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Abstract1

Transcriptome-Wide Association Studies (TWAS) can provide single gene resolution for candi-
date genes in plants, complementing Genome-Wide Association Studies (GWAS) but efforts
in plants have been met with, at best, mixed success. We generated expression data from
693 maize genotypes, measured in a common field experiment, sampled over a two-hour
period to minimize diurnal and environmental effects, using full-length RNA-seq to maximize
the accurate estimation of transcript abundance. TWAS could identify roughly ten times as
many genes likely to play a role in flowering time regulation as GWAS conducted data from
the same experiment. TWAS using mature leaf tissue identified known true positive flowering
time genes known to act in the shoot apical meristem, and trait data from new environments
enabled the identification of additional flowering time genes without the need for new expression
data. eQTL analysis of TWAS-tagged genes identified at least one additional known maize
flowering time gene through trans-eQTL interactions. Collectively these results suggest the
gene expression resource described here can link genes to functions across different plant
phenotypes expressed in a range of tissues and scored in different experiments.
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Introduction 1

Information from homologous genes can predict the molecular functions of the proteins 2

encoded by genes with reasonably high accuracy (e.g. which genes are transcription factors 3

and which are transmembrane transporters). However, there can be significant variability 4

in determining the specific biological processes in which homologous proteins participate 5

and contribute. Even in the most widely studied plant genetic models – maize, rice, and 6

Arabidopsis – only a modest proportion of annotated gene models (1-10%) have been 7

directly linked to their roles in determining plant phenotypes (Schnable and Freeling 2011; 8
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2 Gene expression as a reusable source

Lloyd and Meinke 2012). This lack of direct functional information on the role individual1

genes play in determining plant phenotypes is even more striking for agricultural crops2

and wild species which have historically not served as genetic models (Rhee and Mutwil3

2014; Boyles et al. 2019). The advent of gene editing technology has accelerated this process,4

but the functional characterization of a single gene’s role in determining plant phenotype5

continues to require substantial investments of both time and resources. As a result, it6

is likely that the vast majority of annotated gene models will continue to lack this gold7

standard functional information for the foreseeable future.8

Genome-wide association studies (GWAS) that link genetic markers to variation in plant9

phenotypes have been widely adopted in plant species (as reviewed by (Tibbs Cortes10

et al. 2021)). These studies can act as a partial substitute for characterizing the function of11

specific genes through loss of function alleles or as a method for prioritizing candidate12

genes for subsequent functional characterization. Such characterization is typically time-13

consuming and often yields results that fall short of expectations. GWAS approaches also14

have several key limitations. The first is that genes vital to a phenotype of interest will not15

be identified in a GWAS if functional variation for the gene of interest is not present in16

the studied population, or present only at low frequencies that reduce statistical power to17

discover variants. The second key limitation of GWAS is that the signals it identifies tag18

regions of the genome linked to variation in a phenotype, but these regions can include19

multiple annotated gene models. As a result, it is frequently not possible to conclude20

which specific gene is responsible for a given GWAS signal without additional time and21

resource-intensive follow-up experiments.22

Transcriptome-wide association studies (TWAS) test for significant associations between23

the expression of individual genes and variation in plant phenotypes. TWAS partially24

addresses both key limitations of GWAS described above. TWAS identifies complementary25

rather than redundant sets of genes to those identified via GWAS for the same phenotypes26

in the same populations. The expression level of an individual gene can integrate the27

signals from multiple upstream regulatory variants, each too small or too rare to be linked28

directly to variation in the phenotype of interest (Li et al. 2023). TWAS based on direct29

measurements of gene expression typically identifies specific candidate genes rather than30

intervals containing multiple genes, even in species or populations with slow decay of31

linkage disequilibrium across the genome (Li et al. 2023). However, the terminology TWAS32

has also been applied to methodologies that use genetic marker data to impute gene33

expression and seek to link that imputed gene expression data to phenotype. In these34

cases, the advantage of single gene resolution that TWAS provides is lost (Wainberg et al.35

2019; Mai et al. 2023).36

Several challenges have limited the widespread application of transcriptome-wide37

association in plants. A large proportion of plant transcripts exhibit diurnal cycling38

including >90% of transcripts in Arabidopsis (Michael et al. 2008), 60% of transcripts in39

rice and poplar (Filichkin et al. 2011) and 30-50% of transcripts in maize, sorghum, and40

foxtail millet (Lai et al. 2020). Given the need to flash freeze tissue to avoid wound-induced41

changes to gene expression, it can be difficult to sample sufficiently large populations in42

short enough periods of time to avoid the confounding effects of diurnal changes in gene43

expression. The size of populations required for successful TWAS analyses also presents44

financial barriers to the use of this method, due to the high cost of RNA sequencing relative45
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to many low-cost DNA genotyping technologies. To partially mitigate this issue, 3 ’ tail 1

RNA-seq can be used and it has been shown to have similar levels of repeatability to 2

whole transcript RNA sequencing but has some disadvantages, such as the reduced ability 3

to detect differentially expressed genes, especially for long transcripts and the loss of 4

information in the 5 ’ end of the transcript (Ma et al. 2019), plus don’t provide splicing 5

information in case isoform level analysis or genome-wide association study is needed. 6

The combined impact of the above factors is that TWAS studies in plants are often 7

limited in size, reducing statistical power. They employ data collected from different 8

genotypes at different times, thereby increasing non-genetic variation in gene expression, 9

or employing lower-cost techniques that profile the expression of fewer genes at lower 10

resolution. As a result, in many cases, TWAS has not identified any genes above rigorous 11

false discovery thresholds and instead must use approaches such as considering the top 12

