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Abstract

Multiple lines of evidence point to peripheral immune alterations in bipolar disorder (BD)
although the activity of brain immune mechanisms remain largely unexplored. To identify the
cell type-specific immune alterations in the BD brain, we performed a proteomic and single
nuclear transcriptomic analysis of postmortem cingulate cortex samples from BD and control
subjects. Our results showed that genes associated to the genetic risk for BD are enriched in
microglia and astrocytes. Transcriptomic alterations in microglia point to a reduced
proinflammatory phenotype, associated to reduced resistance to oxidative stress and
apoptosis, which was confirmed with immunohistochemical quantification of IBA1 density.
Astrocytes show transcriptomic evidence of an imbalance of multiple metabolic pathways,
extracellular matrix composition and downregulated immune signalling. These alterations are
associated to ADCY2 and NCAN, two GWAS genes upregulated in astrocytes. Finally, cell-
cell communication analysis prioritized upregulated SPP1-CD44 signalling to astrocytes as a
potential regulator of the transcriptomic alterations in BD. Our results indicate that microglia
and astrocytes are characterized by downregulated immune responses associated to a

dysfunction of core mechanisms via which these cells contribute to brain homeostasis.


https://doi.org/10.1101/2023.10.29.564621
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.29.564621; this version posted November 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Introduction

Bipolar disorder (BD) is a severe and highly heritable psychiatric disorder, with significant
morbidity’, affecting 1% to 4.5% of the population? and is characterized by episodes of mood
alteration, that can be depressive or (hypo)manic. A significant proportion of BD patients
suffers from functional and cognitive impairment at various degrees across the phases of the
disease®.

The aetiology of the disease is still largely unknown, but it is considered multifactorial®,
encompassing genetic and environmental factors®®. The absence of reliable animal models of
the disease (based on genetic or environmental mechanisms) further hampers the
understanding of the pathology. Indeed, the clinical heterogeneity of BD patients combined
with the high comorbidity rate leads to difficulties in the identification of specific biological
targets. Nevertheless, evidence from Genome Wide Association Studies (GWAS)~'° have
highlighted several genomic loci with a significant association with BD.

One of the potential biological mechanisms that has been widely described in BD is
inflammation. Indeed, an increased concentration of peripheral inflammatory markers has
been consistently reported in cross-sectional studies in BD, suggesting immune alterations

1113 However, whether this increased

across the various mood states of the disease
peripheral inflammatory state is due to central inflammation has not been determined. If
peripheral inflammation is mechanistically associated with BD pathophysiology central
immune mechanisms should also be activated. This central immune activation should involve
microglia and astrocytes, which are among the most important cellular mediators of immunity
in the central nervous system (CNS)™. Contrary to the upregulation of peripheral inflammatory
markers in BD, a recent large-scale bulk RNA sequencing study of over 500 brain samples
from two brain regions involved in BD pathophysiology (cingulate cortex and amygdala) has
shown that gene co-expression modules enriched in immune pathways were significantly

downregulated in BD'®. However, bulk RNA sequencing does not allow for cell type-specific

inferences to be made, so it is impossible to assert if this downregulation of immune pathways
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involves microglia and astrocytes. Furthermore, a recent systematic review of human
neuropathology studies assessing immune markers in postmortem human brain samples
highlighted that at the protein level, results are inconsistent across studies’®, likely due to the
heterogeneity of the employed techniques and the targeted molecules.

To clarify the central molecular alterations involved in BD, we first performed a bulk tissue
proteomic analysis in human postmortem samples from BD patients and age- and sex-
matched controls, which showed that proteomic alterations in BD involved astrocyte- and
microglia-specific molecules. Consequently, using single nucleus RNA sequencing
(snRNAseq), we focused on microglia and astrocytes and first assessed the astrocyte- and
microglia-specific expression of BD GWAS genes and their alterations with the disease. We
then characterized the wider dysfunctional biological pathways in BD using snRNAseq and
spatial transcriptomics and validated the most important findings using immunohistology and
an independent bulk tissue transcriptomic dataset. Our multi-omic analyses results point to
specific molecular alterations in glial cells in BD, predominantly characterized by extracellular
matrix (ECM) gene overexpression, metabolic and immune signalling dysfunction in astrocytes
and reduced proinflammatory, phagocytosis-related signalling and apoptosis-associated

decrease in microglial density in BD.

