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Abstract

Hub regions in the brain, recognized for their roles in ensuring efficient information
transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including
Alzheimer Disease (AD). Given their essentia role in neural communication, disruptions to
these hubs have profound implications for overall brain network integrity and functionality.
Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized
in AD patients. Computational models paired with evidence from animal experiments hint at
a mechanistic explanation, suggesting that these hubs may be preferentialy targeted in
neurodegeneration, due to their high neuronal activity levels—a phenomenon termed
"activity-dependent degeneration”. Yet, two critical issues were unresolved. First, past
research hasnt definitively shown whether hub regions face a higher likelihood of
impairment (targeted attack) compared to other regions or if impairment likelihood is
uniformly distributed (random attack). Second, human studies offering support for activity-

dependent explanations remain scarce.

We applied a refined hub disruption index to determine the presence of targeted
attacks in AD. Furthermore, we explored potential evidence for activity-dependent
degeneration by evaluating if hub vulnerability is better explained by global connectivity or
connectivity variations across functional systems, as well as comparing its timing relative to
amyloid beta deposition in the brain. Our unique cohort of participants with autosomal
dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD

to determine the hub disruption timeline in relation to expected symptom emergence.

1


https://doi.org/10.1101/2023.10.29.564633
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.29.564633; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks,
detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside
symptomatic progression. Moreover, since excessive local neuronal activity has been shown
to increase amyloid deposition and high connectivity regions show high level of neuronal
activity, our observation that hub disruption was primarily tied to regional differences in
global connectivity and sequentially followed changes observed in A PET cortical markers
is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions

were discernible 8 years before the expected age of symptom onset.

Taken together, our findings not only align with the targeted attack on hubs model but
also suggest that activity-dependent degeneration might be the cause of hub vulnerability.
This deepened understanding could be instrumental in refining diagnostic techniques and
developing targeted therapeutic strategies for AD in the future.
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Alzheimer disease (AD) is the most common neurodegenerative disease that
manifests as progressive loss of cognitive functions and affects millions of people worldwide.
It is characterized by a cascade of complex pathologic changes in the brain including amyloid
beta aggregation and tau tangles, resulting in neurodegeneration®. While these microscopic
changes have been well-documented, there is growing interest in understanding how these

pathologies translate to altered brain connectivity patterns observed in AD patients.
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Resting-state functional connectivity (FC), as measured with temporal correlations of
the blood oxygen level-dependent (BOLD) signals between regions of the brain from fMRI
data collected at a task-free state, differs in clinical and pre-clinical AD individuals versus

7

cognitively normal controls®”. FC is a widely accessible and non-invasive tool for assessing

brain organization, and a potential imaging marker for AD®™

since disruptions in
connectivity between brain regions may be linked to synaptic changes before cell death and
atrophy™. Prospective imaging studies suggested that the posterior parts of the default mode
network deteriorate earlier than anterior parts in AD, providing evidence for a cascading

13,14

network failure mechanism™*. Importantly, the initiation of amyloid™®, and tau'’

pathologies as well as the rate of their accumulation'®®

in the brain is not spatialy
homogenous, providing converging evidence for differences in regiona vulnerability to
pathological changes. However, precisely what underlies the sequence of regional FC failure,

as well as how FC disruptions relate to the molecular pathology is unknown.

Hub regions® are highly connected nodes with high network centrality that play a
critical role in facilitating efficient communication and integration of information across
different regions of complex networks. Brain hubs are affected across multiple diseases™,
including AD?*?, One hypothesis for this hub vulnerability to pathology and degeneration is
that hub regions are selectively targeted by activity-dependent damage®’. Several lines of
evidence support this hypothesis. 1) Hubs have high metabolic demands'?®2"; 2) they are

D272 and, 3) they serve as the

especialy susceptible to amyloid beta deposition in A
spreading centers for tau pathology™”**. Due to their topologically central role, targeted
attacks on hubs have a more deleterious effect on network efficiency”**>*. Indeed, FC
aterations especialy at cortica hubs'?* have been identified in AD patients compared to

cognitively normal controls in previous research as well as in mice with extracellular

amyloidosis (TQCRND8 mice)®. In vivo studies in mice validate the relationship between
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neuronal activity level and amyloid-beta deposition®’

, suggesting that increasing amyloid
burden through increased baseline activity triggers hub disruptions. While there is strong
theoretical and empirical evidence to support the role of hub disruption in AD, little is known

concerning the relationship between hub disruption, dementia severity, and symptomatic

onset.

Here we leverage a unique population with autosoma dominant AD (ADAD), which
alows for accurate estimation of years until symptom onset (EYO) due to the highly
predictable onset of cognitive decline®. As a genetic form of the disease, our ADAD
participants have a high certainty in AD diagnosis (as opposed to other forms of dementias).
Furthermore, since ADAD occurs in a younger population (<60 years) than sporadic AD, we
can test associations with AD pathology with minimal confounding co-pathology and can
estimate FC network characteristics with minimal age-related changes in neurovascular

coupling™.

We examine the regiona vulnerability in terms of lower FC by measuring FC hub
disruption as a function of ADAD dementia progression from pre-clinical (Clinical Dementia
Rating® [CDR®] =0) to moderate and severe dementia (CDR>1). We hypothesize that hub
disruption is an early-emerging phenomenon that intensifies with disease progression.
Finally, we investigated the relative timing of hub disruption compared to cortical amyloid
deposition and cognitive decline. Our goal is to test the targeted attack on hubs model in
ADAD over the course of disease progression and obtain evidence for activity-dependent

degeneration.
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M aterials and methods

Participants

Individuals were recruited from the Dominantly Inherited Alzheimer Network
(DIAN) Observational Study (https://dian.wustl.edu/). Here we examine cross-sectional data
from mutation carriers (MC; N = 122) and unaffected non-carriers (NC; N = 85) family
members (Supplementary Table 1) with alterations in presenilin 1 (PSEN1), presenilin 2
(PSEN2), or the amyloid precursor proteins (APP)®. Age at symptom onset is relatively
consistent within families and mutation types; this alows participants to be staged by their
EYO*%. Both MCs and NCs have an EYO value based their familial pedigree but only MCs
are expected to develop ADAD. The study was reviewed and approved by the institutional
review board at Washington University in St. Louis and written informed consent forms
obtained from participants or their legally authorized representatives in accordance with their

local institutional review board. The data are from the 15" annual data freeze.

