

1
2
3
4 **The N6-methyladenosine demethylase ALKBH5 regulates the**
5 **hypoxic HBV transcriptome.**
6

7 Senko Tsukuda^{1*}, James M Harris¹, Andrea Magri¹, Peter Balfe¹,
8 Peter AC Wing², Aleem Siddiqui³, and Jane A McKeating^{1,2*}.
9

10 ¹Nuffield Department of Medicine, University of Oxford, UK.

11 ²Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, UK.

12 ³ Division of Infectious Diseases and Global Public Health, University of California,
13 CA, USA.
14
15
16

17 *Joint corresponding authors

18 Email: jane.mckeating@ndm.ox.ac.uk and ORCID ID: 0000-0002-7229-5886.

19 senko.tsukuda@ndm.ox.ac.uk and ORCID ID: 0000-0002-7289-3018

20
21 **Key words:** HBV, m⁶A, ALKBH5, hypoxia, HIF
22

23 **Abstract**

24 Chronic hepatitis B is a global health problem and current treatments only suppress
25 hepatitis B virus (HBV) infection, highlighting the need for new curative treatments.
26 Oxygen levels influence HBV replication and we previously reported that hypoxia
27 inducible factors (HIFs) activate the basal core promoter to transcribe pre-genomic
28 RNA. Application of a probe-enriched long-read sequencing method to map the HBV
29 transcriptome showed an increased abundance of all viral RNAs under low oxygen or
30 hypoxic conditions. Importantly, the hypoxic-associated increase in HBV transcripts
31 was dependent on N6-methyladenosine (m^6A) modifications and an m^6A DRACH motif
32 in the 5' stem loop of pre-genomic RNA defined transcript half-life under hypoxic
33 conditions. Given the essential role of m^6A modifications in the viral transcriptome
34 we assessed the oxygen-dependent expression of RNA demethylases and bio-
35 informatic analysis of published single cell RNA-seq of murine liver showed an
36 increased expression of the RNA demethylase ALKBH5 in the peri-central low oxygen
37 region. *In vitro* studies with a human hepatocyte derived HepG2 cell line showed
38 increased ALKBH5 gene expression under hypoxic conditions. Silencing the
39 demethylase reduced the levels of HBV pre-genomic RNA and host gene (CA9, NDRG1,
40 VEGFA, BNIP3, FUT11, GAP and P4HA1) transcripts and this was mediated via
41 reduced HIF α expression. In summary, our study highlights a previously
42 unrecognized role for ALKBH5 in orchestrating viral and cellular transcriptional
43 responses to low oxygen.

44

45 **Author Summary**

46 Oxygen levels influence HBV replication and hypoxia inducible factors (HIFs) activate
47 HBV transcription. Long-read sequencing and mapping the HBV transcriptome
48 showed an increased abundance of all viral RNAs under hypoxic conditions that was
49 dependent on N6-methyladenosine modifications. Investigating the oxygen-
50 dependent expression of RNA demethylases identified ALKBH5 as a hypoxic activated
51 gene and silencing its expression showed a key role in regulating HBV and host gene
52 expression under hypoxic conditions.

53

54 **Abbreviations**

55 HBV, hepatitis B virus; HCC, hepatocellular carcinoma; rcDNA, relaxed circular DNA;
56 cccDNA, covalently closed circular DNA; pgRNA, pregenomic RNA; HBe, hepatitis B e
57 antigen; HBx, HBV X protein; m^6A , N6-methyladenine; HIF, hypoxia-inducible factor;
58 NTCP, sodium taurocholate cotransporting polypeptide; 2OG, 2-oxoglutarate; MeRIP,
59 methylated RNA immunoprecipitation; CREBBP, CREB binding protein; CA9, carbonic
60 anhydrase 9; NDRG1, N-myc downstream-regulated gene 1; PHD, prolyl hydroxylase
61 domain proteins; VHL, von Hippel-Lindau disease tumor suppressor; METTL3/14,

62 methyltransferase-like protein 3/14; ALKBH5, α -ketoglutarate-dependent
63 dioxygenase alk B homolog 5; FTO, fat mass and obesity-associated protein;
64 YTHDF1-3, YTH domain containing family 1-3; YTFDC1-2, YTF domain containing1-
65 2; WB, western blotting, siRNA, small interfering RNA; PCR, polymerase chain
66 reaction; qPCR, quantitative PCR.

67

68 **Introduction**

69 Chronic hepatitis B (CHB) is one of the world's most economically important diseases,
70 with 2 billion people exposed to the virus during their lifetime resulting in a global
71 burden of >290 million chronic infections. Hepatitis B virus (HBV) replicates in the
72 liver and chronic infection can result in progressive liver disease, cirrhosis and
73 hepatocellular carcinoma (HCC) [1]. HBV is the prototypic member of the
74 *hepadnaviridae* family of small enveloped hepatotropic viruses with a partial double-
75 stranded relaxed circular DNA (rcDNA) genome. Current treatments include
76 nucleos(t)ide analogs and interferons that suppress virus replication but are not
77 curative largely due to the persistence of episomal HBV genomes and dysfunctional
78 viral-specific immune responses [2].

79

80 HBV infects hepatocytes and the rcDNA genome translocates to the nucleus and is
81 converted to covalently closed circular DNA (cccDNA) by host-DNA repair enzymes
82 [3]. Several members of the host DNA repair pathway convert rcDNA to cccDNA that
83 serves as the transcriptional template for all viral RNAs [4]. HBV transcribes six major
84 RNAs of decreasing length, with a common 3' polyadenylation signal that include:
85 pre-core (pC) that encodes e antigen; pre-genomic (pgRNA) that is translated to yield
86 core protein and polymerase; preS1, preS2 and S RNAs encoding the surface
87 envelope glycoproteins and X transcript for the multi-functional x protein (HBx) [5].
88 pgRNA contains stem loop structures at both the 5' and 3' termini that bind host
89 factors that regulate transcript stability, including zinc finger CCHC-type Containing
90 14 protein that recruits terminal nucleotidyltransferase 4 [6] and the zinc finger
91 antiviral protein that regulates RNA decay [7] (reviewed in [5]). pgRNA is
92 encapsidated and reverse-transcribed by the viral polymerase to generate rcDNA
93 genomes that can be enveloped and secreted as infectious particles [8].

94

95 N6-methyladenosine (m⁶A) is the most abundant modification found on eukaryotic
96 transcripts where it can regulate mRNA structure, stability, translation and nuclear
97 export. m⁶A modifications are regulated by the balanced activities of m⁶A "writer"
98 and "eraser" proteins. Adenosine is methylated by writers including two
99 methyltransferase-like 3 (METTL3) and METTL14 [9] along with their cofactor Wilms
100 tumor 1-associated protein (WTAP) [10]. This complex methylates adenosine

101 residues within the consensus DRACH (D=A, G or U; R=G or A; H=A, C or U) motif
102 which is often located near stop codons, 3' untranslated regions and internal exons
103 in mRNAs [11, 12]. m⁶A modifications can be removed by erasers including the
104 demethylases, AlkB Homolog 5 (ALKBH5) and fat mass and obesity-associated
105 protein (FTO) [13, 14]. HBV cccDNA encodes a DRACH motif present in all viral
106 transcripts near the common 3' polyadenylation signal in a region termed the epsilon
107 stem loop, but notably is also found in the 5' terminal repeat at the start of the pC
108 and pgRNA transcripts [15]. m⁶A modified HBV RNAs are recognized by YTH domain
109 containing protein 2 (YTHDF2) and the interferon-induced RNase, ISG20, that can
110 process them for degradation [16]. More recently, m⁶A modified HBV RNAs were
111 reported to be preferentially transported from the nucleus and encapsidated [17, 18].
112 Collectively, these studies demonstrate an important role for these post-
113 transcriptional modifications in multiple stages of the HBV life cycle.

114
115 Oxygen concentration varies across different tissues, with the liver receiving
116 oxygenated blood from the hepatic artery and partially oxygen-depleted blood via
117 the hepatic portal vein, resulting in an oxygen gradient of 8-3% across the periportal
118 and pericentral areas, respectively [19]. This oxygen gradient associates with liver
119 zonation, a phenomenon where hepatocytes show distinct functional and structural
120 organization across the liver [20]. Mammalian cells adapt to low oxygen through an
121 orchestrated transcriptional response regulated by hypoxia inducible factors (HIFs):
122 a heterodimeric transcription factor comprising alpha (HIF-1 α , HIF-2 α , or HIF-3 α)
123 and beta (HIF-1 β) subunits [21]. Oxygen dependent prolyl-hydroxylase (PHD)
124 enzymes hydroxylate HIF- α subunits for proteasomal degradation and hypoxic
125 inactivation of the PHDs stabilizes HIF- α expression leading to transcription of genes
126 involved in metabolic processes [22]. We recently showed that HIFs bind and activate
127 HBV cccDNA transcription both in laboratory models maintained under low oxygen
128 and in HBV transgenic mice [23]. HIFs also suppress cccDNA deamination by
129 Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 3B (APOBEC3B) [24]. To
130 date, studies investigating the role of m⁶A modifications in the HBV life cycle have
131 been performed under standard laboratory conditions of 18% oxygen, where HIFs
132 are inactive. As the RNA demethylase ALKBH5 was previously reported to be
133 regulated by HIF-1 α [25], we studied the role of m⁶A modifications in the HBV life
134 cycle under low oxygen conditions that mimic the liver. Our studies identify an
135 essential role for m⁶A modifications in regulating the HBV transcriptome and long-
136 read sequencing revealed oxygen- and m⁶A-dependent regulation of canonical and
137 non-canonical viral RNAs. We also identify a role for ALKBH5 in the regulation of HIF-
138 1 α under hypoxic conditions that impacts the abundance of HBV and cellular
139 transcripts.

