

1

2

3 **Renal mechanotransduction is an essential regulator of renin**

4 Rose Z. Hill^{1*}, Sepenta Shirvan¹, Sebastian Burquez¹, Adrienne E. Dubin¹, M. Rocio Servin-
5 Vences¹, Jeffrey H. Miner², Ardem Patapoutian^{1*}

6

7 1. Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience
8 Center, The Scripps Research Institute, La Jolla, CA 92037, USA

9 2. Department of Medicine, Division of Nephrology, Washington University School of
10 Medicine; St. Louis, Missouri, USA.

11

12

13 *Correspondence should be addressed to A.P. (ardem@scripps.edu) or R.Z.H.
14 (rhill@scripps.edu)

15

16

Abstract

17 **The kidneys tightly control the composition of our internal environment to maintain**
18 **homeostasis in the face of external variability. The regulation of blood volume begins in**
19 **the kidneys and is essential for vertebrate life in terrestrial environments where salt and**
20 **water availability are unpredictable^{1,2}. Renin synthesis and release by juxtaglomerular**
21 **granular cells of the kidney is the rate-limiting step in a hormonal cascade that**
22 **modulates blood volume, filtration, and salt balance². Renin is stimulated during**
23 **hypovolemia and salt deprivation in response to chemical cues released from**
24 **sympathetic efferent neurons and the macula densa onto the juxtaglomerular granular**
25 **cells. Renin levels are also proposed to be modulated by mechanical forces elicited by**
26 **changes in blood volume and/or pressure exerted upon juxtaglomerular cells²⁻⁴.**
27 **However, the identity and significance of the juxtaglomerular mechanotransducer(s) was**
28 **unknown. We found that the force-gated ion channel PIEZO2 is expressed in**
29 **juxtaglomerular granular cells and in neighboring mesangial cells. Selective genetic**
30 **ablation of PIEZO2 dysregulated the renin-angiotensin-aldosterone system by elevating**
31 **renin, raising systemic blood pressure, inducing glomerular hyperfiltration, and**
32 **exaggerating the hormonal response to volume depletion. These findings demonstrate**
33 **that PIEZO2 contributes to renal blood volume sensing and kidney function *in vivo*.**

34

35

Main

36 The scientist and author Homer Smith wrote, "Our kidneys constitute the major foundation of our
37 physiological freedom"¹. Vertebrate animals control their blood volume through intersecting
38 feedback loops spanning the renal, nervous, and cardiovascular systems^{2,3,5}. These processes
39 govern blood pressure, cardiovascular function, electrolyte balance, thirst, and fluid excretion
40 through diverse mechanisms. Importantly, they permit organisms to adapt to physiologically

41 demanding environments. For example, it is known that neuronal baroreceptors innervating the
42 blood vessels detect mechanical forces exerted by pressure changes via mechanically gated
43 PIEZO ion channels. This baroreceptor rapidly alters cardiac output, heart rate, and vascular
44 resistance via engagement of the autonomic nervous system^{3,5,6}. A non-neuronal baroreceptor
45 in the kidney responds to volume depletion caused by salt scarcity, dehydration, or a substantial
46 blood loss through activation of the renin-angiotensin-aldosterone system (RAAS), a hormonal
47 cascade that increases vascular resistance and conserves electrolytes and water^{2,7}. Renin is
48 synthesized by and released from the juxtaglomerular granular (JG) cells, specialized vascular
49 smooth muscle cells that decorate the afferent arteriole feeding the glomerulus. Renin
50 production and release from JG cells are the rate-limiting steps of RAAS. Classical physiological
51 studies showed that renin production and/or release into the circulation can be stimulated from
52 JG cells by way of three main routes: 1) sympathetic efferent-derived norepinephrine released
53 onto JG cells in response to neuronal baroreceptor activation^{8,9}, 2) a reduction in tubular salt
54 concentration that triggers neighboring cells of the macula densa to secrete prostaglandins onto
55 the JG cells^{2,10–13}, and, 3) mechanotransduction within JG cells from loss of afferent arteriolar
56 stretch that stimulates renin release in an inversely calcium-dependent manner^{2,14,15}.

57 Of these several means to increase plasma renin levels, the least understood is
58 mechanosensing by the JG cells. A number of ion channels and pathways have been proposed
59 to serve this role in JG cells^{16–18}. However, the physiological role(s) of mechanically activated
60 ion channels in the renal baroreceptor have not been rigorously tested *in vivo*. It is thought that
61 stretching of the afferent arteriole mechanically stimulates the JG cells, driving calcium influx
62 and suppressing renin, whereas volume depletion relaxes the arteriole and prevents calcium
63 influx to stimulate renin¹⁵. Furthermore, while it has been hypothesized that the JG cells
64 themselves are the mechanosensors^{4,14}, they may be electrically coupled by gap junctions to
65 neighboring mesangial cells^{19–22}. As such, the cellular site of mechanotransduction cannot be

66 assumed. Additionally, the *in vivo* consequences of loss of JG mechanosensitivity are unknown,
67 particularly in light of parallel mechanisms to stimulate RAAS. In our study, we sought to
68 elucidate the molecular identity and physiological significance of mechanotransduction within
69 the JG apparatus (JGA).

70

71 **PIEZO2 is expressed in juxtaglomerular and mesangial cells of the kidney**

72 Given the link between intracellular calcium levels and renin, we hypothesized that mechanically
73 activated nonselective cation channels might underlie the intrinsically mechanosensitive
74 component of the renal baroreceptor. PIEZO1 and PIEZO2 comprise a family of ion channels
75 that are exclusively gated by membrane stretch, and are both necessary and sufficient for
76 cellular responses to a range of physiologically salient mechanical stimuli^{23–25}. PIEZO1 is
77 endogenously expressed in many tissue types including vascular endothelium and smooth
78 muscle, and is important for vascular development and function^{26,27}. PIEZO2 is mainly
79 expressed in peripheral sensory neurons and specialized accessory sensory cells and is
80 required for gentle touch sensation, proprioception, and gut and bladder function^{28–31}. Together,
81 PIEZO1 and PIEZO2 in vagal sensory neurons initiate the neuronal baroreflex through sensing
82 of blood pressure in the aortic arch⁵. To establish the expression patterns of PIEZOs in the
83 mouse kidney, we first examined the localization of mRNA transcripts of mechanosensory
84 PIEZO channels using single molecule fluorescence *in situ* hybridization (smFISH). We found
85 that *Piezo2* and not *Piezo1* was expressed in *Ren1*-expressing JG cells of the JGA and in
86 *Pdgfrb*-expressing mesangial cells of the glomerulus^{32,33} (Fig. 1a-c). Using a *Piezo2*^{GFP-Cre} fusion
87 knock-in mouse²⁹, we observed a pattern of fusion protein expression restricted to glomerular
88 cells (Fig. 1d) as well as robust glomerular and JG cell labeling when crossed with the *Ai9*^{fl/fl}
89 tdTomato reporter line³⁴ (Fig. 1e). By contrast, immunohistochemistry (IHC) of PIEZO1-
90 tdTomato C-terminal fusion protein from a *Piezo1*^{tdTomato} knock-in mouse line showed expression

91 largely restricted to basal aspects of a subset of tubular epithelial cells as previously reported³⁵
92 (Extended Data Fig. 1a). Our findings are in agreement with single-nucleus RNA-seq databases
93 of mouse and human kidney tissues that support the expression of *Piezo2* and not *Piezo1* in
94 mesangial and renin-expressing JG cells³⁶. To further validate those results, we performed
95 RNAscope for *PIEZO2* and *PDGFRB* on kidney sections from a healthy human donor. We
96 observed overlap of the two transcripts' expression patterns in kidney cortex (Extended Data
97 Fig. 1b).

98 In order to target *PIEZO2* for genetic ablation in the mouse kidney, we turned to an
99 inducible pericyte Cre recombinase mouse line, *Pdgfrb*^{CreERT2}, that selectively targets
100 specialized vascular smooth muscle cells that include mesangial and renin-expressing JG
101 cells³⁷ after tamoxifen administration to adult mice to induce recombination (Fig. 1f, Extended
102 Data Fig. 1c-d). Indeed, we found that after crossing this line with *Piezo2*^{fl/fl} mice, tamoxifen
103 ablated *Piezo2* expression in the kidney of *Pdgfrb*^{CreERT2} but not *Pdgfrb*^{WT} animals, confirmed
104 using an smFISH assay with probes against either the entire transcript (*Piezo2*) or the *loxp*-
105 flanked exons (*Piezo2* E43-E45, Fig. 1g-h). We observed additional patterns of Cre
106 recombination in *Ren*^{Cre} and *FoxD1*^{GFP-Cre} mouse lines after crossing with the *Ai9*^{fl/fl} tdTomato
107 reporter strain. In line with a published study, *Ren*^{Cre} targeted renin-expressing putative JG cells
108 of the JGA and renin-negative cells of the renin lineage along the glomerular arterioles of the
109 kidney³⁸, while largely sparing mesangial cells (Extended Data Fig. 1e-f). We observed that the
110 stromal progenitor Cre line *FoxD1*^{GFP-Cre} targeted a broad population encompassing mesangial
111 cells, renin-expressing cells, and fibroblasts, while sparing tubules and endothelial cells as
112 previously reported³⁹ (Extended Data Fig. 1g-h). While our initial testing of a conditional
113 *Ren*^{CreER} reporter line used previously for lineage tracing⁴⁰ showed selective targeting of adult
114 renin-expressing cells, we observed only partial recombination in these cells after tamoxifen
115 administration, rendering it unsuitable for genetic loss-of-function studies *in vivo* (Extended Data

116 Fig. 1i). It is worth noting that while none of our Cre lines ($Pdgfrb^{CreERT2}$, Ren^{Cre} , and $FoxD1^{GFP-Cre}$)
117 on their own are selective for renin-expressing JG cells, PIEZO2, unlike PIEZO1, is
118 expressed in only handful of cell types in the body and mainly found within the peripheral
119 nervous system^{5,28,41}. Although PIEZO2 expression has been sporadically observed in vascular
120 endothelial cells⁴² (its function in these cells is unknown), none of our Cre lines target this
121 particular cell type and we were unable detect *Piezo2* transcript expression in glomerular
122 capillary endothelial cells. As such, by using $Pdgfrb^{CreERT2}$, Ren^{Cre} , and $FoxD1^{GFP-Cre}$ in
123 combination we can infer the function of PIEZO2 in JG cells, which are uniquely targeted by all
124 three of the genetic strategies.

125

126 **Renal PIEZO2 is an essential regulator of plasma renin**

127 We next sought to investigate the consequences of loss of functional PIEZO2 to renin levels
128 and RAAS. Since the primary role of the JG cells is to synthesize and release renin, we
129 measured renin in plasma harvested from naïve mice. Initially, to avoid potential confounds due
130 to developmental phenotypes that could be present in Ren^{Cre} or $FoxD1^{GFP-Cre}$ conditional mutant
131 mice, and to target all PIEZO2-expressing renal cells (both mesangial and putative JG cells), we
132 examined the inducible $Piezo2^{fl/fl}$; $Pdgfrb^{CreERT2}$ conditional knockout mice. We observed a
133 significant increase in plasma renin levels in the $Piezo2^{fl/fl}$; $Pdgfrb^{CreERT2}$ mice compared to
134 $Piezo2^{fl/fl}$; $Pdgfrb^{WT}$ wild-type littermate controls that also received tamoxifen (Fig. 2a). This
135 effect was not exacerbated in $Piezo1^{fl/fl}$; $Piezo2^{fl/fl}$; $Pdgfrb^{CreERT2}$ mice lacking both ion channels
136 (Extended Data Fig. 2a), consistent with our earlier observation that PIEZO2 and not PIEZO1 is
137 expressed in mesangial and JG cells. The elevated renin levels were phenocopied in $Piezo2^{fl/fl}$;
138 $FoxD1^{GFP-Cre}$ animals, suggesting that loss of PIEZO2 in stromal cells was sufficient to
139 reproduce the phenotype and was not likely due to PIEZO2 in non-stromal populations including
140 tubular and endothelial cells (Extended Data Fig. 2b). Notably, we did not observe elevations in

141 downstream RAAS hormones aldosterone and angiotensin II (Fig. 2b-c) in *Piezo2*^{f/f};
142 *Pdgfrb*^{CreERT2} mice, suggesting that the elevated renin levels were insufficient to trigger induction
143 of downstream RAAS hormones under baseline conditions. While hyperreninemia is sometimes
144 associated with hypertension, this is typically attributed to a systemic elevation in angiotensin
145 II^{43,44}, which was not observed in plasma from the conditional knockout mice (Fig. 2c). We
146 measured the systemic blood pressure *Piezo2*^{f/f}; *Pdgfrb*^{WT} and *Pdgfrb*^{CreERT2} mice using the
147 radiotelemetry-validated volume pressure recording (VPR) method⁴⁵ and found a significant
148 elevation in *Pdgfrb*^{CreERT2} mice that was not indicative of hypertension (Fig. 2d, Extended Data
149 Figs. 3a-b, 4a-c). The effect was less than that reported in transgenic rodent models with
150 elevated RAAS signaling⁴⁴, and may reflect the lack of significantly elevated angiotensin II in the
151 naïve PIEZO2 conditional knockout mice. However, it is possible that the elevated baseline
152 renin observed in the conditional knockout mice contributes to sporadic or mild elevations in
153 angiotensin II not captured by our enzyme-based measurement methods, but which are still
154 capable of triggering mildly elevated blood pressure.

155 To determine whether mesangial and/or renin-lineage cells contribute to the elevated
156 renin in PIEZO2 conditional mutants, we measured plasma renin and blood pressure in
157 *Piezo2*^{f/f}; *Ren*^{Cre} conditional knockouts and littermate controls. Our findings in this strain
158 phenocopied those observed with *Pdgfrb*^{CreERT2}-mediated deletion of PIEZO2 (Figs. 2e-f,
159 Extended Data Figs. 5a-b, 6a-c). As *Ren*^{Cre} targets JG cells and other cells of renin lineage
160 within the kidney but spares the majority of mesangial cells^{38,40}, we conclude from these
161 experiments that the phenotype is primarily driven by PIEZO2 in renin+ JG cells rather than in
162 mesangial cells, which are known to play key roles in the pathogenesis of glomerular disease
163 and are relatively unstudied in the context of RAAS⁴⁶, though we cannot completely rule out
164 their involvement.