CDR stages

The MCs were further staged by dementia severity using the global Clinica Dementia
Rating (CDR(Morris, 1993) into three groups: cognitively normal (CDR = 0), very mild
dementia (CDR = 0.5), and mild-to-severe dementia (CDR>=1). To control for the effect of
aging, we age-matched the NCs for each MC group according to the following procedure.
First, Z-scores were calculated for the age and EY O values separately using their mean and
standard deviation across all participants, resulting in a vector of size 2x1 for each
participant. The Euclidean distances between the vectors were calculated and the closest MC
for each NC participant was determined, defining an age-matched group of NCs for each MC
group (Table 1).

MRI Data Acquisition

Neuroimaging protocols have been previously published®. Briefly, T1-weighted
magnetization-prepared rapid acquisition gradient echo (MP-RAGE) images were acquired at
multiple sites on Siemens 3T scanners (Erlangen, Germany). Resting-state fMRI scans were
acquired with echo planar imaging (EPI) while participants were instructed to maintain visual

fixation on a crosshair. The sequence details are provided in the Supplementary Materials
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(Supplementary Table 2). “Pre-scan normalize” was enabled to minimize gain field
inhomogeneities attributable to proximity to the receiver coils. Acquisition lasted ~6 minutes

each run and the number of acquired runsin the DIAN cohort varied between 1 and 3.

MRI Data Pre-processing

Details on pre-processing followed previously described methods®*

using the 4dfp
suite of tools (http://4dfp.readthedocs.io). Briefly, slice timing correction and intensity
normalization were performed. Head motion was corrected within and across runs. The initial
atlas transformation was computed by affine registration of the functiona MRI data to an
atlas-representative template via the MP-RAGE (EPlyean — MP-RAGE — template). A find
atlas transformation was performed after denoising. Frames with high motion, as measured
by DVARS (frame-to-frame signal change over the entire brain) and the frame displacement
(FD) measures™, were censored. The DVARS criterion was individually set to accommodate
baseline shifts (see Supporting Information in*) and the FD criterion was 0.4 mm. Frames
were censored if either criterion was exceeded. The time series were band-pass filtered
between 0.005 Hz and 0.1 Hz. Censored frames were approximated by linear interpolation for

band-pass filtering only and excluded from subsequent steps.

Denoising was then performed with a CompCor-like strategy®. As previously
described®™, nuisance regressors were derived from three compartments (white matter,
ventricles, and extra-axial space) and were then dimensionality-reduced. White matter and
ventricular masks were segmented in each participant using FreeSurfer 5.3 and spatially
resampled in register with FC data. The final set of nuisance regressors also included the six
parameters derived from rigid body head-motion correction, the global signal averaged over
the (FreeSurfer-segmented) brain, and the global signal temporal derivative. Finally, the
volumetric time-series were non-linearly warped to Montreal Neurological Institute (MNI)
152 space (3mm)® voxels using FNIRT?.

Functional Connectivity

We selected 246 functional regions of interest (ROIs) separated into 13 networks
throughout the cortical and subcortical areas as previously described®®. The functional ROIs
are acombination of cortical ROIs* and subcortical ROIS™ (Figure 1A). Regions not reliably
covered by the field of view (FOV) such as the cerebellar ROIs were excluded. A list of ROI

41,48
S

coordinates and anatomical assignments has been described in previous publication and
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can be found in the Supplementary Materias (Supplementary Table 3). FC was estimated
using zero-lag Pearson correlations calculated between 246 ROIls and Fisher-Z-transformed
to improve normality. The resultant FC matrix can be represented as a graph with nodes as
individual ROIs and edges with weights as the correlation values z(r). Group-average FC was
generated by averaging the z(r) values across individual FC matrices within each of the CDR
and age-matched NC groups (Figure 2).

Data Har monization

We used Correcting Covariance Batch Effects (CovBat,
https://github.com/andy1764/CovBat_Harmonization)>* to remove site effects in mean,
variance, and covariance on FC data, with age, mutation, EYO, education, CDR, sex,
mutation gene type (PSEN1/PSEN2/APP), and APOE alleles included as the biological
covariates that should be protected for during the removal of site effects. After CovBat, two
participants (one MC and one NC) were removed from the analysis because they were only
represented by a single site and harmonization could not be performed by the CovBat
algorithm. The final sample size for analysis was MC = 121 and NC = 84. Similar qualitative

results were obtained without the CovBat correction.
Graph Theory Metrics

All graph theory metrics were calculated using the Brain Connectivity Toolbox (BCT,
brain-connectivity-toolbox.net), a MATLAB toolbox for complex brain-network analysis™.

Since regions with a high total positive connectivity tend to have a high total negative
connectivity (Supplementary Figure 1), we asymmetrically weighed the positive and negative
edges for all measures according to their relative magnitude at a given node following
previous literature™. This allows for non-zero strengths at a full FC matrix without threshold
(Supplementary Figure 2). Strength is calculated as the sum of signed edge weights around a
node in a graph (FigurelE). This effectively measures global connectivity at an ROI. We also
calculated two additional measures of centrality concerning module affiliations™: the within-
module strength Z-Score (Z) and participation coefficient. Z measures how “well-connected”
anode is to other nodes in the module. The participation coefficient measures the diversity of

intermodular connections of individua nodes and within-module strength Z-score.

