076, Germany

³Mutualisms Research Group, Max Planck Institute for Biology, 72076, Tübingen, Germany.

⁴Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.

⁵Division of Infectious Diseases, Emory University School of Medicine, Atlanta, 30322, USA.

⁶Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Clayton, 0843-01103, Panamá.

⁷Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, 13506-900, Brazil.

⁸Department of Biology, Berry College, Mount Berry, 30149, USA

⁹Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, 72076, Germany.

Abstract

The metabolic intimacy of symbiosis often demands the work of specialists. Natural products and defensive secondary metabolites can drive specificity by ensuring infection and propagation across host generations. But in contrast to bacteria, little is known about the diversity and distribution of natural product biosynthetic pathways among fungi and how they evolve to facilitate symbiosis and adaptation to their host environment. In this study, we define the secondary metabolism of *Escovopsis* and closely related genera, members of which are specialized, diverse ascomycete fungi best known as mycoparasites of the fungal cultivars grown by fungus-growing ants. We ask how the gain and loss of various biosynthetic pathways corresponds to divergent lifestyles. Long-

33 read sequencing allowed us to define the chromosomal features of representative *Escovopsis*
34 strains, revealing highly reduced genomes (21.4-38.3 Mb) composed of 7-8 chromosomes.
35 *Escovopsis* genomes are highly co-linear, with genes localizing not only in the same chromosome,
36 but also in the same order. Macrosynteny is high within *Escovopsis* clades, and decreases with
37 increasing phylogenetic distance, while maintaining a high degree of mesosynteny. To explore the
38 evolutionary history of biosynthetic pathways in this group of symbionts relative to their encoding
39 lineages, we performed an ancestral state reconstruction analysis, which revealed that, while many
40 secondary metabolites are shared with non-ant associated sordariomycetes, 56 pathways are
41 unique to the symbiotic genera. Reflecting adaptation to diverging ant agricultural systems, we
42 observe that the stepwise acquisition of these pathways mirrors the ecological radiations of attine
43 ants and the dynamic recruitment and replacement of their fungal cultivars. As different clades
44 encode characteristic combinations of biosynthetic gene clusters, these delineating profiles provide
45 important insights into the possible mechanisms underlying specificity between these symbionts
46 and their hosts. Collectively, our findings shed light on the evolutionary dynamic nature of
47 secondary metabolism in *Escovopsis* and its allies, reflecting adaptation of the symbionts to an
48 ancient agricultural system.

49 **1. Introduction**

50 All parasites are specialists. At broad scales, each parasite can exploit some host species and not
51 others. At finer scales, many parasite strains may be specialized on particular host genotypes
52 within a species (1). While parasite host range is constrained by different evolutionary processes,
53 including tradeoffs and arms race coevolutionary dynamics (2, 3), the molecular mechanisms
54 underlying pathogen specialization and the evolutionary ecology of specificity have yet to be
55 clearly linked. Similarly, little is known about the genomic architecture underlying the evolution

56 of parasite specialization, the genomic consequences of host shifts and the genetic basis of shifts
57 along the parasitism to mutualism continuum that underlies most symbioses.

58 Fungal symbionts are genetically tractable models for the study of host fidelity due to their diverse
59 lifestyles and the occurrence of very closely related species that differ from each other primarily
60 in their host range (4). Secondary metabolites, small molecules that are not necessary for the
61 growth of an organism but aid in survival, play essential roles during fungal infection (5) and are
62 known to affect the niche breadth of fungal pathogens (4, 6, 7). Typically, specialists harbor a
63 contracted array of specialized metabolites relative to generalists (4), reflecting the metabolic
64 constraints that they experience in attempting to exploit different hosts. Given their role in
65 mediating species interactions, secondary metabolites are central to arms-races dynamics (8, 9).
66 Thus, their origin and distribution can reflect adaptation to specific host environments (7).

67 *Escovopsis* (Hypocreales: Hypocreaceae) is a specialized (10–12), diverse group of fungi found in
68 the gardens of fungus-farming ants (Hymenoptera: Attini) (13). Currently, there are nine described
69 species (14), some of which have been well-studied for their ability to parasitize the ants' fungal
70 cultivars (10–12). *Escovopsis* sp. can be virulent parasites of fungus-growing ant agriculture,
71 causing garden biomass loss and colony decline (13, 15, 16). While it is presumed that most species
72 in the group are similarly virulent, infection by certain species appear to be not as lethal, suggesting
73 that the ecological role and evolutionary implications of these symbionts are not fully understood
74 (17–19). In recognition of their morphological and ecological diversity, recent work has proposed
75 splitting the *Escovopsis* genus into multiple genera (i.e., *Escovopsis*, *Luteomyces* and
76 *Sympodiorosea*) (14). Here, we refer to all members of the group with the common name
77 *escovopsis* for simplicity.

78 Fungus-farming ants are a monophyletic group of obligate agriculturalists (20). Attines feed their
79 cultivated fungi ("cultivars") with vegetative material, and in turn the cultivar represents the ants'
80 primary food source. Different attine lineages practice different modes of agriculture, exhibiting a
81 high degree of specificity towards their cultivars (21, 22), and these different agricultural systems
82 are generally associated with different *Escovopsis*, *Sympodiorosea* and *Luteomyces* spp. (23). The
83 ancestral system, *lower agriculture*, is practiced by a group of ants that cultivate fungi in the
84 Agaricales family. While most of the ant species in this system grow their cultivars in the form of
85 mycelium, some ants in the lower agriculture system subsist on Agaricales that grow in yeast form,
86 giving rise to the name of *yeast agriculture*. While *Sympodiorosea* and *Luteomyces* infections of
87 mycelial-growing lower attine ant gardens are common, infection of yeast gardens has never been
88 found (20). The third agricultural system is known as *coral agriculture*, in which a group of ants
89 within the *Apterostigma* genus exploits fungus in the *Pterulaceae* family. Infection of coral
90 gardens are also common, and include infection by *Escovopsis*, *Luteomyces* and other related taxa
91 (10, 14). While lower attines, practicing lower, yeast and coral agriculture, are characterized by
92 providing their cultivars with dead vegetative material, higher attines (practicing generalized
93 higher agriculture and leaf-cutter agriculture) provide their fungal mutualists with freshly cut
94 vegetative material (20). The two agricultural systems of higher attines are characterized by the
95 obligate lifestyle of the cultivar, which cannot survive without association with the ants.
96 *Generalized higher agriculture* is practiced by ants cultivating a derived clade of agaricaceous
97 fungi, whereas in the most derived agricultural system, that of *leaf-cutter agriculture*, a single
98 fungal species *Leucoagaricus gongylophorus* is responsible for ant survival. Higher agriculture
99 gardens are commonly infected with *Escovopsis*, most of which are *Escovopsis* spp. closely related
100 to the best studied species, *E. weberi* (24).

101 Escovopsis symbionts show a high degree of host fidelity, being able to infect some cultivars but
102 not others. This degree of partner specificity suggests a long history of coevolution, as
103 demonstrated by the phylogenetic congruence between attines, their cultivars and *Escovopsis*,
104 particularly at the broad interspecific scale (10). To manage infections, ants actively weed infected
105 portions of garden, and many attine species associate with actinomycete *Pseudonocardia* that
106 synthesize antifungal compounds that inhibit escovopsis growth (25) .

107 Despite consistent patterns of co-diversification across the tripartite interaction between the ants,
108 their cultivars and escovopsis (10), and the outsized role of natural products in mediating fungal
109 specialization, the secondary metabolism of escovopsis remains relatively unexplored relative to
110 the evolutionary ecology of attine ants and their cultivars. Only a few *Escovopsis*-derived
111 compounds have been identified (26, 27), though recent genome annotation indicates the potential
112 to produce many more (28). Here, we performed long-read genome sequencing, assembly, and
113 annotation to describe the chromosomal architecture, conservation, and organization of
114 escovopsis, which will facilitate future annotation of the biosynthetic machinery. After defining
115 the secondary metabolism across the group and spanning representative host ranges, we
116 contextualize the distribution of biosynthetic gene clusters relative to patterns of specialization and
117 fidelity. Through comparative genomics, extensive manual curation of biosynthetic gene clusters,
118 and ancestral state reconstruction, we outline a symbiont whose secondary metabolism broadly
119 reflects the dynamic patterns of cultivar recruitment and replacement by attine ants.

120

121

122

123 **2. Material and Methods**

124 **a. Sample collection, isolation, DNA extraction and genome sequencing.**

125 Strains of *escovopsis* infecting all attine agricultural systems were obtained from the Emory
126 collection (Table S1). To obtain DNA, fungi were grown on PDA plates at room temperature.
127 Genomic DNA was extracted by crushing fungal tissue with liquid nitrogen and subsequently
128 isolating the DNA using a phenol-chloroform protocol (29). Sequencing was performed on a
129 HiSeq 2500 Sequencing system from Illumina, utilizing the paired-end 150 bp technology. Both
130 library preparation and DNA sequencing were carried out at Novogene. Additionally, DNA from
131 strains NGL095 (*E. weberi*), NGL070 (*E. multiformis*) and NGL057 (*Hypocreales: Hypocreaceae*,
132 cf. *Escovopsis*) was also sequenced with PacBio technology by OmegaBioservices.

133 **b. Genome assembly and annotation**

134 Strains sequenced with PacBio technology were assembled with Canu v.1.8 (30) and polished with
135 their corresponding Illumina reads using Pilon v.1.23 (31). Those strains sequenced with Illumina
136 alone were quality checked with FastQC (32), trimmed with trimmomatic (33), and subsequently
137 assembled with Spades v.3.13.0 (34). Genome assembly quality was evaluated using BUSCO v.3
138 (35). GC content was calculated with the script GC_content.pl by Damien Richard
139 (https://github.com/DamienFr/GC_content_in_sliding_window/ [last accessed July 2023]), using
140 default parameters. The genomic dataset was completed with the addition of six previously
141 sequenced *Escovopsis* genomes (26), as well as 14 closely related species from the Hypocreales
142 family obtained from JGI Mycocosm (Table S1). The highly contiguous hybrid assemblies
143 NGL070, NGL095 and NGL057 were screened for stretches of telomeric repeats (TTAGGG)_n at

144 the end of contigs, and contigs harboring these repeats at both ends were considered complete
145 chromosomes.

146 To compare genomic architecture conservation between *Escovopsis* strains, a synteny analysis was
147 performed on the proteome sets of the most unfragmented assemblies in our dataset employing
148 GENESPACE v0.9.3 (36) as implemented in R. This dataset comprised the three hybrid
149 assemblies NGL095, NGL070 and NGL057, as well as EACOL, EAECCHC, EAECCHR, ETCORN
150 and EATTINE.

151 All assemblies were subjected to gene prediction and annotation using the Funannotate v.1.8.3
152 (37) pipeline. Repeats were identified with RepeatModeler and soft masked using RepeatMasker.
153 Protein evidence from a UniprotKB/Swiss-Prot-curated database (38), and the proteomes from
154 *Trichoderma* sp., *Cladobotryum* sp., *Hypomyces rosellus* and *H. perniciosus* were aligned to the
155 genomes using TBLASTN and Exonerate (39). Three gene prediction tools were used: AUGUSTUS
156 v3.3.3(40), snap (41) and GlimmerHMM v3.0.4 (42). tRNAs were predicted with tRNAscan-SE
157 (43). Consensus gene models were found with EvidenceModeler (44). Functional annotation was
158 conducted using BlastP to search the Uniprot/SwissProt protein database. Protein families (Pfam)
159 and Gene Ontology (GO) terms were assigned with InterProScan5 (45). Additional predictions
160 were inferred by alignments to the eggNOG orthology database (46), using emapper v3 (47). The
161 secretome was predicted using Phobius v.1.01 (48), which identifies proteins carrying a signal
162 peptide. Carbohydrate active enzymes were identified using HMMER v3.3 (49) and family
163 specific HMM profiles of the dbCAN2 server (50). Proteases and protease inhibitors were
164 predicted using the MEROPS database v (51), and biosynthetic gene clusters were annotated using
165 fungiSMASH v6 (52) with relaxed parameters.