1% of most significantly associated genes (Kremling et al. 2019). This approach provides 13

significant biological insight but is likely to include some proportion of false positive 14

associations alongside true biological signals, again adding complexity to pinpointing the 15

actual causal genes. 16

A key logistical advantage of GWAS is that, while generating high density resequencing 17

data can be as expensive or more expensive than profiling gene expression across the entire 18

genome, once a specific association population has been genotyped, the same genetic 19

marker data can be employed multiple times to map different traits of interest allowing 20

the high cost of data to be amortized across many research projects. In contrast, gene 21

expression patterns change across tissues and developmental stages, as well as in response 22

to changes in the environment. This raises concerns about how much, if any, potential 23

exists to reuse transcriptome-wide expression datasets to identify genes linked to variation 24

in different traits in different environments. Multiple studies have demonstrated that gene 25

expression from non-target tissues and non-target environments can identify true positive 26

causal genes (Hirsch et al. 2014; Li et al. 2021, 2023). However, the reuse of transcript 27

abundance data across multiple studies conducted using the same population remains less 28

widely adopted than the reuse of genetic marker data across studies. 29

Here we sought to generate a reusable set of transcript abundance measurements for 30

the expanded Wisconsin Diversity panel, a large panel of temperate adapted maize lines 31

(Mazaheri et al. 2019). We evaluated the power and accuracy of this dataset to identify 32

genes of interest using flowering time data collected from two different environments. 33

TWAS identified approximately 10 times as many positive hits as GWAS conducted using 34

the same trait datasets. The genes identified via TWAS included many known true positive 35

flowering time genes missed by GWAS, genes linked to flowering time regulation in rice 36

or Arabidopsis but not in maize, and a modest number of genes previously unlinked to 37

flowering time but with plausible functional mechanisms connecting them to this trait. 38

Notably, the genes identified via TWAS conducted using expression in mature leaf tissue 39

include genes shown to act primarily or exclusively in the shoot apical meristem. The 40

expression quantitative trait loci (eQTL) analysis conducted using TWAS flowering time 41

hits further extended gene discovery, including at least one additional known true positive 42

maize flowering time gene which was not directly tagged by TWAS but identified as a 43

trans-eQTL regulator. Overall, these results demonstrate both the potential of TWAS for 44

assigning putative functions to genes and the potential to reuse gene expression datasets 45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.10.31.565032doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.565032
http://creativecommons.org/licenses/by/4.0/


4 Gene expression as a reusable source

to analyze traits collected in multiple environments.1

Results2

Maize is a monoecious species with separate specialized male and female flowers. As a3

result, two separate flowering time phenotypes can be scored for maize: one based on the4

time when anthers emerge from the tassel – the specialized male inflorescence – and a5

second based on the time when silks emerge from the ear – the specialized female inflores-6

cence. Male and female flowering times were scored across replicated field experiments7

grown in Michigan and Nebraska in 2020. Both male (hereafter referred to as anthesis) and8

female (hereafter referred to as silking) flowering occurred fewer days after planting in9

Michigan than in Nebraska (Supplemental dataset S1 & S2). The mean number of days to10

anthesis in Michigan was 64, while in Nebraska it was 72. The mean number of days to11

silking in Michigan was 67, while in Nebraska it was 75 (Supplemental Figure S1). The12

within-environment repeatability was high for the four trait datasets, although modestly13

higher for anthesis (0.90 in Michigan, 0.87 in Nebraska) than for silking (0.87 in Michigan,14

0.84 in Nebraska).15

Mature leaf tissue was sampled from 750 plants in the Nebraska field experiment over16

a two-hour period (Figure 1A). A median of 83% of the RNA sequence reads generated17

via RNA-seq of RNA extracted from these tissue samples could be uniquely assigned18

to the primary transcript of one of the 39,756 annotated protein-coding gene models19

from the B73_RefGen_V5 reference genome (Hufford et al. 2021). A total of 699 unique20

genotypes were represented among the 750 plants, with 51 genotypes represented twice.21

Two samples were excluded as outliers based on the results of a PCA conducted using22

transcripts per million (TPM) based estimates of gene expression values (Supplemental23

Figure S2). Four additional samples were excluded from downstream analysis because24

they were either not included in a recent resequencing-based genetic marker dataset25

(DK84QAB1, HP72-11, PHT69), or were expected to be largely isogenic with another26

sample (B73Htrhm was excluded while B73 was retained) (Grzybowski et al. 2023). Maize27

genes with an average expression >4 TPM exhibited an average repeatability of ∼0.628

estimated expression across genetic replicates. Average repeatability of gene expression29

declined for genes with average expression levels <4 TPM, plateauing at ∼0.4 with an30

average expression of 0.1 TPM (Supplemental Figure S3). Two main clusters of genes were31

observed: one of genes with extremely low repeatability (0.0 - 0.05) centered on an average32

expression of approximately 0.01 TPM, and a second of higher repeatability genes (0.6 -33

0.8) with average expression values between 1 and 100 TPM (Supplemental Figure S3).34

The set of 24,585 gene models with expression ≥ 0.1 TPM in at least 347 of the remaining35

693 genotypes were retained for subsequent analyses.36

The non-repeatable component of variation in gene expression between replicated37

samples of the same maize genotypes in the same field can result from a number of factors,38

including diurnal cycling of gene expression and micro-environmental variation across the39

field. The first three principal components (PCs) of variation in gene expression among40

the 24,585 genes in 693 maize genotypes that passed filtering criteria explained 10.8 %,41

4.78 %, and 3.42 % of the total variation in the dataset (Figure 1B). While differences in the42

distribution of PC values existed between some maize sub-populations, distributions of43
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PC scores were largely overlapping (Figure 1B,C). Order of sample collection, a proxy for 1

time of collection, was recorded for all samples, which allowed us to measure its impact on 2

gene expression. Order of collection was most correlated with PC5 (percent of variance in 3

gene expression explained=2.4%, R2 with collection order=0.18), PC1 (percent of variance 4

in gene expression explained=10.8%, R2 with collection order=0.11), and PC7 (percent of 5

variance in gene expression explained=1.9%, R2 with collection order=0.06) . The R2 of 6

all other PCs with the order of collection was <0.02 (Figure 1D and Supplemental dataset 7

S3). As a positive control, we examined the expression of four core maize circadian clock 8

genes (Lai et al. 2020) representing two clock components expected to be decreasing or 9

increasing in expression at the time of collection: lhl1 (R2 = 0.25) & lhl2 (R2 = 0.39) and 10

gi1 (R2 = 0.25) & gi2 (R2 = 0.20) (Supplemental Figure S4). The correlation of lhl2 with 11

order of collection was the second highest of any gene in the dataset. Overall, few genes 12