Given that there is no gold standard method for thresholding the FC matrix to create a

55,56
(&)

graph representation and calculate graph metri , we chose an edge density threshold of
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5% for downstream analyses which ensures that the graph is sparse and free of negative
correlations™’. To demonstrate that our results are not dependent on the choice of threshold,
we also showed results a a range of edge density similar to previous research®®, an edge
density of 1-5% at 1% intervals and 10%-90% at 10% intervals. This is achieved by finding
the maximum spanning tree (MST) backbone first using the BCT toolbox function
(backbone_wu.m) and continually adding edges with the largest correlation values until the
desired edge density is reached™. This is to ensure graph connectedness at the sparsest

densities.

Since strength and participation coefficient measures show a correlation with scan
time, the remaining scan time after frame censoring was regressed out of these graph metrics
to correct for the possible confound of individual differences in total scan time remaining

after frame censoring (Supplementary Figure 3).
Hub Disruption Index

To measure how the centrality of each region differs from a hedlthy reference, we
chose NC match 1 to be the reference group. This choice is motivated by the fact that this
group is the closest to what is usually considered young, healthy adults’*?, which has been
used as a baseline for calculating hub disruption in prior studies™. The average nodal FC
strength of the NC match 1 group was calculated and the percentage difference from this
baseline average strength was calculated for each MC group (CDR = 0, CDR = 0.5, CDR>1,;
Figure 3B) and the remaining two NC groups (NC match 2, NC match 3). While using a
consistent baseline reference group enables comparison of the metric across groups®, we also
ran a supplementary analysis using the age-matched NC groups as a reference for each MC

group and obtained qualitatively the same resullt.

We calculated a normalized hub disruption index adapted from prior work® by fitting
a linear regression slope (k) where the dependent variable is the difference in strength for
either the group average or an individual from the average strength of the reference group,
which is then normalized by dividing the average strength of the reference group. The
primary method by which selective hub disruption has been indexed in prior work is to
calculate the slope of the linear regression model between the mean local network measures
of a reference group, and the difference between that reference and the participant under
study®®*3(Figure 1A). A negative slope has been interpreted as the presence of hub
disruption. In practice, this definition has difficulty distinguishing between a targeted attacks
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on network hubs vs. a random attack, as the correlation would appear negative under both
models. An intuitive analogy is to examine the effect of a natural disaster on the affluent or
impoverished areas. While affluent areas of a city lose more in absolute amounts, it is unclear
whether they are disproportionally more affected, or it is merely an effect of starting from a
higher baseline point. We, therefore, modified the “hub disruption index” to measure the
per centage difference in connectivity strength versus baseline connectivity strength such that
only targeted attacks on hubs would result in a negative linear regression slope (Figure 1B).
We also standardized the baseline strength into Z-scores to increase the interpretability of the
metric. In this way, we can unambiguously test the selective reduction in global connectivity
at hubs and compare the hub disruption index quantitatively across disease stages. The

mathematical equation is shown below:

strengthiest—<strengthyes>

<strengtirer> * 100 = zscore(< strength,., >) (1)

A more negative hub disruption index here indicates that the strengths in high-
strength hubs are reduced by alarger proportion than in other low-strength regions, whereas a
zero-hub disruption index indicates that the strength in high-strength regions and low-

strength regions are changed to the same extent.

We used global connectivity strength as the primary measure of centrality due to its
simplicity and strong correspondence to other measures in AD disease factors, e.g. hubs with

16,18,28

high globa FC have spatial correspondence with amyloid deposition , tau burdens™® and

% However, there exist aternative definitions for hubs™®"®.

metabolic factor
Specifically, some researchers argued that in functional networks, the participation
coefficient, which captures the diversity of connections to different modules, is the key
metric for regional importance or centrality®. On the other hand, within-module strength Z
scoreis also an important measure of nodal centrality>. Therefore, we additionally examined
hub disruption as defined by the participation coefficient and within-module Z-score using a
similar asymmetric weighting® with the BCT toolbox functions (participation_coef_sign.m)

and custom MATLAB scripts, respectively.
Cognitive Composite Score

We used a cognitive composite score (CCS)* %, developed for use as an outcome
measure in DIAN clinical trials, to measure the cognitive decline for each individual. CCSis

a global summary of cognitive functions. Details of the calculation have been previously
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described®. Briefly, a cognitive composite score is calculated by averaging each test's
normalized scores by equal weight for 1) the DIAN Word List test delayed recall, 2) the
delayed recall score from the Wechsler Memory Scale-Revised Logical Memory |1A subtest,
3) the Mini-Mental State Exam (MMSE), and 4) the Wechsler Adult Intelligence Scale-
Revised Digit-Symbol Substitution test (Supplementary Table 4). Normalization was carried
out with respect to the mean and SD reported in a population sample of 58 MCs with EY O<-
15%, For analyses using the cognitive composite scores, we excluded one MC with a>1 year
gap between psychometric tests and MRI sessions, and additionally 9 MC who did not
complete all four tests.