Results

BD is characterized by proteomic alteration of immune, mitochondrial and lipid
metabolic pathways

To identify protein pathway alterations in BD, we first performed a proteomic analysis on
bulk cingulate gyrus (Cg) tissue—a brain region that has been consistently implicated in BD —
from 18 postmortem human brain samples from BD patients and age- and sex-matched non-
neurological and non-psychiatric control subjects (CT). To increase the statistical power in the
assessment of protein functional pathways that are altered in BD, we employed a protein co-
expression analysis using weighted gene co-expression network analysis (WGCNA)", which

yielded 13 modules. WGCNA uses principal component analysis (PCA) to extract an
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eigenprotein value, i.e. a numeric value representing the overall abundance of all the proteins
in the module (Table S1). We thus compared the eigenprotein values of the modules between
the BD and CT samples and based on this comparison we prioritized the two significantly
differentially abundant modules: Module 17 (M17, 104 proteins, paq = 0.0194, downregulated
in BD, Figure 1A) and, “Module” 0 (MO, 185 proteins, paq = 0.0184, upregulated in BD), which
actually is the set of proteins that were not assigned to any module in the WGCNA analysis
(Figure 1B). Functional enrichment analysis (FEA) of the M17 module using enrichR'® showed
enrichment in growth factor pathways (involving proteins that mediate VEGF, NTRK2-NTRKS,
FGF and PDGFB signalling), innate immune/phagocytosis pathways and citrate cycle proteins
and mitochondrial matrix proteins (Figure 1C). The presence of C1S in M17 indicates a
downregulation of the classical pathway of complement activation, whereas the presence of
the complement regulator CD55 indicates a potential mechanism for neurotoxicity in BD' and
corroborates previous findings of a downregulation of CD55 in the plasma of BD patients?.
We then performed individual protein level differential abundance analysis focusing on proteins
included in this module to prioritize potential drivers of its downregulation. ATP-dependent 6-
phosphofructokinase (PFKL), isocitrate dehydrogenase (IDH3G), mitochondrial acetyl-
coenzyme A synthetase 2-like (ACSS1) and mitochondrial ornithine aminotransferase (OAT)
were significantly downregulated (logz2FCpkrL = -0.313, pagiekre < 0.0001, log2FCacss1 = -0.303,
Padiacss1 = 0.00481, log2FCoat = -0.251, pagioar = 0.0164), underlining the dysregulation of
mitochondrial and metabolic function in BD?*"?? (Figure 1D). In the MO protein set, lipoprotein
metabolism, ECM, apoptosis and neurotransmitter signalling pathways were enriched (Figure
1E). Individual protein differential abundance analysis highlighted lipid processing alterations
(APOE, APOA1 and FABP3) as significantly upregulated in BD (log2FCapoe = 0.373, pagjaroe <
0.0001, log2FCapoat1 = 0.431, pagiapoar = 0.0491, logzF Crasps = 0.333, pagirases = 0.0293) (Figure
1D). Some of the donors of our BD group were taken psychotropic medications (lithium,
olanzapine or valproate) at the time of death. We thus asked if the proteomic alterations in our
samples could be driven by these medications. We identified gene sets that were in the brain

of rodents in response to treatment with these medications from previous studies. We thus
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tested the overlap between the differentially abundant proteins in our samples with genes
altered in response to lithium?®, olanzapine®* or valproate?® and did not find any significant
overlap. This results suggests that the results of our proteomic analysis is not driven by
medications.

Given that this proteomic analysis was performed on bulk tissue, we then sought to identify
cell type associations of the significantly altered protein sets. We employed the Expression
Weighted Cell type Enrichment (EWCE) method®® that assesses if a given set of
proteins/genes is significantly enriched in markers of a particular cell type based on brain single
cell RNA sequencing datasets. This analysis identified a significant enrichment of astrocyte-
specific proteins in both downregulated (M17) and upregulated (MO) sets of proteins
(Pdownreguiated = 0.005, Ppupreguiated = 0.0137 , respectively, Figure 1G, H). In both modules,
microglia-specific enrichment approached significance in this test (Pdownreguiated = 0.0569,
Pupreguiated = 0.0565, Figure 1F, G). No other cell types were enriched in any of the modules.
Taken together, these results suggest immune, lipid and mitochondrial metabolic alterations in

BD that are specifically associated with astrocytes and microglia.