(∼4.2%) used in downstream analysis exhibited a correlation R2 higher than 0.1 with order 13

of collection (Supplemental Figure S5). None of the top ten PCs were correlated with row 14

or column positions above an R2=0.03 (Supplemental dataset S3), furthermore, no other 15

obvious non-linear associations were observed between PCs and field layout (Figure 1E). 16

Transcriptome-wide association studies (TWAS) conducted using the filtered gene ex- 17

pression data collected from Nebraska along with flowering time traits (days to anthesis 18

and days to silking) scored in both Nebraska and Michigan environments identified 21 19

unique gene-trait associations at a false discovery rate threshold (FDR) of 5%. Between 20

15 and 18 genes were identified per individual trait. A set of 12 genes were consistently 21

identified across all four analyses (Figure 2 and Table 1). Three of the 21 genes identified 22

by TWAS have been previously shown to alter flowering time in maize: zmm4 (Figure 3A), 23

a MADS-box transcription factor that functions downstream of zcn8 in the shoot apical 24

meristem (Danilevskaya et al. 2008); zcn8 (Figure 3B), thought to act as the mobile florigen 25

from leaves to the shoot apical meristem (Meng et al. 2011); and mads1 (Figure 5B), an 26

ortholog of the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 27

(soc1) (Alter et al. 2016). In an additional ten cases, the rice or Arabidopsis orthologs of the 28

maize genes identified via TWAS had been linked to variation in flowering time (Table 29

1). A conventional genome-wide association analysis (GWAS) conducted with the same 30

trait datasets and the same population identified only two consistent/strong signals: one 31

localized near zcn8, and a second near mads69, a major flowering time locus in maize 32

validated via loss of function alleles (Liang et al. 2019) (Supplemental Figure S6). 33

Multiple members of several gene families were present among the set of 21 flowering 34

time TWAS hits. These included six members of the Zea mays CENTRORADIALIS (ZCN) 35

family (zcn7, zcn8, zcn12, zcn14, zcn15 and zcn26) and five MADS-box transcription factors 36

including three members of the AGL-79-like subgroup (zmm4, zmm15, zap1) and two mem- 37

bers of the SOC1-like subgroup (mads1 and zag6). Several gene families were represented 38

by multiple family members. In three cases, these represent homeologous gene copies 39

from the maize whole genome duplication: mads1 and zag6, zmm4 and zmm15, and zcn7 40

and zcn8. The gene pairs zmm4 and zmm15 & zcn7 and zcn8 were the two pairs of genes 41

among our hits whose expression was most correlated, while the expression of mads1 and 42

zag6 was more diverged (Supplemental Figure S7). Greater expression of five of the six 43

zcn genes identified was associated with earlier flowering time, while greater expression 44

of zcn26 was associated with later flowering time (R2 = 0.13, Figure 3B,C). Notably, zcn26 45
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6 Gene expression as a reusable source

is also one of the six zcn genes identified where transgenic expression failed to rescue1

the delayed flowering time phenotype of the ft mutant in Arabidopsis (Stephenson et al.2

2019) while retaining the capacity to interact with the floral transition promoter DLF13

protein (Meng et al. 2011), suggesting this gene may have the capacity to act as competitive4

inhibitor of the flowering activating complex.5

There are at least two potential explanations for why TWAS can identify true positive6

gene-trait associations not identified in GWAS conducted with the same populations and7

phenotype data. One is that the expression of individual genes can reflect and integrate the8

impact of multiple trans regulatory variants which may not individually have sufficient9

effect sizes or minor allele frequencies to be detected in GWAS for the target trait. A second10

is that the expression of a gene can capture the effects of three or more functionally variable11

cis regulatory haplotypes (defined by two or more SNPs) with different effects on gene12

expression and the target phenotype, information which would be missed when testing13

for association with individual biallelic genetic markers, which can fail to capture variance14

from large number of variable haplotypes.15

A number of both cis and trans-eQTL were identifiable among the genes initially linked16

to flowering time via TWAS. In three cases, the expression genes identified via TWAS17

for flowering time were also associated with one or more cis-eQTL but no trans-eQTL. In18

another three cases, the expression of genes identified via TWAS for flowering time was19

associated with one or more trans-eQTL but no cis-eQTL. In seven cases the expression20

of genes identified via TWAS was associated with both an eQTL acting in cis and one or21

more eQTL acting in trans (Table 1).22

The set of genes where both cis and trans-eQTL were identified included AGAMOUS-23

LIKE6 zag6, a homolog of the flowering time integrator soc1 in Arabidopsis. Higher24

expression of zag6 was associated with greater numbers of days to anthesis and days25

to silking in Michigan but not in Nebraska (Figure 2 & 4B). The single most significant26

SNP within a cis-eQTL associated with zag6 was located 98.1 Kb upstream of the gene’s27

transcription start site (Figure 4C). Two additional signals associated with the expression28

of zag6 were located in trans, one on chromosome 6 (chr6:26,934,399) and the other in29

chromosome 7 (chr7:7,634,465) (Figure 4A). Both signals are associated with genes involved30

in small RNAs. The closest gene to the chromosome 6 signal is leafbladeless1 (lbl1, 134 kb), a31

gene involved in the trans-acting short-interfering RNA (ta-siRNA) biogenesis pathway32

(Dotto et al. 2014) while the second closest gene to the chromosome 7 signal is hen1 (81 kb),33

a small RNA methyltransferase involved in processing small RNAs (Figure 4C-H) (Park34

et al. 2002; Xie et al. 2004; Yu et al. 2005).35

The gene mads1 has been reported to function as a floral activator in maize (Alter et al.36

2016). However, while mads1 was identified as significantly linked to variation in both37

male and female flowering time in both Nebraska and Michigan (Figure 2), the expression38

of mads1 was significantly negatively correlated with flowering (Figure 5B & Supplemental39

Figure S8). A genome-wide association study conducted for genetic markers linked to40

variation in the expression of mads1 identified two significant signals (Figure 5A). The first41

appears to be a cis regulatory variant, with the most significant SNP of the peak located 4742

kilobases upstream from mads1 on chromosome 9 (Figure 5C). The second peak associated43

with the expression of mads1 is located on chromosome 3, in the distal promoter region44

of mads69 (Figure 5D), the one example of a well characterized flowering time gene in45
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maize which was identified via GWAS in this population, but not via TWAS (Liang et al. 1