Positron emission tomography (PET) measures of cortical
amyloid deposition

Amyloid-beta PET imaging with Pittsburgh Compound B (PiB) was performed using
a bolus injection of [11C] PiB*. PET data were acquired using either a 70-min scan
beginning at the start of the injection or a 30-min scan starting 40 min after the injection.
Data were converted to regional standardized uptake value ratios (SUVRS) relative to the
cerebellar grey matter using ROI generated in FreeSurfer*® with partial volume correction via
aregiona spread function . Amyloid positivity was defined as PiB partial volume corrected
SUVR across the precuneus, prefrontal, gyrus rectus, and temporal FreeSurfer regions of
interest (ROI)>1.42%7

Statistical Modelsfor Biomarkers

Generalized Additive Mixed Models were fit with the gamm() function from R
package (mgcv) to examine the relationship between different biomarkers and the EYO. A
smooth function was applied to the EY O separated by mutation carrier status (MC or NC),
with sex, education as fixed effect covariates, and a random effect of family. The time of
divergence between MC and NC was determined as the point where the predicted 95%
simultaneous confidence interval starts to have no overlap™. For predicting the response of

K, we further include the residual motion measure (DVARS) as a covariate.

For the relationship between CCS and kg, we fit a linear mixed effects model with
fixed effect covariates sex, education, DVARS and age and a random effect of family with
the Imer () function from R package Ime4.
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Statistical Tests and Visualization

All standard statistical tests (e.g., F-tests, t-tests, ANOVA) were performed with
MATLAB R2020b or R (4.1.0). FDR"® was used for the correction of multiple comparisons

at asignificance level of 0.05.

Visualizations of regional graph theory metrics on the brain and FC matrix were
generated using Network Level Analysis toolbox (Beta  version)
(https://github.com/mwheel ock/Network-Level-Analysis), BrainNet Viewer toolbox™, and
custom MATLAB and R scripts.

Data availability

Data that support the findings of this study are available from DIAN at
https://dian.wustl .edu/our-research/observati onal -study/di an-observati onal -study-

investigator-resources.

Results

MC and NC groups do not differ in demographic features and
data quality

As designed, each of the MC and NC-matched CDR groups did not differ in age or
EYO (Table 1). The matched groups also did not differ in DVARS or minutes of low-motion
data. Not surprisingly, the CDR 0 groups did not differ on CCS, however, the MC and NC
groups differed on CCS at CDR = 0.5 and CDR>=1.

A selected subset of ROIs shows significant differencesin strength
from the healthy reference

We defined the average strength of ROIs in the young cognitively normal non-carrier
group (NC match 1, N = 52) as areference of hub centrality (Figure 3A). We first established
that the number of participants and minutes of FC data were sufficient to obtain reliable
group-level RSFC measures (Appendix A). Notably, we were able to identify the hubs

described in literature®*®™, eg. precuneus/posterior cingulate, dorsolateral prefrontal
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cortex, supramarginal gyrus, medial prefrontal cortex (Figure 3A; Supplementary Figure 4).
Thisisrobust to the choice of edge density threshold ann

d/or percentile cut-offs (Supplementary Figure 5). Additionally, we compared the ROI
strengths between al MC groups and the reference using a two-sample t-test (FDR<0.05)
(Supplementary Figure 6). Briefly, no ROI had significant difference in strength between MC
(CDR=0) and the reference. In MC (CDR=0.5), 19 ROIs covering the superior frontal gyrus,
precuneus, middle temporal gyrus, middle occipital gyrus, middle frontal gyrus, inferior
parietal lobule, inferior occipital gyrus, fusiform gyrus and cuneus have significantly lower
strength compared to the reference. In MC (CDR>1), three ROIs (in the insula, thalamus and
parahippocampal gyrus) showed significant higher strength compared to the reference, and 30
ROIs (in angular gyrus, anterior cingulate, claustrum, cuneus, fusiform gyrus, inferior parietal
lobule, inferior temporal gyrus, insula, medial frontal gyrus, middle occipital gyrus, middle
temporal gyrus, parahippocampal gyrus, postcentral gyrus, posterior cingulate, precuneus,
superior frontal gyrus, superior temporal gyrus and thalamus) showed significantly lower
strength compared to the reference. On the other hand, none of the ROIs in NC match 2 or
NC match 3 groups shown significant differences in strength from NC match 1
(Supplementary Figure 7).

Hub disruption increases with CDR stage, not age

We measured the group-level hub disruption index by calculating the percentage
difference from the reference for the mean strength in each of the MC groups (CDR=0,
CDR=0.5, and CDR>1) (Figure 3B; Supplementary Figure 8). The group-level hub
disruption index for all three MC CDR groups was significantly different from zero (Table
2). In addition, kg became increasingly more negative across CDR stages. The hub disruption
index (a.k.a. regression slope in Figure 3B) is significantly different between MC (CDR =
0.5) and MC (CDR = 0) (F(1,488) = 12.0, P<0.001, partial n? = 0.024), between MC
(CDR=0.5) and MC (CDR=>1) (F(1,488) = 22.6, P<0.001, partial n% = 0.044), and between
MC (CDR=0) and MC (CDR>1) (F(1,488) = 61.6, P<0.001, partial n* = 0.112). Our results
are qualitatively replicated at a wide range of threshold choices (Supplementary Figure 9). On
average, nodes in the cingulo-opercular network showed the highest baseline strength and
largest % strength difference from baseline across multiple thresholds (Supplementary Figure
10). In addition to the group-level hub disruption index, we calculated the hub disruption
index for each participant in the MC and NC groups. All MC groups had a hub disruption
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index that differed from zero (FDR-adjusted P<0.001) while no NC group had a hub
disruption index that differed from zero (FDR-adjusted P>0.05) (Supplementary Figure 11,
Supplementary Table. 5). Specificaly, for MC, a oneeway ANOVA demonstrated that the
hub disruption index differed across the CDR groups (F(2,118) =8.8, P<0.001, n? = 0.130).
Post-hoc two-sampl e t-tests with FDR correction revealed significant group differences (t(87)
= 4.03, P = 0.002, Cohen’d = 1.02) between CDR=0 (M = -5.6, SD = 11.1) and CDR>1
participants (M=-16.7, SD=10.3), and between CDR=0.5 (M = -9.6, SD = 9.6) and CDR>1
participants (t(50) = 2.52, P=0.03, Cohen’sd = 0.72) (Figure 3C).