165

166 **Renin regulates the GFR via Ang(1-7)/Mas in a PIEZO2-dependent manner**

167 Another important function of renin is modulating the glomerular filtration rate (GFR) in
168 response to changes in renal blood flow and macula densa signaling^{4,47,48}. We observed that
169 *Piezo2*^{f/f}; *Pdgfrb*^{CreERT2} mice exhibited glomerular hyperfiltration in an assay in which FITC-
170 sinistrin (a freely filterable molecule that is neither reabsorbed into the blood nor secreted
171 through the peritubular capillaries) fluorescence signal decay is observed by continuous
172 transdermal measurement⁴⁹ (Fig. 3a-b), consistent with a dysregulation of renin. The GFR
173 values of the conditional knockout mice were similar to those observed in genetic models of
174 hyperfiltration⁵⁰. Whereas kidney disease is typically associated with a low GFR, early in its
175 pathogenesis certain diseases such as diabetes trigger glomerular hyperfiltration^{51,52}. As such,
176 we also explored the possibility that the *Piezo2*^{f/f}; *Pdgfrb*^{CreERT2} mice had renal disease by re-
177 measuring GFR in the same adult mice eight months after the initial experiments. We found that
178 the GFR of the *Piezo2*^{f/f}; *Pdgfrb*^{CreERT2} mice declined as expected with age^{53–55}, comparable to
179 the decline observed in wild-type littermates (Extended Data Fig. 7a). The conditional knockout
180 mice maintained elevated GFR compared to controls, suggesting that the observed phenotype
181 could be due to elevated renin rather than kidney disease (Extended Data Fig. 7a-b).
182 Additionally, the conditional knockout mice did not exhibit elevated urinary albumin, a hallmark
183 of kidney glomerular disease (Extended Data Fig. 7c). We also observed that the elevated GFR
184 was phenocopied in *Piezo2*^{f/f}; *Ren*^{Cre} conditional knockouts, suggesting the phenotype was
185 mediated by renin-expressing cells rather than glomerular mesangial cells (Fig. 3c). Importantly,
186 loss of PIEZO1 and PIEZO2 in peripheral neuronal baroreceptors using *Piezo1*^{f/f}; *Piezo2*^{f/f};
187 *SNS*^{Cre}⁵⁶ did not induce a GFR phenotype (Extended Data Fig. 7d), suggesting that these
188 findings are independent of any indirect effects of neural baroreception on kidney function^{3,5,57},
189 for example, due to modulation of sympathetic norepinephrine release onto the JGA.
190 Examination of PAS- and H&E-stained sections showed that neither *Piezo2*^{f/f}; *Pdgfrb*^{CreERT2} nor

191 *Piezo2*^{fl/fl}; *Ren*^{Cre} kidneys exhibited consistent histological abnormalities compared to controls
192 that were indicative of glomerular disease or dysfunction (Extended Data Fig. 7e-h), further
193 supporting the idea that the elevated GFR was not due to overt glomerular disease.

194 We postulated that the elevated GFR, as it did not arise from overt kidney disease nor
195 from loss of PIEZO2 in mesangial cells, could be caused by aberrant signaling downstream of
196 renin. Elevated renin is a consequence of administration of captopril, an angiotensin converting
197 enzyme (ACE) inhibitor commonly prescribed to treat hypertension that disrupts feedback
198 inhibition of angiotensin II on renin production⁵⁸. The effects of this drug on GFR are unclear^{59–}
199⁶². We reasoned that if captopril causes elevated plasma renin, then we would expect captopril
200 to enhance the GFR of wild-type mice to a level comparable to that of the conditional knockouts
201 (Fig. 2a). Indeed, we observed that six days of captopril administration (Fig. 3d) elevated the
202 GFR of wild-type mice such that it was not significantly different from the *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2}
203 littermates also receiving captopril (Fig. 3e). Consistent with captopril's known effects, we
204 observed elevated plasma renin (Fig. 3f) and decreased aldosterone (Extended Data Fig. 8a) in
205 mice of both genotypes on day seven⁵⁸. It was of note that the renin levels observed in treated
206 *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} animals were higher than those observed earlier in untreated animals
207 (Fig. 2a), however, their GFR values were within a similar range (Figs. 3b,e). Taken together,
208 our results suggest that elevation of plasma renin in the absence of elevated angiotensin II is
209 sufficient to elevate the GFR. Our observation that the higher renin levels elicited by captopril in
210 treated animals did not raise the GFR beyond that of untreated conditional mutant mice
211 additionally suggests that there is a limit to renin's ability to increase the GFR.

212 How does elevated renin increase the GFR? The relationship between RAAS activation
213 and GFR is complex. For example, angiotensin II produced by RAAS activation can have
214 opposing effects on GFR through differential effects on glomerular arteriole constriction and
215 mesangial cell contractility^{61–64}. As our conditional knockout mice had normal angiotensin II

216 levels, we did not suspect this molecule was playing a role in elevating the GFR of these
217 animals. Notably, the related peptide Ang(1-7) is produced downstream of renin's cleavage of
218 angiotensinogen to angiotensin I and its subsequent conversion to Ang(1-7) by specialized
219 proteases^{65,66} (Fig. 3g). Ang(1-7) acts via the G-protein coupled receptor (GPCR) Mas within in
220 the glomerular vasculature to increase the GFR^{67,68}. Intriguingly, this regulation by the Ang(1-
221 7)/Mas axis is reported to occur under salt-depleted conditions⁶⁸, as elevated renin drives
222 Ang(1-7) production, and can occur after treatment with ACE inhibitors such as captopril that
223 similarly drive elevated Ang(1-7) through loss of angiotensin I conversion to angiotensin II⁶⁶ (Fig.
224 3g). We examined whether the elevated GFR could be a direct consequence of elevated renin
225 and subsequent Ang(1-7)/Mas signaling in the *Piezo2*^{f/f}; *Pdgfrb*^{CreERT2} mice. We first tested
226 whether Mas signaling via Ang(1-7) contributed to elevated GFR in the cKO mice. We
227 measured the GFR before and after selectively blocking Mas signaling via daily administration
228 of the pharmacological antagonist A779⁶⁷⁻⁷⁰ (Fig. 3h). Strikingly, Mas blockade fully rescued
229 normal GFR in conditional knockout mice and had no effect on the GFR of littermate controls
230 (Fig. 3i), demonstrating that Mas signaling underlies the elevation in GFR caused by loss of
231 PIEZO2. Our findings with the captopril and A779 experiments establish a molecular pathway
232 by which PIEZO2-dependent renin regulation is required for maintenance of a GFR within the
233 normal range via Ang(1-7)/Mas signaling.

234

235 **PIEZO2 acts as a brake on the hormonal response to hypovolemia**

236 A primary function of renin is to activate RAAS to conserve bodily salt and water during
237 hypovolemia when blood volume is depleted. To test whether renal PIEZO2-dependent
238 mechanotransduction plays a role in hypovolemia-evoked RAAS, we subjected *Piezo2*^{f/f};
239 *Pdgfrb*^{CreERT2} and littermate controls to the polyethylene glycol (PEG)-evoked hypovolemia
240 model⁷¹ (Fig. 4a), where PEG draws bodily fluid into the subcutaneous space to cause a volume

241 depletion from the blood into a secondary compartment without directly affecting salt balance,
242 as with administration of the loop diuretic furosemide⁸. We found that the PEG-injected
243 *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} mice exhibited an exaggerated hormonal response to hypovolemia, with
244 elevated renin, angiotensin II, and aldosterone compared to littermate controls (Figs. 4b-d). The
245 renin levels we measured were greater than that seen under normovolemic conditions (Fig. 2),
246 and might explain the stronger induction of angiotensin II and aldosterone in conditional
247 knockouts that were not seen in normovolemic *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} mice. Enhanced
248 hypovolemia-evoked renin and aldosterone levels were phenocopied with the *Piezo2*^{fl/fl}; *Ren*^{Cre}
249 and *FoxD1*^{Cre} strains affecting the renin lineage and stromal progenitors (Figs. 4e-h), suggesting
250 that loss of functional PIEZO2 in the renin-lineage alone was sufficient to drive the effect.
251 Similar to our findings under naïve conditions, loss of both PIEZOs using *Piezo1*^{fl/fl}; *Piezo2*^{fl/fl};
252 *Pdgfrb*^{CreERT2} had no further effect beyond loss of PIEZO2 alone (Extended Data Fig. 9a). No
253 difference was observed between conditional knockout and controls with dual loss of PIEZO1
254 and PIEZO2 in peripheral neuronal baroreceptors (Extended Data Fig. 9b). We conclude from
255 these experiments that PIEZO2 in renin-expressing cells blunts the RAAS response to
256 hypovolemia.

257

258 **PIEZO2 contributes to RAAS independently of sympathetic and macula densa
259 function**

260 We next sought to determine how the contribution of PIEZO2 to RAAS is weighted against that
261 of the other pathways regulating renin synthesis and release from JG cells, namely efferent
262 sympathetic and macula densa signaling. To address this question, we designed an experiment
263 in which we ablated or blocked these two respective arms through simultaneous chemical
264 sympathectomy using the drug 6-hydroxydopamine^{72,73} (6-OHDA) and acute blockade of
265 synthesis of prostaglandins, the primary macula densa-derived chemical signal stimulating

266 renin, using the cyclooxygenase-1 and -2 inhibitor indomethacin^{12,13}. After chemical
267 sympathectomy and indomethacin injection, *Piezo2*^{f/f}; *Ren*^{Cre} mice and littermate controls were
268 subjected to PEG-evoked hypovolemia or saline control treatment and blood plasma was
269 isolated for measurement of renin (Fig. 5a). We found that plasma renin levels were strongly
270 suppressed, in some cases to below the assay's limit of detection, with blockade of both
271 sympathetic and macula densa prostaglandin signaling in wild-type mice treated with saline
272 (Fig. 5a), suggestive of a successful inhibition of renin-stimulating pathways. We also observed
273 a substantial loss of TH+ sympathetic nerve fibers in the kidney, indicating the 6-OHDA
274 treatment was efficacious (Extended Data Fig. 10a,b). Plasma renin was still elevated in
275 response to PEG hypovolemia despite loss of these two important pathways, suggesting that a
276 third (i.e. PIEZO2-dependent) pathway regulates renin levels after pharmacological blockade
277 (Fig. 5b). Values observed in our wild-type littermate controls were lower than we had observed
278 in our other hypovolemia experiments, indicating that the pharmacological manipulations did
279 lower plasma renin levels (compare Fig. 5b to Fig. 4e). In *Piezo2*^{f/f}; *Ren*^{Cre} conditional knockout
280 mice injected with saline, renin levels were largely unaffected by the blockade and similar to
281 mice with intact sympathetic and macula densa signaling (compare to Fig. 2e). In PEG-injected
282 conditional knockout mice, renin levels were substantially elevated beyond that of littermate
283 controls and similar to hypovolemic *Piezo2*^{f/f}; *Ren*^{Cre} mice with intact sympathetic and macula
284 densa signaling, suggesting that loss of mechanotransduction in renin-expressing cells
285 dysregulates RAAS independently of the sympathetic and macular densa prostaglandin
286 pathways (Fig. 5b). Although we cannot completely rule out remnant function of the macula
287 densa after indomethacin treatment, the stark differences observed between the control and
288 conditional knockout mice support our conclusions regardless of this possibility. Aldosterone
289 levels were similarly exacerbated by hypovolemia in the knockouts, demonstrating that the
290 changes in plasma renin translated into downstream RAAS signaling (Fig. 5c).

291

292

Discussion

293 This work demonstrates that PIEZO2 in renin-expressing JG cells of the kidney regulates RAAS
294 in response to changes in blood volume *in vivo* (Fig. 5d). Isolating the intrinsically
295 mechanosensitive component of the renal baroreceptor is complicated due to the numerous
296 intersecting feedback loops that encompass several organ systems, as well as the intrarenal
297 chemical signaling pathways that modulate the activity of JG cells⁶⁴. Our findings show that
298 selectively perturbing the mechanosensory capability of renin-expressing cells through
299 conditional deletion of *Piezo2* is sufficient to increase plasma renin in healthy mice. We
300 demonstrate that elevated renin has downstream consequences for glomerular filtration rate,
301 systemic blood pressure, and the hormonal response to hypovolemia. It can be challenging to
302 reconcile the microscale changes in renal hemodynamics downstream of renin and TG
303 feedback that were observed using micropuncture techniques in the rat^{61,74,75} with the whole-
304 organism effects on RAAS we observed with selective gene perturbation in the mouse. Our
305 findings suggest that altered JGA mechanotransduction has specific and profound outcomes for
306 renal physiology *in vivo* and align with previous studies^{61,74,75}. For example, we identified Ang(1-
307 7)/Mas signaling as a major effector of PIEZO2 and renin's effects on the GFR in the absence of
308 elevated angiotensin II. Our data additionally support the conclusion that that PIEZO2 in renin-
309 expressing cells acts independently of the parallel mechanisms (*i.e.* macula densa
310 prostaglandin signaling and/or sympathetic activity) controlling renin levels during hypovolemia.
311 Taken together, our study establishes a cellular and molecular mechanism for the response of
312 the JGA to hypovolemia, underscores the therapeutic potential for targeting JG cell
313 mechanotransduction pathways to modulate renal RAAS, and highlights the role of PIEZO
314 proteins as general effectors of baroreception throughout the body.
315

316

317

References

318 1. Smith, H. W. *From Fish to Philosopher*. (Doubleday Anchor, 1953).

319 2. Kurtz, A. Control of renin synthesis and secretion. *Am. J. Hypertens.* **25**, 839–847 (2012).

320 3. Iliescu, R., Tudorancea, I. & Lohmeier, T. E. Baroreflex activation: From mechanisms to
321 therapy for cardiovascular disease. *Curr. Hypertens. Rep.* **16**, (2014).

322 4. Briggs, J. P. & Schnermann, J. B. Whys and wherefores of juxtaglomerular apparatus
323 function. *Kidney Int.* **49**, 1724–1726 (1996).

324 5. Zeng, W.-Z. *et al.* PIEZOs mediate neuronal sensing of blood pressure and the
325 baroreceptor reflex. *Science* **362**, 464–467 (2018).

326 6. Min, S. *et al.* Arterial Baroreceptors Sense Blood Pressure through Decorated Aortic
327 Claws. *Cell Rep.* **29**, 2192-2201.e3 (2019).

328 7. Blaine, B. E. H., Ph, D., Davis, J. & Ph, D. Evidence for a Renal Vascular Mechanism in
329 Renin Release : New Observations with Graded Stimulation by Aortic Constriction. *Circ.*
330 *Res.* 118–126 (1971).

331 8. Kim, S. M. *et al.* Regulation of renin secretion and expression in mice deficient in β 1- and
332 β 2-adrenergic receptors. *Hypertension* **50**, 103–109 (2007).

333 9. Holmer, S. *et al.* Role of renal nerves for the expression of renin in adult rat kidney. *Am.*
334 *J. Physiol. - Ren. Fluid Electrolyte Physiol.* **266**, (1994).

335 10. Soo, M. K., Mizel, D., Huang, Y. G., Briggs, J. P. & Schnermann, J. Adenosine as a
336 mediator of macula densa-dependent inhibition of renin secretion. *Am. J. Physiol. - Ren.*
337 *Physiol.* **290**, 1016–1023 (2006).

338 11. Schnermann, J. & Briggs, J. P. Synthesis and secretion of renin in mice with induced
339 genetic mutations. *Kidney Int.* **81**, 529–538 (2012).

340 12. Itoh, S. & Carretero, O. A. Role of the macula densa in renin release. *Hypertension* **7**,
341 49–54 (1985).