166

c. Phylogenetic reconstruction

167 The phylogenetic relationship of *Escovopsis* spp. and their close relatives was reconstructed using
168 the BUSCO_phylogenomics pipeline (53). In short, single copy orthologues for each genome were
169 identified by running BUSCO v5 (35) with the Ascomycota_odb10 lineage database. This analysis
170 identified 660 single-copy orthologs shared by all 34 strains in the dataset. Gene sequences were
171 aligned with MUSCLE (54), and the alignment was trimmed with TrimAl (55). Output alignments
172 were concatenated into a supermatrix. A maximum likelihood tree was built with IQ-TREE (56)
173 , allowing ModelFinder (57) to predict the best evolutionary model for partitioning the alignment.
174 The resulting tree was rooted using *Trichoderma* spp. and visualized with iTol v6 (58).

175 In order to place escovopsis strains in a broader phylogenetic context, we performed a multi-locus
176 analysis employing different molecular markers (i.e., ITS, TEF and LSU). Sequences were aligned
177 in MAFFT v.7 (59) and a phylogenetic tree was reconstructed using maximum likelihood (ML) in
178 RAxML (60). The GTR nucleotide substitution model was selected by independent runs in
179 jModelTest2 (Darriba et al. 2012) using the Akaike Information Criterion (AIC) with 95%
180 confidence intervals. 1000 independent trees and 1000 bootstrap replicates were performed and
181 the final tree was edited in FigTree v.1.4 and Adobe Illustrator CC v.17.1.
182

183 Gene Cluster Family (GCF) identification

184 Biosynthetic gene clusters (BGCs) of all fungal strains were identified again using FungiSMASH
185 6.1 (52) with relaxed parameters, utilizing as input the GenBank files obtained after genome
186 annotation. With the aid of cblaster v.1.3.12 (61), BGCs split onto different contigs, especially
187 those located on contig edges, were manually assembled based on homology with other BGCs in
188 the dataset. Likewise, fused BGCs were manually split into separate BGCs. The final BGC set was

189 analyzed using BiG-SCAPE v1.0.1 (62) to identify homologous BGCs across all strains and to
190 cluster related BGCs into gene cluster families (GCFs). BGCs from the MiBIG database 2.0 (63)
191 were included in the analysis with the –mibig flag to identify already described BGCs. The scikit-
192 learn package was downgraded to v.0.19.1, and the following parameters were enabled: –mix, --
193 hybrids-off, and –include_singletons. The program was run in ‘glocal’ alignment mode with edge-
194 length cutoffs from 0.1 to 0.9, with step increments of 0.1. After inspection, networks at thresholds
195 0.5-0.6 were found to be similar and further analyses were based on a cutoff of 0.5. The resulting
196 sequence similarity matrixes were visualized using Cytoscape v.3.9.0 (64). A presence/absence
197 matrix was built to evaluate BGC distribution, with 1 representing presence and 0 absence of a
198 GCF in a fungal strain and was visualized as a heatmap employing R. To assess whether BGC
199 profiles can delineate groups of escovopsis, a Jaccard distance matrix was computed using the
200 presence/absence table. The distance matrix was then used to construct nonmetric
201 multidimensional scaling (NMDS) ordination plots to detect grouping patterns and subjected to a
202 PERMANOVA analysis (permutational multivariate analysis of variance) to identify significant
203 factors underlying observed groupings. To assess the adequacy of our sampling, and to provide an
204 estimate of GCF richness for the given sequencing effort, rarefaction curves were built at the genus
205 level, and at both levels of attine agricultural systems (*i.e.*, lower and higher agriculture, as well as
206 lower, coral, general higher and leaf-cutter agriculture).

207 **d. Co-cladogenesis analyses**

208 To assess whether BGC profiles delineate escovopsis, the GCF presence/absence was subjected to
209 a hierarchical clustering analysis using a correlation-centered similarity metric with the complete
210 linkage clustering method. A tanglegram was built in R to evaluate the congruency between the
211 symbiont phylogeny and strain BGC profiles using the package “dendextend” v 1.17.1.

212

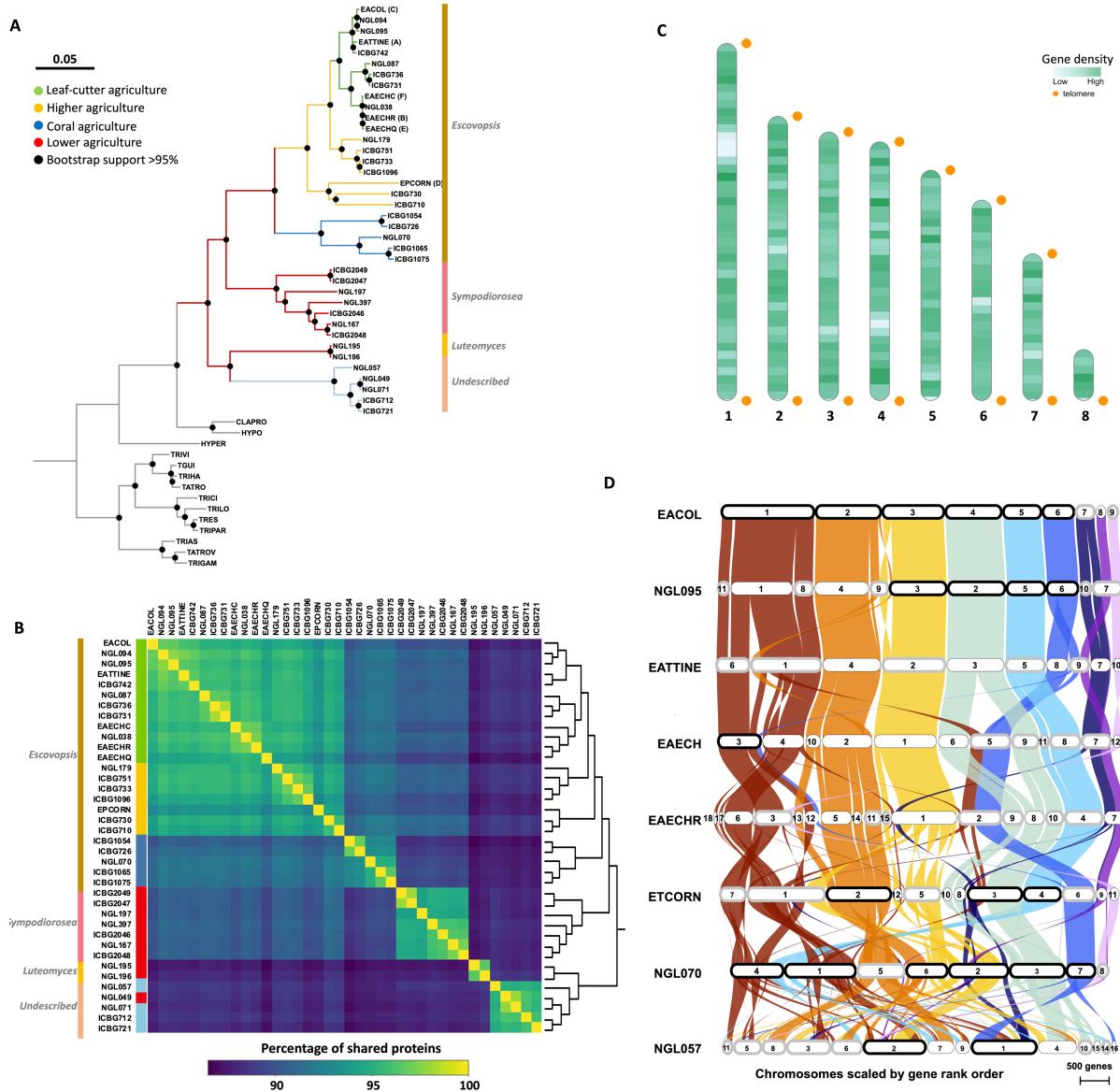
e. Ancestral State Reconstruction

213 To assess the evolutionary history of the GCFs, the ancestral node for each GCF was inferred in
214 the species tree using the trace character history function implemented in Mesquite (65). In some
215 cases, BiG-SCAPE split BGCs into multiple GCFs that were highly homologous, suggesting they
216 may be involved in the biosynthesis of related compounds. Data exploration with different BiG-
217 SCAPE similarity cutoffs did not resolve these relationships, prompting the manual grouping of
218 GCFs into pathways (66, 67). GCFs were considered to belong to the same pathway if: (i) the
219 BGCs shared similar architecture, (ii) the majority of the genes in the cluster had the same function,
220 albeit not necessarily in the same order, and (iii) the majority of genes in the BGC had a BLAST
221 similarity of more than 50% over 80% coverage rate (67). A pathway presence/absence table was
222 used as a character matrix, and likelihood calculations were performed using the Mk1 model.
223 Likelihood scores >50% were used to infer the points of pathway acquisition in the species tree.

224 **3. Results and Discussion**

225 To characterize the genomic features and secondary metabolism potential of this diverse group of
226 specialized symbionts, we sequenced the genomes of 14 strains across the symbiont phylogeny,
227 spanning all ant-agriculture ecologies (Table S1) (20), with the exception of yeast agriculture
228 where escovopsis have never been found. Three strains belonging to different clades were
229 sequenced with PacBio and Illumina technologies, whereas the rest were sequenced with Illumina
230 alone (Table S2). We expanded our dataset with the addition of 24 additional escovopsis strains
231 that were publicly available) (26, 28), and a number of other closely related fungal species from
232 the Hypocreaceae family (Table S1).

233 The quality of the genomic assemblies generated in this study was high, with an average BUSCO
234 (Benchmarking Universal Single-Copy Orthologs) score of 94.7% for the Ascomycota lineage
235 dataset (Table S2). GC content ranged from 47.2% to 56.4%, with an average of 52.3% (Table
236 S2), consistent with recent reports (24, 28) and other Pezizomycotina fungi (68) .


237 **Phylogenetics of *Escovopsis* and relatives**

238 To infer a genome-scale phylogeny of *Escovopsis* and relatives, we employed a concatenation
239 approach using single-copy genes. The inferred proteomes of all 52 species in our dataset were
240 subjected to an orthology analysis, resulting in 2314 single-copy orthologous genes that were
241 subsequently utilized to infer a phylogeny. Our data reveals that the attine-associated symbionts
242 form a monophyletic group, sister to a clade composed of *Cladobotryum* sp. and *Hypomyces*
243 *rosellus*, both mycoparasites (Figure 1A). The evolutionary history of escovopsis suggested by
244 this phylogeny generally reflects that of the fungus-growing ants (20). As such, strains infecting
245 gardens of lower attines appear basal to the rest, whereas most recently diverging lineages are

246 associated with higher attine agriculture and leaf-cutter ants (Figure 1A). The shift experienced by
247 some lower attines to cultivating Pterulaceae fungi is also mirrored by the phylogeny, with an
248 intermediate clade exploiting coral agriculture, represented by strains NGL070, ICBG726,
249 ICBG1054, ICBG1065 and ICBG1075. Highlighting the diversity of escovopsis associated with
250 coral agriculture, a clade including four strains associated with coral fungi (ICBG712, ICBG721,
251 NGL057 and NGL216), appear within the basal members of this monophyletic group (Figure 1A).
252 The presence of these two distinct coral agriculture-associated clades, therefore, break congruence
253 of the ant and escovopsis phylogenies. Recent studies have proposed to split the genus *Escovopsis*
254 into three different genera (*Escovopsis*, *Sympodiorosea*, and *Luteomyces*) (14). To assess whether
255 these two coral agriculture-associated clades may in fact represent two distinct taxonomical
256 genera, we inferred the phylogenetic position of the escovopsis in this study among those from
257 previous studies (14). Our results (Figure S1) suggest that strains within these two clades indeed
258 belong to different genera. Together with strains exploiting higher agriculture (*E. weberi*, *E.*
259 *moelleri* and *E. aspergilloides*), the intermediate clade exploiting coral agriculture are true
260 *Escovopsis* (*E. multififormis*). However, its sister clade contains strains closely related to the newly
261 described *Sympodiorosea*. Interestingly, the basal-most clade comprises strains most closely
262 related to *Luteomyces* and to strains belonging to an as of yet undescribed genus (Figure S1).
263 Overall, these results highlight the need for further work to fully resolve the taxonomical diversity
264 within these group of parasites.