140

141 **Results**

142 **Hypoxic regulation of the HBV transcriptome is dependent on m⁶A 143 modifications.**

144 To assess the role of m⁶A RNA modifications in HBV replication under low oxygen
145 conditions we mutated the DRACH motifs to generate m6A-null virus as previously
146 reported [15]. Transfecting HepG2-NTCP cells with plasmids encoding wild-type (WT)
147 or the mutated viral genome (HBV m⁶A-null) allowed us to generate virus for infection
148 studies. We selected 1% oxygen as this is known to stabilise HIF_a subunits and
149 activate HIF target gene transcription [23]. HBV WT or m⁶A-null infected cells were
150 cultured at 18% or 1% oxygen for 72h and pgRNA quantified by PCR. To measure
151 HIF-dependent regulation of pgRNAs the infected cells were treated with a prolyl-
152 hydroxylase inhibitor (FG-4592) that activates HIF-signalling. Low oxygen or FG-
153 4592 treatment induced a significant increase in the abundance of pgRNA in the WT
154 infected cells, however, transcript levels were unchanged in the HBV m⁶A-null
155 infected cells (**Fig.1A**). We noted comparable expression of the HIF-target gene
156 carbonic anhydrase 9 (CA9) in WT and HBV m⁶A-null infected cells, suggesting an
157 essential role for m⁶A modifications in the HIF induction of pgRNA.

158

159 To explore the interplay between hypoxia and methylation status on the HBV
160 transcriptome we used a probe-enrichment long-read sequencing approach [26] to
161 map viral transcripts. We extended our earlier analytical pipeline to include all
162 reported viral transcription start sites (TSS) [27, 28] and to map full-length
163 transcripts. The sequenced libraries contained 47,697 - 119,071 reads and we noted
164 a similar frequency of HBV reads among the samples, ranging from 41-55% of total
165 reads (**Supplementary Table 1A**). To compare the profile of HBV RNAs in the
166 different samples we expressed the viral reads as transcripts per million (TPM)
167 (**Supplementary Table 1B**). PreS2 RNAs were the most abundant transcript
168 irrespective of hypoxic conditions or methylation status, with lower levels of pC,
169 pgRNA, HBx and spliced RNAs in the HBV m⁶A-null samples compared to WT although
170 these differences were not statistically significant (**Fig.1B-C** and **Supplementary**
171 **Table 1B**). A minority of viral transcripts did not map to known TSS and were
172 classified as unmapped, with many of these encoding an S gene open reading frame
173 (ORF) (**Supplementary Table 1B**). Mapping the spliced transcripts identified SP1
174 and SP14 as the most abundant (~15-30,000 TPM, respectively) with SP6, SP7, SP9
175 and pSP12 transcripts also detected (>1,000 TPM) (**Fig.1B-C, Supplementary**
176 **Table 1B**). SP1 transcript levels were reduced in the HBV m⁶A-null samples compared
177 to WT, with a concomitant increase in SP14 (**Fig.1C, Supplementary Table 1B**).
178 Differential expression analysis identified three viral transcripts, pgRNA, preS2 and

179 preS, together with the major spliced transcript SP1, that were significantly increased
180 in HBV WT samples under hypoxia (adjusted p-values $< 10^{-6}$) (**Fig.1D**). In contrast,
181 pC, preS1 or HBx transcript levels did not increase under hypoxic conditions (**Fig.1D**).
182 HBV m⁶A-null derived RNAs were insensitive to the low oxygen (**Fig.1D**),
183 demonstrating a key role for m⁶A post-transcriptional modifications in defining the
184 hypoxic HBV transcriptome.

185
186 As methylation and hypoxia can both influence RNA stability [29, 30] we measured
187 the half-life of HBV WT or m⁶A-null derived transcripts under low-oxygen conditions
188 by treating cultures with actinomycin D (**Fig.1E**). Given the overlapping nature of
189 the HBV transcripts we can only accurately quantify pgRNA by qPCR. HBV m⁶A-null
190 encoded pgRNAs had a significantly shorter half-life than WT transcripts in cells
191 cultured under standard laboratory conditions (18% O₂) (8.33 ± 0.71 h v $13.9 \pm$
192 2.18h, $p=0.014$), consistent with reports that m⁶A modifications reduce the stability
193 of viral RNA [15]. Hypoxia did not alter the half-life of HBV WT pgRNA but we noted
194 a significant reduction in m⁶A-null pgRNA under these conditions (6.93 ± 0.64 h v
195 8.33 ± 0.71 h, $p=0.044$) (**Fig.1E**). In summary, these data highlight a role for
196 oxygen-dependent processes in regulating the stability of non-methylated and
197 methylated HBV pgRNA.

198
199 **The 5' stem-loop DRACH motif regulates pgRNA abundance under hypoxic
200 conditions.**

201 To investigate which m⁶A motif regulates pgRNA levels under low oxygen conditions,
202 we transfected HepG2-NTCP cells with HBV 1.3x overlength plasmids with mutations
203 in the DRACH motif in the 5' loop (HBV m⁶A-5'null), the 3' loop (HBV m⁶A-3'null) or
204 both loops (HBV m⁶A-null) (**Fig.2A**). Transfected HepG2-NTCP cells were cultured at
205 18% or 1% oxygen conditions and pgRNA along with secreted HBV DNA measured
206 (**Fig.2B**). Measuring intracellular HBV DNA at 4h post transfection demonstrated
207 similar efficiencies of transfection (**Supplementary Fig.1A**) and we confirmed that
208 all samples responded to the hypoxic conditions by measuring CA9 gene expression
209 (**Supplementary Fig.1B**). Lower levels of pgRNA were noted in the m⁶A-null and
210 m⁶A-5'null transfected cells compared to WT or m⁶A-3'null, consistent with our earlier
211 report showing their reduced replicative fitness (**Supplementary Fig.1B**) [15]. We
212 observed hypoxic induction of pgRNA and extracellular HBV DNA in the WT or m⁶A-
213 3'null transfected cells, whilst neither m⁶A-null nor m⁶A-5'null showed any oxygen-
214 dependent modulation.

215
216 We were interested to understand whether the hypoxia-associated increase in
217 extracellular HBV DNA reflected an increase in pgRNA encapsidation. HepG2 cells

218 transfected with HBV were cultured under hypoxic conditions and the relative
219 abundance of pgRNA in the nucleus, cytosol or within capsids measured. The majority
220 of pgRNA was in the cytosol and this did not change under low oxygen conditions
221 (**Fig.2C**), suggesting that hypoxia does not influence the encapsidation machinery
222 and/or assembly processes. In summary, these data show that 5' m⁶A modification
223 plays an essential role in hypoxia-dependent increase in the abundance of pgRNA.

224

225 **Hypoxic activation of ALKBH5 expression impacts m6A modified HBV and**
226 **host transcripts.**

227 The m⁶A demethylase ALKBH5 is a direct target of HIF-1 α [25] and is hypoxic
228 regulated in a variety of cell lines, including breast cancer and adipocyte cells [31,
229 32]. We investigated ALKBH5 expression in the liver using published single cell RNA-
230 seq data of murine liver [33]. We observed an enrichment of *Alkbh5* transcripts in
231 the low oxygen pericentral area (PC) compared to the perivenous region (PV)
232 (**Fig.3A**). Zonal expression of the HIF target gene, N-myc downstream regulated 1
233 (*Ndrg1*) was noted, whereas expression of m⁶A demethylase Fat mass and obesity
234 associated (*Fto*) gene was comparable across the liver lobule (**Fig.3A**,
235 **Supplementary Fig.2**). To ascertain whether these observations translate to our *in*
236 *vitro* model we cultured HepG2 cells at 18% and 1% oxygen and showed a significant
237 increase in ALKBH5 gene expression in hypoxic cells (**Fig.3B**). To assess the
238 functional consequences, we measured total m⁶A-RNA levels by immuno-northern
239 blotting with an anti-m6A antibody and showed a reduction in m⁶A-modified cellular
240 RNAs under hypoxic conditions, consistent with the increase in demethylase
241 expression (**Fig.3C**).

242

243 To investigate whether hypoxia alters HBV pgRNA methylation status we used an
244 m⁶A-RNA immunoprecipitation (RIP) assay combined with qPCR and showed a
245 significant reduction in precipitated pgRNA under hypoxic conditions (**Fig.3D**). As a
246 control we PCR quantified the m6A modified CREBBP transcript and noted a reduction
247 under hypoxic conditions. To investigate the potential role of ALKBH5 in regulating
248 the abundance of HBV pgRNAs we silenced the demethylase with two independent
249 siRNAs targeting different exons. We confirmed siRNA efficacy in cells cultured at
250 18% or 1% oxygen and siRNA #2 showed a greater reduction in ALKBH5 expression
251 (**Supplementary Fig.3**). Silencing ALKBH5 blunted the hypoxic-associated increase
252 in HBV pgRNA (**Fig.3E**), suggesting a role for this demethylase in regulating HBV
253 RNAs under low oxygen conditions.

254

255 **ALKBH5 regulates HIF- α expression.**

256 As we previously identified a role for HIFs to bind and activate HBV transcription, we
257 investigated the interplay between ALKBH5 and HIFs. *HIF-1a* mRNA is methylated in
258 HepG2 cells and there was a trend albeit non-significant, for reduced amounts of
259 anti-m⁶A precipitated transcripts under hypoxic conditions (**Supplementary Fig.4A**).
260 HepG2 cells were transfected with siRNAs targeting ALKBH5 or an irrelevant negative
261 control (NC) and cultured at 1% oxygen for 24h to stabilize HIF expression and
262 activate NDRG1 expression (**Fig.4A**). Cells transfected with siALKBH5 showed a
263 significant reduction in the expression of both HIF-a isoforms and associated NDRG1
264 expression, whereas *HIF-1a* transcripts were unchanged (**Fig.4A**). Of note, ALKBH5
265 silencing did not affect the abundance or half-life of *HIF-1a* transcripts (8.9-10.1 h)
266 (**Fig.4B**). Silencing ALKBH5 in HepG2 cells blunted the hypoxic induction of a panel
267 of HIF target genes (*CA9*, *NDRG1*, *VEGFA*, *BNIP3*, *FUT11*, *GP1*, and *P4HA1*),
268 demonstrating the broad impact of this demethylase to regulate HIF-transcriptional
269 activity (**Fig.4C**).
270

