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Abstract  

Hub regions in the brain, recognized for their roles in ensuring efficient information 

transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including 

Alzheimer Disease (AD). Given their essential role in neural communication, disruptions to 

these hubs have profound implications for overall brain network integrity and functionality. 

Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized 

in AD patients. Computational models paired with evidence from animal experiments hint at 

a mechanistic explanation, suggesting that these hubs may be preferentially targeted in 

neurodegeneration, due to their high neuronal activity levels—a phenomenon termed 

"activity-dependent degeneration". Yet, two critical issues were unresolved. First, past 

research hasn't definitively shown whether hub regions face a higher likelihood of 

impairment (targeted attack) compared to other regions or if impairment likelihood is 

uniformly distributed (random attack). Second, human studies offering support for activity-

dependent explanations remain scarce.  

We applied a refined hub disruption index to determine the presence of targeted 

attacks in AD. Furthermore, we explored potential evidence for activity-dependent 

degeneration by evaluating if hub vulnerability is better explained by global connectivity or 

connectivity variations across functional systems, as well as comparing its timing relative to 

amyloid beta deposition in the brain. Our unique cohort of participants with autosomal 

dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD 

to determine the hub disruption timeline in relation to expected symptom emergence. 
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 Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks, 

detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside 

symptomatic progression. Moreover, since excessive local neuronal activity has been shown 

to increase amyloid deposition and high connectivity regions show high level of neuronal 

activity, our observation that hub disruption was primarily tied to regional differences in 

global connectivity and sequentially followed changes observed in Aβ PET cortical markers 

is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions 

were discernible 8 years before the expected age of symptom onset. 

Taken together, our findings not only align with the targeted attack on hubs model but 

also suggest that activity-dependent degeneration might be the cause of hub vulnerability. 

This deepened understanding could be instrumental in refining diagnostic techniques and 

developing targeted therapeutic strategies for AD in the future.  
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Introduction  

Alzheimer disease (AD) is the most common neurodegenerative disease that 

manifests as progressive loss of cognitive functions and affects millions of people worldwide. 

It is characterized by a cascade of complex pathologic changes in the brain including amyloid 

beta aggregation and tau tangles, resulting in neurodegeneration1. While these microscopic 

changes have been well-documented, there is growing interest in understanding how these 

pathologies translate to altered brain connectivity patterns observed in AD patients.  
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Resting-state functional connectivity (FC), as measured with temporal correlations of 

the blood oxygen level-dependent (BOLD) signals between regions of the brain from fMRI 

data collected at a task-free state2, differs in clinical and pre-clinical AD individuals versus 

cognitively normal controls3–7. FC is a widely accessible and non-invasive tool for assessing 

brain organization, and a potential imaging marker for AD8–11 since disruptions in 

connectivity between brain regions may be linked to synaptic changes before cell death and 

atrophy12. Prospective imaging studies suggested that the posterior parts of the default mode 

network deteriorate earlier than anterior parts in AD, providing evidence for a cascading 

network failure mechanism13,14. Importantly, the initiation of amyloid15,16, and tau17 

pathologies as well as the rate of their accumulation18,19 in the brain is not spatially 

homogenous, providing converging evidence for differences in regional vulnerability to 

pathological changes. However, precisely what underlies the sequence of regional FC failure, 

as well as how FC disruptions relate to the molecular pathology is unknown. 

Hub regions20 are highly connected nodes with high network centrality that play a 

critical role in facilitating efficient communication and integration of information across 

different regions of complex networks. Brain hubs are affected across multiple diseases21
, 

including AD22,23. One hypothesis for this hub vulnerability to pathology and degeneration is 

that hub regions are selectively targeted by activity-dependent damage24. Several lines of 

evidence support this hypothesis. 1) Hubs have high metabolic demands12,25–27; 2) they are 

especially susceptible to amyloid beta deposition in AD12,27–29; and, 3) they serve as the 

spreading centers for tau pathology17,30,31. Due to their topologically central role, targeted 

attacks on hubs have a more deleterious effect on network efficiency21,32–34. Indeed, FC 

alterations especially at cortical hubs12,23 have been identified in AD patients compared to 

cognitively normal controls in previous research as well as in mice with extracellular 

amyloidosis (TgCRND8 mice)35. In vivo studies in mice validate the relationship between 
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neuronal activity level and amyloid-beta deposition36,37, suggesting that increasing amyloid 

burden through increased baseline activity triggers hub disruptions. While there is strong 

theoretical and empirical evidence to support the role of hub disruption in AD, little is known 

concerning the relationship between hub disruption, dementia severity, and symptomatic 

onset.  

Here we leverage a unique population with autosomal dominant AD (ADAD), which 

allows for accurate estimation of years until symptom onset (EYO) due to the highly 

predictable onset of cognitive decline38. As a genetic form of the disease, our ADAD 

participants have a high certainty in AD diagnosis (as opposed to other forms of dementias). 

Furthermore, since ADAD occurs in a younger population (<60 years) than sporadic AD, we 

can test associations with AD pathology with minimal confounding co-pathology and can 

estimate FC network characteristics with minimal age-related changes in neurovascular 

coupling39.  

We examine the regional vulnerability in terms of lower FC by measuring FC hub 

disruption as a function of ADAD dementia progression from pre-clinical (Clinical Dementia 

Rating® [CDR®] =0) to moderate and severe dementia (CDR�1). We hypothesize that hub 

disruption is an early-emerging phenomenon that intensifies with disease progression. 

