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1 Abstract

Neural activity sequences are ubiquitous in the brain and play pivotal roles in functions such as long-term memory
formation and motor control. While conditions for storing and reactivating individual sequences have been thor-
oughly characterized, it remains unclear how multiple sequences may interact when activated simultaneously in
recurrent neural networks. This question is especially relevant for weak sequences, comprised of fewer neurons,
competing against strong sequences. Using a non-linear rate model with discrete, pre-configured assemblies, we
demonstrate that weak sequences can compensate for their competitive disadvantage either by increasing excita-
tory connections between subsequent assemblies or by cooperating with other co-active sequences. Further, our

model suggests that such cooperation can negatively affect sequence speed unless subsequently active assemblies
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are paired. Our analysis, validated by an analytically tractable linear approximation, characterizes the conditions
for successful sequence progression in isolated, competing, and cooperating sequences, and identifies the distinct
contributions of recurrent and feed-forward projections. This proof-of-principle study shows how even disadvan-
taged sequences can be prioritized for reactivation, a process which has recently been implicated in hippocampal

memory processing.

2 Introduction

Sequences of neural activity are a universal phenomenon in the brain, fundamentally underpinning a range of
functions including olfactory processing (Friedrich and Laurent, 2001), birdsong generation (Hahnloser et al.,
2002), motor control (Eichenlaub et al., 2020), and episodic memory encoding in the hippocampus (O’Keefe,
1976; Dragoi and Buzsaki, 2006; Foster and Wilson, 2006; Diba and Buzsaki, 2007). These sequences unfold
over various timescales and can be driven by either external stimuli or intrinsic mechanisms. Thus, to understand

information processing in the brain, we need to comprehend the dynamics of neural activity sequences.

The emergence and reliable propagation of individual neural activity sequences have been extensively studied
using computational models (Amari, 1977; Arnoldi and Brauer, 1996; Hertz, 1997; Diesmann et al., 1999; Abeles
et al., 2004; Kumar et al., 2008; York and van Rossum, 2009; Fiete et al., 2010; Itskov et al., 2011; Lu et al.,
2011; Azizi et al., 2013; Kappel et al., 2014; Chenkov et al., 2017; Murray et al., 2017; Seeholzer et al., 2019;
Spreizer et al., 2019; Michaelis et al., 2020; Maes et al., 2020b,a; Spalla et al., 2021; Lehr et al., 2023). A number
of studies characterized conditions for storing and reactivating multiple sequences in recurrent networks(Arnoldi
and Brauer, 1996; Abeles et al., 2004; Kumar et al., 2008; Azizi et al., 2013; Maes et al., 2020a; Spalla et al.,
2021; Lehr et al., 2023). However, interactions between sequences within a network are less understood, and in

particular the influence of competition and cooperation on sequence reactivation has not yet come into focus.

A popular experimental paradigm to expose the functional role of neural activity sequences is to record the
activity of hippocampal neurons in a spatial navigation task, commonly performed in rats or mice. While traversing
an environment, place cells are activated in a sequential manner (O’Keefe, 1976; Dragoi and Buzsédki, 2006).
Subsequently, when the animal is resting, planning or consuming, the same neural activity sequences may be
reactivated (or replayed) at a faster time scale during sharp wave ripple (SPWR) events (Wilson et al., 1994;
Skaggs and McNaughton, 1996; Ji and Wilson, 2007; Diba and Buzsaki, 2007). Such offline reactivation can
represent multiple distinct experiences (Silva et al., 2015). However, it is assumed that normally only one sequence

is reactivated per sharp-wave ripple (He et al., 2020).
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Replay of sequences is crucial for memory consolidation (Girardeau et al., 2009; Dupret et al., 2010; Fernandez-
Ruiz et al., 2019; Oliva et al., 2020). Successful generation of long sequences during SWR is associated with better
memory (Ferndndez-Ruiz et al., 2019). Moreover, the probability that a particular sequence will be reactivated
varies with experience, with novel and reward-related sequences being prioritized (McNamara et al., 2014; Igata
et al., 2021; Singer and Frank, 2009; Ambrose et al., 2016, but see Gupta et al., 2010). Intriguingly, the fact
that neither the generation of sharp-wave ripples (Bragin et al., 1995; Yamamoto and Tonegawa, 2017) nor the
reactivation of sequences (Chenani et al., 2019) are abolished by lesions or inhibition of the medial entorhinal cor-
tex, the primary input structure to the hippocampus, suggests the existence of inherent mechanisms for sequence

prioritization within the hippocampus.

Hippocampal activity sequences differ in key properties depending on which information they represent. When
encoding the location of objects and other animals fewer hippocampal place cells are recruited and their firing
rates are lower compared to place cells for the animal’s own location (Danjo et al., 2018; Omer et al., 2018).
Thus, hippocampal sequences are likely composed of differently sized cell assemblies. In the following we call
sequences with large assemblies strong and those with small assemblies weak. To consolidate their corresponding

experiences, it is conceivable that both weak and strong sequences compete for reactivation during SPWRs.