265 To estimate the evolutionary distance between strains, we performed a POCP (Percentage of
266 Conserved Proteins) analysis. As expected, with increased phylogenetic distance POCP values
267 decrease. For instance, escovopsis infecting leaf-cutter agriculture share on average 96% of their
268 proteins among each other, whereas only around 88% are shared with *Luteomyces*, *Sympodiorosea*

269 and the newly undescribed genus (Table S3, Figure 1B). Despite appearing in the same clade in
270 our phylogeny, *Luteomyces* strains and those from the undescribed genus, share as many proteins
271 between each other (88%) as they do with strains parasitizing any other agricultural system. This
272 suggests that there is as much phylogenetic divergence between these two groups, as there is
273 between them and any other escovopsis clade, supporting the notion that what has been
274 traditionally considered *Escovopsis* is in fact at least three, and possibly four, different genera.
275 Furthermore, POCP values lower than 91% segregate our dataset into the recently proposed
276 genera, whereas values above 91% and 95% delineate distinct species and strains within a species
277 respectively (Table S3). Mirroring our phylogenetic placement of *M. zeteki*-associated *Escovopsis*,
278 in POCP analysis, NGL179 shares more proteins (95.1%) with strains infecting leaf-cutter
279 agriculture, than with those exploiting general higher agriculture (92%). POCP analyses have been
280 useful to resolve bacterial groups at genus level, which correlate with POCP values < 50%. While
281 some studies have implemented the method in some fungi at the family level (POCP values < 70%)
282 (70), this strategy cannot be widely employed yet for delineating fungal groups, as genome
283 sampling in fungi remains scarce. However, our POCP analysis reveals a significant degree of
284 genetic diversity between *Escovopsis* (sensu lato) clades, and suggests a protein similarity
285 threshold of 87-91% to delineate different genera in this group of parasites. Further efforts are
286 required to elucidate whether the POCP differences can delineate distinct genera in a diversity of
287 fungi.

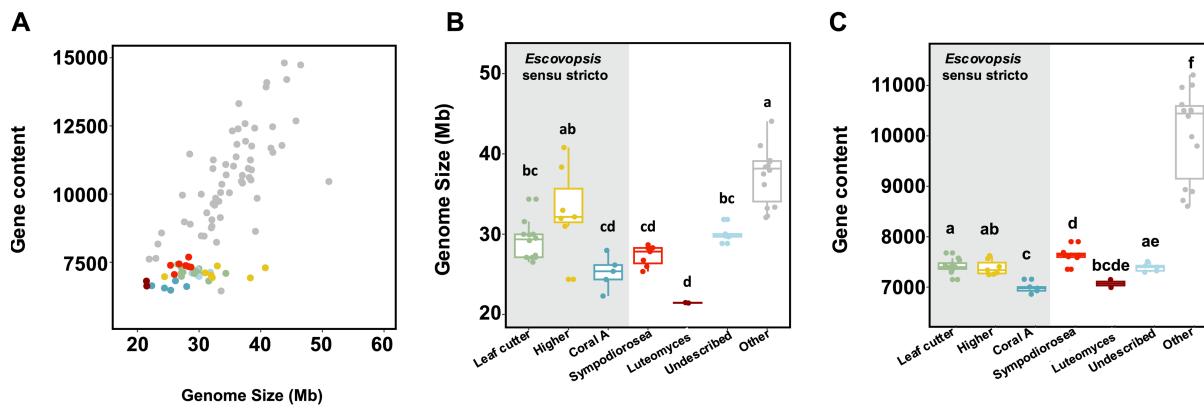
288

289 **Figure 1. Genomic features of *escovopsis*.** A) Phylogenomic tree of *Escovopsis* and allies
290 constructed with a supermatrix approach on 2314 single-copy orthologous genes. Black dots
291 represent bootstrap support higher than 90%. Branch colors describe different attine agricultural
292 systems: green, leaf-cutter agriculture; yellow, general higher agriculture; blue, coral agriculture
293 (divided in A, blue; and B, light blue; reflecting most derived and more basal coral agriculture);
294 and red, lower agriculture. Side colored bars represent new taxonomical affiliations based on (14)
295. (B) Heatmap depicting the percentage of conserved proteins across *escovopsis* strains. Lighter
296 colors represent high levels of shared proteins, whereas dark colors depict fewer shared proteins.
297 The dendrogram on the right represents a hierarchical clustering analysis. (C) Ideogram
298 representing the chromosomal level assembly of an *Escovopsis* sp. strain isolated from an
299 *Apterostigma dentigerum* nest (NGL070). Green colored bands represent regions with high gene
300 density; lighter colors depict low gene density regions. Orange dots represent areas harboring
301 telomeric repeats. (D) Synteny plot depicting the collinearity between different *escovopsis*
302 genomes across attine agriculture. Highly syntenic regions are connected by colored bands.

303 Contigs in black boxes represent complete chromosomes, whereas those in grey harbor telomeric
304 repeats just at one chromosomal end.

305

306 **Escovopsis genomes are organized into highly syntenic chromosomes.**


307 To elucidate the genomic organization of escovopsis, we screened the genomes of the four most
308 contiguous assemblies for telomeric repeats. In NGL070, stretches of (TTAGGG) n were detected
309 at both ends of six contigs, representing complete chromosomes (Figure 1C). The two remaining
310 contigs harbored telomeric repeats only at one end, constituting either two fragments of the same
311 chromosome, or two distinct incomplete chromosomes. A similar pattern was observed for the
312 highly contiguous EACOL, NGL095 and NGL057 strains, harboring 6, 4 and 2 complete
313 chromosomes, and 2, 5 and 7 fragmented ones with telomeric repeats at one end respectively
314 (Figure 1D). These observations suggest that escovopsis has 7-8 chromosomes, in agreement with
315 other members of the Hypocreales family, such as *Trichoderma reesei*, *Neurospora crassa* (71),
316 and *Metarhizium brunneum* (72), which organize their genomes in seven chromosomes.

317 To assess the conservation of escovopsis genomic architecture, we performed a synteny analysis
318 of the eight most continuous genomes available. Our ortholog-based analysis reveals that strains
319 share a high degree of collinearity, with 87.83% of the genes appearing in the same chromosome
320 and in the same order (Figure 1D). This is particularly apparent among strains of the same clade,
321 as evidenced by those parasitizing leaf-cutter agriculture (EACOL, NGL095, EATTINE,
322 EAECHC, and EAECCHR). As expected, collinearity has a positive correlation with phylogenetic
323 relatedness, with distant strains exhibiting increasingly different genomic organization.
324 Chromosomes 1, 2, 3, 4 and 5 (nomenclature relative to strain EACOL), are extremely well
325 conserved, extending beyond *Escovopsis* spp. infecting leaf cutter agriculture and including those

326 involved in general higher agriculture. Chromosome 6, although well conserved in strains
327 exploiting general higher agriculture and coral agriculture-associated NGL070, has experienced
328 recent rearrangements, as evidenced by its fusion with a fragment of chromosome 1 occurring in
329 the clade represented by EAECCHC and EAECCHR. Previous reports revealed a high degree of micro
330 mesosynteny between genomes of *Escovopsis* and *Trichoderma* (24), suggesting that both
331 genomes are organized in genome segments with similar gene content but rearranged in order and
332 orientation.

333 ***Escovopsis* harbor a reduced genome**

334 Fungi vary extensively in genome size, spanning three orders of magnitude and ranging from the
335 small genomes of some Microsporidia (2Mb) to the large ones in Picciniales fungi (2Gb). Some
336 of the smallest genomes are found in obligate parasites (73). *Escovopsis* genome sizes range
337 between 21.4 and 38.3 Mbp (40.7Mb), with an average of 28.7 Mb, corroborating previous studies
338 (24, 28) that estimated their genome sizes around 24.7-27.2 Mb. These genomes are reduced in
339 size relative to those of closely related Sordariomycetes (Figure 2A, 2B, S2A, S2B). Interestingly,
340 *Escovopsis* represents three of the five smallest genomes from all Sordariomycetes strains publicly
341 available in Mycocosms (<https://mycocosm.jgi.doe.gov>) (Figure 2A). The other two belong to
342 *Ophiocordyceps camponoti-rufipedis* and *O. australis* strain 1348a, both highly specific parasites
343 of ants (74). Within *escovopsis*, lower attine *Luteomyces* spp. strains harbor significantly smaller
344 genomes than those infecting higher attine nests (Figure 2B, Table S4A). No differences in genome
345 size were detected in *escovopsis* exploiting other agricultural systems (Figure 2B, Table S4B),
346 with the exception of strains infecting higher agriculture, which are highly variable.

347

348 **Figure 2. Escovopsis harbor reduced genomes with fewer genes than their non-ant associated**
349 **relatives. (A)** Relationship between genome size and gene content for sequenced fungal genomes.
350 Genome size (B) and gene content (C) of escovopsis strains across different attine agricultural
351 systems. Box colors denote attine clades systems: green, leaf-cutter agriculture (*Escovopsis* spp.);
352 yellow, general higher agriculture (*Escovopsis* spp.); blue, coral agriculture A (*Escovopsis* spp.);
353 red, lower agriculture (*Sympodiorosea* spp.); and light blue, coral agriculture B (undescribed
354 genus), grey other *Sordariomycetes*.

355

356 Gene number in escovopsis ranged between 6477 and 7693 (Table S2), representing 9 out of the
357 10 species in Mycocosm with the fewest genes within the Sordariomycetes. Unlike other fungi in
358 the family, where gene content positively correlates with genome size ($r^2 = 0.32$, $p < 0.0001$), gene
359 number in escovopsis is stable and does not associate with genome size ($r^2 = 0.06$, $p = 0.07$) (Figure
360 2A). While escovopsis harbor fewer genes than their relatives (Kruskal-Wallis rank sum test, X^2
361 = 30.11, d.f. = 1, $p < 0.001$, Figure S3A), there is no difference in gene content between escovopsis
362 exploiting the nests of lower and higher attines (Table S4C, Figure S3B). However, those within
363 the coral A clade have a slightly different gene content than those associated with lower and leaf-
364 cutter agriculture (Figure 2C, Table S4D). These results are congruent with recent surveys (28)
365 revealing that total coding sequence (CDS) length and intron number in escovopsis genomes are
366 low relative to free-living relatives, consistent with reduced gene content.

367 In addition to gene number, we investigated two drivers of fungal genome size: repeat content and
368 Repeat-Induced Point mutation. First, while transposable elements are often associated with fungal
369 pathogens (75, 76), their number in *escovopsis* is significantly lower than in non-ant associated
370 relatives (Kruskal-Wallis, $X^2 = 14.19$, d.f. = 1, $p < 0.001$), which in part, explains *escovopsis'*
371 small genomes. Second, fungi have evolved a genome defense mechanism to mitigate the
372 potentially detrimental consequences of transposable elements and other repeated genomic regions
373 (77). By altering nucleotide ratios, Repeat-Induced Point mutation (RIP) leads to gene inactivation
374 and genome reduction. Deactivation of RIP, therefore, can lead to genome expansion due to
375 retrotransposon proliferation (78). Previous reports based on the analysis of just one strain,
376 suggested that *E. weberi* may have lost genes involved in RIP. BLAST analyses with the
377 sequences of the two canonical genes known to mediate the RIP pathway revealed that all
378 *Escovopsis* genomes in our dataset harbored orthologs for one gene essential to the RIP process
379 (RID, RIP deficient) but lacked orthologs to the other RIP canonical gene (DIM2, defective in
380 methylation) (Table S5). Genome-wide RIP analyses using The RIPper's sliding window
381 approach revealed that all *escovopsis* strains show hallmarks of RIP (Table S6), although they vary
382 greatly in the proportion of their genomes that are affected by it. While some strains harbored little
383 evidence of RIP (ICBG1096, 1.01%), others are highly affected by it, with the most extreme case
384 being ICBG1075, where 23.26% of its genome present hallmarks of RIP. This variation across
385 *escovopsis* genomes of similar size indicates that RIP is not solely responsible for genome
386 reduction in this group, but it may play some role in some species.