Next, we asked whether this observation can be explained by increasing age. We
calculated the hub disruption index for the age-matched NC groups 2 and 3 with the same
procedure (Figure 3D). The group-level hub disruption index for NC groups did not
significantly differ from zero (Table 2). At the individua level, there were no differences
among NC groups (one-way ANOVA, F(2,81) = 0.07, P = 0.93) (Figure 3E), nor a
significant relationship between k¢ and age in NC (linear regression, 8 = 0.01, R?<0.001, F(2,
82) =0.0072, P = 0.933).

Changesin AD biomarkers often precedes dementia symptoms in AD**™>"®. A subset
of the MC (CDR=0) group can be classified as amyloid beta positive (AB+) (N = 29/60)
according to their amyloid PET results (Methods). With one-sample t-tests with FDR
correction, we found that both groups had hub disruption index significantly lower than O
(AB-: M =-5.4, SD = 11.2, Cohen’sd = -0.48, t(30) = -2.7, P = 0.012; AB+: M = -5.7, SD =
11.5, Cohen's d = -0.50, t(28) = -2.6, P = 0.012). However, there was no significant
difference in hub disruption index between the AB- and AR+ groups (two-sample t-test, two-
tailed P = 0.92) (Figure 3F-G). Changes in amyloid-beta accumulation in PET imaging often
precedes dementia symptoms in AD®""®. A subset of the MC (CDR=0) group can be
classified as amyloid beta positive (AB+) (N = 29) according to their amyloid PET results
(Methods). With one-sample t-tests with FDR correction, we found that both groups have hub
disruption index significantly lower than 0 (AB-: M = -5.4, SD = 11.2, Cohen’s d = -0.48,
t(30) = -2.7, P = 0.012; Ap+: M = -5.7, SD = 11.5, Cohen’s d = -0.50, t(28) = -2.6, P =
0.012). However, there was no significant difference in hub disruption index between the AB-

and AP+ groups (two-sample t-test, two-tailed P = 0.92) (Figure 3F-G).
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Hub disruption is best explained by differencesin regional global
connectivity

To understand the key drivers of hub vulnerability in ADAD, we calculated the hub
disruption index using two alternative measures based on their network membership instead
of global connectivity strength: 1) the within-module connectivity rank (within-module
strength Z-score, Z) and 2) the connectivity diversity (Participation Coefficient, Pc) (Figure
4A). Overall, both participation coefficient and within module Z-score effects were less
sensitive to ADAD progression than using the global connectivity strength as the reference.
Thus, we focused subsequent analyses on the hub disruption index with regards to the global
connectivity strength. Detailed statistics can be found in Table 2 and Appendix B.

Hub disruption index diverges between mutation carriers and
non-carriers at an earlier EYO than the separation of general
cognitive performance

Generalized Additive Mixed Models were fit to examine the relationship between hub
disruption or other biomarkers and the EY O, as well as to obtain the point of divergence
between MC and NC. For the hub disruption index (xs), thiswas calculated tobe EYO = -7.9
years (Figure 5A). In comparison, the total cortical amyloid deposition measured as PiB
SUVR ratio diverged at EY O = -14.8 (Figure 5B), and the cognitive composite score measure
diverged a EYO = -6.8 years (Figure 5C). Thus, we found that the divergence of hub
disruption index preceded the divergence of cognitive performance measure and followed the

earlier stage of amyloid deposition.

Greater hub disruption iscorrelated with wor se general cognition

Lastly, we found there existed a positive correlation between kg and CCS (r=0.3,
t(110)=3.27, P=0.001). We further examined whether an individual’s hub disruption could
explain unigue variance in the cognitive composite score of individual MCs after controlling
for potentially confounding covariates (age, sex, years of education, motion in scan measured
by DVARS; and family as a random effect. The hub disruption index was positively related
with cognitive composite scores at the edge threshold of 5% (8_k<=0.024+0.01, 1(105)=2.53 ,
P=0.013) and across different edge thresholds (Table 3, Figure 5D), suggesting that greater

15


https://doi.org/10.1101/2023.10.29.564633
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.29.564633; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

hub disruption (ak.a. more negative hub disruption index) correlated with worse general

cognition.

Discussion

Consistent with a targeted attack on hubs model, the proportion of reduction in FC at
individual regions in ADAD was positively related to the total global connectivity of that
region in the unaffected family members of ADAD participants. This preferential disruption
of hub connectivity increased with CDR stage but not age, is best explained by global
connectivity, less so to the within-module connectivity rank, and not to the diversity of
connectivity across resting-state networks. This preferential disruption of hub connectivity is
seen at al stages of disease progression in ADAD MC and starts to differentiate MC and NC
at about EY O = 8 years. Additionally, greater (more negative) hub disruption was associated

with worse general cognition after controlling for relevant covariates.

Progressive hub disruption is consistent with popular network

failure moddsof AD

Prior studies endorse a cascading network failure starting from the posterior default
mode network (DMN) and progressing to the anterior and ventral DMN™. Our results
complement this observation by providing a possible underlying mechanism for this
cascading process and extending it beyond default mode network, whereby the vulnerability
of regions to the reduction in FC is dependent on their centrality in the whole brain network.
Nodes that have the highest centrality (e.g., posterior default mode network, Figure 3A) were
among the first to show decreased FC, consistent with existing literature®®. Over time,
changes in processing burden shifts from one hub to other hubs, further enhancing the
aberrant amyloid- 8 precursor protein processing and amyloidosis in the other hubs®,
consistent with our progressive increase in hub disruption with disease. Admittedly, FC is an
indirect measure of connectivity across regions, and future research could investigate hub

vulnerability in structural networks using diffusion MRI.