A computational model suggests that successful reactivation becomes more difficult for weak sequences,
unless recurrent connections within and/or feed-forward projections between cell assemblies are strengthened
(Chenkov et al., 2017). However, the required amount of potentiation increases non-linearly with decreasing
assembly size, and synapses may quickly reach their physiological boundaries (Chenkov et al., 2017). If multi-
ple sequences are activated at the same time, mutual inhibition between them may create a winner-take-all type

competition. In such a scenario, weak sequences essentially stand no chance of winning the competition.

Here, we explore how weak sequences may cooperate to win over stronger sequences during replay events.
Inspired by recent findings about gated synaptic plasticity and mutual feed-forward inhibition between region CA3
and CA2 in the hippocampus, we proposed that co-occurring sequences in these regions may be selectively paired
by the release of neuromodulatory substances (Stober et al., 2020). In addition to linking distinct information
(Mankin et al., 2015; Lee et al., 2015; Wintzer et al., 2014) in each region, mutual excitatory support between
CA3 and CA2 sequences may ensure their reactivation, while at the same time recruiting sufficient inhibition to

suppress competing sequences (He et al., 2020; Lehr et al., 2021).

To develop a theoretical understanding based on these hippocampal insights, we demonstrate that cooperation
and competition of assembly sequences can be implemented in a rate-based model. Within a sequence, reliable
and fast signal transmission is achieved by excitatory feed-forward projections between subsequent assemblies,

employing balanced amplification (Murphy and Miller, 2009; Chenkov et al., 2017). Competition and coopera-
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tion are implemented by feed-forward inhibition and excitation across assemblies. Characterizing conditions for
competition and cooperation, we show that a) feed-forward excitation is crucial, but must remain within a certain
range to avoid excessive and persistent activation, b) recurrence within assemblies helps the surviving sequence to
recover, c) feed-forward inhibition can mediate competition, d) excitatory coupling between co-active assemblies
allows weak sequences to win, but slows sequence progression, and e) preferentially pairing subsequently instead
of co-active assemblies maintains sequence speed. Taken together, these results demonstrate that reactivation
dynamics of neural sequences are shaped both by modifying feed-forward properties as well as by interactions

among multiple sequences.

3 Results

3.1 Conditions for progression of a single sequence

We used a rate-based model with a non-linear activation function to first study the progression of a single assembly
sequence (Fig. 1a,b). Each assembly is composed of discrete and recurrently interacting populations of excitatory
and inhibitory neurons. Sequences are defined by connecting subsequent excitatory populations with feed-forward
projections. In addition, all assemblies — independent of their position in the sequence — send feed-forward inhi-
bition to each other; they send excitatory projections to each other’s inhibitory populations. To start the sequence
the excitatory population of the first assembly receives external stimulation. To characterize successful sequence
progression, we defined four conditions: 1) All active: Within each assembly, the excitatory population must be
activated at least at one point in time. 2) All informative: In addition, each excitatory population must exceed
the activity of others at least one point in time. 3) Sparse activity: Global activity of the whole network must be
sparse, e.g. peak activity is not to be reached by more than two assemblies at any point in time. 4) Order: Peak

activation of any excitatory population must maintain its predefined order.

Successful sequence progression depends on both recurrent and feed-forward projections. The strength of
each connection is a product of the respective excitatory or inhibitory population size, M {#7}, synaptic strength,
gtE-T} and recurrent or feed-forward connection probability, Dire,tf}- 10 investigate the dependence of sequence
progression on connection strength, we systematically varied p,. and pss, simultaneously for excitatory and
inhibitory projections. We found that the parameter region allowing successful sequence progression for p; is
relatively narrow compared to p,.. (Fig. lc, black region). Closer investigation revealed that, without sufficient
feed-forward projections, activity dies out (s' in Fig. 1d), preventing all assemblies from being activated (Fig.

1f), violating condition 1 (Fig. 1g). By contrast, strong feed-forward projections led to rapid and persistent
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activation (s* in Fig. 1d, le), violating the condition 2 (Fig. 1h). However, if excitatory and inhibitory populations
recurrently interact with sufficient strength, assembly activation can become transient, allowing sequences to

progress in a sparse fashion for an increasing range of feed-forward weights, condition 3 (s? and s in Fig. 1d).

The V-shape of the parameter region reflecting successful progression illustrates the dual role of recurrent
interactions. On its left flank (for weak feed-forward connections), increasing recurrent interactions, p,. > 0.025,
decreases the required feed-forward weights, py¢ by positively amplifying weak inputs. On the right flank (for
strong feed-forward connections), stronger recurrent inhibition prevents persistent activity and, thus, increases

permissible feed-forward weights.

