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ABSTRACT 14 

 15 
To flexibly adapt to new situations, our brains must understand the regularities in the world, 16 
but also in our own patterns of behaviour. A wealth of findings is beginning to reveal the 17 
algorithms we use to map the outside world1–6. In contrast, the biological algorithms that 18 
map the complex structured behaviours we compose to reach our goals remain enigmatic. 19 
Here we reveal a neuronal implementation of an algorithm for mapping abstract behavioural 20 
structure and transferring it to new scenarios. We trained mice on many tasks which shared a 21 
common structure organising a sequence of goals, but differed in the specific goal 22 
locations. Animals discovered the underlying task structure, enabling zero-shot inferences 23 
on the first trial of new tasks. The activity of most neurons in the medial Frontal cortex tiled 24 
progress-to-goal, akin to how place cells map physical space. These “goal-progress cells” 25 
generalised, stretching and compressing their tiling to accommodate different goal 26 
distances. In contrast, progress along the overall sequence of goals was not encoded 27 
explicitly. Instead a subset of goal-progress cells was further tuned such that individual 28 
neurons fired with a fixed task-lag from a particular behavioural step. Together these cells 29 
implemented an algorithm that instantaneously encoded the entire sequence of future 30 
behavioural steps, and whose dynamics automatically retrieved the appropriate action at 31 
each step. These dynamics mirrored the abstract task structure both on-task and during 32 
offline sleep. Our findings suggest that goal-progress cells in the medial frontal cortex may 33 
be elemental building blocks of schemata that can be sculpted to represent complex 34 
behavioural structures. 35 

 36 

Introduction 37 

 38 
Our behaviours are highly structured. From cooking a meal to solving a maths problem, we 39 
compose elaborate sequences of actions to achieve our goals. When elements of this 40 
structure are common across tasks, we can build a schema; a generalised representation of 41 
task states that allows us to instantly compose new behavioural sequences, and infer steps 42 
never taken before7,8. These behavioural structures can be complex and hierarchical, where 43 
sequences of actions leading to individual goals are nested within a higher order structure 44 
relating the goals to each other9,10. To successfully execute a hierarchical behavioural 45 
sequence, one must simultaneously track their position at all levels of the task hierarchy. 46 
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 47 
Lesion, imaging and neurophysiological studies implicate the frontal areas of the neocortex 48 
in mapping task structure. This involves roles in forming a schema of task structure11–17, 49 
generating complex behavioural sequences18,19, encoding goals20,21 and simultaneously 50 
tracking a working memory of multiple task variables22–24. These findings are consistent with 51 
a role of the frontal cortex in generating a map of abstract task structure: a representation 52 
that reflects the conserved relationships between task states and generalises across 53 
similarly structured tasks with different sensorimotor specifics. A key remaining challenge is 54 
to derive biological algorithms that mechanistically explain how frontal activity generates 55 
such abstract maps. 56 
 57 
What mechanisms mediate the mapping of abstract task structure? Such mapping should 58 
comprise neuronal dynamics that evolve as a function of progress in a task, rather than 59 
related variables such as elapsed time or the number of actions taken. This would naturally 60 
enable representations to generalise across goal-directed behavioural sequences that differ 61 
in length and duration. Frontal neurons have been found to track progress relative to 62 
individual goals25–27, regardless of the location of the goal or the distance covered to reach 63 
it27. However, behavioural tasks are complex and often composed of multiple, hierarchically 64 
organised goals. It remains unclear how neurons track progress along such complex tasks. 65 
One way this can be achieved is via neurons that invariantly track progress in a sequence of 66 
goals regardless of their sensorimotor specifics, in direct analogy to the invariant tracking of 67 
progress towards individual goals. Indeed, some findings suggest that frontal neurons are 68 
tuned to general task states rather than specific stimuli or actions11,28–31. This has led to the 69 
view that, in each new task, neurons encoding abstract task states are flexibly bound via 70 
synaptic plasticity to those representing the detailed behavioural sequences to be 71 
executed31–34. Alternatively, a separate line of work on recurrent neural networks suggests 72 
that such binding is not necessary and schematic inferences can be made in new scenarios 73 
with no new plasticity. Here, details of new task examples are stored as patterns of neural 74 
activity using network dynamics sculpted, through the learning of previous examples, by the 75 
abstract structure of the task35. While the mechanistic details of how such dynamics support 76 
task-schema formation remain unclear, this strategy relies on representations that track 77 
memories of previous actions and rewards22–24,35. Whether and how such representational 78 
logic relates to generating a schema that tracks an animal’s progress in task-space remains 79 
an open question. 80 
 81 
Here we sought to elucidate a neuronal algorithm for mapping abstract task structure. We 82 
trained mice on a series of tasks, each of which required visiting 4 goal locations in a 83 
repeating, loop-like sequence. The sequential loop structure relating the goals remained the 84 
same across tasks, while the goal locations, and hence the behavioural sequences needed 85 
to navigate between them, changed. Mice used this abstract structure to perform zero-shot 86 
inferences on the first trial of new tasks. Using multi-unit silicon probe recordings, we found 87 
that neurons in the medial Frontal Cortex (mFC) tracked progress to the next goal, 88 
regardless of the behavioural sequences used to reach it. Crucially, these neurons were 89 
further sculpted by the task structure. Neurons were arranged into modules, where activity 90 
along each module tracked progress in the higher order sequence of goals. Individual 91 
neurons on a given module had mnemonic fields at a fixed lag from a particular behavioural 92 
step. Thus, a module behaved like a memory buffer, creating dynamics that track progress in 93 
task-space from a particular behavioural step. Each of these memory buffers was shaped by 94 
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the abstract task structure, reflecting the 4-reward loop, and hence allowed predicting the 95 
animals’ future actions a long time before they were made. These findings point to an 96 
algorithm that uses Structured Memory Buffers (SMBs) to encode new behavioural 97 
sequences into the dynamics of neural activity without needing associative binding. More 98 
broadly, we propose that a schema mapping any complex behavioural structure can be 99 
generated by sculpting task-naive progress-to-goal tuning to represent task-structured 100 
memories of individual behavioural steps. 101 
 102 

Results 103 

 104 
The ABCD paradigm: an abstract task structure guides rapid sequence learning and 105 
inference  106 
 107 
We developed a task wherein goal-directed behavioural sequences are hierarchically 108 
organised by an abstract structure (the “ABCD” paradigm). Mice (N=11) learned to navigate 109 
to identical water rewards arranged in a sequence of 4 locations (a,b,c and d) on a 3x3 grid 110 
maze (Figure 1a,b). The reward at each location only became available after the previous 111 
goal was visited, so the goals had to be visited in sequence to obtain rewards. Once reward 112 
d was obtained, reward a became available again, allowing the animal to complete another 113 
loop. Each rewarded location (a,b,c or d) defined the beginning of a task “state” (A,B C or D 114 
respectively; Figure 1a) and a single ABCD loop defined a trial of a task. A brief tone was 115 
played upon reward delivery in state A, marking the beginning of a loop on every trial. 116 
Animals encountered multiple tasks where the reward locations changed but the general 117 
ABCD loop structure remained the same (Figure 1a). Crucially, task structure was made 118 
orthogonal to the structure of physical space: the physical distance between two rewards on 119 
the maze was not correlated with their task-space distance (Figure 1a,b, Extended data 120 
figure 1a). The task therefore encouraged animals to separately learn the spatial sequences 121 
leading to individual goals, and the higher order task structure that organises these goal-122 
directed sequences (Figure 1b). 123 
 124 
We first asked whether animals learned optimal sequences leading to individual goals. To 125 
assess performance, we quantified either the ratio of the distance taken between two goal 126 
locations compared to the shortest possible distance (“Relative path distance”), or the 127 
proportion of trials where one of the shortest routes was taken (“Proportion shortest”). On 128 
individual tasks, mice converged on a near-optimal policy that routinely took them between 129 
goal locations via close-to-shortest routes (Figure 1c). This converged policy was highly 130 
stereotyped, with animals taking only a subset of the available shortest routes (Extended 131 
data fig 1b). In the first 10 tasks, we allowed animals to perform as many trials as needed to 132 
converge on peak performance (Figure 1c; 70% shortest path transitions or 200 trial plateau; 133 
mean number of trials per task: 325 ±16). Subsequently, to encourage generalisation of task 134 
structure, and to allow us to record from multiple tasks in a day, we moved animals to a high 135 
task regime (tasks 11-40). Animals experienced 3 new tasks per day and hence could only 136 
complete a fraction of the trials needed to reach peak performance (mean number of trials 137 
per task: 38 ± 3). Despite this, animals still performed markedly above chance (Figure 1d). 138 
Suboptimal performance was associated with a persisting preference for taking routes 139 
around the maze for which animals had an a priori bias to take before exposure to the task 140 
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(Extended data figure 1c). Nevertheless, animals’ performance improved across even the 141 
early trials of a given task (Figure 1d). 142 
 143 
We next asked whether mice learn the higher order, abstract task structure. Initial 144 
performance on the earliest trials improved with the number of tasks completed (Figure 1d; 145 
Extended data figures 1d,e). This improvement was seen even on the very first trial of each 146 
new task (Figure 1e). This effect is consistent with animals transferring knowledge of task 147 
structure to rapidly learn new sequences. Notably, this task allows for a direct test of this 148 
structural knowledge transfer because of the ABCD loop. After discovering the 4 reward 149 
locations (a,b,c and d) on the first trial of a new task, animals that understand the task 150 
structure should then return directly to a. On the first trial, this transition (d → a) has never 151 
been experienced, so cannot be executed through repetitive learning or memory. Instead it 152 
must reflect a zero-shot inference based on abstract knowledge of the ABCD task structure. 153 
Remarkably, we found that experienced animals took the shortest path between d and a on 154 
the first trial more often than chance and more readily than premature returns to a from b or 155 
c (Figure 1f). This was not explained by any pre-existing biases in the animals’ exploration of 156 
the maze (Extended data fig 1f), differences in analytical chance levels (Extended data fig 157 
1g) or differences in the distances of the d-to-a transition compared to those for c-to-a and 158 
b-to-a (Extended data fig 1h). Moreover, this zero-shot inference was associated with 159 
animals returning to the start of the loop after 4 rewards (d-to-a) rather than to later points of 160 
the loop (d-to-b or d-to-c; Extended data fig 1i). Thus animals not only waited until 4 rewards 161 
were obtained before returning to a (Figure 1f) but also more readily returned to a than to 162 
other reward locations after 4 rewards (Extended data fig 1i). Overall these findings suggest 163 
that mice learn an abstract, task-defined behavioural structure nesting multiple goals.  164 
 165 

 166 
Figure 1 – Mice Learn an abstract task structure 167 

a) Task design: animals learned to navigate between 4 sequential goals on a 3x3 spatial grid-168 
maze. Reward locations changed across tasks but the abstract structure, 4 rewards arranged 169 
in an ABCD loop, remained the same. 170 
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b) Learning involved finding optimal sequential paths between each goal. Optimal paths differed 171 
in length both within and across tasks but were always organised by an ABCD loop relating all 172 
4 goals. 173 

c) When allowed to learn across multiple sessions, animals readily reached near-optimal 174 
performance in the last 20 trials, as demonstrated by comparing path length between goals to 175 
the shortest possible path (i.e. computing a “relative path distance” measure). T-test against 176 
chance (6.96): N=11 mice, statistic=-56.6 P=7.15x10-14 df=10. Chance level was calculated 177 
empirically using the mean relative path distance across the first trial of the first 5 tasks. 178 

d) Performance improved across the initial 20 trials of each new task. This improvement was 179 
markedly more rapid for the last 5 tasks compared to the first 5 tasks. A two-way repeated-180 
measures ANOVA (N=11 mice) showed a main effect of Trial F=11.7 P=6.2x10-5, df1=19, 181 
df2=190, Task F=26.8 P=4.2x10-5, df1=1, df2=10 and a Trial x Task interaction F=3.56 182 
P=0.0201, df1=19, df2=190. 183 

e) Performance on the very first trial improved markedly across tasks. A one-way repeated-184 
measures ANOVA (N=7 mice – N.B. only 7 of the 11 mice were presented with all 40 tasks) 185 
showed a main effect of Task F=3.10 P=0.0100, df1=7, df2=42. 186 

f) Animals readily performed zero-shot inference on the first trial of late tasks but not in early 187 
tasks. The proportion of tasks in which animals took the most direct path from d to a on the 188 
very first trial is compared to the same measure but for premature returns from c to a and b to 189 
a. Wilcoxon test; Early tasks: N=11 mice, statistic=15.5, P=0.407; Late tasks: N=11 mice, 190 
statistic=2.0, P=0.009 191 
All error bars represent the standard error of the mean 192 

 193 
 194 
Progress to goal is a primary feature of Frontal task structure representations 195 
 196 
Animals learn the sequences leading to individual goals, and the abstract structure 197 
organising these goals. What are the basic neural underpinnings of this hierarchical 198 
learning? In order to perform such complex sequences, animals must track their position not 199 
only in the physical space they are navigating, but crucially also their “progress” in task 200 
space, that is the stage the animal has reached in a sequence of goal-directed behaviours. 201 
Are mFC neurons tuned to task progress?  202 
 203 
We used silicon probes to record the activity of mFC (prelimbic) neurons (Figure 2a; 204 
Extended data figure 2a) from animals (N=5) performing late tasks (tasks 21-40), a stage 205 
where we see robust evidence for task structure knowledge (Figure 1d-f). Each recording 206 
day comprised 3 sessions with 3 new tasks (X, Y and Z) and a subsequent fourth session in 207 
which the first task was repeated (X’). In addition, we recorded sleep sessions at the start 208 
and end of the day and in between every session. We used a generalised linear model to 209 
tease out the variables explaining mFC neuronal activity. The large majority (80%) of mFC 210 
neurons were strongly and consistently tuned to the animal’s progress towards a rewarded 211 
goal, regardless of where the reward was spatially (Figure 2b-f). Neurons tiled goal-progress 212 
space: some fired immediately after the animal reached its goal (early goal-progress cells), 213 
others were most active between two goals (intermediate goal-progress cells) and others still 214 
just before a goal was reached (late goal-progress cells; Figure 2c-e). This goal-progress 215 
tuning was highly invariant across tasks with distinct reward locations (Figure 2e) and not 216 
explained by simple monotonic tuning to speed nor acceleration (Figure 2f). Furthermore, 217 
these neurons fired in relation to goal-progress relative to goals independently of elapsed 218 
time or physical distance (Figure 2f). Thus, mFC neurons exhibit stimulus-invariant tracking 219 
of progress towards individual goals. 220 
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 221 
The invariant goal-progress tuning of mFC neurons is consistent with this region tracking 222 
progress in relation to individual behavioural goals, rather than physical distance or time. 223 
However, such goal-progress tuning alone is insufficient for tracking position in the higher 224 
order task structure organising multiple goals. We therefore leveraged the hierarchical 225 
structure of our ABCD task to ask whether mFC neurons are tuned to a given state in an 226 
individual ABCD task (e.g. state B). We found such “state” tuned neurons in abundance 227 
(56% of all neurons had state tuning in at least one task; Figure 2d,f; Extended data figure 228 
2b). Intriguingly, the large majority (87%) of these state tuned neurons were also goal-229 
progress tuned (Figure 2f). Thus, task-state-tuned neurons are largely a subset of the more 230 
prevalent goal-progress-tuned neurons. A corollary of this is that a large proportion (60%) of 231 
goal-progress-tuned neurons also showed significant state preference in at least a single 232 
task (Figure 2d,f; Extended data figure 2b). Moreover, 46% of neurons tuned to both goal-233 
progress and state were additionally tuned to place (Figure 2d,f; Extended data figure 2b). 234 
Thus, for 54% of cells with state and goal-progress tuning, state-preference was not 235 
explained by tuning to the animal’s current spatial location (Figure 2d,f; Extended data figure 236 
2b). These findings suggest that progress-to-goal is a key determinant of mFC neuronal 237 
firing and that a subset of these goal-progress cells are additionally tuned to a given state in 238 
a given task. 239 
 240 
 241 
 242 
 243 