2019). The expression of two additional genes identified via TWAS for flowering time 2

(zmm15 and zap1) were also significantly associated with trans-eQTL in the vicinity (89.2 3

and 51.6 kilobases away respectively) of mads69 (Supplemental Figure S9). The peaks of 4

these three trans-eQTL define a total interval of 63,397 base pairs and are all in reasonably 5

high linkage disequilibrium with each other (R2=0.77-0.92). 6

The SNP most significantly linked to variation in the expression of mads1 within the 7

promoter of mads69 showed significant shifts in allele frequency between wild, domes- 8

ticated tropical, and domesticated temperate maize populations (Figure 5G). The allele 9

associated with reduced expression of mads1 5H) was extremely rare in wild teosinte 10

populations and never observed in a homozygous state among sampled representatives of 11

those populations. The frequency of this allele increases moderately in tropical domesti- 12

cated maize, and further in temperate domesticated maize populations on three continents 13

(Figure 5G). These shifts are consistent with the reported signature of selection previously 14

described in the region of mads69 (Liang et al. 2019). However, a compensatory pattern 15

of allele frequency change was observed at the mads1 cis-regulatory variant. Here the 16

allele associated with increased expression of mads1 5C) is the allele which is observed 17

only at extremely low frequencies among wild teosinte samples, but is found at increasing 18

frequency in domesticated populations, particularly those from temperate regions 5E,F) 19

Discussion 20

Transcriptome-Wide association studies have been explored a number of times in plants 21

with mixed results. In some cases only one or several genes are significant above false 22

discovery thresholds (Hirsch et al. 2014; Lin et al. 2017). In many others, the top 0.5-1% of 23

genes are evaluated rather than applying multiple testing correction, an approach that can 24

enrich for true positives but likely with significant proportions of false positives included 25

as well (Kremling et al. 2019; Wu et al. 2022). This choice is likely made because, in these 26

cases, there were no individual genes associated with the target phenotype at significance 27

thresholds that rigorously control false discovery rates. Here we report transcriptome-wide 28

association studies identifying a total of 21 genes surpassing stringent false discovery rate 29

thresholds. Many of these genes can be validated based on existing literature reports, 30

relative to only two genes identified via genome-wide association using the same dataset. 31

However, applying standard Bonferroni correction to TWAS only modestly reduced the 32

number of genes passing statistical significance thresholds (11 significantly associated 33

genes via Bonferroni vs 14 significant genes via Benjamini-Hochberg control, Figure 2A & 34

Supplemental Figure S10). Other factors which may explain the greater power we observe 35

to discover phenotype associated genes in this study relative to previous TWAS may 36

include the greater size of the population analyzed, the short length of time allowed for all 37

sample collection, and the use of full length RNA-seq rather than three prime tail seq. Even 38

within our two-hour sampling window, significant changes in the expression of diurnally 39

cycling genes were observed (Supplemental Figure S4) and many genes exhibited modest 40

correlations with sampling order (Figure 1D). Conducting sample collection over longer 41

time frames or across multiple days would almost certainly exacerbate these sources of 42

variation in measured gene expression, creating additional noise when seeking to link 43
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8 Gene expression as a reusable source

gene expression to variation in plant traits. Three prime tail seq has been preferred to1

conventional RNA-seq for TWAS applications given its lower cost per sample. However, it2

may be that, by targeting a single region of the 3 prime UTR, this method increases the3

probability that sequence polymorphisms between individuals reduce alignment rates to4

specific genes in specific individuals, creating variation in measured gene expression that5

reflects sequence differences rather than differences in the relative abundance of mRNA6

transcripts. The necessity of minimizing per sample costs is greater for datasets which can7

only be used once than for datasets which are reusable. We sought to evaluate whether the8

transcript abundance dataset we collected would only be usable for trait data collected9

in the same environment or if it could be reused for new trait datasets collected in new10

environments. The combination of Nebraska transcript data with Michigan flowering time11

data produced good results (Figure 2, Table 1). These included not only the re-identification12

of many of the same genes identified using trait data collected from the same field where13

transcript abundance was measured but also additional significantly associated genes,14

including one gene previously linked to a role in maize floral development (Figure 2,15

Table 1) suggesting at least some potential to discover useful new gene-trait associations16

by collecting new trait datasets in new environments without the need to generate new17

transcript datasets. However, another challenge is that different traits will be expressed18

in different tissues. While at least two previous studies suggest that known causal genes19

can be identified using transcripts from tissues other than those in which the trait is20

expressed, it is still quite notable that two of the genes whose expression in mature leaf21

tissue was most closely associated with flowering time – zmm4 and zmm15 – are genes22

known to act in the meristem and not previously thought to be expressed in mature leaf23

tissue (Danilevskaya et al. 2008). In addition to zmm4 and zmm15, numerous other genes24

identified in this analysis have been previously linked to flowering time variation in maize25

(Table 1). While many genes were linked to both variation in days to anthesis and days to26

silking, two genes, zfp30 (Figure 3D) and zcn15, were associated with days to silking in27

both environments but not with days to anthesis in either (Table 1). Greater expression of28

zcn15, which is syntenic with the the rice FT-like genes Hd3a and Hd3b (Tsuji et al. 2008), is29

associated with earlier silking. Two genes were also consistently associated with variation30

in both male and female flowering in Michigan, but not in Nebraska. These included zag6,31

a gene previously identified using a TWAS, there referred to as zagl1, conducted using32

measurements of flowering time recorded near Madison, Wisconsin (where termed zagl1)33

(Hirsch et al. 2014), a location at a very similar latitude to East Lansing, Michigan (43.1 N34

vs 42.7 N) but not to Lincoln, NE. One major flowering time gene which was notable by its35

absence from the TWAS results was mads69. The role of this gene in flowering time has been36

validated via loss of function studies (Liang et al. 2019), it has been detected in multiple37

genome-wide associations conducted using the same association population (Mazaheri38

et al. 2019; Grzybowski et al. 2023), and it has previously been linked to flowering time via39

TWAS conducted using gene expression data from early stage seedlings and other tissues40