Progression of single assembly sequences can be approximated by an even simpler linear dynamical system
(Chenkov et al., 2017). Under the assumption of stationarity, we analytically determined the minimal value of p,..
required for sustained activity in subsequent assemblies in relation to py ; (for details see Methods). We show the
simulation results are in close agreement to the analytically determined values of p,.. and py s for p,.. > 0.025 (Fig.
Ic, red line). For p,. < 0.025 the analytical approximation diverges from the simulation results (see Discussion).
For very low recurrence values, p,. ~ 0, sequence progression is limited to few specific values of pss (s° in Fig.
1d, 1e). Note that the solutions of the the linear approximation are influenced by a scaling factor ¢, related to the
slope of the neuron’s input-output function. Throughout the article, we retain ¢ = 0.163, as determined by solving

for ¢ under the parameters of example sequence s2 (see Methods).
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Figure 1: Recurrent and feed-forward interactions influence the progression of a single sequence. a) Non-
linear activation function of excitatory and inhibitory populations. b) Connections within and between assemblies
in a single sequence. Each assembly is formed by two recurrently interacting populations, representing excitatory
(E) and inhibitory (I) neurons. A given sequence s° is established by connecting subsequent excitatory popula-
tions via feed-forward excitatory projections with strength w%{. Assemblies generally suppress each other via
feed-forward inhibition; excitatory projections from excitatory to all inhibitory populations of other assemblies
with strength w?c(}i. ¢) Successful sequence progression, black region, depends on both recurrent, p,.. and, feed-
forward, py s, connection probability. Red line, analytic solution of the linearized rate model for sustained activity
propagation. For low values of p,., the non-linear rate model and the analytic solution diverge. d) Example se-
quences, corresponding to red arrows in b). Only s? and s3 successfully reactivate. Activity rZ-E J of every third
excitatory population is shown. Different colors correspond to different excitatory populations. e) Mean activa-
tion time across all assemblies. Large values of ps lead to persistent activity and, thus, to large mean activation
time. f) Parameter region (black) where all excitatory populations in sequence become activated, fulfilling con-
dition 1: All active. g) Parameter region fulfilling condition 2: All informative, all excitatory populations must
exceed activity of others at least once (black). h) Parameter region fulfilling condition 3: Sparse activity. Red,
dashed contours in ¢), e), f) and g) correspond to black region for successful sequence progression in b).
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3.2 Competition between two sequences

Next, we studied competition between two sequences, s’ and s'. As before, each assembly sends feed-forward
inhibition to all other assemblies, both within and between sequences (Fig. 2a). If the first assemblies in both
sequences are simultaneously activated, the interplay between excitation within the assemblies and inhibition
between sequences can lead to one of four scenarios: a) Activity in both sequences ceases before the sequence

0 wins; c) st

is completed; referred to as no winner; b) s° successfully progresses and s' ceases; referred to as s
successfully progresses and s” ceases; referred to as s' wins; d) both sequences successfully progress; referred to

as both win.

To exemplify competition dynamics, we let two sequences compete for a given set of parameters (Fig. 2b).
After an initial surge, activity diminished in both sequences. While s! ceased, activity in s°, with slightly larger

assemblies, recovered and successfully progressed.

The competition outcome depends on assembly sizes as well as interactions within and between sequences.
To systematically characterize the occurrence of the four competition scenarios, we varied assembly sizes M0,
MZE:1 for different connection probabilities of either feed-forward excitation py ¢, recurrent excitation p,., or
feed-forward inhibition py ;. Note, in the following, sizes of the inhibitory populations, M0, M 11, are scaled

accordingly to maintain a constant ratio of excitatory and inhibitory population sizes.

For example, for moderate levels of feed-forward excitation, psy = 0.014, relatively large assemblies,
MEL ME-T > 1400 were required for one sequence to win over the other (Fig. 2c, central row in left column).
Nevertheless, even for large assemblies, the difference between sequences had to be prominent, otherwise both
sequences ceased to exist. By contrast, if feed-forward excitation is increased, even moderately sized assembly
sequences could win as long as they are larger than their competitor (Fig. 2c, bottom row in left column). As a
consequence of this, the fraction of the M 0, M1 parameter space spanned by either s or s* winning increased
with a rise in the strength of feed-forward connections, py, until it hit an upper bound (Fig. 2c, upper row in left

column).

Without recurrence, even sequences with large assemblies failed to successfully propagate when competing.
As we showed in Figure 1c and know from the literature on synfire chains (Hertz, 1997; Diesmann et al., 1999;
Kumar et al., 2010), individual sequences can progress without recurrent interactions. However, we hypothesized
that in a competition scenario, recurrence is paramount for the surviving sequence to recover. To test this, we
characterized the competition outcome for a range of assembly sizes given different values of p,... Consistent
with our expectation, for relatively weak recurrence, p,.. = 0.015, larger assemblies were required to avoid that

both sequences cease their progression (Fig. 2c, central row in central column). Surprisingly, we found that weak
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recurrence allows both strong sequences to win (Fig. 2c, black region, central row in central column). With an
increase in the recurrence, p,.. = 0.03, the fraction of the M*-0 M1 parameter space spanned by either s° or s!
winning increased (Fig. 2c, bottom row in central column). Thus, we conclude that recurrence is indeed crucial

when sequences compete.