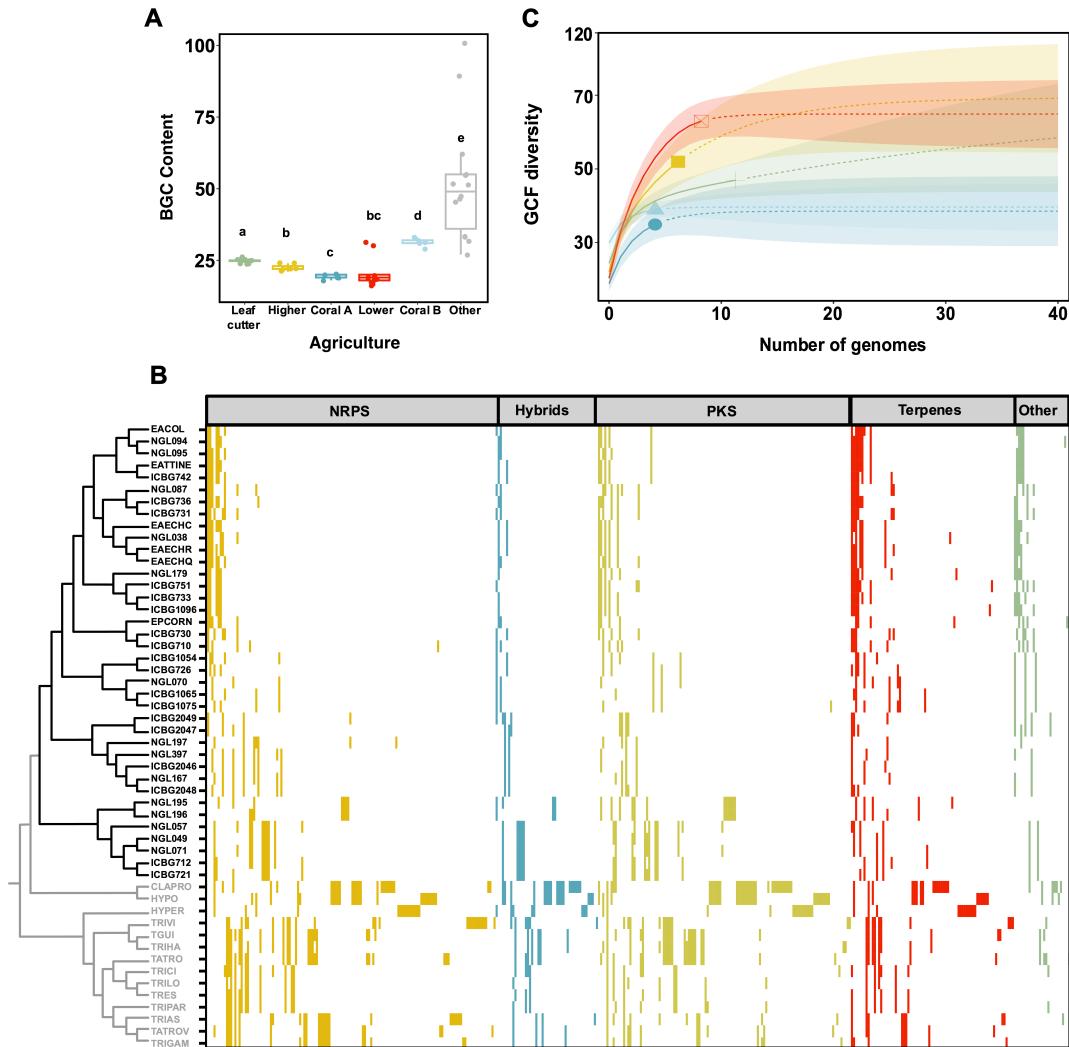
387 *Escovopsis'* small genomes and the genomic traces of RIP, together with the generalized loss of
388 DIM2, support previous studies (24) that proposed RIP as a genomic defensive mechanism that
389 limited transposon proliferation in *Escovopsis* in the past. A consequence of RIP is the relative

390 absence of duplicated genes (77). Therefore, the loss of this defense mechanism, may represent an
391 opportunity for this parasite to evolve new metabolic functions through gene duplication and
392 subfunctionalization.

393 Ascomycota with genome sizes between 25 and 70 Mb, and in particular Sordariomycetes, often
394 exhibit positive correlations between genome size and gene content (73, 79, 80). *Escovopsis*
395 evades this trend (Figure 2A), suggesting that a different evolutionary processes may be affecting
396 this genus. Symbiosis often leads to the streamlining of microbial genomes through genome
397 reduction and gene loss, as epitomized by the tiny genomes of many bacterial endosymbionts of
398 insects (81). Genome streamlining in bacteria can be explained by the loss of redundant genes with
399 drift (82), or by selection against non-essential genes (83). Similar dynamics can occur in fungal
400 mutualists and parasites (84, 85). In particular, fungal parasites associated with insects have been
401 shown to be particularly prone to gene loss (80). Within the Sordariomycetes, the smallest
402 genomes belong almost exclusively to endosymbionts, endoparasites, or fungal parasites vectored
403 by insects (80).

404 **BGC Diversity and distribution**

405 Secondary metabolites in fungi can define ecological niches (86), delimit host ranges (4, 87, 88),
406 and provide selective advantages under specific ecological conditions (89). The metabolic
407 pathways responsible for the synthesis of microbial toxins and other secondary metabolites are
408 typically encoded by biosynthetic gene clusters (BGCs). BGCs encode for backbone enzymes
409 responsible for the synthesis of the core structure of a metabolite, as well as tailoring enzymes that
410 modify this assembly, along with transcription factors and transporters (90). To assess the
411 biosynthetic potential of the *escovopsis*, we performed a computational genome mining analysis


412 using the program fungiSMASH (52). The most common backbone enzymes in fungi include
413 polyketide synthases (PKSs), nonribosomal peptide synthetases (NRPSs), terpene synthases, and
414 dimethylallyltransferases (DMATs) (91). All *escovopsis* genomes analyzed harbored a diversity
415 of BGCs belonging to the major biosynthetic classes (Table S7). *Escovopsis* ' chemical potential
416 content ranged from 16 BGCs in NGL197, to 33 in NGL057. On average, each genome featured
417 23 BGCs, and an average metabolic diversity of 28.7% NRPs, 25.6% PKS, 21.3% terpenoids,
418 16.3% hybrids, 2.4% betalactones and 3.6% others. There was no correlation between the number
419 of BGCs and the number of contigs or scaffolds per genome ($R^2 = 0.03$, $p = 0.13$), suggesting that
420 our dataset was robust and that the different sequencing technologies employed did not bias our
421 BGC survey. In addition, no correlation was found between the number of BGCs in each
422 *escovopsis* strain and genome size ($R^2 = 0.004$, $p = 0.7$).

423 While fungi within the Hypocreales are prolific secondary metabolite producers, with an average
424 of 43 BGCs per genome, *escovopsis* have significantly fewer BGCs than their non-fungus-farming
425 ant associated relatives (Kruskal-Wallis $X^2 = 28.17$, d.f. = 1, $p < 0.001$, Figure S4A), corroborating
426 recent findings using fewer *escovopsis* genomes (28). We found no statistical differences in BGC
427 abundance between *escovopsis* strains infecting higher or lower attine nests (Figure S4B), nor
428 between the majority of strains attacking different agricultural systems (Kruskal-Wallis $p = 0.67$,
429 Figure 3A), with the exception of small differences in BGC number in strains infecting general
430 higher agriculture and leaf-cutter agriculture. Upon graphical inspection, we observed a clear
431 bimodal distribution in BGC abundance in strains infecting lower agriculture (Figure 3A), that
432 unequivocally divided the dataset in distinct phylogenetic taxa. We therefore explored whether
433 there is a correlation between BGC content and phylogeny by assessing differences in BGC
434 number across *escovopsis* groups (Figure S4C). All clades harbored significantly different number

435 of BGCs, with the exception of *Leutomyces* spp. and the undescribed genera, both composed of
436 strains infecting lower agriculture (Kruskal-Wallis, $X^2 = 47.91$, d.f. = 6, $p < 0.001$). Strains within
437 *Luteomyces* and the undescribed new genus (i.e., NGL195, NGL196, NGL049, NGL057,
438 NGL216, ICBG712 and ICBG721) harbor more BGCs than more derived strains. Within the
439 *Escovopsis* spp. there is an increase in BGC abundance from the most basal strains (coral A) to the
440 more derived (leaf cutter agriculture) (Figure S4C).

441 The reduction in BGC abundance in *escovopsis* relative to other non-ant associated Hypocreales
442 is consistent with its shift in lifestyle to an obligate symbiont of ant nests. Transitions from free-
443 living states to obligate symbioses can often be accompanied by gene loss due to relaxed selection
444 on genes that are no longer necessary in a stable, predictable environment (24, 92). Additionally,
445 some specialist parasites are known to harbor a narrower suit of BGCs relative to generalist ones.
446 For instance, *Metarhizium* strains that acquired the *dtx* biosynthetic gene cluster, responsible for
447 the synthesis of a diversity of toxins, have broader host ranges (infecting hundreds of insect
448 species) compared with non-toxigenic strains (lacking the BGC) that present much narrower host
449 ranges, infecting only locusts and grasshoppers (4). Correlating with a higher content in
450 biosynthetic gene clusters, *Escovopsis* spp. strains infecting higher agriculture (e.g. *E. weberi*) are
451 thought to be more virulent than *escovopsis* infecting lower agriculture (19).

452
453
454

455

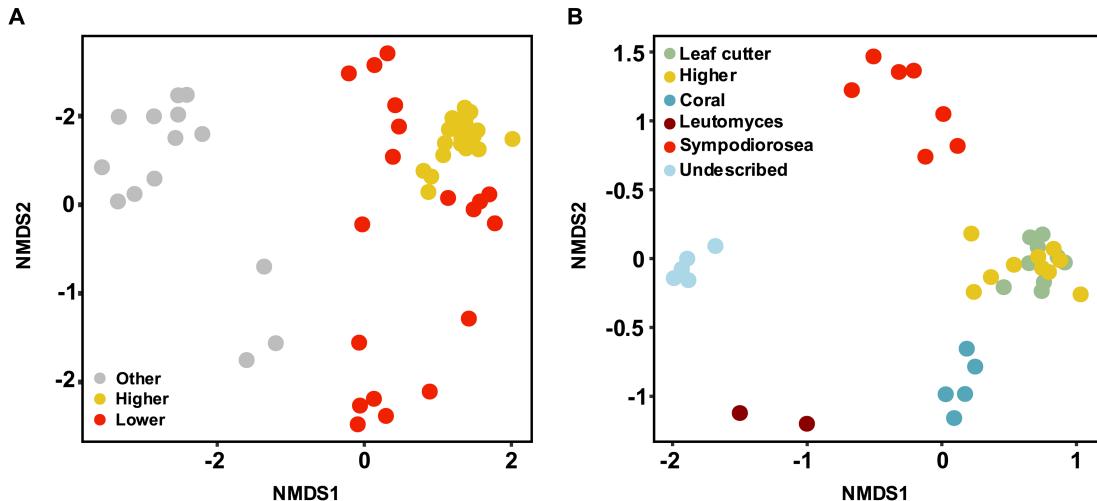
456 **Figure 3.** (A) Total number of biosynthetic gene clusters (BGCs) identified across escovopsis
457 strains infecting different attine agricultural systems and non-ant associated relatives. Box colors
458 denote attine clades systems: grey, free-living; green, leaf-cutter agriculture (*Escovopsis* spp.);
459 yellow, general higher agriculture (*Escovopsis* spp.); blue, coral agriculture A (*Escovopsis* spp.);
460 red, lower agriculture (*Sympodiorosea* spp.); and light blue, coral agriculture B (undescribed
461 genus). Graph background is colored according to the general agriculture strains exploit: yellow,
462 higher agriculture; and red lower agriculture. (B) Gene Cluster Family (GCF) distribution across
463 escovopsis and closely related fungi. Each column in the heatmap represents a GCF. The presence
464 of a GCF in a strain is highlighted by colored blocks according to BGC class: yellow, NRPs blue,
465 PKS-NRPS hybrids; light green, PKS; red, Terpenes; and green, others (including RiPPs, indoles,
466 siderophores and others). The absence of a GCF is represented by white spaces. (C) Rarefaction
467 curves assessing GCF richness in escovopsis strains across different attine agricultural systems for
468 the given sequencing effort. Continuous lines represent observed diversity, dashed lines inferred
469 diversity. Shaded areas denote confidence intervals. Colors denote agricultural systems: green,
470 leaf-cutter agriculture, yellow, general higher agriculture; blue, coral agriculture A red, lower
471 agriculture; and light blue, coral agriculture B.