BD risk factor genes are differentially expressed in astrocytes and microglia

Our proteomic analysis suggested that the major alterations in protein expression in BD
occurred in astrocytes and microglia. We thus specifically examined these two cell types using
snRNAseq on a subset of our samples. We used fluorescence activated cell sorting (FACS)
on the isolated nuclei to remove SOX10-positive oligodendrocytes and NEUN-positive

neurons?’+?8

prior to barcoding. With this method, 15’000 ‘double negative’ nuclei were retained
per sample (=0.079 +0.047% of total events — Figure S1A). The nuclei were then processed
on the 10X Chromium controller and sequenced. Then, we used the nf-core/scflow pipeline to
perform integration using Liger®®, clustering with UMAP*°, and cell identification, resulting in
18’176 nuclei in total (Figure 2A). BD and CT as well as male and female donor nuclei were

well-mixed after integration (Figure S1B, C). The number of nuclei did not significantly differ

between BD and CT (p = 0.1033, Figure S1D), or between male and female donors (p =
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0.3415, Figure S1E). Nuclei sorting and automated cell type annotation was verified with
canonical microglial and astrocytic cell markers and with enrichment of the nuclei for gene sets
characteristic of human microglia®' and astrocytes® using AUCell*3, which confirmed the cell
type identity (Figure 2B-D, Figure S1F, G).

We first assessed if genes related to BD genetic risk-associated genomic loci from GWAS
(a combined list of genes identified by Stahl et al.” and Mullins et al.”, Table S2), were enriched
in astrocytes and microglia nuclei. We first quantified the expression of the 73 GWAS genes.
Of those genes, 43 are expressed by at least 5% of astrocytes or microglia in our study (Figure
3A). We then used MAST?* to perform a differential gene expression (DGE) analysis using a
mixed effects model, between BD and CT samples and found that several of the GWAS genes
were differentially expressed in glial cells (padj < 0.1, [logFC| > 0.1; Figure 3B, C): in astrocytes
ADCY?2 (pag= 0.092, logFC =0.698) coding for an isoform of adenylyl cyclase that catalyses
the formation of cyclic adenosine monophosphate (CAMP) from ATP and is involved in cAMP-
PKA signalling, regulating multiple cellular functions such as glycogen metabolism®-%;
CACNB?2 (pag= 0.0669, logFC = -2.607), a subunit of a voltage-gated calcium channels which

39,40

has been associated with hypertension®*#’ and brain cognitive dysfunctions in BD*"*>; NCAN

(pag= 0.015, logFC = 0.785), a component of brain ECM and specifically of brain perineuronal

4347 which also contributes to the formation

nets that regulate synaptic structure and function
of glial scar in response to injury*®=°% SLC25A17 (pag= 0.0369, logFC = 0.268), a peroxisomal
transporter®’; and FSTL5 (pag= 0.007, logFC = -0.352), coding for a Wnt signalling-associated
protein®? shown to be implicated in caspase-dependent apoptosis® (Figure 3B). In microglia,
3 genes were significantly altered: SSBP2 (pag= 0.00018, logFC = 0.754), a highly ubiquitously
expressed gene coding for a single-stranded DNA binding protein®*; STK4 (pag= 0.0231, logFC
= -0.15), which is involved in microglial apoptosis and may contribute to microglial
activation®°%; and CD47 (p.s= 0.0856, logFC = -0.199), which codes for an inhibitor of

microglial phagocytosis contributing to the regulation of synaptic pruning during

development®”*8 (Figure 3C).
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Microglia in BD are characterized by reduced proinflammatory signalling and increased
apoptosis