Feed-forward inhibition ensures that only one sequence wins. Here, sequences competed by inhibiting each
other. Therefore, we expected that relatively weak feed-forward inhibition will allow both sequences to win. Again
classifying competitions outcomes, we could indeed show that for low values of pyy; a considerable fraction of
the ME0 MP:1 parameter space was covered by the both win scenario (Fig. 2c, black region, upper and central
row, right column). Further, we found that weak feed-forward inhibition corresponded to a large fraction of failed
progressions for both sequences, no winner. Without inhibition between assemblies of the same sequence, activity
in each cell assembly became persistent, violating the sparsity condition (data not shown). On the other hand,

when p¢; was increased, the both win case disappeared (Fig. 2c, upper and bottom row, left column).
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Figure 2: Competition between two sequences. a) Scheme of connections for competition scenario. Two se-
quences, s” and s!, compete via feed-forward inhibition between all assemblies. For visual clarity, only feed-
forward inhibition with strength w}’; from one assembly of s° to two assemblies of s' is shown. b) Example:
Larger sequence s” wins over s. Only activities of excitatory populations are shown. Both sequences suppress
each other’s activity until s! ceases and s° recovers. Colors repeat after 10 assemblies. ¢) Competition scenarios
for different values of feed-forward, recurrent, and feed-forward inhibition connection probability. pss, pre, Dy fi
are separately varied. Middle and bottom rows exemplify competition outcomes when scanning the M -0, A1
space for different values of pyy, left, p,.., center, or pyy;, right. Upper row summarizes the distribution of com-
petition scenarios for each scan of the M¥:°, MF-! space. Specific values of low and high value examples are
indicated by dashed and pointed lines, corresponding to upper and center rows.

173 Compensating for small assemblies by increasing feed-forward weights may become physiologically implau-

174 sible. As proposed in (Stober et al., 2020), a weak sequence, comprised of smaller assemblies, competing with a
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strong sequence, can ensure progression by further potentiating feed forward weights. However, we hypothesized
that the required amount of potentiation scales non-linearly with assembly size — as already shown for individ-
ual sequences (Chenkov et al., 2017) — and therefore, may hit physiological boundaries for weak sequences. We
explicitly tested this prediction by varying the respective parameters for sequence s'; keeping parameters in s°
fixed. In agreement with the hypothesis, we found a non-linear increase in the required feed-forward connection
probability p}} for decreasing assembly sizes M1 (Fig. 3a). If both assembly sizes and feed-forward weights

were strong (no winner region in upper right corner of Fig. 3a), persisting activity violated both the activation and

the sparsity condition (data not shown).

To gain an analytic understanding of the competition scenario, we extended the simplified linear rate model to

include a second sequence. Keeping the activation of excitatory populations in s°

, we solve for pi;, the minimal
required feed-forward weight to ensure sustained activity of st (Fi g. 3a, red line, see Methods). However, the an-
alytic solution predicts lower required weights compared to the rate-model simulation. One potential explanation

for this difference may be that feed-forward inhibition in the rate model is between all assemblies, while it is only

to the next competing assembly in the simplified linear model (see Discussion).

To compare the presented results to a situation without competition, we repeated the simulation and analytic
calculations with silenced s (Fig. 3b). As before, the required feed-forward connection probability increased
non-linearly with decreasing assembly size. However, without a competing sequence, also smaller feed-forward
connection probabilities allowed successful propagation. This holds true for both the analytical prediction and
the simulation results. In conclusion, these findings show that competition increases the required strength of

feed-forward weights, making it even more difficult to reactivate sequences with small assemblies.

10
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Figure 3: Competition makes it harder for sequences with small assemblies to ensure progression by
strengthening feed-forward weights. a) For fixed parameters of 5%, M*° = 1000, p}} = 0.02, assembly
size M ¥>! and feed-forward connection probability p}lf of s! are varied. For s! to win (dark area), smaller assem-
blies must be compensated by increasingly larger feed-forward weights. Red line, analytic prediction of linearized
rate model for sustained activity propagation in s' with constant activity in s°, riE 0 = 1. b) Same as a), but
without activating s°. Orange line, analytic prediction for sustained activity propagation in s' with s° silenced.
Red dashed contour line reflects s* wins area and red line analytic prediction from competition scenario in a).

3.3 Cooperation and competition between three sequences

Given the physiological limits on the potentiation of feed-forward projections, an alternative or additional way
for sequences to ensure progression despite competition is to mutually support each other. This may happen if
simultaneously active assemblies in co-occurring sequences are paired by Hebbian plasticity (Stober et al., 2020).
To demonstrate both cooperation and competition between assembly sequences, we created a minimal scenario
with one strong, and two weak sequences (Fig. 4a). As before, all assemblies mutually inhibited each other and
the excitatory populations at the start of each sequence were simultaneously activated. The strong sequence s°
has a competitive advantage due to its larger assemblies. As expected, without any cooperation between s' and

0

s2, sequence s~ won (case cg, Fig. 4b, Fig. 4c).

When weak sequences were able to cooperate, they could however overcome a strong competitor. We intro-
duced feed-forward excitatory projections between co-active excitatory populations in s' and s2, summarized by
their strengths w7 and w?). Given sufficient mutual support, s' and s> were able to out-compete s° (c1, Fig.
4b, Fig. 4c). However, the stronger the mutual excitatory connections, the longer were the activation times of
excitatory populations (c; vs. ca, Fig. 4d). Increasing the excitatory interactions further led to persistent activity

in the first assemblies, halting successful sequence progression (cs3, Fig. 4c, 4e, 4f).