Finally, we investigated the relative timing of hub disruption compared to cortical amyloid 

deposition and cognitive decline. Our goal is to test the targeted attack on hubs model in 

ADAD over the course of disease progression and obtain evidence for activity-dependent 

degeneration.  
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Materials and methods  

Participants 

Individuals were recruited from the Dominantly Inherited Alzheimer Network 

(DIAN) Observational Study (https://dian.wustl.edu/). Here we examine cross-sectional data 

from mutation carriers (MC; N = 122) and unaffected non-carriers (NC; N = 85) family 

members (Supplementary Table 1) with alterations in presenilin 1 (PSEN1), presenilin 2 

(PSEN2), or the amyloid precursor proteins (APP)38. Age at symptom onset is relatively 

consistent within families and mutation types; this allows participants to be staged by their 

EYO38,40. Both MCs and NCs have an EYO value based their familial pedigree but only MCs 

are expected to develop ADAD. The study was reviewed and approved by the institutional 

review board at Washington University in St. Louis and written informed consent forms 

obtained from participants or their legally authorized representatives in accordance with their 

local institutional review board. The data are from the 15th annual data freeze.  

CDR stages 

The MCs were further staged by dementia severity using the global Clinical Dementia 

Rating (CDR(Morris, 1993) into three groups: cognitively normal (CDR = 0), very mild 

dementia (CDR = 0.5), and mild-to-severe dementia (CDR>=1). To control for the effect of 

aging, we age-matched the NCs for each MC group according to the following procedure. 

First, Z-scores were calculated for the age and EYO values separately using their mean and 

standard deviation across all participants, resulting in a vector of size 2x1 for each 

participant. The Euclidean distances between the vectors were calculated and the closest MC 

for each NC participant was determined, defining an age-matched group of NCs for each MC 

group (Table 1). 

MRI Data Acquisition 

Neuroimaging protocols have been previously published40. Briefly, T1-weighted 

magnetization-prepared rapid acquisition gradient echo (MP-RAGE) images were acquired at 

multiple sites on Siemens 3T scanners (Erlangen, Germany). Resting-state fMRI scans were 

acquired with echo planar imaging (EPI) while participants were instructed to maintain visual 

fixation on a crosshair. The sequence details are provided in the Supplementary Materials 
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(Supplementary Table 2). “Pre-scan normalize” was enabled to minimize gain field 

inhomogeneities attributable to proximity to the receiver coils. Acquisition lasted ~6 minutes 

each run and the number of acquired runs in the DIAN cohort varied between 1 and 3. 

MRI Data Pre-processing 

 Details on pre-processing followed previously described methods6,41 using the 4dfp 

suite of tools (http://4dfp.readthedocs.io). Briefly, slice timing correction and intensity 

normalization were performed. Head motion was corrected within and across runs. The initial 

atlas transformation was computed by affine registration of the functional MRI data to an 

atlas-representative template via the MP-RAGE (EPImean → MP-RAGE → template). A final 

atlas transformation was performed after denoising. Frames with high motion, as measured 

by DVARS (frame-to-frame signal change over the entire brain) and the frame displacement 

(FD) measures42, were censored. The DVARS criterion was individually set to accommodate 

baseline shifts (see Supporting Information in43) and the FD criterion was 0.4 mm. Frames 

were censored if either criterion was exceeded. The time series were band-pass filtered 

between 0.005 Hz and 0.1 Hz. Censored frames were approximated by linear interpolation for 

band-pass filtering only and excluded from subsequent steps. 

Denoising was then performed with a CompCor-like strategy44. As previously 

described45, nuisance regressors were derived from three compartments (white matter, 

ventricles, and extra-axial space) and were then dimensionality-reduced. White matter and 

ventricular masks were segmented in each participant using FreeSurfer 5.346 and spatially 

resampled in register with FC data. The final set of nuisance regressors also included the six 

parameters derived from rigid body head-motion correction, the global signal averaged over 

the (FreeSurfer-segmented) brain, and the global signal temporal derivative. Finally, the 

volumetric time-series were non-linearly warped to Montreal Neurological Institute (MNI) 

152 space (3mm)3 voxels using FNIRT47.  

Functional Connectivity 

We selected 246 functional regions of interest (ROIs) separated into 13 networks 

throughout the cortical and subcortical areas as previously described48. The functional ROIs 

are a combination of cortical ROIs49 and subcortical ROIs50 (Figure 1A). Regions not reliably 

covered by the field of view (FOV) such as the cerebellar ROIs were excluded. A list of ROI 

coordinates and anatomical assignments has been described in previous publications41,48 and 
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can be found in the Supplementary Materials (Supplementary Table 3). FC was estimated 

using zero-lag Pearson correlations calculated between 246 ROIs and Fisher-Z-transformed 

to improve normality. The resultant FC matrix can be represented as a graph with nodes as 

individual ROIs and edges with weights as the correlation values z(r). Group-average FC was 

generated by averaging the z(r) values across individual FC matrices within each of the CDR 

and age-matched NC groups (Figure 2). 

Data Harmonization 

We used Correcting Covariance Batch Effects (CovBat, 

https://github.com/andy1764/CovBat_Harmonization)51 to remove site effects in mean, 

variance, and covariance on FC data, with age, mutation, EYO, education, CDR, sex, 

mutation gene type (PSEN1/PSEN2/APP), and APOE alleles included as the biological 

covariates that should be protected for during the removal of site effects. After CovBat, two 

participants (one MC and one NC) were removed from the analysis because they were only 

represented by a single site and harmonization could not be performed by the CovBat 

algorithm. The final sample size for analysis was MC = 121 and NC = 84. Similar qualitative 

results were obtained without the CovBat correction. 

Graph Theory Metrics 

All graph theory metrics were calculated using the Brain Connectivity Toolbox (BCT, 

brain-connectivity-toolbox.net), a MATLAB toolbox for complex brain-network analysis52. 

Since regions with a high total positive connectivity tend to have a high total negative 

connectivity (Supplementary Figure 1), we asymmetrically weighed the positive and negative 

edges for all measures according to their relative magnitude at a given node following 

previous literature53. This allows for non-zero strengths at a full FC matrix without threshold 

(Supplementary Figure 2). Strength is calculated as the sum of signed edge weights around a 

node in a graph (Figure1E). This effectively measures global connectivity at an ROI. We also 

calculated two additional measures of centrality concerning module affiliations54: the within-

module strength Z-Score (Z) and participation coefficient. Z measures how “well-connected” 

a node is to other nodes in the module. The participation coefficient measures the diversity of 

intermodular connections of individual nodes and within-module strength Z-score.  