 244 
Figure 2 – Progress-to-goal is a key feature of task-tuned neurons in the medial Frontal Cortex 245 

a) Multi-unit recording set-up: animals were implanted with silicon probes targeting 1mm of the 246 
anterior-posterior extent of the prelimbic region of the medial Frontal cortex. Inset: schematic 247 
of a coronal slice through the mFC showing electrode placement in the prelimbic region. 248 
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b) Schematics of polar plots showing a projection of neuronal activity onto the circular task 249 
structure. “Goal-progress” refers to how much progress an animal has made towards a 250 
rewarded goal location as a percentage of the time taken to reach this location, while “State” 251 
refers to progress in the overall ABCD loop comprising all 4 goals. The radial axis represents 252 
a neuron’s firing rate, while the angular axis represents progression along the task states. 253 
Dashed lines along the cardinal directions represent the times reward was obtained (goal was 254 
reached) in each state, with the vertical line at zero representing reward a, i.e. the start of 255 
state A; going clockwise, the remaining dashed lines represent reward locations b, c and d, 256 
and hence the starts of states B C and D respectively. To represent task position, bins along 257 
the angular axis increment with relative progress between goals rather than raw elapsed time.  258 

c) Neurons display consistent tuning to the progress of the animal’s relative to any goal (“goal-259 
progress tuned”). Inset: a raster plot of firing activity in one state “C” of a goal-progress cell, 260 
showing firing consistently shortly before a goal is reached.  261 

d) Some goal-progress-tuned cells are additionally modulated by the state in a given task (“goal-262 
progress + State tuned”). Inset: Polar plots and spatial maps for two goal-progress + State 263 
tuned neurons across two distinct task configurations. The neuron on the left is spatially tuned 264 
while the neuron on the right is non-spatially tuned. 265 

e) Goal-progress tuning is consistent across tasks that differ in reward locations. Left: The 266 
average firing rate vector of all neurons relative to an individual goal (from goal “n” to goal 267 
“n+1”; averaged across all states). Animals experience 3 tasks per day (tasks X, Y and Z) and 268 
then a further 4th session which task X is repeated (task X’). Each row represents a single 269 
neuron and the neurons are arranged on the y axis by their peak firing goal-progress in task 270 
X. This alignment is largely maintained in tasks Y and Z as well as a later session of the first 271 
task (X’). White dashes indicate early intermediate and late goal-progress-cutoffs. Top right: A 272 
histogram showing the mean goal-progress-vector correlation across tasks for each neuron. 273 
One-sample T test against 0: N=1230 neurons; statistic=91.56; P=0.0, df=1229. Note that the 274 
neurons used in this panel are those that were tracked for all 4 sessions on a given day. 275 
Bottom right: two example paths, each between a pair of rewarded goals and overlaid spiking 276 
of 3 goal-progress-tuned mFC neurons tuned to early goal-progress (neuron 1) intermediate 277 
goal-progress goal-progress (neuron 2) and late goal-progress (neuron 3) regardless of the 278 
goal locations or trajectory taken. 279 

f) Top left: a schematic of the variables inputted into a generalised linear model that predicts 280 
neuronal activity across tasks and states. Bottom left: Pie-chart showing the results of a 281 
generalised linear model capturing variance as a function of goal-progress, place, speed, 282 
acceleration, time from reward and distance from reward. Plot shows proportions of neurons 283 
with significant regression coefficient values for goal-progress, place and their conjunctions. It 284 
also shows proportions of state tuned neurons derived from a separate z-scoring analysis 285 
(More details in Methods under “Tuning to basic task variables”). Proportion of all neurons 286 
that are goal-progress cells: 80%; Two proportions test: N=1438 neurons, z=40.7, P<0.00. 287 
Proportion of all neurons that had state tuning in at least one task: 56% Two proportions test: 288 
N=1438 neurons, z=29.5, P<0.001. 87% of all state-tuned neurons were also goal-progress 289 
tuned; Two proportions test: N=798 neurons, z=32.8, P<0.001. Proportion of goal-progress-290 
tuned neurons that also showed significant state preference in at least a single task: 60%; 291 
Two proportions test: N=1152 neurons, z=28.2, P<0.001. Proportion of neurons tuned to goal-292 
progress and state that were also tuned to place: 46%, Two proportions test: N=692 neurons, 293 
z=17.4, P<0.001. 294 
Top right: A histogram showing the mean regression coefficient values for goal-progress as a 295 
regressor across task/state combinations for each neuron. One-sample T test against 0: 296 
N=1438 neurons; statistic=20.52; P=2.71x10-82, df=1437. Bottom right: A histogram showing 297 
the mean regression coefficient values for place as a regressor across task/state 298 
combinations for each neuron. One-sample T test against 0: N=1438 neurons; statistic=24.55; 299 
P=1.96x10-111, df=1437 300 
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 301 
Modular organisation of mFC task structure mapping 302 
 303 
Neurons in the mFC delineate task state on individual tasks. One view holds that, in order to 304 
support transfer of task structure knowledge across distinct examples, such state tuning 305 
should explicitly generalise across different tasks32,34. This would then allow an associative 306 
solution to the abstraction problem, whereby “abstract state” cells would (re)bind flexibly to 307 
neurons representing specific spatial goals in order to encode new tasks32,34. To investigate 308 
this possibility, we asked whether the state tuning of mFC neurons, which reflects the 309 
animal’s position in the ABCD loop of one task, is invariant across tasks. Intriguingly, rather 310 
than invariant state tuning, we found that neurons consistently remapped in task space. In 311 
contrast to their goal-progress tuning, which was invariant across tasks (Figure 2), mFC 312 
neurons did not retain their state preference across tasks (Figure 3a,b). Notably, state-tuned 313 
neurons with no discernable spatial tuning also remapped across tasks (Extended data 314 
Figure 3b). Crucially, when we compared state tuning across different sessions of the same 315 
task (X and X’), state tuning was highly conserved, despite two intervening sessions with 316 
different tasks and different state tuning (Figure 3b). This was also seen when only 317 
considering non-spatial neurons (Extended data Figure 3b). Overall these results indicate 318 
that, while neurons in the mFC invariantly map progress to a given goal, they do not 319 
invariantly map abstract task states in a higher order structure relating the sequential goals. 320 
 321 
While remapping precludes a model in which neurons are invariantly tuned to the ordinal 322 
position of each goal, it may nevertheless still reflect an invariant structure. Neurons could 323 
maintain a consistent ring-like arrangement which maps the abstract task structure but 324 
rotates coherently across different tasks (e.g. if all A neurons become C neurons then all D 325 
neurons should become B neurons…etc). Such a representation could still allow tracking 326 
abstract task position and the retrieval of concrete behavioural states through an associative 327 
mechanism. We therefore asked whether the remapping of mFC neurons across tasks 328 
reflects a coherent structure between neurons in the population. We measured the degree of 329 
coherence between pairs of mFC state-tuned neurons: how likely is it that a pair of neurons 330 
will maintain their relative state preference across tasks? Only a small proportion of pairs, 331 
but significantly above chance level, showed coherent remapping across tasks (Figure 3c). 332 
This pairwise coherence was true for non-spatial neurons (Extended data figure 3c) and 333 
when neurons were tuned to distant points in task space (Extended data figure 3d). 334 
Moreover, coherent pairs of neurons showed a trend towards being closer anatomically 335 
(Extended data figure 3e). The partial pairwise coherence between mFC neurons suggests 336 
that such neurons might be organised into modules; groups of neurons that maintain their 337 
tuning relationships across tasks, akin to the modular arrangement of grid cells mapping 338 
physical space36. To investigate this, we used a clustering approach. We defined a distance 339 
metric between pairs of cells which assigned low distances between cells that remapped 340 
coherently between tasks, and high distance between cells that remapped incoherently. We 341 
then applied a low dimensional embedding (tSNE) on the resulting distance matrix, followed 342 
by hierarchical clustering. mFC neurons were significantly clustered (Figure 3d,e), indicating 343 
that they were organised into modules which remap coherently across tasks. Overall, these 344 
findings suggest that mFC neurons don’t generalise their state tuning relationships as a 345 
coherent whole but are instead organised into modules that conserve their within-module, 346 
but not between-module, tuning relationships across tasks. 347 
 348 
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 349 
 350 

Figure 3 – Medial Frontal neurons are organised into task-space modules 351 
a) Polar plots showing state tuning of example neurons across multiple tasks. Each row is a 352 

neuron and each column is a session. Neurons readily remap their state tuning but maintain 353 
their goal-progress preference across tasks. State preference is maintained across different 354 
sessions of the same task (X vs X’). 355 

b) Top: A schematic showing how the difference in tuning angles for the same neuron across 356 
sessions is quantified. Bottom left: Polar histograms show that state-tuned neurons remap by 357 
angles close to multiples of 90 degrees, as a result of conserved goal-progress tuning and the 358 
4 reward structure of the task. No clear peak at zero is seen relative to the other cardinal 359 
directions when comparing sessions spanning separate tasks (Two proportions test against a 360 
chance level of 25% N=831 neurons; mean proportion of generalising neurons across one 361 
comparison (mean of X vs Y and X vs Z)=20%, z=9.04, P<0.001: i.e. significantly lower than 362 
chance). Bottom right: Neurons maintain their state preference across different sessions of 363 
the same task (X vs X’ Two proportions test against a chance level of 25% N=624 neurons; 364 
proportion generalising=87%, z=29.0, P<0.001).  365 

c) Top: A schematic showing how the difference in relative angles between pairs of neurons 366 
across sessions is quantified. Bottom left: Polar histograms show that the proportion of 367 
coherent pairs of state-tuned neurons (comprising the peak at zero) is higher than chance but 368 
less than 100%, indicating that the whole population does not rotate coherently. Two 369 
proportions test against a chance level of 25% N=14930 pairs; mean proportion of coherent 370 
neurons across one comparison (mean of X vs Y and X vs Z)=32%, z=59.8, P<0.001). 371 
Bottom right: As expected from panel b, the large majority of state-tuned neurons keep their 372 
relative angles across sessions of the same task (X vs X’; Two proportions test against a 373 
chance level of 25% N=10722 pairs; proportion coherent=79%, z=109.2, P<0.001). 374 

d) Left: Example from a single recording day showing the result of tSNE embedding and 375 
hierarchical clustering derived from a distance matrix quantifying cross-task coherence 376 
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relationships between state-tuned neurons. Each dot represents a neuron. Right: Summary 377 
silhouette scores for the clustering for real data compared to permuted data that maintains the 378 
neuron’s goal-progress preference and initial state distribution. Each dot is a recording day. 379 
Wilcoxon test: N=24 recording days; statistic=50.0, P=0.003 380 

e) Visualisation of tuning relationships between clusters computed in a single recording day. 381 
Each dot is a neuron and each ring is a cluster derived from the analysis in panel d. The 382 
colour code represents the tuning of the neurons in task X. The x,y position defines the tuning 383 
in each task. The z position corresponds to cluster ID. Note that the ordering along the z axis 384 
is arbitrary. Neurons rotate (remap) in task space while maintaining their within-cluster tuning 385 
relationships but not cross-cluster relationships across tasks.  386 

 387 
 388 
Structured memory buffers: a unified model for behavioural schema and sequence 389 
memory 390 
 391 
The modular arrangement of mFC neurons indicates that the entire population isn’t anchored 392 
to a single invariant reference point (e.g. state A). Instead, because they rotate 393 
independently, each module is anchored to a distinct reference point. What could these 394 
reference points be? We reasoned that the strong tuning of some frontal neurons to both 395 
goal-progress and spatial location (Figure 2) could offer an answer. Each module of neurons 396 
could be anchored to a particular conjunction of goal-progress and place (e.g. early goal-397 
progress at location 1; Figure 4a) through a subset of “anchor” neurons tuned to that specific 398 
goal-progress/place combination. The other “non-anchor” neurons in the module would then 399 
each fire at a specific lag in task-space from when the animal visits the goal-progress/place 400 
anchor (Figure 4a). This amounts to a change in reference point for each module: from the 401 
abstract states (ABCD) to a module-specific anchor. Under this scheme, the apparent 402 
remapping seen when aligning activity to abstract states (ABCD; Figure 3) occurs because 403 
animals visit the goal-progress/places in a different sequence in each task (Figure 4b,c). If in 404 
one task location 1 is rewarded in state A and in another the same location is rewarded in 405 
state C, a module anchored to early goal-progress in location 1 would appear to rotate by 406 
180 degrees across tasks when aligned to the abstract states (Figure 4c). All neurons on this 407 
module, not just the anchor neurons, would rotate by the same amount. The anchor 408 
neurons, which are tuned to a particular goal-progress/place conjunction, would remap in a 409 
way explained by their spatial tuning. However, neurons further from the anchor along a 410 
given module would remap in one task in a way that is not explained by their spatial map in 411 
another task (Figure 4 b,c) just as seen empirically (Extended data figure 3b,c). Each 412 
module with a different anchor would rotate by a different amount depending on when the 413 
goal-progress/place encoded by the anchors are encountered in the behavioural trajectory of 414 
the current task. Thus, we posit that the true invariance of state neuron activity can only be 415 
seen when realigning their activity to their putative goal-progress/place anchors (Figure 4a). 416 
 417 
A key implication of this model is that each module is a memory buffer for visits to a 418 
particular anchor. Because it is a combination of location and goal-progress, an anchor 419 
represents a particular behavioural step. The flow of activity along a given module answers 420 
the following question: how much of the overall task (i.e. the 4 reward sequence in our 421 
ABCD task) has elapsed since visiting a given behavioural step? (for example since visiting 422 
early goal-progress in location 1; Figure 4a,d) Because there are neurons for every task-423 
space lag from a given behavioural step within each module, and modules for every possible 424 
behavioural step, there are always a subset of active neurons that are tied to each visited 425 
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behavioural step (Figure 4d). The instantaneous mFC activity therefore always encodes the 426 
entire sequence of behavioural steps. Moreover, because there are anchors representing 427 
behavioural steps at intermediate goal-progress, not only at rewards, this encoded sequence 428 
is the entire behavioural sequence executed by the animal (i.e. the route taken through the 429 
maze), not just the sequence of 4 reward locations (Figure 4e,f). These modules are 430 
organised by task structure in two ways. Firstly, the strong goal-progress tuning of mFC 431 
neurons means that activity on the module evolves as a function of the number of goals 432 
obtained (i.e. the number of goal-progress cycles completed). The modules therefore track 433 
true task-progress rather than other dimensions such as elapsed time or distance travelled. 434 
Secondly, a module is shaped by the structure of the task, in our case a four reward ring. 435 
Once an animal completes a full trial (i.e. traverses 4 goals in the ABCD task) since it last 436 
visited a given behavioural step, activity along the module will circle back to the anchor point 437 
(Figure 4d,f). This means that the memory buffers are “structured”: they are internally 438 
organised to reflect the abstract structure of the task, a 4-reward loop in our case. We refer 439 
to this over-arching mechanism as the Structured Memory Buffer (SMB) model.  440 
 441 
The SMB model posits that activity along mFC modules could be used to guide the 442 
execution of task-paced behavioural sequences. Once an animal completes a full trial since 443 
it last visited a given behavioural step, either the anchor neurons themselves or neurons 444 
close to them along a given module could be used as output neurons that bias the animal to 445 
return to the behavioural step represented by the anchor. Collectively, activity dynamics 446 
along all active modules would allow retrieval of a sequence of behavioural steps (policy) to 447 
solve a given task. Consequently, any new sequence with the same structure can be 448 
mapped in a programmable way, simply by reconfiguring the order in which modules are 449 
activated. These network dynamics are sufficient to encode new tasks, without needing new 450 
plasticity. For simplicity, we have assumed so far that each neuron has a single anchor with 451 
a single lag. However, in principle the same computational logic can be used even when 452 
individual neurons respond to a combination of different anchors and lags. The read-out in 453 
such a scenario would involve combinatorial activity across anchor neurons across multiple 454 
modules.  455 
 456 
 457 
 458 
 459 
 460 
 461 
 462 
 463 
 464 
 465 
 466 
 467 
 468 
 469 