271 HIF-a is hydroxylated by PHDs leading to ubiquitination and targeting for proteasomal
272 degradation. ALKBH5 silencing had no major effects on the levels of hydroxylated
273 HIF-1a (**Supplementary Fig.5**). To assess the role for ALKBH5 in post-
274 transcriptional regulation of HIF-a, HepG2 cells were transfected with siALKBH5 #2
275 as it showed the most robust silencing. The cells were cultured under hypoxic
276 conditions for 24h before treatment with cycloheximide (CHX) to inhibit protein
277 synthesis. CHX treatment inhibited HIF-1a and HIF-2a expression, and their
278 degradation was accelerated in the absence of ALKBH5 (**Fig.4D**), consistent with a
279 role for the demethylase in destabilizing both isoforms. This conclusion is further
280 supported by treating the cells with a proteasomal inhibitor (MG132), that induced
281 the expression of both HIF-a isoforms, and ALKBH5 silencing delaying their
282 expression kinetics (**Fig.4D**). Collectively, these data illustrate a key role for the
283 ALKBH5 demethylase in regulating HIF expression and function.
284

285 **Discussion**

286 Our study shows an essential role for m⁶A RNA modifications in regulating the hypoxic
287 HBV transcriptome. Long-read sequencing of the HBV WT infected cells allowed us to
288 accurately map hypoxic regulated transcripts and we observed a significant increase
289 in pgRNA, preS2, preS and SP1 transcripts, with no change in pC, preS1, HBx or
290 other spliced mRNAs. The oxygen-dependent enrichment of viral transcripts is not
291 dependent on their abundance and may reflect the methylation status of the different
292 transcripts. At the present time it is not possible to profile the m⁶A methylation of
293 viral RNAs using available long-read sequencing platforms. Given the overlapping
294 nature of the HBV transcripts we can only reliably qPCR measure pgRNA and meRIP

295 assays confirm that pgRNA is m⁶A modified. The observation that the hypoxia-
296 mediated increase in HBV pgRNA is dependent on 5'-m⁶A modification suggests m⁶A
297 specific recognition mechanisms. Wang *et al* analyzed the location of m⁶A
298 modifications on RNAs isolated from hypoxic HeLa cells and reported that cells
299 undergo a reprogramming of their m⁶A epitranscriptome by altering both the m⁶A
300 level at specific sites and their distribution patterns in response to hypoxia [30]. We
301 cannot exclude that hypoxia may alter m⁶A modified sites on HBV RNAs. Mutation of
302 the 5'-m⁶A DRACH HBV motif at position 1907 (A to C) is unlikely to impair HIF-1 α
303 binding to hypoxic responsive elements that are located in the basal core promoter
304 located at residues 1751-1769. RNA decay assays showed that the stability and
305 expression of m⁶A-null pgRNA was reduced under low oxygen conditions and further
306 experiments to image the intracellular location of methylated and non-methylated
307 transcripts in infected cells may provide mechanistic insights.

308
309 Recent studies have highlighted an interplay between hypoxia signaling and m⁶A-
310 post transcriptional regulatory pathways; where decreased levels of m⁶A-RNAs were
311 seen in breast cancer cells, cardiac microvascular endothelial and cervical cancer cells
312 [32, 34]. In contrast, increased levels of m⁶A modified RNAs were found in human
313 umbilical vein endothelial cells, cardiomyocytes and murine hearts under hypoxic
314 conditions that associated with increased methyltransferase METTL3 expression [35-
315 37]. Collectively, these studies show that hypoxic modulation of m⁶A-RNA is
316 dependent on both the tissue and cell type. Consistent with our observations, Wang
317 *et al* reported a hypoxic reduction in m⁶A modified RNAs in human hepatoma Huh-7,
318 HepG2 and Hep3B cell lines that was partially reversed by silencing ALKBH5 [30].
319 Reports that m⁶A modified RNAs are perturbed in inflammatory diseases highlight a
320 potential therapeutic role for targeting this pathway (reviewed in [38]).

321
322 Analyzing a published single-cell RNA sequencing (scRNA-seq) data set from mouse
323 liver [33] showed a zonation of *Alkbh5* but not *Fto*, with transcripts more abundant
324 in the pericentral region of the liver, consistent with hypoxic regulation. ALKBH5 is a
325 HIF target gene and its expression is induced under low oxygen conditions. ALKBH5
326 activity is also regulated by post-translation methylation and SUMOylation
327 modifications that provide a further level of control over demethylase activity [39].
328 Our results showing reduced pgRNA levels in HBV infected ALKBH5 silenced cells
329 under hypoxic conditions supports a positive role for this demethylase in susceptibility
330 to viral infection. This conclusion is consistent with our earlier work that reported an
331 increased expression of HBV antigen expressing cells in the pericentral 'high ALKBH5'
332 areas of the liver in HBV transgenic mice [23, 24]. Liu *et al* reported that *Alkbh5*
333 deficient mice were resistant to infection by a range of DNA and RNA viruses (VSV,

334 HSV-1 EMCV) that was mediated by an m⁶A RNA-dependent down regulation of a-
335 ketoglutarate dehydrogenase (OGDH)-itaconate pathway that supports virus
336 replication [40]. The authors show that Vesicular Stomatitis Virus infection targeted
337 the ALKBH5 pathway to evade this host restriction pathway. We have limited
338 evidence for HBV infection to alter ALKBH5 expression or activity in our experiments.
339 Qu *et al* reported that HBx increased H3K4me3 modifications in the ALKBH5 promoter
340 region that associated with increased demethylase expression [41]. The authors
341 noted increased ALKBH5 expression in HBV-HCC samples, however, there were no
342 mechanistic studies to link this directly to HBx and given the hypoxic nature of HCC
343 (reviewed in [42]) this could align with a HIF-driven activation of ALKBH5 gene
344 expression.

345

346 Adenosine methylation can regulate many aspects of mRNA metabolism including
347 splicing, nuclear export, stability, and translation. Most translation events in the cell
348 occur through recognition of the cap by the eIF4F protein complex. However, it has
349 long been known that cellular states such as apoptosis, mitosis or the stress response
350 can suppress cap-dependent translation allowing selected mRNAs to be translated.
351 Recent studies reported that stress conditions, such as heat shock or amino acid
352 starvation, promote nuclear trafficking of the m⁶A reader proteins YTHDF1 and
353 YTHDF2 [43, 44] and increase cap-independent translation of mRNAs from m⁶A-
354 modified 5'UTR [43, 45-47]. We found that ALKBH5 silencing reduced HIF- α
355 expression without affecting RNA levels or half-life. Silencing of ALKBH5 did not alter
356 the levels of hydroxylated HIF-1 α , suggesting that this demethylase does not regulate
357 PHD activity, further enzymic studies would be required to address this mechanism.
358 There is a report showing that PBMR1, a component of the chromatin remodeler
359 SWI/SNF, positively regulates HIF-1 α translation through protein interaction between
360 YTHDF2 under normoxic and hypoxic conditions and HIF expression was reduced
361 when these proteins were silenced [43]. These reports are consistent with an
362 essential role for m⁶A modified RNAs in cellular adaption to hypoxic stress. Taken
363 together, our results support a role for ALKBH5 to regulate HIF-1 α stability and
364 transcriptional activity and in cellular adaption to hypoxic stress. Our findings on the
365 cross-talk of ALKBH5 and HIF signalling provide mechanistic insights into cellular
366 responses that regulate HBV replication and may be more widely applicable to other
367 liver tropic pathogens (**Fig.5**).

368

369 **Materials and methods**

370

371 **Reagents.** FG-4592 was obtained from either Selleckchem or MedChemExpress.
372 Cyclohexamide was purchased from Abcam. siRNAs were obtained from Thermo
373 Fisher Scientific, MG132 and actinomycin D were purchased from Sigma-Aldrich.
374 Primary antibodies used in this study are ALKBH5 (Atlas Antibodies), β Actin (Sigma),
375 HIF-1 α (BD Bioscience), HIF-2 α (NOVUS), HIF-1 β (NOVUS), NDRG1 (CST), anti-m⁶A
376 polyclonal antibody (Synaptic Systems). HRP-conjugated secondary antibodies were
377 purchased from DAKO.

378

379 **Cell lines.** HepG2-NTCP cells were maintained in Dulbecco's Modified Eagles Medium
380 (DMEM) (ThermoFisher), containing Glutamax supplemented with 10% Fetal Bovine
381 Serum, 50 U/ml Penicillin/Streptomycin, and non-essential amino acids. Cells were
382 maintained in 5% CO₂ and 18% oxygen. Hypoxic treatment of cells was carried out
383 in a hypoxic incubator (New Brunswick Galaxy 48R, Eppendorf) or a hypoxia chamber
384 (Invivo 400, Baker-Ruskinn Technologies) at 5% CO₂ and 1% oxygen.

385

386 **HBV preparation and infection.** HBV was prepared from the supernatant HepG2
387 cells transfected HBV1.3 plasmids [15] by polyethylene glycol 8000 precipitation.
388 Briefly, culture media was mixed with 10% PEG8000/ 2.3% NaCl and incubated at
389 4°C for 16h, then centrifuged at 4500 rpm for 1h at 4°C. After discarding the
390 supernatant, the pellet was resuspended in DMEM (~200-fold concentration). The
391 inoculum was treated with DNase at 37°C for 1h, DNA extracted and quantified by
392 qPCR to measure HBV genome copies. HepG2-NTCP cells were seeded on collagen
393 coated plasticware and infected with HBV (MOI of 300 or 1,000 based on genome
394 copies) in the presence of 4% PEG8000 for 16h. Viral inoculum was removed and
395 cells washed three times with PBS. Infected cells were maintained in 5% CO₂ and
396 18% oxygen and treatments applied.

397

398 **Transfection.** Plasmids were transfected into HepG2-NTCP cells using either
399 polyethylenimine (PEI) or FuGENE HD Transfection Reagent (Promega) according to
400 the manufacturer's protocol. siRNAs for ALKBH5 (1; s29686 and #2; s29688) and
401 non-targeting control (4390844) were obtained from Thermo Fisher Scientific and
402 transfected using DharmaFECT 4 Transfection Reagent (Horizon Discovery) according
403 to the manufacturer's protocol.