Hub disruption is best explained by global connectivity
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Despite the wide use of “functional hubs’ in the literature, what defines a functional
hub has not reached a consensus™°"®. Hubs can be described in terms of their network
membership (e.g., default mode network), where connectors are important for communication
between networks and module centers are important for communication within networks. The
nodes with high abundance of intermodule connections (connectors) form a structural rich
club®, which are also known to be affected in AD®, although this concept is not universally
accepted (other studies suggest that the highly rich-club core was preserved and the
disruptions started in the periphery®). Previous literature on brain lesion patients suggested
that the integrity of brain network organization is severely compromised when damage is in
connectors but not module centers®. Other studies also report differential outcomes in
network structure when damage is localized to module centers or connectors™. One recent
study has also suggested that the amyloid-beta accumulation rate was faster at connectors'.
On the other hand, our results here suggested that hub disruption is best explained by
differences in global connectivity across regions, rather than their roles to communicate
between or within networks. This is in line with the hypothesis that high metabolic demands
associated with high global connectivity may trigger downstream cellular and molecular
events that result in neurodegeneration®®, conveying preferential/selective vulnerability. For
example, calcium instability caused by amyloid beta peptides may render human cortical
neurons vulnerable to excitotoxicity®, and this could result in further neurodegeneration in
AD®,

Hub disruption predates cognitive changes but follows amyloid

PET changes

The effectiveness of a biomarker can be evaluated based on its ability to detect early
indications of pathology prior to disease onset. Investigating the initial stages of decline in
healthy brains compared to those AD offers substantial potential for early identification
before AD symptoms manifest. Because of the highly consistent familial disease onset for
ADAD, we were able to compare this biomarker across EYO and other disease-related
changes including cognitive composite scores and cortical amyloid deposition. We found that
the hub disruption index first demonstrated a divergence between groups ~8 years before
EYO—much earlier than the divergence in global FC signature (~4 years)—between
converters and non-converters in sporadic AD™. Hub disruption index also diverges between
MCs and NCs before the changes in the general cognitive score (~7 years), but after hypo-
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metabolism (~10 year), and increased concentrations of cerebral spinal fluid tau protein (~15
year)®, and the amyloid PET changes (~15 year). This is consistent with previously
hypothesized disease progression where the FC disruption follows from amyloid-beta

deposition and potentially excessive chronic activity**®°

, and eventualy contributes to
cognitive impairment (Supplementary Figure 16). We did not find significant differences
between the hub disruption index in AR+ and AB- participants in the MC (CDR=0) group,
despite AR+ participants having slightly negative hub disruption index. However, this lack of
a difference between AB- and AB+ individuals should be viewed cautiously given the modest
sample sizes. We do note the limitation that our EY O calculation is based on mutation and
parental symptom onset and may not precisely reflect the true EYO. Therefore, the best
practice is to interpret the EYO years in relative terms for different biomarkers instead of
taking it at purely its face value. We did not find significant differences between the hub
disruption index in AR+ and AB- participants in the MC (CDR=0) group, despite AR+
participants having slightly negative hub disruption index. However, this lack of a difference
between AB- and AB+ individuals should be viewed cautiously given the small sample size

for the comparison.
Comparison to other network topology studiesin AD

Other studies of network topology in AD have examined globa graph theory
measures such as small-worldness, global clustering coefficient, and characteristic path
length®®®”. However, those measures are generally sensitive to network sparsity and require a
careful choice of null models®. Further, it is hard to interpret the biological relevance for
those global measures. In contrast, hubs with high global FC have been linked to amyloid
deposition*®*®%, tau burden® and metabolic factors®®®*. They also overlap with the regions
that demonstrated high heritability®. Therefore, our research on hub vulnerability is
literature-driven with an attempt to link abstract network topology measures to molecular and

cellular pathologies.
I mplicationsfor AD research, prevention, and treatment

We found that hub disruption, or increased vulnerability to reduced FC at highly
central hub regions, is prevalent across the course of ADAD, with increasing severity as the
disease progresses. Our results here have key implications for future AD research and

therapeutics development: we provided a testable hypothesis where targeted pharmacol ogical
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manipulation, non-invasive stimulation, or behavioral training to alter neuronal excitability™
especidly at hub regions could ater the progression of AD. Existing research has
demonstrated in an awake rodent model that acute inactivation of a hub region (dorsal
anterior cingulate cortex) has profound effects on the whole network®. Future studies in
animal models of AD could further validate this with optogenetic and chemogenetic
manipulations. Furthermore, previous literature has suggested that “restoration of the

n 32,92

topology of resting-state FC may aid in cognitive repair and recovery , and those can be

further tested in future studies.

On the other hand, we found that hub disruption is positively related to the cognitive
composite scores after considering the effect of age, sex, years of education, and average
motion of retained frame. And the separation of hub disruption between MC and NC starts
shortly after the increased levels of cortical amyloid deposition and at around the same time
as preclinical measures of cognitive decline. This indicates that our new measure of resting-
state FC change has the potential to act as a non-invasive, low-cost, and accessible biomarker
especialy given compared to CSF and PET for prevention studies and clinical trials to aid the
development of new treatments and monitor their effectiveness. Other biomarkers focusing
on DMN network failure have been proposed®™, but our measure is conceptually
straightforward, easy to calculate, and biologically intuitive. In addition, previous measures
have focused on distinguishing AD patients from controls, whereas the current study mapped

a progressive relationship between FC and centrality across the clinical dementia stages.
Limitations and futuredirections