472

473 To compare BGC composition across strains, we grouped BGCs into gene cluster families (GCFs)
474 based on sequence homology and cluster architecture employing the BiG-SCAPE algorithm. The
475 resulting sequence similarity network built with a similarity score cutoff of 0.5, clustered 1595
476 BGCs into 411 gene cluster families (GCFs). We visualized the GCF distribution across
477 escovopsis through the construction of a presence/absence table (Figure 3B). One hundred and
478 twenty-eight GCFs were present in the sampled escovopsis, and 102 of them were unique to
479 escovopsis relative to non-Attine associated fungi. Only 26 GCFs were shared between escovopsis
480 and other Hypocreales species (Table S8, Figure 3B). A rank-abundance curve demonstrates that
481 27 GCFs occur only once in escovopsis, and an additional 27 are present in just two strains (Figure
482 S5). Surprisingly, no GCF as defined by BigSCAPE was ubiquitous in escovopsis, and therefore
483 characteristic of the group of symbionts as a whole. Rarefaction curves provide an assessment of
484 GCFs richness for the given sequencing effort and reveal that although our sampling was largely
485 adequate, additional chemical diversity is yet to be discovered, especially within the most basal
486 clade of escovopsis infecting lower attine gardens (Figure 3C). Further sequencing efforts in
487 strains from this group will surely reveal additional GCFs.

488 To distinguish novel BGCs from already described ones, we supplemented our dataset with
489 characterized gene clusters from the MIBiG database as a reference, which at the date of
490 publication contained 1923 BGCs, out of which 207 were of fungal origin. Only five GCFs in our
491 escovopsis dataset are homologous to BGCs in the database. Three families comprising highly
492 similar BGCs cluster together with the MIBiG cluster BGC0001585, responsible for the synthesis
493 of melinacidin IV, suggesting they represent slightly different variants of the same biosynthetic
494 pathway. The other two GCFs are homologous to BGC0001583 and BGC0001777, which encode

495 for emodin and shearinines respectively. The distribution of all three GCFs is discrete. While most
496 strains of *escovopsis* harbor the BGC responsible for the production of melinacidin IV, those
497 encoding for shearinine and emodin are restricted to more derived clades (i.e., *Escovopsis* spp. for
498 shearinine, and *Escovopsis* spp, with the exception of those exploiting coral agriculture for
499 emodin).


500 Fermentation experiments using *E. weberi* have led to the detection and potential functional role
501 of all three metabolites and some derivatives (26). *E. weberi*-produced shearinine derivatives can
502 deter ants and are lethal at high concentrations, preventing insect workers from weeding their
503 garden, thus allowing the parasite to persist in the nest (26). The production of the
504 epipolythiodiketopiperazine melinacidin IV inhibits the growth of the ant defensive mutualist
505 *Pseudonocardia*, whereas the synthesis of emodin has detrimental effects on the cultivar (26)
506 and other co-occurring actinobacteria, such as *Streptomyces*. While the production of these
507 metabolites has been detected in *Escovopsis* strains parasitizing leaf cutter ant gardens, our results
508 demonstrate that the distribution of these BGCs is broader than previously thought and extends to
509 strains exploiting other agricultural systems. Whereas shared GCFs with other fungal genera
510 suggests that they may play a general role in fungal physiology, the presence of GCFs
511 characteristic of specific clades correlating with different attine agricultural systems likely reflects
512 the distinct selective pressures exerted on the symbionts by these different ecosystems. These
513 results are consistent with an on-going arms-race where these symbionts must constantly evolve
514 new adaptations to overcome not only cultivar defenses, but also, very likely, ant defenses, those
515 exerted by protective symbionts such as *Pseudonocardia* and those exerted by other microbes that
516 inhabit these complex microbial communities. For example, the defensive symbiont of beewolves,
517 *Streptomyces* spp., produces different antibiotic cocktails (both in composition and concentration)

518 in association with each insect species, but also in distinct geographical regions (93), presumably
519 as an adaptation to defend their hosts against different local pathogen communities. Furthermore,
520 the variation metabolic profiles of *escovopsis* could be a reflection of them having different
521 impacts on the symbiosis; while some (e.g., *E. weberi*) have been shown to be highly virulent
522 parasites of the ants' cultivars, experimental tests of the impacts of most species are not known.
523 More experimental work is required to assess the specific roles that individual metabolites may
524 play in the ecology of this diverse group of symbionts..

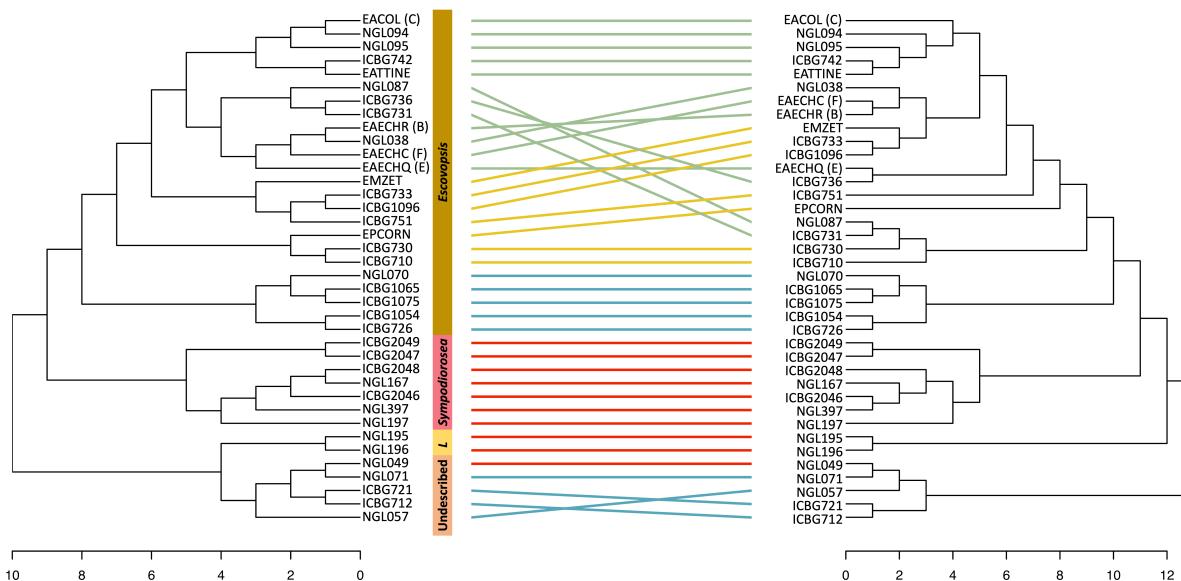
525 Recent surveys reveal that less than 3% of the biosynthetic space represented by fungal genomes
526 has been linked to metabolites (91, 94). As such, most of the GCFs identified by BGC similarity
527 networks could not be correlated with known compounds, suggesting *Escovopsis* is a promising
528 source for the discovery of new bioactive compounds.

529 **Gene cluster families (GCFs) delineate groups of *Escovopsis***

530 To assess differences in biosynthetic profiles between *Escovopsis* strains exploiting different attine
531 agricultural systems we performed a non-metric multidimensional scaling analysis. Our results
532 demonstrates that *Escovopsis* strains harbor very different GCF profiles than related non-ant
533 associated fungi, and that these profiles differ between *Escovopsis* infecting higher and lower
534 agriculture (Figure 4A, ANOSIM, $R = 0.59$, $p < 0.001$, 999 permutations). Likewise, GCF profiles
535 are sufficient to cluster strains into separate groups based on phylogenetic lineage (Figure 4B,
536 ANOSIM, $R = 0.87$, $p < 0.001$, 999 permutations). A PERMANOVA analysis reveals that most
537 of the variation (95%) is explained by the interaction between symbiont genus and ant species
538 (Figure 4B, adonis2, 999 permutations, $R^2=0.952$, $p=0.001$).

539

540 **Figure 4. Gene cluster families (GCFs) delineate groups of escovopsis strains.** (A) Non-metric
541 multidimensional scaling (NMDS) plot showing differences in GCF composition among
542 escovopsis infecting higher agriculture (yellow) and lower agriculture (red) and non-ant associated
543 fungal relatives (gray). (B) NMDS plot depicting GCF composition in escovopsis strains across
544 ant clades: *Escovopsis* spp. (green, leaf-cutter agriculture, yellow, general higher agriculture; blue,
545 coral agriculture A), dark red, *Luteomyces*; red, *Sympodiorosea*; and light blue, the undescribed
546 genus.


547 Based on the presence/absence matrix of GCFs across strains, we constructed a hierarchical
548 clustering analysis. *Escovopsis*' phylogeny, based on all orthologs, and the GCF dendrogram are
549 highly congruent (Figure 5A), with the exception that the most basal clade of strains parasitizing
550 coral agriculture and lower agriculture appear as paraphyletic in the GCF dendrogram. An
551 entanglement analysis, which gives a visual approximation of the level of agreement between two
552 dendrograms (95), yielded a score of 0.02, suggesting a high degree of congruence between
553 *escovopsis*' phylogeny and the GCF dendrogram.

554 These results suggest that the parasite's biosynthetic potential is a phylogenetic trait and can be
555 employed to delineate groups of *escovopsis*, particularly at broad taxonomical levels. Christopher
556 et al. (69) demonstrated that phylogenetic analyses based on chemical profiles of *Escovopsis*,
557 resulted in similar tree topologies to gene-based phylogenies, confirming that chemical profiles
558 can be considered phylogenetic traits. Additionally, the congruency between the species phylogeny

559 and the BGC profile dendrogram, suggest that BGCs are evolving in parallel with *escovopsis*
560 species, and that pathway gains and subsequent vertical inheritance, as well as losses are the main
561 forces driving BGC diversification, given that common horizontal transfer of BGCs between
562 strains would result in incongruent topologies.