Given that there is no gold standard method for thresholding the FC matrix to create a 

graph representation and calculate graph metrics55,56, we chose an edge density threshold of 
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5% for downstream analyses which ensures that the graph is sparse and free of negative 

correlations57. To demonstrate that our results are not dependent on the choice of threshold, 

we also showed results at a range of edge density similar to previous research58, an edge 

density of 1-5% at 1% intervals and 10%-90% at 10% intervals. This is achieved by finding 

the maximum spanning tree (MST) backbone first using the BCT toolbox function 

(backbone_wu.m) and continually adding edges with the largest correlation values until the 

desired edge density is reached59. This is to ensure graph connectedness at the sparsest 

densities.  

Since strength and participation coefficient measures show a correlation with scan 

time, the remaining scan time after frame censoring was regressed out of these graph metrics 

to correct for the possible confound of individual differences in total scan time remaining 

after frame censoring (Supplementary Figure 3). 

Hub Disruption Index 

To measure how the centrality of each region differs from a healthy reference, we 

chose NC match 1 to be the reference group. This choice is motivated by the fact that this 

group is the closest to what is usually considered young, healthy adults22,23, which has been 

used as a baseline for calculating hub disruption in prior studies23. The average nodal FC 

strength of the NC match 1 group was calculated and the percentage difference from this 

baseline average strength was calculated for each MC group (CDR = 0, CDR = 0.5, CDR�1; 

Figure 3B) and the remaining two NC groups (NC match 2, NC match 3). While using a 

consistent baseline reference group enables comparison of the metric across groups60, we also 

ran a supplementary analysis using the age-matched NC groups as a reference for each MC 

group and obtained qualitatively the same result.  

We calculated a normalized hub disruption index adapted from prior work60 by fitting 

a linear regression slope (��) where the dependent variable is the difference in strength for 

either the group average or an individual from the average strength of the reference group, 

which is then normalized by dividing the average strength of the reference group. The 

primary method by which selective hub disruption has been indexed in prior work is to 

calculate the slope of the linear regression model between the mean local network measures 

of a reference group, and the difference between that reference and the participant under 

study23,60–63(Figure 1A). A negative slope has been interpreted as the presence of hub 

disruption. In practice, this definition has difficulty distinguishing between a targeted attacks 
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on network hubs vs. a random attack, as the correlation would appear negative under both 

models.  An intuitive analogy is to examine the effect of a natural disaster on the affluent or 

impoverished areas. While affluent areas of a city lose more in absolute amounts, it is unclear 

whether they are disproportionally more affected, or it is merely an effect of starting from a 

higher baseline point. We, therefore, modified the “hub disruption index” to measure the 

percentage difference in connectivity strength versus baseline connectivity strength such that 

only targeted attacks on hubs would result in a negative linear regression slope (Figure 1B). 

We also standardized the baseline strength into Z-scores to increase the interpretability of the 

metric. In this way, we can unambiguously test the selective reduction in global connectivity 

at hubs and compare the hub disruption index quantitatively across disease stages. The 

mathematical equation is shown below:  

������������	
������������


������������
� 100 �  �	
��
�� 	��
������� ��  (1) 

A more negative hub disruption index here indicates that the strengths in high-

strength hubs are reduced by a larger proportion than in other low-strength regions, whereas a 

zero-hub disruption index indicates that the strength in high-strength regions and low-

strength regions are changed to the same extent. 

We used global connectivity strength as the primary measure of centrality due to its 

simplicity and strong correspondence to other measures in AD disease factors, e.g. hubs with 

high global FC have spatial correspondence with amyloid deposition16,18,28, tau burdens30 and 

metabolic factors26,64. However, there exist alternative definitions for hubs20,57,65. 

Specifically, some researchers argued that in functional networks, the participation 

coefficient, which captures the diversity of connections to different modules, is the key 

metric for regional importance or centrality57. On the other hand, within-module strength Z 

score is also an important measure of nodal centrality54. Therefore, we additionally examined 

hub disruption as defined by the participation coefficient and within-module Z-score using a 

similar asymmetric weighting53 with the BCT toolbox functions (participation_coef_sign.m) 

and custom MATLAB scripts, respectively. 

Cognitive Composite Score 

We used a cognitive composite score (CCS)66–68, developed for use as an outcome 

measure in DIAN clinical trials, to measure the cognitive decline for each individual. CCS is 

a global summary of cognitive functions. Details of the calculation have been previously 
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described68. Briefly, a cognitive composite score is calculated by averaging each test’s 

normalized scores by equal weight for 1) the DIAN Word List test delayed recall, 2) the 

delayed recall score from the Wechsler Memory Scale-Revised Logical Memory IIA subtest, 

3) the Mini-Mental State Exam (MMSE), and 4) the Wechsler Adult Intelligence Scale-

Revised Digit-Symbol Substitution test (Supplementary Table 4). Normalization was carried 

out with respect to the mean and SD reported in a population sample of 58 MCs with EYO�-

1568. For analyses using the cognitive composite scores, we excluded one MC with a >1 year 

gap between psychometric tests and MRI sessions, and additionally 9 MC who did not 

complete all four tests. 

Positron emission tomography (PET) measures of cortical 

amyloid deposition 

Amyloid-beta PET imaging with Pittsburgh Compound B (PiB) was performed using 

a bolus injection of [11C] PiB40. PET data were acquired using either a 70-min scan 

beginning at the start of the injection or a 30-min scan starting 40 min after the injection. 

Data were converted to regional standardized uptake value ratios (SUVRs) relative to the 

cerebellar grey matter using ROI generated in FreeSurfer46 with partial volume correction via  

a regional spread function . Amyloid positivity was defined as PiB partial volume corrected 

SUVR across the precuneus, prefrontal, gyrus rectus, and temporal FreeSurfer regions of 

interest (ROI)>1.4269,70. 