Having demonstrated that the proteomic changes in BD involves microglial molecules and
that GWAS genes are enriched in microglia, we then examined the transcriptomic evidence of
microglial dysfunction in BD using snRNAseq. DGE analysis in microglial nuclei yielded 379
DEG that are significantly downregulated in BD and 448 DEG that are significantly upregulated
(padj < 0.1, |logFC| > 0.1) (Figure 4A). FEA showed an upregulation of Wnt B-catenin-
independent signalling (TNRC6C, PPP3CA, RYK, PSME4, AGO2, ITPR2, CTNNB1, PRKCA)
and insulin signalling (MAP3K3, STXBP3, INSR, MINK1, INPPL1, IRS2, PRKCA, FOXO3,
PIK3CA, TBC1D4, MAP3K4, MAP2K5, MAP3K5) along with PI3K-Akt, MAPK and calcium
signalling pathways (Figure 4B). Insulin signalling, along with the upregulated CSF1R, both
potential activators of the PI3K-Akt pathway, may drive autophagy®®, which also shows
evidence of upregulation. Autophagy might be in response to oxidative stress, which
characterises BD®, especially given the dysfunctional antioxidant responses and glutathione
metabolism indicated by the downregulation of relevant genes (GSR, MGST2, LAP3, JUN,
PNPT1, SELENOS, CYBA, VRK2, ETV5; Figure 4A). The deficient stress response may be
further aggravated by lysosome and phagosome-related gene downregulation (ATP6VOB,
ASAH1, CTSZ, CD68, LIPA, IGF2R, CTSC, LGMN, HLA-DRB5, TUBA1B, HLA-DMA, HLA-B,
CYBA, CALR, ACTB, ACTG1, HLA-E, HLA-DPA1; Figure 4A) potentially leading to a
cytoplasmic accumulation of autophagosomes. Microglial dysfunction is accompanied by a
reduction in the expression of proinflammatory genes of the cytokine, antigen processing,
interferon, and JAK-STAT pathways. This could have an impact on synaptic pruning by
microglia impacting neuroplasticity and neuronal activity®' in BD. Finally, we found evidence
for an increased apoptosis of microglial cells in BD. Indeed, several genes involved in
antiapoptotic signalling were found downregulated (e.g. TUBA1B, NAIP, YWHAG, YWHAQ,
BCL2, BCL2L1, GLUD1 and ACTGT; Figure 4C)**®® To confirm the alteration of these
pathways on a larger scale, we performed a DGE analysis between BD and CT samples on a

publicly available bulk RNA sequencing dataset, including over 200 samples from the Cg and
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the amygdala, published by Zandi et al.”®. Using gene set enrichment analysis on the results
of the DGE analysis, we showed the enrichment of many of the same pathways that were
enriched in our snRNAseq analysis results (Figure S2A).

To further validate the snRNAseq results, we performed a bulk transcriptomic comparison
between our BD and CT samples, using the nCounter Glial Expression Panel (Nanostring)
supplemented with 55 custom genes (Table S3). This analysis was performed separately in
tha grey (GM) and white matter (WM). When we jointly analysed both regions (whole tissue,
WT), 52 genes were significantly downregulated and 40 upregulated (p < 0.05). When GM and
WM were analysed separately, 36 significantly downregulated and 28 significantly upregulated
genes were found in the GM (p < 0.05), whereas 58 significantly downregulated and 14
significantly upregulated genes were found in the WM (p < 0.05, Figure S2B-E). We tested the
presence of a set of human microglia-specific genes highlighted by Butovsky et al.>” among
the DEGs in the WT and separately in GM and WM. The majority of these genes were
downregulated in BD (16 significantly downregulated for 4 significantly upregulated genes),
with prominent examples of TREM2, CD68, CD74, CD33, AIF1, TLR7 and CX3CR1 (Figure
4D and Figure S2B-E) in all comparisons. We then performed a gene set variation analysis
(GSVA)® on the nCounter dataset, to compare the overall expression of microglia-specific
genes®’, which also showed a significant downregulation of this gene set in BD (Figure 4E).
These results confirm a reduction of genes related to microglial proinflammatory and
phagocytosis pathways. To test the reproducibility of this result on a larger scale, we performed
the same analysis on the dataset published by Zandi et al. and found that, in addition to the
validation of an overall hypoactivation of microglia in Cg in BD (Figure S2F), this result extends

to the amygdala (Figure S2G).