563

Escovopsis phylogeny

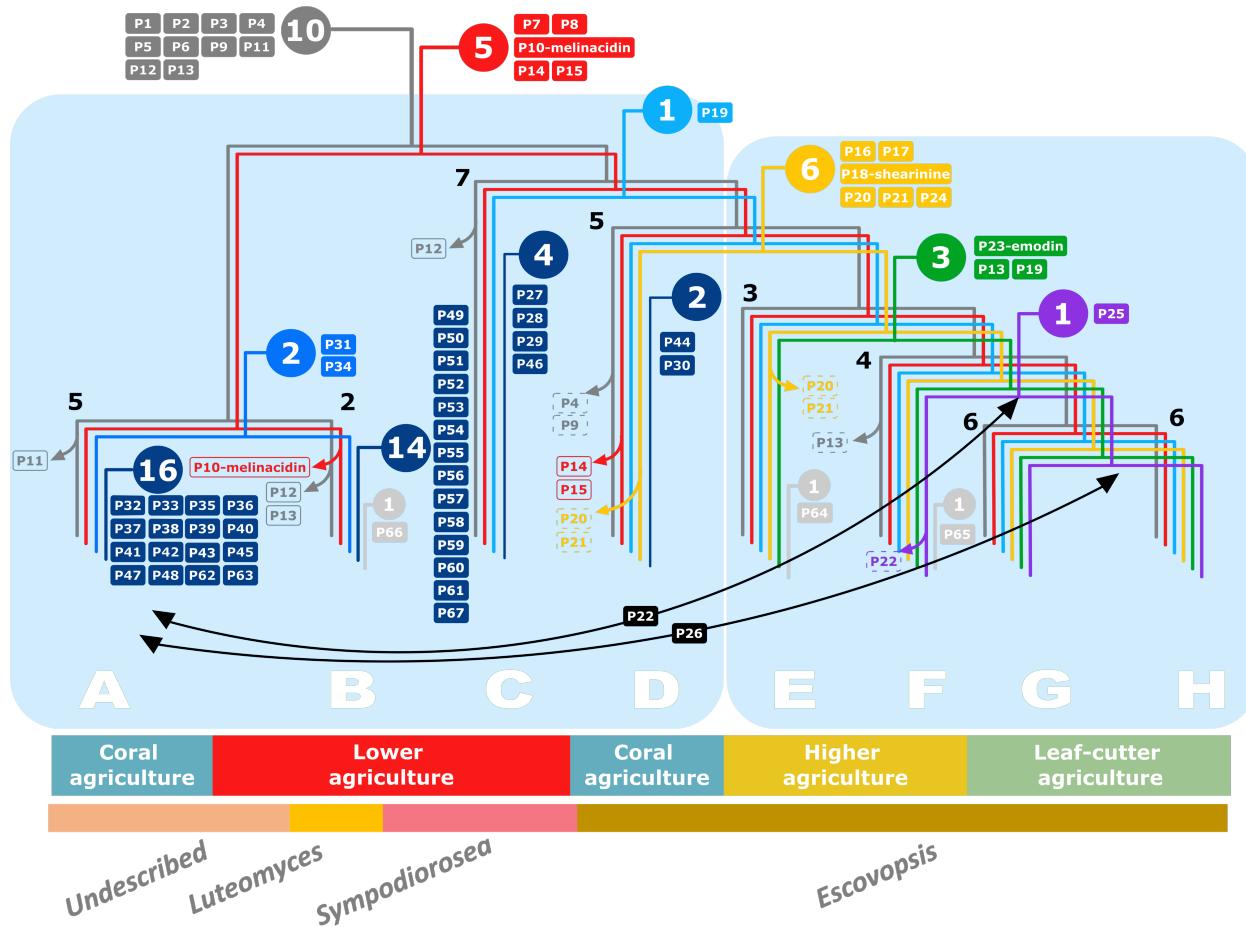
564

565 **Figure 5. GCF profiles in *Escovopsis* are a phylogenetic trait.** Tanglegrams revealing
566 congruence between (A) *Escovopsis* phylogeny and strain biosynthetic potential. Lines connect
567 strains with their GCF profile and colors denote attine clades systems: grey, free-living; green,
568 leaf-cutter agriculture, yellow, general higher agriculture; blue, coral agriculture A red, lower
569 agriculture; and light blue, coral agriculture B. Branches have been rotated for maximum
570 congruency. The maximum likelihood tree was built with 681 single copy orthologous genes. The
571 chemical dissimilarity dendrogram was generated using hierarchical cluster analysis on the
572 presence and absence of GCFs using Jaccard distance and UPGMA (unweighted pair group
573 method with arithmetic mean) as the agglomeration method.

574

575

576


577

578

a. Pathway evolution: Ancestral state reconstruction

579 To explore the evolutionary history of *escovopsis*' biosynthetic pathways relative to their encoding
580 strains, we performed an ancestral state reconstruction analysis. We clustered GCFs into pathways
581 (Ps) based on the assumption that they produce related compounds (See methods section, Table
582 S9). The 411 GCFs detected in our *escovopsis* dataset were clustered into many different
583 pathways. Their distribution was overlaid onto a simplified parasite phylogeny, generated by
584 collapsing certain branches on the species tree, resulting in 8 lineages A-H, that correspond with
585 the newly described genera (A, undescribed genera; B, *Luteomyces*; C, *Sympodiorosea*; and D-H
586 *Escovopsis* spp.) Figure 6). 67 pathways were present in *escovopsis*, out of which 56 were unique
587 to this group of symbionts and 11 were shared with other hypocreales. The analysis revealed that
588 15 pathways were present in the common ancestor of *escovopsis*, and 11 of those were shared
589 with the closely related genus *Cladobotryum*. The transition from a non-ant associated lifestyle to
590 a fungal garden parasite correlates with the loss of one pathway (P67), involved in the biosynthesis
591 of an uncharacterized PKS, that is present in all close relatives but absent in every *Escovopsis*
592 strain. Five pathways (P7, P8, P10, P14 and P15) evolved early in the evolutionary history of these
593 fungal symbionts and are present in most strains. However, none of them are ubiquitous, as there
594 have been some clade-specific loses.

595

596

597 **Figure 6.** Phylogeny depicting the inferred ancestry of secondary metabolite biosynthetic
 598 pathways present in *escovopsis*. A simplified species phylogenomic tree depicts 8 major
 599 *Escovopsis* lineages A-H, that correspond to the newly proposed taxonomical divisions. The
 600 number of the strains in each group is indicated in black adjacent to branch nodes. Circles indicate
 601 the number of pathways originated at various points in the species tree, whereas filled boxes state
 602 pathways next to the point of acquisition. Transparent boxes represent pathway losses in all strains
 603 within a clade (continuous outline) or more than 50% of the strains in the clade (dashed outline).
 604 Grey, pathways shared with the sister clade; red, shared the common ancestor of the genus; indigo,
 605 present in basal strains; light blue, present in derived clade; yellow; shared between strains
 606 infecting derived coral agriculture and general higher agriculture; green, shared by all higher
 607 agriculture; purple, shared by derived general higher agriculture and leaf-cutter agriculture; dark
 608 blue, clade-specific pathways; light gray, strain-specific pathways. Black arrows describe HGT
 609 events.

610

611 The remaining 50 pathways were acquired at various points during the evolution of the genus
 612 either through horizontal gene transfer (HGT) or *de novo*. An average of three pathways are

613 acquired by *Escovopsis* with every transition to a new ant agricultural system. However, the
614 transition from strains within the three most ancestral escovopsis clades (A-C, *Sympodiorosea*,
615 *Leutomyces* and an undescribed genus) to the most derived super-clade including clades D-H
616 (*Escovopsis* spp.) correlate with the acquisition of 5 pathways, including P18, responsible for the
617 biosynthesis of shearinine D and indicates that these pathways are unique for *Escovopsis* spp. Four
618 pathways, including P24 which synthesizes emodin, evolved early in the divergence of *Escovopsis*
619 to infect higher attine agriculture. Interestingly, no pathway is unique to the most derived clade of
620 the parasite (i.e., strains parasitizing leaf-cutter ant nests, clades G and H).

621 Phylogenetic analysis of key biosynthetic genes from each pathway confirms, based on congruence
622 with the species tree, vertical inheritance for most of the pathways following acquisition. However,
623 they also suggest that some pathways were exchanged between strains. P22, encoding for a
624 terpenoid, has been transferred between the ancestor of parasite strains exploiting higher attines
625 (ancestor of clades F-H) and the basal clade parasitizing coral agriculture (clade A). Similarly,
626 P26, encoding a PKS, has been shared between the ancestor of strains infecting leaf-cutter
627 agriculture and the most derived clade parasitizing coral agriculture. In both cases, the direction of
628 the exchange remains unclear. However, once transferred, these pathways have subsequently been
629 vertically inherited by all members of the clades.

630 The evolution of *Escovopsis*' biosynthetic potential has not only evolved through pathway
631 acquisition, but also through BGC losses. Six pathways have been lost in strains infecting lower
632 attines: three that were already present in the sister clade represented by *Cladobotryum* and
633 *Hypomyces rosellus* (P10, 11, 12, and P13) and three that evolved in the common ancestor of all
634 escovopsis strains (P10, P14 and P15). P12 appears to have been lost twice, once in clade B
635 (*Luteomyces*), as well as in clade C (*Sympodiorosea*). P4 and P9 have also been lost in 4 and 2

636 strains respectively. Within *Escovopsis* parasitizing higher attines, no pathway has been lost
637 completely. Only three pathways have been lost in some strains: the ancient P13 in clade F, and
638 the more recently evolved P18, encoding for shearinine, in one clade E strain (EPCORN). While
639 the loss of this BGC in EPCORN, and its inability to synthesize the resulting compound was
640 already described through both bioinformatic and chemical assays (26), our results suggest it is
641 not a widespread event, given that all the remaining strains still conserve the BGC. A number of
642 pathways (P4, P9, P14, P15, P20, P21) have been lost in *Escovopsis* spp. strains that experienced
643 a host-shift, from exploiting a *Leucocoprinae* to a *Pterulaceae* host. It is plausible that these
644 pathway losses represent an adaptation and specialization to exploit a new host. In general, more
645 pathways have been lost in *Escovopsis* strains infecting lower attine gardens than those attacking
646 the cultivars of higher attines, and those pathways were most often ancient, suggesting that newly
647 acquired BGCs either (i) have not had enough evolutionary time to be selected against, or (ii) may
648 be adaptive and thus maintained in *Escovopsis*. These results oppose patterns described in other
649 fungi, where generalist parasites harbor more BGCs than specialist ones (4). *Escovopsis* strains
650 attacking lower attines are thought to be less specialized than those infecting higher attine gardens
651 (19). However, our results suggest that they may be more specialized than previously thought.
652 Furthermore, the colonies of lower attines are smaller than those of higher attines, consisting of a
653 handful and millions of workers respectively. Given the insecticidal properties of some BGCs, it
654 is plausible that parasite strains attacking bigger colonies, require a more diverse cocktail of
655 bioactive compounds relative to those infecting smaller colonies. In fact, studies have
656 demonstrated that the proportion of ant nests harboring fungal contaminants (fungi other than the
657 cultivar) is highest in lower attines (13). However, the proportion of those contaminants made up
658 by *Escovopsis* and its allies is highest for higher attines (13). This could be the result of *Escovopsis*

659 attacking higher attine nests being able to better fend off both fungal competitors than those
660 infection lower attine nests, and inhibiting ant-weeding behavior, given their higher content in
661 BGCs. Additionally, *Escovopsis* strains infecting small colonies may encounter less diverse
662 microbial communities in compared to those encountered in bigger gardens, and may not require
663 as many antibiotic compounds to outcompete other microbes.

664 Our results suggest that *Escovopsis* acquired the capability to synthesize the antimicrobial
665 compound melinacidin IV early in the evolution of this group of symbionts and was subsequently
666 lost in lineage B (P10), i.e. *Luteomyces* parasitizing lower attines. The evolution of the pathway,
667 is however, uncertain. Although we did not detect the presence of the core biosynthetic enzymes
668 in the sister clade to escovopsis, consisting of *Cladobotryum* and *Hypomyces* strains, other
669 Hypocreales are known to synthesize this metabolite, such as *Acrostalagmus* sp, a rare fungal
670 genus that has been found associated with soil (96), mushrooms (97) and plant material (98),
671 suggesting this BGC may have been acquired horizontally. However, while the closely related
672 genus *Trichoderma*, has never been described to synthesize this antibiotic, strains within this genus
673 harbor a number of homologous genes to the melinacidin IV BGC, including the backbone enzyme
674 (99). Therefore, it is alternatively plausible that the pathway responsible for the production of
675 melinacidin IV evolved early within the hypocreal family and was lost in the *Cladobotryum-H.*
676 *rosellus* clade, accumulating enough changes (or requiring fewer genes than previously thought)
677 that we have classified them as different GCFs in our survey.

678 The inferred ancestry for the pathway responsible for shearinine (P18) biosynthesis, suggests it
679 was characteristic of *Escovopsis* spp. While absent from other Hypocreales, a BGC encoding for
680 shearinine D, has been described for the distantly related fungus *Penicillium janthinellum* (100),
681 suggesting that it may evolved through HGT in these symbionts. Emodin, encoded by pathway

682 P24, was one of the last BGCs to evolve within *Escovopsis*, appearing in the ancestor of strains
683 parasitizing general higher agriculture and leaf-cutter ants.