404

405 **Quantitative PCR.** Total cellular RNA was extracted using an RNeasy kit (Qiagen),
406 then treated with TURBO DNA-free (Thermo Fisher Scientific), and the RNA reverse
407 transcribed using a cDNA synthesis kit (PCR Biosystems) according to the

408 manufacturer's protocol. Cellular DNA was extracted using QIAamp DNA kit (Qiagen).
409 Gene expression was quantified using a SyGreen Blue Mix (PCR Biosystems) with the
410 oligonucleotides listed below and a qPCR program of 95°C for 2 min followed by 45
411 cycles at 95°C for 5 sec, 60°C for 30 sec. Changes in gene expression were calculated
412 by the $\Delta\Delta Ct$ method relative to a housekeeper gene, β 2-microglobulin (B2M).
413

414 **PacBio long read sequencing and analysis.** HBV specific oligonucleotide
415 enrichment and subsequent long-read sequencing and analysis was performed as
416 reported [48]. Briefly, RNAs were prepared from normoxic or hypoxic HepG2-NTCP
417 cells transfected with HBV HBV1.3 WT or m6-null constructs and 150ng of RNA
418 reverse transcribed with barcoded sequencing primers. Oligonucleotide enrichment
419 of HBV RNAs was performed as previously described [49]. Samples were sequenced
420 using a Sequel II instrument to generate a PacBio 'Hifi library'. Reads were mapped
421 to the HBV reference genome (genotype D3, ayw strain) using minimap2 [50, 51].
422 HBV reads were assigned to previously reported transcription start sites to identify
423 canonical transcripts [27] and splice junctions enumerated to identify non-canonical
424 RNAs [51], incomplete sequences that did not encode the expected length of
425 transcript were discounted. Differential gene expression was performed using the
426 Voom function in Limma (Bioconductor EdgeR script). The sequencing data is
427 available via the SRA at NCBI (BioProject ID: PRJNA1000182).
428

429 **Fractionation of HBV pgRNA in the nucleus, cytosol and core particles.**
430 HepG2-NTCP cells transfected with HBV1.3 plasmid were washed with PBS and lysed
431 in 50 mM Tris-HCl, pH 8.0, and 1% NP-40 with protease inhibitor cocktail. After
432 incubating cells at 4°C for 20 min in the culture plate, the lysate was centrifuged for
433 5 min at 14,000 rpm. The pellet was the nuclear fraction and RNA extracted using
434 Trizol. HBV core particles were isolated from the supernatant according to the
435 protocol described by Belloni et al [52]. Briefly, 100 mM CaCl₂, DNase I, and RNase
436 A were added to the supernatant and incubated for at 37°C for 2 h. The supernatant
437 was the incubated in 5 mM EDTA, 7% PEG8000, 1.75M NaCl, at 4°C for 2 h. After
438 centrifugation at 13,000 rpm for 30 min at 4°C, the supernatant was discarded and
439 the capsid-containing pellet resuspended in TNE buffer (10 mM Tris-HCl (pH 8) 1mM
440 EDTA, proteinase K), and RNA was extracted using Trizol. To calculate pgRNA levels
441 in the cytosol, total HBV RNAs were extracted from the cells using Trizol and pgRNA
442 quantities in the nucleus and capsid subtracted after quantifying by qPCR.
443

444 **Extracellular HBV DNA quantification.** Extracellular HBV DNA was quantified
445 according to the protocol described previously [53]. Briefly, culture supernatant was
446 treated with DNase I (Thermo Fisher Scientific) at 37°C for 60 minutes, then treated

447 with 2x lysis buffer (100 mM Tris-HCL (pH7.4), 50 mM KCl, 0.25% Triton X-100, and
448 40% glycerol) containing 1mM EDTA. HBV DNA was amplified by qPCR using primers
449 for HBV rcDNA and quantified against a DNA referent standard curve.

450

451 **SDS-PAGE and western blot.** Samples were lysed in RIPA buffer (50 mM Tris (pH
452 8.0), 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% sodium
453 dodecyl sulphate) supplemented with protease inhibitor cocktail tablets (Roche). 4x
454 Laemmli reducing buffer was added to samples before heating at 95°C for 10 min.
455 Proteins were separated on 8 or 14% polyacrylamide gel and transferred to activated
456 0.45 µm PVDF membranes (Amersham, UK). Membranes were blocked in 5%
457 skimmed milk and proteins detected using specific primary and HRP-secondary
458 antibodies. Proteins were detected using SuperSignal West Pico chemiluminescent
459 substrate kit (Pierce) and images collected on a G:Box mini (Syngene).

460

461 **Immuno northern assay.** 10 µg of RNA was electrophoresed in a 1 % MOPS
462 agarose gel containing 2.2 M formaldehyde. 18 S and 28 S ribosomal RNA species
463 were visualized under UV light after electrophoresis to verify the amount of RNA
464 loaded and to assess degradation. After denaturation with 50 mM NaOH for 5 min,
465 RNAs were transferred to a nylon membrane by capillary transfer using 20× SSC
466 buffer. After UV crosslinking, the membrane was blocked in 5% skimmed milk and
467 incubated with an anti-m⁶A polyclonal antibody (Synaptic Systems) and HRP-
468 secondary antibodies. Signals were realised using a SuperSignal West Pico
469 chemiluminescent substrate kit (Pierce) and images collected on a G:Box mini
470 (Syngene).

471

472 **MeRIP.** Total cellular RNA was extracted using an RNeasy (Qiagen) kit and a TURBO
473 DNA-free Kit (Thermo Fisher Scientific), the RNA was then further purified using
474 RNeasy kit. 2 µg of RNA was incubated overnight at 4°C with protein A agarose beads
475 treated with Rabbit IgG or anti-m⁶A polyclonal antibody (Synaptic Systems) in MeRIP
476 buffer (Tris-HCl (pH 8.0), 150 mM NaCl, 0.1% NP-40, 1mM EDTA) supplemented with
477 RNase inhibitor (Promega). Beads were washed 5 times with MeRIP buffer and bound
478 RNA eluted by 6.7 mM m⁶A sodium salt. Eluted RNA was purified using a Qiagen RNA
479 extraction kit and quantified by qPCR. Quantities of HBV RNA, *CREBBP*, *HPRT1*, and
480 *HIF-1a* were calculated relative to input total RNA.

481

482

483

484 **Figure legends**

485 **Figure 1. Hypoxic regulation of the HBV transcriptome is dependent on m⁶A**
486 **methylation.** **(A)** Schematic of HBV DRACH mutations in 5' and 3' pgRNA stem loops
487 and protocol for HBV infection. HepG2-NTCP cells were infected with HBV wild type
488 (WT) or m⁶A-null and cultured at 18%, 1% oxygen or treated with FG-4592 (30 μ M)
489 for 72h. pgRNA and HIF-regulated gene carbonic anhydrase 9 (CA9) transcripts were
490 measured by qPCR. Data are expressed relative to 18% oxygen for each condition
491 and presented as mean \pm S.D. of n=3 from three independent experiments with
492 statistical significance determined using a two-way ANOVA. * p < 0.05, ** p < 0.01,
493 *** p < 0.001, **** p < 0.0001. **(B)** Long-read sequence analysis of HBV
494 transcriptome. Relative frequency of canonical (left) and non-canonical (right) HBV
495 reads in HBV WT or m⁶A-null expressing HepG2 cells cultured at 18% or 1% oxygen.
496 **(C)** Bubble heat map denoting the HBV transcript abundance of HBV WT and m⁶A-
497 null samples cultured at 18% and 1% oxygen. The data is presented as the mean
498 transcripts per million (TPM) from n=3 independent samples with the exception of
499 WT at 1% oxygen where n=2. **(D)** Differential gene expression of hypoxic regulated
500 HBV WT and m⁶A-null RNAs, where the X axis denotes differences between samples
501 (Log₂-Fold Change) and the Y axis the adjusted probability of the changes seen (-
502 log₁₀ (adjusted p-value)). **(E)** HBV pgRNA half-life. HepG2-NTCP cells transfected with
503 HBV WT plasmid were incubated at 18% or 1% oxygen conditions for 48h and cells
504 harvested at 0, 6, 12, and 24h post actinomycin D (Act D) treatment. pgRNA relative
505 to a housekeeping gene B2M was quantified by qPCR and half-life presented as the
506 mean \pm S.D. of n=9 from three independent experiments. n.s., not significant * p <
507 0.05, by unpaired Student's t test.

508

509 **Figure 2. Hypoxic dependent increase in HBV pgRNA and secreted viral DNA**
510 **is dependent on 5' m⁶A methylation.** **(A)** Schematic of HBV plasmids indicating
511 the location of the A-C mutation of the 5' and 3' m⁶A sites in pgRNA. Circles represent
512 WT (green) and the C mutation (red). HepG2-NTCP cells were transfected with HBV
513 plasmids for 4h and incubated for an additional 20h at 18% oxygen, before transfer
514 to 18% or 1% oxygen for 72h. **(B)** Intracellular pgRNA and secreted HBV DNA were
515 quantified by qPCR and the data presented as mean \pm S.D. of three independent
516 experiments with statistical significance determined using Mann-Whitney tests, with
517 Bonferroni correction for multiple comparisons. * p<0.05, ** p < 0.01, *** p < 0.001,
518 **** p < 0.0001. **(C)** HepG2-NTCP cells were prepared as shown in A, and RNA
519 extracted from the isolated cellular fractions (see methods), treated with TURBO
520 DNase to remove any contaminating plasmid DNA and pgRNA quantified by qPCR.
521 Data were obtained from n=5 independent samples and presented as mean \pm S.D.

522

523 **Figure 3. Hypoxic activation of ALKBH5 regulates methylation and**
524 **abundance of HBV pgRNA.** (A) Liver zonation of the RNA demethylases ALKBH5
525 and FTO based on scRNA-seq data from mouse liver [33]. (B) HepG2-NTCP cells were
526 cultured at 18% or 1% oxygen conditions for 72h with ALKBH5 and FTO transcript
527 levels (left) and ALKBH5 protein (right) measured. Data are expressed relative to a
528 housekeeping gene *B2M* and presented as mean \pm S.D. of n=4 from 2 experiments
529 with statistical significance determined using Mann-Whitney tests, with Bonferroni
530 correction for multiple comparisons, *** $p < 0.01$. (C) m⁶A-modified RNAs. RNA was
531 extracted from HepG2-NTCP cells cultured under 18% or 1% oxygen conditions for
532 72h, TURBO DNase treated and subjected to immuno-northern blotting using m⁶A
533 antibody (left). Densitometric quantification of northern blots was performed and
534 data expressed relative to 18% oxygen. Data is shown as the mean \pm S.D. of 4
535 independent experiments with statistical significance determined using Mann-
536 Whitney test. * $p < 0.05$. (D) Quantification of methylated HBV pgRNA. HepG2-NTCP
537 cells were transfected with HBV WT plasmid for 18h, cultured at 18% or 1% oxygen
538 for 72h. RNA was extracted, TURBO DNase treated and subjected to Methylated RNA
539 immunoprecipitation (MeRIP) assay using anti-m⁶A antibody. Data presented are the
540 mean \pm S.D. of n=6 samples from independent 3 experiments with statistical
541 significance determined using Mann-Whitney tests and Bonferroni correction for
542 multiple comparisons. ** $p < 0.01$. (E) HepG2-NTCP cells were transfected with
543 siRNAs (NC; Non-targeting, ALK; ALKBH5) for 6h, followed by delivery of HBV WT
544 plasmid and cultured at 18% or 1% oxygen for 72h. RNA was extracted, TURBO
545 DNase digested and pgRNA quantified by qPCR. Data are expressed relative to a
546 house keeping gene *B2M* and presented as the mean \pm S.D. of n=9 samples from 3
547 independent experiments with statistical significance determined using Mann-
548 Whitney tests and Bonferroni correction for multiple comparisons. * $p < 0.05$, ***
549 $p < 0.0001$.

