

1

2 **Traitor-virus-guided discovery of novel antiviral factors**

3 Caterina Prelli Bozzo^{1#}, Alexandre Laliberté^{1#}, Aurora De Luna¹, Chiara Pastorio¹,
4 Kerstin Regensburger¹, Stefan Krebs², Alexander Graf², Helmut Blum², Meta Volcic¹,
5 Konstantin M.J. Sparrer^{1*} & Frank Kirchhoff^{1*}

6

7 ¹ Institute of Molecular Virology
8 Ulm University Medical Center
9 89081 Ulm, Germany

10

11 ² Laboratory for Functional Genome Analysis
12 Gene Center, LMU Munich,
13 81377 Munich, Germany

14

15

16 [#]both contributed equally

17 *Correspondence: Konstantin.Sparrer@uni-ulm.de and Frank.Kirchhoff@uni-ulm.de

18

19

20 Keywords: HIV-1, restriction factors, CRISPR/Cas9, interferon, replication-competent HIV-1
21 gRNA constructs, Granulin, MHC-II Complex Transactivator, IFI16

22 **Abstract**

23 Complex pathogen-host interactions govern the outcome of viral exposures but remain poorly
24 understood because current methods to elucidate antiviral mechanisms are prone to artefacts
25 and lack sensitivity. Here, we developed a virus-guided technology platform where the
26 pathogen itself reveals its cellular opponents. To accomplish this, we engineered replication-
27 competent HIV-1 expressing sgRNAs targeting potential antiviral genes in Cas9-expressing
28 CD4⁺ T cells. Simultaneous analysis of HIV-1 constructs targeting >500 candidate genes
29 revealed that sgRNAs against *GRN*, *CIITA*, *EHMT2*, *CEACAM3*, *CC2D1B*, *RHOA* and
30 *HMOX1* are strongly enriched over several rounds of replication. Overexpression and knock-
31 out studies confirmed the antiretroviral activity of most factors but failed for some. Finally, we
32 show that lack of the accessory *nef* gene increased enrichment of sgRNAs targeting *SERINC5*
33 and *IFI16* demonstrating that this method allows identification of targets of accessory proteins.
34 The versatile and effective HIV-guided CRISPR technology offers numerous possibilities for
35 clarification of virus-host interactions and innate defense mechanisms.

36 **Introduction**

37 Viral pathogens and their hosts are caught in an ever-ongoing arms race. Cellular antiviral
38 factors are an essential part of the innate immune system and may provide immediate and broad
39 protection against viral pathogens^{1–3}. However, viruses adapt and have evolved sophisticated
40 mechanisms to evade or counteract antiviral defense mechanisms^{4–6}. Thus, the outcome of viral
41 exposures depends on complex pathogen-host interactions and failure of cellular defense
42 mechanisms may result in severe disease and - in the worst case - devastating pandemics.

43 HIV-1 is the causative agent of the AIDS pandemic and a serious challenge to public health
44 since more than 40 years. Studies of HIV-1 and related lentiviruses allowed the discovery of a
45 complex repertoire of restriction factors that have the potential to inhibit viral pathogens at
46 essentially every of their replication cycle^{1–3}. They further revealed that differences in the
47 ability to counteract antiviral restriction factors explain why only one of at least thirteen
48 independent zoonotic lentiviral transmissions resulted in the AIDS pandemic^{6–8}. However, we
49 are only beginning to understand the complex interplay between HIV and its human host and
50 it is evident that important antiviral factors remain to be discovered. For example, the
51 determinants of interferon (IFN) resistance of transmitted/founder (TF) HIV-1 strains that are
52 responsible for primary infection^{9,10}, frequently map to regions in the viral genome unlikely to
53 affect the susceptibility to known restriction factors. Previous studies further suggest that
54 targets of the HIV-1 accessory Vif, Vpu, Vpr and Nef proteins which counteract major antiviral
55 factors remain to be identified^{11,12}.

56 The discovery of yet unknown anti-retroviral factors is of broad interest and relevance as
57 they not only restrict HIV-1 but a wide range of viral pathogens and frequently also play roles
58 in inflammation and cancers^{13–21}. Thus, new insights into antiviral defense mechanisms will
59 not only improve our ability to combat viral pathogens but also help to develop innovative
60 therapies against other diseases. However, discovery of restriction factors is a challenging task
61 since they are structurally and functionally highly diverse and there are no generally applicable

62 criteria for their identification^{2,4}. Previous studies used expression libraries of IFN-stimulated
63 genes (ISGs), RNA interference, and pooled CRISPR/Cas9 screens²². However, over-
64 expression screens can usually not be performed genome-wide and are prone to artifacts²²⁻²⁴.
65 RNAi screens show low reproducibility and high rates of false positives due to inefficient
66 knock-down and off-target effects^{22,25}. Most CRISPR/Cas9-based screens involve the
67 introduction of pooled sgRNAs into Cas9-expressing cells primarily via lentiviral
68 transduction²² already altering the innate immune landscape of the transduced cell prior to virus
69 infection. Subsequently, cells showing resistance or increased sensitivity in single-round virus
70 infection assays are enriched to identify pro- or antiviral factors, respectively. So far just a
71 single targeted CRISPR-based screen for HIV restriction factors has been reported²⁶. In this
72 approach THP-1 cells are first treated with LTR-containing constructs coexpressing Cas9 and
73 sgRNAs, subsequently infected with wild-type HIV-1, and examined for enrichment of gRNAs
74 in the viral supernatant compared to the cellular extracts²⁶. Thus, this system uses traditional
75 double-transductions with non-replication competent vectors and specifically detects antiviral
76 factors associated with reduced levels of viral RNA genomes relative to the proviral DNA copy
77 numbers in the cells.

78 Previous genetic screens provided some insights into virus-host interactions. However, they
79 have significant limitations. Most of them rely on manipulation of the cells prior to virus
80 infection. Thus, they will miss factors important for cell survival. In addition, they may yield
81 misleading results because some cellular proteins have different effects in uninfected and
82 infected cells. For example, viral receptors are essential for viral entry but may impair virus
83 release and infectivity. Importantly, current overexpression, RNA interference, and
84 CRISPR/Cas9 screens usually involve only single-cycle infections. Thus, they frequently
85 detect factors affecting early steps of the viral replication cycle and are generally not very
86 sensitive. Since cells exert numerous defense mechanisms the contribution of individual factors
87 to the control of viral pathogens may seem small. However, a 2-fold growth advantage may

88 result in >1000-fold higher virus yields after just 10 rounds of replication. Thus, effects missed
89 in single round of infection screens can have major impacts on viral spread *in vivo*. Altogether,
90 robust, sensitive, broad and versatile screens that are not prone to artifacts are urgently needed
91 for a better understanding of the complex host-pathogen interplay.

92 To address this, we combined the CRISPR/Cas9 technology with the selection power of
93 replication-competent HIV-1. Specifically, we equipped full-length infectious molecular
94 clones (IMCs) of HIV-1 with molecular tools (i.e. sgRNAs) allowing the virus to eliminate
95 antiviral genes but at the same time revealing their identity. We named this technique the traitor
96 virus (TV) approach since the pathogen itself identifies its cellular opponents. Our results
97 demonstrate that TVs targeting specific antiviral genes show increased replication fitness in
98 Cas9 expressing T cells and are rapidly enriched in emerging viral populations. We obtained
99 first insights into the underlying mechanisms and confirmed the antiviral effect of several
100 factors in primary human CD4+ T cells. Finally, utilization of “handicapped” *nef*-defective
101 TVs allowed the discovery of IFI16 as a novel target of the viral accessory protein Nef. In
102 summary, we show that the TV-guided technology allows the robust and effective
103 identification of antiviral cellular factors including new targets of the HIV-1 accessory proteins
104 providing in-depth insights into virus-host interactions.

105 **Results**

106 **Design and proof-of-principle of the TV approach**

107 To allow efficient virus-driven discovery of antiviral cellular genes, we generated replication-
108 competent HIV-1 constructs encoding single guide RNAs (sgRNAs). Our goal was to equip
109 HIV-1 with sequence and target-specific genetic “scissors” to generate “traitor viruses” (TVs)
110 whose replication fitness reveals their cellular opponents. To achieve this, we inserted a
111 cassette encompassing the human U6 promoter, sgRNAs comprised of the flexible targeting
112 region, and an invariant scaffold into the proviral genome of the well-characterized HIV-1
113 NL4-3 infectious molecular clone (IMC) (Fig. 1a). The resulting proviral HIV-1 constructs
114 express all viral genes under the control of the LTR promoter and via the regular splice sites.
115 However, proviral integration into the host genome initiates U6-driven expression of sgRNAs
116 and editing of their target genes in the presence of Cas9. Thus, similar to having additional
117 accessory genes, the virus itself drives countermeasures against cellular defense mechanisms.
118 The sgRNA expression cassette encompasses only ~351 nucleotides and hence increased the
119 size of the viral RNA genome that is packaged into HIV-1 particles only moderately from 9833
120 to 10184 base-pairs. We hypothesized that this insertion should be well tolerated and enhance
121 the replication fitness of TV variants expressing sgRNAs inactivating cellular genes that
122 suppress steps in the viral replication cycle after proviral integration or reduce the
123 infectiousness of progeny HIV-1 particles.

124 To determine whether this novel approach works in principle, we generated TV constructs
125 encoding non-targeting (NT) control gRNAs and four unique sgRNAs targeting two
126 established restriction factors: tetherin that inhibits virion release^{27,28} and GBP5, which impairs
127 viral infectivity by suppressing furin-mediated processing of envelope glycoproteins (Fig. 1b)
128 ^{29,30}. For passaging, we generated CEM-M7 cells stably expressing Cas9. This T/B hybrid cell
129 line expresses CD4, CCR5 and CXCR4 and contains the *GFP* reporter gene under the control
130 of the HIV-1 LTR³¹. Since many antiviral factors including tetherin and GBP5 are IFN-

131 inducible, infections were performed in the absence and presence of IFN- β . Viral supernatants
132 were collected at different days post-infection and the abundance of sgRNAs in the viral
133 genomes determined by qRT-PCR. We observed efficient viral replication and enrichment of
134 TVs expressing sgRNAs targeting genes encoding the restriction factors (Fig. 1b). FACS
135 analyses confirmed that the selected HIV-1 U6-gRNA-scaffold constructs reduced tetherin and
136 GBP5 expression by 70% and 40%, respectively (Fig. 1c). Altogether, these results provided
137 proof-of-concept that replication-competent HIV-1 TV constructs allow effective selection of
138 sgRNAs targeting antiviral genes.

139 **Generation and optimization of HIV-1 U6-gRNA-scaffold libraries**

140 To identify novel antiviral restriction factors, we generated a library of TV constructs targeting
141 genes encoding 511 different candidate restriction factors (CRFs; Supplementary Table 1) each
142 by three unique sgRNAs. Target genes were chosen because they share features of known
143 restriction factors²⁴, or were suggested to play roles in HIV infection³². As controls, we used
144 eleven non-targeting sgRNAs. The sequences of the sgRNAs were selected from the GeCKO
145 V2 library³³ with the lowest off target scores and targeting various exons of their respective
146 target gene. Cloning into the proviral HIV-1 NL4-3 constructs was highly efficient and
147 measurements of colony forming units indicated an average coverage of ~1.000 individual
148 transformants per sgRNA. Transfection of the proviral TV-NL4-3-CRF-gRNA library yielded
149 high levels of infectious HIV-1 (TCID₅₀ of 7.34x10⁶ per ml virus stock) that replicated
150 efficiently in CEM-M7 Cas9 cells. However, the quality of sequence reads rapidly declined
151 and PCR analyses confirmed loss of the U6-gRNA-scaffold cassette in most replicating HIV-
152 1 variants during passage (Extended Data Fig. 1a). Sequence analyses revealed that deletions
153 were mediated by recombination of repeats flanking the U6-gRNA-scaffold sequence
154 (Extended Data Figs.1a, 1b). Specifically, the accessory *nef* gene overlaps the U3 region of the
155 3' LTR and contains *cis*-acting elements, i.e. a T-rich region, polypurine tract (PPT) and

156 attachment (*att*) sequences, required for reverse transcription and integration. The initial TV
157 constructs contain these sequences, referred to as TPI-region hereafter, in both *nef* and at the
158 beginning of the 3'LTR. To remove repetitive hotspots for recombination, we introduced 16
159 synonymous nucleotide changes in the *nef* open reading frame (Extended Data Fig. 1b). In
160 addition, we mutated the 3`end of the *nef* gene representing a 2nd less prominent site for
161 recombination. The optimized TV-NL4-3-CRF-gRNA constructs were replication-competent
162 and highly stable during cell-culture passaging (Extended Data Fig. 1c). Thus, we introduced
163 the 1537 different sgRNAs into the optimized backbone using homologous recombination. The
164 proviral TV libraries yielded high levels of infectious virus after transfection into HEK293T
165 cells (Extended Data Fig. 1d) and the mutations in the *nef* coding region did not compromise
166 Nef expression (Extended Data Fig. 1e). Transformation of the proviral DNA library into *E.*
167 *coli* resulted in ~3x10⁵ colonies suggesting sufficient coverage to retain complexity. Deep
168 sequencing confirmed that all 1537 sgRNAs were efficiently cloned into the backbone and that
169 the genomic HIV-1 RNA sequences in the viral stocks reflected those in the proviral DNA TV
170 library (Extended Data Fig. 1f). Altogether, our results showed that silent mutations in the TPI-
171 region of *nef* together with intact *cis*-regulatory elements downstream of the U6-gRNA-
172 scaffold cassette and upstream of the core enhancer in the 3`LTR allow efficient HIV-1
173 replication and stable sgRNA expression.

174 **TVs reveal cellular factors restricting HIV-1 replication**

175 To identify sgRNAs associated with a fitness advantage for HIV-1 replication, we infected
176 CEM-M7-Cas9 cells with the pool of infectious TV-NL4-3-CRF-gRNA viruses targeting 511
177 potential antiviral genes. CXCR4-tropic HIV-1 NL4-3 IMCs replicate with fast kinetics. For
178 passaging, we thus inoculated uninfected cells with 5% (v/v) of cell cultures obtained 2 days
179 post-infection over a total period of 20 days (Fig. 1a). Virus containing culture supernatants
180 were isolated in 5-day intervals. TV-NL4-3-CRF-gRNA viruses spread efficiently and

181 produced high levels of infectious virus (Extended Data Fig. 2a). Next generation sequencing
182 (NGS) followed by bioinformatic analysis using MAGeCK³⁴ revealed the selection of TVs
183 expressing sgRNAs targeting specific candidate antiviral genes in both the absence and
184 presence of IFN- β (Fig. 2a). Widening volcano plots illustrate that viruses containing sgRNAs
185 conferring a replicative advantage are increasing over time (Fig. 2b). sgRNAs targeting some
186 known restriction factors, such as IFITM1, TRIM5 and IFI16 were typically enriched by about
187 4- to 8-fold at the end of passage (Extended Data Fig. 2b). In comparison, TVs expressing
188 sgRNAs targeting genes encoding Programulin (PGRN), Class II MHC transactivator (CIITA),
189 Coiled-Coil and C2 Domain Containing 1B (CC2D1B), Carcinoembryonic antigen-related cell
190 adhesion molecule 3 (CEACAM3), Heme Oxygenase-1 (HMOX1) and Euchromatic Histone
191 Lysine Methyl-transferase 2 (EHMT2, also named G9a) were increasingly enriched by up to
192 several orders of magnitude (Fig. 2c, Extended Data Fig. 2c). The efficiency of selection varied
193 between different sgRNAs targeting the same gene. However, the impact of individual sgRNAs
194 on viral fitness was confirmed in the presence of IFN- β (Fig. 2c) and highly reproducible in
195 independent experiments (Fig. 2d). TVs targeting *GRN*, *CIITA*, *CC2D1B*, *CEACAM3*, *HMOX1*
196 and *EHMT2* also showed increased fitness in SupT1-CCR5-Cas9 cells (Figs. 2e, 2f, Extended
197 Data Figs. 2c-e). Altogether, efficient and robust enrichment of the same specific sgRNAs in
198 different experimental settings clearly indicated targeting of cellular genes suppressing HIV-1
199 replication.

200 **GRN, CIITA and CEACAM3 restrict HIV-1 replication in primary CD4⁺ T cells**

201 To assess the significance of factors identified by the TV approach, we first confirmed that the
202 protein products of genes targeted by gRNAs associated with increased fitness, i.e. *GRN*,
203 *CIITA*, *CC2D1B*, *CEACAM3*, *HMOX1* and *EHMT2* are expressed in the cell lines used for
204 selection (Fig. 3a). In agreement with our finding that TVs targeting these genes are selected
205 in the presence and absence of IFN- β (Fig. 2), these six factors were expressed but (unlike
206 ISG15 or tetherin) not further induced by IFN treatment (Fig. 3a). For functional analyses, we

207 initially focused on GRN as sgRNAs targeting the corresponding gene provided a substantial
208 and robust fitness advantage (Fig. 2). *GRN* expresses an 88 kDa precursor, programulin (PGRN)
209 that has been reported to suppress HIV-1 transcription by interacting with cyclin T1^{35,36}. In line
210 with this, partial knock-out (KO) of PGRN in CEM-M7-Cas9 cells significantly increased
211 infectious virus production (Fig. 3b). Overexpression of PGRN slightly reduced infectious
212 virus production and protein expression of NL4-3 and (more clearly) the HIV-1 CH077
213 transmitted-founder IMC⁹ in transfected HEK293T cells (Fig. 3c). Defects in viral accessory
214 genes had little impact on the susceptibility of HIV-1 to PGRN (Fig. 3c). In support of an effect
215 on viral transcription, PGRN inhibited LTR-driven luciferase expression in the absence and
216 presence of Tat (Fig. 3d). In addition, PGRN reduced GFP expression by three proviral HIV-1
217 IRES-eGFP constructs in a dose-dependent manner (Fig. 3e). To further examine the
218 significance of the antiviral activity of PGRN, we established a gRNA/Cas9-based KO
219 approach for specific genes in primary CD4⁺ T cells (Extended Data Fig. 3a). KO of PGRN
220 reduced its protein levels by ~70% (Fig. 3f) and increased infectious virus production by WT
221 HIV-1 NL4-3 and CH077 IMCs by ~2-fold (Fig. 3g, Extended Data 3b).

222 We next examined the effects of CIITA, CC2D1B and CEACAM3. Overexpression of these
223 cellular factors had differential effects. CIITA had no significant impact on infectious virus
224 yields (Fig. 4a) and increased LTR-driven eGFP production by proviral HIV-1 IRES-eGFP
225 IMCs at very high expression levels (Extended Data Fig. 4a). In comparison, CC2D1B
226 inhibited infectious virus production in a dose-dependent manner (Fig. 4a). Western blot
227 analyses showed that CC2D1B significantly reduces virus release and Env processing
228 (Extended Data Figs. 4b-d). This agrees with previous data showing that CC2D1A interferes
229 with HIV-1 budding and that both CC2D1A and CC2D1B interact with the CHMP4 subunit of
230 the ESCRT-III complex^{37,38}. In contrast, high levels of CEACAM3 overexpression increased
231 infectious virus production by transfected HEK293T cells (Fig. 4a).