With evidence of increased apoptosis in microglia in BD and a global downregulation of
microglia specific genes in these two bulk transcriptomic datasets, we hypothesized that
microglial density may be reduced with the disease. We thus performed IBA1

immunofluorescence (IF) assay (Figure 4F), which confirmed a significant decrease of IBA1
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intensity (Figure 4G) and density (Figure 4H) in the GM (Pmean grey vaiue = 0.02195, ppositive area =
0.01962). This decrease of intensity and density of IBA1 is accompanied by an increase of
IBA1 positive cell number (Figure 41) (ppositive cell area = 0.01054).

Given the age of the subjects in our study and the occurrence of Alzheimer’s disease (AD)-
related pathology even in non-demented elderly subjects, we also asked if such pathological
changes could bias the results of our study (e.g. if the higher proinflammatory and
phagocytosis-related pathway enrichment in CT subjects was due to a possible higher level of
AD-type pathology). We first assessed the presence of amyloid B deposits as well as
hyperphosphorylated tau protein in both BD and CT subjects (Figure S3) that showed no
significant difference. We next asked if the differential expression of microglial genes could
have been induced by psychotropic medications that some of the BD subjects of our cohort
were taking. We thus tested the overlap of DEGs from our microglial nuclei with known gene
sets influenced by the treatment with lithium?3, olanzapine® and valproate®, without finding
any significant overlap. This result confirms that microglial transcriptomic alterations in our
dataset have not been the result of medication, but most likely of the disease itself. Overall,
our results point towards a dysfunctional microglia phenotype in BD, showed by a decreased
density, reduced phagocytic capacity and proinflammatory activation, associated to a deficient

response to oxidative stress and apoptosis.

Astrocytes in BD show transcriptomic alterations suggestive of metabolic and immune
dysfunction and impaired extracellular matrix composition

After having established the impairment of microglia in BD and because the proteomic
analysis of our samples also pointed towards astrocyte-specific alterations, we next looked for
astrocyte-specific transcriptomic alterations in our snRNAseq dataset and performed a DGE
analysis in these cells. It resulted in 288 genes significantly downregulated in BD and 501
significantly upregulated (padj < 0.1) (Figure 5A). We found evidence for dysfunctional lipid
metabolism in BD (Figure 5B). Fatty acid, triacylglycerol, and ketone bodies metabolism-

related genes (SLC27A1, ACADVL, SMARCD3, SCD5, ACOT11, NPAS2, ACSF2, AGPATS3,

10
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MED13, RXRA, SIN3B, PPARA, ACAD10, CLOCK), including genes implicated in lipid
transport and fatty acid oxidation in astrocytes, were upregulated. On the contrary, genes
implicated in phosphatidylcholine and phosphatidylethanolamine metabolism and trafficking,
important for mitochondrial and synaptic function’®"? were downregulated (SLC44A3, CHKA,
ABHD3, CHPT1, LPIN2, ETNK1, PLSCR1, PLSCR4). Metabolic alterations are also
supported by a decreased in insulin signalling pathway genes” (SPRED2, SPRED1, RAP1A,
PSMA1, PSME4, PDE3B, IQGAP1, PPP2R5C, DUSP16, JAK1), despite the significant
upregulation of the insulin receptor in BD (INSR).