 470 
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 471 
 472 

Figure 4 – The Structured Memory Buffers model 473 
a) A hypothetical ring-shaped module of neurons “anchored” to location 1 on the maze (marked 474 

by an X) in early goal-progress (i.e. during reward consumption). The ring therefore 475 
represents a memory buffer for this anchor. Aligning the ring of neurons by this anchor 476 
reveals the invariant relationships between neurons across any two tasks where location 1 is 477 
rewarded. 4 neurons are highlighted; the dark blue anchor neuron (neuron 1) and 3 other 478 
neurons firing at lags of 90 degrees (i.e. one reward away (one state away); neuron 2), 180 479 
degrees (i.e. two rewards away; neuron 3) and 270 degrees (i.e. three rewards away; neuron 480 
4) from the anchor. Note that other neurons at all other task lags, not just multiples of 90 481 
degrees, are also present on the ring (white circles). A bump of activity is initiated when the 482 
goal-progress/place anchor is visited (top) and moves around the ring paced by the animal’s 483 
progress in task space. In this task, because there are four rewards, the bump moves by a 484 
total of 90 degrees around the ring after each reward (e.g. the bump reaches neuron 2 after 485 
the animal has received 1 further reward since receiving reward in location 1). 486 

b) Two example ABCD tasks that share one reward location (location 1, marked by an X). The 487 
shaded regions correspond to the hypothetical spatial firing fields of each of the 4 neurons 488 
shown in panel a - shading corresponds to the shading of the neurons on the ring in panel a. 489 
While the anchor neuron (neuron1; dark blue) fires consistently at the same goal-490 
progress/place conjunction across tasks, other neurons (neurons 2-4; lighter shades of blue) 491 
will fire in different locations in the two tasks. This is because they primarily encode elapsed 492 
task progress from early reward in location X, rather than physical space. So for example, 493 
neuron 4 (the lightest shade of blue) consistently fires 3 rewards from the time the animal got 494 
reward in location 1: this means it fires in location 6 (reward d) in task 1 as it was 3 rewards 495 
from reward in location 1 (reward a); in task 2 this neuron fires in location 9 (reward b) as this 496 
is 3 rewards from reward in in location 1 (reward c). 497 

c) The same ring, when aligned by the abstract task states (e.g. aligned to start of state A; i.e. 498 
reward in location a), appears to rotate by 180 degrees across tasks. This is a direct result of 499 
reward in location X corresponding to the start of a different state in each task (state A in task 500 
1 and state C in task 2). 501 

d) A time series showing the flow of activity along 4 rings, each anchored to one of the 4 502 
rewarded locations in task 1. A bump of activity is initiated when the goal-progress/place 503 
anchor is visited (top) and moves around the ring paced by the animal’s progress in task 504 
space. When it circles back close to the start, it biases the animal to return to this anchor. 505 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.04.565609doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.04.565609
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

Multiple rings have active bumps at any one time, thereby simultaneously tracking the history 506 
of different goal-progress/place anchor visits (i.e. the history of previous behavioural steps). 507 

e) As well as rings tracking task-progress from behavioural steps involving a rewarded place (a 508 
conjunction of a place with early goal-progress), there are also rings tracking task-progress 509 
from places conjoined with intermediate and late goal-progress. The anchors of these rings 510 
are activated when the animal passes through a location, not when it is rewarded, but at a 511 
defined, non-zero progress relative to the goal. 512 

f) Non-zero goal-progress anchored rings (e.g. purple outline) allow tracking task-progress from 513 
behavioural steps in between two goals. Hence, across all rings, a history of the entire 514 
sequence of steps taken by the animal, not just the sequence of reward locations, is encoded 515 
at any one point in time. 516 

 517 
The SMB model is computationally attractive because it unifies frontal cortex functions in 518 
behavioural schema formation and sequence memory, while offering a programmable way of 519 
encoding and retrieving sequential policies. It is also empirically attractive because it 520 
explains the spatial-tuning-independent state preference (Figure 2d,f), remapping (Figure 521 
3a,b) and the modular arrangement (Figure 3c-e) of the neurons across tasks. Crucially, the 522 
model makes a number of new empirical predictions about the tuning of single neurons, their 523 
relationship to behavioural choices and their organisation at the population level. We explore 524 
these predictions in turn below. 525 
 526 
1-Mnemonic fields in task space 527 
The SMB model proposes that, instead of neurons being anchored to the abstract task 528 
states (A,B,C or D), they instead encode how much task-space has elapsed (i.e. how much 529 
task progress has been made) since the animal visited a specific behavioural step. These 530 
neurons should therefore maintain an invariant task-space lag from their module’s anchor 531 
(behavioural step) across tasks. For example, a neuron would always fire 2½ states from the 532 
time the animal received reward (i.e. early goal-progress) at location 3, regardless of where 533 
the animal is physically at this point. We tested this prediction using three complementary 534 
approaches. In all of these analyses, we concatenated two recording days, giving a total of 535 
up to 6 new tasks per neuron. 536 
 537 
In the first approach, we implemented a linear regression model to predict the state tuning of 538 
neurons across tasks. For each neuron, the model describes state-tuning activity as a 539 
function of all possible behavioural steps (conjunctions of goal-progress and place) and task 540 
lags from each possible behavioural step. Thus a neuron could fire at a particular 541 
behavioural step but also at a non-zero lag in task space from this behavioural step. We 542 
trained the model on all tasks but one (training tasks) and then used the resultant regression 543 
coefficients to predict the activity of the neuron in a left out (test) task. To ensure our results 544 
are due to task-lag preference and not the powerful effect of goal-progress tuning (which is 545 
easy to predict across tasks due to its invariance; Figure 2 e,f), both training and cross-546 
validation were only done in the preferred goal-progress of each neuron. Using this 547 
approach we were able to predict the state preference of most state-tuned neurons on 548 
individual tasks as evidenced by a strong rightward (positive) shift in the correlation between 549 
predicted and actual state tuning in the test task (Figure 5a,b; Extended data Figure 4a; 550 
Extended data Figure 5a). Crucially, this rightward shift was also seen when only 551 
considering activity at non-zero lags relative to all anchors (Figure 5b, Extended data Figure 552 
5a,b). Neurons were distributed across all lags from the anchors, with an overrepresentation 553 
of zero lag neurons, corresponding to the anchors (behavioural steps) themselves (Extended 554 
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data Figure 5c). Moreover, we found neurons anchored to all goal-progress/place 555 
combinations (Extended data Figure 5d). 556 
 557 
The second approach involves assessing the spatial tuning of mFC state-tuned neurons. 558 
Classically, spatial maps relate the activity of neurons to where the animal is located in the 559 
present, that is with zero lag in task space1. Our model proposes the existence of neurons 560 
tuned to where the animal was a set amount of task lag in the past. The logic of this is that, 561 
while spatial neurons should consistently fire at the same locations(s) in the present (i.e. at 562 
zero lag from the present), neurons that track a memory of the anchor will instead 563 
consistently fire in relation to when the animal visited the anchor at a fixed lag in task space. 564 
They will therefore have a peak in their cross-task spatial correlation at a fixed, non-zero 565 
task lag in the past (Figure 5c; Extended data Figure 4b). Unlike the first analysis, this 566 
approach assumes a single lag from an anchor per neuron, but still allows the anchor to be a 567 
combination of locations. To quantify this effect, we again used a cross-validation approach, 568 
this time using training tasks to calculate the lag at which cross-task spatial correlation was 569 
maximal, and then measuring the correlation between the spatial maps in the left out (test) 570 
task and the training tasks at this lag. This correlation was again strongly right-shifted 571 
(Figure 5d), which was the case even when considering only neurons with non-zero lag 572 
relative to the animal’s current location (Figure 5d, Extended data Figure 5e,f). 573 
 574 
The third approach is effectively the reverse of the second. Instead of comparing spatial 575 
tuning aligned to particular lags, it compares lag-tuning when aligned to particular anchor 576 
visits (Figure 5e-h). Unlike the first two analyses, this approach assumes a single anchor per 577 
neuron. We fitted the anchor by choosing for each neuron the goal-progress/place 578 
conjunction which maximises the correlation between lag-tuning-curves in the training tasks, 579 
and again used cross-validation by assessing whether this anchor leads to the same lag-580 
tuning in a left out task (Figure 5e; Extended data Figure 4c). Using this cross-validation 581 
approach, we found significant alignment between firing distances from the best anchor in 582 
the training and test tasks (Figure 5f), which was crucially seen even when only considering 583 
non-zero lag neurons (Figure 5f). This was in stark contrast to aligning the activity by 584 
abstract state (ABCD), which showed no peak at zero relative to other cardinal directions 585 
(Figure 3b). To quantify the degree of alignment further, we measured the correlation 586 
between the activity of neurons in their preferred goal-progress between the test and training 587 
tasks. The resultant distribution was again right-shifted, even for non-zero lag neurons 588 
(Figure 5g, Extended data Figure 5h,i). Thus, converging lines of evidence indicate that mFC 589 
neurons form mnemonic fields that track task-progress from specific behavioural steps.  590 
 591 

 592 
 593 
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 594 
 595 
Figure 5 – Medial Frontal neurons track task-progress from specific behavioural steps 596 

a) Regression analysis reveals neurons with mnemonic fields in task space from a given goal-597 
progress/place conjunction, alongside neurons directly tuned to a goal-progress/place. This 598 
allows predicting state-tuning and its remapping across tasks, The regression coefficients are 599 
shown on the left with the actual and predicted activity of the neurons shown on the right.  600 
Left: The top neuron has its highest coefficients at 180 degree task lag from early goal-601 
progress in location 4 and 270 degrees task lag from early goal-progress in location 1.The 602 
bottom neuron has its highest coefficients at 180 degree task lag from early goal-progress in 603 
location 3 and 240 degrees task lag from intermediate goal-progress in location 7.  604 
Right: Actual (blue) and model-predicted (orange) activity across 6 tasks 605 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.04.565609doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.04.565609
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

b) Histograms showing the right shifted distribution of mean cross-validated correlation values 606 
between model-predicted (from training tasks) and actual (from a left out test task) activity. 607 
Top: this correlation is shown for all state-tuned neurons and Bottom: only state-tuned 608 
neurons with non-zero-lag firing from their anchors (i.e. state-tuned neurons with all of the 609 
three highest regression coefficient values at non-zero lag (30 degrees either side of the 610 
anchor). To avoid contamination due to potential residual spatial-tuning, for non-zero lag 611 
neurons, we only use regression coefficient values more than 30 degrees in task space either 612 
side of the anchor point to predict the state tuning of the cells. T test against 0: All state-tuned 613 
neurons N=340 neurons, statistic=11.1, P=1.36x10-24, df=339; Non-zero lag state-tuned 614 
neurons N=194 neurons, statistic=3.26, P=0.001, df=193. 615 

c) Lagged spatial field analysis. Example plots showing spatial maps for 3 neurons. Bottom: 616 
Each row represents a different task and each column a different lag in task space. The 617 
activity of each neuron is plotted as a function of the animal’s current location (far right 618 
column for each cell) and at successive task space lags in the past for the remaining 619 
columns. For example, the second to last column is the firing of the cell in relation to where 620 
the animal was 30 degrees (1/3rd of a state) back from the current point in task space, 7th to 621 
last column is the firing of the cell in relation to where the animal was 180 degrees (2 states) 622 
back from the current point in task space...etc. Top: the correlation of spatial maps across 623 
tasks at each lag. The neuron on the left is an anchor cell (goal-progress/place cell), as seen 624 
by the correlation peak at zero lag, while the middle and right-most neurons are neurons 625 
lagged by 240 and 90 degrees from their anchors respectively. 626 

d) Histograms showing the right shifted distribution of the mean cross-validated spatial 627 
correlations between maps at the preferred lag (from training tasks) and the spatial map at 628 
this lag from a left out test task for all state-tuned neurons (top) and only non-zero lag 629 
neurons (bottom). Non-zero lag neurons are those with a peak spatial map correlation more 630 
than 30 degrees in task space either side of zero lag in the training tasks. T test against 0: All 631 
state-tuned neurons N=350 neurons, statistic=13.0, P=1.24x10-31, df=349; Non-zero lag state-632 
tuned neurons N=179 neurons, statistic=3.48, P=6.39x10-4, df=178. 633 

e) Single anchor alignment analysis. Top (blue) plots for each neuron shows activity aligned by 634 
the abstract states (with the dashed vertical line at zero representing reward a, i.e. the start of 635 
state A; going clockwise, the remaining dashed lines represent reward locations b, c and d, 636 
and hence the starts of states B, C and D respectively). Neurons appear to remap in task 637 
space across tasks. Bottom (green) plots for each cell show that it is possible to find a goal-638 
progress/place anchor that consistently aligns neurons across tasks (the zero dashed vertical 639 
line corresponds to visits to the goal-progress/place anchor). The top Neuron aligns best to its 640 
anchor close at 180 degrees while bottom neuron aligns best to its anchor at 120 degrees.  641 

f) Polar histograms showing the cross-validated alignment of neurons by their preferred goal-642 
progress/place anchor (calculated from training tasks) in a left-out test task. The top plot is for 643 
all state-tuned neurons while the bottom plot only includes non-zero lag neurons. Non-zero 644 
lag neurons are those with a peak firing rate more than 30 degrees in task space either side 645 
of the anchor. Two proportions test against chance (25%): All state-tuned neurons: Proportion 646 
generalising: 38.1% N=350 neurons, z=10.66 P<0.001; Non-zero lag state-tuned neurons: 647 
Proportion generalising: 38.5% N=269 neurons, z=9.43, P<0.001.  648 

g) Histograms showing the right shifted distribution of the mean cross-validated task map 649 
correlations between state-tuned neurons aligned to their preferred goal-progress/place 650 
anchor (from training tasks) and the task map aligned to this same goal-progress/place 651 
anchor from a left out test task. . This is shown for all state-tuned neurons (top) and only non-652 
zero lag state-tuned neurons (bottom). Non-zero lag neurons are those with a peak firing rate 653 
more than 30 degrees in task space either side of the anchor. P values are from T tests 654 
relative to 0. T test against 0: All state-tuned neurons N=350 neurons, statistic=6.12, 655 
P=2.53x10-9, df=349; Non-zero lag state-tuned neurons N=269 neurons, statistic=5.44, 656 
P=1.89x10-7, df=268. 657 
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h) Two example paths each spanning an entire trial across two distinct tasks and overlaid 658 
spiking of 2 mFC state-tuned neurons anchored to early goal-progress in location 6 (middle 659 
right location on the maze). Neuron 1 is an anchor neuron and is hence tuned to this goal-660 
progress/place. Neuron 2 fires with a lag of roughly 270 degrees in task space from the 661 
anchor and so fires 3 states after the animal visits early goal-progress in location 6. Thus 662 
neuron 2 fires when animals get reward in location 5 in task 1 (reward a) as this is 270 663 
degrees (3 states) in task space from reward in location 6 (reward b). In task 2, this neuron 664 
fires most in location 2 (reward d) which is also 270 degrees (3 states) from reward in location 665 
6 (reward a). For visualisation purposes, spikes were jittered to ensure directly overlapping 666 
spikes are distinguishable. 667 
All error bars represent the standard error of the mean 668 

 669 
 670 
2-Distal prediction of behavioural choices 671 
The SMB model posits that mFC neurons represent a memory of the animal’s past policy 672 
and provides a mechanistic explanation for this mnemonic function that we empirically 673 
validate above. The model also proposes a mechanism for how such neurons can be used 674 
to guide future behaviour. This is because the modules are proposed to be shaped by the 675 
structure of the task, in our case a loop of four rewards. This ring structure means modules 676 
can be used to repeat an effective policy once it is found (Figure 6a). If in trial N an animal 677 
makes a choice to visit a given behavioural step (e.g. early goal-progress location 2), then a 678 
bump of activity is initiated on the module that is anchored to this behavioural step at this 679 
point in the task (e.g. start of state B). This activity bump moves around the ring paced by 680 
progress in the task until it circles back close to the anchor point (e.g. towards the end of 681 
state A). This close-to-anchor activity biases the animal to return back to this same 682 
behavioural step in trial N+1 that it visited at the same point in the task in trial N (e.g. start of 683 
state B), thereby repeating the previous trial’s policy (Figure 6a). Thus, at any point in the 684 
sequence, the animal can choose among options for the next step in the maze by “listening” 685 
to the ring with the largest bump near its anchor point. The result is a sequential policy 686 
paced by the task periodicity. Crucially, the same memory buffers can be activated in a 687 
different sequence to encode a different task, without needing to build or bind new 688 
representations: thereby providing a programmable encoding of new task sequences. 689 