684 The evolutionary transition between lower to higher agriculture in attine ants correlates not only
685 with an increment colony size (from hundreds to millions of workers) (84), but also with an
686 incipient division of labor between worker ants that culminates with the cast system in leaf-cutter
687 ants (101). The transition of escovopsis from attacking lower to higher attine agriculture coincided
688 with the evolution of a new suit of biosynthetic gene clusters, possibly explaining the increase in
689 complexity required by escovopsis to survive in this environment, and the split of these strains into
690 different genera.

691

692 4. Conclusion

693 Parasites evade and counter host defenses through a remarkable array of secondary metabolites
694 and natural products. Here, we highlight the highly streamlined genomic features of escovopsis,
695 defined by 7 chromosomes, harboring few repetitive sequences. Despite a high degree of metabolic
696 conservation, we observe limited variation in the parasite's potential to produce secondary
697 metabolites. As the phylogenetic distribution of the encoding biosynthetic gene clusters coincides
698 with attine transitions in agricultural systems and cultivar types, we highlight the likely role of
699 these metabolites in mediating adaptation by a highly specialized pathogen. Future efforts will
700 shed light on the mode-of-action and mechanistic basis of *Escovopsis* secondary metabolites, their
701 role in underlying virulence and pathogenicity in an ancient agricultural system.

702

703 **5. Acknowledgements**

704 We acknowledge funding from the German Research Foundation (Deutsche
705 Forschungsgemeinschaft) under the individual grant program (BE6922/1-1) and Germany's
706 Excellence Strategy (EXC 2124 – 390838134) for AB. This work was also funded by the National
707 Science Foundation (award 1711545) for CC, (award 1754595) for HS, NMG and TR, and
708 (award1927411) for NMG and AR, QVM and AR would like to thank the São Paulo Research
709 Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo [FAPESP], grant number
710 2019/03746-0. We are very thankful to Dr. Martina Adamek for advice on BGC clustering and Dr.
711 J Lovell and Dr. Navarro for help in troubleshooting software functioning.

712

713 **6. Data accessibility**

714 Accession numbers will be provided upon acceptance. BigScape results and other supplementary
715 material can be found in FigShare under the title's project.

716 **7. Author contributions**

717 AB, HS, NMG and NZ conceived of the study. NMG and YC collected samples. AB, HS and CC
718 performed DNA extractions. AB, HS and AGM assembled genomes. AB, QV and AR performed
719 analyses. AB wrote the manuscript. All authors provided valuable comments to the manuscript.

720

721 1. **References**

722

723 1. Barrett LG, Heil M. 2012. Unifying concepts and mechanisms in the specificity of plant–
724 enemy interactions. *Trends Plant Sci* 17:282–292.

725 2. Woolhouse MEJ, Taylor LH, Haydon DT. 2001. Population biology of multihost pathogens.
726 *Science* 292:1109–1112.

727 3. Jaenike J, Perlman SJ. 2002. Ecology and evolution of host-parasite associations:
728 mycophagous *Drosophila* and their parasitic nematodes. *Am Nat* 160:S23–S39.

729 4. Wang B, Kang Q, Lu Y, Bai L, Wang C. 2012. Unveiling the biosynthetic puzzle of destruxins
730 in *Metarhizium* species. *Proceedings of the National Academy of Sciences* 109:1287–1292.

731 5. Möbius N, Hertweck C. 2009. Fungal phytotoxins as mediators of virulence. *Curr Opin Plant
732 Biol* 12:390–398.

733 6. Wang Y, Wu J, Yan J, Guo M, Xu L, Hou L, Zou Q. 2022. Comparative genome analysis of
734 plant ascomycete fungal pathogens with different lifestyles reveals distinctive virulence
735 strategies. *BMC Genomics* 23:34.

736 7. Drott MT, Rush TA, Satterlee TR, Giannone RJ, Abraham PE, Greco C, Venkatesh N,
737 Skerker JM, Glass NL, Labbé JL, Milgroom MG, Keller NP. 2021. Microevolution in the
738 pansecondary metabolome of *Aspergillus flavus* and its potential macroevolutionary
739 implications for filamentous fungi. *Proceedings of the National Academy of Sciences* 118.

740 8. Speed MP, Fenton A, Jones MG, Ruxton GD, Brockhurst MA. 2015. Coevolution can explain
741 defensive secondary metabolite diversity in plants. *New Phytol* 208:1251–1263.

742 9. Raffa N, Keller NP. 2019. A call to arms: Mustering secondary metabolites for success and
743 survival of an opportunistic pathogen. *PLoS Pathog* 15:e1007606.

744 10. Gerardo NM, Mueller UG, Currie CR. 2006. Complex host-pathogen coevolution in the
745 *Apterostigma* fungus-growing ant-microbe symbiosis. *BMC Evol Biol* 6:88.

746 11. Gerardo NM, Jacobs SR, Currie CR, Mueller UG. 2006. Ancient host–pathogen associations
747 maintained by specificity of chemotaxis and antibiosis. *PLoS Biol* 4:e235.

748 12. Gerardo NM, Mueller UG, Price SL, Currie CR. 2004. Exploiting a mutualism: parasite
749 specialization on cultivars within the fungus–growing ant symbiosis. *Proceedings of the
750 Royal Society of London Series B: Biological Sciences* 271:1791–1798.

751 13. Currie CR, Mueller UG, Malloch D. 1999. The agricultural pathology of ant fungus gardens.
752 Proceedings of the National Academy of Sciences 96:7998–8002.

753 14. Montoya QV, Martiarena MJS, Bizarria R Jr, Gerardo NM, Rodrigues A. 2021. Fungi
754 inhabiting attine ant colonies: reassessment of the genus *Escovopsis* and description of
755 *Luteomyces* and *Sympodiorosea* gens. nov. IMA Fungus 12:23.

756 15. Currie CR. 2001. Prevalence and impact of a virulent parasite on a tripartite mutualism.
757 Oecologia 128:99–106.

758 16. Reynolds HT, Currie CR. Pathogenicity of *Escovopsis weberi*: the parasite of the attine ant-
759 microbe symbiosis directly consumes the ant-cultivated fungus 5.

760 17. Mello D, Silva MC, Leite Martins G, Costa Moreira C, Gechel Kloss T, Elliot SL. 2021. Low
761 virulence of the fungi *Escovopsis* and *Esocovopsioides* to leaf-cutting ant-fungus symbiosis.
762 Frontiers in Microbiology 12.

763 18. Marfetan JA, Romero AI, Folgarait PJ. 2015. Pathogenic interaction between *Escovopsis*
764 *weberi* and *Leucoagaricus* sp.: mechanisms involved and virulence levels. Fungal Ecol
765 17:52–61.

766 19. Bizarria R Jr, Nagamoto NS, Rodrigues A. 2020. Lack of fungal cultivar fidelity and low
767 virulence of *Escovopsis trichodermoides*. Fungal Ecology 45.

768 20. Schultz TR, Brady SG. 2008. Major evolutionary transitions in ant agriculture. Proceedings
769 of the National Academy of Sciences 105:5435–5440.

770 21. Branstetter MG, Ješovnik A, Sosa-Calvo J, Lloyd MW, Faircloth BC, Brady SG, Schultz TR.
771 2017. Dry habitats were crucibles of domestication in the evolution of agriculture in ants.
772 Proceedings of the Royal Society B: Biological Sciences 284:20170095.

773 22. Schultz TR, Sosa-Calvo J, Brady SG, Lopes CT, Mueller UG, Bacci M, Vasconcelos HL.
774 2015. The Most Relictual Fungus-Farming Ant Species Cultivates the Most Recently Evolved
775 and Highly Domesticated Fungal Symbiont Species. Am Nat 185:693–703.

776 23. Huey Yek S, Boomsma JJ, Poulsen M. 2012. Towards a better understanding of the evolution
777 of specialized parasites of fungus-growing ant crops. Psyche.

778 24. de Man TJB, Stajich JE, Kubicek CP, Teiling C, Chenthamara K, Atanasova L, Druzhinina
779 IS, Levenkova N, Birnbaum SSL, Baribeau SM, Bozick BA, Suen G, Currie CR, Gerardo
780 NM. 2016. Small genome of the fungus *Escovopsis weberi*, a specialized disease agent of
781 ant agriculture. Proc Natl Acad Sci USA 113:3567–3572.

782 25. Currie CR, Scott JA, Summerbell RC, Malloch D. 1999. Fungus-growing ants use antibiotic-
783 producing bacteria to control garden parasites. *Nature* 398:701–704.

784 26. Heine D, Holmes NA, Worsley SF, Santos ACA, Innocent TM, Scherlach K, Patrick EH, Yu
785 DW, Murrell JC, Vieria PC, Boomsma JJ, Hertweck C, Hutchings MI, Wilkinson B. 2018.
786 Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. *Nat Commun*
787 9:2208.

788 27. Dhodary B, Schilg M, Wirth R, Spiteller D. 2018. Secondary metabolites from *Escovopsis*
789 *weberi* and their role in attacking the garden fungus of leaf-cutting ants. *Chemistry – A*
790 *European Journal* 24:4445–4452.

791 28. Gotting K. 2022. Genomic diversification of the specialized parasite of the fungus-growing
792 ant symbiosis. *Proceedings of the National Academy of Sciences*.

793 29. Blumer LS, Beck C. 2005. DNA prep for MiSeq Analysis.
794 <https://www.beanbeetle.org/microbiome/dna-prep-for-miseq-analysis/>. Retrieved 3 July
795 2023.

796 30. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable
797 and accurate long-read assembly via adaptive k -mer weighting and repeat separation.
798 *Genome Res* 27:722–736.

799 31. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q,
800 Wortman J, Young SK, Earl AM. 2014. Pilon: An Integrated Tool for Comprehensive
801 Microbial Variant Detection and Genome Assembly Improvement. *PLoS One* 9:e112963.

802 32. Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data.
803 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

804 33. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
805 sequence data. *Bioinformatics* 30:2114–2120.

806 34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
807 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler G,
808 Alekseyev MA, Pevzner PA. 2012. SPAdes: A New Genome Assembly Algorithm and Its
809 Applications to Single-Cell Sequencing. *J Comput Biol* 19:455–477.

810 35. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO:
811 assessing genome assembly and annotation completeness with single-copy orthologs.
812 *Bioinformatics* 31:3210–3212.

813 36. Lovell JT, Sreedasyam A, Schranz ME, Wilson MA, Carlson JW, Harkess A, Emms D,
814 Goodstein D, Schmutz J. 2022. GENESPACE: syntenic pan-genome annotations for
815 eukaryotes. *bioRxiv*.

816 37. Palmer J (2020) Funannotate: Fungal genome annotation.
817 <https://zenodo.org/record/4054262#.ybe-3lmo8zu>.

818 38. The UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge. *Nucleic
819 Acids Res* 47:D506–D515.

820 39. Slater G, Birney E. 2005. Automated generation of heuristics for biological sequence
821 comparison. *BMC Bioinformatics* 6:31.

822 40. Hoff KJ, Stanke M. 2019. Predicting Genes in Single Genomes with AUGUSTUS. *Curr
823 Protoc Bioinformatics* 65:e57.

824 41. Korf I. 2004. Gene finding in novel genomes. *BMC Bioinformatics* 5:59.

825 42. Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open source
826 ab initio eukaryotic gene-finders. *Bioinformatics* 20:2878–2879.

827 43. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes
828 in genomic sequence 10.

829 44. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR.
830 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the
831 Program to Assemble Spliced Alignments. *Genome Biol* 9:R7.

832 45. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J,
833 Mitchell A, Nuka G, Pesceat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-
834 Y, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification.
835 *Bioinformatics* 30:1236–1240.

836 46. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende
837 DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a hierarchical,
838 functionally and phylogenetically annotated orthology resource based on 5090 organisms and
839 2502 viruses. *Nucleic Acids Res* 47:D309–D314.

840 47. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P.
841 2017. Fast Genome-Wide Functional Annotation through Orthology Assignment by
842 eggNOG-Mapper. *Mol Biol Evol* 34:2115–2122.