342 13. Schricker, K., Hamann, M. & Kurtz, A. Nitric oxide and prostaglandins are involved in the
343 macula densa control of the renin system. *Am. J. Physiol. - Ren. Fluid Electrolyte Physiol.*
344 **269**, (1995).

345 14. Yao, J. *et al.* ATP-dependent mechanism for coordination of intercellular Ca²⁺ signaling
346 and renin secretion in rat juxtaglomerular cells. *Circ. Res.* **93**, 338–345 (2003).

347 15. Beierwaltes, W. H. The role of calcium in the regulation of renin secretion. *Am. J. Physiol.*
348 - *Ren. Physiol.* **298**, 1–11 (2010).

349 16. Seghers, F. *et al.* TRPV4 participates in pressure-induced inhibition of renin secretion by
350 juxtaglomerular cells. *J. Physiol.* **594**, 7327–7340 (2016).

351 17. Yang, X., Zeng, H., Wang, L., Luo, S. & Zhou, Y. Activation of Piezo1 downregulates
352 renin in juxtaglomerular cells and contributes to blood pressure homeostasis. *Cell Biosci.*
353 1–17 (2022). doi:10.1186/s13578-022-00931-2

354 18. Watanabe, H. *et al.* Renin Cell Baroreceptor, a Nuclear Mechanotransducer Central for
355 Homeostasis. *Circ. Res.* 262–276 (2021). doi:10.1161/CIRCRESAHA.120.318711

356 19. Steppan, D. *et al.* Lack of connexin 40 decreases the calcium sensitivity of renin-
357 secreting juxtaglomerular cells. *Pflugers Arch. Eur. J. Physiol.* **470**, 969–978 (2018).

358 20. Gerl, M. *et al.* Inducible deletion of connexin 40 in adult mice causes hypertension and
359 disrupts pressure control of renin secretion. *Kidney Int.* **87**, 557–563 (2015).

360 21. Gomez, R. A. & Sequeira Lopez, M. L. S. Who and where is the renal baroreceptor?: The
361 connexin hypothesis. *Kidney Int.* **75**, 460–462 (2009).

362 22. Kurtz, L. *et al.* Lack of connexin 40 causes displacement of renin-producing cells from
363 afferent arterioles to the extraglomerular mesangium. *J. Am. Soc. Nephrol.* **18**, 1103–
364 1111 (2007).

365 23. Coste, B. *et al.* Piezo proteins are pore-forming subunits of mechanically activated
366 channels. *Nature* **483**, 176–181 (2012).

367 24. Szcztot, M., Nickolls, A. R., Lam, R. M. & Chesler, A. T. The Form and Function of
Hill et al.

368 PIEZO2. *Annu. Rev. Biochem.* **90**, 507–534 (2021).

369 25. Volkers, L., Mechtioukhi, Y. & Coste, B. Piezo channels: from structure to function.

370 *Pflugers Arch.* **467**, 95–99 (2015).

371 26. Li, J. *et al.* Piezo1 integration of vascular architecture with physiological force. *Nature*

372 **515**, 279–282 (2014).

373 27. Nonomura, K. *et al.* Mechanically activated ion channel PIEZO1 is required for lymphatic

374 valve formation. *Proc. Natl. Acad. Sci.* 201817070 (2018). doi:10.1073/pnas.1817070115

375 28. Ranade, S. S. *et al.* Piezo2 is the major transducer of mechanical forces for touch

376 sensation in mice. *Nature* **516**, 121–125 (2014).

377 29. Woo, S. H. *et al.* Piezo2 is the principal mechanotransduction channel for proprioception.

378 *Nat. Neurosci.* **18**, 1756–1762 (2015).

379 30. Marshall, K. L. *et al.* PIEZO2 in sensory neurons and urothelial cells coordinates

380 urination. *Nature* **588**, 290–295 (2020).

381 31. Rocio Servin-Vences, M. *et al.* PIEZO2 in somatosensory neurons controls

382 gastrointestinal transit. *bioRxiv* 2022.11.27.518109 (2022). doi:10.1101/j.cell.2023.07.006

383 32. Ochiai, K. *et al.* Upregulation of Piezo2 in the mesangial, renin, and perivascular

384 mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal

385 by esaxerenone. *Hypertens. Res.* (2023). doi:10.1038/s41440-023-01219-9

386 33. Mochida, Y. *et al.* Piezo2 expression and its alteration by mechanical forces in mouse

387 mesangial cells and renin-producing cells. *Sci. Rep.* **12**, 1–14 (2022).

388 34. Madisen, L. *et al.* A robust and high-throughput Cre reporting and characterization

389 system for the whole mouse brain. *Nat. Neurosci.* **13**, 133–140 (2010).

390 35. Dalghi, M. G. *et al.* Expression and distribution of PIEZO1 in the mouse urinary tract. *Am.*

391 *J. Physiol. - Ren. Physiol.* **317**, F303–F321 (2019).

392 36. Wu, H. *et al.* Comparative Analysis and Refinement of Human PSC-Derived Kidney

393 Organoid Differentiation with Single-Cell Transcriptomics. *Cell Stem Cell* **23**, 869–881.e8

394 (2018).

395 37. Cuervo, H. *et al.* PDGFR β -P2A-CreERT2 mice: a genetic tool to target pericytes in
396 angiogenesis. *Angiogenesis* **20**, 655–662 (2017).

397 38. Eng, D. G. *et al.* Detection of renin lineage cell transdifferentiation to podocytes in the
398 kidney glomerulus with dual lineage tracing. *Kidney Int.* **93**, 1240–1246 (2018).

399 39. Humphreys, B. D. *et al.* Fate tracing reveals the pericyte and not epithelial origin of
400 myofibroblasts in kidney fibrosis. *Am. J. Pathol.* **176**, 85–97 (2010).

401 40. Pippin, J. W. *et al.* Cells of renin lineage are progenitors of podocytes and parietal
402 epithelial cells in experimental glomerular disease. *Am. J. Pathol.* **183**, 542–557 (2013).

403 41. Coste, B. *et al.* Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically
404 Activated Cation Channels. *Science* **330**, 55–60 (2010).

405 42. Shah, V., Patel, S. & Shah, J. Emerging role of Piezo ion channels in cardiovascular
406 development. *Dev. Dyn.* **251**, 276–286 (2022).

407 43. Krattinger, N. *et al.* Connexin40 regulates renin production and blood pressure. *Kidney*
408 *Int.* **72**, 814–822 (2007).

409 44. Ohkubo, H. *et al.* Generation of transgenic mice with elevated blood pressure by
410 introduction of the rat renin and angiotensinogen genes. *Proc. Natl. Acad. Sci. U. S. A.*
411 **87**, 5153–5157 (1990).

412 45. Daugherty, A., Rateri, D., Hong, L. & Balakrishnan, A. Measuring blood pressure in mice
413 using volume pressure recording, a tail-cuff method. *J. Vis. Exp.* 2–4 (2009).

414 doi:10.3791/1291

415 46. Schlöndorff, D. & Banas, B. The mesangial cell revisited: No cell is an island. *J. Am. Soc.*
416 *Nephrol.* **20**, 1179–1187 (2009).

417 47. Oppermann, M. *et al.* Direct assessment of tubuloglomerular feedback responsiveness in
418 connexin 40-deficient mice. *Am. J. Physiol. - Ren. Physiol.* **304**, 1181–1186 (2013).

419 48. Selen, G. & Persson, A. E. G. Hydrostatic and oncotic pressures in the interstitium of

420 dehydrated and volume expanded rats. *Acta Physiol. Scand.* **117**, 75–81 (1983).

421 49. Scarfe, L. *et al.* Transdermal measurement of glomerular filtration rate in mice. *J. Vis. Exp.* **2018**, 1–9 (2018).

422 50. Li, W. *et al.* Increased glomerular filtration rate and impaired contractile function of mesangial cells in TRPC6 knockout mice. *Sci. Rep.* **7**, 1–12 (2017).

423 51. Fioretto, P., Zambon, A., Rossato, M., Busetto, L. & Vettor, R. SGLT2 inhibitors and the diabetic kidney. *Diabetes Care* **39**, S165–S171 (2016).

424 52. Helal, I., Fick-Brosnahan, G. M., Reed-Gitomer, B. & Schrier, R. W. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. *Nat. Rev. Nephrol.* **8**, 293–300 (2012).

425 53. Schock-Kusch, D. *et al.* Transcutaneous measurement of glomerular filtration rate using FITC-sinistrin in rats. *Nephrol. Dial. Transplant.* **24**, 2997–3001 (2009).

426 54. Schock-Kusch, D. *et al.* Reliability of transcutaneous measurement of renal function in various strains of conscious mice. *PLoS One* **8**, 4–8 (2013).

427 55. Schreiber, A. *et al.* Transcutaneous measurement of renal function in conscious mice. *Am. J. Physiol. - Ren. Physiol.* **303**, 783–788 (2012).

428 56. Agarwal, N., Offermanns, S. & Kuner, R. Conditional gene deletion in primary nociceptive neurons of trigeminal ganglia and dorsal root ganglia. *Genesis* **38**, 122–129 (2004).

429 57. Blair, M. L., Woolf, P. D., Felten, S. Y., Woolf, P. D. & Felten, S. Y. Sympathetic activation cannot fully account for increased plasma renin levels during water deprivation. (2020).

430 58. Zachariah, P., Ritter, S., Fiksen-Olsen, M., Strong, C. & Romero, J. C. Stimulation of plasma renin activity by captopril in renovascular hypertensive conscious dogs. *Clin. Exp. Hypertens.* **A11**, 205–213 (1989).

431 59. Schnermann, J., Briggs, J. P., Schubert, G. & Marin-Grez, M. Opposing effects of captopril and aprotinin on tubuloglomerular feedback responses. *Am. J. Physiol. - Ren. Fluid Electrolyte Physiol.* **16**, 912–918 (1984).

446 60. He, J. & Marsh, D. J. Effect of captopril on fluctuations of blood pressure and renal blood
447 flow in rats. *Am. J. Physiol. - Ren. Fluid Electrolyte Physiol.* **264**, 37–44 (1993).

448 61. Goransson, A., Sjoquist, M. & Ulfendahl, H. R. Superficial and juxtamedullary nephron
449 function during converting enzyme inhibition. *Am. J. Physiol. - Ren. Fluid Electrolyte*
450 *Physiol.* **251**, (1986).

451 62. Hannedouche, T. P. *et al.* Renal hemodynamics and segmental tubular reabsorption in
452 early type 1 diabetes. *Kidney Int.* **37**, 1126–1133 (1990).

453 63. Sparks, M. A., Crowley, S. D., Gurley, S. B., Mirotsou, M. & Coffman, T. M. Classical
454 renin-angiotensin system in kidney physiology. *Compr. Physiol.* **4**, 1201–1228 (2014).

455 64. Castrop, H. *et al.* Physiology of kidney renin. *Physiol. Rev.* **90**, 607–673 (2010).

456 65. Santos, R. A. Angiotensin-(1-7). *Hypertension* **63**, 1138–1147 (2014).

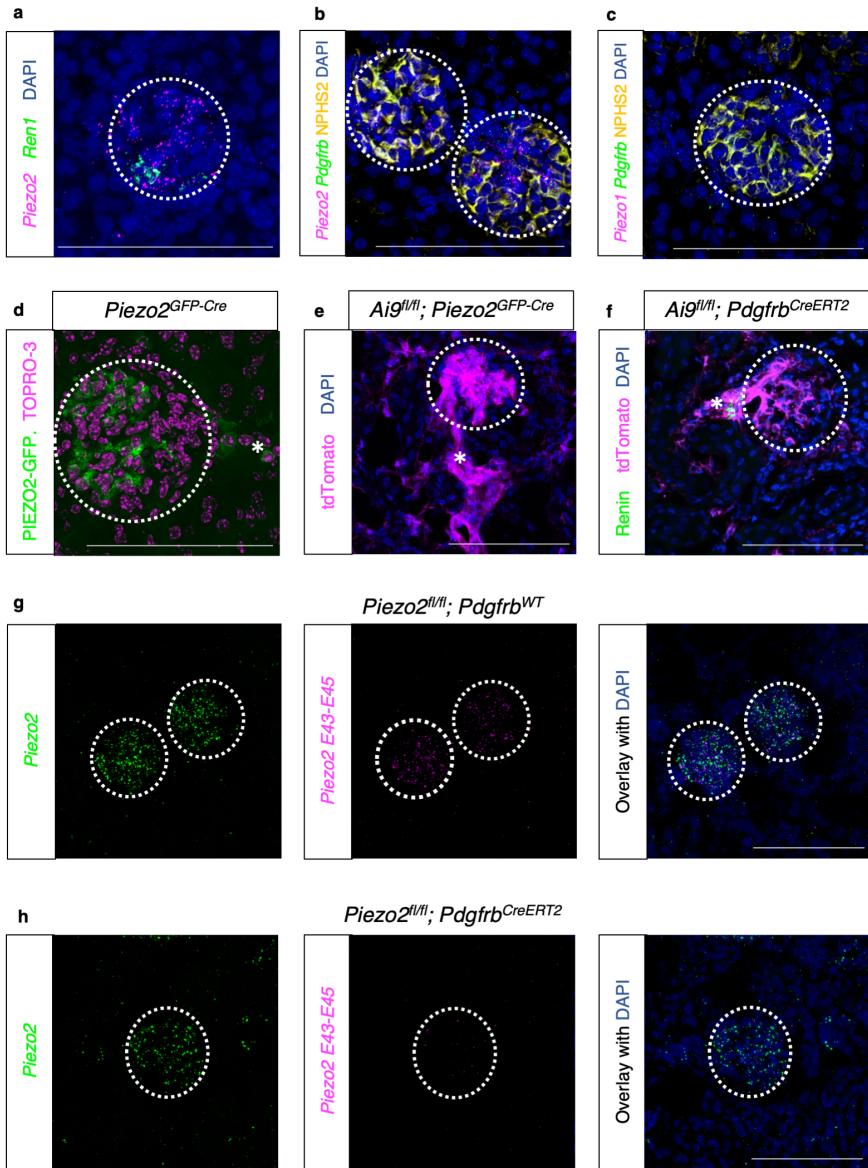
457 66. Ferrario, C. M. & Iyer, S. N. Angiotensin-(1-7): A bioactive fragment of the renin-
458 angiotensin system. *Regul. Pept.* **78**, 13–18 (1998).

459 67. Zaman, A. & Banday, A. A. Angiotensin (1-7) protects against renal ischemia-reperfusion
460 injury via regulating expression of NRF2 and microRNAs in Fisher 344 rats. *Am. J.*
461 *Physiol. - Ren. Physiol.* **323**, F33–F47 (2022).

462 68. Bürgelová, M., Kramer, H. J., Teplan, V., Thumová, M. & Červenka, L. Effects of
463 angiotensin-(1-7) blockade on renal function in rats with enhanced intrarenal Ang II
464 activity. *Kidney Int.* **67**, 1453–1461 (2005).