11
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Figure 4: Cooperation via mutual excitation between assembly sequences. a) Network scheme for competition
and cooperation between discrete assembly sequences. Sequence with larger assemblies, s°, competes with s* and
s2. Competition via feed-forward inhibition between all sequences not shown. Cooperation between s' and s2
through reciprocal excitatory connections to co-active assemblies with strength w}? and w]%} Larger assemblies

of s are indicated by larger circles. b) Connection probabilities between s' and s, p}% and p}}, are varied.
Sufficiently strong mutual excitation is required for s' and s? to outcompete s°. ¢) Examples: ¢y : s' — s,
mutual excitatory interactions between s' and s2 not sufficient; ¢; : s' <+ s2, pairing between s' and s? strong
enough to win; ¢y : s' < 52, increased excitatory interactions lead to slower sequence progression, e.g. longer
activation times; c3 : s' <= s, if excitatory interactions are too strong, sequence progression fails because
first assemblies of s! and s? remain active. Only activity of excitatory populations is shown. d) Mean activation
times of excitatory populations in s'. Strong mutual excitation leads to longer activation times and slow sequence
progression. e) Ratio of activated excitatory populations in s'. Only in region with successful cooperation with 52
all assemblies of s' are activated. f) Activation time of first excitatory population in s'. Strong interactions halt

propagation, because early assemblies maintain activity over the full simulation duration.
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3.4 Potentiation of excitatory synapses to subsequently active assemblies in paired se-

quence increases propagation speed

In the previous section we observed that pairing sequences by potentiating co-active assemblies can indeed facil-
itate their reactivation, but it slows sequence progression and, if too strong, leads to persistent activity. Thus, we
hypothesized that sequence speed can be increased by introducing excitatory projections to subsequently active
assemblies (see Fig. 5a). Adding this type of projection to the three sequence model and explicitly measuring
sequence speed by the inverse of the median interpeak interval of excitatory populations, we observed a range of
different speeds depending on the relative levels of potentation between co-active and subsequent assemblies (Fig.
5b,5¢). As expected, stronger potentiation between co-active assemblies led to slower progression (purple region,
Fig. 5b). Additionally increasing the synaptic strength between subsequent while maintaining strong synapses be-
tween co-active assemblies marginally increased speed at the expense of prolonged activation times of individual
assemblies (¢ vs. d° and d'). However, reducing synapse strength between co-active while maintaining relatively
strong synapses to subsequent assemblies can increase sequence speed up to the level of the competing sequence
s (yellow region, Fig. Sb; example d?, Fig. 5c). Thus, potentiating subsequently active assemblies can indeed

facilitate reactivation of paired sequences while preserving the timescale of sequence progression.
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Figure 5: Shifting feedforward excitation from co-active to subsequent assemblies increases speed of co-
operating sequences. a) Beyond prior simulations which modified feedforward excitation solely between si-
multaneously active assemblies, wyr a—o, We also introduce feedforward excitation to subsequent assemblies,
wff A—1, in cooperating sequences s' and s%. b) Sequence speed of s', relative to s° of scenario ¢’ from Fig.
4b. Successful reactivations of s' and s2 are shown for reduced (shades of purple) and similar speed as com-
peting sequence (yellow interval, from 0.9-1.). Non-successful reactivations are indicated in grey. Adjustments
in weights wys a—o and wyr aA—1 are achieved by altering the corresponding connection probabilities pfr A—o
and pssa—1. ¢) Examples: ¢! - From Fig. 4b without pairing between subsequently active assemblies d° - In-
creasing feedforward excitation to subsequent assemblies can counterbalance the reduced speed brought on by the
additional feedforward excitation between co-active assemblies. d' - Further increasing feedforward excitation to
subsequent assemblies expands activation duration of individual assemblies. d? - To reach speed of competing
sequence sY from scenario ¢°, feedforward excitation to co-active assemblies must be reduced.

4 Discussion

Using a non-linear rate-based model with discrete and pre-configured assemblies, we provided a proof-of-principle
for competition and cooperation between neural activity sequences. The model allowed us to study the dynamics

of isolated, competing and cooperating sequences. Characterizing conditions for successful sequence progression,
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we can attribute specific roles to the interactions within and between assemblies. Projections between subsequent
excitatory populations ensure sequence progression. However, if too weak, activity does not propagate, and if
too strong, activity saturates. Recurrent excitatory and inhibitory interactions implement balanced amplification
which boosts weak excitatory inputs and prevents saturating activity (Murphy and Miller, 2009; Hennequin et al.,
2012). Thus, with increasing recurrency, a larger range of excitatory inputs is permissible. Further, the boost
of weak inputs is especially beneficial in the competition scenario and allows the surviving sequence to quickly
recover. Excitatory interactions between co-active assemblies allow weak sequences to win against a stronger
competitor, but such interactions slow the propagation of activity. Shifting feedforward excitation from co-active
to subsequent assemblies of cooperating sequences increases sequence speed, enabling successful replay without

slowing sequence propagation.

In the case of a single sequence, the analytically predicted minimal feed-forward and recurrent weights are in
close agreement to the non-linear rate model. We contrasted the simulation results with an even simpler model of
assembly sequence progression, comprised of a linear dynamical system and with only projections to subsequent
assemblies (Chenkov et al., 2017). Assuming that the activation time of a preceding excitatory population is much
longer than the rise time of the subsequent excitatory population, we derived conditions for sustained activity
propagation. For moderate and large recurrent connection strengths, the simulation quantitatively agreed with
the analytic prediction. As part of the analytic approximation, we used the same scaling factor as Chenkov et al.
(2017). This factor has been fitted to match the lower bounds for sequence progression in a spiking neural network.
Thus, the estimated conditions for successful progression should translate to similar dynamics in a spiking neural

network.