550

551 **Figure 4. ALKBH5 regulates HIF α expression under hypoxic conditions.**
552 (A) HIF- α expression in ALKBH5 silenced cells. HepG2-NTCP cells were transfected
553 with ALKBH5 specific siRNAs for 48h and cultured under 1% oxygen for 12 or 24h.
554 Samples were probed for HIF-1 α , HIF-2 α , NDRG1, ALKBH5 and β -Actin by western
555 blotting and protein expression quantified by densitometry. HIF-1 α mRNA was
556 measured by qPCR. Data is expressed relative to 24h hypoxic siNC samples and
557 represents the mean \pm S.D. from 3 independent experiments. Statistical significance
558 was determined using a two-way ANOVA. * $p < 0.05$, ** $p < 0.01$. (B) HIF-1 α RNA
559 stability in ALKBH5 silenced cells. HepG2-NTCP cells transfected with ALKBH5 siRNAs
560 were treated with Act D as shown in Fig.1C, and HIF-1 α mRNA levels quantified by
561 qPCR and expressed relative to a housekeeping gene *B2M*. Data is shown relative to

562 0h in each condition and expressed as mean \pm S.D. from 2 independent experiments.
563 **(C)** Expression of HIF-regulated genes in ALKBH5 silenced cells. HepG2-NTCP cells
564 were prepared as Fig.3E, and indicated gene transcripts quantified by qPCR with data
565 expressed relative to siNC under hypoxia and represent the mean \pm S.D. of samples
566 from 3 independent experiments. **(D)** HIF-1 α protein expression in ALKBH5 silenced
567 cells. HepG2-NTCP cells were cultured in 1% oxygen for 24h and treated with
568 cycloheximide (CHX, 20 μ g/mL) or MG132 (20 μ M) for the indicated times. Samples
569 were collected and probed for HIF-1 α , HIF-2 α , ALKBH5 and β -Actin by western
570 blotting. Different exposure times for the top and bottom panels were used.

571

572 **Figure 5. Cartoon depicting the impact of hepatic oxygen gradient on HIF**
573 **signaling, RNA demethylase gene expression and m⁶A modified HBV RNAs.**

574

575 **Acknowledgements**

576 We thank Ulla Protzer (TUM, Germany) for providing HBV stocks, Stephan Urban
577 (University of Heidelberg) for HepG2-NTCP cells, Azim Ansari for the enrichment
578 probes and Esther Ng for advice in analysing and mapping HBV sequences. The
579 McKeating laboratory is funded by a Wellcome Investigator Award 200838/Z/16/Z,
580 Chinese Academy of Medical Sciences Innovation Fund for Medical Science, China
581 (grant number: 2018-I2M-2-002), AM is supported by the John Black Foundation. AS
582 is supported by and NIH AI139234 grant.

583

584 **Declaration of interest**

585 The authors disclose no conflicts of interest.

586

587 **References**

- 588 1. Merson J. Charting a new frontier in chronic hepatitis B research to improve
589 lives worldwide. *Nature outlook* 2022.
- 590 2. Levrero M, Subic M, Villeret F, Zoulim F. Perspectives and limitations for
591 nucleo(t)side analogs in future HBV therapies. *Curr Opin Virol.* 2018;30:80-9. Epub
592 2018/05/20. doi: 10.1016/j.coviro.2018.04.006. PubMed PMID: 29777955.
- 593 3. Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. *Virology.*
594 2015;479-480:672-86. Epub 20150307. doi: 10.1016/j.virol.2015.02.031. PubMed
595 PMID: 25759099; PubMed Central PMCID: PMCPMC4424072.
- 596 4. Wei L, Ploss A. Hepatitis B virus cccDNA is formed through distinct repair
597 processes of each strand. *Nat Commun.* 2021;12(1):1591. Epub 20210311. doi:
598 10.1038/s41467-021-21850-9. PubMed PMID: 33707452; PubMed Central PMCID:
599 PMCPMC7952586.

600 5. Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. *Antiviral Res.*
601 2020;182:104925. Epub 2020/09/01. doi: 10.1016/j.antiviral.2020.104925. PubMed
602 PMID: 32866519.

603 6. Kim D, Lee YS, Jung SJ, Yeo J, Seo JJ, Lee YY, et al. Viral hijacking of the
604 TENT4-ZCCHC14 complex protects viral RNAs via mixed tailing. *Nat Struct Mol Biol.*
605 2020;27(6):581-8. Epub 2020/05/27. doi: 10.1038/s41594-020-0427-3. PubMed
606 PMID: 32451488.

607 7. Mao R, Nie H, Cai D, Zhang J, Liu H, Yan R, et al. Inhibition of hepatitis B
608 virus replication by the host zinc finger antiviral protein. *PLoS Pathog.*
609 2013;9(7):e1003494. Epub 2013/07/16. doi: 10.1371/journal.ppat.1003494.
610 PubMed PMID: 23853601; PubMed Central PMCID: PMCPMC3708887.

611 8. Selzer L, Zlotnick A. Assembly and Release of Hepatitis B Virus. *Cold Spring
612 Harb Perspect Med.* 2015;5(12). Epub 20151109. doi: 10.1101/cshperspect.a021394.
613 PubMed PMID: 26552701; PubMed Central PMCID: PMCPMC4665036.

614 9. Liu X, Sun H, Qi J, Wang L, He S, Liu J, et al. Sequential introduction of
615 reprogramming factors reveals a time-sensitive requirement for individual factors
616 and a sequential EMT-MET mechanism for optimal reprogramming. *Nat Cell Biol.*
617 2013;15(7):829-38. Epub 2013/05/28. doi: 10.1038/ncb2765. PubMed PMID:
618 23708003.

619 10. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP
620 is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. *Cell Res.*
621 2014;24(2):177-89. Epub 2014/01/11. doi: 10.1038/cr.2014.3. PubMed PMID:
622 24407421; PubMed Central PMCID: PMCPMC3915904.

623 11. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar
624 L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes
625 revealed by m6A-seq. *Nature.* 2012;485(7397):201-6. Epub 2012/05/12. doi:
626 10.1038/nature11112. PubMed PMID: 22575960.

627 12. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR.
628 Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and
629 near stop codons. *Cell.* 2012;149(7):1635-46. Epub 2012/05/23. doi:
630 10.1016/j.cell.2012.05.003. PubMed PMID: 22608085; PubMed Central PMCID:
631 PMCPMC3383396.

632 13. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in
633 nuclear RNA is a major substrate of the obesity-associated FTO. *Nat Chem Biol.*
634 2011;7(12):885-7. Epub 2011/10/18. doi: 10.1038/nchembio.687. PubMed PMID:
635 22002720; PubMed Central PMCID: PMCPMC3218240.

636 14. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a
637 mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. *Mol*

638 Cell. 2013;49(1):18-29. Epub 2012/11/28. doi: 10.1016/j.molcel.2012.10.015.
639 PubMed PMID: 23177736; PubMed Central PMCID: PMCPMC3646334.

640 15. Imam H, Khan M, Gokhale NS, McIntyre ABR, Kim GW, Jang JY, et al. N6-
641 methyladenosine modification of hepatitis B virus RNA differentially regulates the
642 viral life cycle. Proc Natl Acad Sci U S A. 2018;115(35):8829-34. Epub 2018/08/15.
643 doi: 10.1073/pnas.1808319115. PubMed PMID: 30104368; PubMed Central PMCID:
644 PMCPMC6126736.

645 16. Imam H, Kim GW, Mir SA, Khan M, Siddiqui A. Interferon-stimulated gene
646 20 (ISG20) selectively degrades N6-methyladenosine modified Hepatitis B Virus
647 transcripts. PLoS Pathog. 2020;16(2):e1008338. Epub 2020/02/15. doi:
648 10.1371/journal.ppat.1008338. PubMed PMID: 32059034; PubMed Central PMCID:
649 PMCPMC7046284.

650 17. Kim GW, Imam H, Siddiqui A. The RNA Binding Proteins YTHDC1 and FMRP
651 Regulate the Nuclear Export of N(6)-Methyladenosine-Modified Hepatitis B Virus
652 Transcripts and Affect the Viral Life Cycle. J Virol. 2021;95(13):e0009721. Epub
653 2021/04/23. doi: 10.1128/JVI.00097-21. PubMed PMID: 33883220; PubMed Central
654 PMCID: PMCPMC8316146.

655 18. Kim GW, Moon JS, Siddiqui A. N6-methyladenosine modification of the 5'
656 epsilon structure of the HBV pregenome RNA regulates its encapsidation by the viral
657 core protein. Proc Natl Acad Sci U S A. 2022;119(7). Epub 2022/02/10. doi:
658 10.1073/pnas.2120485119. PubMed PMID: 35135882; PubMed Central PMCID:
659 PMCPMC8851549.

660 19. Paris J, Henderson NC. Liver zonation, revisited. Hepatology.
661 2022;76(4):1219-30. Epub 2022/03/06. doi: 10.1002/hep.32408. PubMed PMID:
662 35175659; PubMed Central PMCID: PMCPMC9790419.

663 20. Jungermann K, Kietzmann T. Zonation of parenchymal and nonparenchymal
664 metabolism in liver. Annu Rev Nutr. 1996;16:179-203. Epub 1996/01/01. doi:
665 10.1146/annurev.nu.16.070196.001143. PubMed PMID: 8839925.