While we concluded that increasing hub disruption was related to disease progression
and not aging, participants involved in this study were relatively young (18-69 years). It is
still possible that a similar increase in hub vulnerability would be observed at a much older
age, as seen in other age-related changes in FC*°. Notably, another study using cognitively
normal adults from OASIS-3 (42-95 years) seemed to show the opposite result to the current
study®®, whereby functional hubs were particularly vulnerable to the higher annual
accumulation of amyloid beta but have a slower FC decrease than non-hub regions. However,
there are also several important methodological differences between that study and ours: 1)
they employed the GLASSO algorithm to estimate FC with only direct connections while we
used the simple Pearson’s correlation, and 2) they define hubs as regions with high
participation coefficients and we found that at certain edge density threshold, the strength and
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the participation coefficient of a node could be negatively correlated. Additionally, even
though previous work has found comparable FC changes in ADAD to sporadic AD (Smith et
al., 2021; Strain et al., 2022; Wheelock et al., 2023), our results are yet to be confirmed in
sporadic AD. Further validations on longitudinal changes, and on subjects with more imaging
data are needed to assess whether hub disruption could be a reliable biomarker of individual
disease progression in AD. Furthermore, future investigations in large brain-wide single-cell
transcriptome data (e.g. Allen Human Brain Atlas) may be useful in linking the hub

vulnerability to the underlying biological mechanisms™*’.

Conclusions

We investigated the relationship between FC differences across ROIs and baseline
centrality measures. We demonstrated that hubs with high global connectivity are especially
vulnerable to reduction in FC in individuals with ADAD, consistent with atargeted attack on
hubs model. Moreover, this disruption of hub connectivity becomes more severe with
increasing CDR stage and occurs around 8 years before symptom onset, slightly preceding
cognitive changes but following amyloid PET changes, indicating the early and progressive
nature of hub vulnerability in AD. Interestingly, our results also suggest that the preferential
disruption of FC in hub regions is more related to global connectivity rather than within-
module connectivity or diversity of connectivity across networks. These findings provide
insights into the complex dynamics of brain network dysfunction in AD and the critical role

of hubsin this process.
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Appendix 1

Dominantly Inherited Alzheimer Network
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Figurelegends

Figure 1. Graph theory method and hub disruption. (A) A resting-state functional
connectivity (FC) is obtained from the Pearson correlation of the time series in each of the
246 cortical and subcortical pre-defined region of interest (ROI) pairs. The ROIs belong to 13
Networks: SMd, somatomotor dorsal; SMI, somatomotor lateral; CO, cingulo-opercular;
AUD, auditory; DMN, default mode network; Mem, memory network; Vis, visua network;
FPN, frontoparietal network; SN, salience network; BG, basal ganglia; Thal, thalamus; VAN,
ventral attention network; DAN, dorsal attention network. Following convention in previous
literature, a sparse graph is generated by thresholding the rsFC matrix at an edge density
threshold of 5% starting from the maximum spanning tree (MST) backbone to ensure the
connectedness of the graph. However, to demonstrate that our results are not limited to the
threshold choice we also applied other thresholds. The graph generated has weighted edges
that preserve the strength of individual connections. (B) Origina method of hub disruption
calculation. (C) New method of hub disruption calculation. (D) Cartoon illustration of
targeted attack at the hubs. (E) Cartoon illustrating random damage.

Figure 2. Functional connectivity (FC) within DIAN participant groups. Mean (lower-
triangle) and standard deviation (upper-triangle) of Fisher Z-transformed FC matrix of 246
region of interests for mutation carriers (MC) at 3 Clinical Dementia Rating stages (CDR = 0,
CDR = 0.5, CDR>=1) and corresponding age and EYO matched non-carrier (NC) groups.
The FC is sorted by the networks in Figure 1 with corresponding colors.

Figure 3. Hub disruption across CDR stages. (A) (Left) Distribution of average strength
(S) across NC match 1 group, (Middle) nodes with S higher than the 85" percentile. (Right)
cartoon illustrating that strength is calculated by summing the weights across connected
edges. (B) The % S difference against the baseline S Z-score in MC groups. (C) Individual
hub disruption index (k) for MC groups. (D) The % S difference against the baseline S Z-
score in NC groups. E) Individual g for NC groups. (F) The % S difference against the
baseline S Z-score in subsets of AB- and AB+ participants in the MC(CDR=0) group. (G)
Individual ks for AB- and AR+ participants in the MC(CDR=0) group. Shaded areas show

95% confidenceinterval. Error bars show mean and standard deviation.
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Figure 4. Hub disruption across CDR stages at module centers versus connectors. (A)
(Left) Distribution of average participation coefficient (Pc) across NC match 1 group,
(Middle) distribution of within strength Z-score (Z) across NC match 1 group, (Right)
cartoon illustrating the representation of module centers and connectors on a graph. Module
centers are nodes with high Z and connectors are nodes with high Pc. (B) The % S difference
against the baseline Pc Z-score for hub disruption calculation. (C) Individual hub disruption
index (xg) for MC with respect to the group average Pc Z-score at NC match 1. (D)
Individual hub disruption index (kg) for NC with respect to the group average Pc Z-score at
NC match 1. (E) The % S difference against the baseline Z for hub disruption calculation. (F)
Individual hub disruption index (i) for MC with respect to the group average Z at NC match
1. G) Individual hub disruption index (k) for NC with respect to the group average Z at NC
match 1. Lines show linear fit and shaded areas indicate the 95% CI.