843 48. Kall L, Krogh A, Sonnhammer ELL. 2007. Advantages of combined transmembrane
844 topology and signal peptide prediction--the Phobius web server. *Nucleic Acids Res*
845 35:W429–W432.

846 49. Eddy SR. 2011. Accelerated Profile HMM Searches. *PLoS Comput Biol* 7:e1002195.

847 50. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The
848 carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res* 42:D490–D495.

849 51. Rawlings ND, Barrett AJ, Finn R. 2016. Twenty years of the *MEROPS* database of proteolytic
850 enzymes, their substrates and inhibitors. *Nucleic Acids Res* 44:D343–D350.

851 52. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber
852 T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. *Nucleic
853 Acids Res* 49:W29–W35.

854 53. McGowan J, Fitzpatrick DA. 2020. Recent advances in oomycete genomics. *Adv Genet*
855 105:175–228.

856 54. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
857 throughput. *Nucleic Acids Res* 32:1792–1797.

858 55. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated
859 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972–1973.

860 56. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A,
861 Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference
862 in the Genomic Era. *Mol Biol Evol* 37:1530–1534.

863 57. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder:
864 fast model selection for accurate phylogenetic estimates. *Nat Methods* 14:587–589.

865 58. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic
866 tree display and annotation. *Nucleic Acids Res* 49:W293–W296.

867 59. Katoh K, Misawa K, Kuma K-I, Miyata T. 2002. MAFFT: a novel method for rapid multiple
868 sequence alignment based on fast Fourier transform. *Nucleic Acids Res* 30:3059–3066.

869 60. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
870 large phylogenies. *Bioinformatics* 30:1312–1313.

871 61. Gilchrist CLM, Booth TJ, van Wersch B, van Grieken L, Medema MH, Chooi Y-H. 2021.
872 cblaster: a remote search tool for rapid identification and visualization of homologous gene
873 clusters. *Bioinformatics Advances* 1:vbab016.

874 62. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI,
875 De Los Santos ELC, Yeong M, Cruz-Morales P, Abubucker S, Roeters A, Lokhorst W,
876 Fernandez-Guerra A, Cappelini LTD, Goering AW, Thomson RJ, Metcalf WW, Kelleher NL,
877 Barona-Gomez F, Medema MH. 2020. A computational framework to explore large-scale
878 biosynthetic diversity. *Nat Chem Biol* 16:60–68.

879 63. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJJ, van Santen
880 JA, Tracanna V, Suarez Duran HG, Pascal Andreu V, Selem-Mojica N, Alanjary M,
881 Robinson SL, Lund G, Epstein SC, Sisto AC, Charkoudian LK, Collemare J, Linington RG,
882 Weber T, Medema MH. 2019. MIBiG 2.0: a repository for biosynthetic gene clusters of
883 known function. *Nucleic Acids Res* gkz882.

884 64. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B,
885 Ideker T. 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular
886 Interaction Networks. *Genome Res* 13:2498–2504.

887 65. Maddison, W. P. and D.R. Maddison. 2021. Mesquite: a modular system for evolutionary
888 analysis. Version 3.70 <http://www.mesquiteproject.org>.

889 66. Ziemert N, Lechner A, Wietz M, Millan-Aguinaga N, Chavarria KL, Jensen PR. 2014.
890 Diversity and evolution of secondary metabolism in the marine actinomycete genus
891 *Salinisporea*. *Proceedings of the National Academy of Sciences* 111:E1130–E1139.

892 67. Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT, Winkler A, Wibberg D,
893 Kalinowski J, Ziemert N. 2018. Comparative genomics reveals phylogenetic distribution
894 patterns of secondary metabolites in *Amycolatopsis* species. *BMC Genomics* 19.

895 68. Shen X-X. 2020. Genome-scale phylogeny and contrasting modes of genome evolution in the
896 fungal phylum Ascomycota. *Science Advances* 6.

897 69. Christopher Y, Aguilar C, Gálvez D, Wcislo WT, Gerardo NM, Fernández-Marín H. 2021.
898 Interactions among *Escovopsis*, antagonistic microfungi associated with the fungus-growing
899 ant symbiosis. *Journal of Fungi* 7:1007.

900 70. Wibberg D, Stadler M, Lambert C, Bunk B, Spröer C, Rückert C, Kalinowski J, Cox RJ,
901 Kuhnert E. 2021. High quality genome sequences of thirteen Hypoxylaceae (Ascomycota)
902 strengthen the phylogenetic family backbone and enable the discovery of new taxa. *Fungal
903 Divers* 106:7–28.

904 71. Druzhinina IS, Kopchinskiy AG, Kubicek EM, Kubicek CP. 2016. A complete annotation of
905 the chromosomes of the cellulase producer *Trichoderma reesei* provides insights in gene
906 clusters, their expression and reveals genes required for fitness. *Biotechnol Biofuels* 9:75.

907 72. Saud Z, Kortsinoglou AM, Kouvelis VN, Butt TM. 2021. Telomere length de novo assembly
908 of all 7 chromosomes and mitogenome sequencing of the model entomopathogenic fungus,
909 *Metarhizium brunneum*, by means of a novel assembly pipeline. *BMC Genomics* 22:87.

910 73. Stajich JE. 2017. Fungal Genomes and Insights into the Evolution of the Kingdom.
911 *Microbiology Spectrum* <https://doi.org/10.1128/microbiolspec.FUNK-0055-2016>.

912 74. de Bekker C, Ohm RA, Evans HC, Brachmann A, Hughes DP. 2017. Ant-infesting
913 Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes
914 and a possible major role for enterotoxins. *Sci Rep* 7:12508.

915 75. Fouché S, Oggendorf U, Chanclud E, Croll D. 2022. A devil's bargain with transposable
916 elements in plant pathogens. *Trends Genet* 38:222–230.

917 76. Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A, Croll D. 2018. The
918 Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens. *Annu Rev
919 Phytopathol* 56:21–40.

920 77. Galagan JE, Selker EU. 2004. RIP: the evolutionary cost of genome defense. *Trends Genet*
921 20:417–423.

922 78. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma L-J,
923 Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi
924 M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff
925 CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C,
926 Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre
927 S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S,
928 Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D,
929 Li W, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R,
930 Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA,
931 Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren
932 B. 2003. The genome sequence of the filamentous fungus *Neurospora crassa*. *Nature*
933 422:859–868.

934 79. Kelkar YD, Ochman H. 2012. Causes and Consequences of Genome Expansion in Fungi.
935 *Genome Biol Evol* 4:13–23.

936 80. Fijarczyk A, Hessenauer P, Hamelin RC, Landry CR. 2022. Lifestyles shape genome size and
937 gene content in fungal pathogens. *bioRxiv* <https://doi.org/10.1101/2022.08.24.505148>.

938 81. McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. *Nat Rev
939 Microbiol* 10:13–26.

940 82. Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and Evolution of Heritable
941 Bacterial Symbionts. *Annu Rev Genet* 42:165–190.

942 83. Giovannoni SJ, Cameron Thrash J, Temperton B. 2014. Implications of streamlining theory
943 for microbial ecology. *ISME J* 8:1553–1565.

944 84. Kooij PW, Pellicer J. 2020. Genome Size Versus Genome Assemblies: Are the Genomes
945 Truly Expanded in Polyploid Fungal Symbionts? *Genome Biol Evol* 12:2384–2390.

946 85. Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V,
947 Peyretailleade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M,
948 Weissenbach J, Vivarès CP. 2001. Genome sequence and gene compaction of the eukaryote
949 parasite *Encephalitozoon cuniculi*. *Nature* 414:450–453.

950 86. Schimek C. 2011. Evolution of special metabolism in fungi: Concepts, mechanisms, and
951 pathways, p. 293–329. *In* Pöggeler, S, Wöstemeyer, J (eds.), *Evolution of Fungi and Fungal-*
952 *Like Organisms*. Springer, Berlin, Heidelberg.

953 87. Hu X, Xiao G, Zheng P, Shang Y, Su Y, Zhang X, Liu X, Zhan S, St. Leger RJ, Wang C.
954 2014. Trajectory and genomic determinants of fungal-pathogen speciation and host
955 adaptation. *Proceedings of the National Academy of Sciences* 111:16796–16801.

956 88. Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y,
957 Shirasu K. 2013. Comparative genomic and transcriptomic analyses reveal the
958 hemibiotrophic stage shift of *Colletotrichum* fungi. *New Phytologist* 197:1236–1249.

959 89. Balancing selection for aflatoxin in *Aspergillus flavus* is maintained through interference
960 competition with, and fungivory by insects <https://doi.org/10.1098/rspb.2017.2408>.

961 90. Keller NP. 2019. Fungal secondary metabolism: regulation, function and drug discovery. *Nat*
962 *Rev Microbiol* 17:167–180.

963 91. Robey MT, Caesar LK, Drott MT, Keller NP, Kelleher NL. 2021. An interpreted atlas of
964 biosynthetic gene clusters from 1,000 fungal genomes. *Proceedings of the National Academy of*
965 *Sciences* 118:e2020230118.

966 92. Conlon BH, Gostinčar C, Fricke J, Kreuzenbeck NB, Daniel J-M, Schlosser MSL, Peereboom
967 N, Aanen DK, de Beer ZW, Beemelmanns C, Gunde-Cimerman N, Poulsen M. 2021.
968 Genome reduction and relaxed selection is associated with the transition to symbiosis in the
969 basidiomycete genus *Podaxis*. *iScience* 24:102680.

970 93. Engl T, Kroiss J, Kai M, Nechitaylo TY, Svatoš A, Kaltenpoth M. 2018. Evolutionary
971 stability of antibiotic protection in a defensive symbiosis. *Proc Natl Acad Sci U S A*
972 115:E2020–E2029.

973 94. Li YF, Tsai KJS, Harvey CJB, Li JJ, Ary BE, Berlew EE, Boehman BL, Findley DM, Friant
974 AG, Gardner CA, Gould MP, Ha JH, Lilley BK, McKinstry EL, Nawal S, Parry RC,
975 Rothchild KW, Silbert SD, Tentilucci MD, Thurston AM, Wai RB, Yoon Y, Aiyar RS,
976 Medema MH, Hillenmeyer ME, Charkoudian LK. 2016. Comprehensive curation and
977 analysis of fungal biosynthetic gene clusters of published natural products. *Fungal Genet Biol*
978 89:18–28.

979 95. de Vienne DM. 2019. Tanglegrams Are Misleading for Visual Evaluation of Tree
980 Congruence. *Mol Biol Evol* 36:174–176.

981 96. Mohammadi A, Amini Y. Molecular Characterization and Identification of *Acrostalagmus*
982 *luteoalbus* from Saffron in Iran 3.

983 97. Zhang GZ, Tang CY. 2015. First Report of *Acrostalagmus luteo-albus* Causing Red Rust of
984 Needle Mushroom (*Flammulina velutipes*) in China. *Plant Dis* 99:158–158.

985 98. Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, dos Santos DR,
986 Azevedo JL. 2005. Diversity of endophytic fungal community of cacao (*Theobroma cacao*
987 L.) and biological control of *Crinipellis perniciosa*, causal agent of Witches' Broom Disease.
988 *Int J Biol Sci* 24–33.

989 99. Venice F, Davolos D, Spina F, Poli A, Prigione VP, Varese GC, Ghignone S. 2020. Genome
990 Sequence of *Trichoderma lixii* MUT3171, A Promising Strain for Mycoremediation of PAH-
991 Contaminated Sites. *Microorganisms* 8:1258.

992 100. Xu M, Gessner G, Groth I, Lange C, Christner A, Bruhn T, Deng Z, Li X, Heinemann SH,
993 Grabley S, Bringmann G, Sattler I, Lin W. 2007. Shearinines D–K, new indole triterpenoids
994 from an endophytic *Penicillium* sp. (strain HKI0459) with blocking activity on large-
995 conductance calcium-activated potassium channels. *Tetrahedron* 63:435–444.

996 101. Currie CR. 2001. A community of ants, fungi, and bacteria: a multilateral approach to
997 studying symbiosis. *Annu Rev Microbiol* 55:357–380.

998

999