666 21. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory
667 responses to continuous and intermittent hypoxia mediated by hypoxia-inducible
668 factors 1 and 2. Physiol Rev. 2012;92(3):967-1003. doi:
669 10.1152/physrev.00030.2011. PubMed PMID: 22811423; PubMed Central PMCID:
670 PMCPMC3893888.

671 22. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors,
672 inflammation, and immunity. Immunity. 2014;41(4):518-28. Epub 2014/11/05. doi:
673 10.1016/j.jimmuni.2014.09.008. PubMed PMID: 25367569; PubMed Central PMCID:
674 PMCPMC4346319.

675 23. Wing PAC, Liu PJ, Harris JM, Magri A, Michler T, Zhuang X, et al. Hypoxia
676 inducible factors regulate hepatitis B virus replication by activating the basal core

677 promoter. *J Hepatol.* 2021;75(1):64-73. Epub 2021/02/01. doi:
678 10.1016/j.jhep.2020.12.034. PubMed PMID: 33516779; PubMed Central PMCID:
679 PMCPMC8214165.

680 24. Riedl T, Faure-Dupuy S, Rolland M, Schuehle S, Hizir Z, Calderazzo S, et al.
681 Hypoxia-Inducible Factor 1 Alpha-Mediated RelB/APOBEC3B Down-regulation Allows
682 Hepatitis B Virus Persistence. *Hepatology.* 2021;74(4):1766-81. Epub 20210815.
683 doi: 10.1002/hep.31902. PubMed PMID: 33991110; PubMed Central PMCID:
684 PMCPMC7611739.

685 25. Thalhammer A, Bencokova Z, Poole R, Loenarz C, Adam J, O'Flaherty L, et
686 al. Human AlkB homologue 5 is a nuclear 2-oxoglutarate dependent oxygenase and
687 a direct target of hypoxia-inducible factor 1alpha (HIF-1alpha). *PLoS One.*
688 2011;6(1):e16210. Epub 2011/01/26. doi: 10.1371/journal.pone.0016210. PubMed
689 PMID: 21264265; PubMed Central PMCID: PMCPMC3021549.

690 26. Ng E, Dobrica MO, Harris JM, Wu Y, Tsukuda S, Wing PAC, et al. An
691 enrichment protocol and analysis pipeline for long read sequencing of the hepatitis B
692 virus transcriptome. *J Gen Virol.* 2023;104(5). doi: 10.1099/jgv.0.001856. PubMed
693 PMID: 37196057.

694 27. Altinel K, Hashimoto K, Wei Y, Neuveut C, Gupta I, Suzuki AM, et al. Single-
695 Nucleotide Resolution Mapping of Hepatitis B Virus Promoters in Infected Human
696 Livers and Hepatocellular Carcinoma. *J Virol.* 2016;90(23):10811-22. Epub
697 2016/09/30. doi: 10.1128/JVI.01625-16. PubMed PMID: 27681123; PubMed Central
698 PMCID: PMCPMC5110153.

699 28. Lim CS, Sozzi V, Littlejohn M, Yuen LKW, Warner N, Betz-Stablein B, et al.
700 Quantitative analysis of the splice variants expressed by the major hepatitis B virus
701 genotypes. *Microb Genom.* 2021;7(1). doi: 10.1099/mgen.0.000492. PubMed PMID:
702 33439114; PubMed Central PMCID: PMCPMC8115900.

703 29. Fry NJ, Law BA, Ilkayeva OR, Holley CL, Mansfield KD. N(6)-methyladenosine
704 is required for the hypoxic stabilization of specific mRNAs. *RNA.* 2017;23(9):1444-
705 55. Epub 2017/06/15. doi: 10.1261/rna.061044.117. PubMed PMID: 28611253;
706 PubMed Central PMCID: PMCPMC5558913.

707 30. Wang YJ, Yang B, Lai Q, Shi JF, Peng JY, Zhang Y, et al. Reprogramming of
708 m(6)A epitranscriptome is crucial for shaping of transcriptome and proteome in
709 response to hypoxia. *RNA Biol.* 2021;18(1):131-43. Epub 2020/08/05. doi:
710 10.1080/15476286.2020.1804697. PubMed PMID: 32746693; PubMed Central
711 PMCID: PMCPMC7834094.

712 31. Chen TY, Sun D, Lin WS, Lin YL, Chao YM, Chen SY, et al. Glucosamine
713 regulation of fibroblast growth factor 21 expression in liver and adipose tissues.
714 *Biochem Biophys Res Commun.* 2020;529(3):714-9. Epub 20200718. doi:
715 10.1016/j.bbrc.2020.06.070. PubMed PMID: 32736697.

716 32. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia
717 induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-
718 mediated m(6)A-demethylation of NANOG mRNA. *Proc Natl Acad Sci U S A.*
719 2016;113(14):E2047-56. Epub 2016/03/24. doi: 10.1073/pnas.1602883113.
720 PubMed PMID: 27001847; PubMed Central PMCID: PMCPMC4833258.

721 33. Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, et
722 al. Single-cell spatial reconstruction reveals global division of labour in the
723 mammalian liver. *Nature.* 2017;542(7641):352-6. Epub 2017/02/07. doi:
724 10.1038/nature21065. PubMed PMID: 28166538; PubMed Central PMCID:
725 PMCPMC5321580.

726 34. Zhao Y, Hu J, Sun X, Yang K, Yang L, Kong L, et al. Loss of m6A demethylase
727 ALKBH5 promotes post-ischemic angiogenesis via post-transcriptional stabilization of
728 WNT5A. *Clin Transl Med.* 2021;11(5):e402. Epub 2021/05/29. doi:
729 10.1002/ctm2.402. PubMed PMID: 34047466; PubMed Central PMCID:
730 PMCPMC8087997.

731 35. Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, et al. METTL3 and ALKBH5
732 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of
733 hypoxia/reoxygenation-treated cardiomyocytes. *Autophagy.* 2019;15(8):1419-37.
734 Epub 2019/03/15. doi: 10.1080/15548627.2019.1586246. PubMed PMID:
735 30870073; PubMed Central PMCID: PMCPMC6613905.

736 36. Yao MD, Jiang Q, Ma Y, Liu C, Zhu CY, Sun YN, et al. Role of METTL3-
737 Dependent N(6)-Methyladenosine mRNA Modification in the Promotion of
738 Angiogenesis. *Mol Ther.* 2020;28(10):2191-202. Epub 2020/08/07. doi:
739 10.1016/j.ymthe.2020.07.022. PubMed PMID: 32755566; PubMed Central PMCID:
740 PMCPMC7545007.

741 37. Ye F, Wang X, Tu S, Zeng L, Deng X, Luo W, et al. The effects of NCBP3 on
742 METTL3-mediated m6A RNA methylation to enhance translation process in hypoxic
743 cardiomyocytes. *J Cell Mol Med.* 2021;25(18):8920-8. Epub 2021/08/13. doi:
744 10.1111/jcmm.16852. PubMed PMID: 34382339; PubMed Central PMCID:
745 PMCPMC8435433.

746 38. Zhang Y, Chen W, Zheng X, Guo Y, Cao J, Zhang Y, et al. Regulatory role
747 and mechanism of m(6)A RNA modification in human metabolic diseases. *Mol Ther*
748 *Oncolytics.* 2021;22:52-63. Epub 2021/09/07. doi: 10.1016/j.omto.2021.05.003.
749 PubMed PMID: 34485686; PubMed Central PMCID: PMCPMC8399361.

750 39. Yu F, Wei J, Cui X, Yu C, Ni W, Bungert J, et al. Post-translational modification
751 of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response.
752 *Nucleic Acids Res.* 2021;49(10):5779-97. doi: 10.1093/nar/gkab415. PubMed PMID:
753 34048572; PubMed Central PMCID: PMCPMC8191756.

754 40. Liu Y, You Y, Lu Z, Yang J, Li P, Liu L, et al. N (6)-methyladenosine RNA
755 modification-mediated cellular metabolism rewiring inhibits viral replication. *Science*.
756 2019;365(6458):1171-6. Epub 20190822. doi: 10.1126/science.aax4468. PubMed
757 PMID: 31439758.

758 41. Qu S, Jin L, Huang H, Lin J, Gao W, Zeng Z. A positive-feedback loop between
759 HBx and ALKBH5 promotes hepatocellular carcinogenesis. *BMC Cancer*.
760 2021;21(1):686. Epub 2021/06/12. doi: 10.1186/s12885-021-08449-5. PubMed
761 PMID: 34112124; PubMed Central PMCID: PMCPMC8194239.

762 42. Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. *Philos
763 Trans R Soc Lond B Biol Sci*. 2017;372(1732). doi: 10.1098/rstb.2016.0274. PubMed
764 PMID: 28893941; PubMed Central PMCID: PMCPMC5597741.

765 43. Shmakova A, Frost M, Batie M, Kenneth NS, Rocha S. PBRM1 Cooperates
766 with YTHDF2 to Control HIF-1alpha Protein Translation. *Cells*. 2021;10(6). Epub
767 20210608. doi: 10.3390/cells10061425. PubMed PMID: 34200988; PubMed Central
768 PMCID: PMCPMC8228889.

769 44. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA
770 methylation directs translational control of heat shock response. *Nature*.
771 2015;526(7574):591-4. Epub 2015/10/13. doi: 10.1038/nature15377. PubMed
772 PMID: 26458103; PubMed Central PMCID: PMCPMC4851248.

773 45. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5'
774 UTR m(6)A Promotes Cap-Independent Translation. *Cell*. 2015;163(4):999-1010.
775 Epub 2015/11/26. doi: 10.1016/j.cell.2015.10.012. PubMed PMID: 26593424;
776 PubMed Central PMCID: PMCPMC4695625.

777 46. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-
778 methyladenosine Modulates Messenger RNA Translation Efficiency. *Cell*.
779 2015;161(6):1388-99. Epub 2015/06/06. doi: 10.1016/j.cell.2015.05.014. PubMed
780 PMID: 26046440; PubMed Central PMCID: PMCPMC4825696.

781 47. Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, et al. N(6)-Methyladenosine
782 Guides mRNA Alternative Translation during Integrated Stress Response. *Mol Cell*.
783 2018;69(4):636-47 e7. Epub 2018/02/13. doi: 10.1016/j.molcel.2018.01.019.
784 PubMed PMID: 29429926; PubMed Central PMCID: PMCPMC5816726.