For weak recurrent interactions, the results of the non-linear network deviate from both the analytic approxi-
mation and a previously published spiking neural network (Fig. 1c, Chenkov et al., 2017). Even without recurrent
interactions, the non-linear rate model allows single sequence progression for a very narrow range of feed-forward
projections. However, in contrast to the analytical approximation and the spiking model, weaker feed-forward
interactions are required in the non-linear rate model. A definite explanation requires further investigation. Poten-
tially, the divergence is a result of the different wiring of feed-forward inhibition. In the non-linear rate model, all
assemblies, even when in the same sequence, send and receive feed-forward inhibition. In the analytic approxi-
mation there is no feed-forward inhibition within a sequence, only between sequences. In the published spiking
model feed-forward inhibition is not assembly specific and connection strengths are plastic, making it difficult to

compare (Chenkov et al., 2017).

Our results highlight a key constraint on which synapses may be potentiated to support successful pairing of

activity sequences. We report that direct excitatory interactions between co-active assemblies lead to increased
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activation times (Fig. 4) and slower sequence propagation (Fig. 5). Maintaining propagation speed for paired
sequences was made possible by potentiating excitatory projections to subsequently active excitatory populations
in the cooperating sequence. Such temporally skewed potentiation may naturally occur via asymmetric spike-
timing-dependent plasticity during encoding (Klos et al., 2018; Miner and Tetzlaff, 2020). We note that several
other mechanisms may modulate speed: Dynamic firing rate adaptation to mimic refractory periods (Wilson and
Cowan, 1972), inhibitory oscillations to rhythmically gate propagation (Recanatesi et al., 2015), or inhibitory

plasticity to maintain EI balance (Vogels et al., 2011).

The presented results equally relate to the creation of new synapses as well as to potentiation of existing
synapses. The strength of an individual connection is defined by the product of population size, the average
connection probability and the synaptic weight. Unlike population size which also affects other projections of this

population, the specific connection probability and synaptic weight are interchangeable scaling factors.

Weak sequences may also compensate for small assembly sizes by potentiating recurrent interactions, weaken-
ing feed-forward inhibition, or recruiting more neurons (assembly outgrowth, see Tetzlaff et al., 2015; Lehr et al.,
2022). Here, the underlying learning scenario is highly simplified. We assume that during learning pre-configured,
recurrently interacting assemblies are activated by external input. This is thought to induce the formation or po-
tentiation of excitatory projections between subsequently activated excitatory populations. For this reason we
only evaluated the possibility that weak sequences compensate for small assemblies by strengthening projections

between subsequent excitatory populations.

Competition between neural activity sequences may be directly observed in hippocampal recordings. If reacti-
vation of neural activity sequences in the hippocampus is indeed the outcome of a competition process, signatures
of this process should be detectable. In the presented model, competition dynamics are characterized by an initial
rise in the activity of assemblies of different sequences, followed by reduced activity due to mutual inhibition,
until one sequence starts to out-compete the others. Such dynamics should be particularly strong if competing
sequences are of equal strength. Studying the reactivation of place cell sequences after running on two or more

distinct linear tracks may be an adequate experimental paradigm (Silva et al., 2015; He et al., 2020).

In summary, our work investigated the interaction of multiple sequences of different strengths within a recur-
rently connected network. We considered scenarios of competition and cooperation between interacting sequences
and characterized the effects on sequence reactivation and sequence dynamics. We showed that pairing weak se-
quences allows them to win over a stronger competitor. This has implications for hippocampal replay — the number
of hippocampal neurons recruited to represent certain types of information strongly differ between sensory modal-
ities (Salz et al., 2016; Danjo et al., 2018), thus making it important to develop a theoretical understanding of how

heterogeneity in assembly size influences replay statistics.
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x5 Methods

204« Simulations and analysis were performed with Jupyter notebooks 6.0.3 and Python 3.7.8 with standard libraries,
205 such as NumPy 1.18.5, SciPy 1.18.5, Matplotlib 3.2.2 and SymPy 1.5.1. All code is available at https://github.com/

296 tristanstoeber/sequence_competition_cooperation.

27 5.1 Assembly sequences in a non-linear rate model

In the non-linear rate model each assembly is formed by one excitatory and one inhibitory population. The
evolution of rate, 7’ , of a given population i of sequence s is described by
J

i ]
Tdt =—r] + 5(z) (1)

208 with 7 a fixed population time constant, equal across all populations.

The sigmoidal activation function .S over the input x is defined by

B (x —a)
S(I)_H<(x—a)2+1> 2

200 with the Heaviside function H (compare Fig. 1a) and a = 1 x 10~7 a small constant rightward shift of the

s0 activation function, preventing numerical imprecision around x = 0 from inadvertently driving network activity.