(Hirsch et al. 2014; Lin et al. 2017; Li et al. 2021). One potential explanation was that mads6941

was not expressed in our target tissue, mature leaves. However, mads69 exhibited a median42

expression level of 15 TPM, substantially higher than a number of other true positive genes43

identified via TWAS. Its expression in our dataset was simply not correlated with flowering44

time (Supplemental Figure S11). However, even in this case of a known true gene-trait45
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association where it is clear our sampling occurred at the wrong time point and/or targeted 1

the wrong tissue, this population scale transcript abundance data still recovered mads69 2

as an eQTL hotspot associated with variation in the expression of three genes identified 3

via TWAS which are presumably downstream of mads69: mads1, zap1, and zmm15. An 4

analysis which recovers only genes already know to play roles in the trait of interest 5

may be statistically sound, but ultimately does not contribute a great deal of additional 6

knowledge about gene function. The analyses described above also identified genes not 7

previously linked to flowering time in maize which may play previously uncharacterized 8

roles in controlling flowering. Zm00001eb082790 is a homolog of the Arabidopsis gene 9

trm3, a gene involved in plasmodesmata trafficking which exhibits a lethal loss of function 10

phenotype and delays senescence and flowering when over expressed (Benitez-Alfonso 11

et al. 2009). Our eQTL analysis suggests trm3 is either directly regulated by or downstream 12

of mads1, and a second MADS-box containing gene, mads76 (Supplemental figure S12). 13

The auxin response factor arf34 (Figure 3E), which closest Arabidopsis counterpart is 14

Atarf6, which, along with Atarf8 regulates stem elongation and flower maturation (Nagpal 15

et al. 2005). The maize counterpart of the Arabidopsis C2H2 transcription factor late (late 16

flowering), Zm00001eb059970 was also linked to flowering time in our analysis. Increased 17

expression of late in Arabidopsis results in delays in bolting and flowering consistent 18

with the association between increased expression of the late homolog in maize with later 19

flowering observed here (Figure 3F). 20

This study demonstrates the potential of transcriptome-wide association studies (TWAS) 21

to accelerate the characterization and study of the genes involved in controlling variation 22

in complex traits. Our results, with large numbers of genes relative to GWAS passing 23

stringent false discovery rate thresholds and significant numbers of these being validated 24

in the literature, indicate how gene expression data from large populations combined 25

with good sequencing depth and narrow sample collection windows can generate large 26

numbers of well supported hypotheses about the roles of individual genes in controlling 27

individual traits. We also demonstrate the reusability of transcript abundance datasets 28

across different environments and the ability to detect genes known to act in different 29

tissues from the ones in which we profiled gene expression, suggesting broader potential 30

to reuse population level expression datasets like the one described here with data on new 31

traits scored in new environments. 32

Materials and methods 33

Field experiments and trait scoring 34

Two field studies were conducted as part of this experiment, using a common set of seed 35

stocks. In both, large subsets of the Wisconsin Diversity Panel (Mazaheri et al. 2019) were 36

grown in replicated trials conducted at the University of Nebraska-Lincoln’s Havelock 37

Farm near Lincoln, Nebraska (40.852 N, 96.616 W) and Michigan State University’s Agron- 38

omy Farm near East Lansing, Michigan (42.709 N, 84.469 W). The experimental design and 39

trait scoring of the Lincoln, Nebraska field trial has been previously described (Mural et al. 40

2022). Briefly, a total of 1,680 plots were grown in a randomized complete block design 41

with each block consisting of 840 plots constituting 752 unique genotypes, plus a single 42

repeated check genotype. In Michigan, a total of 1,520 plots were grown in a randomized 43
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complete block design with each block consisting a single plot each of 760 unique geno-1

types. In both environments, the date of anthesis for a given plot was considered to be the2

first day that at least 50% of plants in the plot had visible pollen shed. The date of silking3

for a given plot was considered to be the first day when visible silks were present on at4

least one ear shoot for at least 50% of the plants in the plot. "Days to silking" and "days to5

anthesis" were calculated relative to the planting dates at each location: May 6th 2020 in6

Lincoln, Nebraska and May 25th, 2020 in East Lansing, Michigan (Supplemental dataset7

S1).8

Correcting for spatial variation in trait datasets9

Corrections for spatial variation within a location was performed using the R package10

SpATS (Velazco et al. 2017) to fit a 2-dimensional penalized spline model to raw plot level11

trait measurements. In order to get plot-level values rather than BLUPs/BLUEs – the12

default output of the package – the SpATS model was fit using plot number rather than13

genotype name as the "genotype" input value. The model was fit using one knot per two14

rows and one knot per two columns. Spatially corrected plot level measurements are15

provided in Supplemental dataset S2.16

Repeatability analyses17

A total of 751, 750, 758, and 749 genotypes with trait measurements in both replicated18

blocks were used to estimate repeatability for silking in Nebraska, anthesis in Nebraska,19

anthesis in Michigan and silking in Michigan, with the lower number of genotypes in20

Michigan reflecting a greater proportion of missing values in the dataset. Repeatability21

from anthesis and silking in Nebraska and Michigan was defined using the following22

formula:23

Repeatability =
Vg

Vg + Vr

Where Vg is the proportion of total variance explained by genotype and Vr is the residual24

variance. Vg and Vr were estimated using the lmer function inside the lme4 R package to fit25

a simple model (spatially corrected trait = genotype effect + residual) for each trait in each26

environment.27

Repeatability analysis for gene expression was conducted as described above, with the28

modification that expression data was taken from 51 genotypes where expression data29

was estimated twice using two separately collected biological samples from the same plots30

in the field.31

Quantifying Gene Expression32

Tissue samples were collected on July 8th, 2020 from one of two replicated blocks – block 1,33

the western-most block – of Lincoln, Nebraska field experiment described above. Samples34

were collected from a single representative plant per plot, excluding edge plants where35

possible. Five leaf disks were collected from the pre-ante-penultimate leaf (the fourth36

from the highest visible and emerged leaf) of the selected plant (Figure S2A). Leaf tissue37

was immediately flash frozen in liquid nitrogen and then packed on dry ice until samples38

were loaded into a -80°C freezer. Samples were collected in parallel by seven researchers,39
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allowing all samples to be collected over a period of approximately two hours, with all 1

sampling completed prior to noon on the day of collection. 2

Frozen tissue samples were ground without a buffer suspension using a TissueLyzer 3