785 48. Ng E, Dobrica M-O, Harris JM, Wu Y, Tsukuda S, Wing PAC, et al. An
786 enrichment protocol and analysis pipeline for long read sequencing of the hepatitis B
787 virus transcriptome. *Journal of General Virology*. 2023;104(5). doi:
788 10.1099/jgv.0.001856.

789 49. Lumley SF, Jennings D, Waddilove E, Trebes A, Delphin M, Downs LO, et al.
790 Pan-genotypic probe-based enrichment to improve efficiency of Hepatitis B virus
791 sequencing. *BioRxiv*. 2023. doi: 10.1101/2023.02.20.529276.

792 50. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*.
793 2018;34(18):3094-100. Epub 2018/05/12. doi: 10.1093/bioinformatics/bty191.
794 PubMed PMID: 29750242; PubMed Central PMCID: PMCPMC6137996.

795 51. Lim CS, Sozzi V, Littlejohn M, Yuen LKW, Warner N, Betz-Stablein B, et al.
796 Quantitative analysis of the splice variants expressed by the major hepatitis B virus
797 genotypes. *Microb Genom*. 2021. Epub 2021/01/14. doi: 10.1099/mgen.0.000492.
798 PubMed PMID: 33439114.

799 52. Belloni L, Pollicino T, De Nicola F, Guerrieri F, Raffa G, Fanciulli M, et al.
800 Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation
801 of cccDNA function. *Proc Natl Acad Sci U S A*. 2009;106(47):19975-9. Epub
802 2009/11/11. doi: 10.1073/pnas.0908365106. PubMed PMID: 19906987; PubMed
803 Central PMCID: PMCPMC2775998.

804 53. Wing PA, Davenne T, Wettengel J, Lai AG, Zhuang X, Chakraborty A, et al. A
805 dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis.
806 Life Sci Alliance. 2019;2(2). Epub 2019/03/27. doi: 10.26508/lsa.201900355. PubMed
807 PMID: 30918010; PubMed Central PMCID: PMCPMC6438393.

808

809 **Supporting information**

810

811 **Supplementary Figure 1. qPCR measurement of intracellular HBV DNA and**
812 **pgRNA in transfected cells.** HepG2-NTCP cells were transfected with HBV plasmids
813 (4h) and cultured at 18% or 1% O₂ for 72h. **(A)** Total cellular DNA was extracted at
814 4h post-transfection and HBV DNA measured, normalized to *PrP* housekeeping gene
815 and expressed relative to HBV WT. Data are presented as mean ± S.D. of n=3 from
816 one of independent 3 experiments. **(B)** HBV pgRNA and CA9 mRNAs were quantified
817 by qPCR, expressed relative to *B2M* housekeeping gene with the data presented as
818 mean ± S.D. of n=9 samples from 3 independent experiments, with statistical
819 significance assessed using a non-parametric (Kruskall-Wallis) ANOVA, * p < 0.05,
820 ** p < 0.01 *** p < 0.001, **** p < 0.0001.

821

822 **Supplementary Figure 2. Liver zonation profile of a HIF pathway gene.**

823 Liver zonation profile of a HIF pathway gene, *Ndrg1*, based on scRNA-seq data of
824 mouse liver [33].

825

826 **Supplementary Figure 3. Efficiency of ALKBH5 siRNAs.**

827 Efficiency of siRNA #1 and #2 targeting ALKBH5. HepG2-NTCP cells transfected with
828 siRNA (NC; Non-targeting, ALK; ALKBH5) for 6h and cultured at 18% or 1% O₂ for
829 72h and RNA extracted. *ALKBH5* RNA and protein levels were detected by qPCR and

830 western blotting, respectively. Statistical significance was assessed using Mann-
831 Whitney tests, with Bonferroni correction for multiple comparisons, *** $p < 0.001$.

832

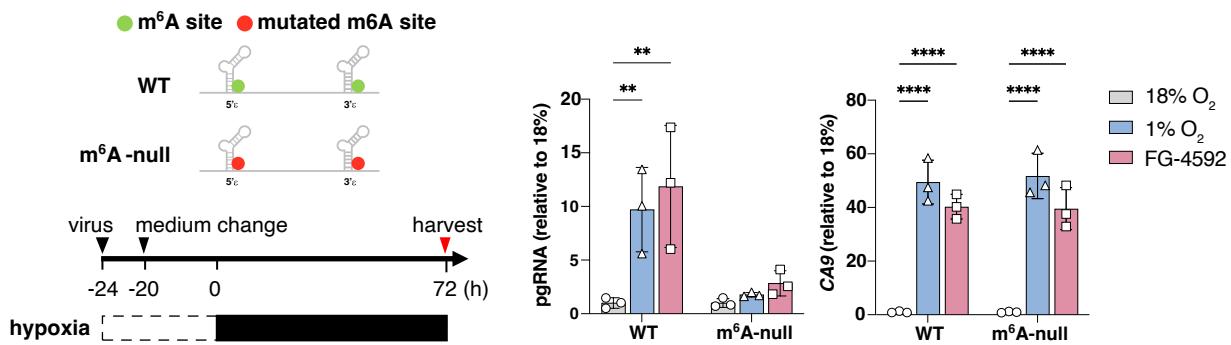
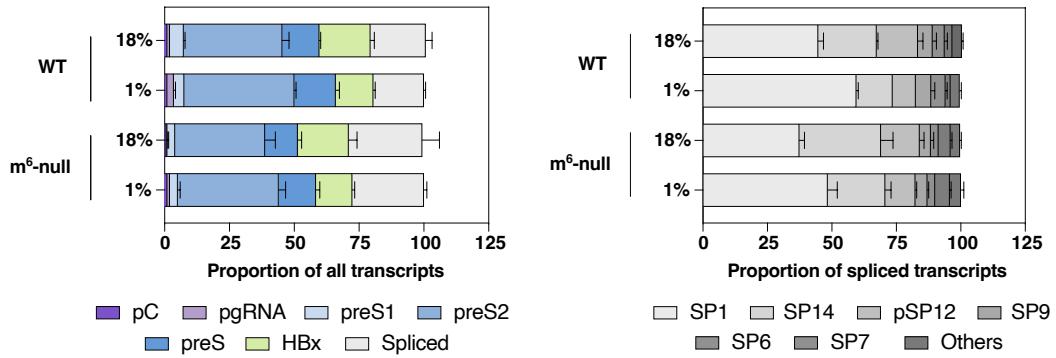
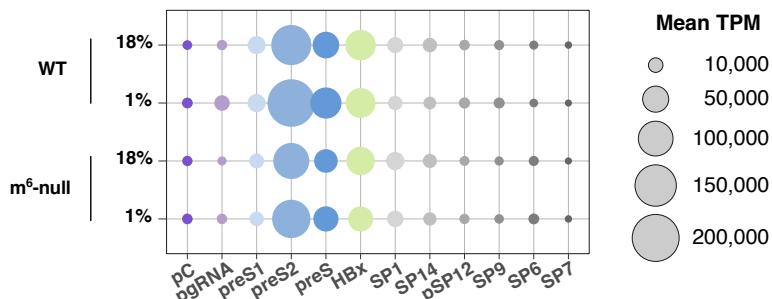
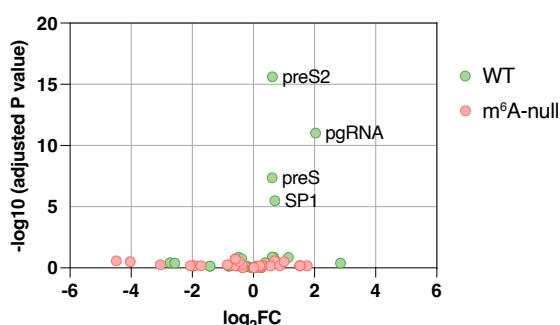
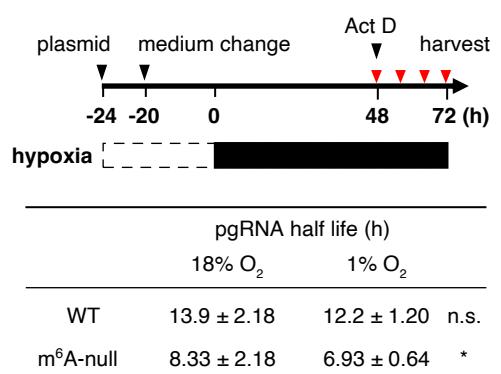
833 **Supplementary Figure 4. HIF-1 α mRNA methylation.**

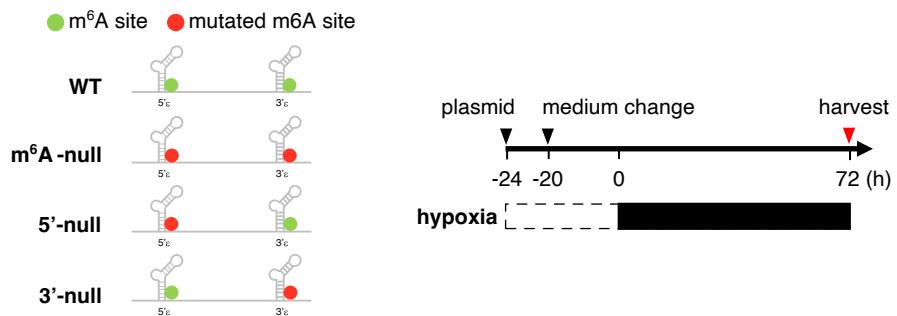
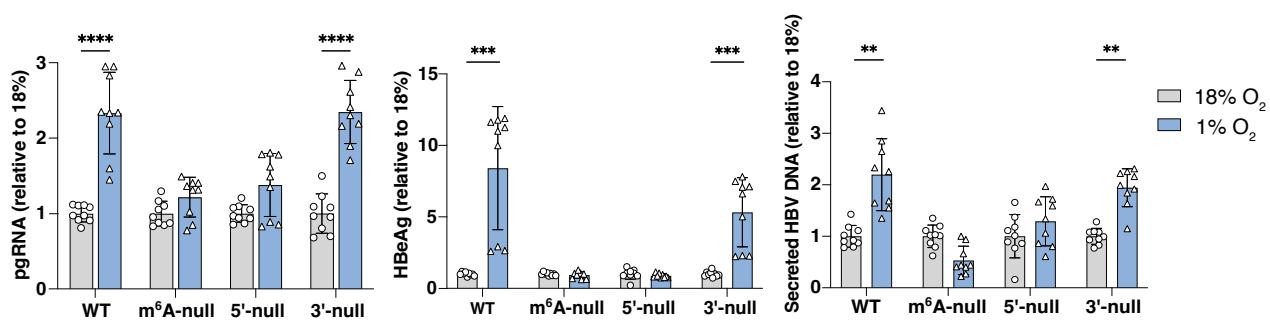
834 Methylated RNA immunoprecipitation (MeRIP) assay. HepG2-NTCP cells were
835 incubated at 18% or 1% oxygen for 72h. RNA was extracted, treated with TURBO
836 DNase and incubated overnight at 4 °C with protein A agarose beads with IgG or m⁶A
837 antibody. The beads were washed 5 times, and bound RNA eluted in 6.7 mM m⁶A
838 sodium salt, purified using a Qiagen RNA extract kit and *HIF-1 α* transcripts measured
839 by qPCR. Data are expressed relative to input total RNA and represent the mean \pm
840 S.D. of n=4 samples from 2 independent experiments.