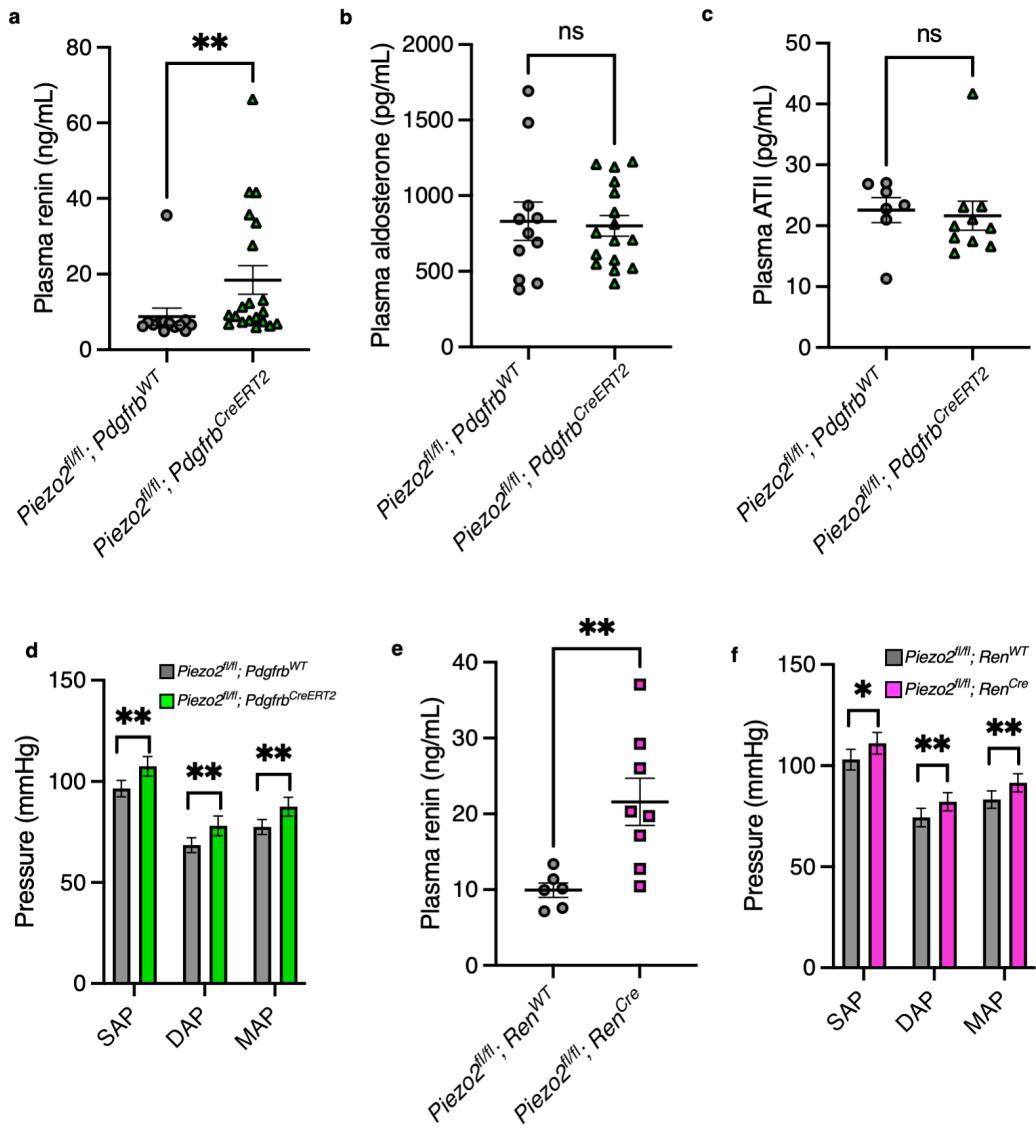
465 69. Bruce, E. *et al.* Selective activation of angiotensin AT2 receptors attenuates progression
466 of pulmonary hypertension and inhibits cardiopulmonary fibrosis. *Br. J. Pharmacol.* **172**,
467 2219–2231 (2015).

468 70. Mansoori, A., Oryan, S. & Nematbakhsh, M. Role of mas receptor antagonist (A779) on
469 pressure diuresis and natriuresis and renal blood flow in the absence of angiotensin II
470 receptors type 1 and 2 in female and male rats. *J. Physiol. Pharmacol.* **65**, 633–639
471 (2014).

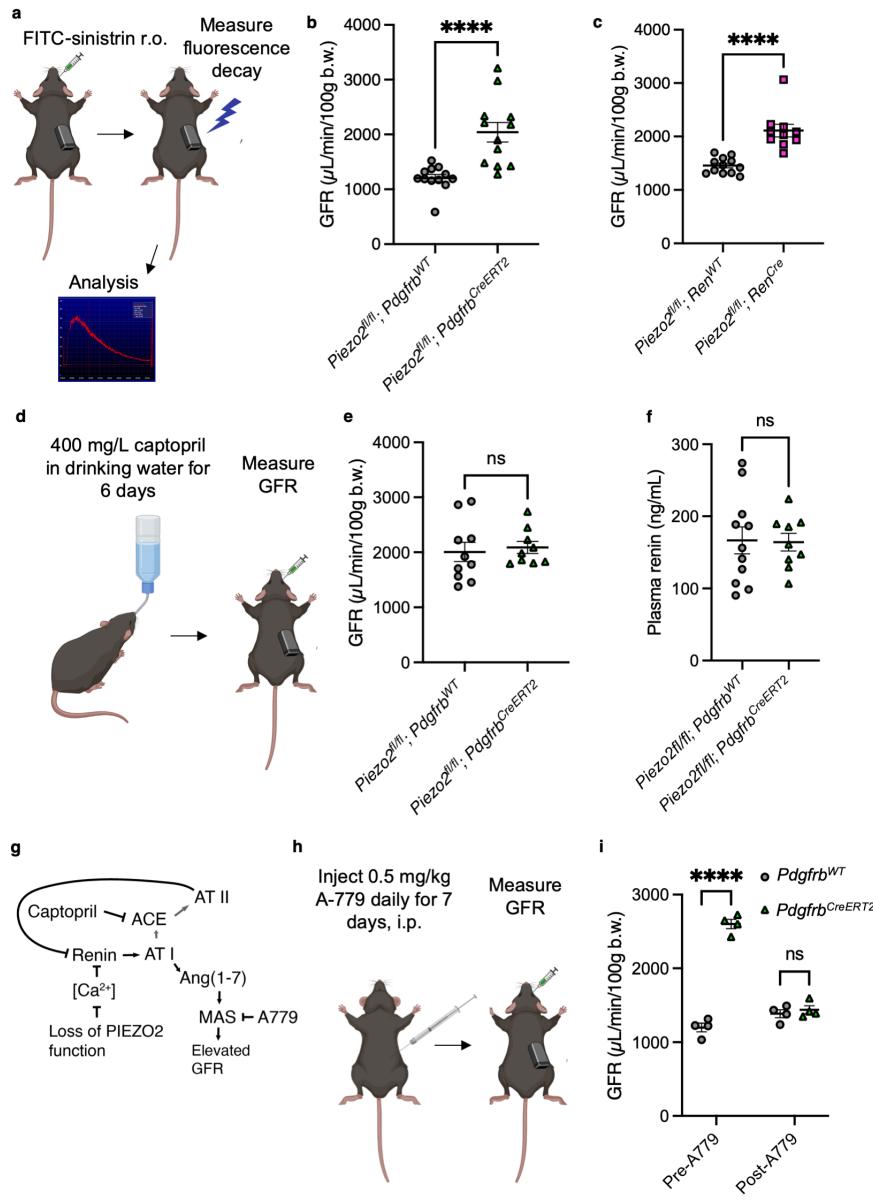

472 71. Crews, E. C. & Rowland, N. E. Role of angiotensin in body fluid homeostasis of mice:
473 Effect of losartan on water and NaCl intakes. *Am. J. Physiol. - Regul. Integr. Comp.*
474 *Physiol.* **288**, 638–644 (2005).

475 72. Bennett, B. T. & Gardiner, S. M. REVERSAL OF 6-HYDROXYDOPAMINE-INDUCED
476 HYPOTENSION IN THE RAT WITHOUT ACTIVATION OF THE RENIN-ANGIOTENSIN
477 SYSTEM. *J. physiol.* **279**, 1–16 (1978).

478 73. FINCH, L., HAEUSLER, G. & THOENEN, H. A comparison of the effects of chemical
479 sympathectomy by 6-hydroxydopamine in newborn and adult rats. *Br. J. Pharmacol.* **47**,
480 249–260 (1973).

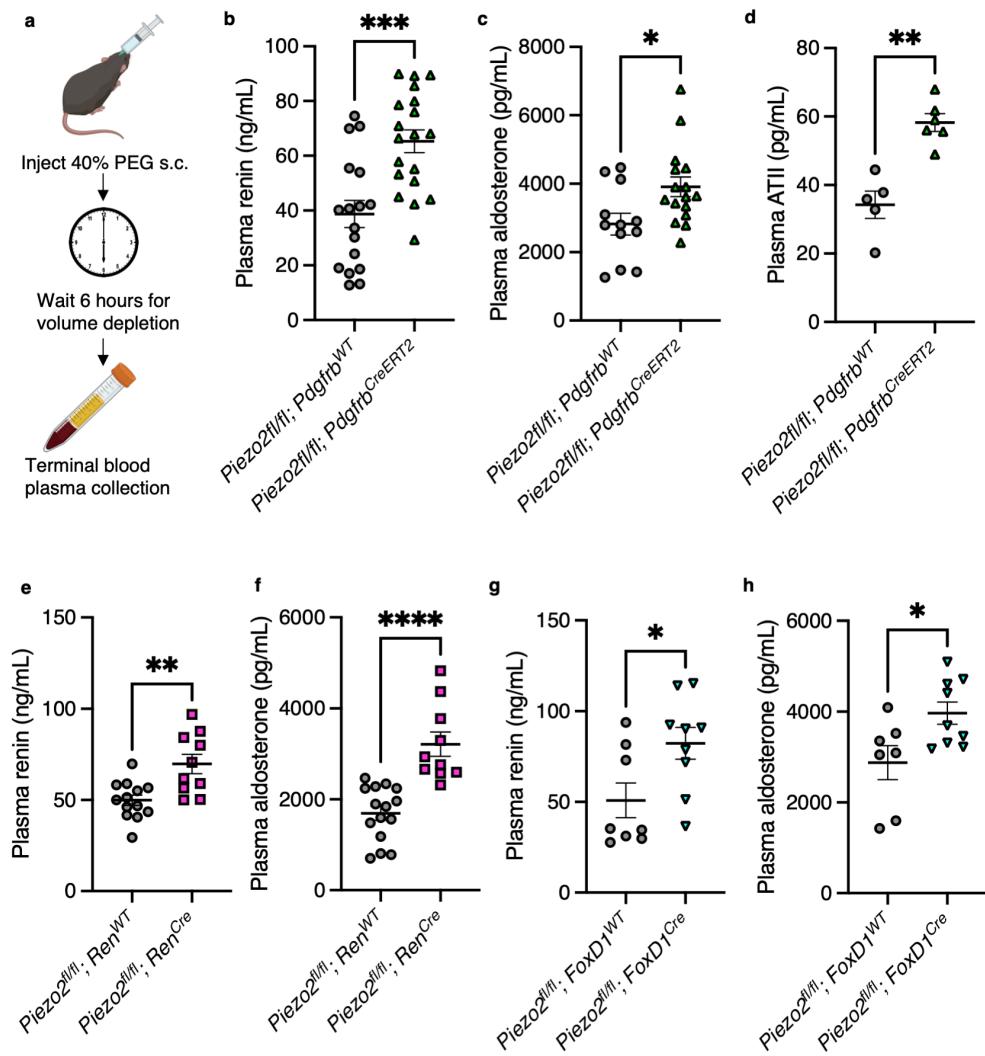

481 74. Vallon, V. Micropuncturing the nephron. *Pflugers Arch. Eur. J. Physiol.* **458**, 189–201
482 (2009).

483 75. Vallon, V. Tubuloglomerular feedback and the control of glomerular filtration rate. *News*
484 *Physiol. Sci.* **18**, 169–174 (2003).



485

486 **Figure 1. PIEZO2 is expressed in JG and mesangial cells of the kidney.** a, smFISH of
487 sectioned mouse kidney for *Piezo2*, *Ren1*, and counterstained with DAPI. b, smFISH with IHC
488 of sectioned mouse kidney for *Piezo2*, *Pdgfrb*, anti-*NPHS2*, and counterstained with DAPI. c,
489 smFISH with IHC of sectioned mouse kidney for *Piezo1*, *Pdgfrb*, anti-*NPHS2*, and
490 counterstained with DAPI. d, Sectioned mouse kidney stained with anti-GFP antibody and
491 counterstained with TO-PRO-3. e, Sectioned mouse kidney with native tdTomato fluorescence
492 and counterstained with DAPI. f, Sectioned mouse kidney with native tdTomato fluorescence,
493 stained with anti-Renin antibody, and counterstained with DAPI. Asterisk (*) indicates
494 extraglomerular expression at putative Renin+ vascular pole. g-h, smFISH of sectioned mouse
495 kidney for *Piezo2* (left), floxed exon-specific probe *Piezo2* E43-45 (center), and merged image
496 counterstained with DAPI (right). Scale bars = 100 µm. Dotted circles indicate renal corpuscles.
497 Each experiment was repeated on at least N=2 mice.
498



499
500 **Fig. 2. Renal PIEZO2 is an essential regulator of plasma renin.** **a**, Plasma renin levels in
501 *Piezo2*^{fl/fl}; *Pdgfrb*^{WT} versus *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} animals (Mann–Whitney: ** $p = 0.0019$,
502 $U = 48$; $n = 20$ *Pdgfrb*^{WT} and 13 *Pdgfrb*^{CreERT2} mice). **b**, Plasma aldosterone levels in *Piezo2*^{fl/fl};
503 *Pdgfrb*^{WT} versus *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} animals (Mann–Whitney: $p = 0.8653$, $U = 84$; $n = 11$
504 *Pdgfrb*^{WT} and 16 *Pdgfrb*^{CreERT2} mice). **c**, Plasma angiotensin II (ATII) levels in *Piezo2*^{fl/fl}; *Pdgfrb*^{WT}
505 versus *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} animals (Mann–Whitney: $p = 0.1932$, $U = 21$; $n = 7$ *Pdgfrb*^{WT} and
506 10 *Pdgfrb*^{CreERT2} mice). **d**, Systemic blood pressure (systolic/SAP; diastolic/DAP; and mean
507 arterial pressure/MAP) measured using the VPR system in *Piezo2*^{fl/fl}; *Pdgfrb*^{WT} versus *Piezo2*^{fl/fl};
508 *Pdgfrb*^{CreERT2} animals (two-tailed nested *t*-tests (left to right): ** $p_{SAP} = 0.0013$, $t = 3.899$, d.f. = 16;
509 ** $p_{DAP} = 0.0056$, $t = 3.197$, d.f. = 16; ** $p_{MAP} = 0.0027$, $t = 3.546$, d.f. = 16; $n = 10$ *Pdgfrb*^{WT} and 8
510 *Pdgfrb*^{CreERT2} mice). **e**, Plasma renin levels in *Piezo2*^{fl/fl}; *Ren*^{WT} versus *Piezo2*^{fl/fl}; *Ren*^{Cre} animals
511 (Mann–Whitney: ** $p = 0.0047$, $U = 3$; $n = 6$ *Ren*^{WT} and 8 *Ren*^{Cre} mice). **f**, Systemic blood
512 pressure measured in *Piezo2*^{fl/fl}; *Ren*^{WT} versus *Piezo2*^{fl/fl}; *Ren*^{Cre} animals (two-tailed nested *t*-
513 tests (left to right): * $p_{SAP} = 0.0147$, $t = 2.716$, d.f. = 17; ** $p_{DAP} = 0.0097$, $t = 2.913$, d.f. = 17;
514 ** $p_{MAP} = 0.0060$, $t = 3.137$, d.f. = 17; $n = 9$ *Ren*^{WT} and 10 *Ren*^{Cre} mice). Each experiment was
515 performed on at least two independent cohorts of mice, and error bars represent mean ± s.e.m.