II (Qiagen; 85300) that oscillated at 25Hz in 30 second increments, in a two step process, 4

resting the samples in dry ice for one minute between grindings to ensure they were 5

completely frozen. 6

RNA was extracted from the resulting ground samples using a Kingfisher Flex auto- 7

mated extraction robot (ThermoFisher Scientific; 5400630) and the MagMax Plant RNA 8

Isolation Kit (ThermoFisher Scientific; A47157) following the manufacturer’s protocol. 9

Twelve samples from each batch of 95 samples extracted in parallel were run on a 1% 10

agarose gel and visually inspected for evidence of sample degradation to confirm the 11

quality of extracted RNA. The RNA concentration of each sample was quantified us- 12

ing the Quant-IT Broad Range RNA Assay Kit (ThermoFisher Scientific; Q10213) and a 13

CLARIOstar Plus plate reader (BMG LabTech). RNA samples were shipped to Psomagen 14

(Rockville, MD USA) where mRNA purification, cDNA synthesis, and sequencing library 15

construction were performed using Illumina (San Diego, CA USA) TruSeq strand-specific 16

RNA-seq kits. Libraries were pooled and sequenced on NovaSeq 6000 Illumina Sequencers 17

using 2x150 bp sequencing runs and a target of 20 million fragments and 6 gigabases of 18

sequence per sample. 19

Raw sequence data was filtered and low-quality sequences were removed using trim- 20

momatic (v0.33) with the following parameters: "ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 21

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:35" (Bolger et al. 2014). Kalliso 22

(v0.46) was used to estimate the expression of each maize gene in each sample in units of 23

transcripts per millions (Bray et al. 2016) with the "primaryTranscriptOnly" sequence file 24

for B73_RefGen_V5 sequence file (Schnable et al. 2009; Hufford et al. 2021) provided by 25

Phytozome (Goodstein et al. 2012). After removing samples with extreme values based on 26

a principal component analysis, genes with low expression levels were filtered out. 27

Linking transcript abundance to phenotype 28

For each gene, transcript abundance, denoted in transcripts per million, was converted to 29

a range from 0 - 2 using the methodology described in Li et al. (2021). Briefly, to minimize 30

the effect of extreme values in individual samples, the 5% of samples with the lowest 31

transcripts per million values for each gene were scored as 0, the the 5% of samples with 32

the highest transcripts per million values for each gene were scored as 2, and the remaining 33

90% of samples were re-scaled between 0 and 2 using the formula: 34

2 ∗ (SampleTPM − 5th percentileTPM)

95th percentileTPM − 5th percentileTPM

TWAS was performed using the compressed mixed linear model as implemented in 35

GAPIT (v3.1) to link gene expression, normalized as described above, with variation in 36

spatially normalized measurements of male and female flowering time in Nebraska and 37

Michigan (Zhang et al. 2010; Lipka et al. 2012). The three first principal components of 38

variation calculated by GAPIT from the expression data were included as covariates. The 39

threshold for a statistically significant association between transcripts and phenotypic 40
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variation was calculated independently for each trait at a p-value corresponding to a false1

discovery rate of 0.05 calculated using the Benjamini & Hochberg method (Benjamini and2

Yekutieli 2001).3

Linking genetic markers to phenotype4

Genome-wide association was conducted using a published resequencing-based genetic5

marker data for 752 genotypes drawn from the Wisconsin Diversity panel (Grzybowski et al.6

2023). This marker set had already been filtered to exclude markers with unusually high7

or low sequencing depth indicative of copy number variants, as well as for markers with8

≥ 50% missing data and had been imputed using Beagle 5.0 (Browning et al. 2018). The9

dataset was further filtered to retain only markers with minor allele frequency >0.05 among10

the 693 genotypes included in this study using plink2 (v2.0a1) (Chang et al. 2015), resulting11

in a final dataset of 15,659,765 genetic markers. Significant associations between filtered12

genetic markers and the same phenotype values employed for TWAS were identified using13

the linear mixed model as implemented in GEMMA (v0.98) (Zhou and Stephens 2012)14

with three principal components of variation and a kinship matrix – previously calculated15

from the genetic markers using plink2 and GEMMA, respectively (Chang et al. 2015; Zhou16

and Stephens 2012) – included as covariates.17

Linking genetic markers to gene expression of the candidate genes18

eQTL mapping was performed using the mixed linear method implemented within rMVP19

(V1.0.6) (Price et al. 2006; Yin et al. 2021) Box-Cox transformed TPM estimates of candi-20

date gene expression across the population of 693 individuals previously transformed21

with the Box-Cox method (Osborne 2010) and the same set of genetic markers described22

above. Three principal components of variation and a kinship matrix calculated using the23

VanRaden method (VanRaden 2008) were included as covariates. Linkage disequilibrium24

analysis was conducted using plink 1.9 (Purcell et al. 2007).25

Data availability26

RNA-Seq data for all lines used in this study is available from the European Nucleotide27

Archive (ENA) under the study accession number: PRJEB67964. Big gene expression28

calculated as transcript per million is public in the GitHub repository:29

https://doi.org/10.6084/m9.figshare.24470758.v130
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Table 1 Associated genes via Transcriptome-Wide association study from different
environments using a single gene expression dataset.