Calcium and cAMP signalling are important second messengers of signals involved in
glucose and glycogen homeostasis and of lactate production and both these second
messengers are modulated by adrenergic signalling. Our results show that the gene coding
for the adrenergic a1 receptor (ADRA1A) was upregulated in BD, along with the downstream
thermogenesis pathway genes (SMARCD3, ADCY2, ARID1A, ADCY8, PRKG1, MAP3KS},
SMARCA4, FGFR1)™®. However, genes implicated in the mobilisation and the increase of
calcium and calcium signalling were downregulated (PPP3CA, GNA14, PPP3CC, STIM2,
ITPR2, PLCG1, CALMZ2, SLC8A1), including the GWAS gene CACNB2, which also codes for
a subunit of a voltage-gated calcium channel®. In parallel, we found an upregulation of cAMP
producing enzymes ADCYZ2 and ADCY8, with a downregulation of UGPZ2, which contributes to
glycogen synthesis. These results suggest an imbalance between astrocytic cCAMP- and Ca-
dependent signalling pathways, which along with the downregulation of glycogen synthesis
may contribute to deficient glucose and lactate homeostasis in the BD brain”®. Several of
these pathways were also found altered in the DGE analysis of the Zandi et al. dataset (Figure
S2A) We then asked if upregulation of ADCY2'’, which is also related to the genetic risk for
BD may have a functional impact on astrocyte glucose metabolism. We overexpressed ADCY2
in cultured primary mouse astrocytes and found a reduced ['®F]-Fluorodeoxyglucose uptake
by LV-ADCY2 infected astrocytes, as compared with mCherry-coding control virus-infected
cells (Figure 5C). This result seems to support the downregulation of glycogen synthesis and

degradation pathways found with FEA in snRNAseq (Table S4). The upregulation of ADCY2

11
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was validated in the BD brain at the protein level. Because ADCY?2 is also expressed in
neurons, we included them in our analysis. Using triple immunostaining, we confirmed that
GFAP-labelled astrocytes, NEUN-stained neurons, and NEUN-GFAP double negative cells,
all significantly upregulated ADCY2 in BD (Figure 5D-H). This indicates that ADCY2
upregulation is widespread among the various brain cell types.

Apart from metabolic functions, a dysfunctional glutamate homeostasis by astrocytes, with
downregulation of the metabotropic glutamate receptor 3 (GRM3) and the excitatory amino
acid transporter (SLC1A3) were suggested by our results (padjermz = 0.007411, log2FCerus =
-2.369, padjs.cias = 0.09633, log2FCsicias = -1.744). Also related to glutamate homeostasis
and the overall neuronal function, astrocytes additionally showed evidence of upregulation of
ECM components (VCAN, NCAN, B3GAT2, HS6ST1, GPC6, HS6ST3), that form perineuronal
nets in the brain, maintain glutamate homeostasis’® and the excitatory/inhibitory signalling

48-50

balance and are a possible target of lithium, a mood stabilizer widely used for BD

treatment’®. Given the fact that NCAN expression is increased in astrocytes, and has been
identified as a gene associated to the genetic risk for BD’ we also performed
immunohistochemistry (IHC) within the Cg which confirm this upregulation of NCAN in the WM
(one-tailed t-test, p = 0.02867, Figure 51, J).

Consistent with the proteomic analysis at the whole tissue level, we also show a
downregulation of Wnt signalling-associated genes (PPP3C, TCF7L2, PPP3CC, CTNNB1,
ROR1, TP53, LGR4) and of genes that contribute to growth factor signalling and an
upregulation of apoptosis genes. Finally, as in microglia, immune-related pathways, notably
interferon signalling genes (HERC5, RANBP2, DDX58, STAT2, MX1, EIF2AK2, PLCGT1,
XAF1, B2M, TRIM22, HLA-E, JAK1) were significantly downregulated in BD (Table S4).

Given the dysregulation of apoptosis-related genes in astrocytes®, we performed a GFAP
fluorescence staining on our tissue to assess astrocytic density and reactivity (Figure S4A),
which showed no difference between BD and CT (Figure S4C-D). These results corroborate
with our nCounter bulk RNA sequencing results, which showed no difference between CT and

t32

BD either when enriching for an astrocytic-specific gene set> (Figure S4D-I). However, when
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we assessed the enrichment of this astrocyte-specific gene set on the bulk RNAseq dataset

from Zandi et al."®

we did find a significantly reduced GSVA score showing a decrease of
astrocyte-specific genes in Cg of BD (p = 0.011), but not in amygdala (p = 0.074). We also
tested if the transcriptomic alterations in astrocytes could be induced by medication. As with
microglia, no significant overlap was found between our DGE results in astrocytes and the
gene sets associated to the BD treatments lithium?®, olanzapine®* and valproate?.