Each population in sequence s’ receives input by recurrent excitatory and inhibitory projections with strengths
wk:7 and wl. Excitatory populations may receive additional excitatory input by the preceding assembly of
the same sequence with strength w . In the case of cooperating sequences, each excitatory population receives
excitatory input of a co-active assembly of another sequence s with strength w . All assemblies send feed-

forward inhibition to each other, e.g. they excite each others inhibitory population. Thus, in addition to the

recurrent input w7 from their associated excitatory population, they receive input w';’ 7 f ' from all remaining n

excitatory populations 7™ of all sequences s™. Thus, the full input to an excitatory population o:lE’J and an
inhibitory population x I of assembly 4 in sequence s’ is described by:
aB7 = wEIpEd 4l +w§c]frlEjl +w }'}j rEm 3)
I
.’L‘i’J—wE’JT 7J+w,]r 7J+Zzw?’}]zfm 4)
m n#i
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Weight values are the product of the number of excitatory, M7, and inhibitory, M, neurons in the sending
population, equal for all assemblies in a given sequence sJ, as well as recurrent, Drc, feed-forward, pyyr, and

feed-forward inhibitory, py ¢;, connection probabilities and excitatory, g, or inhibitory, g/, synaptic strengths.

wi = MPp,.g” (5)
wg}j = MI’jprch

j E, E
w}f}] — M Tnpffg

wif; = M7 psrig®

Sequences are comprised of n,ss assemblies, all assemblies within a given sequence are equal in size and the £/

size ratio is fixed to M¥ /M = 4.

5.2 Simulation and data analysis

Simulations were run for a fixed time interval and a fixed step size with the solve_ivp function in SciPy’s integrate
package with integration method LSODA. As initial condition, the excitatory population in the first assembly of

each activated sequence s is set to rg: - 0.5, while all other rates are at zero.

To be classified as successfully progressing, a sequence must satisfy the following four conditions: 1) All
active: All assemblies must be activated. There should exist at least one point in time during which the activity of
a given excitatory population exceeds a minimal threshold r,,;,. 2) All informative: Each excitatory population
must exceed the activity of others at least one point in time. 2) Sparse activity: While the sequence is running,
maximum firing rates at any given point in time must not be reached by more than two assemblies. To exclude
numerical edge cases we consider assemblies to have similar firing rates, whenever the absolute value of the
difference is less than r4,. Allowing two assemblies to both have peak activity is necessary for the time points
when decreasing activity of the previous and increasing activity of the subsequent assembly are equal. 4) Order:
Activation times must maintain sequence order. The order of peak activities agrees with the predefined order of
assemblies in the sequence. Given our predefined one-step feed-forward interactions this is almost always the

case, though we mention it for completeness.

Sequence speed is determined as the inverse of the median interpeak interval of excitatory populations. Before
determine timepoints of peak activation, we rounded values to a precision of r;0l and ignored values below 7,,in

to avoid numerical fluctuations to be considered a.
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324 For a summarized description of all parameters used in the non-linear rate model see Table 1. For a summary

a5 of all used parameters see Table 2.

» 5.3 Linearized approximation of assembly sequence progression

We approximate assembly sequence progression in a linear dynamical system, as in Chenkov et al. (2017). To

0

study both sequence competition and cooperation, we define three sequences: s°, s', s2. Each assembly in position

i of sequence s/ is described by the rate of its excitatory TZ-E 7 and inhibitory riI J population . We combine

T
population rates in a single vector r; = (riE’O, rf’o, riE’l, f’l, riE’Q, r{’2) and write the full system as
dr
TE = (—1+MT5)T¢+Mff7"i,1 (6)

with the unity matrix —1 representing self-dampening, M.,.. recurrent interactions and My feed-forward pro-
jections from preceding assemblies to the same or other sequences. In each assembly excitatory and inhibitory
populations are recurrently interacting (see Fig. 1b). Excitatory recurrent projections between assemblies of se-
quence s’ are summarized by w/_, representing the number of participating neurons, connection probabilities

re?

and connection weights. Recurrent inhibitory projections, —kw?

7., are scaled by factor k, the relative strength of

inhibition, summarizing both differences in inhibitory populations sizes and synaptic weights. Thus all recurrent

interactions are represented by:

wl, —1 —kw?, 0 0 0 0
w?, —kw?, — 1 0 0 0 0
0 0 wl, —1 —kw}, 0 0
Mrc = (7)
0 0 wr,  —kwl.—1 0 0
0 0 0 0 w?, —1 —kw?,
0 0 0 0 w2, —kw?, —1

327

To simplify the mathematical treatment, we model interactions of assemblies within and between sequences
only via excitatory feed-forward projections to subsequently active assemblies (Fig. 1b). As such, feed forward

projections from sequence s7 to s™ originate from excitatory populations and target either the excitatory or the

19


https://doi.org/10.1101/2023.11.03.565506
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.03.565506; this version posted November 5, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

inhibitory population with strength w}’? and wjf;’z, respectively.