232 To examine effects under more physiological conditions, we performed KO experiments in
233 primary CD4⁺ T cells. Protein expression was reduced by ~60% and ~80% for CIITA and
234 CC2D1B, respectively, while no significant effect was observed for CEACAM3 (Extended
235 Data Fig. 4e). Thus, it came as surprise that treatment with both CIITA and CEACAM3
236 targeting sgRNAs increased HIV-1 NL4-3 and CH077 replication in primary CD4⁺ T cells by
237 2- to 3-fold, while KO of CC2D1B had no enhancing effect (Figs. 4b-d, Extended Data Fig.
238 4f). Notably, CEACAM3 is part of a large family of related adhesion molecules and antibody
239 cross-reactivities may compromise meaningful analysis of specific KO efficiencies. To further
240 examine the role of CC2D1B, we bypassed the early step of regular HIV-1 infection by utilizing
241 *env*-defective single-round HIV-1 particles pseudo-typed with the VSV-G protein. In
242 agreement with the inhibitory effect of CC2D1B overexpression on virus release (Extended
243 Data Figs 4b, 4c), reduced CC2D1B expression moderated increased p24 antigen production
244 under these experimental conditions (Fig. 4e). Altogether, our results showed that 3 of the 4
245 factors identified by the TV approach (PGRN, CIITA and CEACAM3) restrict HIV-1
246 replication in primary CD4⁺ T cells. The remaining one (CC2D1B) reduced infectious virus
247 release in overexpression assays and in primary CD4⁺ T cells infected with VSV-G-pseudo-
248 typed HIV-1 particles. This illustrates the power of TV-based screens in identifying relevant
249 antiviral factors and further shows that some of them would be missed in commonly used
250 overexpression and KO assays.

251 **Increased fitness of CH077-based TVs targeting *HMOX1*, *EHMT2* and *RHOA***

252 Initially, we utilized NL4-3 because this HIV-1 IMC has been characterized and proven useful
253 in numerous previous studies. However, NL4-3 is adapted for efficient replication in T cell
254 lines. Thus, cellular factors restricting replication of primary patient-derived HIV-1 strains may
255 be missed. To address this, we generated TV libraries of HIV-1 CH077 representing a TF HIV-
256 1 IMC capable of using both CCR5 and CXCR4 for viral entry⁹. The initial constructs contain
257 a duplication of the TPI and U3 regions in *nef* and the 3'LTR. To minimize recombination, we

258 codon optimized the *nef* gene with changes similar to the stabilizing changes in the NL4-3
259 proviral genome (Extended Data Figs. 1b, 5a). The optimized CH077 U6-gRNA-scaffold
260 construct expressed functional Nef (Extended Data Fig. 5b). Viral infectivity was moderately
261 reduced compared to the parental CH077 IMC (Extended Data Fig. 5c), presumably due to the
262 slightly increased size of the viral genome. Nonetheless, the viral titers were well sufficient to
263 cover all 1537 gRNAs and NGS confirmed that the virus stocks faithfully represented the
264 proviral CH077-CRF-gRNA library (Extended Data Fig. 5d). TV-CH077-CRF-gRNA viruses
265 spread efficiently but with slower kinetics than NL4-3 and produced high levels of infectious
266 virus for ≥ 30 days of passaging (Extended Data Fig. 5e).

267 Replication of CH077-based TVs resulted in the selection of an overlapping but distinct set
268 of sgRNAs compared to the NL4-3-based library (Figs. 5a, 5b). For example, the screen with
269 the primary HIV-1 IMC confirmed that sgRNAs targeting *GRN*, *CC2D1B*, *CEACAM3*,
270 *HMOX1* and *EHMT2* are associated with increased replication fitness (Fig. 5c). Notably,
271 sgRNAs targeting *CEACAM3* were selected more efficiently by CH077-based compared to
272 NL4-3-based TVs and sgRNAs targeting *RHOA* only increased fitness of CH077 but not NL4-
273 3 (Figs. 5d, 5e). Ras homolog gene family member A (RhoA) is a small GTPase involved in
274 actin cytoskeleton dynamics, cell motility and regulation of innate immunity³⁹. Both enhancing
275 and inhibitory effects on HIV-1 have been reported^{40,41}. Overexpression of RhoA had no effect
276 on HIV-1 NL4-3 but moderately affected infectious virus production by primary virus strains
277 (Extended Data Fig. 6a). KO of RHOA was highly efficient but reduced, rather than enhanced,
278 HIV-1 replication (Extended Data Figs. 6b, 6c). Further analyses showed that lack of RhoA
279 increases cell death and impairs cell proliferation (Extended Data Figs. 6d-f), which explains
280 why HIV-1 replication was reduced under these experimental conditions. Altogether, the TV-
281 CH077-based screen confirmed the power of virus-driven identification of antiviral factors and
282 suggests roles of CEACAM3 and RhoA in limiting primary HIV-1 replication.

283 ***Nef*-defective TVs reveal novel potential Nef targets**

284 We hypothesized that lack of specific accessory genes will increase the selective advantage
285 mediated by sgRNAs targeting restriction factors that are otherwise counteracted by these viral
286 factors. To address this, we generated a TV-CRF-gRNA library using an otherwise isogenic
287 *nef*-deleted HIV-1 NL4-3 as a backbone (Fig. 6a). We found that the Δ *nef*-TV-NL4-3-CRF-
288 gRNA viruses replicated with moderately faster kinetics in CEM-M7-Cas9 cells compared to
289 the parental constructs (Extended Data Fig. 7a), most likely because their genomic size is
290 reduced by 360 bp. Altogether, results obtained using WT and Δ *nef* backbones correlated well
291 and confirmed that sgRNAs targeting *GRN*, *HMOX1*, *CIITA* and *EHMT2* increase viral fitness
292 (Fig. 6b, Extended Data Figs. 7b, 7c). Lack of Nef was associated with moderately increased
293 selection efficiency of sgRNAs targeting IRF-3 (Extended Data Fig. 7c). IRF-3 is a major
294 transcriptional regulator of type I IFN-dependent immune responses suggesting that they might
295 be more effective against *nef*-deficient HIV-1. Predictably, lack of Nef promoted the selection
296 of TVs expressing sgRNAs targeting genes encoding factors that are known to be counteracted
297 by Nef, such as *SERINC5*^{42,43} (Fig. 6c). The abundance of *SERINC5*-targeting sgRNAs
298 increased with relatively slow kinetics, possibly because this factor affects virion infectivity
299 and hence the inhibitory effect only becomes apparent over several rounds of replication.

300 Lack of an intact *nef* gene also increased the efficiency of selection for TV sgRNA variants
301 targeting IFI16, especially in the presence of IFN- β (Figs. 6f-h). This came as surprise since
302 we have previously shown that IFI16 inhibits most subtypes of HIV-1 by sequestering the
303 transcription factors Sp1 and that clade C viruses evade this restriction by acquisition of an
304 additional NF- κ B binding site^{44,45}. Analysis of five pairs of WT and *nef*-defective HIV-1 strains
305 including two primary subtype B and two clade C IMCs confirmed that the latter are less
306 sensitive to the inhibitory effects of IFI16 (Fig. 6i). In all cases, however, an intact *nef* gene
307 clearly reduced viral susceptibility to IFI16 restriction (Fig. 6i). Thus, “handicapped” TVs
308 lacking specific genes identify innate defense mechanisms that are counteracted by HIV-1
309 accessory proteins and reveal that inhibition by IFI16 is antagonized by Nef.

310 **Discussion**

311 In the present study, we exploited the replication fitness of infectious HIV-1 constructs
312 expressing sgRNAs to decipher antiviral mechanisms. We named this technology “Traitor-
313 virus” approach since populations of HIV-1 equipped with sgRNAs not only allow the
314 pathogen to inactivate antiviral genes (i.e. confer a selective advantage) but also reveal their
315 identity (i.e. the targeted sequence). Each sgRNA thus represents a unique molecular barcode
316 allowing to associate a selection advantage with a specific cellular gene. Unlike previous
317 methods, these virus-driven screens are highly effective, robust and sensitive because the effect
318 of selective advantages associated with specific sgRNAs is amplified at each round of viral
319 replication. Notably, this closely reflects the impact of fitness advantages during HIV-1
320 replication *in vivo*. Competition-based TV screens enable simultaneous evaluation of numerous
321 cellular targets using complex HIV-1-U6-gRNA-scaffold libraries. Since the readout relies on
322 changes in viral replication fitness and hence changes in the relative frequencies of sgRNAs
323 our approach is highly robust and barely affected by variations in the number of input sgRNA
324 copies. Functional analyses confirmed that TVs identify physiologically relevant cellular
325 factors that restrict HIV-1 replication in primary CD4⁺ T cells as well as a novel Nef targets.

326 We generated TVs expressing 1537 different gRNAs to assess 511 cellular target genes in
327 two different viral backbones and in two Cas9 expressing cell lines. At the end of cell culture
328 passage, sgRNAs targeting *GRN*, *CIITA*, *CC2D1B*, *CEACAM3*, *EHTM2* and *HMOX1* were
329 enriched by ~10- to 500-fold under all selection conditions used demonstrating significant
330 selection advantages for the virus. A clear advantage of TV-based screens is that they are highly
331 flexible and allow to monitor differences in selective pressures in various cellular
332 environments. Thus, they will allow to elucidate e.g. defense factors in T cells versus
333 macrophages as well as innate immune mechanisms induced by different types of cytokines.
334 Since inducibility by IFNs is a feature of many restriction factors, we performed the TV screen
335 in the presence and absence of IFN- β . Unexpectedly, most antiviral factors identified were

336 expressed at similar levels and exerted comparable selection pressures under both conditions
337 (Examples shown in Fig. 2). Notably, this was not due to lack of responsiveness of the Cas9
338 expressing CEM-M7 and SupT1-CCR5 cells since expression of ISG-15 and tetherin (BST-2)
339 were efficiently induced by IFN- β treatment (Fig. 3a). Thus, our screen identifies antiviral
340 factors that are induced by IFNs as well as those that are constitutively expressed to confer
341 immediate protection. The latter may represent the real first line of defense as they do not
342 require viral replication and innate immune activation to exert protective effects.

343 The high sensitivity and experimental setting of the virus-driven approach allows to identify
344 factors that will be missed by current overexpression and KO studies. Overexpression
345 confirmed inhibitory effects of PGRN and CC2D1B, while KO of GRN, CIITA and
346 CEACAM3 increased HIV-1 replication in primary CD4 $^{+}$ T cells. It is well known that
347 overexpression in HEK293T cells is prone to artifacts and manipulation of viral target cells
348 prior to infection, such as in KO settings, may yield misleading results. For example, the CD4
349 receptor is essential for HIV-1 entry but impairs viral release and infectivity later during the
350 replication cycle⁴⁶. Indeed, our results indicate that CC2D1B may promote viral entry but
351 restrict replication/exit. In addition, KO of some cellular factors (such as RhoA) affects cell
352 proliferation and viability precluding meaningful analysis. In the TV approach, HIV-1 itself
353 drives selection and the fitness advantage is determined by the inhibitory effect of the targeted
354 cellular gene. Thus, changes in the abundance of specific sgRNAs in the replicating viral
355 population are a robust indicator of the importance of the corresponding antiviral factors.

356 Many previous screens focused on early steps of the HIV-1 replication cycle²² and/or
357 analyses of IFN-stimulated genes²³ mainly due to experimental constraints. In comparison, the
358 TV-mediated inactivation of cellular genes is initiated after proviral integration simultaneously
359 with viral gene expression. Thus, it detects cellular factors presumably affecting viral
360 transcription and latency (IFI16, GRN, CIITA, EHMT2), assembly and release (tetherin,
361 CC2D1B), as well as on virion infectivity (SERINC5, GBP5) (Extended data Fig. 8). Notably,

362 EHMT2 is a methyltransferase that generates H3K9me2, which plays an important role in HIV-
363 1 latency in primary CD4⁺ T cells⁴⁷. Our results further support that silencing of EHMT2
364 promotes productive infection and efficient viral transcription. Thus, TV-based screens allow
365 to identify targets for reactivation of latent viral reservoirs representing the major obstacle
366 against a cure of HIV/AIDS⁴⁸. HMOX1 is upregulated in response to oxidative stress and an
367 important anti-inflammatory enzyme. It has been suggested to exert protective effects in HIV-
368 1 infected individuals^{49,50} and to restrict SARS-CoV-2^{51,52}. We also observed enrichment of
369 sgRNAs targeting IRF3, a transcription factor playing a key role in the induction of innate
370 antiviral defense mechanisms indicating detection of factors setting the cell in an antiviral state
371 rather than inhibiting HIV-1 directly.

372 In some aspects, the present TV method resembles a recently reported influenza-driven
373 screen for virus dependency factors, which confirmed the attenuating role of TREX1 in viral
374 sensing⁵³. While having some similar perks as our system, such as allowing multiple rounds of
375 replication that permit effective detection of fitness advantages, it relied on artificial induction
376 of factors to identify proviral genes. A loss-of-function approach as in our case has the
377 advantage of identifying cellular factors that affect viral replication at endogenous expression
378 levels. Furthermore, compared to influenza virus, passaging of HIV-1 induces less cytopathic
379 effects and thus loss of cells with increased replication. Most importantly, working with
380 recombinant HIV-1 is established in a plethora of labs worldwide and screening systems based
381 on lentiviruses are highly relevant as commonly usable, flexible and rapidly adoptable tools.
382 In contrast, generation of genetically modified viruses containing segmented negative sense
383 RNA genomes, such as influenza virus, requires technically challenging complex reverse
384 genetics systems⁵⁴.

385 The ease of genetic manipulation of HIV-1-based constructs also allows generation of TVs
386 with specific “handicaps”, such as defects in accessory genes, switches in coreceptor tropism
387 or alterations in regulatory elements. For proof of concept, we generated and screened *nef*-

388 deleted NL4-3-based TVs. Predictably, lack of Nef increased the fitness advantage mediated
389 by sgRNAs against *SERINC5*, an established Nef target^{42,43}. Surprisingly, lack of Nef function
390 also increased selection pressure for sgRNAs targeting *IFI16*. Overexpression analyses
391 confirmed that *nef*-defective primary HIV-1 IMCs are significantly more susceptible to
392 inhibition by IFI16 compared to otherwise isogenic WT viruses (Fig. 6i). IFI16 has been
393 reported to inhibit viral pathogens including HIV-1 by a variety of mechanisms and has also
394 been reported to play roles in innate sensing of viral pathogens⁵⁵⁻⁵⁷. Our finding that the
395 inhibitory activity of IFI16 is not only evaded by an additional NF-κB binding site in the LTR
396 of currently dominating clade C viruses⁴⁴ but also counteracted by Nef further supports an
397 important role of this antiviral factors. Our results obtained using otherwise isogenic TV
398 constructs differing in *nef* are proof-of-concept that genetically closely related pairs HIV-1
399 strains differing in IFN sensitivity and/or accessory gene function will pinpoint factors
400 involved in virus transmission and/or counteracted by Vif, Vpr, Vpu or Nef. In addition,
401 CRISPR/Cas9-based approaches become increasingly versatile. For example, mutated Cas9
402 allows to enhance gene expression for identification of HIV-1 dependency factors, or Cas12a2
403 allows targeting of mRNAs instead of KO in the genome⁵⁸.

404 Considering the nature of innate immune defenses, most, if not all factors identified in TV
405 approach will be relevant for other viruses and diseases that involve innate immune responses,
406 as well^{2,59}. In fact, characterization of RFs against HIV-1 previously often served as a blueprint
407 to identify important components of cellular defenses, such as APOBEC3, tetherin and
408 SERINC proteins that are now well-known as broad anti-viral factors. Our TV approach
409 identified HMOX1, which was previously shown to antagonize SARS-CoV-2⁵². CIITA
410 provide cell resistance against Ebola virus and SARS-like coronaviruses⁶⁰. Antiretroviral
411 factors including APOBEC3 and TRIM proteins as well as SAMHD1 also play roles in
412 genomic integrity and cancers^{61,62}. Granulin (GRN) is known to be a potent mitogen implicated

413 in many human cancers⁶³. These examples already demonstrate that factors identified in TV-
414 approaches are of broad relevance.

415 In conclusion, we conceived an innovative pathogen-driven screening approach that
416 provides an effective and convenient means to elucidate which cellular genes affect replication
417 fitness of HIV-1. It is highly versatile and robust and thus will allow to assess zoonotic
418 potential, degree of adaptation to human and/or the repertoire of their accessory genes to obtain
419 exciting novel insights into the complex virus-host pathogens and defense mechanisms against
420 viral pandemics. We present a focused screen but high cloning efficiencies and infectious virus
421 titers offer the possibility for genome-wider unbiased identification of antiviral factors and
422 comprehensive elucidation of complex virus-host interactions.

423 **Acknowledgements**

424 We thank Dré van der Merwe, Johannes Lang, Regina Burger, Jana-Romana Fischer, Birgit
425 Ott, Daniela, Krnavek and Martha Meyer for technical assistance and Christina Stürzel for help
426 with the generation of proviral constructs. Caterina Prelli Bozzo, Alexandre Laliberté and
427 Chiara Pastorio are part of the International Graduate school for Molecular Medicine (IGradU).
428 This study was supported by an ERC Advanced grant (Traitor-Viruses) to F.K. and DFG grants
429 to F.K. (CRC 1279), K.M.J.S. (CRC 1279, SPP 1923, SP 1600/6-1) and a BMBF junior group
430 to K.M.J.S. (IMMUNOMOD).

431 **Author contributions**

432 C.P.B. and A.L. performed most experiments with support by A.D.L., C.P. and M.V.. F.K. and
433 K.M.J.S. conceived the study and planned experiments. S.K, A.G. and H.B. performed the
434 deep-sequencing analyses. F.K. wrote the initial draft of the manuscript. All authors reviewed
435 and approved the manuscript.

436 **Declaration of Interests**

437 All authors declare no competing interests.

438 **Data and code availability**

439 Further information and requests for resources and reagents should be directed to and will be
440 fulfilled by FK (Frank.Kirchhoff@uni-ulm.de). All raw sequencing data files have been
441 deposited in NCBI's Gene Expression Omnibus. All other data are available in the main text
442 or the supplemental information.

443 **Methods**

444 **Cell culture.** All cells were cultured at 37°C in a 5% CO₂ atmosphere. Human embryonic
445 kidney 293T cells (HEK293T; ATCC) and TZM-bl cells were maintained in Dulbecco's
446 Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum
447 (FCS), L-glutamine (2 mM), streptomycin (100 µg/ml) and penicillin (100 U/ml). TZM-bl cells
448 were provided and authenticated by the NIH AIDS Reagent Program, Division of AIDS,
449 NIAID, NIH from Dr. John C. Kappes, Dr. Xiaoyun Wu and Tranzyme Inc. TZM-bl are
450 derived from HeLa cells, which were isolated from a 30-year-old female. CEM-M7-Cas9 and
451 SupT1 CCR5 high Cas9 cells were cultured in Roswell Park Memorial Institute (RPMI) 1640
452 Medium supplemented with 10% heat-inactivated fetal calf serum (FCS), L-glutamine (2 mM),
453 streptomycin (100 µg/ml) and penicillin (100 U/ml).