Statistical Models for Biomarkers 

Generalized Additive Mixed Models were fit with the gamm() function from R 

package (mgcv) to examine the relationship between different biomarkers and the EYO.  A 

smooth function was applied to the EYO separated by mutation carrier status (MC or NC), 

with sex, education as fixed effect covariates, and a random effect of family. The time of 

divergence between MC and NC was determined as the point where the predicted 95% 

simultaneous confidence interval starts to have no overlap71. For predicting the response of 

��, we further include the residual motion measure (DVARS) as a covariate. 

For the relationship between CCS and �� , we fit a linear mixed effects model with 

fixed effect covariates sex, education, DVARS and age and a random effect of family with 

the lmer() function from R package lme4.   
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Statistical Tests and Visualization 

All standard statistical tests (e.g., F-tests, t-tests, ANOVA) were performed with 

MATLAB R2020b or R (4.1.0). FDR72 was used for the correction of multiple comparisons 

at a significance level of 0.05.  

Visualizations of regional graph theory metrics on the brain and FC matrix were 

generated using Network Level Analysis toolbox (Beta version) 

(https://github.com/mwheelock/Network-Level-Analysis), BrainNet Viewer toolbox73, and 

custom MATLAB and R scripts. 

Data availability  

Data that support the findings of this study are available from DIAN at 

https://dian.wustl.edu/our-research/observational-study/dian-observational-study-

investigator-resources/. 

Results  

MC and NC groups do not differ in demographic features and 

data quality 

As designed, each of the MC and NC-matched CDR groups did not differ in age or 

EYO (Table 1). The matched groups also did not differ in DVARS or minutes of low-motion 

data. Not surprisingly, the CDR 0 groups did not differ on CCS, however, the MC and NC 

groups differed on CCS at CDR = 0.5 and CDR>=1. 

A selected subset of ROIs shows significant differences in strength 

from the healthy reference 

We defined the average strength of ROIs in the young cognitively normal non-carrier 

group (NC match 1, N = 52) as a reference of hub centrality (Figure 3A). We first established 

that the number of participants and minutes of FC data were sufficient to obtain reliable 

group-level RSFC measures (Appendix A). Notably, we were able to identify the hubs 

described  in literature28,58,74, e.g. precuneus/posterior cingulate, dorsolateral prefrontal 
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cortex, supramarginal gyrus, medial prefrontal cortex  (Figure 3A; Supplementary Figure 4). 

This is robust to the choice of edge density threshold ann 

d/or percentile cut-offs (Supplementary Figure 5). Additionally, we compared the ROI 

strengths between all MC groups and the reference using a two-sample t-test (FDR<0.05) 

(Supplementary Figure 6). Briefly, no ROI had significant difference in strength between MC 

(CDR=0) and the reference. In MC (CDR=0.5), 19 ROIs covering the superior frontal gyrus, 

precuneus, middle temporal gyrus, middle occipital gyrus, middle frontal gyrus, inferior 

parietal lobule, inferior occipital gyrus, fusiform gyrus and cuneus have significantly lower 

strength compared to the reference. In MC (CDR�1), three ROIs (in the insula, thalamus and 

parahippocampal gyrus) showed significant higher strength compared to the reference, and 30 

ROIs (in angular gyrus, anterior cingulate, claustrum, cuneus, fusiform gyrus, inferior parietal 

lobule, inferior temporal gyrus, insula, medial frontal gyrus, middle occipital gyrus, middle 

temporal gyrus, parahippocampal gyrus, postcentral gyrus, posterior cingulate, precuneus, 

superior frontal gyrus, superior temporal gyrus and thalamus) showed significantly lower 

strength compared to the reference. On the other hand, none of the ROIs in NC match 2 or 

NC match 3 groups shown significant differences in strength from NC match 1 

(Supplementary Figure 7). 

Hub disruption increases with CDR stage, not age  

We measured the group-level hub disruption index by calculating the percentage 

difference from the reference for the mean strength in each of the MC groups (CDR=0, 

CDR=0.5, and CDR � 1) (Figure 3B; Supplementary Figure 8). The group-level hub 

disruption index for all three MC CDR groups was significantly different from zero (Table 

2). In addition, �� became increasingly more negative across CDR stages. The hub disruption 

index (a.k.a. regression slope in Figure 3B) is significantly different between MC (CDR = 

0.5) and  MC (CDR = 0) (F(1,488) = 12.0, P<0.001, partial �
  = 0.024), between MC 

(CDR=0.5) and MC (CDR�1) (F(1,488) = 22.6, P<0.001, partial �
 = 0.044), and between 

MC (CDR=0) and MC (CDR�1) (F(1,488) = 61.6, P<0.001, partial �
 = 0.112). Our results 

are qualitatively replicated at a wide range of threshold choices (Supplementary Figure 9). On 

average, nodes in the cingulo-opercular network showed the highest baseline strength and 

largest % strength difference from baseline across multiple thresholds (Supplementary Figure 

10). In addition to the group-level hub disruption index, we calculated the hub disruption 

index for each participant in the MC and NC groups. All MC groups had a hub disruption 
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index that differed from zero (FDR-adjusted P<0.001) while no NC group had a hub 

disruption index that differed from zero (FDR-adjusted P>0.05) (Supplementary Figure 11, 

Supplementary Table. 5). Specifically, for MC, a one-way ANOVA demonstrated that the 

hub disruption index differed across the CDR groups (F(2,118) =8.8, P<0.001, �
 = 0.130). 

Post-hoc two-sample t-tests with FDR correction revealed significant group differences (t(87) 

= 4.03, P = 0.002, Cohen’d = 1.02) between CDR=0 (M = -5.6, SD = 11.1) and CDR�1 

participants (M=-16.7, SD=10.3), and between CDR=0.5 (M = -9.6, SD = 9.6) and CDR�1 

participants (t(50) = 2.52, P=0.03, Cohen’s d = 0.72) (Figure 3C).  