Gene ID Symbol cis-eQTL trans-eQTL Avg. Exp. Environment Protein Function

Zm00001eb214750 zmm15 yes 49.09 A.NE, S.NE, A.MI, S.MI MADS box TF/AGL79-like

Zm00001eb057540 zmm4 46.81 A.NE, S.NE, A.MI, S.MI MADS box TF/AGL79-like

Zm00001eb403750 mads1 yes yes 4.93 A.NE, S.NE, A.MI, S.MI MADS box TF/SOC1-like

Zm00001eb118120 zap1 yes 2.96 A.NE, S.NE, A.MI, S.MI MADS box TF/AGL79-like

Zm00001eb338650 zcn14 1.24 A.NE, S.NE, A.MI, S.MI PEBP/FT-like

Zm00001eb353250 zcn8 236.59 A.NE, S.NE, A.MI, S.MI PEBP/FT-like

Zm00001eb153190 zcn12 yes 176 A.NE, S.NE, A.MI, S.MI PEBP/FT-like

Zm00001eb059970 late yes yes 9.3 A.NE, S.NE, A.MI, S.MI Zinc finger TF/C2H2

Zm00001eb293080 zcn7 228.84 A.NE, S.NE, A.MI, S.MI PEBP/FT-like

Zm00001eb037440 bhlh145 yes yes 0.48 A.NE, S.NE, A.MI, S.MI bHLH TF

Zm00001eb205550 zfp30 26.13 S.NE, S.MI RNA binding zinc-finger

Zm00001eb193240 – 13.99 A.NE, S.NE, A.MI, S.MI Zinc finger TF/C2H2

Zm00001eb271180 zcn15 1.66 S.NE, S.MI PEBP/FT-like

Zm00001eb340800 – yes 2.04 A.NE, S.NE, A.MI, S.MI Unknown function

Zm00001eb082790 trm3 yes yes 8.07 S.NE Thioredoxin

Zm00001eb203040 prh30 9.1 S.NE, A.MI, S.MI Protein phosphatase

Zm00001eb001670 zag6 yes yes 29.34 A.MI, S.MI MADS box TF/SOC1-like

Zm00001eb031700 arf34 yes yes 0.89 A.MI Auxin response factor

Zm00001eb239380 hsftf18 yes 3.44 A.NE Heat Shock TF

Zm00001eb359640 – yes 44.71 A.MI, S.MI Unknown function

Zm00001eb384770 zcn26 yes yes 22.48 A.NE PEBP/FT-like

PEBP = Phosphatidyl ethanolamine-binding protein PEBP, A.NE = Anthesis in Nebraska, S.NE = Silking
in Nebraska, A.MI = Anthesis in Michigan, S.MI = Silking in Michigan. Avg. Exp = Average expression
reported as Transcripts per million
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18 Gene expression as a reusable source

Figure 1 Sources of potential confounding variation in expression data. A Methodol-
ogy employed to collect tissue samples for gene expression profiling B Principal com-
ponent (PC) scores for 693 RNA-seq libraries representing unique maize genotypes,
classified using the subpopulation assignments reported in Grzybowski et al. (2023).
SS = the stiff stalk heterotic group. NSS = non-stiff stalk heterotic group. IDT = iodent
heterotic group. PC1 and PC2 explain 10.8% and 4.8% of total variation in gene expres-
sion respectively. C Distribution of scores for the first three PCs among maize genotypes
assigned to each population. D Relationships between the first three PCs and order of
sample collection. Samples were collected by several researchers in parallel so multiple
samples share the same sample order value. Dashed black line indicates the best fit lin-
ear regression. E Relationships between the first three PCs and the spatial distribution
of sampled plants across the field. Grey boxes indicate plots not sampled. Black boxes
indicate either check plots (skipped), or samples excluded at the quality control stage.
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Figure 2 Genes associated with variation in anthesis or silking time in Nebraska and
Michigan via transcriptome-wide association. A Results of a transcriptome-wide asso-
ciation study conducted using transcript abundance data and spatially corrected days
to anthesis measured in Nebraska in 2020. Horizontal dashed line indicates a 0.05 False
Discovery Rate (FDR) cutoff as determined by the Benjamini–Hochberg method. B Re-
sults of a transcriptome-wide association study conducted using transcript abundance
data and spatially corrected days to silking measured in Nebraska in 2020. Plotted as
described in panel A. C Results of a transcriptome-wide association study conducted
using transcript abundance data and spatially corrected days to anthesis in Michigan
in 2020. Plotted as described in panel A. D Results of a transcriptome-wide associa-
tion study conducted using transcript abundance data and spatially corrected days to
silking in Michigan in 2020. Plotted as described in panel A. E Numbers of shared and
uniquely identified genes in the four TWAS results presented in panels A-D. F Rela-
tionship between FDRs assigned to the same genes in TWAS conducted using anthesis
measurements in Nebraska and Michigan. Dashed lines indicate 0.05 FDR cutoffs. G Re-
lationship between FDRs assigned to the same genes in TWAS conducted using silking
measurements in Nebraska and Michigan. Dashed lines indicate 0.05 FDR cutoffs.
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20 Gene expression as a reusable source

Figure 3 Relationships between gene expression and flowering time for a subset of
significant genes identified via TWAS. A Relationship between the expression of zmm4
in mature leaf tissue of different maize genotypes and days to silking in Nebraska for
the same genotypes. Colors indicate subpopulation assignments from Figure 1B. Black
dashed line indicates linear best fit. B Relationship between the expression of zcn8 in
different maize genotypes and and days to silking in Nebraska. C Relationship between
the expression of zcn26 in different maize genotypes and and days to anthesis in Ne-
braska. D Relationship between the expression of zfp30 in different maize genotypes
and and days to silking in Nebraska. E Relationship between the expression of arf34
in different maize genotypes and and days to anthesis in Michigan. F Relationship be-
tween the expression of late in different maize genotypes and and days to anthesis in
Nebraska.
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Figure 4 Details of several eQTLs associated with the expression of zag6. A Genome-
wide association identifying genetic markers linked to variation in the expression of
zag6. The red triangle at the bottom of the dots in chromosome 1 indicates the position
of zag6. White and black triangles at the bottom of the dots in chromosomes 6 and 7
indicate the postions of lbl1 and hen1, respectively. Black horizontal dashed line indi-
cates a Bonferroni corrected 0.05 significance threshold. B Relationship between zag6
expression and days to silking scored from Michigan 2020. Dots are colored based on
sub-groups referred to in Figure 1. Linear dashed lines indicate the linear regression fit
to this data. C Zoomed in view of the region on chromosome 1 containing the cis-eQTL
for zag6. Black horizontal dashed line indicates Bonferroni corrected 0.05 significance
threshold. . Triangles indicate the positions of annotated genes in the region. The blue
triangle indicates the annotated position of zag6 specifically. D Zoomed in view of the
region on chromosome 6 containing a trans-eQTL for zag6.Blue triangle indicates the
position of lbl1. E Zoomed in view of the region on chromosome 7 containing a trans-
eQTL for zag6.Blue triangle indicates the position of hen1. F Effect of the most signifi-
cantly associated genetic marker in the cis-eQTL on the expression of zag6. G Effect of
the most significantly associated genetic marker in the trans-eQTL on on chromosome 6
the expression of zag6. H Effect of the most significantly associated genetic marker in the
trans-eQTL on on chromosome 7 the expression of zag6.
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Figure 5 Localization and changes in allele frequencies of eQTLs associated expres-
sion of mads1. A Genetic markers associated with variation in the expression of mads1.
Red triangle marks the position of mads1. Black triangle marks the position of mads69.
Black horizontal dashed line indicates a 0.05 threshold after Bonferroni correction. B
Relationship of mads1 expression to days to silking scored in Nebraska. Dots are colored
based on sub-groups referred to in Figure 1. The dashed line indicates the calculated
linear regression. C Zoomed in view of the peak located on chromosome 9. Triangles in-
dicate the position of annotated genes in the region. Blue triangle indicates the position
of mads1. D Zoomed in view of the peak located on chromosome 3. Blue triangle indi-
cates the position of mads69. E Variation in the frequencies of different alleles of the most
significantly associated genetic marker within the peak on chromosome 9 across differ-
ent wild and domesticated maize populations (Supplemental dataset S4). F Differences
in the expression of mads1 between maize genotypes carrying different alleles the ge-
netic marker shown in panel E. G Variation in the frequencies of different alleles of the
most significantly associated genetic marker within the peak on chromosome 3 across
different wild and domesticated maize populations. H Differences in the expression of
mads1 between maize genotypes carrying different alleles the genetic marker shown in
panel E.
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Figure S1 Flowering time from 699 lines used for TWAS and GWAS in this study. Left
panel shows the distribution of days to anthesis in Michigan and Nebraska. Right panel
shows the distribution of days to silking in Michigan and Nebraska. single genotypes
are represented with grey dots and their respective genotype in the other environment is
linked with a straight line.