454 **Primary cell cultures.** PBMCs from healthy human donors were isolated using lymphocyte
455 separation medium (Biocoll separating solution; Biochrom) or lymphoprep (Stemcell). CD4⁺
456 T cells were negatively isolated using the RosetteSepTM Human CD4⁺ T Cell Enrichment
457 Cocktail (Stem Cell Technologies # 15061) or the EasySepTM Human Naïve CD4⁺ T cell
458 Isolation Kit (Stem Cell Technologies #17953) according to the manufacturer's instructions.
459 Primary cells were cultured in RPMI-1640 medium containing 10% FCS, glutamine (2 mM),
460 streptomycin (100 µg/ml), penicillin (100 U/ml) and interleukin 2 (IL-2, Miltenyi Biotec #130-
461 097-745) (10 ng/ml). The use of human PBMCs was approved by the Ethics Committee of the
462 Ulm University Medical Center. All donors were anonymized and provided informed written
463 consent.

464 **Expression constructs.** Expression vectors for GRN, CIITA, CC2D1B, RhoA, CEACAM3
465 were purchased from GenScript (#OHu25975C, #OHu21123C, #OHu11655C, # OHu26883C,
466 # OHu15558C). Expression vector for IFI16 was previously described⁴⁵. Constructs expressing
467 the HIV-1 NL4-3 LTR and HIV-1 proviral constructs co-expressing eGFP via an IRES were
468 generated as previously described⁴⁵.

469 **Generation of cell lines constitutively expressing Cas9.** To generate lentiviral backbones
470 constitutively expressing Cas9, the ORF of Cas9 (humanized *S. pyogenes* Cas9 sequence) was
471 fused to a nuclear localization signal and cloned behind a CMV promoter flanked by 3'LTR
472 and 5'LTR sequences derived from HIV-1. Third generation lentiviral particles were produced
473 by complementing the backbone in HEK293T cells with VSV-G, HIV-1 Gag/Pol and HIV-1
474 Rev expression vectors. CD4⁺ T-cell lines (CEM-M7 and SupT1 CCR5 high) were transduced
475 with the lentiviruses using spinoculation. 72h post transduction the cells were selected using
476 10µg/ml of Blasticidin. After the cells recovered for one-week, single cells were sorted in 96
477 well plates. Three weeks post sorting, single clone colonies were harvested and screened for
478 Cas9 expression via Western blot analysis.

479 **Construction of sgRNA library based on full length HIV-1.** To generate the HIV-1
480 backbones, the gRNA cassette carrying the human U6 promoter and the invariant scaffold
481 sgRNA sequence was inserted into the HIV-1 NL4-3 and HIV-1 CH077 pro-viral DNA
482 between separated Nef and 3'LTR region using homologous recombination (NEB builder Hifi
483 DNA assembly mastermix, NEB #E2621). The U6 promoter and the invariant scaffold are
484 separated by a unique BsmBI restriction site using Q5® Site-Directed Mutagenesis Kit (NEB
485 #E0554). Additional BsmBI restriction sites in the HIV-1 sequence were removed using
486 Splicing by overhang extension (SOE) PCR (Forward Primer (Q5_del_BsmBI_CH077_F):
487 5'-AGCTCCGGAcACGGTCACAG-3', Reverse Primer (Q5_del_BsmBI_CH077_R):
488 5'-GCATGTGTCAGAGGTTTCAC-3', Forward Primer (Q5_del_BsmBI_NL4.3vec_F):

489 5'-CTGTGACCGTgTCCGGGAGCT-3', Reverse Primer (Q5_del_BsmBI_NL4.3vec_R):
490 5'-CTTGTCTGTAAGCGGATGCC-3', Forward Primer (Q5_del_BsmBI_NL4.3nef_F):
491 5'-AAAGAATGAGgCGAGCTGAGC-3', Reverse Primer (Q5_del_BsmBI_NL4.3nef_R):
492 5'-AAAGAATGAGgCGAGCTGAGC-3'. The nucleotide sequence of Nef was codon
493 optimized to avoid recombination with the 3' LTR: The fragment was synthetized by Twist
494 Bioscience and cloned into the corresponding proviral DNA using XhoI/MluI (NL4-3) and
495 KfII/MluI (CH077). For the generation of a small targeted library (BST2, GBP5, NT)
496 oligonucleotides were purchased from Biomeres and designed with flanking regions in 3'(3'-
497 GTGGAAAGGACGAAACACCG-5') and 5' (3'-GTTTAGAGCTAGAAATAG-3') of the
498 gRNA overlapping with the backbone sequence to facilitate insertion by homologous
499 recombination ((gRNA-GBP5-1): 5'-ACAATCGCTACCACAACTAC-3', (gRNA-GBP5-2):
500 5'-ATTAGTTCTGCTTGACACCG-3', (gRNA-BST2-1): 5'- CTGGATGCAGAGAAGGC-
501 CCA-3', (gRNA-BST2-2): 5'- CTCTTCTTAGATGGCCCTAA-3', (gRNA-NT): 5'-ACGG-
502 AGGCTAACGCGTCGCAA-3'). For the generation of the library targeting 511 genes, a pool
503 of amplicons containing individual sgRNAs was purchased from Twist Bioscience. The
504 variable sgRNA targeting sequences (18 nucleotides) were taken from the Gecko v2 library (3
505 for each gene). We selected gRNAs targeting 511 cellular genes sharing features of known
506 restriction factors or proposed to play roles in HIV-1 infection^{24,32}. To insert the sgRNA
507 targeting sequences, the proviral backbones were linearized by using BsmBI. Recombination
508 was performed by incubating the linearized vector (330 ng) with the amplicons pool (50 ng)
509 and the NEBuilder HiFi DNA Assembly (NEB #E2621) 50°C for 15 minutes to one hour.
510 Afterwards, the reaction was purified using the Monarch DNA Gel Extraction Kit (NEB
511 #T1020L) and transformed by electroporation using the Gene Pulser Xcell (1700 V, 25 µF,
512 200 Ω, 1 pulse, Biorad) in C2989 5alpha electrocompetent bacteria (NEB, #C3020K). After
513 the bacteria recovered for one hour at 37°C in SOC medium, they were plated on 6 15cm
514 agarose dishes and incubated at 30°C for 40 hours. All colonies were collected by scraping and

515 the DNA was extracted using the Plasmid maxiprep (Qiagen #12165). For a small proof-of-
516 principle library containing 7 different targets, sgRNA integration and complexity of the library
517 was quantified using SYBR-green qPCR (SYBR™ Green PCR Master Mix, Applied
518 Biosystems #4309155) with one forward primer binding the U6 promoter region and specific
519 reverse primers for each sgRNA. To generate NL4-3 TVs mutants lacking the Nef gene, we
520 introduced a stop codon at the beginning *nef* and subsequently we deleted 360 nucleotides
521 (from nucleotide 261 to 621, Stop Codon NL4-3 Nef Forward: 5'-CTATAAGATG-
522 TAGTAAAAGTGGTCAAAAAGTAGTG-3', Stop Codon NL4-3 Nef Reverse: 5'-CAAAA-
523 TCCTTCCAAGCC-3', Nef deletion Forward: 5'-ACCGTCCAAGGTCGGC-3', Nef
524 deletion Reverse: 5'-AGATCTACAGCTGCCTGTAAAGTCATTGG-3') using Q5® Site-
525 Directed Mutagenesis Kit (NEB #E0554S).

526 **Verification of viral recombination by PCR.** To check for recombination and loss of the
527 cassette during passaging, viral RNA was isolated at different time points with the QIAamp
528 Viral RNA Mini Kit (Qiagen # 52906). cDNA was synthetized using the PrimeScript™ RT
529 Reagent Kit (Takara #RR037A) according to the manufacturer's instructions. The cassette was
530 amplified using flanking primers (Forward Primer (PCR_Recombination_F): 5'-GTGGA-
531 ACTTCTGGGA-3', Reverse Primer (PCR_Recombination_R): 5'-ACTGCTAGAGATTTC-
532 CCACACTGACTAAAAG-3'. PCR reactions were loaded onto a 1% agarose and ran at 140V
533 for 30 min.

534 **Stimulation with type I and II interferons.** One million CEM-M7 or SupT1 CC5 cells were
535 seeded in 1mL RPMIXXX in 12-well plates. Cells were stimulated with IFN- α (500 U/ml,
536 R&D systems 11100-1), IFN- β (500 U/ml, R&D systems 8499-IF-010) or IFN- γ (200 U/ml,
537 R&D systems 285-IF-100). 24 hours post-stimulation whole cell lysates were generated.

538 **CRISPR/Cas9 KO in T cells.** CD4 $^{+}$ T lymphocytes were isolated from healthy donors as
539 described above. Cells were stimulated with IL-2 (10 ng/ml) (Miltenyi Biotec #130-097-745)

540 and with anti-CD3/CD28 beads (Gibco #11132D) for 3 days. Cells were cultured in RPMI-
541 1640 medium containing 10% FCS and IL-2 (10 ng/ml). 1×10^6 primary CD4+T cells
542 (stimulated) or 1×10^6 CEM-M7 Cas9 cells were transfected with the HiFi Cas9 Nuclease V3
543 (IDT)/gRNA complex (80 pmol/300 pmol) (Lonza) using a non-targeting or a GRN(5'-
544 GCGATCCTGCTTCCAAAGATC-3'), CIITA (5'-GCCCTAGAAGGTGGCTACC-3'),
545 RHOA (5'-TATCGAGGTGGATGGAAAGC-3'), CC2D1B (5'-GAGTTGGCGGCAGA-
546 CTGTATG-3'), CEACAM3(5'-GTGTCTCTCGACCGCTGTTG-3')-specific sgRNAs or
547 NT control (5'-ACGGAGGCTAACCGTCGCAA-3'), using the Amaxa 4D-Nucleofector
548 Human Activated T Cell P3 Lonza Kit (Lonza #V4XP-3032), pulse code EO115. At four- and
549 three- days post Cas9/sgRNA-transfection respectively, 1 million cells/sample were infected
550 with the indicated HIV-1 strains by spinoculation. From 2 to 5 or 6 dpi, supernatants were
551 harvested and infectious virus yield via the TZM-bl reporter cells assay.

552 **Transfection and production of viral stocks.** HEK293T cells were transiently transfected
553 using TransIT-LT1 (Mirus #MIR2306) according to the manufacturer's protocol at a ratio of
554 3 μ L of transfection reagent per 1 μ g of DNA and the medium was replaced 24 hours post
555 transfection. To test the antiviral effect of potential restriction factors, pcDNA-based
556 expression constructs cotransfected with the proviral constructs. Whenever different amounts
557 of pcDNA expression vectors were used within an experiment, empty vector control plasmids
558 were used to keep the total DNA amount constant for all samples. The transfected cells were
559 incubated for 8-16 h before the medium was replaced by fresh supplemented DMEM. To
560 generate virus stocks, one day before transfection, 10 mio cells were seeded in 15 cm dishes in
561 20 ml medium to obtain a confluence of 70-80% at the time of transfection. For transfection,
562 25 μ g of DNA was mixed with 75 μ l LT1, incubated 20 min at RT and added dropwise to the
563 cells. 48 hours post transfection, the virus was harvested, centrifuged 5 min at 2000rpm and
564 concentrated 10 times using Amicon® Ultra 15 mL Filters (Merck #UFC910096). The
565 concentrated virus aliquoted and stored at -80°C.

566 **VSV-G-pseudo-typed HIV-1.** To generate VSV-G-pseudo-typed HIV-1, HEK293T cells
567 were transiently transfected using the calcium-phosphate precipitation method as previously
568 described⁴⁵. Briefly 5µg of proviral DNA and 1µg of expression plasmids for VSV-G was
569 mixed with 13 µl 2 M CaCl2 and filled up with water to 100 µl Afterwards, 100 µl of 2 x HBS
570 was added dropwise to this mixture, which was mixed by pipetting and added dropwise to the
571 cells seeded in 6 well plates.

572 **Infection, kinetic and traitor virus enrichment.** To start the replication kinetic, 1 million
573 cells were infected with the indicated HIV-1 library constructs via spinoculation (2h at 26°C).
574 Afterwards cells were washed three times with RPMIxxx and seeded in 6 well plates at a cell
575 density of 1 million/ml. Every two to three days, infection was monitored by flow cytometry
576 (see below). When infection was higher than 20%, it was reduced to 1% for the next 2 days by
577 addition of uninfected cells. From 5dpi, cells were treated with IFN-β (R&D Systems #8499-
578 IF-010, 1000U/ml for CEM-M7 Cas9 and 100U/ml for SupT1 CCR5 high Cas9) and IFN-β
579 was refreshed every three days.

580 **Viral RNA preparation for sequencing.** Viral RNA levels were determined in supernatants
581 collected from HIV-1 infected cells at 5, 10, 15, 20, 30- and 40-days post-infection. Total RNA
582 was isolated using the Viral RNA Mini Kit (Qiagen) according to the manufacturer's
583 instructions. cDNA reactions were performed according to the manufacturer's instructions of
584 the PrimeScript™ RT Reagent Kit (Takara) using primers specifically targeting the U6 and
585 scaffold region (forward primer 5'-CCGACTCGGTGCCACTTTT-3', reverse primer 5'-
586 CGTGACGTAGAAAGTAATAATT-CTTGGG-3'). cDNA reactions were purified using
587 the Monarch PCR Purification Kit (NEB #T1030L) and eluted in 10µl elution buffer. The
588 gRNA cassette was amplified using the NEBNext® High-Fidelity 2X PCR Master Mix (NEB)
589 and primers including Illumina adaptors and 8nt barcodes to allow Next Generation

590 Sequencing analysis (Supplementary Table 2). PCR reactions were purified using the Monarch
591 PCR Purification Kit (NEB # T1030L) and eluted in 10 μ l elution buffer.

592 **Next Generation sequencing.** NGS was performed using the Illumina NextSeq2000 platform
593 with 60 base-pair paired-end runs. Raw reads were demultiplexed, trimmed, groomed
594 according to quality and aligned to the custom library sequences using the MAGeCK algorithm
595 suite on the Galaxy platform. Individual read counts are determined and median-normalized to
596 for the effect of library sizes and read count distributions. Individual sgRNAs targeting the
597 same gene are summarized, and a variance model calculated using a negative binomial model
598 to statistically assess the difference between control (input) and the conditions (different days).
599 Targets are ranked by MAGeCK according to their *p*-value via a modified robust ranking
600 aggregation (RRA) algorithm (α -RRA) to identify enriched genes. Overrepresented sgRNA
601 sequences compared to the input control represent viruses that had a sgRNA targeting a gene,
602 that restricts viral replication. Volcano plots were generated using R version 4.1.1 and ggplot2
603 version 3.3.5.

604 **Venn diagrams.** List of enriched genes were generated for each condition by selecting genes
605 based on the positive MAGeCK score. Genes were considered enriched when the $-\log_{10}$ of the
606 positive score was above 1.5. Genes overlap of the lists was calculated using the bioinformatics
607 tool from UGent <https://bioinformatics.psb.ugent.be/webtools/Venn/>.

608 **SYBR Green qPCR.** To determine the relative enrichment of GBP5 and BST2 gRNAs over
609 time compared to the NT, we performed RT-qPCR using the SYBR Green PCR Master Mix
610 (Applied Biosystems #A25742) following the manufacturer protocol. In brief, we diluted the
611 cDNA and we perform the RT-qPCR reactions using specific primers flanking the gRNAs
612 regions (U6 Forward_SYBR: 5'-AGAATTAATTGACTGTAAACACAAAGATATTAG-
613 3', GBP5-1gRNA Reverse_SYBR: 5'-CGTAGTTGTGGTAGCGATTGT-3', GBP5-2 gRNA
614 Reverse_SYBR: 5'-CGGTGTCAAGCAGAACTAAT-3', BST2-1 gRNA Reverse_SYBR: 5'-

615 GGCCTTCTCTGCATCCAG-3', BST2-2 gRNA Reverse_SYBR: 5'-AACTTAGGGC-
616 CATCTAAGAAGAG-3', NT gRNA Reverse_SYBR: 5'-TTGCGACGCTTAGCCTC-3').
617 Values were normalized on the values from 3dpi.

618 **Supernatants and whole cell lysates.** To determine expression of cellular and viral proteins,
619 cells were washed in PBS and subsequently lysed in Western blot lysis buffer (150 mM NaCl,
620 50 mM HEPES, 5mM EDTA, 0.1% NP40, 500 μ M Na₃VO₄, 500 μ M NaF, pH 7.5) or
621 radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl; pH 7.4, 150 mM NaCl, 1%
622 (v/v) NP-40, 0.5% (w/v) deoxycholic acid (DOC), 0.1% (w/v) SDS) supplemented with
623 protease inhibitor (Roche, 1:500). After 5 min of incubation on ice, samples were centrifuged
624 (4°C, 20 min, 14.000 rpm) to remove cell debris. The supernatant was transferred to a fresh
625 tube, the protein concentration was measured with PierceTM Rapid Gold BCA Protein Assay
626 Kit (Thermofisher) and adjusted using Western blot lysis buffer. Supernatants were centrifuged
627 on top of a 20% sucrose layer in at 21,000 g for 2 hours. The viral pellet was then lysed in
628 Western blot lysis buffer with 4x Protein Sample Loading Buffer (LICOR) supplemented with
629 10% β -mercaptoethanol (Sigma Aldrich) and heated at 95°C for 5 min.

630 **SDS-PAGE and Immunoblotting.** Western blotting was performed as previously described⁶⁴.
631 In brief, whole cell lysates were mixed with 4x Protein Sample Loading Buffer (LI-COR, at a
632 final dilution of 1x) supplemented with 10% β -mercaptoethanol (Sigma Aldrich), heated at
633 95°C for 5 min, separated on NuPAGE 4±12% Bis-Tris Gels (Invitrogen) for 90 minutes at
634 100 V and blotted onto Immobilon-FL PVDF membranes (Merck Millipore). The transfer was
635 performed a constant voltage of 30 V for 30 minutes using semi-dry transfer system. For larger
636 proteins (Cas9, EHMT2), transfer was performed at a constant Amperage 0,4 A for 2 hours
637 using a wet transfer system. After the transfer, the membrane was blocked in 1 % Casein in
638 PBS (Thermo Scientific). Proteins were stained using primary antibodies against PGRN
639 (Abcam #ab208777, 1 :200), CIITA (Santa Cruz #sc-13556, 1:200), EHMT2 (Cell Signalling

640 #3306, 1:200), CC2D1B (Proteintech #20774-1-AP , 1:500), HMOX1 (Sigma MA1-112,
641 1:200), BST2 (Proteintech 13560-1-AP, 1:500), GBP5 (Santa Cruz #sc-1603539, 1:200),
642 CEACAM3 (Abcam #ab196606, 1:200), ISG15 (Santa Cruz #sc-166755, 1:200), IFI16 (Santa
643 Cruz #sc-8023, 1:150), RHOA (Abcam #ab54835, 1:200), GAPDH (Biolegend #607902,
644 1:1000), Cas9 (Cell Signalling #14697, 1:1000), HIV-1 p24 (Abcam #6604667, 1:1000) HIV-
645 1 Env (NIH AIDS Reagents program #ARP-12559, 1:1000), HIV-1 Nef (NIH AIDS Reagents
646 program #ARP-1539, 1:500) and Infrared Dye labelled secondary antibodies (IRDye® 680RD
647 Goat anti-Rabbit IgG (H + L), LI-COR #926-68071, 1:10,000; IRDye® 800CW Goat anti-
648 Mouse IgG (H + L), LI-COR #926-32210, 1:10,000; IRDye® 800CW Goat anti-Rabbit IgG
649 (H + L), LI-COR #926-32211, 1:10,000; IRDye 800RD Goat anti-Rat IgG (H + L), LI-COR
650 #925-32219, 1:10,000; IRDye 680RD Goat anti-Rat IgG (H + L), LI-COR #926-68071,
651 1:10,000). Band intensities were quantified using Image Studio (LI-COR).