Altogether, these results show an impact of the disease on important processes via which

astrocytes support neuronal function along with a decreased immune signalling, with the

GWAS genes NCAN and ADCY?2 as potential upstream regulators of these processes.

Spatial transcriptomics distinguish astrocyte molecular alterations in the grey and
white matter in BD

Given the morphological and functional differences of astrocytes between WM and GM®'
and the fact that astrocyte alterations in BD have been reported to differ between the WM and
the GM®2, we next tested if the BD-associated molecular alterations in astrocytes were
dependent on their localization®*®. We thus employed spatial transcriptomics and the Digital
Spatial Profiling (DSP) to perform a gene expression analysis in GFAP-“enriched” regions of
interest (ROI) in WM and GM (Figure 6A). After confirming that the most highly expressed
genes in our ROI were indeed predominantly associated to astrocytes (using EWCE, Figure
6B), we then sought to determine the spatial origin of shnRNAseq astrocytic subsets (Figure
6C). We performed subclustering of our astrocytes and identified three groups of cells. We
then identified the marker genes that characterized each subcluster and calculated their GSVA
scores in WM-GFAP-positive vs GM-GFAP-positive areas (Figure 6D). This resulted in an
association of Astro 1 subcluster, predominantly enriched in neurotransmitter related pathways
(associated to glutamate homeostasis pathways) with GM. On the contrary, Astro 2 and Astro
3 subclusters (associated to energy and lipid metabolism and immune signalling) are

associated with WM (Figure 6E). These results suggested that astrocytic functions are spatially

13


https://doi.org/10.1101/2023.10.29.564621
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.29.564621; this version posted November 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

delimited between the GM and the WM and the BD-associated alterations differentially impact

these two regions of the cortex.

Cell-cell communication analysis prioritizes SPP1-CD44 signalling to astrocytes in BD

Having identified astrocyte- and microglia-specific changes in BD, we assessed for possible
interactions between those two cell types. We thus performed a cell-cell communication
analysis on snRNAseq data using the CellChat package in R®. This package highlights pairs
of ligands and receptors that may be active in intercellular communication using snRNAseq
data. CellChat results suggested that the SPP7-CD44 ligand-receptor pair showed stronger
intercellular communication potential in BD than in CT. SPP1, a ligand expressed by microglia,
astrocytes, perivascular macrophages, and oligodendrocytes communicates with astrocytes
via the receptor CD44. We tested for evidence of co-regulated SPP1-CD44 signalling in BD in
our spatial transcriptomic results: indeed, GFAP-enriched ROI from the DSP experiment are
enriched in astrocytic transcripts but also contain transcripts from immediately adjacent cells,
other than astrocytes. Thanks to this very close spatial proximity, transcripts that show
correlated expression across samples may thus indicate co-regulated gene sets. We
calculated the correlation between CD44 and SPP1 expression separately in the CT and in
the BD samples. We found a significant positive correlation only in BD. This result is an
indication that this communication pair® is more active in BD than in the CT brain (Figure 7A).

Then, using co-staining, we investigated the presence of these 2 proteins in astrocytes at
the tissue level (Figure 7B). We found that there were more GFAP*/SPP17/CD44" cells in the
WM of BD than in CT (3-way ANOVA with Tukey post-hoc test, p = 0.0066, Figure 7C). To go
further, we looked at the colocalization of those three proteins at the voxel level. We found that
the colocalization of the three proteins is significantly increased in BD (3-way ANOVA, p =
0.0188, Figure 7D), further supporting an upregulation of SPP1-CD44 signalling in BD
astrocytes. In light of our transcriptomic and IHC results, this upregulated communication
appreas to be implicated in BD and could be contributing to the downregulated immune

responses in astrocytes®” and dysfunctional glutamate homeostasis®®.
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Partial convergence between peripheral and central immune marker profiles indicates
candidate serum biomarkers