841

842 **Supplementary Figure 5. Hydroxylated HIF-1 α protein expression in ALKBH5
843 silenced cells.**

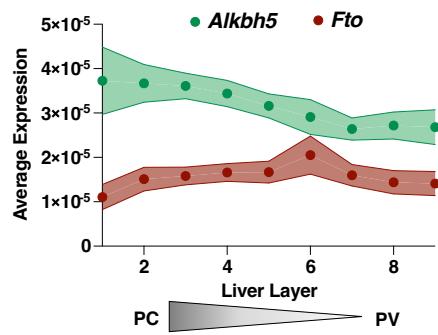
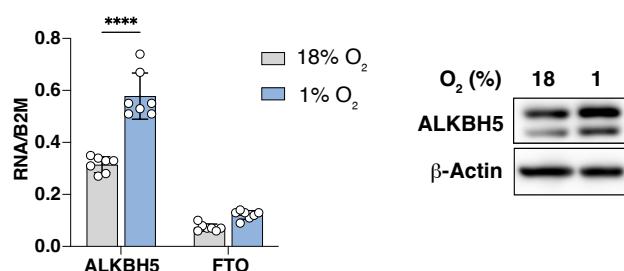
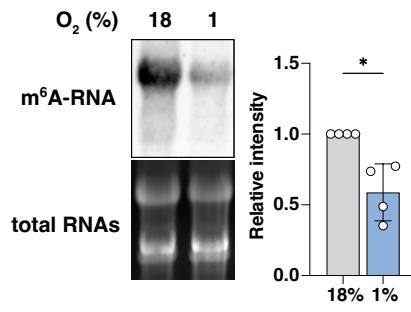
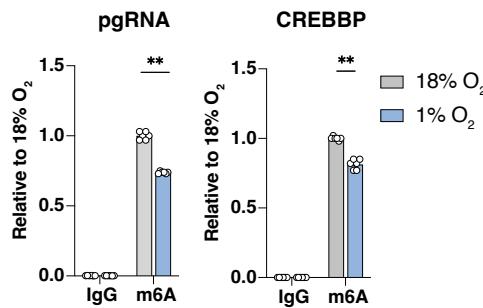
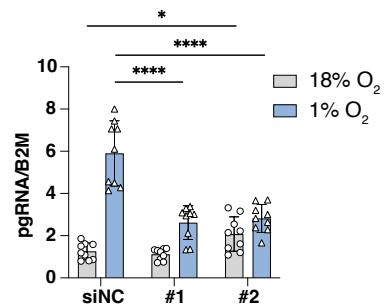
844 HepG2-NTCP cells were cultured at 1% oxygen for 24h and treated with MG132 (20
845 μ M) for 4h. Samples were collected and probed for HIF-1 α , ALKBH5 and β -Actin by
846 western blotting.

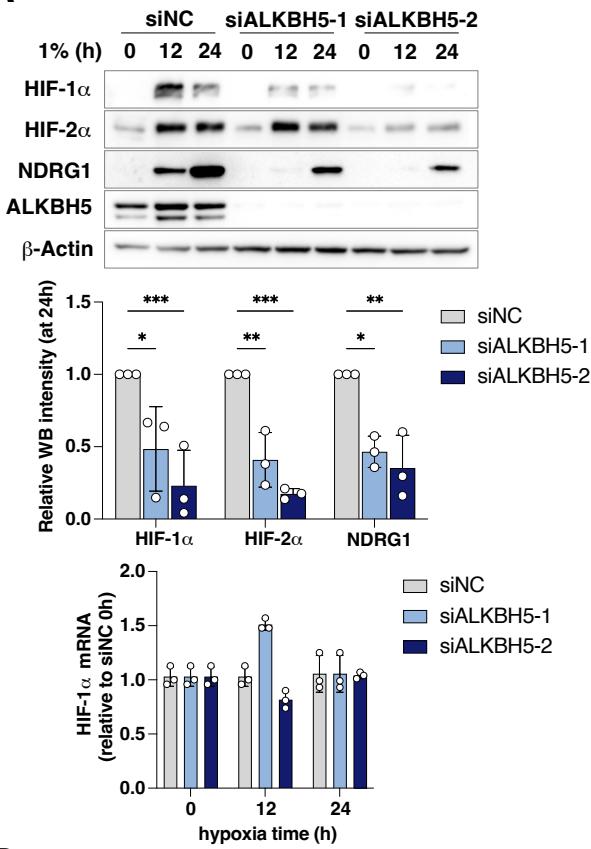
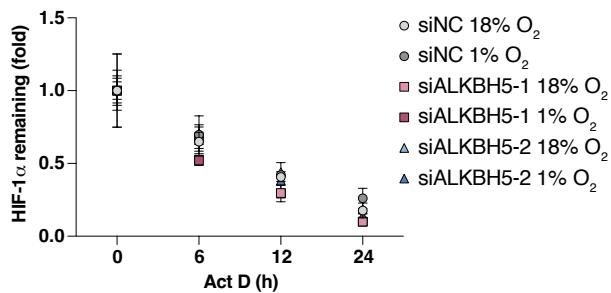
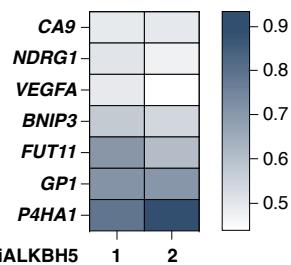
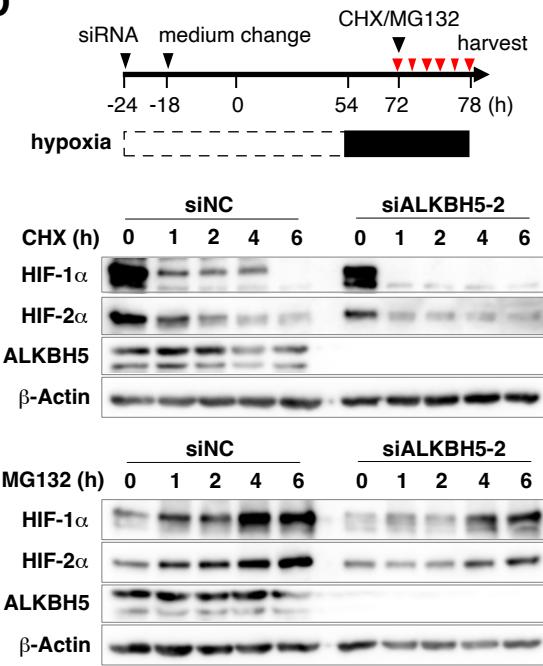





847

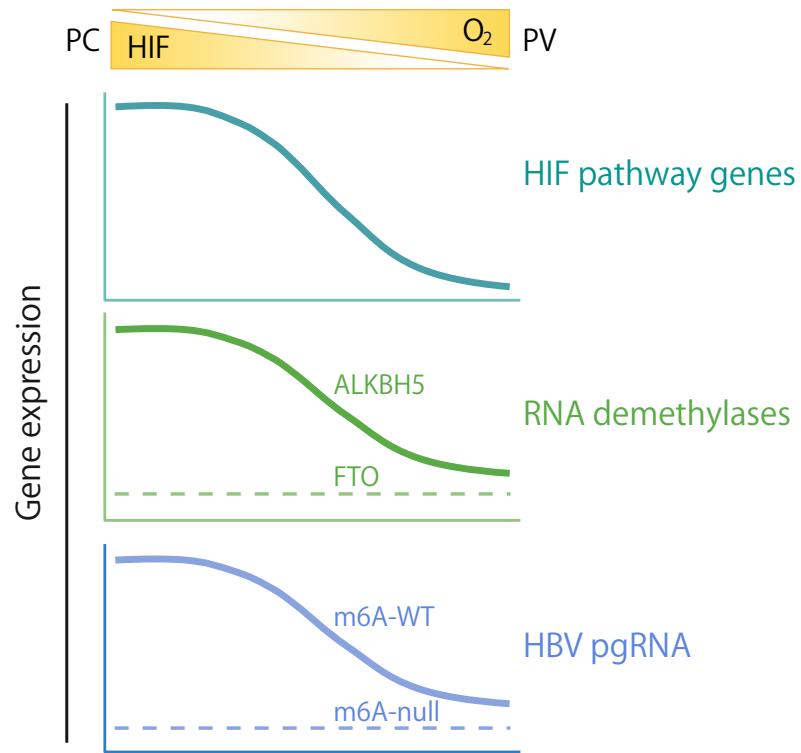


848 **Supplementary Table 1. HBV transcriptome analysis by long-read
849 sequencing.**

850 (A) HBV reads between samples. (B) HBV transcript frequencies.

851






852





A**B****C****D****E****Figure.1**


A**B****C**

	pgRNA localization		
	Nucleus (%)	Capsid (%)	Cytosol (%)
18% O_2	4.69 \pm 1.94	4.86 \pm 1.65	90.4 \pm 3.14
1% O_2	3.05 \pm 1.26	4.76 \pm 2.84	92.2 \pm 2.34

Figure. 2

A**B****C****D****E****Figure. 3**

A**B****C****D****Figure. 4**

Figure. 5