652 **Flow Cytometry.** To monitor infection during the replication kinetic, flow cytometry was used
653 to quantify the infected cells. For CEM-M7 Cas9 kinetics, ~400,000 cells were harvested,
654 washed once with PBS and stained for 15min at RT in the dark with eBioscience Fixable
655 viability dye 780 (ThermoFisher Scientific, 1:1000 in PBS). Cells were washed twice with PBS
656 and fixed in 2% PFA for 30 min at 4°C. For SupT1 CCR5 high Cas9 kinetic and to monitor
657 KO efficiencies in cells infected with HIV-1 either carrying the NT or BST2 or GBP5 gRNA,
658 ~400,000 cells were harvested, washed once with PBS and stained for 30 min at RT in the dark
659 with anti-CD4 antibody (PerCP-Cy5.5, Biolegend #317428, 1:50 in PBS) and eBioscience
660 Fixable viability dye 780 (ThermoFisher Scientific #65-0865-14, 1:1000 in PBS). Afterwards
661 cells were washed twice with PBS and permeabilized 20 minutes with 200μl BD
662 Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD Biosciences)at RT. Cells
663 were washed twice with 200μl BD 1X Perm/Wash solution and stained 1h at 4°C with anti-
664 HIV-1 p24 (RD1/PE, Beckman Coulter #6604667, 1:100 in 1X BD Perm/wash solution) or
665 anti-BST2 (Proteintech #13560-1-AP, 1:100 in 1X Perm/Wash solution) or anti-GBP5 (Santa

666 Cruz #sc-1603539, 1:100 in 1X Perm/Wash solution). After washing twice with 1X
667 Perm/Wash solution, wells were either stained with secondary antibody goat anti rabbit (PE,
668 Abcam ab97070, 1:100 in 1X Perm/Wash) or fixed in 2% PFA for 30 min at 4°C. After 1 hours
669 at 4°C, cells stained with secondary antibodies were washed twice with 200µL 1X BD
670 Perm/Wash solution and fixed with 2% PFA for 30 min at 4°C. Cells were acquired with BD
671 FACSCanto II Flow Cytometer (BD Biosciences).

672 **Effects of GRN and CIITA on LTR-driven eGFP expression.** HEK293T cells were co-
673 transfected with expression constructs for GRN or CIITA and HIV-1 NL4-3, CH077 and
674 CH058 proviral constructs co-expressing eGFP via an IRES. 48 hours after transfection cells
675 were harvested, washed in 500µl PBS and stained for 15min at RT in the dark with eBioscience
676 Fixable viability dye 780 (ThermoFisher Scientific #65-0865-14, 1:1000 in PBS). Afterwards
677 cells were permeabilized 20 minutes with 200µl BD Cytofix/Cytoperm™
678 Fixation/Permeabilization Solution Kit (BD Biosciences) at RT, afterwards washed twice with
679 200µl BD 1X Perm/Wash solution. Cells were stained with anti-GRN (Abcam #ab208777, 1
680 100 in 1X BD Perm/Wash solution) or anti-CIITA (AF647, Santa Cruz #sc-13556, 1:100 in
681 1X BD Perm/Wash solution) for 1h at 4°C. After washing twice with 200µl BD 1X Perm/Wash
682 cells stained with conjugated CIITA antibody were fixed in 2% PFA for 30 min at 4°C. Cells
683 stained with GRN antibody were stained 1 hour at 4°C with secondary antibody goat anti rabbit
684 (PE, Abcam #ab97070, 1:100 in 1X Perm/Wash). Cells were washed twice with 200µL BD
685 1XPerm/Wash solution and fixed in 2% PFA for 30 min at 4°C. Cells were acquired on BD
686 FACSCanto II Flow Cytometer (BD Biosciences). Mean fluorescence intensities (MFI) of
687 eGFP in the GRN+/eGFP+ or CIITA+/eGFP+ population was determined.

688 **Viral promoter activity.** To determine the effect of GRN on the activity of different viral
689 promoters, 135,000 HEK293T cells/well were seeded in 24 well plates. Cells were
690 cotransfected with firefly luciferase reporter constructs (5 ng) under the control of the HIV-1

691 LTR or the CMV IE promoter and expression constructs for GRN (50 ng) or a vector control
692 using the calcium phosphate method. In some cases, expression constructs for HIV-1 NL4-3
693 Tat (500 pg) were cotransfected to activate the LTR promoter. 40 h post-transfection, cells
694 were lysed and firefly luciferase activity was determined.

695 **Luciferase assay.** To determine LTR expression, the cells were lysed in 300 μ l of Luciferase
696 Lysis buffer (Promega #E1531) and firefly luciferase activity was determined using the
697 Luciferase Assay Kit (Promega #E1501) according to the manufacturer's instructions on an
698 Orion microplate luminometer (Berthold).

699 **Viral infectivity.** To determine infectious virus yield, 10,000 TZM-bl reporter cells/well were
700 seeded in 96-well plates and infected with cell culture supernatants in triplicates on the
701 following day. Three days post-infection, cells were lysed and β -galactosidase reporter gene
702 expression was determined using the X-GalScreen Kit (Applied Bioscience #T1027) according
703 to the manufacturer's instructions with an Orion microplate luminometer (Berthold).

704 **ELISA p24 and virion infectivity analysis.** HIV-1 p24 amounts in cell culture supernatants
705 were determined using an in-house ELISA. Briefly, 96-well MaxiSorp microplates (Sigma)
706 were coated with 0.5 mg/ml anti-HIV-1 p24 (EXBIO #11-CM006-BULK) and incubated in a
707 wet chamber at RT overnight. The plates were then washed 3 times with PBS-T (PBS and
708 0.05% Tween 20) and incubated with blocking solution (PBS and 10% (v/v) FCS) for 2 hours
709 at 37°C. After washing, the plates were loaded with 100 μ L serial dilution of HIV-1 p24 protein
710 (Abcam #ab43037) as standard and dilutions of virus supernatants lysed with 1% (v/v) Triton
711 X-100 and incubated overnight in a wet chamber at RT. After washing unbound capsid, 100
712 μ l/well polyclonal rabbit antiserum against p24 antigen (Eurogentec, 1:1,000 in PBS-T with
713 10% (v/v) FCS) was added for 1 hour at 37°C. After washing, 100 μ L of goat anti-rabbit HRP-
714 coupled antibody (Dianova #111-035-008, 1:2,000) was loaded on the plates and incubated for
715 one hour at 37°C. Finally, the plates were washed and 100 μ L SureBlue TMB 1-Component

716 Microwell Peroxidase Substrate (Medac #52-00-04) was added. After 20 minutes shaking at
717 450 rpm and RT, the reaction was stopped with 0.5 M H₂SO₄ (100 µl/well). The optic density
718 was determined by comparing with a standard curve and measured at 450 nm and 650 nm with
719 the Thermo Max microplate reader (Molecular devices).

720 **Statistics.** Statistical analyses were performed using GraphPad PRISM 10 (GraphPad
721 Software). P-values were determined using a two-tailed Student's t test with Welch's correction
722 or Two-way Anova with Sidak's multiple comparison. Unless otherwise stated, data are shown
723 as the mean of at least three independent experiments ± SEM. Significant differences are
724 indicated as: *, p < 0.05; **, p < 0.01; ***, p < 0.001. Statistical parameters are specified in
725 the figure legends.

726

727 **References**

- 728 1. Bieniasz, P.D. (2004). Intrinsic immunity: a front-line defense against viral attack. *Nature immunology* *5*, 1109–1115. 10.1038/ni1125.
- 729 2. Kluge, S.F., Sauter, D., and Kirchhoff, F. (2015). SnapShot: antiviral restriction factors. *Cell* *163*, 774-774.e1. 10.1016/j.cell.2015.10.019.
- 730 3. Towers, G.J., and Noursadeghi, M. (2014). Interactions between HIV-1 and the cell-autonomous innate immune system. *Cell Host and Microbe* *16*, 10–18. 10.1016/j.chom.2014.06.009.
- 731 4. Harris, R.S., Hultquist, J.F., and Evans, D.T. (2012). The Restriction Factors of Human Immunodeficiency Virus. *Journal of Biological Chemistry* *287*, 40875–40883. 10.1074/jbc.R112.416925.
- 732 5. Malim, M.H., and Bieniasz, P.D. (2012). HIV Restriction Factors and Mechanisms of Evasion. *Cold Spring Harbor Perspectives in Medicine* *2*, a006940–a006940. 10.1101/cshperspect.a006940.
- 733 6. Sauter, D., and Kirchhoff, F. (2019). Key Viral Adaptations Preceding the AIDS Pandemic. *Cell Host & Microbe* *25*, 27–38. 10.1016/j.chom.2018.12.002.
- 734 7. Gupta, R.K., and Towers, G.J. (2009). A tail of Tetherin: how pandemic HIV-1 conquered the world. *Cell Host Microbe* *6*, 393–395. 10.1016/j.chom.2009.11.002.
- 735 8. Sharp, P.M., and Hahn, B.H. (2011). Origins of HIV and the AIDS pandemic. *Cold Spring Harbor perspectives in medicine* *1*, a006841. 10.1101/cshperspect.a006841.
- 736 9. Ochsenbauer, C., Edmonds, T.G., Ding, H., Keele, B.F., Decker, J., Salazar, M.G., Salazar-Gonzalez, J.F., Shattock, R., Haynes, B.F., Shaw, G.M., et al. (2012). Generation of Transmitted/Founder HIV-1 Infectious Molecular Clones and Characterization of Their Replication Capacity in CD4 T Lymphocytes and Monocyte-Derived Macrophages. *Journal of Virology* *86*, 2715–2728. 10.1128/jvi.06157-11.
- 737 10. Parrish, N.F., Gao, F., Li, H., Giorgi, E.E., Barbier, H.J., Parrish, E.H., Zajic, L., Iyer, S.S., Decker, J.M., Kumar, A., et al. (2013). Phenotypic properties of transmitted founder HIV-1. *Proceedings of the National Academy of Sciences of the United States of America* *110*, 6626–6633. 10.1073/pnas.1304288110.

756 11. Kmiec, D., Iyer, S.S., Stürzel, C.M., Sauter, D., Hahn, B.H., and Kirchhoff, F. (2016). Vpu-
757 Mediated Counteraction of Tetherin Is a Major Determinant of HIV-1 Interferon
758 Resistance. *mBio* 7, e00934-16. 10.1128/mBio.00934-16.

759 12. Wu, Y., Olety, B., Weiss, E.R., Popova, E., Yamanaka, H., and Göttlinger, H. (2019).
760 Potent enhancement of HIV-1 replication by nef in the absence of SERINC3 and
761 SERINC5. *mBio* 10. 10.1128/mBio.01071-19.

762 13. Bartok, E., and Hartmann, G. (2020). Immune Sensing Mechanisms that Discriminate Self
763 from Altered Self and Foreign Nucleic Acids. *Immunity* 53, 54–77.
764 10.1016/j.jimmuni.2020.06.014.

765 14. Braun, E., and Sauter, D. (2019). Furin-mediated protein processing in infectious diseases
766 and cancer. *Clinical & Translational Immunology* 8. 10.1002/cti2.1073.

767 15. Colomer-Lluch, M., Ruiz, A., Moris, A., and Prado, J.G. (2018). Restriction Factors: From
768 Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1 (NLM (Medline))
769 10.3389/fimmu.2018.02876.

770 16. Diamond, M.S., and Farzan, M. (2013). The broad-spectrum antiviral functions of IFIT
771 and IFITM proteins (Nature Publishing Group) 10.1038/nri3344.

772 17. Dias Junior, A.G., Sampaio, N.G., and Rehwinkel, J. (2019). A Balancing Act: MDA5 in
773 Antiviral Immunity and Autoinflammation (Elsevier Ltd) 10.1016/j.tim.2018.08.007.

774 18. Goodier, J.L., Pereira, G.C., Cheung, L.E., Rose, R.J., and Kazazian, H.H. (2015). The
775 Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition. *PLoS
776 genetics* 11, e1005252. 10.1371/journal.pgen.1005252.

777 19. Jouvenet, N., Neil, S.J.D., Zhadina, M., Zang, T., Kratovac, Z., Lee, Y., McNatt, M.,
778 Hatzioannou, T., and Bieniasz, P.D. (2009). Broad-Spectrum Inhibition of Retroviral and
779 Filoviral Particle Release by Tetherin. *Journal of Virology* 83, 1837–1844.
780 10.1128/jvi.02211-08.

781 20. Massa, D., Baran, M., Bengoechea, J.A., Bowie, A.G., and Voelker, D.R. (2020). PYHIN1
782 regulates pro-inflammatory cytokine induction rather than innate immune DNA sensing in
783 airway epithelial cells. *Journal of Biological Chemistry* 295, 4438–4450.
784 10.1074/jbc.RA119.011400.

785 21. Olson, M.E., Harris, R.S., and Harki, D.A. (2018). APOBEC Enzymes as Targets for Virus
786 and Cancer Therapy. *Cell Chem Biol* 25, 36–49. 10.1016/j.chembiol.2017.10.007.

787 22. Jones, C.E., Tan, W.S., Grey, F., and Hughes, D.J. (2021). Discovering antiviral restriction
788 factors and pathways using genetic screens. *J Gen Virol* *102*, 001603.
789 10.1099/jgv.0.001603.

790 23. Kane, M., Zang, T.M., Rihn, S.J., Zhang, F., Kueck, T., Alim, M., Schoggins, J., Rice,
791 C.M., Wilson, S.J., and Bieniasz, P.D. (2016). Identification of Interferon-Stimulated
792 Genes with Antiretroviral Activity. *Cell Host & Microbe* *20*, 392–405.
793 10.1016/j.chom.2016.08.005.

794 24. McLaren, P.J., Gawanbacht, A., Pyndiah, N., Krapp, C., Hotter, D., Kluge, S.F., Götz, N.,
795 Heilmann, J., Mack, K., Sauter, D., et al. (2015). Identification of potential HIV restriction
796 factors by combining evolutionary genomic signatures with functional analyses.
797 *Retrovirology* *12*, 41. 10.1186/s12977-015-0165-5.

798 25. Liu, S.-Y., Sanchez, D.J., and Cheng, G. (2011). New developments in the induction and
799 antiviral effectors of type I interferon. *Current Opinion in Immunology* *23*, 57–64.
800 10.1016/j.coi.2010.11.003.

801 26. OhAinle, M., Helms, L., Vermeire, J., Roesch, F., Humes, D., Basom, R., Delrow, J.J.,
802 Overbaugh, J., and Emerman, M. (2018). A virus-packageable CRISPR screen identifies
803 host factors mediating interferon inhibition of HIV. *eLife* *7*. 10.7554/eLife.39823.

804 27. Neil, S.J.D., Zang, T., and Bieniasz, P.D. (2008). Tetherin inhibits retrovirus release and is
805 antagonized by HIV-1 Vpu. *Nature* *451*, 425–430. 10.1038/nature06553.

806 28. Van Damme, N., Goff, D., Katsura, C., Jorgenson, R.L., Mitchell, R., Johnson, M.C.,
807 Stephens, E.B., and Guatelli, J. (2008). The Interferon-Induced Protein BST-2 Restricts
808 HIV-1 Release and Is Downregulated from the Cell Surface by the Viral Vpu Protein. *Cell*
809 *Host & Microbe* *3*, 245–252. 10.1016/j.chom.2008.03.001.

810 29. Braun, E., Hotter, D., Koepke, L., Zech, F., Groß, R., Sparrer, K.M.J., Müller, J.A., Pfaller,
811 C.K., Heusinger, E., Wombacher, R., et al. (2019). Guanylate-Binding Proteins 2 and 5
812 Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope
813 Proteins. *Cell Reports* *27*, 2092–2104.e10. 10.1016/j.celrep.2019.04.063.

814 30. Krapp, C., Hotter, D., Gawanbacht, A., McLaren, P.J., Kluge, S.F., Stürzel, C.M., Mack,
815 K., Reith, E., Engelhart, S., Ciuffi, A., et al. (2016). Guanylate Binding Protein (GBP) 5 Is
816 an Interferon-Inducible Inhibitor of HIV-1 Infectivity. *Cell Host & Microbe* *19*, 504–514.
817 10.1016/j.chom.2016.02.019.

818 31. Hsu, M., Harouse, J.M., Gettie, A., Buckner, C., Blanchard, J., and Cheng-Mayer, C.
819 (2003). Increased mucosal transmission but not enhanced pathogenicity of the CCR5-
820 tropic, simian AIDS-inducing simian/human immunodeficiency virus SHIV(SF162P3)
821 maps to envelope gp120. *J Virol* *77*, 989–998. 10.1128/jvi.77.2.989-998.2003.

822 32. Mahé, D., Matusali, G., Deleage, C., Alvarenga, R.L.L.S., Satie, A.-P., Pagliuzza, A.,
823 Mathieu, R., Lavoué, S., Jégou, B., de França, L.R., et al. (2020). Potential for Virus
824 Endogenization in Humans through Testicular Germ Cell Infection: the Case of HIV. *J*
825 *Virol* *94*, e01145-20. 10.1128/JVI.01145-20.

826 33. Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D.,
827 Ebert, B.L., Root, D.E., Doench, J.G., et al. (2014). Genome-Scale CRISPR-Cas9
828 Knockout Screening in Human Cells. *Science* *343*, 84–87. 10.1126/science.1247005.

829 34. Li, W., Xu, H., Xiao, T., Cong, L., Love, M.I., Zhang, F., Irizarry, R.A., Liu, J.S., Brown,
830 M., and Liu, X.S. (2014). MAGeCK enables robust identification of essential genes from
831 genome-scale CRISPR/Cas9 knockout screens. *Genome Biol* *15*, 554. 10.1186/s13059-
832 014-0554-4.

833 35. Hoque, M., Tian, B., Mathews, M.B., and Pe'ery, T. (2005). Granulin and granulin repeats
834 interact with the Tat.P-TEFb complex and inhibit Tat transactivation. *J Biol Chem* *280*,
835 13648–13657. 10.1074/jbc.M409575200.