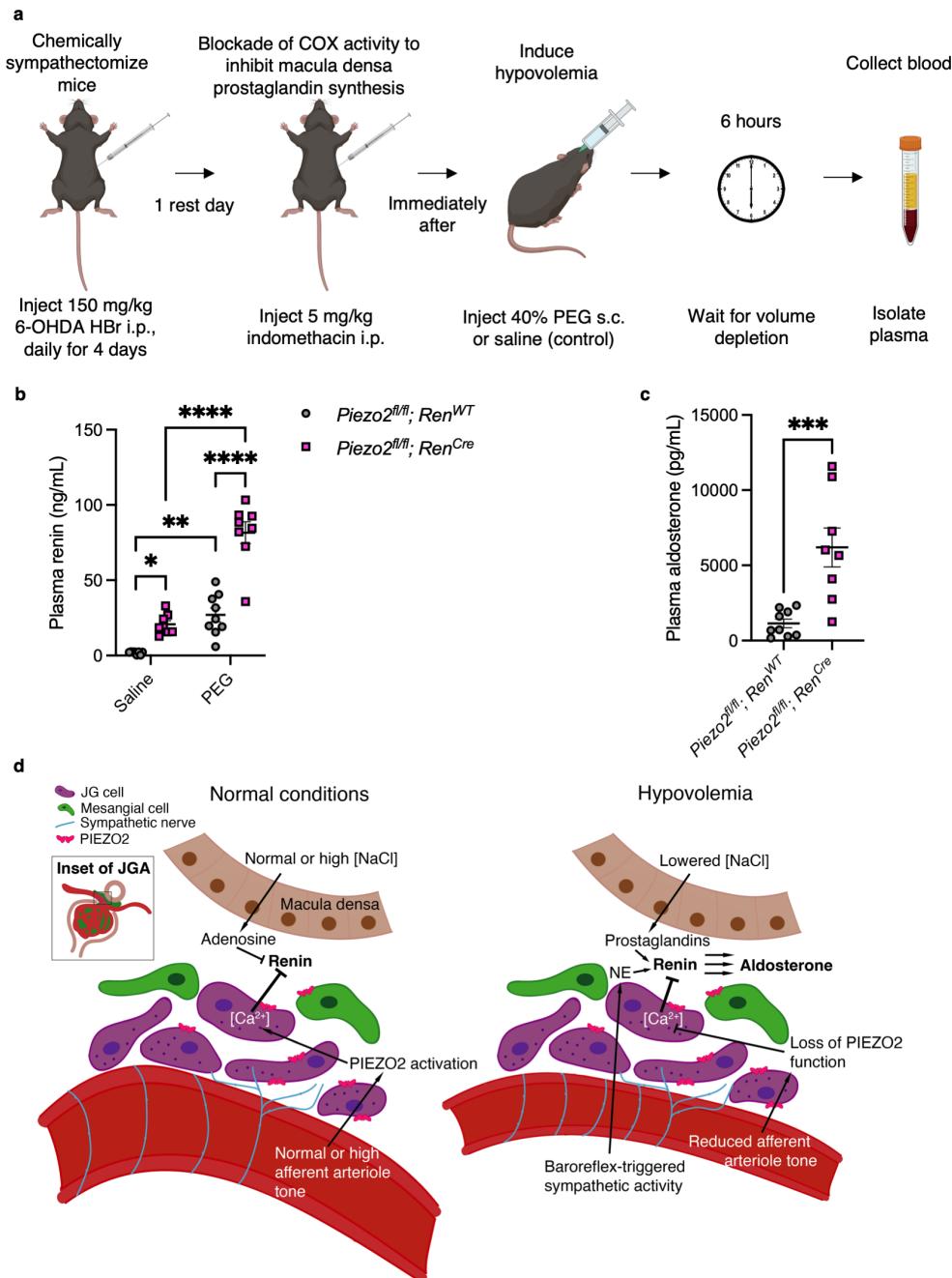

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

Fig. 3. Renin regulates the GFR via Ang(1-7)/Mas in a PIEZO2-dependent manner. a, FITC-Sinistrin transdermal GFR measurement in mice. **b**, GFR in *Piezo2^{fl/fl}; Pdgfrb^{WT}* versus *Piezo2^{fl/fl}; Pdgfrb^{CreERT2}* animals (Mann-Whitney: *** $p < 0.0001$, $U = 7$; $n = 12$ *Pdgfrb^{WT}* and 12 *Pdgfrb^{CreERT2}* mice). **c**, GFR in *Piezo2^{fl/fl}; Ren^{WT}* versus *Piezo2^{fl/fl}; Ren^{Cre}* animals (Mann-Whitney: *** $p < 0.0001$, $U = 1$; $n = 12$ *Ren^{WT}* and 10 *Ren^{Cre}* mice). **d**, Captopril experiment. **e**, GFR after daily administration of 400 mg/L captoril in the drinking water of *Piezo2^{fl/fl}; Pdgfrb^{WT}* and *Piezo2^{fl/fl}; Pdgfrb^{CreERT2}* animals for six days (Mann-Whitney: $p = 0.4470$, $U = 35$; $n = 10$ *Pdgfrb^{WT}* and 9 *Pdgfrb^{CreERT2}* mice). **f**, Plasma renin levels in *Piezo2^{fl/fl}; Pdgfrb^{WT}* versus *Piezo2^{fl/fl}; Pdgfrb^{CreERT2}* animals after seven days of captoril (Mann-Whitney: $p = 0.8820$, $U = 47$; $n = 11$ *Pdgfrb^{WT}* and 9 *Pdgfrb^{CreERT2}* mice). **g**, Schematic of the role of renin in GFR. **h**, A779 Mas blockade experiment. **i**, GFR before (pre-A779) and after (post-A779) treatment with A779 in *Piezo2^{fl/fl}; Pdgfrb^{WT}* versus *Piezo2^{fl/fl}; Pdgfrb^{CreERT2}* animals (two-way ANOVA: *** $p_{\text{interaction}} < 0.0001$, $F(1,6) = 248.9$; Sidak's multiple comparisons: *** $p_{\text{pre-A779}} < 0.0001$, $p_{\text{post-A779}} = 0.7724$; $n = 4$ *Pdgfrb^{WT}* and 4 *Pdgfrb^{CreERT2}* mice). Each experiment was performed on at least two independent cohorts of mice, and error bars represent mean \pm s.e.m.

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

Figure 4. PIEZO2 in renin-expressing cells modulates the hormonal response to hypovolemia. **a**, The subcutaneous PEG model of hypovolemia. **b**, Plasma renin levels in *Piezo2^{fl/fl}; Pdgfrb^{WT}* versus *Piezo2^{fl/fl}; Pdgfrb^{CreERT2}* animals six hours following PEG (Mann-Whitney: *** p = 0.0003, U = 53; n = 17 *Pdgfrb^{WT}* and 19 *Pdgfrb^{CreERT2}* mice). **c**, Plasma aldosterone levels in *Piezo2^{fl/fl}; Pdgfrb^{WT}* versus *Piezo2^{fl/fl}; Pdgfrb^{CreERT2}* animals six hours following PEG (Mann-Whitney: * p = 0.0257, U = 48; n = 12 *Pdgfrb^{WT}* and 16 *Pdgfrb^{CreERT2}* mice). **d**, Plasma ATII levels in *Piezo2^{fl/fl}; Pdgfrb^{WT}* versus *Piezo2^{fl/fl}; Pdgfrb^{CreERT2}* animals six hours following PEG (Mann-Whitney: ** p = 0.0043, U = 0; n = 5 *Pdgfrb^{WT}* and 6 *Pdgfrb^{CreERT2}* mice). **e**, Plasma renin levels in *Piezo2^{fl/fl}; Ren^{WT}* versus *Piezo2^{fl/fl}; Ren^{Cre}* animals six hours following PEG (Mann-Whitney: ** p = 0.0025, U = 18; n = 13 *Ren^{WT}* and 10 *Ren^{Cre}* mice). **f**, Plasma aldosterone levels in *Piezo2^{fl/fl}; Ren^{WT}* versus *Piezo2^{fl/fl}; Ren^{Cre}* animals six hours following PEG (Mann-Whitney: **** p < 0.0001, U = 2; n = 15 *Ren^{WT}* and 10 *Ren^{Cre}* mice). **g**, Plasma renin levels in *Piezo2^{fl/fl}; FoxD1^{WT}* versus *Piezo2^{fl/fl}; FoxD1^{Cre}* animals six hours following PEG (Mann-Whitney: * p = 0.0360, U = 14; n = 8 *FoxD1^{WT}* and 9 *FoxD1^{Cre}* mice). **h**, Plasma aldosterone levels in *Piezo2^{fl/fl}; FoxD1^{WT}* versus *Piezo2^{fl/fl}; FoxD1^{Cre}* animals six hours following PEG (Mann-Whitney: * p = 0.0418, U = 12; n = 7 *FoxD1^{WT}* and 9 *FoxD1^{Cre}* mice). Each experiment was performed on at least two independent cohorts of mice, and error bars represent mean \pm s.e.m.

551
552
553
554
555
556
557
558
559
560
561
562

Figure 5. PIEZO2 contributes to RAAS independently of sympathetic and macula densa function. **a**, Experimental strategy to chemically ablate sympathetic efferent neurons and inhibit prostaglandin synthesis prior to induction of hypovolemia. **b**, Plasma renin levels in *Piezo2*^{WT}; *Ren*^{WT} versus *Piezo2*^{WT}; *Ren*^{Cre} animals after chemical sympathectomy and indomethacin treatment and six hours following saline or PEG (two-way ANOVA: *** $p_{interaction}$ = 0.0004, F(1,29) = 15.81; Tukey's multiple comparisons (left to right): * p = 0.0307, ** p = 0.002, *** p < 0.0001, *** p < 0.0001; n = 8 *Ren*^{WT} saline, 8 *Ren*^{Cre} saline, 9 *Ren*^{WT} PEG, and 8 *Ren*^{Cre} saline). **c**, Plasma aldosterone levels in PEG-treated animals from **b** (Mann-Whitney: *** p = 0.001, U = 4; n = 9 *Ren*^{WT} and 8 *Ren*^{Cre} mice). Each experiment was performed on at least two independent cohorts of mice, and error bars represent mean \pm s.e.m. **d**, Schematic of model for role of PIEZO2 in regulation of renin in JG cells.

563

Methods

564 Statistics: All statistical analyses were performed in Prism v9.5.0 (GraphPad). Error bars are
565 defined as the mean \pm s.e.m throughout, and individual data points are plotted. For blood
566 pressure data in Figure 2, individual values separated by experimental subject are provided in
567 the Extended Data Figures. All tested covariates are reported in the legends. Two-tailed tests
568 were performed wherever applicable. N , test statistics, exact p -values and degrees of freedom
569 (d.f.) are indicated where relevant in the figure legends. Normality and/or equal variance were
570 not assumed and so nonparametric tests were used throughout.

571

572 Study design: No analyses were performed in advance to pre-determine sample size. Sample
573 sizes were based on similar studies in the literature^{8,16,17}. No randomization was used. All *in vivo*
574 experiments were performed by an experimenter blinded to the genotype of the animals tested.
575 All experiments were independently repeated at least twice and data were pooled.

576

577 Research animals: All experiments were approved by the Scripps Research Animal Care and
578 Use Committee (Animal Use Protocol 08-0136). Mice were kept in standard housing with a 12-h
579 light–dark cycle set with lights on from 6 am to 6 pm, with the room temperature kept around
580 22 °C, and humidity between 30% and 80% (not controlled). Mice were kept on pelleted paper
581 bedding and provided with paper square nestlets and polyvinyl chloride pipe enrichment with *ad*
582 *libitum* access to food and water. Age-matched littermate mice were used for all experiments.
583 For all experiments, male and female mice were used and pooled. Mouse ages ranged from 12
584 to 20 weeks for all experiments unless otherwise indicated in the figure legends. All mice
585 received metal identification tags (National Band & Tag, 1005-1) on the right ear when they
586 were between 18 and 30 days old. After weaning between 21 and 30 days of age, mice were
587 co-housed in groups of 2–5 littermates of the same sex. Genotyping was performed in-house by
588 PCR from tail snip DNA samples using guidelines and primer sequences from Jackson

589 Laboratory, or was performed by Transnetyx. The following strains of mice were used and
590 maintained in the laboratory on an inbred background: *Piezo1*^{tdTomato} (*B6;129-Piezo1*^{tm1.1Apat}/*J*;
591 Jackson Laboratories 029214) and *Piezo2*^{EGFP-ires-Cre} (*B6(SJL)-Piezo2*^{tm1.1(cre)Apat}/*J*; Jackson
592 Laboratories 027719). The following strains of mice were maintained on a *Ren1* monogenic
593 C57BL6/J background: *Piezo1*^{f/f} (*B6.Cg-Piezo1*^{tm2.1Apat}/*J*; Jackson Laboratories 029213),
594 *Piezo2*^{f/f} (*B6(SJL)-Piezo2*^{tm2.2Apat}/*J*, Jackson Laboratories 027720), *Ai9*^{f/f} (*B6.Cg-*
595 *Gt(ROSA)26Sor*^{tm9(CAG-tdTomato)Hze}/*J*; Jackson Laboratories 007909), *Ai14*^{f/f} (*B6.Cg-*
596 *Gt(ROSA)26Sor*^{tm14(CAG-tdTomato)Hze}/*J*; Jackson Laboratories 007914), *Pdgfrb*^{CreERT2} (*B6.Cg-*
597 *Pdgfrb*^{tm1.1(cre/ERT2)Csln}/*J*, Jackson Laboratories 030201), *FoxD1*^{Cre} (*B6;129S4-Foxd1*^{tm1(GFP/cre)Amc}/*J*,
598 Jackson Laboratories 012463), *Ren*^{Cre} and *Ren*^{CreER} (*Ren1c*^{Cre} and *Ren1c*^{CreER}, gifts from Drs.
599 Kenneth Gross and Stuart Shankland^{38,40}), and *SNS*^{Cre} (*Tg(Scn10a-cre)*^{1Rkun}, a gift from Dr.
600 Rohini Kuner⁵⁶, MGI: 3042874). Conditional knockout lines were maintained by crossing a
601 homozygously floxed Cre-expressing mouse (homozygous for one or more indicated floxed
602 alleles) with homozygously floxed mate. All strains are commercially available with the
603 exception of *SNS*^{Cre}, *Ren*^{Cre}, and *Ren*^{CreER}. For experiments involving the *Pdgfrb*^{CreERT2} line,
604 recombination was achieved with once-daily intraperitoneal injection of 75 mg per kg body
605 weight tamoxifen (Sigma-Aldrich, T5648) dissolved in 0.22-μm sterile-filtered corn oil delivered
606 to both Cre-expressing and control mice over five consecutive days when between 8-12 weeks
607 of age. Mice were used four or more weeks after tamoxifen administration to ensure adequate
608 time for Cre activity and protein turnover. In all experiments with the *Pdgfrb*^{CreERT2} line, both
609 littermate controls and Cre-expressing animals received tamoxifen.