This model makes a unique prediction: the choice an animal will make to visit a particular 690 
maze location should be predictable from the activity of neurons anchored to the possible 691 
choices several steps and 10s of seconds before the animal actually makes a decision. This 692 
is because the bump of activity is constrained to move around a given ring. Hence, bump 693 
size at an early point in the trial should strongly correlate with its size just before the anchor 694 
point (Figure 6a). The time point just before the anchor point is the “decision time” for a given 695 
ring where the output neurons of the ring can be read out to bias the animal’s choice towards 696 
the behavioural step represented by the anchor (Figure 6a). The time at which the putative 697 
bump of activity passes through a given neuron (the neuron’s “bump-time”) reflects the 698 
neuron’s task-space lag from the behavioural step to which its anchored: i.e. its position on 699 
the ring relative to the anchor (Figure 4a, Figure 6a). The SMB model proposes that activity 700 
restricted to this “bump-time” can be used to predict whether an animal will return back to 701 
this same behavioural step at the same point in the next trial. Because a trial is on average 702 
~30 seconds in length, this means an animal’s choices can be predicted 10s of seconds 703 
before they are made. To test this prediction, we related the trial-by-trial “bump-time” activity 704 
of neurons at non-zero lag to their anchor with subsequent visits to this same anchor. 705 
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Intriguingly, while controlling for previous choices, we found that the “bump-time” activity of 706 
neurons was higher before animals visited the neurons’ anchor (Figure 6b). To investigate 707 
this further, we ran a logistic regression on the trial by trial activity of neurons at non-zero lag 708 
from their anchor to predict upcoming behavioural choices by the animal. To control for the 709 
autocorrelation in animals’ behaviour, we regressed out previous choices going all the way 710 
back to 5 trials in the past (Figure 6c). We found that mFC neurons significantly predicted 711 
future choices only when taking their activity at the correct “bump-time”. Crucially, activity of 712 
a given neuron at the “wrong” times, whether at random timepoints, times shifted by 90 713 
degree intervals relative to the “bump-time” to preserve goal-progress tuning, or even at the 714 
“decision time” itself, did not predict subsequent choices (Figure 6d). This prediction held 715 
even when only considering choices to intermediate, non-rewarded locations (Extended data 716 
figure 6a).  717 

Notably, animals are not performing optimally (Figure 1d). Whilst performance is well above 718 
chance, they continue to be biased by pre-existing policies that existed before they learned 719 
any ABCD task (Extended Data Figure 1c). We reasoned that if the frontal cortex exerts goal 720 
directed control21, then we might only be able to predict choices where animals take actions 721 
that go against their pre-existing biases. We therefore divided choices into high and low 722 
probability ones, based on the probability animals made a given choice in an exploration 723 
session on the same maze but before the animals had been exposed to any ABCD task. 724 
Intriguingly, we found that frontal activity was not predictive of high probability choices 725 
(Figure 6e). In contrast, mFC activity predicted low probability choices (Figure 6f). This is in 726 
line with the view that frontal neurons are preferentially implicated in altering behaviour 727 
against stereotyped policies21. Moreover, “bump-time” activity of neurons with mnemonic 728 
fields that are lagged by more than one state away from the anchor also predicted choices 729 
(Extended data figure 6b). This again was seen for low (Figure 6g) but not high probability 730 
choices (Extended data figure 6c). Overall these results, showing a distal prediction of 731 
behavioural choices, empirically validate the SMB model as a mechanism for the retrieval of 732 
task-paced policies by the mFC. 733 
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 734 
 735 
Figure 6 – Medial Frontal activity predicts distal behavioural choices  736 

a) Schematic showing distal prediction of animals choices from memory buffers. When the 737 
animal visits a goal-progress/place (t=1) in trial N, a bump of activity is initiated in the memory 738 
buffer that is anchored to this goal-progress/place. This bump travels around the buffer (e.g. 739 
t=2), paced by progress in the task. When the activity bump circles back to a point close to 740 
the anchor (t=3), it can be read out to bias the animal to return back to the same goal-741 
progress/place in trial N+1 that was visited in the same task state in trial N. This read-out time 742 
defines a “decision point” that is specific for each memory buffer. Left: If, at t=3 in the example 743 
given, the bump on the buffer anchored to intermediate goal-progress in location 1 (brown 744 
square) is larger than that for the other option (intermediate goal-progress in location 4; red 745 
square) the animal will choose location 1. Right: Location 4 (red square) is chosen if the bump 746 
anchored to intermediate goal-progress in location 4 is larger at t=3. This choice could have 747 
been predicted from the bump sizes at an earlier time point (e.g. t=2) as the bump size will 748 
remain highly stable for the duration of a single trial, hence allowing  distal prediction of 749 
choices from the memory buffers. 750 

b) Prediction of behaviour. Normalised firing rates of neurons during their “bump time”: i.e. the 751 
lag at which they are active relative to the anchor. X-axis labels denote visits to a goal-752 
progress/place anchor in the current (N) and upcoming trial (N+1). For example a value of 0:1 753 
means the anchor was not visited in trial N but visited in trial N+1. Bump time activity is higher 754 
before visits to the neuron’s anchor in trial N+1 whether the anchor was not visited in trial N 755 
(left) or when it was visited in trial N (right). Wilcoxon tests: Anchor not visited in trial N: n=78 756 
sessions, statistic=1090, P=0.025. Anchor visited in trial N: n=72 sessions, statistic=666, 757 
P=2.76x10-4. In addition, an ANOVA on all data (N=72 sessions) showed a main effect of 758 
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Past F=20.6 P=2.2x10-5, df1=1, df2=71, main effect of Future F=9.5 P=0.003, df1=1, df2=71 759 
and no Past x Future interaction F=0.41 P=0.525, df1=1, df2=71. 760 

c) Design of logistic regression to assess effect of activity of the neuron on future visits to the 761 
anchor. To control for any autocorrelation in the choices of the a mouse, previous choices 762 
(binary values: 1s and 0s indicating visits) as far back as 5 trials in the past are added as 763 
regressors. Separate regressions are done for activity at different times: “bump time” (as in b); 764 
random times, decision time (the last 30 degrees of task space before the time where the 765 
animal could have visited the anchor of a given neuron, i.e. was one goal-progress-place 766 
away from it), and times shifted by 90 degree intervals relative to the neuron’s “bump time”. 767 

d) Regression coefficients are significantly positive for the bump time but not any of the other 768 
control times. T tests against 0: “bump time”: N=78 sessions, statistic=2.43, P=0.017, df=77; 769 
”decision time”: N=78, statistic=-0.26, P=0.792, df=77; “random time” N=78, statistic=-0.127, 770 
P=0.899, df=77; “90 degree shifted time” N=78, statistic=-1.34, P=0.183, df=77; “180 degree 771 
shifted time” N=78, statistic=-0.700, P=0.486, df=77; “270 degree shifted time” N=78, 772 
statistic=-1.86, P=0.066, df=77. 773 

e) Left: Distal prediction of behaviour to intermediate (non-rewarded) locations including choices 774 
to reward locations for only the high probability choices (choices that animals made with a 775 
probability in top half of maze transition probabilities during pre-task exploration). Bump time 776 
activity is indistinguishable before visits to the neuron’s anchor compared to non visits in trial 777 
N+1 whether the anchor was not visited in trial N (left) or when it was visited in trial N (right). 778 
Wilcoxon tests: Anchor not visited in trial N: n=59 sessions, statistic=728, P=0.236. Anchor 779 
visited in trial N: n=53, statistic=637, P=0.487. In addition, an ANOVA on all data (N=53 780 
sessions) showed a trend towards a main effect of Past F=3.26 P=0.077, df1=1, df2=52, no 781 
main effect of Future F=0.026 P=0.871, df1=1, df2=52 and no Past x Future interaction 782 
F=1.60 P=0.211, df1=1, df2=52. Right: Regression coefficient is not significant for the bump 783 
time. T tests against 0: “bump time”: N=59 sessions, statistic=0.324, P=0.747, df=58; 784 
”decision time”: N=59, statistic=0.329, P=0.743, df=58; “random time” N=59, statistic=0.106, 785 
P=0.916, df=58; “90 degree shifted time” N=59, statistic=-0.918, P=0.362, df=58; “180 degree 786 
shifted time” N=59, statistic=0.611, P=0.544, df=58; “270 degree shifted time” N=59, 787 
statistic=0.052, P=0.959, df=58. 788 

f) Left: Distal prediction of behaviour to intermediate (non-rewarded) locations including choices 789 
to reward locations for only the low probability choices ((choices that animals made with a 790 
probability in bottom half of maze transition probabilities during pre-task exploration). 791 
Wilcoxon tests: Anchor not visited in trial N: n=64 sessions, statistic=744, P=0.048. Anchor 792 
visited in trial N: n=54, statistic=486, P=0.027. In addition, an ANOVA on all data (N=54 793 
sessions) showed a main effect of Past F=5.66 P=0.021, df1=1, df2=52, a main effect of 794 
Future F=6.40 P=0.014, df1=1, df2=52 and no Past x Future interaction F=1.67 P=0.201, 795 
df1=1, df2=52. Right: Regression coefficients are significantly positive for the bump time but 796 
not any of the other control times. T tests against 0: “bump time”: N=64 sessions, 797 
statistic=2.03, P=0.047, df=63; ”decision time”: N=64, statistic=-0.806, P=0.423, df=63; 798 
“random time” N=64, statistic=0.883, P=0.380, df=63; “90 degree shifted time” N=64, 799 
statistic=-0.079, P=0.937, df=63; “180 degree shifted time” N=64, statistic=-0.537, P=0.593, 800 
df=63; “270 degree shifted time” N=64, statistic=0.100, P=0.920, df=63. 801 

g) Prediction of behaviour using neurons anchored at distal points (one state away or more) 802 
from the anchor for only the low probability choices (choices that animals made with a 803 
probability in bottom half of maze transition probabilities during pre-task exploration). 804 
Normalised firing rates of neurons during their “bump time”: i.e. the lag at which they are 805 
active relative to the anchor. Bump time activity is higher before visits to the neuron’s anchor 806 
in trial N+1 whether the anchor was not visited in trial N (left) or when it was visited in trial N 807 
(right). Wilcoxon tests: Anchor not visited in trial N: n=67, statistic=463, P=2.41x10-5. Anchor 808 
visited in trial N: n=51, statistic=430, P=0.029. In addition, an ANOVA on all data (N=51 809 
sessions) showed a main effect of Past F=5.29 P=0.026, df1=1, df2=50, no main effect of 810 
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Future F=10.19 P=0.002, df1=1, df2=50 and no Past x Future interaction F=7.73x10-4 811 
P=0.978, df1=1, df2=50. Regression coefficients are significantly positive for the bump time 812 
but not any of the other control times. T tests against 0: “bump time”: N=67 sessions, 813 
statistic=2.02, P=0.048, df=66; ”decision time”: N=67, statistic=-1.54, P=0.128, df=66; 814 
“random time” N=67, statistic=-2.60, P=0.011, df=66; “90 degree shifted time” N=67, 815 
statistic=-2.73, P=0.008, df=66; “180 degree shifted time” N=67, statistic=-1.65, P=0.103, 816 
df=66; “270 degree shifted time” N=67, statistic=-1.46, P=0.148, df=66.  817 
All error bars represent the standard error of the mean 818 

 819 
3-Internally organised memory buffers 820 
Our findings so far support the view that mFC modules invariantly track task-progress from 821 
different behavioural steps, and use this memory to retrieve a sequential policy that is paced 822 
by the task’s periodicity. To retrieve such task-paced sequences, the SMB model proposes 823 
that memory buffers are shaped by the structure of the task. In the ABCD task, the structure 824 
is a loop consisting of 4 rewarded goals (4 goal-progress cycles). Thus the neuronal state 825 
space should curve back onto itself after 4 goals, creating an internally organised ring 826 
structure. While the policy retrieval results (Figure 6; Extended Data figure 6) are consistent 827 
with this view, we sought a more direct test of this task-structuring hypothesis. To this end, 828 
we investigated whether pairwise coactivity during pre-task sleep reflects a ring-like neuronal 829 
state space. We regressed the circular distance between pairs of neurons that share the 830 
same anchor, and hence belong to the same module, against their cross-correlation during 831 
sleep (Figure 7a). This was done while co-regressing the forward distance from the anchor: 832 
the distance between two neurons in a state space shaped into a line that begins with the 833 
anchor (Figure 7a). We found that regression coefficient values were significantly negative 834 
for circular distance, while controlling for forward distance, indicating that neurons closer on 835 
a circular state space (smaller neuron-neuron distances on a ring) are more coactive (Figure 836 
7b). These results held while controlling for pairwise spatial map similarity and goal-837 
progress-tuning proximity between neurons, which were added as co-regressors. Forward 838 
distance did not predict co-activity when controlling for circular distance (Figure 7b). 839 
Moreover, we isolated pairs of neurons that had systematically opposed circular and forward 840 
distances (i.e. pairs of neurons separated by a forward distance of 180 degrees or more). 841 
Regressing circular distance against sleep coactivity for only those neuron pairs also 842 
showed a significantly negative regression coefficient, further supporting a ring-shaped state 843 
space (Figure 7c). In addition, pairs of consistently anchored neurons that share the same 844 
anchor showed significantly more negative regression coefficient values than neuron pairs 845 
across anchors (Figure 7d). This was true both for pre-task and post-task sleep (Figure 7d). 846 
Taken together, these findings provide offline evidence that mFC modules are internally 847 
organised by the structure of the task. 848 
 849 
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 850 
 851 
Figure 7 – Offline activity of mFC neurons is internally organised by the Task structure 852 

a) Top: Schematic showing potential neuronal state spaces - if neurons are arranged on a ring, 853 
then circular distance is a better description of how close two neurons are in state space than 854 
forward distance relative to the anchor. Conversely, if neurons lie on a delay line, forward 855 
distance is a better description of neuron-neuron co-firing relationships. Bottom: Schematic 856 
showing the inputs and outputs of linear regression model relating pairwise task-distance 857 
(either circular or forward distance) with coactivity during sleep while regressing out pairwise 858 
goal-progress tuning distance and spatial map similarity. 859 

b) Regression coefficient values for circular (left) or forward (right) distance regressed against 860 
sleep cross-correlation for co-anchored neurons - T test relative to 0 (One-tailed): circular 861 
distance: N=612 pairs t=-1.656 P=0.049; forward distance: t=0.266 P=0.395, df=612  862 

c) Regression coefficient values for circular distance for only co-anchored pairs of neurons 863 
separated by a forward distance of 180 degrees or more in task space: T test relative to 0 864 
(One-tailed): N=149 pairs t=-2.770 P=0.003, df=148 Note that forward distance is the exact 865 
inverse of circular distance for forward distances of 180 degrees or higher, and hence forward 866 
distance regression coefficients will be exactly the same magnitude, but opposite sign, to 867 
circular distance regression coefficients. 868 

d) Regression coefficient values for circular distance against sleep cross-correlation using pairs 869 
of neurons consistently anchored to the same anchor (within) vs pairs with different anchors 870 
(between). Regression coefficient values were significantly more negative for within compared 871 
to between comparison for pre-task (left) and post-task (right) sleep. Two-tailed unpaired T 872 
test: Pre-task: t = 7.7216, N=268 pairs (within), 2722 pairs (between), df = 2988, P<0.0001; 873 
Post-task: N=256 pairs (within), 2774 pairs (between), df = 3028, t = 2.3145,P=0.0207 874 
All error bars represent the standard error of the mean      875 