836 36. Hoque, M., Young, T.M., Lee, C.-G., Serrero, G., Mathews, M.B., and Pe'ery, T. (2003).
837 The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent
838 transcription. *Mol Cell Biol* *23*, 1688–1702. 10.1128/MCB.23.5.1688-1702.2003.

839 37. Usami, Y., Popov, S., Weiss, E.R., Vriesema-Magnuson, C., Calistri, A., and Göttlinger,
840 H.G. (2012). Regulation of CHMP4/ESCRT-III function in human immunodeficiency
841 virus type 1 budding by CC2D1A. *J Virol* *86*, 3746–3756. 10.1128/JVI.06539-11.

842 38. Martinelli, N., Hartlieb, B., Usami, Y., Sabin, C., Dordor, A., Miguet, N., Avilov, S.V.,
843 Ribeiro, E.A., Göttlinger, H., and Weissenhorn, W. (2012). CC2D1A Is a Regulator of
844 ESCRT-III CHMP4B. *Journal of Molecular Biology* *419*, 75–88.
845 10.1016/j.jmb.2012.02.044.

846 39. Bros, M., Haas, K., Moll, L., and Grabbe, S. (2019). RhoA as a Key Regulator of Innate
847 and Adaptive Immunity. *Cells* *8*, 733. 10.3390/cells8070733.

848 40. Loomis, R.J., Holmes, D.A., Elms, A., Solski, P.A., Der, C.J., and Su, L. (2006). Citron
849 Kinase, a RhoA Effector, Enhances HIV-1 Virion Production by Modulating Exocytosis.
850 *Traffic* (Copenhagen, Denmark) 7, 1643. 10.1111/j.1600-0854.2006.00503.x.

851 41. Lucera, M.B., Fleissner, Z., Tabler, C.O., Schlatzer, D.M., Troyer, Z., and Tilton, J.C.
852 (2017). HIV signaling through CD4 and CCR5 activates Rho family GTPases that are
853 required for optimal infection of primary CD4+ T cells. *Retrovirology* 14, 4.
854 10.1186/s12977-017-0328-7.

855 42. Rosa, A., Chande, A., Ziglio, S., De Sanctis, V., Bertorelli, R., Goh, S.L., McCauley, S.M.,
856 Nowosielska, A., Antonarakis, S.E., Luban, J., et al. (2015). HIV-1 Nef promotes infection
857 by excluding SERINC5 from virion incorporation. *Nature* 526, 212–217.
858 10.1038/nature15399.

859 43. Usami, Y., Wu, Y., and Göttlinger, H.G. (2015). SERINC3 and SERINC5 restrict HIV-1
860 infectivity and are counteracted by Nef. *Nature* 526, 218–223. 10.1038/nature15400.

861 44. Bosso, M., Stürzel, C.M., Kmiec, D., Badarinarayan, S.S., Braun, E., Ito, J., Sato, K., Hahn,
862 B.H., Sparrer, K.M.J., Sauter, D., et al. (2021). An additional NF-κB site allows HIV-1
863 subtype C to evade restriction by nuclear PYHIN proteins. *Cell Rep* 36, 109735.
864 10.1016/j.celrep.2021.109735.

865 45. Hotter, D., Bosso, M., Jónsson, K.L., Krapp, C., Stürzel, C.M., Das, A., Littwitz-Salomon,
866 E., Berkhout, B., Russ, A., Wittmann, S., et al. (2019). IFI16 Targets the Transcription
867 Factor Sp1 to Suppress HIV-1 Transcription and Latency Reactivation. *Cell Host and*
868 *Microbe*. 10.1016/j.chom.2019.05.002.

869 46. Lama, J. (2003). The physiological relevance of CD4 receptor down-modulation during
870 HIV infection. *Current HIV research* 1, 167–184.

871 47. Lusic, M., Marini, B., Ali, H., Lucic, B., Luzzati, R., and Giacca, M. (2013). Proximity to
872 PML Nuclear Bodies Regulates HIV-1 Latency in CD4+ T Cells. *Cell Host and Microbe*
873 13, 665–677. 10.1016/j.chom.2013.05.006.

874 48. Castro-Gonzalez, S., Colomer-Lluch, M., and Serra-Moreno, R. (2018). Barriers for HIV
875 Cure: The Latent Reservoir. *AIDS research and human retroviruses* 34, 739–759.
876 10.1089/AID.2018.0118.

877 49. Devadas, K., and Dhawan, S. (2006). Hemin activation ameliorates HIV-1 infection via
878 heme oxygenase-1 induction. *J Immunol* 176, 4252–4257. 10.4049/jimmunol.176.7.4252.

879 50. Seu, L., Burt, T.D., Witte, J.S., Martin, J.N., Deeks, S.G., and McCune, J.M. (2012).
880 Variations in the heme oxygenase-1 microsatellite polymorphism are associated with
881 plasma CD14 and viral load in HIV-infected African-Americans. *Genes Immun* *13*, 258–
882 267. 10.1038/gene.2011.76.

883 51. Kim, D.-H., Ahn, H.-S., Go, H.-J., Kim, D.-Y., Kim, J.-H., Lee, J.-B., Park, S.-Y., Song,
884 C.-S., Lee, S.-W., Ha, S.-D., et al. (2021). Hemin as a novel candidate for treating COVID-
885 19 via heme oxygenase-1 induction. *Sci Rep* *11*, 21462. 10.1038/s41598-021-01054-3.

886 52. Zhang, S., Wang, J., Wang, L., Aliyari, S., and Cheng, G. (2022). SARS-CoV-2 virus
887 NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. *Cell Mol Immunol* *19*,
888 872–882. 10.1038/s41423-022-00887-w.

889 53. King, C.R., Liu, Y., Amato, K.A., Schaack, G.A., Mickelson, C., Sanders, A.E., Hu, T.,
890 Gupta, S., Langlois, R.A., Smith, J.A., et al. (2023). Pathogen-driven CRISPR screens
891 identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. *Cell*
892 *Host Microbe* *31*, 1552–1567.e8. 10.1016/j.chom.2023.08.001.

893 54. Li, Z., Zhong, L., He, J., Huang, Y., and Zhao, Y. (2021). Development and application of
894 reverse genetic technology for the influenza virus. *Virus Genes* *57*, 151–163.
895 10.1007/s11262-020-01822-9.

896 55. Bosso, M., and Kirchhoff, F. (2020). Emerging Role of PYHIN Proteins as Antiviral
897 Restriction Factors. *Viruses* *12*, 1464. 10.3390/v12121464.

898 56. Huérano, S., Šroller, V., Bruštíková, K., Horníková, L., and Forstová, J. (2022). The
899 Interplay between Viruses and Host DNA Sensors. *Viruses* *14*, 666. 10.3390/v14040666.

900 57. Justice, J.L., and Cristea, I.M. (2022). Nuclear antiviral innate responses at the intersection
901 of DNA sensing and DNA repair. *Trends Microbiol* *30*, 1056–1071.
902 10.1016/j.tim.2022.05.004.

903 58. Bravo, J.P.K., Hallmark, T., Naegle, B., Beisel, C.L., Jackson, R.N., and Taylor, D.W.
904 (2023). RNA targeting unleashes indiscriminate nuclease activity of CRISPR–Cas12a2.
905 *Nature* *613*, 582–587. 10.1038/s41586-022-05560-w.

906 59. Hotter, D., Sauter, D., and Kirchhoff, F. (2013). Emerging role of the host restriction factor
907 tetherin in viral immune sensing.

908 60. Bruchez, A., Sha, K., Johnson, J., Chen, L., Stefani, C., McConnell, H., Gaucherand, L.,
909 Prins, R., Matreyek, K.A., Hume, A.J., et al. (2020). MHC class II transactivator CIITA

910 induces cell resistance to Ebola virus and SARS-like coronaviruses. *Science* *370*, 241–247.
911 10.1126/science.abb3753.

912 61. Zhang, Z., Zheng, L., Yu, Y., Wu, J., Yang, F., Xu, Y., Guo, Q., Wu, X., Cao, S., Cao, L.,
913 et al. (2020). Involvement of SAMHD1 in dNTP homeostasis and the maintenance of
914 genomic integrity and oncotherapy (Review). *Int J Oncol* *56*, 879–888.
915 10.3892/ijo.2020.4988.

916 62. Henderson, S., and Fenton, T. (2015). APOBEC3 genes: retroviral restriction factors to
917 cancer drivers. *Trends Mol Med* *21*, 274–284. 10.1016/j.molmed.2015.02.007.

918 63. Wang, W.-X., Kyprianou, N., Wang, X., and Nelson, P.T. (2010). Dysregulation of the
919 mitogen granulin in human cancer through the miR-15/107 microRNA gene group. *Cancer*
920 *Res* *70*, 9137–9142. 10.1158/0008-5472.CAN-10-1684.

921 64. Koepke, L., Winter, B., and Sparrer, K.M.J. (2020). An improved method for high-
922 throughput quantification of autophagy. *Scientific Reports* *10*, 1–20. 10.1038/s41598-020-
923 68607-w.

924

925

926 **Figure legends**

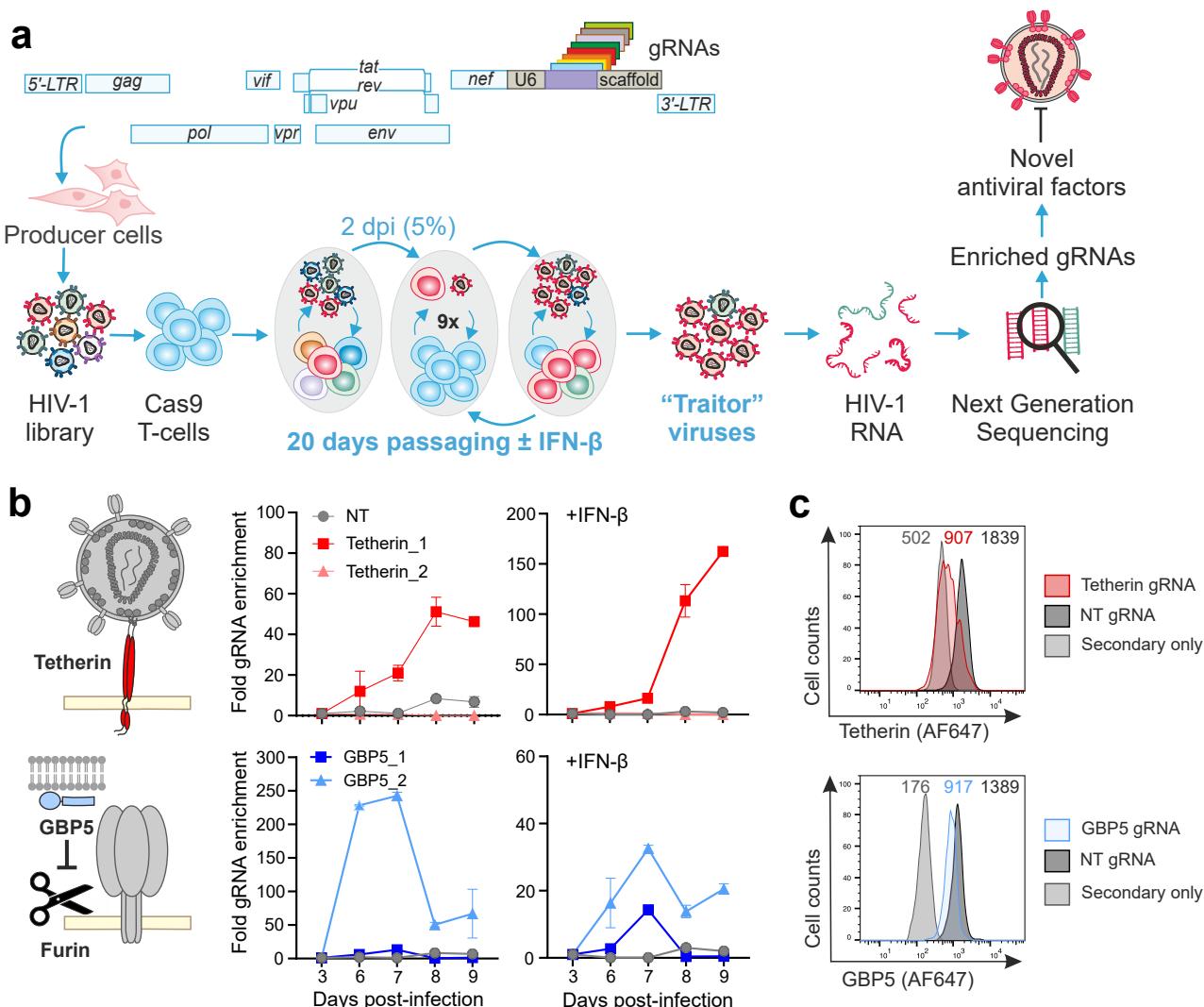
927 **Fig. 1. Assay principle and proof of concept.** **a**, Outline of the CRISPR/Cas9-based virus-
928 guided discovery approach. Proviral HIV-1 constructs are engineered to contain the gRNAs
929 expression cassette between the *nef* gene and the 3`LTR. To produce virus stocks, HEK293T
930 cells are transfected with libraries of HIV-1 constructs expressing various gRNAs. The
931 resulting swarms of HIV-1 gRNA viruses are passaged every two days in Cas9-expressing cells
932 in the presence or absence of IFN- β . Cells and viral supernatants are harvested every five days
933 and the frequencies of HIV-1 gRNAs are determined by next-generation sequencing. Target
934 genes of gRNAs that are selected and hence are associated with an advantage for viral
935 replication are cloned and examined for their antiviral activity and mechanism. Note that the
936 U6-gRNA-scaffold region is not to scale and just encompasses 351 or 352 base pairs. **b**,
937 Enrichment of HIV-1 NL4-3 expressing gRNAs targeting tetherin and GBP5. The left panel
938 provides a schematic showing tetherin trapping HIV-1 particles at the cell surface and
939 inhibition of furin-mediated processing of the gp160 Env precursor to mature gp120 and gp41.
940 The right panels show the enrichment of the indicated gRNAs at different days post-infection
941 in presence and absence of IFN- β . Relative enrichment was quantified using SYBR green
942 qPCR. Relative frequencies of the gRNAs were measured in triplicates at each timepoint. **c**,
943 Flow cytometric analysis of tetherin and GBP5 in CEM-M7 Cas9 infected with HIV-1 NL4-3
944 expressing either tetherin_1, GBP5_2 or NT gRNA.

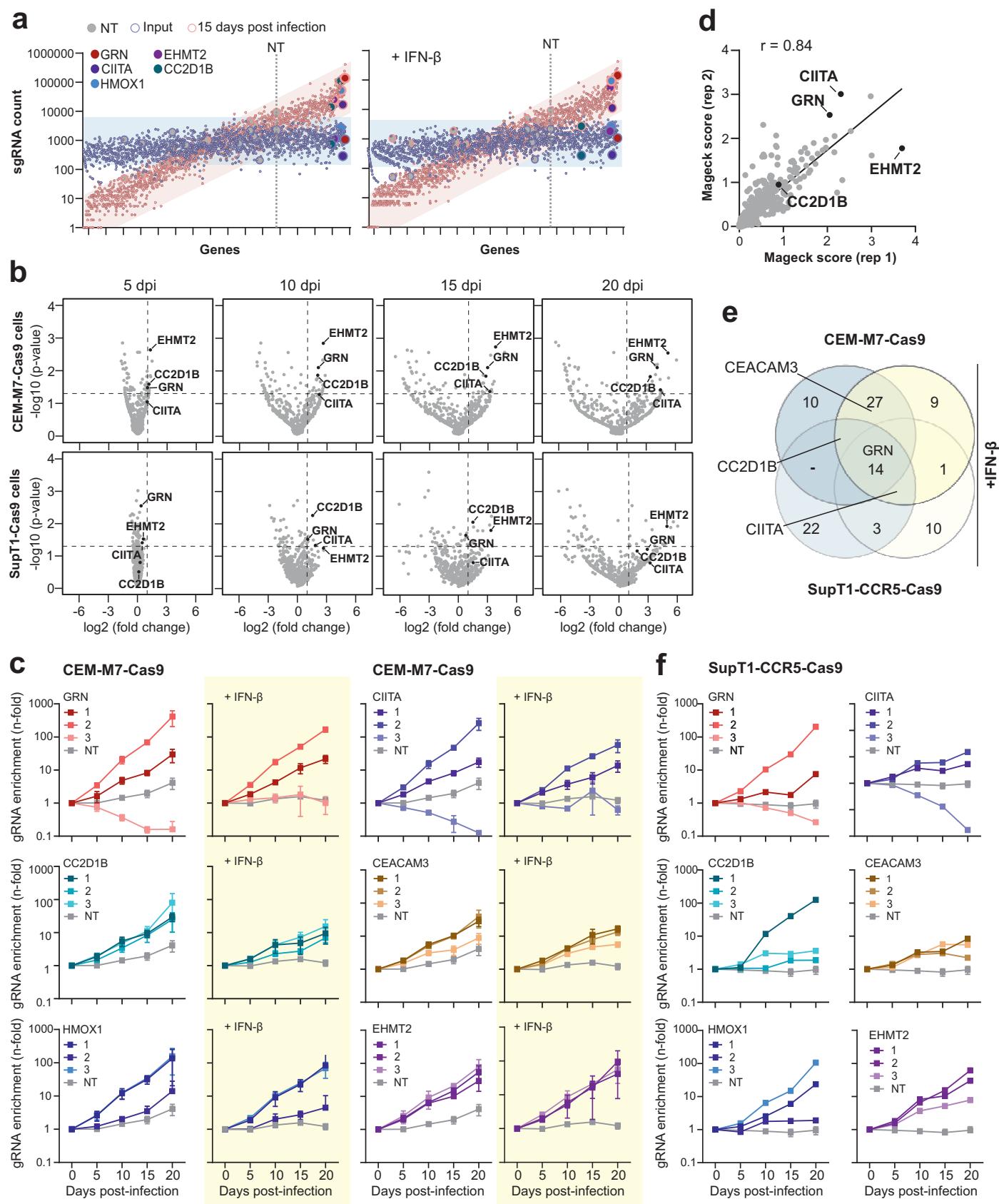
945 **Fig. 2. Selection of HIV-1 U6-CRF-gRNA constructs targeting GRN and CIITA.** **a**, Scatter
946 plot of individual sgRNA counts in CEM-M7 cells supernatants non-treated (left panel) or
947 treated with IFN- (right panel) 15 days post infection (red outlines) and in the input (blue
948 outlines) versus gene names sorted by fold enrichment. NT and dotted line indicate the
949 occurrence of the first non-targeting control sgRNA. Selected factors are highlighted by colors
950 as indicated. **b**, Volcano plots indicating specific target genes of which the gRNAs are