610

611 Single molecule fluorescent in situ hybridization (smFISH): For mouse experiments, kidneys
612 were removed immediately, embedded in optimal cutting temperature compound (OCT,
613 Sakura), and flash-frozen in liquid nitrogen. For human kidney biopsies, 5 μm-thickness
614 formalin-fixed paraffin embedded (FFPE) kidney sections were obtained from the Kidney

615 Translational Resource Center at Washington University and processed using the
616 manufacturer's instructions for FFPE slides. Tissue from a single anonymous White/Caucasian
617 male donor aged 46 was used. Informed consent and IRB approval for human kidney samples
618 was obtained by the KTRC. The protocol for RNAscope Multiplex Fluorescent Reagent Kit V2
619 (ACDBio, 323100) was followed exactly according to the instructions for fresh-frozen and FFPE
620 tissue. Protease IV was applied for 30 min for mouse tissue when only smFISH was performed.
621 When IHC was performed following smFISH, Protease III was applied for 30 minutes instead
622 and the manufacturer's instructions for IHC following smFISH were followed exactly, using a
623 Rabbit anti-NPHS2 primary antibody (Abcam, ab50339) at 1:1000 followed by goat anti-Rabbit
624 HRP-conjugated secondary antibody (Abcam, ab6721) at 1:1000. For human kidney sections,
625 manufacturer's instructions were followed exactly for FFPE kidney tissue. Probes (all from
626 ACDBio) for mouse *Piezo1* (#400181), mouse *Piezo2* (#400191), mouse *Piezo2*-E43-E45
627 (#439971), mouse *Ren1* (#433461), mouse *Pdgfrb* (#411381), mouse *Pecam1* (#316721),
628 human *PIEZ01* (#485101), human *PIEZ02* (#449951), and human *PDGFRB* (#548991) were
629 applied to detect transcript. The manufacturer's 3-plex negative control probe (#320871) was
630 used in each experiment to detect non-specific signal. Displayed images were uniformly
631 cropped from the original images.

632

633 Immunohistochemistry (IHC): For *Piezo1*^{tdTomato} and *Piezo2*^{GFP-Cre} IHC experiments, tissues were
634 processed using a modified protocol to preserve signal³⁵. In brief, fresh-frozen kidneys were
635 embedded in OCT and sectioned at 20 µm. Sections were post-fixed on slides in cold 4%
636 paraformaldehyde (PFA) in PBS for 10 min at room temperature and quenched using 20 mM
637 glycine and 75 mM ammonium chloride with 0.1% v/v Triton X-100 in PBS for 10 min. Slides
638 were washed in PBS and then incubated in blocking buffer (0.6% w/v fish skin gelatin with
639 0.05% w/v saponin in PBS with 5% v/v normal goat or donkey serum) for 1 h at room
640 temperature. Slides were incubated in primary antibodies overnight at 4 °C in blocking buffer

641 without serum: AlexaFluor 647-conjugated FluoTag-X4 anti-RFP single domain antibody
642 (Nanotag, N0404, 1:100) or chicken anti-GFP (Aves Labs, GFP1010, 1:1000). When conjugated
643 nanobody was used, slides were washed in PBS and mounted in SlowFade Diamond
644 immediately prior to imaging. For GFP staining experiments, slides were washed in PBS, and
645 then incubated in goat anti-chicken Alexa Fluor 488 secondary antibody (Life Technologies,
646 A11039, 1:1000) in blocking buffer 1 h at room temperature. Samples were washed in PBS,
647 counterstained with 1:30,000 TO-PRO-3 Iodide (Life Technologies, T3605), and then mounted
648 in SlowFade Diamond mounting medium (Life Technologies, S36967) and sealed with nail
649 polish prior to imaging. For conventional IHC, fresh-frozen kidneys were embedded in OCT and
650 sectioned at 20 μ m. Sections were post-fixed on slides for 15 minutes at 4 °C in 4% v/v PFA-
651 PBS, briefly rinsed in PBS, washed for 10 min in 0.3% v/v Triton X-100 in PBS (PBST), then
652 blocked for 1 h in 5% v/v normal goat serum in 0.3% PBST. Sections were incubated overnight
653 at 4 °C in rabbit anti-renin (Abcam, ab212197, 1:250), rat anti-PECAM1 (Sigma Aldrich, CBL-
654 1337-1, 1:1000), rabbit anti-NPHS2 (Abcam, ab50339, 1:1000), or rabbit anti-RFP (Rockland,
655 600-401-379, 1:1000) in 0.3% PBST with 1% NGS. Sections were washed in PBS and
656 incubated in 1:1,000 goat anti-rabbit AlexaFluor 647 (Life Technologies, A21245) and/or goat
657 anti-rat 488 (Life Technologies, A11006) for 1 h at room temperature. Tissues were rinsed in
658 PBS, mounted in HIGHDEF IHC Fluoromount (Enzo), and sealed with nail polish. All images
659 were acquired on either a Nikon A1 (20x air objective) or AX (16x water immersion objective)
660 confocal microscope and the imaging settings (laser power, gain, 1,024 \times 1,024 original
661 resolution, pixel dwell, objective and use of Nyquist zoom) were kept consistent within
662 experiments. For all images, brightness and contrast adjustments were uniformly applied to the
663 entire image. Images were processed and analyzed using FIJI (ImageJ2 v2.3.0/1.53f).

664

665 Blood collection methods: For terminal experiments, mice were euthanized via isoflurane
666 overdose and 0.3-0.7 mL whole blood was collected after decapitation. For non-terminal

667 experiments, mice were anesthetized with 3% isoflurane/2% oxygen and < 200 μ L whole blood
668 was collected from the retroorbital sinus using a sterile micropipette tip with a fire-polished end.
669 All blood samples were collected into lithium heparin-coated tubes (BD Microtainer #365965).
670 Blood was spun at 1200g for 20 min immediately following collection. Plasma supernatants
671 were collected and stored at -80 °C for up to a month prior to assay, and only freeze-thawed
672 once. Blood was collected between 2-5pm.

673

674 Enzyme-linked immunosorbent assays (ELISA): ELISA was performed using the indicated
675 assays for the following analytes according to the manufacturer's instructions: renin (LSBio, LS-
676 F508-1), aldosterone (Tecan, RE52301), angiotensin II (Ray Biotech, EIA-ANGII-1), albumin
677 (Abcam, ab108792). The appropriate plasma or urine dilution was empirically determined using
678 a dilution series. Standard curves and extrapolation of sample concentrations were determined
679 using a 4-parameter logistic fit in Prism 9.5.0. Standards and negative controls were run on
680 each plate, and all samples and standards were run in duplicate for each assay. Plates were
681 read according to manufacturer's instructions using the Cytaion 3 plate reader (Agilent) with
682 Gen5 software (v2.04).

683

684 Volume pressure recording measurement of systemic blood pressure: The CODA High
685 Throughput VPR System (Kent Scientific) was used for all experiments according to published
686 methods⁴⁵. Briefly, mice were habituated to the appropriately sized rodent restrainer, cuff set,
687 and heated platform for 5 days prior to measurements. The same restrainer was used for each
688 mouse for the duration of the experiment (wiping only with deionized water and lint-free tissue)
689 to habituate the mouse to familiar odors and was stored in a sealed plastic bag in between
690 habituations. Only cage mates were tested in parallel to reduce stress. Tail temperature was
691 verified with an infrared thermometer prior to beginning measurements and mice were tested
692 when tail temperature was between 32-35 °C. For each day of measurements (3 per mouse), 10

693 acclimation and 20 experimental cycles were performed. Only measurements that passed
694 software quality control (CODA Data Acquisition Software, version 1.06) were analyzed.

695

696 Non-invasive transdermal measurement of glomerular filtration rate (GFR): GFR was measured
697 using the transdermal system from MediBeacon^{49,53–55}. Briefly, mouse flanks were dehaired with
698 depilatory cream (Nair) on the day prior to measurement. Mice were anesthetized with 2%
699 isoflurane/1% oxygen and placed on a 37 °C heating pad. The transducer was applied to the
700 dehaired flank skin of the mouse using the supplied adhesive patch, avoiding any pigmented
701 skin regions. Baseline was acquired for 1-3 min. Mice received a bolus injection of 2.5 µL/g b.w.
702 of 30 mg/mL fluorescein isothiocyanate (FITC)-sinistrin (MediBeacon) prepared in sterile PBS
703 and delivered via the retroorbital sinus with a 28G insulin syringe. Measurements were acquired
704 for one hour post-injection and data were analyzed and fitted offline using the MBLab2 software
705 (MediBeacon, v2.12) according to the manufacturer's instruction to calculate the $t_{1/2}$ in minutes.
706 GFR was calculated from $t_{1/2}$ using the formula for adult C57BL6/J mice⁴⁹:

707

$$708 GFR[\mu L/min/100 g b.w.] = 14616.8 [\mu L/100 g b.w.]/t_{1/2\ FITC-sinistrin} [min]$$

709

710 Urine collection methods: Mice were lightly scruffed one at a time over sterile hydrophobic
711 LabSand (Braintree Scientific) until they urinated and for no more than 30 sec. This method
712 reliably yielded between 10-100 µL urine per mouse. Urine was immediately collected using a
713 clean micropipette tip and centrifuged at 800g for 10 min at 4 °C. Urine was stored at -80 °C
714 until assessment via ELISA. Urine was harvested at 2pm.

715 Histology: Hematoxylin and eosin (H&E) and Periodic-acid Schiff (PAS) staining were performed
716 on formalin-fixed mouse kidney sections by the Sanford Burnham Prebys Histology Core (La
717 Jolla, CA) using standard paraffin embedding, sectioning, and staining methods. The slides
718 were analyzed for glomerulopathy, mesangial cell number, mesangial matrix deposition, tubular

719 morphology, and quantity of nuclei in the juxtaglomerular apparatus by an individual blinded to
720 genotypes. In total, sections from $n = 4$ *Piezo2*^{fl/fl}; *Pdgfrb*^{WT}; $n = 4$ *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} $n = 7$
721 *Piezo2*^{fl/fl}; *Ren*^{WT}, and $n = 4$ *Piezo2*^{fl/fl}; *Ren*^{Cre} mice were analyzed. Representative images of
722 kidney cortex were acquired using a Keyence BZ-X710 microscope using brightfield imaging
723 with a 40x objective and the supplied color camera.

724

725 Captopril administration: Water valves were removed from cages and mice were supplied with
726 400mg/L captopril (Sigma-Aldrich, C4042) in the drinking water, prepared fresh each day in a
727 water bottle. Mice had access to standard chow. After six days of treatment, GFR was
728 measured. On the seventh day, blood was harvested for ELISA.

729

730 A779 administration: Mice were injected i.p. once daily for seven consecutive days with 0.5
731 mg/kg A779 (Cayman Chemical, 23396) dissolved in 0.9% NaCl in water.

732

733 Polyethylene glycol (PEG) mouse model of hypovolemia: Mice were lightly and briefly (< 5 min)
734 anesthetized with 2% isoflurane and injected with 40% w/v PEG-8000 (Sigma-Aldrich, 89510) in
735 sterile 0.9% NaCl subcutaneously using a 28G insulin syringe. Food and water were removed
736 from the cage. After six hours, mice were euthanized and blood was collected. For the 6-OHDA
737 and indomethacin experiments, 15 minutes after indomethacin injection, mice received either
738 sterile saline or 40% PEG. Blood was collected six hours following PEG or saline injection.

739

740 6-OHDA and indomethacin administration: Mice were injected i.p. once daily for four
741 consecutive days with 150 mg/kg 6-OHDA HBr (Sigma-Aldrich, 162957) dissolved in 0.02%
742 ascorbic acid and 0.9% NaCl in water. 24 hours after the final injection, mice were injected i.p.
743 with 5 mg/kg indomethacin (Tocris, 1708) dissolved in 0.01 M sodium carbonate with 1% DMSO
744 in water.

745

746 **Data availability:** All data points are presented as dot plots in the Figures or Extended Data
747 Figures. Raw data are available upon reasonable request from the authors.

748

749 **Code availability:** N/A

750

751 **Acknowledgements:** The authors thank all members of the Patapoutian laboratory for providing
752 helpful feedback, A. Dubin (Scripps Research) for critical editing of the manuscript, G. Garcia
753 (Sanford Burnham Prebys Medical Discovery Institute) for histology services, the Dorris
754 Neuroscience Center Department of Animal Resources for animal husbandry services, K. Conlon
755 and S. Jain at the Kidney Translational Resource Center (supported by the Division of Nephrology
756 at Washington University) for processing and providing human kidney samples and obtaining IRB
757 approval and informed consent, V. Augustine (University of California San Diego) for advice on
758 the hypovolemia assay, K. Spencer and the Nikon Center of Excellence Imaging Center (Scripps
759 Research) for imaging facilities, S. Shankland (University of Washington) and K. Gross (Roswell
760 Park Comprehensive Cancer Center) for the gift of the *Ren*^{Cre} mice, and R. Kuner (Heidelberg
761 University) for the gift of the *SNS*^{Cre} mice.