 876 

Discussion 877 

 878 
Our findings identify a cellular algorithm for mapping abstract behavioural structure. We 879 
found that mice can learn an abstract structure organising multiple goals and use it to rapidly 880 
learn complex behavioural sequences. The large majority of mFC neurons tiled progress-to-881 
goal, generalising across behavioural sequences of different distances, times and locations. 882 
This goal-progress tuning was further elaborated to form representations shaped by the 883 
overall structure of the task, a four-goal loop in our case. The use of goal-progress tuning as 884 
a scaffold for building task-structure representations ensured that mFC neuronal dynamics 885 
evolved as a function of true progress in the overall task as defined by the goals, rather than 886 
other physical dimensions. Using goal-progress-tuned neurons also meant that frontal 887 
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representations tracked task progress not only from each goal location but also from 888 
intermediate behavioural steps en route between goals. This allowed encoding long 889 
sequences of behaviours that were parsed by the task structure, guided primarily by the 890 
network dynamics of pre-learned memory buffers. The resulting algorithm provides a unified 891 
account of mFC roles in schema formation and sequence memory, by internally organising 892 
mnemonic activity according to an abstract structure shared by many tasks. It further 893 
suggests a general mechanism for building behavioural schema by using “goal-progress” 894 
neurons as a building block that can be sculpted to represent the structure of any complex 895 
task. 896 
 897 
The SMB algorithm we discover here can potentially reconcile a number of findings 898 
concerning the mFC. Lesions to the Frontal cortex across species affect the sequencing of 899 
complex, goal-directed behaviours37. Here we show that if mnemonic representations 900 
resembling those implicated in sequential working memory22 are shaped by an abstract task 901 
structure, they could explain another key function of the mFC: the formation of generalised 902 
task schema12. Moreover, the differences in the representational logic employed at each 903 
level of the task hierarchy seen in our study could potentially reconcile seemingly disparate 904 
views on task structure generalisation. At the level of tracking progress towards a single 905 
goal, we find that neurons tile this space using fixed sequences that generalise across 906 
different behavioural trajectories. These goal-progress cells are similar in spirit to neurons in 907 
the mFC that encode general task states regardless of sensorimotor specifics11,28–31. 908 
However, at the level of tracking task-progress in a sequence comprising multiple goals, 909 
network dynamics are not universally coherent across all neurons, but are instead 910 
apportioned into modules, each tracking a memory of a particular behavioural step. Such 911 
representational logic is consistent with recent empirical findings in sequence working 912 
memory tasks22,38 and tasks where tracking previous choices and/or reward history is 913 
necessary for optimal behaviour23,24  as well as computational work on recurrent neural 914 
networks trained to generalise across tasks35. Moreover, while such SWM tasks are not 915 
explicitly circular, maintenance of the experienced sequence in the delay period might be 916 
implemented via similar ring attractor dynamics. These dynamics would later guide retrieval 917 
of the sequence in the same way we describe here, through activating anchor neurons 918 
representing the next step in the sequence via simulation rather than direct experience. 919 
More generally, we propose that invariant representations may track progress towards a 920 
single goal while stimulus-specific working-memory-like representations are used for tracking 921 
progress in a complex task comprising multiple goals of equal valence. 922 
 923 
How does the organisation of neurons in the mFC mapping “behavioural structure” compare 924 
with the cellular bases of cognitive maps of “world structure”? Like the grid-cells that underlie 925 
world-structure mapping, frontal neurons are internally organised according to the structure 926 
they map. Neurons maintain this structure when the contents of the sequence they are 927 
mapping change in new tasks in mFC (Figure 3) and in new spatial contexts in mEC36, and 928 
even in the absence of any structured sensory input during sleep (Figure 7 for mFC; 39,40 for 929 
mEC). We also note the modularity that underlies both types of maps (Figure 3 for mFC; 36 930 
for mEC), which may be a general feature of cortical representations that allows mapping 931 
spaces from different reference points41. There are also key differences. One difference 932 
relates to the velocity signal driving dynamics in both maps. By virtue of needing to map 933 
behavioural space rather than physical space, activity bumps along attractors representing 934 
behavioural structure evolve as a function of progress towards a goal (Figure 2), while grid 935 
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cells use the velocity of the animal in physical space to track its spatial position42. This basic 936 
goal-progress scaffold in the Frontal cortex enables building a representation that evolves as 937 
a function of task stages, allowing animals to reliably map true task-progress independently 938 
of other variables such as elapsed time or distance. Another apparent difference relates to 939 
how maps are used to guide flexible behaviour in new contexts. For maps of world structure, 940 
convergent input from medial Entorhinal grid cells and sensory input from the lateral 941 
Entorhinal cortex into the Hippocampus is thought to give rise to the canonical “place cell” in 942 
a new spatial context43. This grounding of abstract, relational “world-structure” knowledge to 943 
concrete experiences allows us to navigate, path integrate and infer new routes to 944 
goals3,4,44,45. Conversely, by virtue of having fixed anchoring to concrete behavioural steps, 945 
frontal neurons store new behavioural sequences in the dynamics of the network, without 946 
needing access to an external memory and new plasticity. This offers a programmable 947 
solution to mapping new sequences, which avoids the need for associative binding on new 948 
tasks. Intriguingly, a recent study suggests that similar fixed anchoring of grid-cells to 949 
landmarks may allow rapid, plasticity-free mapping of new spatial environments46, akin to 950 
what we report here for frontal maps of behavioural structure. How associative and network 951 
dynamics-based solutions compare computationally, how they coexist in the same and 952 
distinct circuits and when they are used remain open questions. We address some of these 953 
computational questions in a recent theoretical study47. 954 
 955 
The programmable solution employed to map behavioural structure in expert animals places 956 
the burden of plasticity on sculpting attractor dynamics when learning early tasks. How is 957 
such learning achieved? A potential answer comes from considering that memory buffers 958 
representing the abstract task structure are expressed on top of lower level goal-progress 959 
tuning. Goal-progress-tuned neurons may have been initially part of task-naive goal-960 
progress sequences that then became sculpted, through learning of many examples, to form 961 
structured memory buffers. These naive goal-progress sequences may develop first to map 962 
sequences to any behavioural goal independently of any higher order structure organising 963 
the goals. Input from the Hippocampus and/or medial Entorhinal cortex could provide spatial 964 
information to the mFC48 to generate the conjunctive goal-progress/place anchors. Plasticity 965 
at recurrent mFC-thalamus-Basal ganglia loops could then allow learning task-structured 966 
memory buffers that track task-progress from these anchors49,50. Goal-progress sequences 967 
could therefore provide an inductive bias which facilitates the formation of a schema 968 
encoding any task-structure in the mFC. Monitoring and manipulating mFC neurons and 969 
their inputs during learning of the ABCD task and equivalent hierarchical learning paradigms 970 
will allow understanding the inductive biases, learning rules and circuit mechanisms that 971 
generate maps of behavioural structure.  972 
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Extended Data Figures 973 

 974 
Extended Data Figure 1 975 

 976 
a) Tasks were designed such that task space and physical space are orthogonal to 977 

each other. A kernel density estimate plot showing that distances between reward 978 
locations in task space (how many states are between the rewards) are not 979 
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correlated with the physical distances in the maze. Data points are individual tasks. 980 
Pearson correlation: r=0.00 P=1.0 981 

b) Animals used stereotyped routes when taking the shortest route to a goal. The 982 
entropy of correct transitions taken is lower than expected if animals took all shortest 983 
routes equally. T-test against 1 – N=11 animals, statistic=-20.38, P=9.07x10-7, df=10 984 

c) Suboptimal performance was associated with persisting behavioural biases from 985 
before exposure to the task. Y-axis shows the r value calculated from a correlation 986 
between the mean relative path distance taken between goals and the probability the 987 
transitions within this trajectory would have been taken when the animal was naive to 988 
any ABCD task (when the animal explored the arena before any rewards or tasks 989 
were presented). A net positive correlation indicates that when animals take longer 990 
routes (i.e. perform less optimally) they take these routes through transitions that 991 
they were more likely to take before exposure to any ABCD task. T-test against 0 – 992 
N=11 animals, statistic=2.36, P=0.040, df=10 993 

d) Mean relative path distance travelled by the mice between goals in the first 20 trials 994 
of early vs late tasks. Wilcoxon test N=11 animals, Statistic=0.0, P=9.77x10-4 995 

e) Mean proportion of transitions where one of the shortest routes was taken in the first 996 
20 trials of early vs late tasks. Wilcoxon test N=11 animals, Statistic=4.0 P=0.007 997 

f) No difference in the empirical chance levels (baseline transition probabilities 998 
calculated when animals explored the maze before experiencing any ABCD tasks: 999 
see Methods under “Behavioural Scoring”) between d to a and c-to-a/b-to-a 1000 
transitions on the first trial in early (left) and late (right) tasks. Wilcoxon test; Early 1001 
tasks: N=11 animals, statistic=31.0, P=0.898; Late tasks: N=11 animals, 1002 
statistic=23.0, P=0.413 1003 

g) No difference in the analytical chance levels (see Methods under “Behavioural 1004 
Scoring”) between d to a and c-to-a/b-to-a transitions on the first trial in early (left) 1005 
and late (right) tasks. Wilcoxon test; Early tasks: N=11 animals, statistic=14.0, 1006 
P=0.102; Late tasks: N=11 animals, statistic=29.0, P=0.765 1007 

h) No difference in the shortest physical maze distances between d to a and c-to-a/b-to-1008 
a transitions on the first trial in early (left) and late (right) tasks. Wilcoxon test; Early 1009 
tasks: N=11 animals, statistic=12.0, P=0.114; Late Tasks: N=11 animals, 1010 
statistic=20.0, P=0.767 1011 

i) Zero-shot inference on the first trial of late tasks is associated with animals returning 1012 
from d to a more often than d-to-b or d-to-c. The proportion of tasks in which animals 1013 
took the most direct path from d-to-a on the first trial is compared to the same 1014 
measure but for premature returns from d-to-b and d-to-c. Early tasks are shown on 1015 
the left and late tasks on the right. Wilcoxon test; Early tasks: N=11 animals, 1016 
statistic=20.0, P=0.767; N=11 animals, Late tasks: statistic=6.0, P=0.014 1017 

 All error bars represent the standard error of the mean  1018 
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Extended Data Figure 2 1019 

 1020 
 1021 

a) Coronal slice from an implanted mouse showing silicon probe track terminating in the 1022 
prelimbic region of mFC. 1023 

b) Polar plots of task tuning and spatial maps for four example neurons that are tuned to 1024 
both goal-progress and state. Each neuron is plotted across two tasks to illustrate 1025 
spatial tuning (left two neurons) and lack thereof (right two neurons).  1026 
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Extended Data Figure 3 1027 

 1028 
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a) Three example state-tuned neurons remapping across tasks. The top two neurons 1029 
remap in a way that is not related to their spatial maps in any given task. The bottom 1030 
neuron remaps in accordance to its spatial map. 1031 

b) Remapping of non-spatial neurons. Top: Quantifying the difference in tuning angles 1032 
for the same neuron across tasks (top). Bottom left: Polar histograms show that non-1033 
spatial state-tuned neurons remap by angles close to multiples 90 degrees, as a 1034 
result of conserved goal-progress tuning and the 4 reward structure of the task. No 1035 
clear peak at zero is seen relative to the other cardinal directions when comparing 1036 
sessions spanning separate tasks (Two proportions test against a chance level of 1037 
25% N=432 neurons; mean proportion of generalising neurons across one 1038 
comparison (mean of X vs Y and X vs Z)=21%, z=7.01, P=2.33x10-12: i.e. 1039 
significantly lower than chance). Bottom right: Non-spatial state-tuned neurons 1040 
maintain their state preference across different sessions of the same task (bottom 1041 
right). Two proportions test against a chance level of 25% N=324 neurons; proportion 1042 
generalising=84%, z=20.3, P<0.001).  1043 

c) Coherence of non-spatial neuron pairs. Top: Quantifying difference in relative angles 1044 
between neurons across tasks. Bottom: Only non-spatial state-tuned neurons are 1045 
shown. Bottom left: Polar histograms show that the proportion of coherent pairs of 1046 
non-spatial state-tuned neurons (comprising the peak at zero) is higher than chance 1047 
but far from 1, indicating that the whole population does not rotate coherently (Two 1048 
proportions test against a chance level of 25% N=3946 pairs; mean proportion of 1049 
coherent neurons across one comparison (mean of X vs Y and X vs Z)=31%, z=29.8, 1050 
P<0.001)). Bottom right: As expected from panel b, the large majority of non-spatial 1051 
state-tuned neurons keep their relative angles across sessions of the same task (X 1052 
vs X’; Two proportions test against a chance level of 25% N=2805 pairs; proportion 1053 
coherent=75%, z=53.6, P<0.001). 1054 

d) Proportion of coherent pairs per recording day (pairs of state-tuned neurons where 1055 
the relative angle doesn't change by more than 45 degrees across both X to Y and X 1056 
to Z comparisons) relative to all pairs across different pairwise task space angles. T 1057 
tests with Holm-Sidak correction against chance level of 1/16 (probability of neuron 1058 
pair rotating coherently across two comparisons (i.e. 0.252)): N=21 recording days, 1059 
pairwise circular distance difference: 0-45 degrees statistic=6.89, P=4.33x10-6, df=20; 1060 
45-90 degrees statistic=3.10, P=0.011, df=20; 90-135 degrees statistic=3.74, 1061 
P=0.004, df=20; 135-180 degrees statistic=2.14, P=0.044, df=20. 1062 

e) Coherent pairs show a trend towards being closer anatomically than incoherent pairs. 1063 
Independent T test: N=4138 pairs, statistic=-1.84, P=0.065, df=4136 1064 
All error bars represent the standard error of the mean  1065 
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Extended Data Figure 4 1066 

 1067 
a) Regression analysis reveals neurons with mnemonic fields lagged in task space from 1068 

a given goal-progress/place anchor (bottom two neurons), alongside neurons directly 1069 
tuned to a goal-progress/place (top neuron). The regression coefficients are shown 1070 
on the left with the actual (blue) and predicted (orange) activity of the neurons shown 1071 
on the right. 1072 

b) Lagged spatial field analysis. Example plots showing spatial maps for 3 neurons. 1073 
Each row represents a different task and each column a different lag in task space. 1074 
Bottom: Activity of each neuron is plotted as a function of the animal’s current 1075 
location (far right column for each cell) and at successive task space lags in the past 1076 
for the remaining columns. Top: the correlation of spatial maps across tasks at each 1077 
lag. The neuron on the left is an anchor cell (goal-progress/place cell), as seen by the 1078 
correlation peak at zero lag, while the middle and right-most neurons are neurons 1079 
lagged by 240 and 180 degrees from their anchors respectively. 1080 
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c) Single anchor alignment analysis. Top (blue) plots for each neuron shows activity 1081 
aligned by the abstract states (with the dashed vertical line at zero representing 1082 
reward a, i.e. the start of state A; going clockwise, the remaining dashed lines 1083 
represent reward locations b, c and d, and hence the starts of states B C and D 1084 
respectively). Neurons appear to remap in task space across tasks. Bottom (green) 1085 
plots for each cell show that it is possible to find a goal-progress/place anchor that 1086 
consistently aligns neurons across tasks (the zero line corresponds to visits to the 1087 
goal-progress/place anchor). Top neuron has a peak at zero relative to the anchor, 1088 
while the middle and the bottom neurons peak at 200 degrees and 45 degrees from 1089 
their anchors respectively.  1090 
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Extended Data Figure 5 1091 