Next, we asked whether this observation can be explained by increasing age. We 

calculated the hub disruption index for the age-matched NC groups 2 and 3 with the same 

procedure (Figure 3D). The group-level hub disruption index for NC groups did not 

significantly differ from zero (Table 2). At the individual level, there were no differences 

among NC groups (one-way ANOVA, F(2,81) = 0.07, P = 0.93) (Figure 3E), nor a 

significant relationship between �� and age in NC (linear regression, � = 0.01, R2<0.001, F(2, 

82) = 0.0072, P = 0.933). 

Changes in AD biomarkers often precedes dementia symptoms in AD38,75,76. A subset 

of the MC (CDR=0) group can be classified as amyloid beta positive (Aβ+) (N = 29/60) 

according to their amyloid PET results (Methods). With one-sample t-tests with FDR 

correction, we found that both groups had hub disruption index significantly lower than 0 

(Aβ-: M = -5.4, SD = 11.2, Cohen’s d = -0.48, t(30) = -2.7, P = 0.012; Aβ+: M = -5.7, SD = 

11.5, Cohen’s d = -0.50, t(28) = -2.6, P = 0.012). However, there was no significant 

difference in hub disruption index between the Aβ- and Aβ+ groups (two-sample t-test, two-

tailed P = 0.92) (Figure 3F-G). Changes in amyloid-beta accumulation in PET imaging often 

precedes dementia symptoms in AD38,75,76. A subset of the MC (CDR=0) group can be 

classified as amyloid beta positive (Aβ+) (N = 29) according to their amyloid PET results 

(Methods). With one-sample t-tests with FDR correction, we found that both groups have hub 

disruption index significantly lower than 0 (Aβ-: M = -5.4, SD = 11.2, Cohen’s d = -0.48, 

t(30) = -2.7, P = 0.012; Aβ+: M = -5.7, SD = 11.5, Cohen’s d = -0.50, t(28) = -2.6, P = 

0.012). However, there was no significant difference in hub disruption index between the Aβ- 

and Aβ+ groups (two-sample t-test, two-tailed P = 0.92) (Figure 3F-G).  
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Hub disruption is best explained by differences in regional global 

connectivity 

To understand the key drivers of hub vulnerability in ADAD, we calculated the hub 

disruption index using two alternative measures based on their network membership instead 

of global connectivity strength: 1) the within-module connectivity rank (within-module 

strength Z-score, Z) and 2) the connectivity diversity (Participation Coefficient, Pc) (Figure 

4A). Overall, both participation coefficient and within module Z-score effects were less 

sensitive to ADAD progression than using the global connectivity strength as the reference. 

Thus, we focused subsequent analyses on the hub disruption index with regards to the global 

connectivity strength. Detailed statistics can be found in Table 2 and Appendix B. 

Hub disruption index diverges between mutation carriers and 

non-carriers at an earlier EYO than the separation of general 

cognitive performance 

Generalized Additive Mixed Models were fit to examine the relationship between hub 

disruption or other biomarkers and the EYO, as well as to obtain the point of divergence 

between MC and NC. For the hub disruption index (���, this was calculated to be EYO = -7.9 

years (Figure 5A). In comparison, the total cortical amyloid deposition measured as PiB 

SUVR ratio diverged at EYO = -14.8 (Figure 5B), and the cognitive composite score measure 

diverged at EYO = -6.8 years (Figure 5C). Thus, we found that the divergence of hub 

disruption index preceded the divergence of cognitive performance measure and followed the 

earlier stage of amyloid deposition.  

Greater hub disruption is correlated with worse general cognition  

Lastly, we found there existed a positive correlation between ��  and CCS (r=0.3, 

t(110)=3.27, P=0.001). We further examined whether an individual’s hub disruption could 

explain unique variance in the cognitive composite score of individual MCs after controlling 

for potentially confounding covariates (age, sex, years of education, motion in scan measured 

by DVARS; and family as a random effect. The hub disruption index was positively related 

with cognitive composite scores at the edge threshold of 5% (�_�S=0.02�0.01, t(105)=2.53 , 

P=0.013) and across different edge thresholds (Table 3, Figure 5D), suggesting that greater 
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hub disruption (a.k.a. more negative hub disruption index) correlated with worse general 

cognition.  

Discussion  

Consistent with a targeted attack on hubs model, the proportion of reduction in FC at 

individual regions in ADAD was positively related to the total global connectivity of that 

region in the unaffected family members of ADAD participants. This preferential disruption 

of hub connectivity increased with CDR stage but not age, is best explained by global 

connectivity, less so to the within-module connectivity rank, and not to the diversity of 

connectivity across resting-state networks. This preferential disruption of hub connectivity is 

seen at all stages of disease progression in ADAD MC and starts to differentiate MC and NC 

at about EYO = 8 years. Additionally, greater (more negative) hub disruption was associated 

with worse general cognition after controlling for relevant covariates.  

Progressive hub disruption is consistent with popular network 

failure models of AD 

Prior studies endorse a cascading network failure starting from the posterior default 

mode network (DMN) and progressing to the anterior and ventral DMN13. Our results 

complement this observation by providing a possible underlying mechanism for this 

cascading process and extending it beyond default mode network, whereby the vulnerability 

of regions to the reduction in FC is dependent on their centrality in the whole brain network. 

Nodes that have the highest centrality (e.g., posterior default mode network, Figure 3A) were 

among the first to show decreased FC, consistent with existing literature13. Over time, 

changes in processing burden shifts from one hub to other hubs, further enhancing the 

aberrant amyloid- �  precursor protein processing and amyloidosis in the other hubs13, 

consistent with our progressive increase in hub disruption with disease. Admittedly, FC is an 

indirect measure of connectivity across regions, and future research could investigate hub 

vulnerability in structural networks using diffusion MRI.  