Figure S2 Principal Component Analysis of 699 lines Left panel shows the distribution
of 699 genotypes based on the expression reported as transcripts per million (TPM) of
39,756 genes before removing low expressed genes. Right panel showed the percentage
of variance explained by the first 10 principal analysis. .
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24 Gene expression as a reusable source

Figure S3 Repeatability of genes according to their expression. Left panel shows the
distribution the average expression in TPM of 39,756 genes calculated from two repli-
cates and their respective repeatability. Right panel shows distribution of the log10
transformed average expression in TPM of 39,756 genes calculated from two replicates
and their respective repeatability. Intensity of the colors indicates the density of the data
points.
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Figure S4 Pattern of diurnal genes. Top panel shows lhy-like 1 (lyl1) and lhy-like 2 (lyl2),
two genes with expected down-regulation during day time. Middle panel shows gi-
gantea 1 (gi1), and gigantea 2 (gi2) with expected up-regulation during day time. Bot-
tom panel shows two housekeeping genes, unknown (Zm00001eb270840) and 2OG-Fe
(Zm00001eb377750). R2 values are showed in the corner of each plot.
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26 Gene expression as a reusable source

Figure S5 Distribution of R2 between gene expression and the order of collection. R2

for the expression of 24,585 genes used in this study and the order of collection.

Figure S6 Genes associated with days to anthesis and days to silking in Nebraska via
GWAS. Left panel shows a Manhattan plot of days to anthesis using GWAS. The hori-
zontal line represents a Bonferroni correction cutoff of 0.05, which assumes all markers
as independent tests, n = 15,659,765.
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Figure S7 Spearman correlation of the expression of associated genes via TWAS. Posi-
tive correlation is colored in green while negative correlation is shown in red.

Figure S8 Correlation of mads1 with flowering time in Nebraska. Left panel shows the
correlation of transcripts per million (TPM) of mads1 with days to anthesis represented
from Nebraska field.
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28 Gene expression as a reusable source

Figure S9 Trans eQTL upstream mads69 are associated with the expression of zmm15
and zap1. Genome-wide association analysis of the expression of A zmm15 and B zap1.
Analysis was conducted using 15,659,765 genetic variants. Red triangle at the bottom
of the dots in chromosome 5 and chromosome 2 represent the position of zmm15 and
zap1, respectively. Black triangle at the bottom of the dots in chromosome 3 represents
mads69. Horizontal dashed line indicates a 0.05 threshold after Bonferroni correction
which assumes all variants are independent tests. C Zoomed in view of the peak located
on chromosome 3. Blue triangle indicates the position of mads69. Data from eQTL anal-
ysis of zmm15. C Zoomed in view of the peak located on chromosome 3. Blue triangle
indicates the position of mads69. Data from eQTL analysis of zap1
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Figure S10 Bonferroni correction applied to days to anthesis recorded in Nebraska.
The dashed line represents the threshold after Bonferroni correction of 0.05 assuming
each gene as an independent test, n = 24,585.

Figure S11 Correlation of mads69 with flowering time in Nebraska. Left panel shows
the correlation of transcripts per million (TPM) of mads69 with days to anthesis mea-
sured from Nebraska field. Left panel shows the correlation of transcripts per million
(TPM) of mads69 with days to silking from Nebraska field.
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Figure S12 Flowering time genes in trans are associated with trm3 expression. A
Genome-wide association analysis of the expression of trm3. Analysis was conducted
using 15,659,765 genetic variants; for further information see Materials and Methods
section. Red triangle at the bottom of the dots in chromosome 2 represents the position
of trm3. White triangle at the bottom of the dots in chromosome 9, represents mads76.
Black triangle at the bottom of the dots in chromosome 9, represents mads1. Horizontal
dashed line indicates a 0.05 threshold after Bonferroni correction which assumes all vari-
ants are independent tests. B Relation of trm3 expression reported as TPM with days to
silking scored from Nebraska 2020. Dots are colored based on sub-groups referred to
in Figure 1. The Linear dashed line indicates the calculated regression line. C Zoomed
in view of the peak located on chromosome 9. Blue triangle indicates the position of
mads76. C Zoomed in view of the peak located on chromosome 9. Blue triangle indicates
the position of mads1.
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Table S1 Flowering time data scored from Nebraska 2020 and Michigan 2020.

Table S2 Spatial corrected and metadata for the 693 lines used in this study.

Table S3 Correlation between PCs and sampling time.

Table S4 Origin of lines based on the country of origin, modified from (Grzybowski et al.
2023).
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