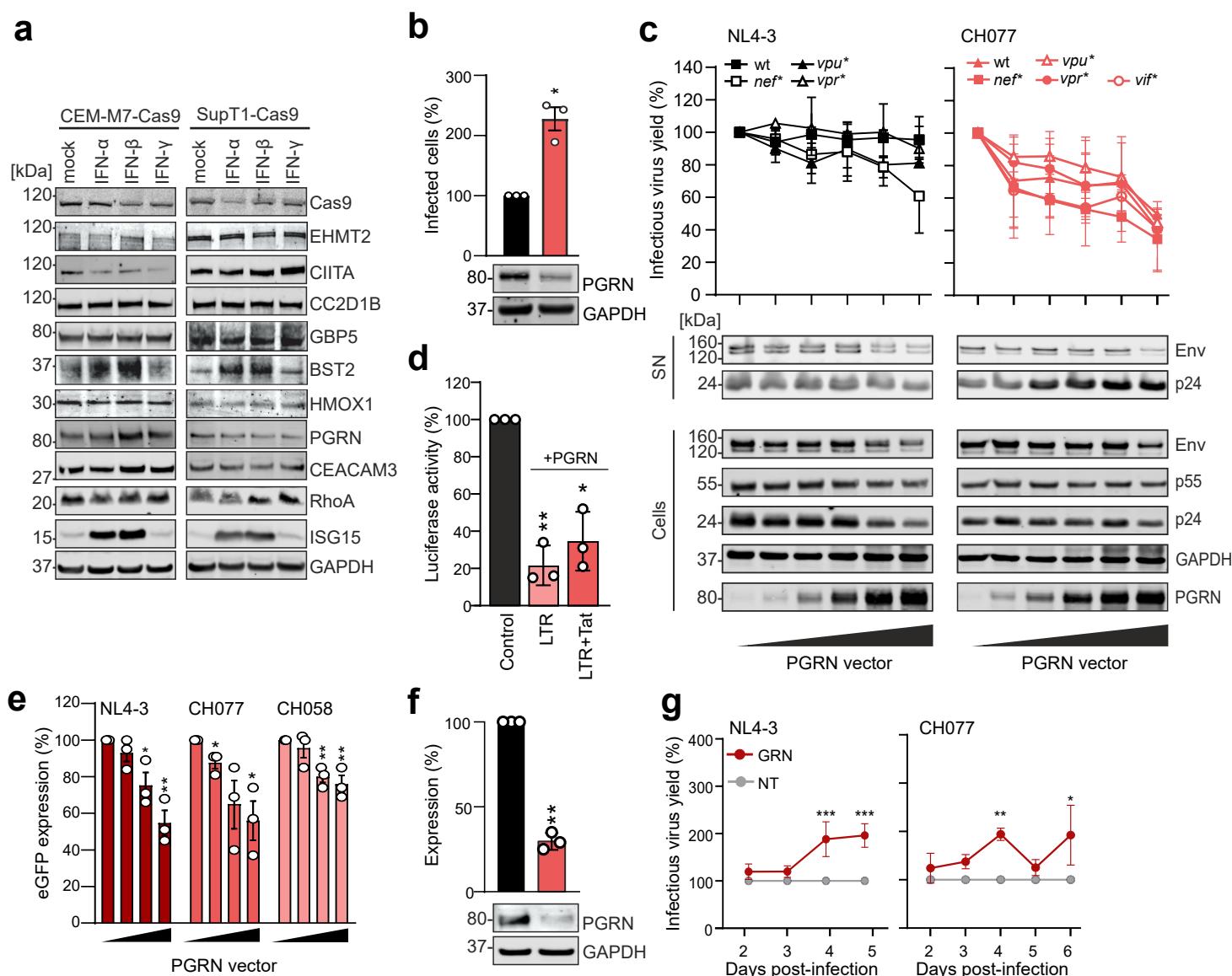
951 significantly enriched during passage in CEM-M7 (upper) or SupT1 CCR5 high (lower) Cas9
952 cells at different days post infection (dpi). Dashes lines indicate p value 0.05 and 2-fold change
953 respectively on Y and X axis and were used to determine significantly selected genes. **c**, Read
954 counts relative to input virus from the MAGeCK analysis showing the enrichment of gRNAs
955 targeting GRN, CIITA, CC2D1B and CEACAM3 in presence or absence of IFN- β in CEM-
956 M7 Cas9 cells. **d**, Correlation between MAGeCK score obtained in independent experiments
957 in CEM-M7 cells. **e**, Venn diagram illustrating the genes of which the gRNAs were enriched
958 in the different conditions (e.g. different cell lines or in presence or absence of IFN- β). Genes
959 were considered enriched when the $-\log_{10}$ of the positive MAGeCK score was 1.5 or higher.
960 GRN is selected from the virus independently from the experimental setup. **f**, Read counts
961 relative to input virus from the MAGeCK analysis showing the enrichment of gRNAs targeting
962 GRN, CIITA, CC2D1B and CEACAM3 in presence or absence of IFN- β in SupT1 CCR5 high
963 Cas9 cells.

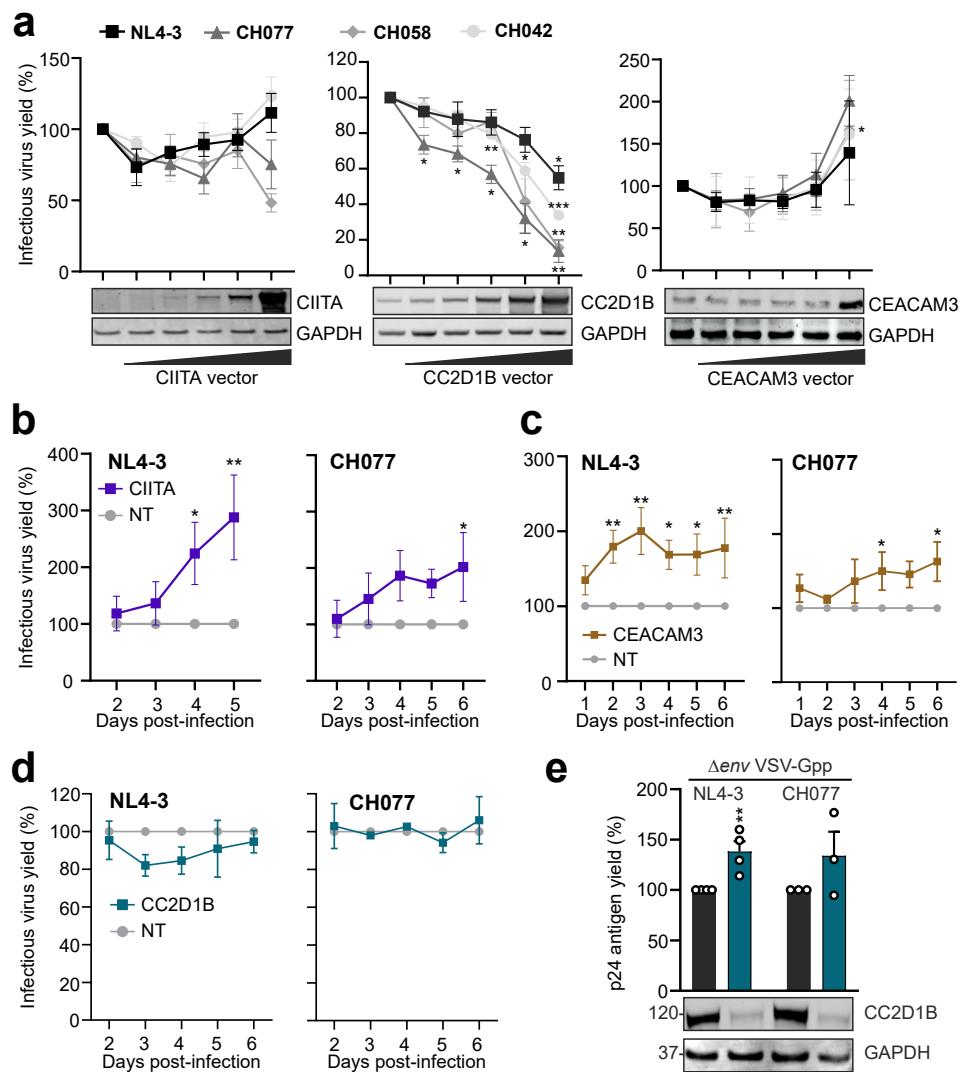
964 **Fig. 3. Impact of PGRN and CIITA on HIV-1 replication. a**, Expression of cellular factors
965 targeted by gRNAs selected during passage of HIV-1 in CEM-M7 and SupT1 CCR5 high Cas9
966 cells with or without the indicated IFNs (1000U/ml). Whole-cell lysates were immunoblotted
967 and stained with antibodies against the indicated proteins. **b**, Percentage of eGFP positive cells
968 indicating infected CEM-M7 Cas9 cells at 4 days post infection electroporated with either the
969 NT or GRN gRNA and infected with WT NL4-3. Bars represent the mean of infected cells at
970 2dpi relative to the control (100%) of three independent experiments, \pm SEM, *p<0.05,
971 Student's t-test Welch's correction, ** p<0.001, ***p<0.0001 In the lower panel a
972 representative WB showing PGRN KO efficiency. **c**, HEK293T cells were cotransfected with
973 increasing amounts of GRN expression construct and proviral mutants of NL4-3 or CH077
974 lacking the accessory genes. Each point represents the average of three independent
975 experiments \pm SEM. In the lower panel a representative WB indicating expression of Env, p55,
976 p24 and PGRN in virus supernatants or cell lysates. **d**, HEK293T cells were cotransfected with

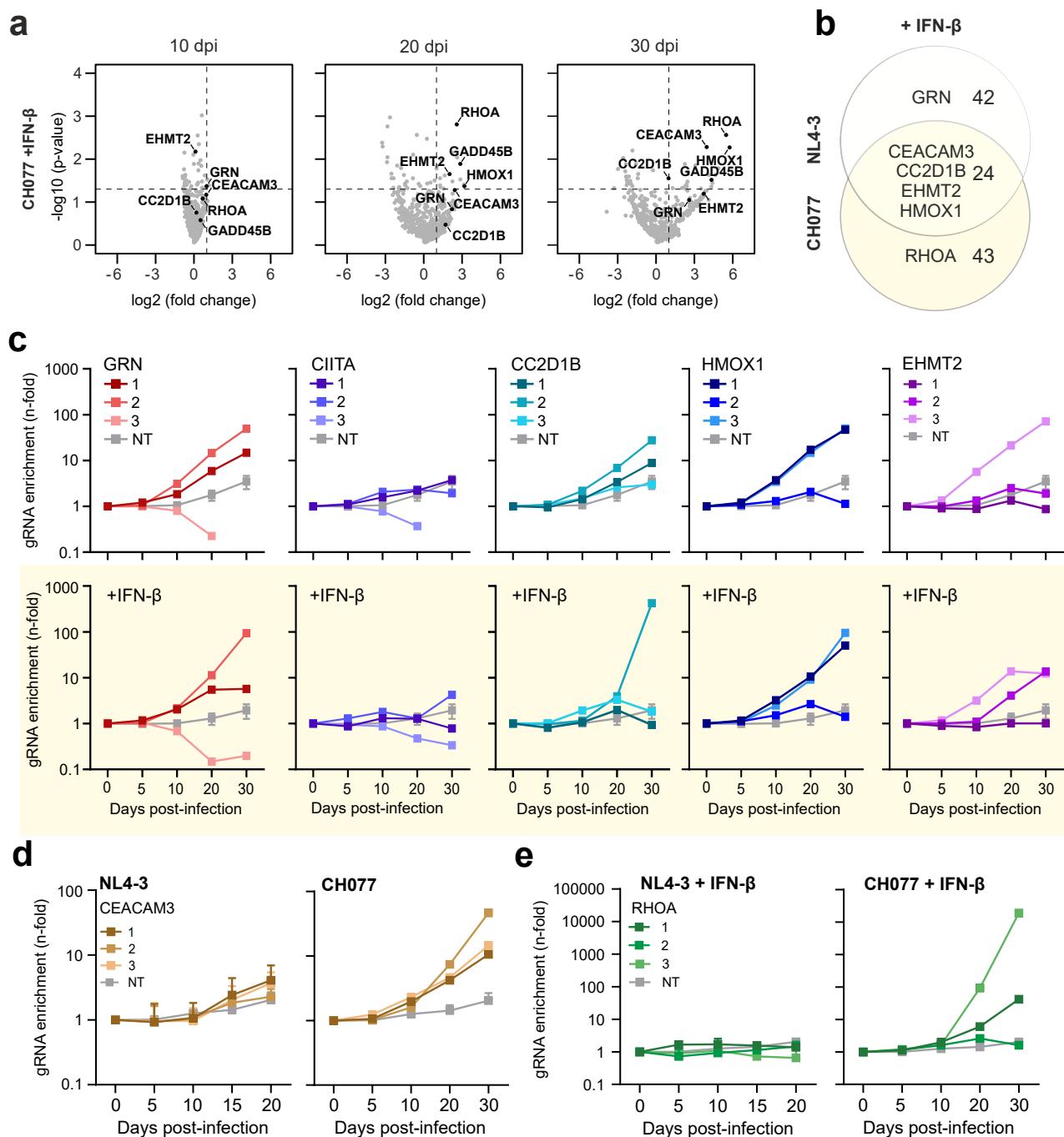
977 a luciferase reporter constructs under the control of the HIV-1 LTR and expression constructs
978 for GRN in presence and absence of NL4-3 Tat or a vector control. Bars represent the mean of
979 three independent experiments \pm SEM, Student's t-test Welch's correction, *p<0.05, **
980 p<0.001, ***p<0.0001. **e**, HEK293T cells were cotransfected with different amount of GRN
981 expression plasmid with either NL4-3_eGFP, CH077_eGFP or CH058_eGFP. Early infection
982 was measured with Flow cytometry and bars represent the mean fluorescence intensities (MFI)
983 of eGFP in the eGFP+/GRN+ population relative to vector control (100%). Bars represent the
984 mean of three independent experiments \pm SEM, Student's t-test Welch's correction, *p<0.05,
985 ** p<0.001, ***p<0.0001. **f**, Representative WB and quantification of PGRN KO.in primary
986 CD4⁺ T cells. Bars represent the mean of three independent experiments \pm SD, Student's t-test
987 Welch's correction, *p<0.05, ** p<0.001, ***p<0.0001. **g**, CD4⁺ T cells from 3 to 6 donors
988 were electroporated with either the GRN gRNA or the NT control, infected with the indicated
989 WT HIV-1 strains and infectious virus yields measured from 2 to 6dpi by TZM-bl infection
990 assays. Values represent the mean of three to six experiments normalized to the NT control
991 (100%) \pm SEM, Two-way anova Sidak's multiple comparison, *p<0.05, ** p<0.001,
992 ***p<0.0001.

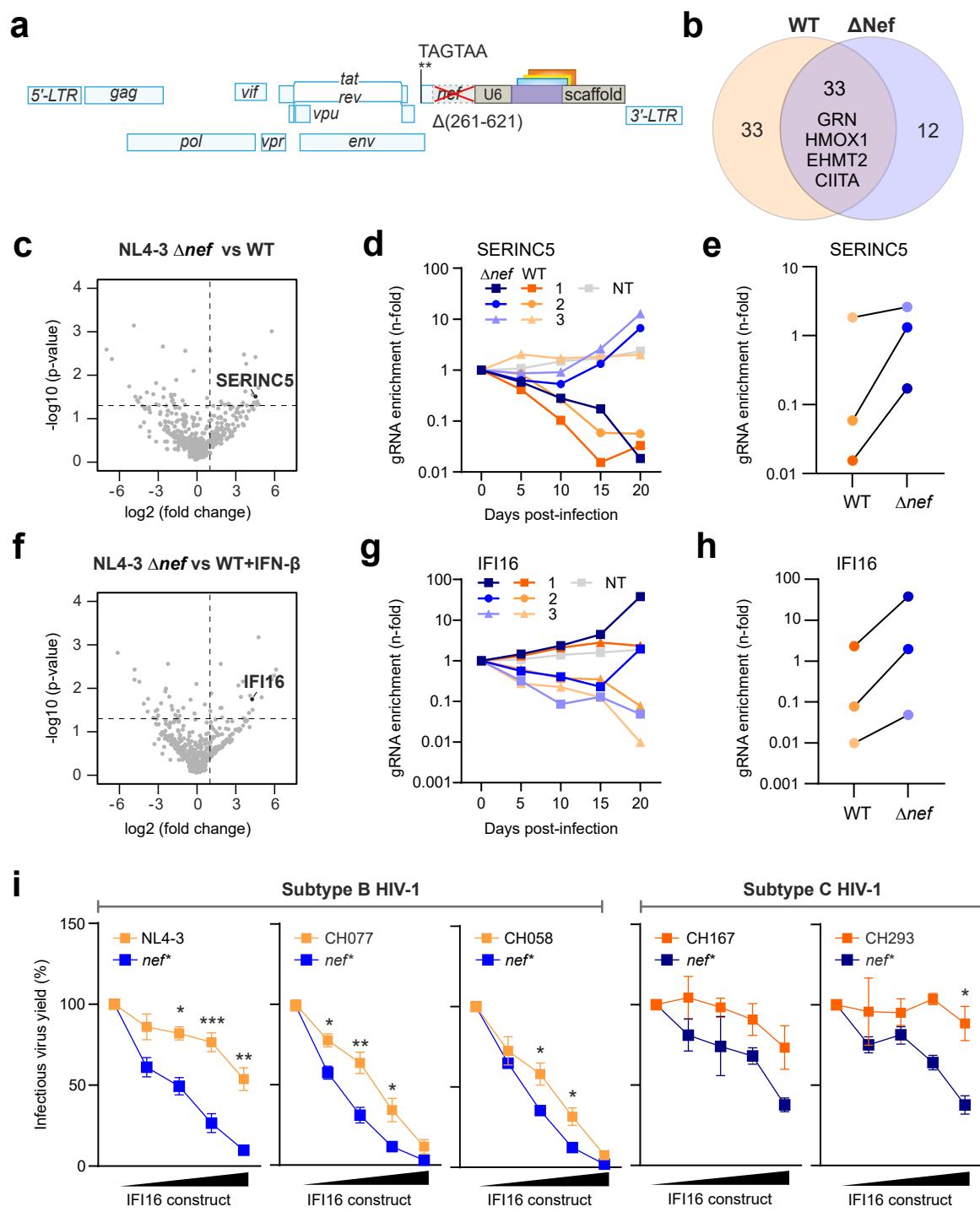

993 **Fig. 4. Impact of CIITA, CC2D1B and CEACAM3 on HIV-1 replication. a**, HEK293T
994 cells were cotransfected with increasing amount of either CIITA, CC2D1B or CEACAM3
995 expression constructs with and indicated proviral constructs. Values represent the mean of three
996 independent experiments \pm SEM, Student's t-test Welch's correction, *p<0.05, ** p<0.001,
997 ***p<0.0001. **b-d**, CD4⁺ T cells from 3 to 4 donors were electroporated with either the gRNA
998 targeting *CIITA*, *CC2D1B*, *CEACAM3* or the NT control, infected with the indicated WT HIV-
999 1 strains and infectious virus yields measured from 2 to 6 dpi by TZM-bl infection assays.
1000 Values represent the mean of two to six experiments normalized to the NT control (100%)
1001 \pm SEM, Two-way anova Sidak's multiple comparison *p<0.05, ** p<0.001, ***p<0.0001.
1002 Examples from primary data are shown in Extended Data Fig. 3. **e**, Percentage of p24 antigen


1003 in the supernatants of CD4⁺ T cells from three to four donors electroporated with either the
1004 gRNA targeting CC2D1B or NT control at 3 days post infection with VSV-G pseudo-typed
1005 Δ env NL4-3 or CH077. Bars represent the mean of the infectious viral yield at two days post-
1006 infection relative to the control (100%) of three to four independent experiments, \pm SEM,
1007 Student's t-test Welch's correction, *p<0.05, ** p<0.001, ***p<0.0001 In the lower panel a
1008 representative WB showing CC2D1B KO efficiency.