 

Hub disruption is best explained by global connectivity  
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Despite the wide use of “functional hubs” in the literature, what defines a functional 

hub has not reached a consensus20,57,65. Hubs can be described in terms of their network 

membership (e.g., default mode network), where connectors are important for communication 

between networks and module centers are important for communication within networks. The 

nodes with high abundance of intermodule connections (connectors) form a structural rich 

club80, which are also known to be affected in AD81, although this concept is not universally 

accepted (other studies suggest that the highly rich-club core was preserved and the 

disruptions started in the periphery82). Previous literature on brain lesion patients suggested 

that the integrity of brain network organization is severely compromised when damage is in 

connectors but not module centers83. Other studies also report differential outcomes in 

network structure when damage is localized to module centers or connectors34. One recent 

study has also suggested that the amyloid-beta accumulation rate was faster at connectors19. 

On the other hand, our results here suggested that hub disruption is best explained by 

differences in global connectivity across regions, rather than their roles to communicate 

between or within networks. This is in line with the hypothesis that high metabolic demands 

associated with high global connectivity may trigger downstream cellular and molecular 

events that result in neurodegeneration13, conveying preferential/selective vulnerability. For 

example, calcium instability caused by amyloid beta peptides may render human cortical 

neurons vulnerable to excitotoxicity84, and this could result in further neurodegeneration in 

AD85.  

Hub disruption predates cognitive changes but follows amyloid 

PET changes 

The effectiveness of a biomarker can be evaluated based on its ability to detect early 

indications of pathology prior to disease onset. Investigating the initial stages of decline in 

healthy brains compared to those AD offers substantial potential for early identification 

before AD symptoms manifest. Because of the highly consistent familial disease onset for 

ADAD, we were able to compare this biomarker across EYO and other disease-related 

changes including cognitive composite scores and cortical amyloid deposition. We found that 

the hub disruption index first demonstrated a divergence between groups ~8 years before 

EYO—much earlier than  the divergence in global FC signature (~4 years)—between 

converters and non-converters in sporadic AD71. Hub disruption index also diverges between 

MCs and NCs before the changes in the general cognitive score (~7 years), but after hypo-
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metabolism (~10 year), and increased concentrations of cerebral spinal fluid tau protein (~15 

year)38, and the amyloid PET changes (~15 year). This is consistent with previously 

hypothesized disease progression where the FC disruption follows from amyloid-beta 

deposition and potentially excessive chronic activity24,86, and eventually contributes to 

cognitive impairment (Supplementary Figure 16). We did not find significant differences 

between the hub disruption index in Aβ+ and Aβ- participants in the MC (CDR=0) group, 

despite Aβ+ participants having slightly negative hub disruption index. However, this lack of 

a difference between Aβ- and Aβ+ individuals should be viewed cautiously given the modest 

sample sizes. We do note the limitation that our EYO calculation is based on mutation and 

parental symptom onset and may not precisely reflect the true EYO. Therefore, the best 

practice is to interpret the EYO years in relative terms for different biomarkers instead of 

taking it at purely its face value. We did not find significant differences between the hub 

disruption index in Aβ+ and Aβ- participants in the MC (CDR=0) group, despite Aβ+ 

participants having slightly negative hub disruption index. However, this lack of a difference 

between Aβ- and Aβ+ individuals should be viewed cautiously given the small sample size 

for the comparison.   

Comparison to other network topology studies in AD 

Other studies of network topology in AD have examined global graph theory 

measures such as small-worldness, global clustering coefficient, and characteristic path 

length58,87. However, those measures are generally sensitive to network sparsity and require a 

careful choice of null models88. Further, it is hard to interpret the biological relevance for 

those global measures. In contrast, hubs with high global FC have been linked to amyloid 

deposition16,18,28, tau burden30 and metabolic factors26,64. They also overlap with the regions 

that demonstrated high heritability89. Therefore, our research on hub vulnerability is 

literature-driven with an attempt to link abstract network topology measures to molecular and 

cellular pathologies.  

Implications for AD research, prevention, and treatment 

We found that hub disruption, or increased vulnerability to reduced FC at highly 

central hub regions, is prevalent across the course of ADAD, with increasing severity as the 

disease progresses. Our results here have key implications for future AD research and 

therapeutics development: we provided a testable hypothesis where targeted pharmacological 
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manipulation, non-invasive stimulation, or behavioral training to alter neuronal excitability90 

especially at hub regions could alter the progression of AD. Existing research has 

demonstrated in an awake rodent model that acute inactivation of a hub region (dorsal 

anterior cingulate cortex) has profound effects on the whole network91. Future studies in 

animal models of AD could further validate this with optogenetic and chemogenetic 

manipulations. Furthermore, previous literature has suggested that “restoration of the 

topology of resting-state FC may aid in cognitive repair and recovery”32,92, and those can be 

further tested in future studies.  

On the other hand, we found that hub disruption is positively related to the cognitive 

composite scores after considering the effect of age, sex, years of education, and average 

motion of retained frame. And the separation of hub disruption between MC and NC starts 

shortly after the increased levels of cortical amyloid deposition and at around the same time 

as preclinical measures of cognitive decline. This indicates that our new measure of resting-

state FC change has the potential to act as a non-invasive, low-cost, and accessible biomarker 

especially given compared to CSF and PET for prevention studies and clinical trials to aid the 

development of new treatments and monitor their effectiveness. Other biomarkers focusing 

on DMN network failure have been proposed93, but our measure is conceptually 

straightforward, easy to calculate, and biologically intuitive. In addition, previous measures 

have focused on distinguishing AD patients from controls, whereas the current study mapped 

a progressive relationship between FC and centrality across the clinical dementia stages.  