 1092 
a) Mean, per mouse distribution of cross-validated correlation values between model-1093 

predicted (from training tasks) and actual activity (from a left out test task) for:  1094 
Top: All state-tuned neurons,  1095 
Middle: non-zero lag state-tuned neurons (30 degrees or more away from anchor),  1096 
Bottom: distal non-zero lag state-tuned neurons (90 degrees or more away from 1097 
anchor).  1098 
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One-tailed binomial test against chance (chance being mean values equally likely to 1099 
be above or below 0): All state-tuned neurons: 4/5 mice with mean positive 1100 
correlation P=0.1875; Non-zero lag state-tuned neurons: 4/5 mice with mean positive 1101 
correlation P=0.1875; Distal Non-zero-lag state-tuned neurons: 4/5 mice with mean 1102 
positive correlation P=0.1875). 1103 

b) Histogram showing the right shifted distribution of mean cross-validated correlation 1104 
values between model-predicted (from training tasks) and actual activity (from a left 1105 
out test task) for only non-zero lag state-tuned neurons with one of the top 3 1106 
maximum regression coefficient values a whole state (90 degrees) or more either 1107 
side of the anchor. To avoid contamination due to potential residual spatial-tuning, 1108 
only regression coefficient values more than 90 degrees in task space either side of 1109 
the anchor point are used for the prediction. T test against 0: N=46 neurons, 1110 
statistic=2.13, P=0.039, df=45. 1111 

c) Distribution of task space lags from anchor for all state-tuned neurons.  1112 
d) 2D histograms showing spatial and goal-progress distributions of anchors. The colour 1113 

bar represents the number of neurons anchored to each maze location at each goal-1114 
progress (maze repeated 3 times to display results for early, intermediate and late 1115 
goal-progress anchors). 1116 

e) Mean, per mouse distribution of cross-validated spatial correlations between spatial 1117 
maps at the preferred lag (from training tasks) and the spatial map at this lag from a 1118 
left out test task for:  1119 
Top: All state-tuned neurons 1120 
Middle: non-zero-lag state-tuned neurons (30 degrees or more away from anchor) 1121 
Bottom distal non-zero-lag state-tuned neurons (90 degrees or more away from 1122 
anchor).  1123 
One-tailed binomial test against chance (chance being mean values equally likely to 1124 
be above or below 0): All state-tuned neurons: 5/5 mice with mean positive 1125 
correlation P=0.03125; Non-zero lag state-tuned neurons: 5/5 mice with mean 1126 
positive correlation P=0.03125; Distal Non-zero lag state-tuned neurons: 4/4 mice 1127 
with mean positive correlation P=0.0625). 1128 

f) Histogram showing the right shifted distribution of the mean cross-validated spatial 1129 
correlations between spatial maps at the preferred lag in training tasks and the 1130 
spatial map at this lag from a left out test task for only non-zero-lag state-tuned 1131 
neurons with spatial correlation peaks a whole state (90 degrees) or further either 1132 
side of zero-lag. T test against 0: N=90 neurons, statistic=2.49, P=0.015, df=89. 1133 

g) Polar histogram showing the cross-validated alignment of non-zero-lag neurons by 1134 
their preferred goal-progress/place (calculated from training tasks) in a left-out test 1135 
task. Only neurons with a lag of 90 degrees (one state) or more either side of their 1136 
anchor are shown. Two proportions test against chance (25%): Proportion 1137 
generalising=39.2%; N=154 neurons, z=7.23, P=4.98x10-13 1138 

h) Mean, per mouse distribution of cross-validated task map correlations between 1139 
neurons aligned to their preferred goal-progress/place anchor (from training tasks) 1140 
and the task map aligned to this goal-progress/place from a left out test task for:  1141 
Top: all state-tuned neurons 1142 
Middle: non-zero-lag state-tuned neurons (30 degrees or more away from anchor) 1143 
Bottom distal non-zero-lag state-tuned neurons (90 degrees or more away from 1144 
anchor). One-tailed binomial test against chance (chance being mean values equally 1145 
likely to be above or below 0): All neurons: 5/5 mice with mean positive correlation 1146 
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P=0.03125; Non-zero-lag neurons: 5/5 mice with mean positive correlation 1147 
P=0.03125; Distal Non-zero-lag neurons: 4/5 mice with mean positive correlation 1148 
P=0.188). 1149 

i) Histogram showing the right shifted distribution of the mean cross-validated task map 1150 
correlations between neurons aligned to their preferred goal-progress/place anchor 1151 
(from training tasks) and the task map aligned to this goal-progress/place from a left 1152 
out test task for only non-zero-lag state-tuned neurons with a lag of 90 degrees or 1153 
more either side of their anchor. T test against 0: N=154 neurons, statistic=4.59, 1154 
P=9.38x10-6, df=153.  1155 
 1156 
All error bars represent the standard error of the mean  1157 
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Extended Data figure 6 1158 

 1159 
 1160 

a) Left: Prediction of behaviour to intermediate (non-rewarded) locations i.e. excluding 1161 
choices to reward locations. Normalised firing rates of neurons during their “bump 1162 
time”: i.e. the lag at which they are active relative to the anchor. Bump time activity is 1163 
higher before visits to the neuron’s anchor in trial N+1 whether the anchor was not 1164 
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visited in trial N (left) or when it was visited in trial N (right). Wilcoxon tests: Anchor 1165 
not visited in trial N: n=76 sessions, statistic=1093, P=0.055. Anchor visited in trial N: 1166 
n=71 sessions, statistic=880, P=0.023. In addition, an ANOVA on all data (N=71 1167 
sessions) showed a main effect of Past: F=11.0 P=0.001, df1=1, df2=70, a trend 1168 
towards an effect of Future: F=2.74 P=0.103, df1=1, df2=70 and no Past x Future 1169 
interaction F=0.001 P=0.973, df1=1, df2=70. Right: Regression coefficients were 1170 
significantly positive for the bump time but not all other control times. T tests against 1171 
0: “bump time”: N=76 sessions, statistic=2.32, P=0.023, df=75; ”decision time”: N=76, 1172 
statistic=-1.17, P=0.246, df=75; “random time” N=76, statistic=-0.702, P=0.485, 1173 
df=75; “90 degree shifted time” N=76, statistic=0.082, P=0.935, df=75; “180 degree 1174 
shifted time” N=76, statistic=0.956, P=0.342, df=75; “270 degree shifted time” N=76, 1175 
statistic=-0.112, P=0.911, df=75. 1176 

b) Prediction of behaviour using neurons anchored at distal points (one state away or 1177 
more) from the anchor. Normalised firing rates of neurons during their “bump time”: 1178 
i.e. the lag at which they are active relative to the anchor. Bump time activity is not 1179 
higher before visits to the neuron’s anchor in trial N+1 when the anchor was not 1180 
visited in trial N (left) but was higher before visits to anchor in trial N+1 when the 1181 
anchor was visited in trial N (right). Wilcoxon tests: Anchor not visited in trial N: n=74 1182 
sessions, statistic=1130, P=0.225. Anchor visited in trial N: n=66 sessions, 1183 
statistic=709, P=0.011. In addition, an ANOVA on all data (N=66 sessions) showed a 1184 
main effect of Past F=16.9 P=1.1x10-4, df1=1, df2=65, no main effect of Future 1185 
F=1.49 P=0.226, df1=1, df2=65 and no Past x Future interaction F=0.006 P=0.939, 1186 
df1=1, df2=65. Regression coefficients were significantly positive for the bump time 1187 
but not all other control times. T tests against 0: “bump time”: N=74 sessions, 1188 
statistic=2.20, P=0.031, df=73; ”decision time”: statistic=-1.24, P=0.216, df=73; 1189 
“random time” N=74, statistic=-1.86, P=0.067, df=73; “90 degree shifted time” N=74, 1190 
statistic=-2.43, P=0.017, df=73; “180 degree shifted time” N=74, statistic=-0.479, 1191 
P=0.633, df=73; “270 degree shifted time” N=74, statistic=-2.98, P=0.004, df=73.  1192 

c) Prediction of behaviour using neurons anchored at distal points (one state away or 1193 
more) from the anchor for only the high probability choices (choices that animals 1194 
made with a probability in top half of maze transition probabilities during pre-task 1195 
exploration). Normalised firing rates of neurons during their “bump time”: i.e. the lag 1196 
at which they are active relative to the anchor. Bump time activity was 1197 
indistinguishable before visits to the neuron’s anchor compared to non visits in trial 1198 
N+1 whether the anchor was not visited in trial N (left) or when it was visited in trial N 1199 
(right). Wilcoxon tests: Anchor not visited in trial N: n=62 sessions, statistic=808, 1200 
P=0.323. Anchor visited in trial N: n=50 sessions, statistic=622, P=0.886. In addition, 1201 
an ANOVA on all data (N=50 sessions) showed a main effect of Past F=10.3 1202 
P=0.002, df1=1, df2=49, no main effect of Future F=0.249 P=0.620, df1=1, df2=49 1203 
and no Past x Future interaction F=2.09 P=0.155, df1=1, df2=49. Regression 1204 
coefficients were not significant for the bump time. T tests against 0: “bump time”: 1205 
N=62 sessions, statistic=0.40, P=0.694, df=61; ”decision time”: N=62, statistic=-0.98, 1206 
P=0.331, df=61; “random time” N=62, statistic=1.70, P=0.095, df=61; “90 degree 1207 
shifted time” statistic=-2.11, P=0.039, df=61; “180 degree shifted time” N=62, 1208 
statistic=-0.785, P=0.435, df=61; “270 degree shifted time” statistic=-0.379, P=0.706, 1209 
df=61.   1210 
All error bars represent the standard error of the mean  1211 
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Methods 1212 

 1213 

Animals 1214 
Experiments used adult male C57BL/6J mice (n = 11; Charles River Laboratories). Animals 1215 
were run in 2 cohorts of 4 and 1 cohort of 3, and preselected based on criteria outlined in the 1216 
Behaviour section below. Animals were housed with their littermates up until the start of the 1217 
experiment with free access to water in a dedicated housing facility with a 12-h light/12-h 1218 
dark cycle (lights on at 7:00). Food was available ad libitum throughout the experiments, and 1219 
water was available ad libitum before the experiments (see below). Mice were 2–5 months 1220 
old at the time of testing. Experiments were carried out in accordance with Oxford University 1221 
animal use guidelines and performed under UK Home Office Project Licence P6F11BC25. 1222 
 1223 

Behavioural training 1224 
 1225 
Definitions 1226 
The ABCD paradigm 1227 
A set of tasks where subjects must find a sequence of four reward locations (termed a,b,c 1228 
and d) in a 3x3 grid maze that repeat in a loop. Once the animal receives reward a the next 1229 
available reward is in location b …etc once the animal gets reward in location d then reward 1230 
a becomes available again, hence creating a repeating loop. 1231 
 1232 
Location 1233 
Where the animal is in the physical maze 1234 
The animal could be at a node: i.e. one of the circular platforms where reward could be 1235 
delivered: coded 1-9 as shown below - they could also be at an edge which is a bridge 1236 
between nodes. (Figure 1a) 1237 

 1238 
Task 1239 
An example of the ABCD loop with a particular arrangement of reward locations (e.g. 1-9-5-1240 
7; reward a is in location 1; reward b in location 9 …etc; Figure 1a) 1241 
 1242 
Session 1243 
An uninterrupted block of trials of the same task. We used 20 minute sessions. Note that 1244 
subjects could be exposed to 2 or more sessions of the same task on a given day. Animals 1245 
were allowed to complete as many trials as they could in those 20 minutes. Animals were 1246 
removed from the maze at the end of a session and either placed back in their home-cage or 1247 
into a separate enclosed rest/sleep box. 1248 
 1249 
Trial 1250 
A single run through an entire ABCD loop for a particular task, starting with reward in 1251 
location a and ending in the next time the animal gets reward in location a again (e.g. trial 12 1252 
of a task with the following configuration: 1-9-5-7 starts with the 12th time the animal gets 1253 
reward in location 1 and ends with the 13th time animal gets reward in location 1) 1254 
 1255 
State 1256 
The time period between an animal receiving reward in a particular location and receiving 1257 
reward in the next rewarded location. State A (upper case) starts when animal receives 1258 
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reward a (lower case italicised) and ends when animal receives reward b…state D starts 1259 
when animal gets reward d and ends when animal gets reward a …etc 1260 
 1261 
Transition 1262 
A generalised definition of state. e.g. progressing from a to b is a transition, and from c to d 1263 
is also a transition. 1264 
 1265 
Goal-progress 1266 
How much progress an animal has made between rewarded locations as a percentage of 1267 
the time taken between them. Unless otherwise stated, we operationally divide this into 1268 
early, intermediate and late goal-progress - which correspond to ⅓ increments of the time 1269 
taken to get from one reward location to the next: e.g. if the animal takes 9 seconds between 1270 
one reward and another, then early goal-progress spans the first 3 seconds, intermediate 1271 
goal-progress the next 3 seconds and late goal-progress the last 3 seconds. This would 1272 
scale with the length of time it takes for the animal to complete a single state: e.g. if it takes 1273 
15 seconds between two rewards, each of the goal-progress bins would be 5 seconds long. 1274 
In the ABCD paradigm goal-progress repeats 4 times because there are 4 rewards (so there 1275 
will be an early goal-progress for reward a, and early goal-progress for reward b …etc). 1276 
 1277 
Choice 1278 
We use this to refer to one-step choices in the maze. At every node in the maze the animal 1279 
has a choice of 2 or more immediately adjacent nodes to visit next. For example, when in 1280 
node 1 the animal could choose to move to node 2 or node 4 (Figure 1a).  1281 
 1282 
Pre-selection 1283 
A total of 11 mice, across 3 cohorts, were used for experiments. For each cohort, 3-4 Mice 1284 
were pre-selected for the experiment from 10-20 mice based on the following criteria: 1285 
1-Weight above 22g 1286 
2-No visible signs of stress upon first exposure to the maze in the absence of rewards. 1287 
Stress was evidenced by thigmotaxis or defecation in a 20 minute exploration session with 1288 
no rewards delivered 1289 
3-On a partially connected version of the maze with only 6 accessible ports out of 9, Animals 1290 
learned that poking in wells delivered water reward and that after gaining reward they must 1291 
go to another port. Animals that obtained 40 or more rewards per 20 minute session were 1292 
taken forward to pretraining. 1293 
4-Final selection 1294 
For a given cohort, if more than 4 animals satisfied these criteria, animals that explored the 1295 
maze with the highest entropy were selected (see “Behavioural Scoring” below for entropy 1296 
calculation). 1297 
 1298 
Habituation/Pretraining 1299 
After at least one week of post-surgery recovery (see “Surgeries” section below), animals 1300 
were placed on water restriction. Animals were maintained at a weight of 88-92% of their 1301 
baseline weight, which was calculated before water restriction but after implantation and 1302 
recovery from the surgery (see below under “Surgeries”). This is to ensure that they 1303 
remained motivated to collect water rewards during the task but not overly so, as excessive 1304 
motivation is known to negatively affect model-based performance44. Animals were 1305 
habituated to being tethered to the electrophysiological recording wire while moving on the 1306 
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maze, as well as in sleep boxes for at least 3 days prior to the start of the experiment. During 1307 
this period, animals were reintroduced to a partially connected maze (only 6 out of the 9 1308 
ports available, and not all connected) while tethered to the electrophysiology wire, where 1309 
water reward was delivered if the animal poked its nose at any port. Reward drops were only 1310 
available once the animal poked its nose at the port. At this stage, there was no explicit task 1311 
structure, except that once reward was obtained at one port, animals had to visit a different 1312 
port to gain further reward (i.e. exactly as in step 3 of pre-selection criteria above but while 1313 
implanted and tethered). Thus, animals (re)learned that poking in wells delivered reward and 1314 
that after gaining reward they must go to another port. Animals were transitioned to the task 1315 
when they obtained >40 rewards in a 20 minute session. Note that 3 animals (from cohort 1) 1316 
were not implanted and so for these the rewarded sessions for pre-selection and pre-training 1317 
were one and the same (see section below under “Numbers” for more details on mouse 1318 
cohorts). The volume of water delivered during pretraining/preselection was higher than 1319 
training, typically 10-15 µL. 1320 
 1321 
Training 1322 
Animals navigated an automated 3x3 grid maze in search of rewards (Figure 1a), controlled 1323 
using pyControl51. Water rewards (3-4 µL) were presented sequentially at 4 different 1324 
locations. Animals had to poke in a given reward port, breaking an infrared beam that 1325 
triggered the release of the reward drop in this well. After reward a was delivered, reward 1326 
was obtainable from location b, but only after the animal poked in the new location. Once the 1327 
animal received reward in locations a, then b, then c and then d, reward a becomes 1328 
available again, thus creating a repeating loop. Animals have 20 minutes to collect as many 1329 
rewards as possible and no time outs are given if they make any mistakes. They are then 1330 
allowed at least a 20 minute break away from the maze (in the absence of any water) before 1331 
starting a new session. For each session, animals were randomly entered from a different 1332 
side of the square maze, using custom made electromagnetic field shielding curtains 1333 
(https://www.electrosmogshielding.co.uk/product.asp?P_ID=650&CAT_ID=104). This was to 1334 
ensure that all sides of the maze are equivalent in terms of being entry and exit points from 1335 
the maze, thereby minimising any place preference/aversion and minimising the use of 1336 
different sides as orienting cues. One cue card was placed high up (at least 50 cm vertically 1337 
from the maze) on one corner of the maze to serve as an orienting cue. No cues were visible 1338 
at head level. 1339 
 1340 
While all locations were rewarded identically, a brief pure tone (2 seconds at 5 kHz) was 1341 
delivered when the animal consumed reward a. This ensured that task states were 1342 
comparable across different task sequences. White noise was present throughout the 1343 
session to avoid distraction from outside noises. 1344 
 1345 
Task configurations (i.e. the sequence of reward locations) were selected pseudo-randomly 1346 
for each mouse, while satisfying the following criteria: 1347 
1-The distance between rewarded locations in physical space (number of steps between 1348 
rewarded locations) and task space (number of task states between rewarded locations) 1349 
were orthogonal for each mouse (Extended Data Figure 1a) 1350 
2-The task can’t be solved (75% performance or more) by moving in a clockwise or anti-1351 
clockwise circle around the maze. 1352 
3-The first two tasks have location 5 (the middle location) rewarded - this is to ensure the 1353 
first tasks the animals are exposed to can't be completed by circling around the outside N 1354 
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times to collect all rewards. (Note that all “late” tasks and those used in electrophysiological 1355 
recordings are not affected by this criterion). 1356 
4-Consecutive tasks don't share a transition (i.e. two or more consecutively rewarded 1357 
locations) 1358 
5-Chance levels are the same for all task transitions (ab, bc, cd, da), and control transitions 1359 
ca and ba transitions - whether determined analytically by assuming animals diffuse around 1360 
the maze or empirically by using animal-specific maze-transition statistics from an 1361 
exploration session before any rewards were delivered on the maze (see “Behavioural 1362 
Scoring” below for chance-level calculations). 1363 
 1364 
For the first 10 tasks, animals were moved to a new task when their performance reached 1365 
70% (i.e. took one of the shortest spatial paths between rewards for at least 70% of all 1366 
transitions) on 10 or more consecutive trials or if they plateaued in performance for 200 or 1367 
more trials. For these first 10 tasks, animals were given at most 4 sessions per day, either all 1368 
of the same task or, when animals reached criteria, two sessions of the old task and two 1369 
sessions of the new task. From task 11 onwards, animals learned 3 new tasks a day with the 1370 
first task being repeated again at the end of each day giving a total of 4 sessions with the 1371 
pattern X-Y-Z-X’.  1372 
 1373 