00 10 20
wre 0 wyr 0 wyp 0
0 0 w}(}l 0 wj%(}i 0
01 11 21
wry 0 ws 0 w% 0
Mys = (if ! 2f1f ®
wip, 000 0wy O
02 12 22
Oy 0 w I 0 w i 0
w%l 0 wﬁ% 0 0 O
328 Under the assumption that the activity in the previous assembly persists much longer than the population time

a9 constant 7, we can consider the steady state T% = 0 as a sufficient approximation. With this, we can further

a0 simplify the system to:

0= (—1 + Mrc)ri + Mff’l“i,l
(1 — Mrc)ri = MffT’i_l (9)
r; = (l — Mrc)_lef’rifl

331

332 Because inhibitory populations are assumed to have only recurrent projections, we can insert the expression

sss  for each inhibitory population riI 7 into its respective rlE J and reduce the system of equations to:

E __ E
Ty = KT (10)
E E0 E1 E2\%
with r;* = (ri L,y ) and
00 0 0,10 0,10 10 0, 20 0,20 20
wff(kw,,.u-i—l) 7kwrcwffi+kw7,cwff+wff 7kw7,cwffi+k:w7,cwff+wff
kwf, —wd +1 kwl, —wl, +1 kw?, —wd +1
01 1 01,1 01 11 1 1,21 1, 21 21
k= | Zkwipiwretkwiiw, twiy wff(k‘wm-*-l) —kw wipiHkw wip+wy
kwl —wl +1 kwl —wl +1 kwl —wl +1
02 2 02, 2 02 12 2 12 2 12 22 2
7krwffiwrc+kwffwm+wff 7kwffiwrc+kwffwrc+wff wff(kwm-i-l)
kw2, —w2, +1 kw2, —w?2, +1 kw2, —w2_ +1

To connect parameters of the population based model to neurons, connection probabilities and synaptic strengths,
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we proceed as in the non-linear rate model and set recurrent and feed-forward weights to

- B
wl, =cM™ pregre

wj/}l cME’jpffg;-’;f (11)

w%?z =cM prfig}:?i
with ¢ a scaling parameter related to the slope of the neurons’ input-output transfer function (Chenkov et al.,
2017, see below), M7 the number of neurons per excitatory assembly of sequence s?, p,. and g, pyry and
g%’f, pysi and g%?i, the connection probabilities and synaptic weights for recurrent, feed-forward excitation and

feed-forward inhibition, respectively. Further, we assume that the network operates in an approximately balanced

state and set k = 1.

. . . E1 . E21
For the single sequence scenario, we can express the firing rate of 7; "~ as a function of ;]

E1 Bl
T = RiaT0 (12)
1

Thus we can express the condition for marginally stable propagation of sequence s* as

ki1 = MPlegiiply (M7 egrepre +1) =1 (13)

We determine the minimal required recurrent connection probability by solving for p;...

~MEleglipl 41

Pre = p) (14)
(ME’I) CQQ}}grcp}flf
Further, we also derive ¢ from equation 13.
ol +fotiol (ot + g
‘= (15)

2MFE 1g}}grcp}f1fprc

We determine ¢ = 0.163 with the parameters of the successful example sequence s? from Fig. Ic (p,. =

0.035,pss = 0.01) rounded to the third decimal. We keep c at this constant value throughout the article.

To study the relation between required feed-forward weight and excitatory population size in a competition

scenario, we add the influence of a competing sequence s°
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E,1 E,1 E,0
Ty =K1 + Ko1T (16)

Again we define the condition for marginal stability as

ki) + koars ) = —MEOMELR G0 g, opppiprer) + MP egiply (MP egrepre +1) =1 (17)

and solve for pi;
E
MBI ME g% gepypipre + 1
ME’ICQJIC} (ME1cgepre +1)

Py = (18)

346 By setting rfff to 1 or 0, we can define a scenario with and without competition.
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Table 1: Description of parameters in the non-linear rate model

Parameter Description
MPE? number of excitatory neurons per assembly in s°
Me number of inhibitory neurons per assembly inMemory replay in balanced recurrent networks s°
T population time constant [arbitrary units]
a rightward shift of activation function
g¥ strength of excitatory synapses
g’ strength of inhibitory synapses
Pre recurrent connection probability
p?f feed-forward exc. connection probability between subsequent assemblies in s°
p?f feed-forward exc. connection probability between co-active assemblies in s’ and s
pjﬁﬁ A=1 feed-forward exc. connection probability between subsequently active assemblies in s* and s’
Dffi feed-forward inhibition connection probability
Nass number of assemblies per sequence
0 initial activity of first assembly
t simulation time [arbitrary units]
Trmin minimal activity for classification
Ttol activity tolerance for classification
Table 2: Parameters of the non-linear rate model For each figure and sequence. Ranges are indicated with
(start, stop, stepsize). Dashed lines indicate values applying to multiple columns.
Parameter Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5
80 SO Sl 50 Sl 80 51 52 SO Sl 82
ME 800 (400, 2000, 100) 1000 (100, 2000, 100) 1000 500 500 1000 500 500
M1 200 (100, 500, 25) 250 (25, 500, 25) 250 125 125 250 125 125
-
a
g
gl
Dre (0.0, 0.1, 0.001) (0.1, 0.05, 0.005)
p?f (0, 0.1, 0.001) (0.01, 0.03, 0.002) (0, 0.04, 0.001)
o o — (0, 0.04, 0.001)
N ) (0, 0.04,0.001)
Prfi
Nass
70
t
Tmin
Ttol
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