Limitations and future directions  

While we concluded that increasing hub disruption was related to disease progression 

and not aging, participants involved in this study were relatively young (18-69 years). It is 

still possible that a similar increase in hub vulnerability would be observed at a much older 

age, as seen in other age-related changes in FC94,95. Notably, another study using cognitively 

normal adults from OASIS-3 (42-95 years) seemed to show the opposite result to the current 

study19, whereby functional hubs were particularly vulnerable to the higher annual 

accumulation of amyloid beta but have a slower FC decrease than non-hub regions. However, 

there are also several important methodological differences between that study and ours: 1) 

they employed the GLASSO algorithm to estimate FC with only direct connections while we 

used the simple Pearson’s correlation, and 2) they define hubs as regions with high 

participation coefficients and we found that at certain edge density threshold, the strength and 
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the participation coefficient of a node could be negatively correlated. Additionally, even 

though previous work has found comparable FC changes in ADAD to sporadic AD (Smith et 

al., 2021; Strain et al., 2022; Wheelock et al., 2023), our results are yet to be confirmed in 

sporadic AD. Further validations on longitudinal changes, and on subjects with more imaging 

data are needed to assess whether hub disruption could be a reliable biomarker of individual 

disease progression in AD. Furthermore, future investigations in large brain-wide single-cell 

transcriptome data (e.g. Allen Human Brain Atlas) may be useful in linking the hub 

vulnerability to the underlying biological mechanisms96,97.  

Conclusions 

We investigated the relationship between FC differences across ROIs and baseline 

centrality measures. We demonstrated that hubs with high global connectivity are especially 

vulnerable to reduction in FC in individuals with ADAD, consistent with a targeted attack on 

hubs model. Moreover, this disruption of hub connectivity becomes more severe with 

increasing CDR stage and occurs around 8 years before symptom onset, slightly preceding 

cognitive changes but following amyloid PET changes, indicating the early and progressive 

nature of hub vulnerability in AD. Interestingly, our results also suggest that the preferential 

disruption of FC in hub regions is more related to global connectivity rather than within-

module connectivity or diversity of connectivity across networks. These findings provide 

insights into the complex dynamics of brain network dysfunction in AD and the critical role 

of hubs in this process. 
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Appendix 1  

Dominantly Inherited Alzheimer Network 
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Figure legends 

Figure 1. Graph theory method and hub disruption. (A) A resting-state functional 

connectivity (FC) is obtained from the Pearson correlation of the time series in each of the 

246 cortical and subcortical pre-defined region of interest (ROI) pairs. The ROIs belong to 13 

Networks: SMd, somatomotor dorsal; SMl, somatomotor lateral; CO, cingulo-opercular; 

AUD, auditory; DMN, default mode network; Mem, memory network; Vis, visual network; 

FPN, frontoparietal network; SN, salience network; BG, basal ganglia; Thal, thalamus; VAN, 

ventral attention network; DAN, dorsal attention network. Following convention in previous 

literature, a sparse graph is generated by thresholding the rsFC matrix at an edge density 

threshold of 5% starting from the maximum spanning tree (MST) backbone to ensure the 

connectedness of the graph. However, to demonstrate that our results are not limited to the 

threshold choice we also applied other thresholds. The graph generated has weighted edges 

that preserve the strength of individual connections. (B) Original method of hub disruption 

calculation. (C) New method of hub disruption calculation. (D) Cartoon illustration of 

targeted attack at the hubs. (E) Cartoon illustrating random damage.  

 

Figure 2. Functional connectivity (FC) within DIAN participant groups. Mean (lower-

triangle) and standard deviation (upper-triangle) of Fisher Z-transformed FC matrix of 246 

region of interests for mutation carriers (MC) at 3 Clinical Dementia Rating stages (CDR = 0, 

CDR = 0.5, CDR>=1) and corresponding age and EYO matched non-carrier (NC) groups. 

The FC is sorted by the networks in Figure 1 with corresponding colors. 

 

Figure 3. Hub disruption across CDR stages. (A) (Left) Distribution of average strength 

(S) across NC match 1 group, (Middle) nodes with S higher than the 85th percentile. (Right) 

cartoon illustrating that strength is calculated by summing the weights across connected 

edges. (B) The % S difference against the baseline S Z-score in MC groups. (C) Individual 

hub disruption index (��� for MC groups. (D) The % S difference against the baseline S Z-

score in NC groups. E) Individual ��  for NC groups. (F) The % S difference against the 

baseline S Z-score in subsets of Aβ- and Aβ+ participants in the MC(CDR=0) group. (G) 

Individual �� for Aβ- and Aβ+ participants in the MC(CDR=0) group. Shaded areas show 

95% confidence interval. Error bars show mean and standard deviation. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.10.29.564633doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.29.564633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 
 

 

Figure 4. Hub disruption across CDR stages at module centers versus connectors. (A) 

(Left) Distribution of average participation coefficient (Pc) across NC match 1 group, 

(Middle) distribution of within strength Z-score (Z) across NC match 1 group, (Right) 

cartoon illustrating the representation of module centers and connectors on a graph. Module 

centers are nodes with high Z and connectors are nodes with high Pc. (B) The % S difference 

against the baseline Pc Z-score for hub disruption calculation. (C) Individual hub disruption 

index (���  for MC with respect to the group average Pc Z-score at NC match 1. (D) 

Individual hub disruption index (��� for NC with respect to the group average Pc Z-score at 

NC match 1. (E) The % S difference against the baseline Z for hub disruption calculation. (F) 

Individual hub disruption index (��� for MC with respect to the group average Z at NC match 

1. G) Individual hub disruption index (��� for NC with respect to the group average Z at NC 

match 1. Lines show linear fit and shaded areas indicate the 95% CI. 