Surgeries 1374 
Subjects were taken off water restriction 48 hours before surgery and then anaesthetised 1375 
with isoflurane (3% induction, 0.5–1% maintenance), treated with buprenorphine 1376 
(0.1 mg kg−1) and meloxicam (5 mg kg−1) and placed in a stereotactic frame. A silicon probe 1377 
mounted on a microdrive (Ronal Tool) and encased in a custom made recoverable 1378 
enclosure (ProtoLabs) was implanted into mFC (AP: 2.00, ML: -0.4, DV: −1.0), and a ground 1379 
screw was implanted above the cerebellum. AP and ML coordinates are relative to bregma 1380 
while DV coordinates are relative to the brain surface. Mice were given additional doses of 1381 
meloxicam each day for 3 days after surgery and were monitored carefully for 7 days after 1382 
surgery and then placed back on water restriction 24 hours before pretraining. At the end of 1383 
the experiment, animals were perfused; and the brains were fixed-sliced and imaged to 1384 
identify probe locations (Extended data figure 2a). 1385 
 1386 

Electrophysiology, spike sorting and behavioural tracking 1387 
Cambridge NeuroTech F-series 64 silicon channel probes (6 shanks spanning 1 mm 1388 
arranged front-to-back along the anterior posterior axis) were used for all recordings. To 1389 
record from the mFC, we lowered the probe ~100 µm during the pre-habituation period to 1390 
reach a final DV position of between -1.3 and -1.5 mm below the brain surface (i.e. between 1391 
-2.05 and -2.25 mm from bregma). This places most channels in the prelimbic cortex 1392 
(http://labs.gaidi.ca/mouse-brain-atlas/). Neural activity was acquired at 30 kHz with a 32-1393 
channel Intan RHD 2132 amplifier board (Intan Technologies) connected to an OpenEphys 1394 
acquisition board. Behavioural, video and electrophysiological data were synchronised using 1395 
sync pulses output from the pyControl system. Recordings were spike sorted using 1396 
Kilosort52, versions 2.5 and 3, and manually curated using phy 1397 
(https://github.com/kwikteam/phy). Clusters were classified as single units and retained for 1398 
further analysis if they had a characteristic waveform shape, showed a clear refractory 1399 
period in their autocorrelation and were stable over time. We performed tracking of the mice 1400 
in the video data using DeepLabCut53, a Python package for marker-less pose estimation 1401 
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based in the TensorFlow machine learning library. Positions of the back of a mouse’s head 1402 
in x, y pixel coordinates were converted to region of interest information (which maze node 1403 
or edge the animal is in for each frame) using a set of binary masks defined in ImageJ that 1404 
partition the frame into its sub components. 1405 
 1406 

Behavioural Scoring 1407 
Performance was assessed by quantifying the percentage of transitions where animals took 1408 
one of the shortest available routes between two rewards. We also quantified the path length 1409 
taken between rewards and divided this by the shortest length to give the “relative path 1410 
distance” covered per transition.  1411 
 1412 
When using “percentage of shortest path transitions” as a criteria, chance levels were 1413 
calculated either analytically or empirically. Analytical chance levels were calculated by 1414 
assuming a randomly diffusing animal and calculating the chances the animal will move from 1415 
node X to node Y in N steps. Empirical chance levels were calculated by using the location-1416 
to-location transition matrix recorded for each animal in the Exploration session before any 1417 
exposure to reward on the maze. When using the “relative path distance” measure, chance 1418 
was calculated empirically using the mean relative path distance for transitions in the first 1419 
trial averaged across the first 5 tasks. 1420 
 1421 
Correct transition entropy (The animal’s entropy when taking the shortest route between 1422 
rewards) was calculated for transitions where there was more than one shortest route 1423 
between rewards. We calculated the probability distribution across all possible shortest 1424 
paths for a given transition and calculated entropy as follows: 1425 
 1426 
Entropy = ∑pk.logx(pk) 1427 
 1428 
Where x is the logarithmic base which is set to the number of shortest routes and pk is the 1429 
probability of each transition. Thus an entropy of 1 signifies complete absence of a bias for 1430 
taking any one path and an entropy of 0 means only one of the paths is taken (i.e. maximum 1431 
stereotypy). 1432 
 1433 

Activity Normalisation 1434 
We aimed to define a task space upon which to project the activity of the neurons. To 1435 
achieve this, we aligned and normalised vectors representing neuronal activity and maze 1436 
location to the task states. Activity was aligned such that the consumption of reward a 1437 
formed the beginning of each row (trial) and consumption of the next reward a started a new 1438 
row. Normalisation was achieved such that all states were represented by the same number 1439 
of bins (90) regardless of the time taken in each state. Thus, the first 90 bins in each row 1440 
represented the time between rewards a and b, the second between b and c, the third 1441 
between c and d and the last between d and a. We then computed the averaged neuronal 1442 
activity for each bin. Thus the activity of each neuron was represented by an Nx360 matrix, 1443 
where N is the number of trials and 360 bins represent task space for each trial. This activity 1444 
was then averaged by taking the mean across trials, and smoothed by fitting a Gaussian 1445 
kernel (sigma=10 degrees). To avoid edge effects when smoothing, the mean array was 1446 
concatenated to itself three times, then smoothed, then the middle third extracted to 1447 
represent the smoothed array. To reflect the circular structure of the task, the mean and 1448 
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standard error of the mean of this normalised and smoothed activity were projected on polar 1449 
plots (e.g. Figure 2b-d). 1450 

 1451 

Tuning to basic task variables 1452 
 1453 
Generalised linear model 1454 
To assess the degree to which mFC neurons are tuned to task space, we used a linear 1455 
regression to model each neuron’s activity. Specifically, we aimed to quantify the degree to 1456 
which goal-progress and location tuning of the neurons is consistent across tasks and 1457 
states. For this we used a leave-one-out cross-validation design: we divided all tasks into the 1458 
time periods spanned by each of the 4 states and used all data except one Task/State 1459 
combination to train the model. The remaining task/state (e.g. task 3, state B) was used to 1460 
test the model. This was repeated so that each task/state combination had been left out as a 1461 
test period once. The training periods were used to calculate mean firing rates for 5 levels of 1462 
goal-progress relative to reward (5 goal-progress bins) and each maze location (9 possible 1463 
node locations). Edges were excluded from analyses since they are systematically not 1464 
visited at the earliest goal-progress bin. The mean firing rates for goal-progress and place 1465 
from the training sessions were used as (separate) regressors to test against the binned 1466 
firing rate of the cell in the test data (held out task-state combination). To assess the validity 1467 
of any putative task tuning, a number of potentially confounding variables were added to the 1468 
model. These were: acceleration, speed, time from reward, and distance from reward. This 1469 
procedure was repeated for all Task/State combinations and a separate regression 1470 
coefficient value was calculated for each. To assess significance per neuron, we repeated 1471 
the regression but with random circular shifts of each neuron’s activity array and computed 1472 
regression coefficient values for each iteration (100 iterations) and then used the 95th 1473 
percentile of this distribution as the regression coefficient threshold. Neurons with an actual 1474 
regression coefficient value higher than this threshold were considered to be tuned for this 1475 
variable. Two proportions Z-tests were performed to assess whether the proportion of 1476 
neurons with significant regression coefficient values for a given variable were statistically 1477 
higher than a chance level of 5%. 1478 

 1479 

State tuning 1480 
For state tuning, we first wanted to test whether neurons were tuned to a given state in a 1481 
given task. We therefore analysed state tuning separately from the GLM above, which 1482 
explicitly tests for the consistency of tuning across tasks. Instead, we used a z-scoring 1483 
approach. First we took the peak firing rate in each state and trial, giving 4 values per trial: 1484 
i.e. a maximum activity matrix with dimensions Nx4 where N is the number of trials. Then we 1485 
z-scored each row of this maximum activity matrix (i.e. giving a mean of 0 and standard 1486 
deviation of 1 for each trial). We then extracted the z-scores for the preferred state across all 1487 
N trials and subsequently conducted a T test of this array against 0. Neurons with a P value 1488 
of < 0.05 for a given task were taken to be state tuned in that task. 1489 
 1490 

Neuronal generalisation 1491 
To assess whether individual neurons maintained their state preference across tasks we 1492 
quantified the angle made between a neuron in one task and the same neuron in another 1493 
task. Only state-tuned neurons were used in these analyses. To ensure we captured 1494 
robustly state tuned neurons, we restricted analyses to neurons state tuned in more than 1495 
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1/3rd of the recorded tasks. This subsetting is used throughout the manuscript where state 1496 
tuned cells are investigated. Quantifying the angle between neurons was achieved by 1497 
rotating the neuron in task Y by 10 degree intervals and then computing the Pearson 1498 
correlation between this rotated firing rate vector and the mean firing rate vector in task X. 1499 
Using this approach, we found for each neuron the rotation that gave the highest correlation. 1500 
For cross-task comparisons we calculated a histogram of the angles across the entire 1501 
population and averaged this across both comparisons (X vs Y and X vs Z). Within task 1502 
histograms were computed by comparing task X to task X’ (Figure 3b). To compute the 1503 
proportion of neurons that generalised their state tuning, we found the maximum rotation 1504 
across both comparisons (X vs Y and X vs Z). We then set 45 degrees either side of 0 1505 
rotation across all tasks as the generalisation threshold. Because this represents ¼ of the 1506 
possible rotation angles, chance level is equal to ¼m where m is the number of comparisons. 1507 
When calculating generalisation across one comparison, chance level is therefore 25%, 1508 
whereas when two comparisons are taken, the chance level is 1/16 (6.25%). 1509 
 1510 
Generalisation could also be expressed at the level of tuning relationships between neurons. 1511 
For example two neurons that are tuned to A and C in one task could then be tuned to B and 1512 
D in another, thereby maintaining their task-space angle (180 degrees) but remapping in 1513 
task space across tasks. To test for this, we computed the tuning angle between pairs of 1514 
neurons and assessed how consistent this was across tasks. This angle was computed by 1515 
rotating one neuron by 10 degree intervals and calculating the Pearson correlation between 1516 
the mean firing vector of neuron k and the rotated firing vector for neuron j. The rotation with 1517 
the highest Pearson correlation gave the between-neuron angle (Figure 3c). Thus, we 1518 
compared the angle between a pair of neurons in task X to the same between-neuron angle 1519 
in tasks Y and Z. Again histograms were averaged across both comparisons (X vs Y and X 1520 
vs Z) for cross-task histograms while within-task histograms were computed by comparing 1521 
task X to task X’ (Figure 3c). To compute the proportion of neuron pairs that were coherent 1522 
across tasks, we found the maximum rotation of the angle between each pair across both 1523 
comparisons (X vs Y and X vs Z). We then set 45 degrees either side of 0 rotation across all 1524 
tasks as the coherence threshold. Because this represents ¼ of the possible rotation angles, 1525 
chance level is equal to ¼m where m is the number of comparisons and therefore=25% for 1526 
one comparison and 1/16 (6.25%) for two comparisons. 1527 
 1528 
To assess whether the mFC population was organised into modules of coherently rotating 1529 
neurons, we used a clustering approach. The first step was to take the maximum difference 1530 
in pairwise, between-neuron angles (across all comparisons) and convert this into a 1531 
maximum circular distance (1- cosine(angle)) thereby generating a distance matrix reflecting 1532 
coherence relationships between neurons (incoherence matrix). The second step is to 1533 
compute a low dimensional embedding of this incoherence matrix, using t-distributed 1534 
stochastic neighbour embedding (t-SNE; using the TSNE function of scikit learn manifold 1535 
library, with perplexity=5). Finally, the third step is to use hierarchical clustering on this 1536 
embedded data (using the AgglomerativeClustering function of scikit learn cluster library, 1537 
with distance threshold=300). This procedure sorts neurons into clusters reflecting 1538 
coherence relationships between neurons. We quantified the degree of clustering by 1539 
computing the Silhouette Score for the clusters computed in each recording day: 1540 
 1541 
Silhouette Score=(b-a)/max(a,b)  1542 
 1543 
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Where a=mean intracluster distance, b=mean intercluster distance. We repeated the same 1544 
procedure but for permuted data, where state tuning in task X and goal-progress tuning in all 1545 
tasks was identical to the real data but the state preference of each neuron remapped 1546 
randomly across tasks. This allowed us to compare the Silhouette Scores for the real and 1547 
permuted data (Figure 3d). To visualise clusters and the tuning of neurons within them in the 1548 
same plot, we plotted some example neurons from a single recording day where the x and 1549 
the y axes represented state tuning and the y axis arranged neurons based on their cluster 1550 
id (the ordering along the z axis is arbitrary; Figure 3e). 1551 