762

763 **Contributions:**

764 Conceptualization: RZH, AP

765 Methodology: RZH, JHM, SB

766 Investigation: RZH, SS, SB, JHM

767 Visualization: RZH

768 Funding acquisition: RZH, AP

769 Project administration: RZH, AP

770 Supervision: RZH, AP

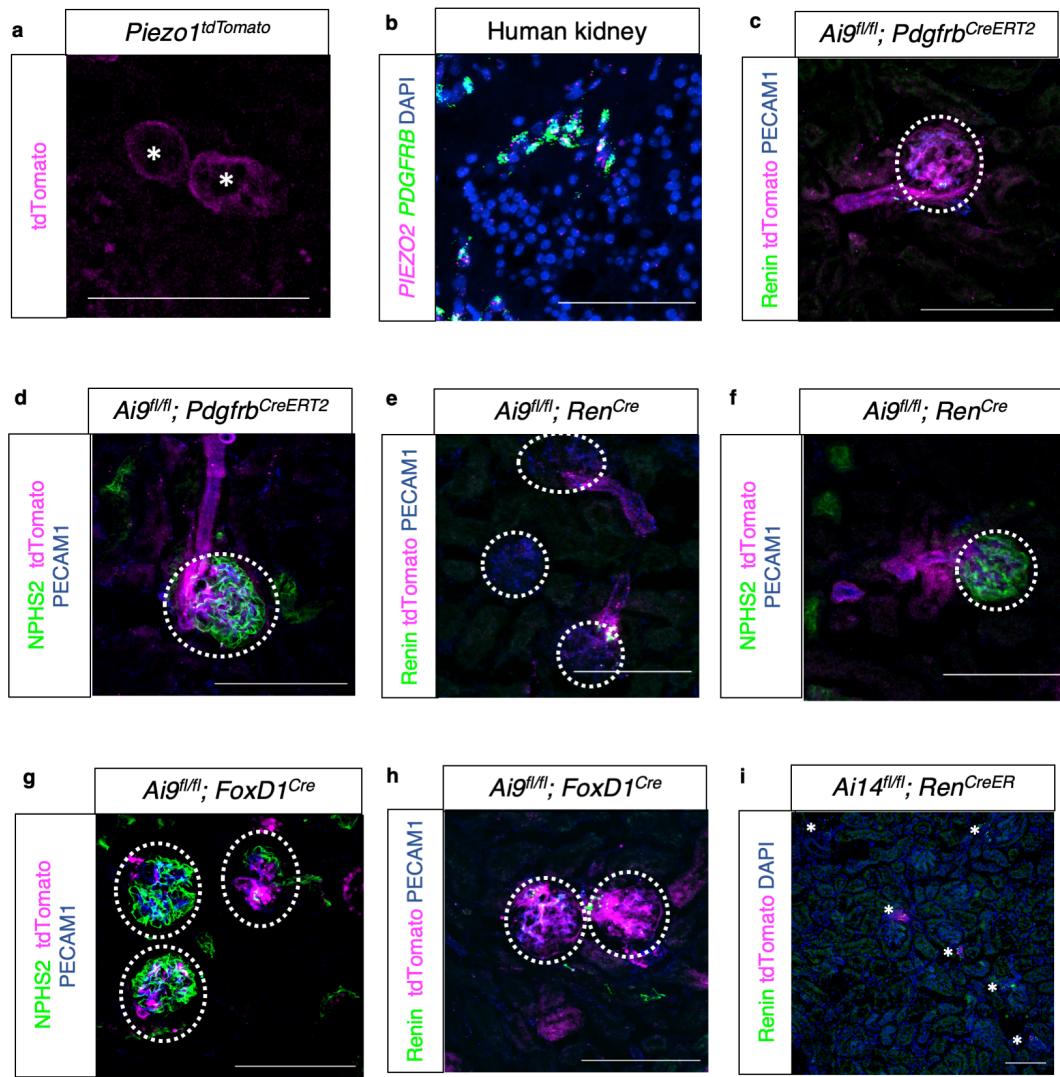
771 Writing – original draft: RZH

772 Writing – review & editing: RZH, JHM, SS, SB, AP

773

774 **Supplementary information:** No supplementary information is included.

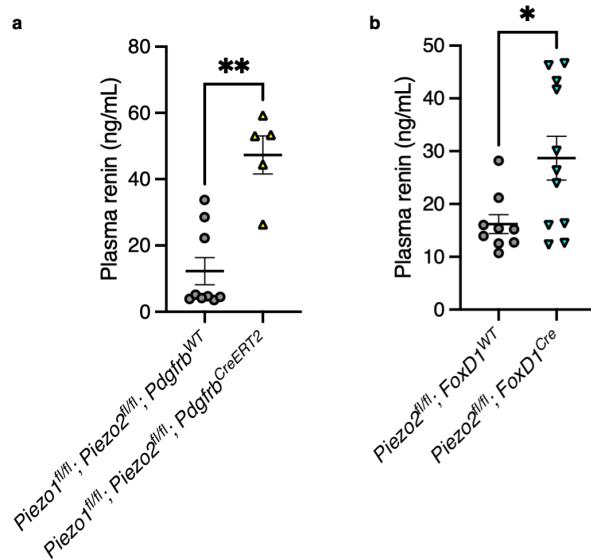
775


776 **Corresponding authors:** Correspondence to Ardem Patapoutian or Rose Z. Hill.

777

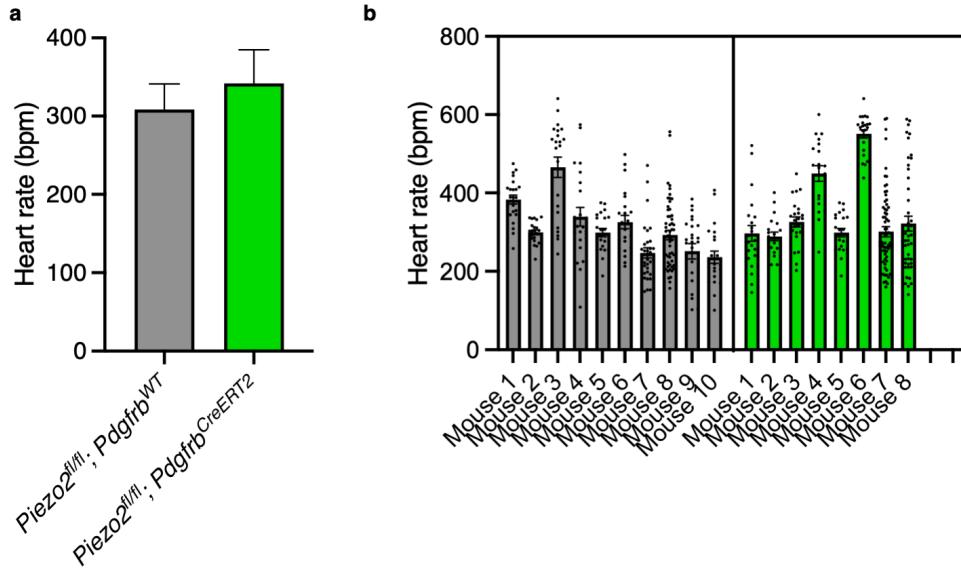
778 **Ethics declarations:**

779 *Competing interests:* The authors declare no competing interests.


780 **Extended data figure legends:**

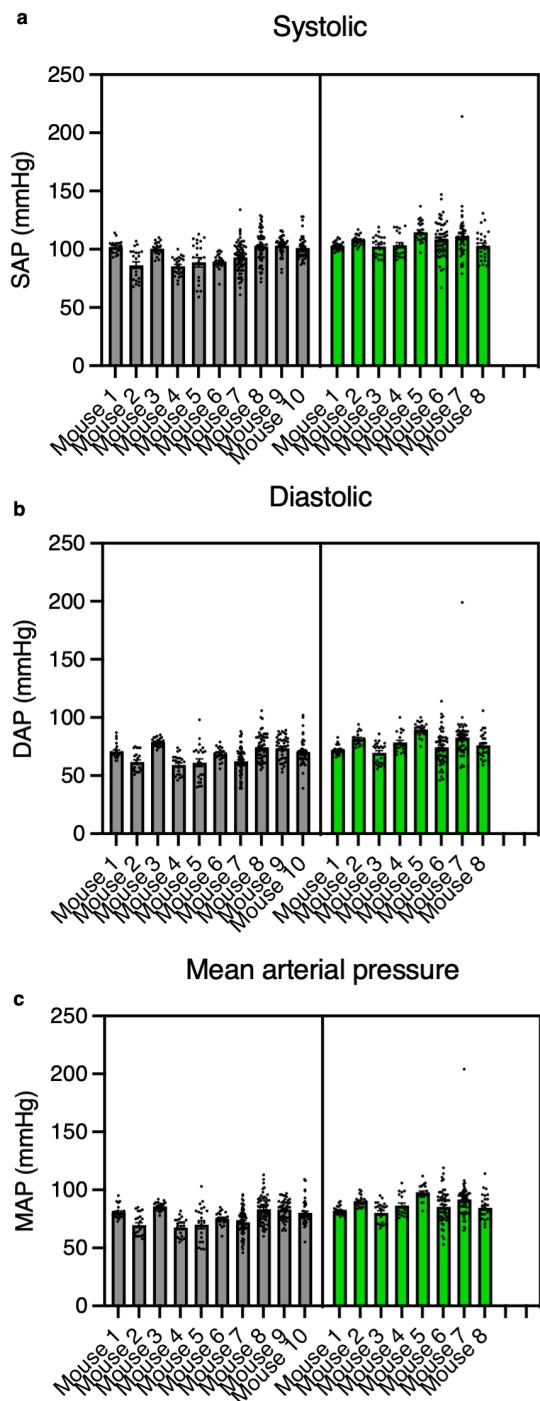
781

782 **Extended Data Figure 1.**


783 **a**, Sectioned mouse kidney stained with anti-tdTomato AlexaFluor 647-conjugated nanobody. 784 Asterisk (*) indicates distal convoluted tubule. **b**, smFISH of sectioned human kidney for 785 *PIEZO2*, *PDGFRB*, and counterstained with DAPI. **c**, Sectioned mouse kidney with native 786 tdTomato fluorescence, stained with anti-Renin and anti-PECAM1 antibodies. **d**, Sectioned 787 mouse kidney with native tdTomato fluorescence, stained with anti-NPHS2 and anti-PECAM1 788 antibodies. **e**, Sectioned mouse kidney with native tdTomato fluorescence, stained with anti- 789 Renin and anti-PECAM1 antibodies. **f**, Sectioned mouse kidney with native tdTomato 790 fluorescence, stained with anti-NPHS2 and anti-PECAM1 antibodies. **g**, Sectioned mouse 791 kidney with native tdTomato fluorescence, stained with anti-NPHS2 and anti-PECAM1 792 antibodies. **h**, Sectioned mouse kidney with native tdTomato fluorescence, stained with anti- 793 Renin and anti-PECAM1 antibodies. Dotted circles outline renal corpuscles. **i**, Sectioned mouse 794 kidney with native tdTomato fluorescence, stained with anti-Renin antibodies. Asterisks (*) are 795 placed to the immediate left of JGA. Scale bars = 100 μm. Each experiment was repeated on 796 N=2 mice.

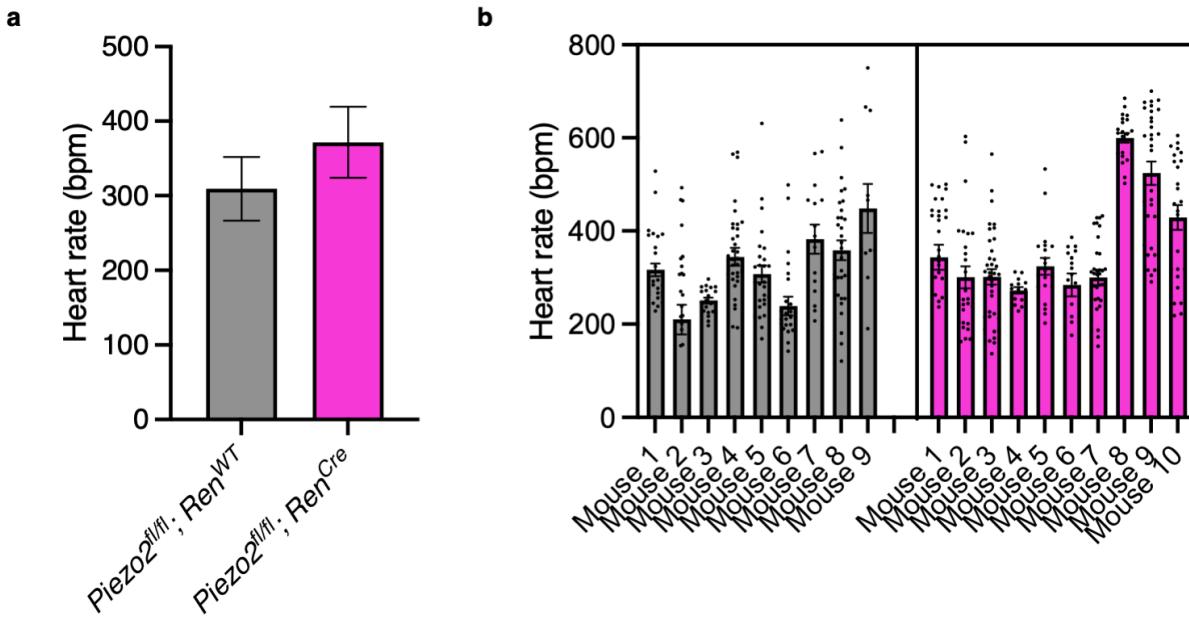
797

798 **Extended Data Figure 2.**


799 **a**, Plasma renin levels in *Piezo1^{fl/fl}*; *Piezo2^{fl/fl}*; *Pdgfrb^{WT}* versus *Piezo1^{fl/fl}*; *Piezo2^{fl/fl}*; *Pdgfrb^{CreERT2}*
800 animals (Mann–Whitney: ** $p = 0.0040$, U = 2; n = 9 *Pdgfrb^{WT}* and 5 *Pdgfrb^{CreERT2}* mice). **b**,
801 Plasma renin levels in *Piezo2^{fl/fl}*; *FoxD1^{WT}* versus *Piezo2^{fl/fl}*; *FoxD1^{Cre}* animals (Mann–Whitney:
802 * $p = 0.0381$, U = 22; n = 9 *FoxD1^{WT}* and 11 *FoxD1^{Cre}* mice). Each experiment was performed on
803 at least two independent cohorts of mice, and error bars represent mean \pm s.e.m.