 

Figure 5 Change in Biomarkers Across Estimated Years to Symptom Onset (EYO) for 

mutation carriers (MC) and non-carriers (NC). (A) The hub disruption index in strength 

(��) against EYO, (B) The total cortical amyloid deposition measured with PiB against EYO, 

(C) The Cognitive Composite Score (CCS) against EYO. (D) The CCS against�� after 

regressing out potential confounding variables from both. The line and shaded areas show the 

predicted response values and the confidence intervals for the fitted responses from a 

generalized additive model at 95% interval calculated at each observation. For privacy 

reasons, the extreme EYO values (EYO<-20 and >10) were not displayed but were used in 

model-fitting. 
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Table 1. Sample Characteristics (mutation carriers and non-carrier matches) 
 Measure Mutation Carrier 

(N=69)a 
Non-carrier 
match 
(N=52)b 

Chi-
Square 

df p-value 

CDR=0/NC 
match 1 
 

Sex (M/F) 36/33 23/29 0.749 1 0.387 
Family mutation (PS1, 
PS2, APP) n (%) 

48 (70%), 
11 (16%), 
10 (14%) 

36 (69%), 
10 (19%), 
6 (11%) 

0.381 2 0.827 

APOE ε4 carriers/non-
carriers 

17/52 14/38 0.081 1 0.776 

Median   Mann-
Whitney U 

z  
p-value 

Age (yrs) 33.2 34.4 1145 5.211 0.350 
Education (yrs) 16 16 456.5 -3.487 0.956 
EYO -15.1 -15.3 1244 6.456 0.563 
CCSc -0.03 0.10 105 -5.702 0.116 
Remaining DVARS 5.1 4.8 1036 3.841 0.122 
Remaining minutes of 
the scan 

4.7 4.3 735 0.057 0.281 

 Measure Mutation Carrier 
(N=32) 

Non-carrier 
match 
(N=17) 

Chi-
Square 

df p-value 

CDR=0.5/NC 
match 2 
 

Sex (M/F) 13/19 3/14 2.666 1 0.103 
Family mutation (PS1, 
PS2, APP) n (%) 

25 (78%), 
1 (3%), 
6 (19%) 

8 (47%), 
2 (12%), 
7 (41%) 

5.049 2 0.080 

APOE ε4 carriers/non-
carriers 

9/23 3/14 0.659 1 0.417 

median   Mann-
Whitney U 

Z  
p-value 

Age (yrs) 48.5 49.7 248.0 -0.504 0.614 
Education (yrs) 13.5 14 205.5 -1.409 0.159 
EYO 1.7 1.7 235.0 -0.777 0.437 
CCSd -1.55 0.01 22.0 -5.159 <0.001 
Remaining DVARS 6.6 6.2 211.0 -1.281 0.200 
Remaining minutes of 
the scan 

6.6 4.6 216.5 -1.166 0.243 

 Measure Mutation Carrier 
(N=20) 

Non-carrier 
match 
(N=15) 

Chi-
Square 

df p-value 

 
CDR � 1/NC 
match 3 

Sex (M/F) 9/11 7/8 0.010 1 0.922 
Family mutation (PS1, 
PS2, APP) n (%) 

17 (85%), 
0 (0%), 
3 (15%) 

12 (80%), 
3 (20%), 
0 (0%) 

6.276 2 0.043 

APOE ε4 carriers/non-
carriers 

5/15 5/10 0.292 1 0.589 

median   Mann-
Whitney U 

z  
p-value 

Age (yrs) 50.8 55.4 131.0 -0.633 0.527 
Education (yrs) 12 14 82.5 -2.287 0.022 
EYO 4.3 4.9 138.0 -0.400 0.689 
CCSe -2.71 -0.05 0.000 -4.583 <0.001 
Remaining DVARS 6.7 6.3 129.0 -0.700 0.484 
Remaining minutes of 
the scan 

4.5 4.8 106.0 -1.468 0.142 

a Removed 1 participant due to non-other participants existing from the same site 

b Removed 1 participant due to non-other participants existing from the same site 

c Missing 2 participant 

d Missing 2 participant 

e Missing 6 participant 

Medians and Mann Whitney test statistics reported (Shapiro-Wilk test of normality p<0.001) 
EYO; estimated years from expected symptom onset; CCS, Cognitive Composite Score; CDR, Clinical Dementia Rating. 
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Table 2. Group-level hub disruption (using metrics in NC match1 as baseline) across CDR stages in MC and across age in 
NC (FDR-adjusted). 
 

Strength (S) 

 Group κ� F (1,244) p R2 
M

C
 

 
CDR = 0 -5.6 59.1 <0.001 0.20 

CDR = 0.5 -9.6 118.1 <0.001 0.33 

CDR>=1 -16.7 192.2 <0.001 0.44 

N
C

 match 2 -0.8 0.78 0.38 0.003 

match 3 -1.3 1.46 0.28 0.006 

Participation Coefficient (Pc) 

 Group κ� F (1,244) p R2 

M
C

 
 

CDR = 0 3.3 17.8 <0.001 0.07 

CDR = 0.5 1.7 2.5 0.19 0.01 

CDR>=1 -1.6 1.0 0.34 0.44 

N
C

 match 2 2.1 4.7 0.08 0.02 

match 3 -1.0 0.9 0.34 0.003 

Within-module Strength Z-score (Z) 

 Group κ� F (1,244) p R2 

M
C

 
 

CDR = 0 -5.0 12.6 <0.001 0.05 

CDR = 0.5 -7.2 15.5 <0.001 0.06 

CDR>=1 -12.7 22.1 <0.001 0.08 

N
C

 match 2 -2.1 1.6 0.21 0.01 

match 3 -3.3 2.9 0.11 0.01 
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Table 3. Regression of hub disruption index on Cognitive Composite Score (CCS). Response: Cognitive Composite Scores 
(CCS). β, coefficient of regression. ***p<0.001, **p<0.01, *p<0.05. Random effect: family. 
Edge threshold β_κS β_Education β_Age β_Sex (Male) β_DVARS 

5% 0.02* 0.11*** -0.06*** -0.18 -0.04 

10% 0.03** 0.11*** -0.06*** -0.18 -0.05 

20% 0.05** 0.11*** -0.06*** -0.19 -0.06 

30% 0.07** 0.11*** -0.06*** -0.20 -0.07 

40% 0.09** 0.10*** -0.06*** -0.21 -0.07 
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