 1552 

Mnemonic task space tuning 1553 
The Task structured memory buffers (SMBs) model predicts the existence of neurons that 1554 
maintain an invariant task space lag from a particular anchor representing a behavioural 1555 
step, regardless of the task sequence. Concretely, behavioural steps are conjunctions of 1556 
goal-progress (operationally divided into early, intermediate or late) and place (nodes 1-9). 1557 
To test this prediction, we used three complementary analysis methods. All of these 1558 
analyses were conducted on data where two recording days were combined and spike-1559 
sorted concomitantly, giving a total of 6 unique tasks per animal (with two exceptions that 1560 
had 4 and 5 tasks each; see exclusions under the “Numbers” section below). For all of these 1561 
analyses, only state tuned neurons were used (see “Tuning to basic task variables”). 1562 
 1563 
Method 1: Model fitting 1564 
For each neuron we computed a regression model that described state-tuning activity as a 1565 
function of all possible combinations of goal-progress/place and all task lags from each 1566 
possible goal-progress/place. Thus a neuron could fire at a particular goal-progress/place 1567 
but also at a particular lag in task space from this goal-progress/place. We used an Elastic 1568 
Net (using the ElasticNet function from the scikit learn linear_model package) that included a 1569 
regularisation term which was a 1:1 combination of L1 and L2 norms. The alpha for 1570 
regularisation was set to 0.01. A total of 9x3x12 (312) regressors were used for each 1571 
neuron, corresponding to 9 locations, 3 goal-progress bins (so 27 possible goal-1572 
progress/place anchor points) and 12 lags in task space from the anchor (4 states x 3 goal-1573 
progress bins). We trained the model on 5 (training) tasks and then used the resultant 1574 
regression coefficients to predict the activity of the neuron in a left out (test) task. Both 1575 
training and cross-validation were only done in the preferred goal-progress of each neuron to 1576 
ensure our prediction results are due to state preference and not the strong effect of goal-1577 
progress preference (Figure 2 e,f). For non-zero-lag neurons, we only used state-tuned 1578 
neurons with all of the three highest regression coefficient values at non-zero lag from an 1579 
anchor (lag from anchor of 30 degrees or more for Figure 5b bottom; 90 degrees (one state) 1580 
or more for Extended data figure 5b) in the training tasks. Also, for non-zero lag neurons, we 1581 
only use regression coefficient values either 30 degrees (Figure 5b) or 90 degrees 1582 
(Extended data figure 5b) either side of the anchor point to predict the state tuning of the 1583 
cells. This ensured that the prediction was only due to lagged activity and not direct tuning of 1584 
the neurons to the goal-progress/place conjunction. 1585 
 1586 
Method 2: Lagged spatial similarity 1587 
To detect putative mnemonic task space neurons, we calculated spatial tuning to where the 1588 
animal was at different task lags in the past (Figure 5c). While spatial neurons should 1589 
consistently fire at the same locations(s) at zero lag, neurons that track a memory of the 1590 
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goal-progress/place anchor will instead show a peak in their cross-task spatial correlation at 1591 
a non-zero task lag in the past (Figure 5c). To quantify this effect, we used a cross-validation 1592 
approach, using all tasks but one to calculate the lag at which cross-task spatial correlation 1593 
was maximal, and then measuring the Pearson correlation between the spatial maps in the 1594 
left out task and the training tasks at this lag (Figure 5d). To account for the strong goal-1595 
progress tuning of the neurons, all maps were computed in each neuron’s preferred goal-1596 
progress. 1597 
 1598 
Method 3: Single anchor alignment 1599 
This approach assumes each neuron can only have a single goal-progress/place anchor and 1600 
quantifies the degree to which task-space lag for this neuron is conserved across tasks. We 1601 
fitted the anchor by choosing the goal-progress/place conjunction which maximises the 1602 
correlation between lag-tuning-curves in all but one (training) tasks, and again used cross-1603 
validation by assessing whether this anchor leads to the same lag tuning in the left out (test) 1604 
task. The fitting was conducted by first identifying the times an animal visited a given goal-1605 
progress/place and sampling 360 bins (1 trial) of data starting at this visit, then averaging 1606 
activity aligned to all visits in a given task, and smoothing activity as described above (Under 1607 
“Activity Normalisation”). This realigned activity is then compared across tasks to compute 1608 
the angle (θ) between the neuron’s mean aligned/normalised firing rate vector across tasks. 1609 
This involves essentially doing all the steps for the “Neuronal generalisation analysis” but for 1610 
the anchor-aligned activity instead of state-A -aligned activity. This was done for all possible 1611 
task combinations and then a distance matrix (M) was computed by taking distance=1-1612 
cosine(θ). This distance matrix M has dimensions Ntraining_tasks x Ntraining_tasks x 1613 
Nanchors (typically 5x5x27 as there are usually 6 tasks, meaning 5 training tasks are used, 1614 
and 3x9 possible anchors corresponding to 3 possible phases (early, intermediate and late) 1615 
and 9 possible maze locations). The distance can then be averaged across all comparisons 1616 
to find the mean distance between all comparisons for a given anchor for a given training 1617 
task - generating a mean-distance matrix (M_mean). This M_mean matrix has the 1618 
dimensions Ncomparisons x Nanchors; where Ncomparisons= Ntraining_tasks – 1; typically 1619 
this will be 4 x 27). The entry with the minimum value in this N_mean matrix gives the 1620 
combination of training task and goal-progress/place anchor that best aligns the neuron – 1621 
the training task selected is referred to as the reference task. Next, the neuron’s mean 1622 
activity in the test task is aligned to visits to the best anchor calculated from the training 1623 
tasks. This allows calculating how much this aligned activity array has remapped relative to 1624 
the aligned activity in the reference training task - if it has remapped by 0 degrees or close to 1625 
0 degrees (within a 45 degree span either side of zero) then the neuron is spatially anchored 1626 
(i.e. maintains a consistent angle with its anchor across tasks). For a given test-train split, we 1627 
computed a histogram of the angles across all the neurons and then we averaged the 1628 
histograms across all test-train splits to visualise the overall distribution of angles between 1629 
training and test tasks (e.g. Figure 5f). To quantify the degree of alignment further, we 1630 
measured the correlation between the anchor-aligned activity of neurons in the test task 1631 
versus reference training task; only considering activity of neurons in their preferred goal-1632 
progress bin (Figure 5g). The neuron’s lag from its anchor was identified by finding the lag at 1633 
which anchor-aligned activity was maximal. This lag is used below for “Predicting 1634 
Behavioural Choices”. 1635 
 1636 
For per mouse effects reported in Extended data figure 5, we tested whether the number of 1637 
mice with a mean cross-validated correlation above 0 is higher than chance, chance level 1638 
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being a uniform distribution (50:50 distribution of per mouse correlation means above and 1639 
below zero). We used a one-tailed binomial test against this chance level. All 5 mice need to 1640 
have mean positive values for this test to yield significance. 1641 
 1642 

Predicting Behavioural Choices 1643 

 1644 
The SMB model proposes that behavioural choices should be predictable from bumps of 1645 
activity along specific memory buffers long before an animal makes a particular choice. By 1646 
“choice” here we mean a decision to move from one node to one of the immediately adjacent 1647 
nodes on the maze (e.g. from location 1 should I go to location 2 or 4?; Figure 6a). To test 1648 
whether these choices are predictable from distal neuronal activity we used a Logistic 1649 
regression model. For this analysis we used only consistently anchored neurons, that is 1650 
neurons that had the same anchor and same lag to anchor in at least half of the tasks. This 1651 
relied on the single-anchor analysis (Figure 5e-g). Furthermore, to avoid contamination of 1652 
our results due to simple spatial tuning, we only used neurons with activity lagged far from 1653 
their anchor (at least 30 degrees in task space either side of the anchor e.g. Figure 6b,d,e,f; 1654 
and this was also repeated for lags of at least 90 degrees (one whole state) either side of the 1655 
anchor: e.g. Figure 6g and Extended data 6b,c). We measured the activity of a given neuron 1656 
during its “bump” time, that is the time at which a neuron is lagged relative to its anchor. 1657 
Precisely, this is the mean firing rate from a period starting with the lag time from the anchor 1658 
and ending 30 degrees forward in task space from that point (i.e. 1/3rd of a state). This 1659 
mean activity was inputted on a trial by trial basis every time the animal was at a goal-1660 
progress/place conjunction that was one step before the goal-progress/place anchor in 1661 
question (e.g. if the anchor is at early goal-progress in place 2, the possible goal-1662 
progress/places before this are: late goal progress in place 1, late goal-progress  in place 3 1663 
and late goal-progress in place 5; see maze structure in Figure 1a). We used this activity to 1664 
predict a binary vector that has 1s when the animal visits the anchor and 0 when the animal 1665 
could have visited the anchor (i.e. was one step away from it) but did not chose to visit the 1666 
anchor. To remove confounds due to the autocorrelated previous behavioural choices, we 1667 
added previous choices up to 5 trials in the past into the regression model. Furthermore, to 1668 
assess whether any observed prediction was specific to the “bump” time as predicted by the 1669 
SMB model, we repeated the logistic regression for other times (random times, decision time 1670 
(30 degrees from the potential anchor visit) and times shifted by 90, 180 and 270 degrees 1671 
from the bump time). We further repeated this regression only for visits to non-zero goal-1672 
progress anchors (i.e. non-rewarded locations) and also only taking neurons that are more 1673 
distal from their anchor (i.e. at least 90 degree separation either side of the anchor). We also 1674 
conducted this analysis separately for high probability choices (choices that were in the top 1675 
50% of the maze transition probability distribution calculated in a baseline exploration 1676 
session before any reward or task was ever experienced on the maze; e.g. Figure 6e) and 1677 
low probability choices (bottom 50% of the same transition probability distribution; e.g. 1678 
Figure 6f). This allowed us to test whether frontal neurons generally predict all choices or 1679 
more specifically predict choices which animals were not already predisposed to make. 1680 
 1681 

Sleep/Rest analysis  1682 
To investigate the internal organisation of task-related mFC activity we recorded neuronal 1683 
activity in a separate enclosure containing bedding from the animal’s home cage but no 1684 
reward or task-relevant cues. Animals were pre-habituated to sleep/rest in these “sleep 1685 
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boxes” before the first task began. We measured neuronal activity across sleep/rest 1686 
sessions both before any tasks on a given day and after each session. The first (pre-task) 1687 
sleep/rest session was 1 hour long, inter-session sleep/rest sessions were 20 minutes long 1688 
and the sleep/rest session after the last task was 45 minutes long. All sessions except the 1689 
first sleep session were designated as “post-task” sleep sessions. 1690 
 1691 
We wanted to assess whether the memory buffers were organised by the task structure, 1692 
which in our case is a ring. In other words, do neurons internally maintain this ring-like 1693 
organisation even in the absence of externally structured sensory/behavioural input? Activity 1694 
was binned in 250 ms bins and cross-correlations between each pair of neurons were 1695 
calculated using this binned activity. We then regressed the awake angle difference between 1696 
pairs of neurons sharing the same anchor against this sleep cross-correlation. This angle 1697 
was taken from the first task on a given day for pre-task sleep, and from the task 1698 
immediately before the sleep session for all post-task sleep sessions. The idea is that 1699 
neurons closer to each other in a given neuronal state-space should be more likely to be 1700 
coactive within a small time window compared to neurons farther apart. To control for place 1701 
and goal-progress tuning, we added the spatial map correlation and circular goal-progress 1702 
distance as co-regressors. Thus we assessed the degree to which the regression 1703 
coefficients were negative (i.e. smaller distances correlate with higher coactivity). 1704 
 1705 
We first sought to identify whether the neurons were functionally organised into rings or 1706 
delay lines. For this we measured the forward distance between pairs of co-anchored 1707 
neurons in reference to their anchor. If neurons are internally organised on a line, then the 1708 
larger the forward distance between a pair of neurons the further away two neurons are from 1709 
each other in neuronal state space, and hence the less coactive they will be (Figure 7a). If 1710 
neurons are arranged on a ring, forward distance should also positively correlate with 1711 
neuronal state space distance for pairs of neurons separated by less than 180 degrees in 1712 
task space. Beyond 180 degrees, forward distance should instead negatively correlate with 1713 
neuronal state space distance, as neurons circle back towards each other (Figure 7a). In this 1714 
situation, circular distance, not forward distance, would be the best description of the 1715 
neuronal state space. Thus, for a delay line, the higher the forward distance beyond 180 the 1716 
further the neurons should be from one another, and hence the coefficient for the regression 1717 
between forward distance and coactivity should be negative (Figure 7a). For a ring, the 1718 
coefficient value for forward distance against coactivity should conversely be positive. This 1719 
pattern inverts when considering the circular distance: positive coefficient for delay line and 1720 
negative coefficient for rings. We used a linear regression to compute the regression 1721 
coefficients for circular and forward distances in the same regression for all neuron pairs 1722 
(Figure 7b). To control for place and goal-progress tuning, we again added the spatial map 1723 
correlation and circular goal-progress distance as co-regressors. We also used a linear 1724 
regression to compute this coefficient for only the circular distance for pairs of neurons 1725 
separated by 180 degrees or more, while again co-regressing spatial correlations and goal-1726 
progress distances (Figure 7c). We further analysed whether neurons that shared the same 1727 
anchor showed stronger state-space relationships than those that have different anchors. 1728 
For this we restricted our analysis to consistently anchored neurons, that is neurons that had 1729 
the same anchor and same lag to anchor in at least half of the tasks. We conducted the 1730 
regression of circular distance against sleep cross-correlation either for pairs of neurons that 1731 
share the same anchor, or those that have different anchors (Figure 7d). As before, we co-1732 
regressed spatial correlations and goal-progress distances. 1733 
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 1734 
Note that, arguably, the last analysis (Figure 7d) could be seen as sufficient to indicate a 1735 
ring-like structure. However, this is only true when assuming a uniform distribution of 1736 
pairwise angles, which we know not to be the case given the overrepresentation of neurons 1737 
with a small lag from the anchor (Extended data Figure 5c), thus necessitating the first two 1738 
analyses (Figure 7b,c). 1739 
 1740 

Numbers  1741 
Animals  1742 
11 animals in total were used for behavioural recordings across 3 separate cohorts 1743 
conducted by 2 different experimenters (AH and ME) - 4 of these animals only completed 10 1744 
tasks as part of the first cohort and the remaining 7 completed 40 tasks 1745 
Of the 11 animals, 5 animals in total were used for electrophysiological recordings, the 1746 
remaining 6 animals are accounted for below: 1747 

● 3 animals (in cohort 1) were not implanted at any point 1748 
● 1 animal was implanted with silicon probes but was part of the first cohort so did not 1749 

get to the 3 task days (i.e. only completed the first 10 tasks) 1750 
● 2 animals were implanted but their signal was lost before the 3 task days 1751 

 1752 
Exclusions: No animals were excluded from analyses: All animals (11) were included in the 1753 
behavioural analyses, and all animals for which there was an electrophysiological signal by 1754 
the 3 task days (5) were included in the electrophysiological analyses. 1755 
 1756 
Electrophysiological recording days 1757 
All electrophysiological data was obtained from days where animals completed 3 tasks per 1758 
day (cohorts 2 and 3) and in late tasks (tasks 21-40) where animals showed robust evidence 1759 
for having learned the abstract task structure (Figure 1). 33 recording days were spike sorted 1760 
as individual days and were used in Figure 2 and Figure 3. In 23 of those 32 days, animals 1761 
completed more than 2 trials in the last session (the repeat of task X), hence fewer neurons 1762 
appear in analyses comparing session X with session X’ (Figure 3b,c and Extended data 1763 
figure 3b,c). 14 recording days were merged to create double-days, allowing tracking of 1764 
neuronal activity across up to 6 tasks. Although 6 tasks were always attempted across each 1765 
double day, of these 14 double days, 12 spanned 6 tasks, 1 spanned 5 tasks and 1 spanned 1766 
4 tasks. This was due to file corruption (1 task) or animals lacking motivation (less than 2 1767 
trials completed per task; 2 tasks). Double days were used in Figures 3,5,6 and 7. Only 1768 
single days were used in Figure 2. 1769 
 1770 
Data was obtained from all possible double-days from late tasks (tasks 21-40). This means 3 1771 
double days per mouse (spanning the last 18 tasks) - except for two mice where each had 1772 
one double-day where the signal had dropped, and one mouse where 4 double days were 1773 
used (including a day spanning tasks 20-22) -  thus a total of 14 double-days were used. 1774 
 1775 
Total number of neurons 1776 
We report “neuron-days” - i.e. by summing up each day’s neuron yield below: 1777 
 1778 
1807 total “neuron-days” (i.e. while splitting each double-day into two and summing across 1779 
days)  1780 
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1438 separately sorted neuron days (i.e. using a single yield for each double day), of which 1781 
there were: 1782 

● 747 neuron days on single days 1783 
● 691 neuron days on double days 1784 

 1785 
Exclusions:  1786 

● Recording days with 10 or fewer state-tuned neurons were excluded from analyses 1787 
of pairwise coherence between neurons. 1788 

● Neurons whose mean firing rate during sleep dropped to less than 20% of their 1789 
awake firing rate were excluded from preplay/replay analysis - this was assumed to 1790 
be largely a spike sorting artefact. 1791 

● Only neurons that were significantly state tuned (neurons with significant state tuning 1792 
in more than 1/3rd of all tasks) and were sorted across double days were used in 1793 
Figure 5 - this amounted to 350 neurons - although for the regression analysis, 10 1794 
additional neurons were excluded due to having all zero regression coefficient values 1795 
(caused by the regularisation), giving a total of 340 neurons for this analysis (Figure 1796 
5a,b). 1797 

 1798 
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