1009 **Fig. 5. gRNAs targeting *HMOX*, *EHMT2*, *CEACAM3* and *RHOA* increase replication**
1010 **fitness of HIV-1 CH077.** **a**, Volcano plots indicating specific target genes of which the gRNAs
1011 are enriched during passage in CEM-M7 Cas9 cells at different days post infection (dpi) after
1012 passaging of the CH077 TV-NL4-3-CRF-gRNA in presence of IFN- β . Dashed lines indicate p-
1013 value 0.05 and 2-fold change respectively on Y and X axis and were used to determine selected
1014 genes. **b**, Venn diagram illustrating the genes of which the gRNAs were enriched in the
1015 different conditions in presence of IFN- β . Genes were considered enriched when the MAGeCK
1016 score was 1.5 or higher. **c**, Read counts relative to input virus from the MAGeCK analysis
1017 showing the enrichment of gRNAs targeting *HMOX1* (upper) or *EHMT2* (lower) in presence
1018 or absence of IFN- β in CEM-M7 or SupT1-CCR5 Cas9 cells after passaging or the NL4-3 (left)
1019 or CH077 (right) library. **d**, Read counts relative to input virus from the MAGeCK analysis
1020 showing the enrichment of gRNAs targeting *CEACAM3* after passaging the NL4-3 (left) or
1021 CH077 (right) library. **e**, Read counts relative to input virus from the MAGeCK analysis
1022 showing the enrichment of gRNAs targeting *RHOA* after passaging the NL4-3 (left) or CH077
1023 (right) library.


1024 **Fig. 6. Selection of sgRNAs by HIV-1 U6-CRF-gRNA constructs lacking *nef*.** **a**, Schematic
1025 structure of the *nef*-defective HIV-1 TV-NL4-3-CRF-gRNA constructs. **b**, Venn diagram
1026 illustrating the genes of which the gRNAs were enriched in presence and absence of Nef. Genes
1027 were considered enriched when the MAGeCK score was 1.5 or higher. sgRNAs targeting *GRN*,


1028 *HMOX1*, *EHMT2* and *CIITA* are selected in both conditions. **c**, Volcano plot indicating
1029 significant enrichment of sgRNAs target the *SERINC5* coding gene in Δ *nef* kinetics compared
1030 to WT kinetic during passage in CEM-M7 at 15 dpi. Dashes lines indicate p value 0.05 and 2-
1031 fold change respectively on Y and X axis. **d**, Read counts relative to input virus from the
1032 MAGeCK analysis showing the enrichment of gRNAs targeting *SERINC5* in Δ *nef* and WT
1033 kinetics. **e**, Read counts relative to input virus from the MAGeCK analysis showing comparison
1034 between Δ *nef* kinetics and WT kinetic for each gRNA targeting *SERINC5* at 15 dpi. **f-h**,
1035 Selection of sgRNAs targeting *IFI16* as described for *SERINC5* in panels c-e, except that in
1036 enrichment in CEM-M7 was determined in the presence of IFN- β . **i**, HEK293T cells were
1037 cotransfected with increasing amounts of *IFI16* expression construct and indicated proviral
1038 constructs lacking *nef*. Each point represents the mean of three independent experiments \pm SD,
1039 Student´s t-test Welch´s correction, *p<0.05, ** p<0.001, ***p<0.0001.



Extended Data of

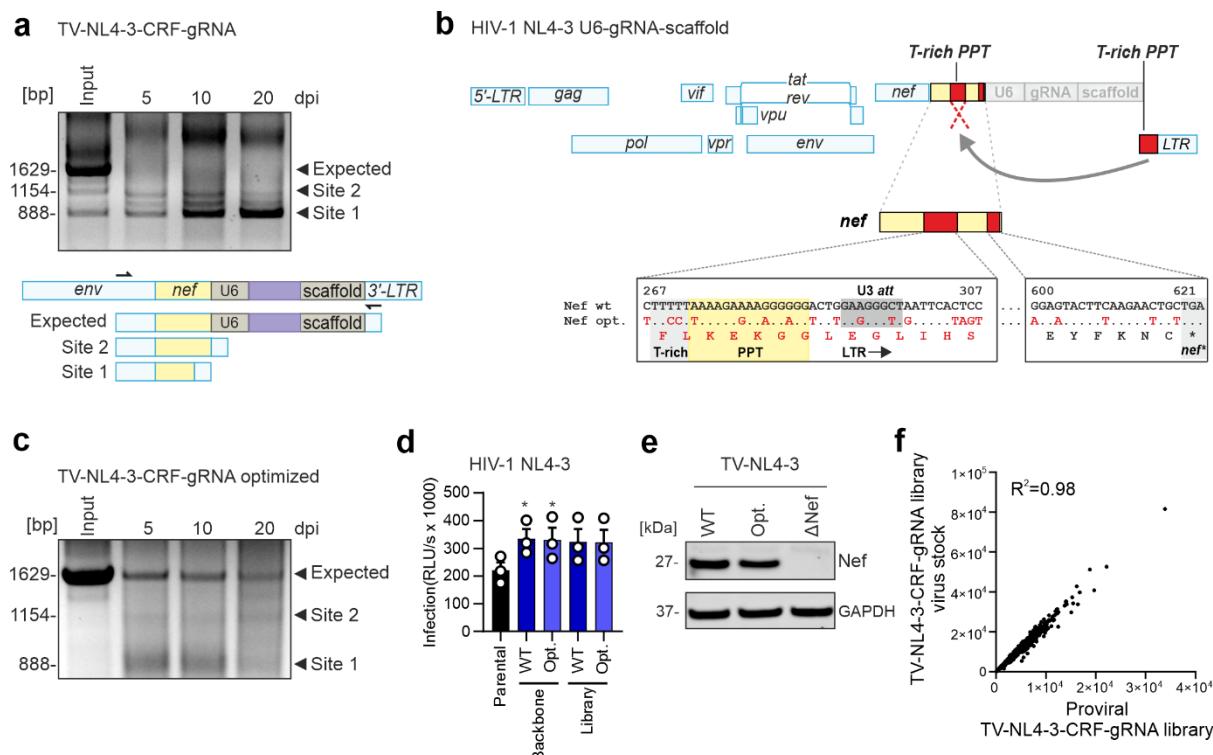
Traitor-Virus-guided Discovery of novel Antiviral Factors

Caterina Prelli Bozzo^{1#}, Alexandre Laliberté^{1#}, Aurora De Luna¹, Chiara Pastorio¹, Kerstin Regensburger¹, Stefan Krebs², Alexander Graf², Helmut Blum², Meta Volcic¹, Konstantin M.J. Sparrer^{1*} & Frank Kirchhoff^{1*}