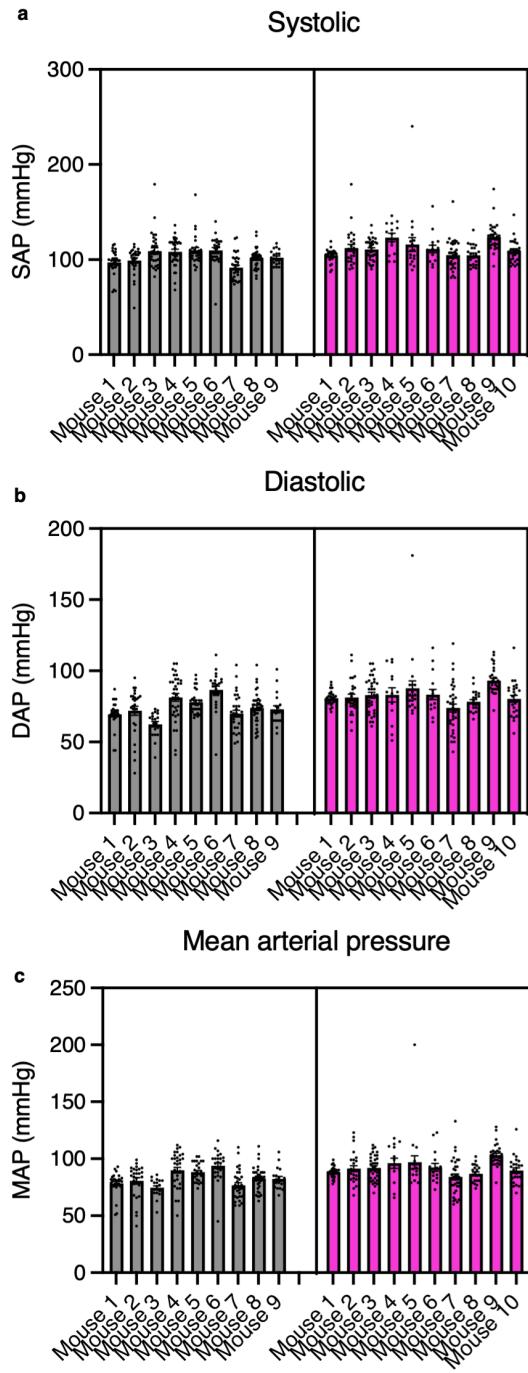
804

805 **Extended Data Figure 3.**


806 **a**, Heart rate (beats per minute) measured using the VPR system in *Piezo2^{fl/fl}*; *Pdgfrb^{WT}* versus
807 *Piezo2^{fl/fl}*; *Pdgfrb^{CreERT2}* animals (two-tailed nested t-test: = 0.3122, $t = 1.044$, d.f. = 16, n = 10
808 *Pdgfrb^{WT}* and 8 *Pdgfrb^{CreERT2}* mice). **b**, Data in a replotted to show individual data points per
809 mouse, with *Piezo2^{fl/fl}*; *Pdgfrb^{WT}* in grey and *Piezo2^{fl/fl}*; *Pdgfrb^{CreERT2}* in green. Experiment was
810 performed on two independent cohorts of mice, and error bars represent mean \pm s.e.m.

811

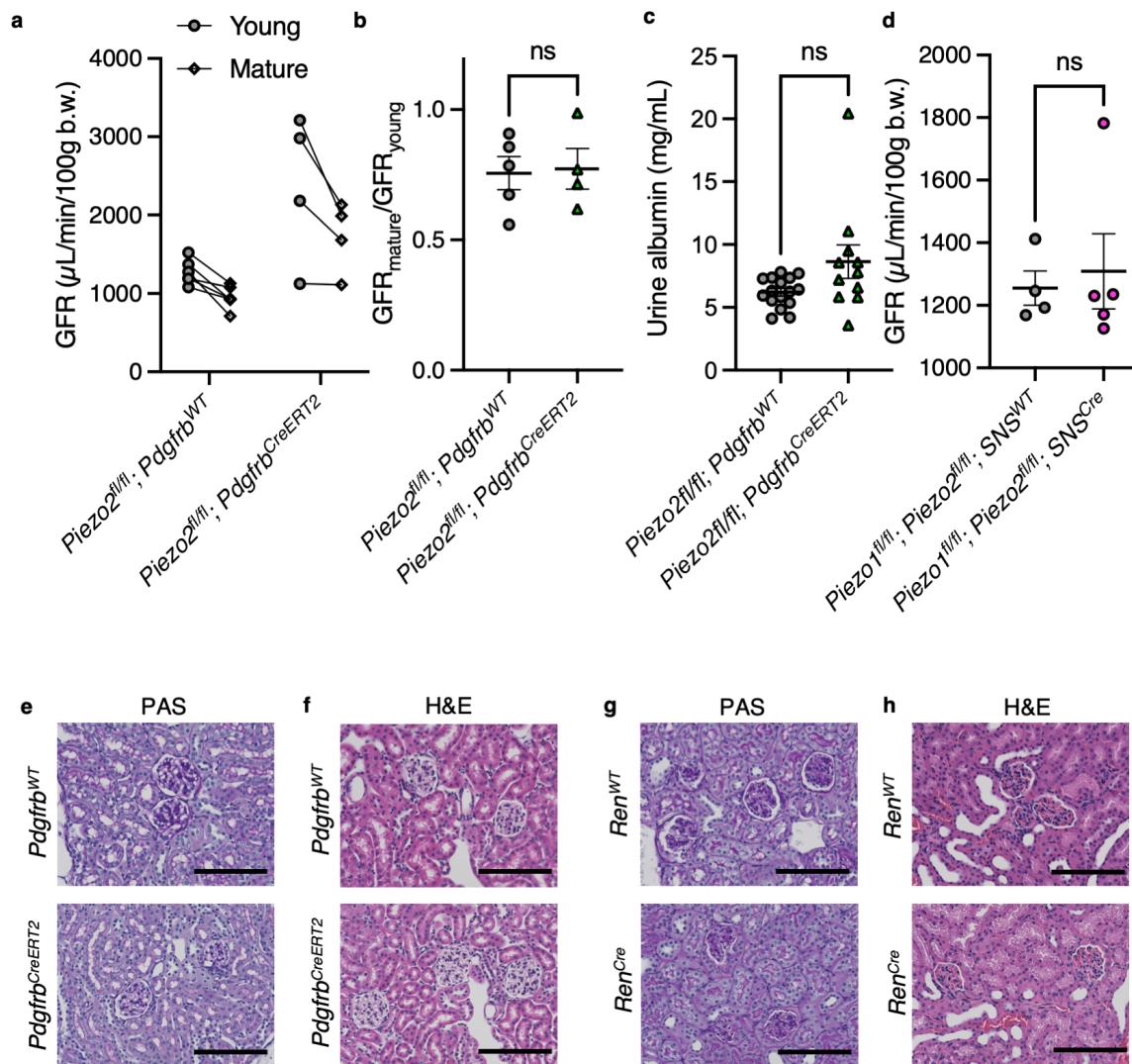
812 **Extended Data Figure 4.**


813 **a**, Systolic blood pressure data from *Piezo2*^{fl/fl}; *Pdgfrb*^{WT} (gray) versus *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} (green) animals replotted from Fig. 2d to show all trials from individual mice. **b**, Diastolic blood pressure data from *Piezo2*^{fl/fl}; *Pdgfrb*^{WT} (gray) versus *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} (green) animals replotted from Fig. 2d to show all trials from individual mice. **c**, Mean arterial blood pressure data from *Piezo2*^{fl/fl}; *Pdgfrb*^{WT} (gray) versus *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} (green) animals replotted from Fig. 2d to show all trials from individual mice. Experiment was performed on two independent cohorts of mice, and error bars represent mean \pm s.e.m.

820

821 **Extended Data Figure 5.**

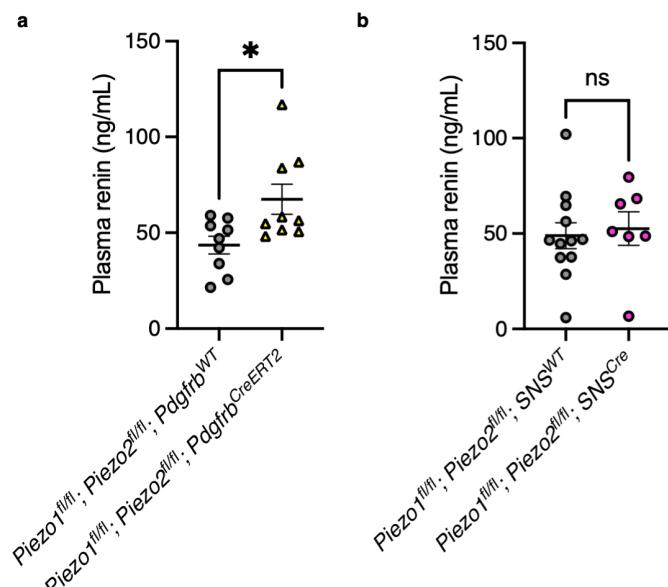
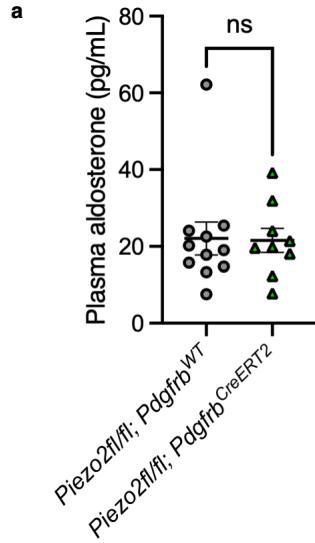
822 **a**, Heart rate (beats per minute) measured using the VPR system in *Piezo2*^{fl/fl}; *Ren*^{WT} versus
823 *Piezo2*^{fl/fl}; *Ren*^{Cre} animals (two-tailed nested *t*-test: $= 0.2572$, $t = 1.374$, d.f. = 17, $n = 10$ *Ren*^{WT}
824 and 9 *Ren*^{Cre} mice). **b**, Data in **a** replotted to show individual data points per mouse, with
825 *Piezo2*^{fl/fl}; *Ren*^{WT} in gray and *Piezo2*^{fl/fl}; *Ren*^{Cre} in magenta. Experiment was performed on two
826 independent cohorts of mice, and error bars represent mean \pm s.e.m.

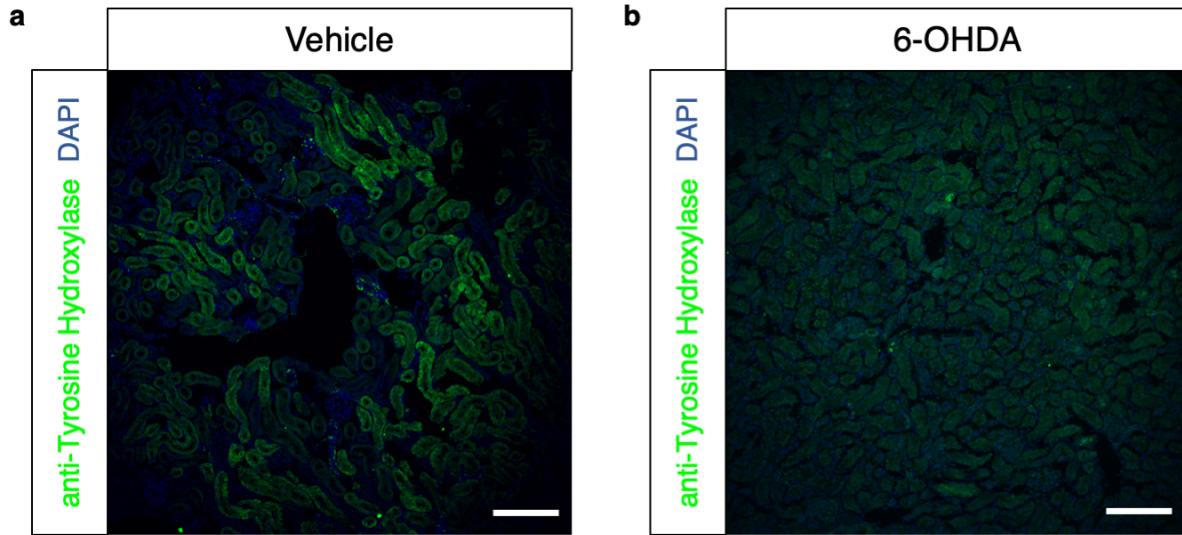


827

828 **Extended Data Figure 6.**

829 **a**, Systolic blood pressure data from *Piezo2*^{fl/fl}; *Ren*^{WT} (gray) versus *Piezo2*^{fl/fl}; *Ren*^{Cre} (magenta)
830 animals replotted from Fig. 2f to show all trials from individual mice. **b**, Diastolic blood pressure
831 data from *Piezo2*^{fl/fl}; *Ren*^{WT} (gray) versus *Piezo2*^{fl/fl}; *Ren*^{Cre} (magenta) animals replotted from Fig.
832 2f to show all trials from individual mice. **c**, Mean arterial blood pressure data from *Piezo2*^{fl/fl};
833 *Ren*^{WT} (gray) versus *Piezo2*^{fl/fl}; *Ren*^{Cre} (magenta) animals replotted from Fig. 2f to show all trials
834 from individual mice. Experiment was performed on two independent cohorts of mice, and error
835 bars represent mean \pm s.e.m.



836



837

838 **Extended Data Figure 7.**

839 **a**, GFR measured in young (3-6 months) and then mature (11-14 months) *Piezo2*^{fl/fl}; *Pdgfrb*^{WT}
 840 and *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} animals. **b**, Comparison of the ratio of (GFR_{mature}/GFR_{young}) plotted in
 841 a (Mann-Whitney: $p > 0.9999$, $U = 10$; $n = 5$ *Pdgfrb*^{WT} and 4 *Pdgfrb*^{CreERT2} mice). **c**, Albumin
 842 concentration measured from urine of *Piezo2*^{fl/fl}; *Pdgfrb*^{WT} and *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} animals
 843 (Mann-Whitney: $p = 0.0547$, $U = 49$; $n = 16$ *Pdgfrb*^{WT} and 11 *Pdgfrb*^{CreERT2} mice). **d**, GFR in
 844 *Piezo1*^{fl/fl}; *Piezo2*^{fl/fl}; *SNS*^{WT} versus *Piezo1*^{fl/fl}; *Piezo2*^{fl/fl}; *SNS*^{Cre} animals (Mann-Whitney: $p =$
 845 0.9048, $U = 9$; $n = 4$ *SNS*^{WT} and 5 *SNS*^{Cre} mice). Each experiment was performed on at least two
 846 independent cohorts of mice, and error bars represent mean \pm s.e.m. **e**, PAS staining of
 847 *Piezo2*^{fl/fl}; *Pdgfrb*^{WT} (upper) and *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} (lower) kidney sections. **f**, H&E staining of
 848 *Piezo2*^{fl/fl}; *Pdgfrb*^{WT} (upper) and *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2} (lower) kidney sections. **g**, PAS staining
 849 of *Piezo2*^{fl/fl}; *Ren*^{WT} (upper) and *Piezo2*^{fl/fl}; *Ren*^{Cre} (lower) kidney sections. **h**, H&E staining of
 850 *Piezo2*^{fl/fl}; *Ren*^{WT} (upper) and *Piezo2*^{fl/fl}; *Ren*^{Cre} (lower) kidney sections. Images are representative
 851 of $n = 4$ *Piezo2*^{fl/fl}; *Pdgfrb*^{WT}; $n = 4$ *Piezo2*^{fl/fl}; *Pdgfrb*^{CreERT2}; $n = 7$ *Piezo2*^{fl/fl}; *Ren*^{WT}, and $n = 4$
 852 *Piezo2*^{fl/fl}; *Ren*^{Cre} mice (see Methods). Scale bars = 100 μm .

868

869 **Extended Data Figure 10.**

870 **a**, Sectioned mouse kidney stained with anti-tyrosine hydroxylase antibody and DAPI after
871 vehicle treatment. **b**, Sectioned mouse kidney stained with anti-tyrosine hydroxylase antibody
872 and DAPI after 6-OHDA treatment. Scale bars = 100 μ m. Experiment was performed on N=2
873 mice.

874