Figure 5 Change in Biomarkers Across Estimated Years to Symptom Onset (EYO) for
mutation carriers (MC) and non-carriers (NC). (A) The hub disruption index in strength
(xs) against EYO, (B) Thetotal cortical amyloid deposition measured with PiB against EY O,
(C) The Cognitive Composite Score (CCS) against EYO. (D) The CCS againstk after
regressing out potential confounding variables from both. The line and shaded areas show the
predicted response values and the confidence intervals for the fitted responses from a
generalized additive model at 95% interval calculated at each observation. For privacy
reasons, the extreme EY O values (EY O<-20 and >10) were not displayed but were used in
model-fitting.
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Table 1. Sample Characteristics (mutation carriers and non-carrier matches)
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Measure Mutation  Carrier | Non-carrier Chi- df p-value
(N=69)% match Square
(N=52)°
CDR=0/NC Sex (M/F) 36/33 23/29 0.749 1 0.387
match 1 Family mutation (PS1, | 48 (70%), 36 (69%), 0.381 2 0.827
PS2, APP) n (%) 11 (16%), 10 (19%),
10 (14%) 6 (11%)
APOE ¢4 carriers/non- | 17/52 14/38 0.081 1 0.776
carriers
Median Mann- z
Whitney U p-value
Age (yrs) 33.2 34.4 1145 5.211 0.350
Education (yrs) 16 16 456.5 -3.487 0.956
EYO -15.1 -15.3 1244 6.456 0.563
CCs* -0.03 0.10 105 -5.702 0.116
Remaining DVARS 5.1 4.8 1036 3.841 0.122
Remaining minutes of | 4.7 4.3 735 0.057 0.281
the scan
Measure Mutation  Carrier | Non-carrier Chi- df p-value
(N=32) match Square
(N=17)
CDR=0.5/NC Sex (M/F) 13/19 3/14 2.666 1 0.103
match 2 Family mutation (PS1, | 25 (78%), 8 (47%), 5.049 2 0.080
PS2, APP) n (%) 1 (3%), 2 (12%),
6 (19%) 7 (41%)
APOE ¢4 carriers/non- | 9/23 3/14 0.659 1 0.417
carriers
median Mann- 4
Whitney U p-value
Age (yrs) 48.5 49.7 248.0 -0.504 0.614
Education (yrs) 135 14 205.5 -1.409 0.159
EYO 1.7 1.7 235.0 -0.777 0.437
ccs? -1.55 0.01 22.0 -5.159 <0.001
Remaining DVARS 6.6 6.2 211.0 -1.281 0.200
Remaining minutes of | 6.6 4.6 216.5 -1.166 0.243
the scan
Measure Mutation  Carrier | Non-carrier Chi- df p-value
(N=20) match Square
(N=15)
Sex (M/F) 9/11 7/8 0.010 1 0.922
CDR = 1/NC | Family mutation (PS1, | 17 (85%), 12 (80%), 6.276 2 0.043
match 3 PS2, APP) n (%) 0 (0%), 3 (20%),
3 (15%) 0 (0%)
APOE ¢4 carriers/non- | 5/15 5/10 0.292 1 0.589
carriers
median Mann- z
Whitney U p-value
Age (yrs) 50.8 55.4 131.0 -0.633 0.527
Education (yrs) 12 14 82.5 -2.287 0.022
EYO 4.3 4.9 138.0 -0.400 0.689
ccs*® -2.71 -0.05 0.000 -4.583 <0.001
Remaining DVARS 6.7 6.3 129.0 -0.700 0.484
Remaining minutes of | 4.5 4.8 106.0 -1.468 0.142

the scan

a Removed 1 participant due t

0 non-other participants existing from the same site

b Removed 1 participant due to non-other participants existing from the same site

¢ Missing 2 participant
d Missing 2 participant
e Missing 6 participant

Medians and Mann Whitney test statistics reported (Shapiro-Wilk test of normality p<0.001)
EYO; estimated years from expected symptom onset; CCS, Cognitive Composite Score; CDR, Clinical Dementia Rating.
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Table 2. Group-level hub disruption (using metrics in NC matchl as baseline) across CDR stages in MC and across age in
NC (FDR-adjusted).

Strength (S)

Group Kg F (1,244) P R?

CDR=0 -5.6 59.1 <0.001 0.20

(é CDR=0.5 -9.6 118.1 <0.001 0.33
CDR>=1 -16.7 192.2 <0.001 0.44
maitch 2 -0.8 0.78 0.38 0.003
(Z) match 3 -1.3 1.46 0.28 0.006

Participation Coefficient (Pc)

Group Kg F (1,244) P R®
CDR=0 3.3 17.8 <0.001 0.07
(2) CDR =0.5 1.7 25 0.19 0.01
CDR>=1 -1.6 1.0 0.34 0.44
match 2 2.1 4.7 0.08 0.02
(Z) match 3 -1.0 0.9 0.34 0.003

Within-module Strength Z-score (2)

Group Ks F (1,244) p R’
CDR=0 -5.0 12.6 <0.001 0.05
(2) CDR =0.5 -7.2 155 <0.001 0.06
CDR>=1 -12.7 221 <0.001 0.08
match 2 -2.1 1.6 0.21 0.01
(Z) match 3 -3.3 2.9 0.11 0.01
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Table 3. Regression of hub disruption index on Cognitive Composite Score (CCS). Response: Cognitive Composite Scores
(CCS). B, coefficient of regression. ***p<0.001, **p<0.01, *p<0.05. Random effect: family.

Edge threshold B_xS B_Education _Age B_Sex (Male) 8_DVARS
5% 0.02* 0.11%+* -0.06*** -0.18 -0.04
10% 0.03** 0.11%+* -0.06*** -0.18 -0.05
20% 0.05** 0.11%+* -0.06*** -0.19 -0.06
30% 0.07** 0.11%+* -0.06*** -0.20 -0.07
40% 0.09** 0.10*** -0.06*** -0.21 -0.07
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