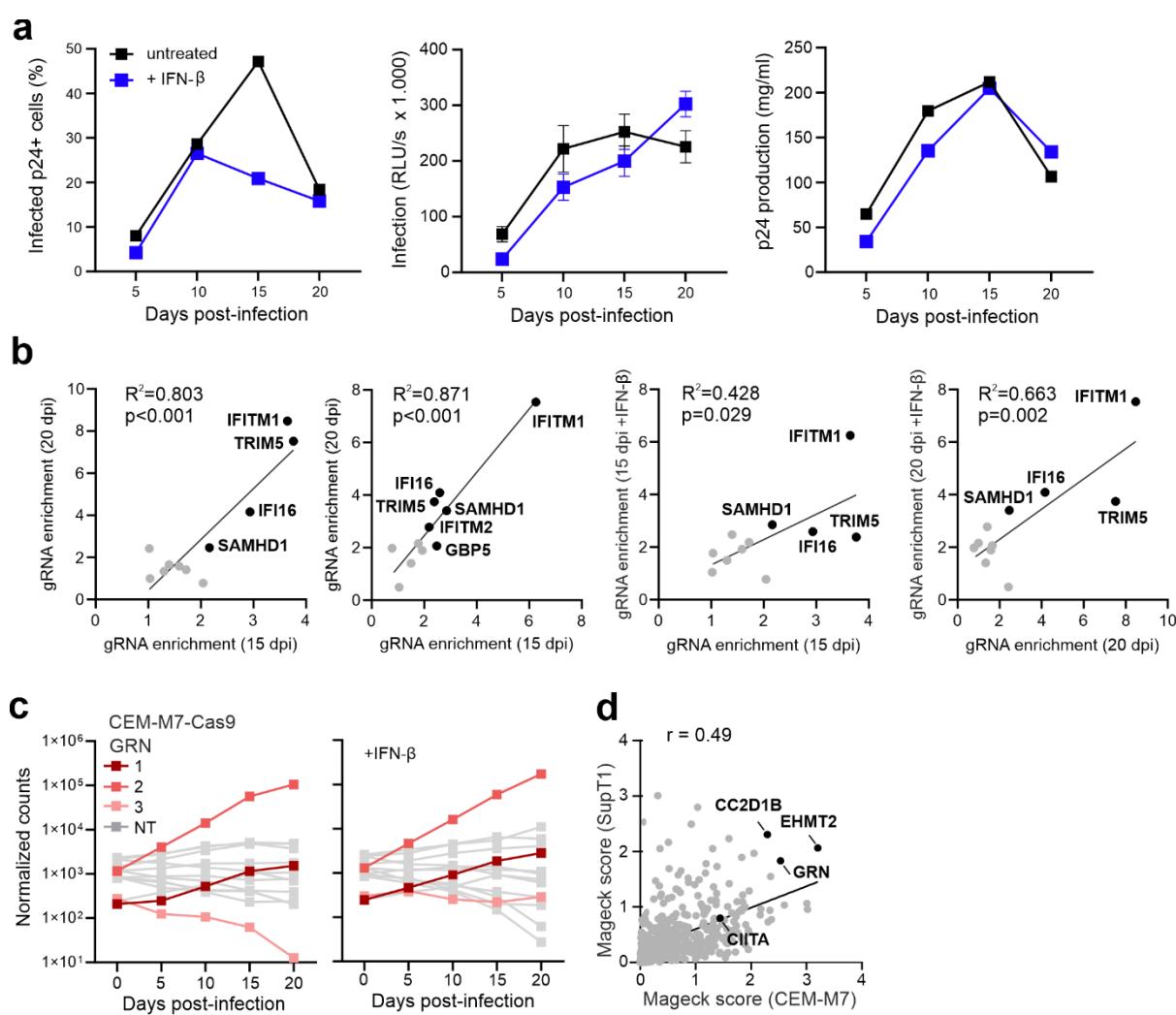
¹ Institute of Molecular Virology

Ulm University Medical Center

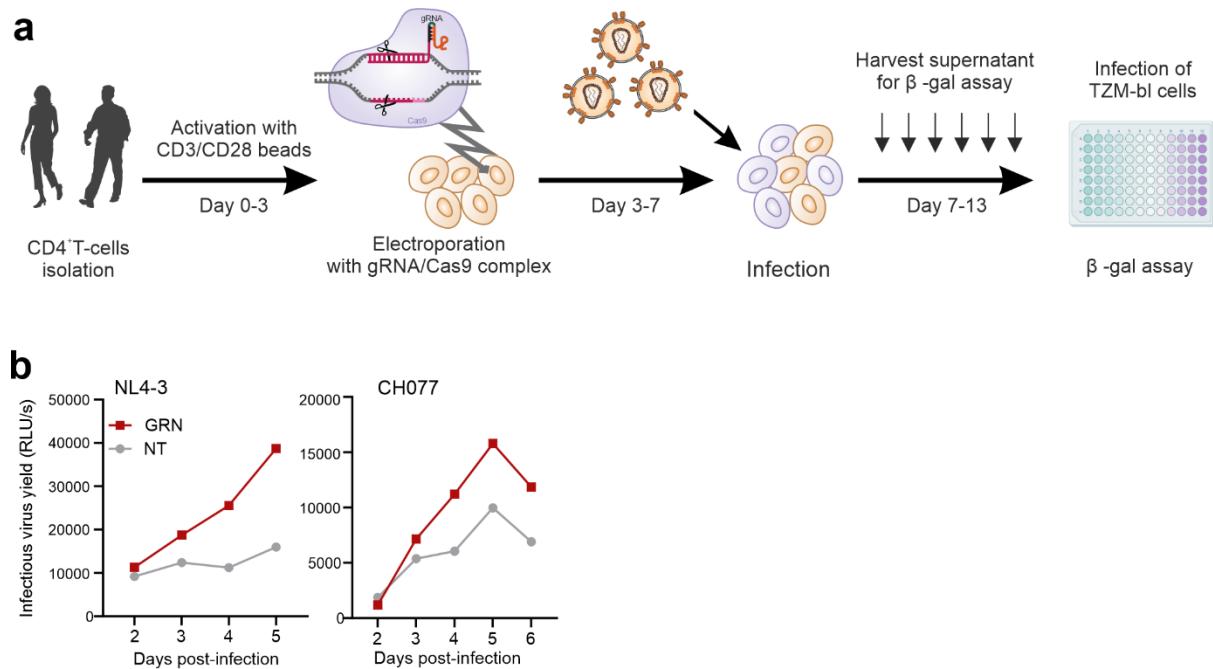
89081 Ulm, Germany

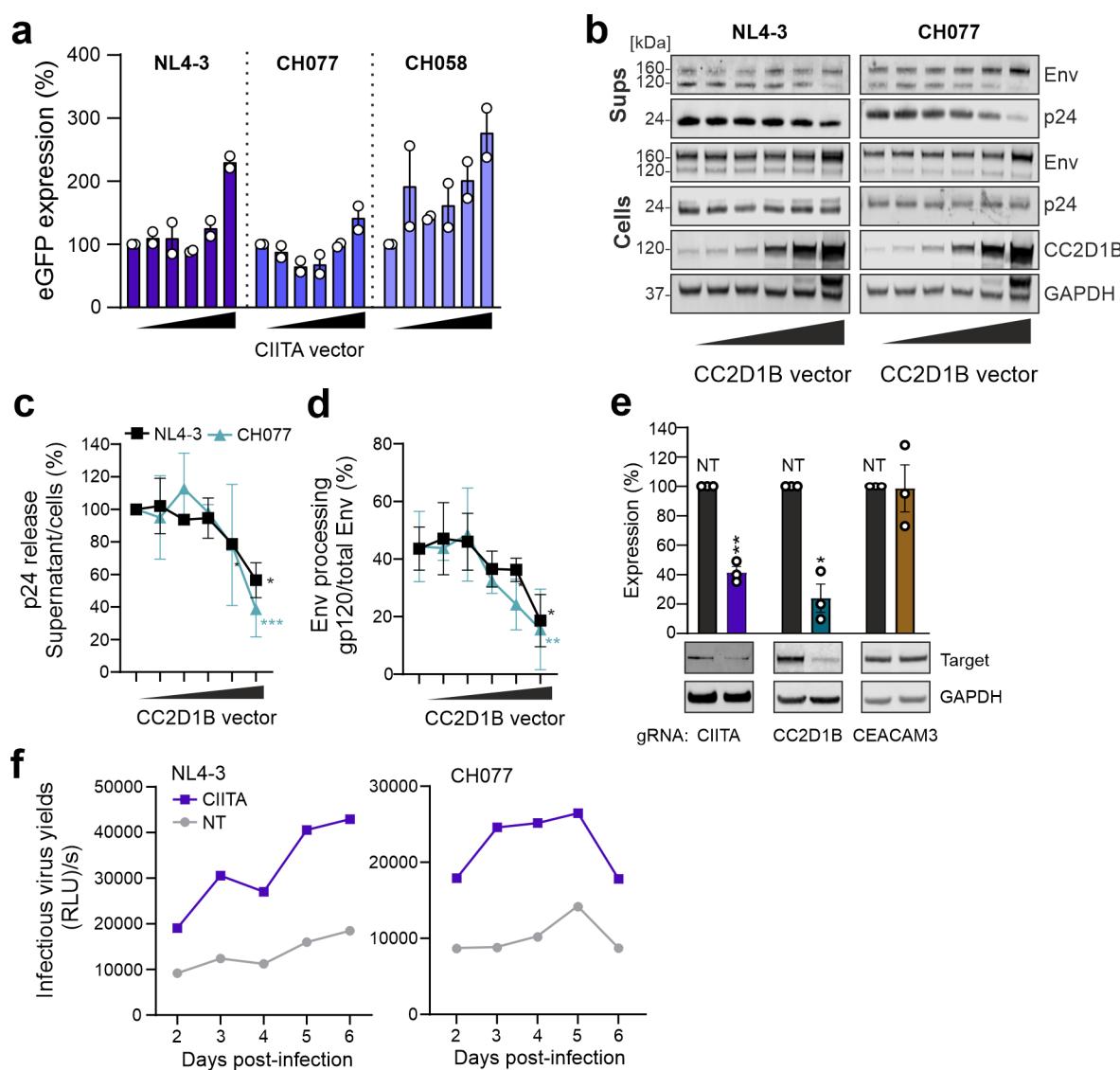

² Laboratory for Functional Genome Analysis

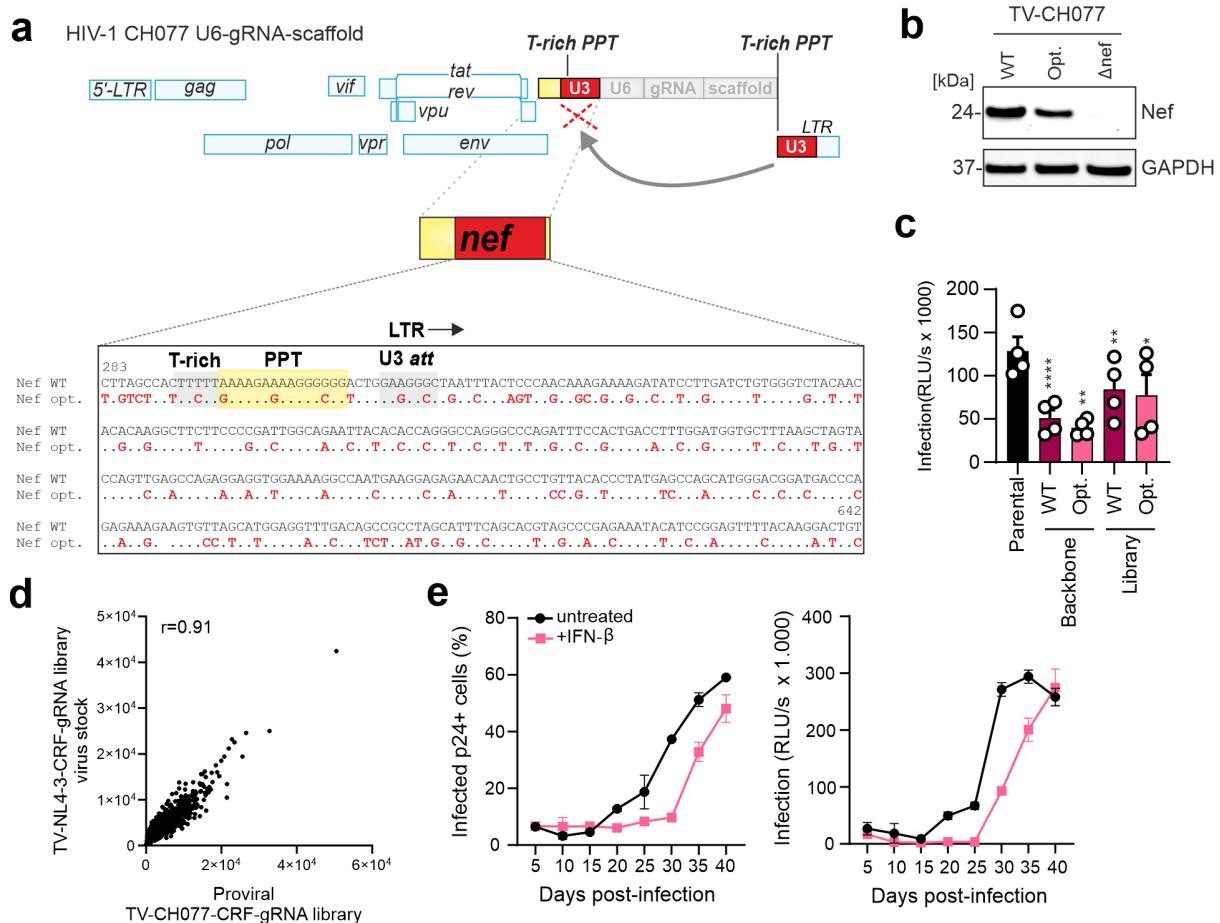
Gene Center, LMU Munich,

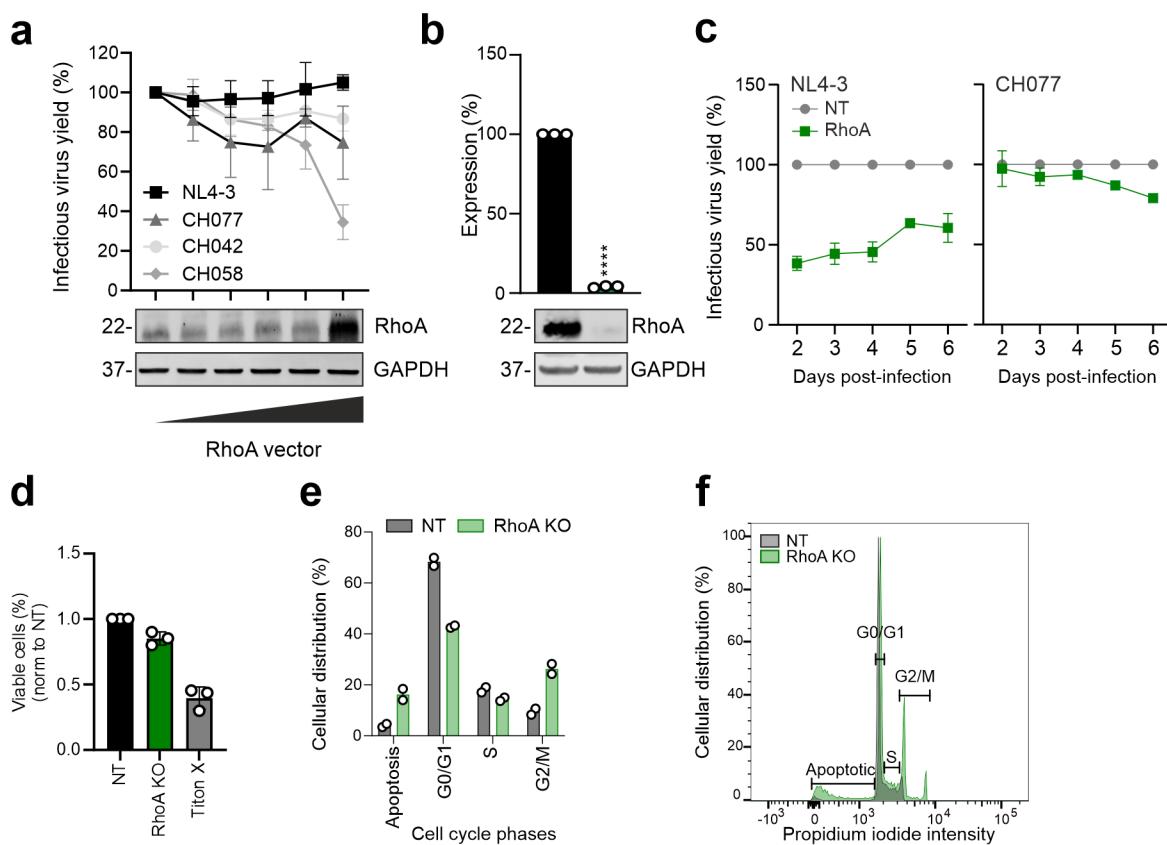

81377 Munich, Germany

contributed equally

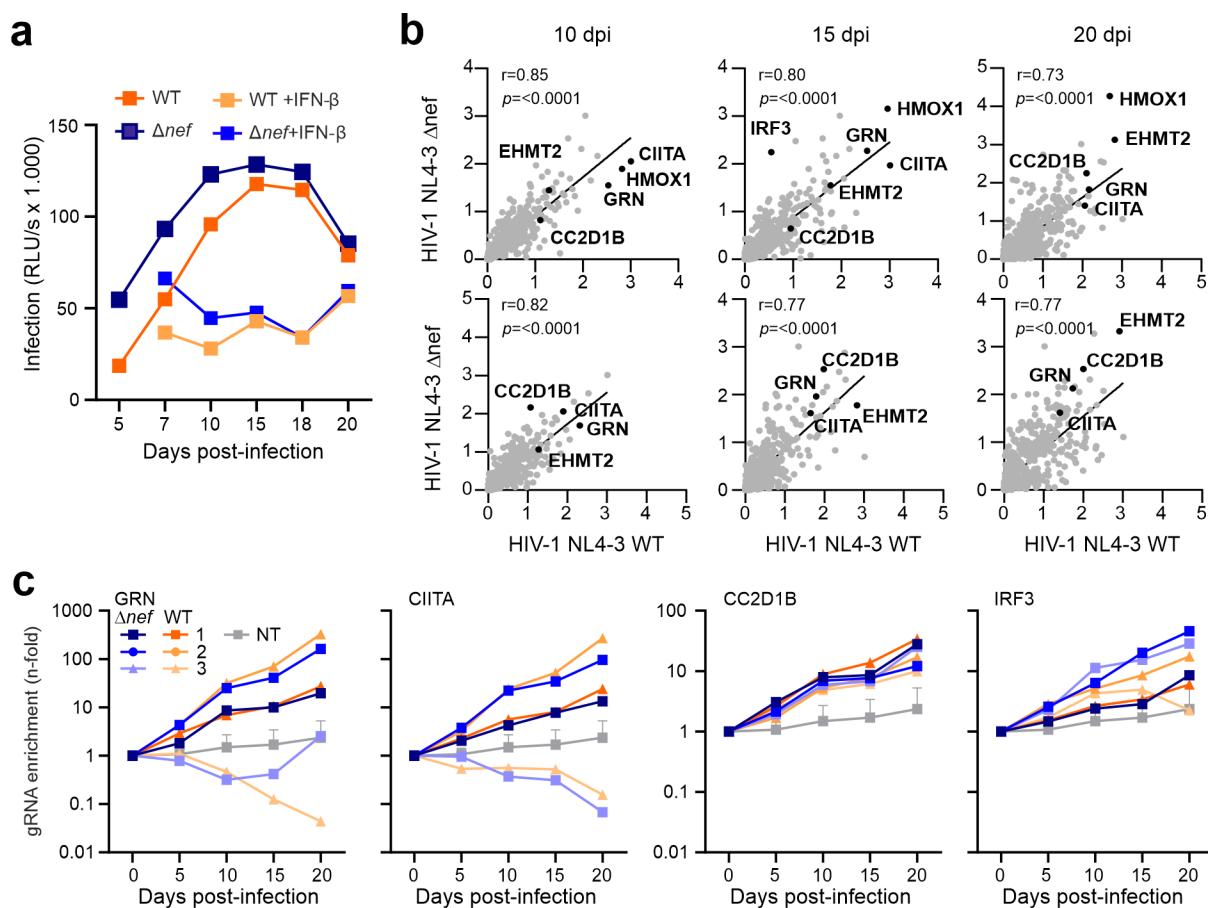

* Correspondence: Konstantin.Sparrer@uni-ulm.de and Frank.Kirchhoff@uni-ulm.de


Extended Data Figure 1. Optimization of HIV-1 NL4-3 gRNA construct. **a**, PCR analysis of the input HIV-1 gRNA stocks and viral variants obtained after the indicated days of passaging. The upper panel shows primary PCR data and the lower panel the position of the primer binding sites and the fragments obtained. **b**, Schematic structure of the HIV-1 genome and modifications at its 3' end to insert the U6-gRNA-scaffold expression cassette. Duplicated T-rich regions, poly-purine tract (PPT) and LTR sequences are highlighted in red. The arrow indicates the major recombination event. Mutations introduced to minimize recombination and the predicted Nef amino acid sequence are indicated. Numbers refer to nucleotide positions in the NL4-3 *nef* gene. **c**, PCR analysis was performed as in panel A but the optimized HIV-1 NL4-3 gRNA construct containing the changes shown in panel B were used for passaging. **d**, HEK293T cells were transfected with the parental HIV-1 NL4-3 construct, the original or optimized derivative containing the U6-gRNA-scaffold cassette or the gRNA library targeting 511 potential antiviral factors. Infectious virus yield was measured using the TZM-bl reporter cell infectivity assay and values were normalized to the infectious virus yield obtained for the parental NL4-3 construct (100%). Bars represent the mean of three independent experiments \pm SD, Unpaired T-test Welch's correction, * p <0.05, ** p <0.001, *** p <0.0001. **e**, Representative Western blot of Nef and GAPDH expression levels in HEK293T cells transfected with the indicated HIV-1 NL4-3 constructs. **f**, NGS results showing the coverage of the HIV-1 NL4-3 gRNA libraries.

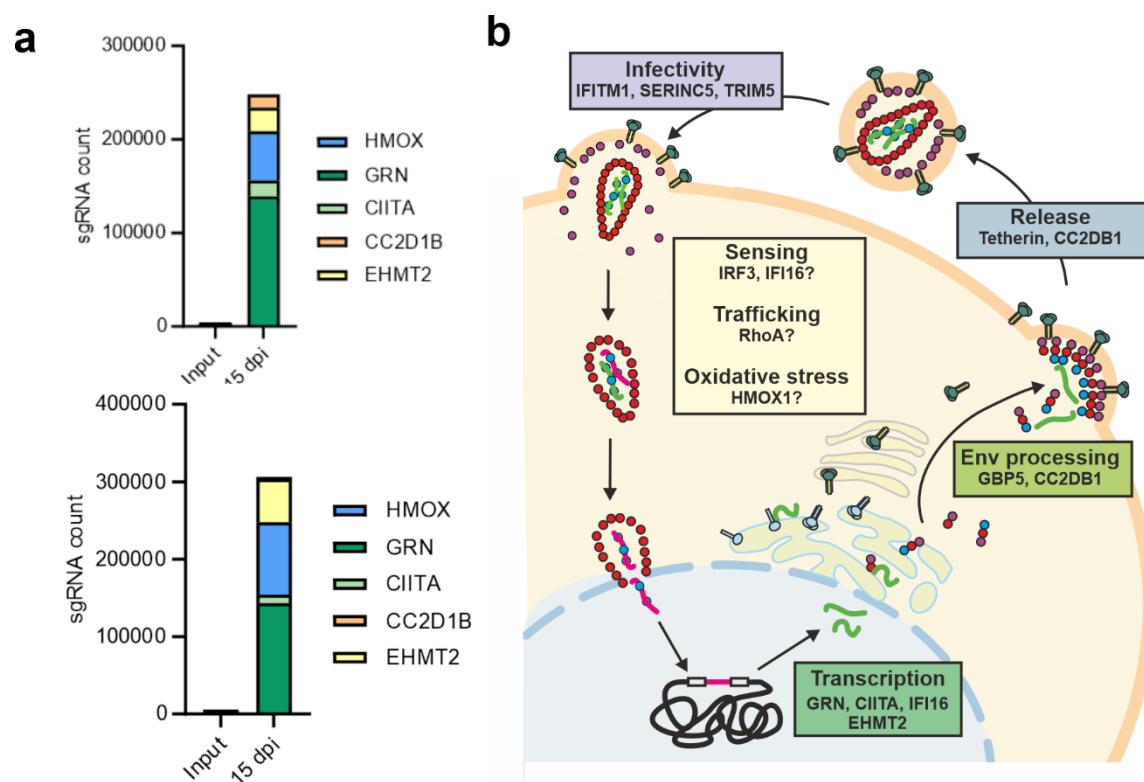

Extended Data Figure 2. Spread and enrichment of HIV-1 CRF-gRNA constructs in cell culture **a**, Infected cells, infectious virus yields and p24 antigen production in CEM-M7 cells infected with the HIV-1 TC-NL4-3-CRF-gRNA library. Cells were infected and the virus passaged as indicated in Figure 1A. Every five days, the cell cultures were analyzed for the proportion of productively infected (p24+) cells by flow cytometry (left), infectious virus and p24 in the supernatant by TZM-bl infection assay (middle) and p24 antigen ELISA (right), respectively. **b**, Correlation between the enrichment of known RFs at the 15 and 20 day time-points and in the presence or absence of IFN-β in CEM-M7 Cas9 cells. **c**, Absolute counts of the indicated HIV-1 gRNA constructs during passage in CEM-M7 Cas9 cells. **d**, Correlation between MAGeCK score obtained in independent experiments in CEM-M7 vs SupT1 CCR5 high Cas9 cells.


Extended Data Figure 3. Primary data of PGRN and CIITA KO in primary cells. a, Schematic representation of the experimental workflow to KO target genes in primary CD4⁺ T cells and infect them with WT HIV-1. **b,** Primary data showing the replication of the indicated WT HIV-1 strains in primary CD4⁺ T cells electroporated with PGRN, CIITA or NT gRNA.

Extended Data Figure 4. Impact of CIITA and CC2D1B on HIV-1 transcription and release. **a**, HEK293T cells were cotransfected with different amount of CIITA expression plasmid with either NL4-3_eGFP, CH077_eGFP or CH058_eGFP. Early infection was measured with Flow cytometry and bars represent the mean fluorescence intensities (MFI) of eGFP in the eGFP+/AF647+ population relative to vector control (100%). Bars represent the mean of two independent experiments \pm SD. **b**, Representative Western blot showing Env, p24 and CC2D1B in virus containing supernatants or cell lysates of HEK293Ts cotransfected with increasing amounts of CC2D1B and the indicated proviral constructs. **c, d**, Quantification the WB in panel (b) of the p24 release (c) and Env processing (d). Values represent the mean of three independent experiments \pm SD, Unpaired T-test Welch's correction, * p <0.05, ** p <0.01, *** p <0.001. **e**, Representative western blot and quantification of CIITA, CC2D1B and CEACAM3 expression upon KO in primary CD4⁺ T cells. Bars represent the mean of three independent experiments \pm SD, Unpaired T-test Welch's correction, * p <0.05, ** p <0.01, *** p <0.001. **f**, CD4⁺ T cells were electroporated with gRNA targeting CIITA or the NT control, infected with the indicated WT HIV-1 strains and infectious virus yields measured from 2 to 6 dpi by TZM-bl infection assays. Shown are representative results.



Extended Data Figure 5. Optimization of HIV-1 CH077-3 gRNA constructs. **a**, Schematic structure of modifications at 3' end to insert the U6-gRNA-scaffold expression cassette. Duplicated T-rich regions, poly-purine tract (PPT) and LTR sequences are highlighted in red. **b**, Nef and GAPDH expression levels in HEK293T cells transfected with the HIV-1 NL4-3 constructs. **c**, Infection rate of parental HIV-1 CH077 construct, the original or optimized containing the U6-gRNA-scaffold cassette or the gRNA library. Bars represent the mean of four independent experiments \pm SEM, Unpaired T-test Welch's correction, * p <0.05, ** p <0.001, *** p <0.0001. **d**, Coverage of the HIV-1 NL4-3 gRNA libraries. **e**, CEM-M7 Cas9 cells infected with the HIV-1 TC-CH077-CRF-gRNA library. the cell cultures were analyzed by flow cytometry (left), infectious virus in the supernatant by TZM-bl infection assay (right), respectively.



Extended Data Figure 6. RhoA KO impairs HIV-1 replication by inhibiting the cell cycle.

a, Effect of RhoA overexpression on indicated proviral constructs. Values represent mean of three independent experiments \pm SEM. **b**, RhoA expression upon KO in primary CD4⁺ T cells. Bars represent the mean of three independent experiments \pm SD, Unpaired T-test Welch's correction, *p<0.05, ** p<0.001, ***p<0.0001. **c**, Effect of RhoA in CD4⁺ T cells infected with the indicated WT HIV-1 strains. Infectious virus yields measured every day for 5 or 6 days. Values represent the mean of three experiments to the control (100%) \pm SEM. **d**, Percentages of viable cells electroporated as described for panel (b). **e**, Percentages of primary CD4⁺ T cells electroporated with either sgRNA targeting RHOA or the NT control and with Propidium iodide (PI) at different cell cycle phases. Bars represent the mean of two independent experiments \pm SD. **f**, Primary representative flow cytometry data showing the gating used in panel (f).

Extended Data Figure 7. Spread and enrichment of HIV-1 CRF-gRNA ΔNef constructs in cell culture. **a**, Infectious virus yields in CEM-M7 Cas9 cells infected with the TV-NL4-3-CRF-gRNA WT or Δ nef library. Cells were infected and the virus passaged as indicated in Figure 1A. Every five days, the cell cultures were analysed for infectious virus in the supernatant by TZM-bl infection. **b**, Correlation between the enrichment of genes at the 10, 15 and 20 day time-points between the WT and Δ nef kinetics. **c**, Read counts relative to input virus from the MAGeCK analysis showing the enrichment of gRNAs targeting *GRN*, *CIITA*, *CC2D1B* and *IRF3* in Δ nef and WT kinetics.

Extended Data Figure 8. Overview on HIV-1-driven selection of sgRNAs and their cellular targets. a, Stacking plot of the enrichment of selected sgRNA counts from input to 15 days post infection of CEM-M7 Cas9 cells, non-treated (upper panel) or treated with IFN- β (lower panel). **b**, Schematic overview on the HIV-1 replication cycles and cellular factors expressed by genes target by sgRNA that became strongly enriched by the TV-driven screening approach. The exact inhibitory mechanisms of some of the highlighted cellular factors remain to be determined.