Our overall results suggest a downregulated inflammatory response in microglia and
astrocytes in BD. Nevertheless, increased peripheral inflammation in BD has consistently been
reported. We used multiplex ELISA with a panel of 45 cytokines and immune system-related
molecules (Table S5) on serum samples from an independent cohort of BD subjects and CT
(n=25BD and n =17 CT). We showed that several pro-inflammatory cytokines are increased
in BD samples, such as IFNy, IL-1b, IL-2 or TNFa. IL-10 and VEGF-D, which may have anti-
inflammatory properties are also increased in BD (Figure S5A-P). Additionally, two anti-
inflammatory cytokines were found decreased: LIF and HGF (Figure S5N-P). To test for
associations between CNS cytokine expression and their peripheral concentration, we
calculated the enrichment of genes coding for these cytokines in the Zandi et al.'® bulk RNAseq
dataset using GSVA. The enrichment of genes coding for the proinflammatory cytokines that
were upregulated in the serum of BD patients were unaltered in the brain. On the contrary, the
genes coding for IL-10 and VEGF-D showed upregulated enrichment in the brain in BD,
suggesting that unlike pro-inflammatory cytokines, the serum concentration of these two
proteins may reflect their brain concentration (Figure S5Q-T). Taken together, our multiple
ELISA results corroborate the widely described upregulation of proinflammatory cytokines in

the serum of BD patients. However, this upregulation does not appear to originate in the brain.

Discussion

In the present work, we have characterized molecular alterations in astrocytes and microglia
in BD using a multi-omic approach on a cohort of postmortem human brain samples from the
Cg. Bulk tissue proteomics provided evidence for downregulation of growth factor and
proinflammatory signalling, citrate cycle and mitochondrial matrix proteins, accompanied by an
upregulation of lipoprotein metabolism and apoptosis-related proteins. These significantly

altered proteins were predominantly of astrocytic and microglial origin and this prompted us to
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perform a snRNAseq characterization of these two cell types in BD to obtain a cell-type specific
mapping of the molecular alterations in the disease. We first showed that GWAS genes for BD
were expressed in microglia and astrocytes and showed for the first time to our knowledge that
several of them were altered with the disease (e.g. ADCY2, NCAN, CD47, SSBP2). At the
transcriptomic level, both microglia and astrocytes showed evidence for a downregulated
proinflammatory and growth factor signalling and for dysfunctional metabolism. Using
immunostaining we showed that microglial density is reduced in BD, associated with increased
apoptosis and deficient response to oxidative stress. Among the potential mechanisms of
astrocyte contribution to neuronal dysfunction, we found evidence for dysregulated immune
and metabolic functions, dysfunctional glutamate homeostasis and an overexpression of ECM
components that form perineuronal nets, alterations that are potentially associated to
increased signalling through SPP1 to astrocytic CD44. Using spatial transcriptomics, we show
that these astrocytic alterations differentially affect the cortical WM and GM. Finally, we
indicate that despite the diverging proinflammatory molecular alterations in the CNS
(downregulation) and the periphery (upregulation) in BD, two potentially anti-inflammatory
molecules (IL-10 and VEGF-D) may serve as biomarkers of the disease as their serum
dynamics parallel those of the brain.

We provided several lines of evidence that proinflammatory signalling is downregulated in
both microglia and astrocytes in BD, a finding that has been suggested by previous brain
transcriptomic studies'®°. This comes in contrast with the largely reproduced increased

concentration of proinflammatory cytokines in the plasma™'"'2

of BD patients. This could
suggest that the peripheral proinflammatory markers are increased due to brain-independent
processes®™. Alternatively, this finding could be due to a particular vulnerability of BD patient
glial cells to the effect of ageing. Indeed, our sample included aged individuals, whereas
studies measuring peripheral inflammation have been performed on cohorts of a younger age.
We can thus hypothesize that glial cells, particularly microglia present a « dystrophic »

91-93

phenotype with an altered morphology (explaining the smaller IBA1* area per cell in our

study), an increased apoptosis and a lower proinflammatory gene expression. This could be
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due to chronic activation®. It is still unclear if during an acute episode of the disease there is
proinflammatory activation in the brain, which could contribute to this chronic activation with
multiple disease episodes. Such dysfunctional microglia may lead to defective synaptic
pruning® and, together with impaired astrocytic glutamate homeostasis may contribute to
synaptic dysfunction in BD*. This result prompts further research into carefully phenotyped
cohorts to identify clinical trajectories associated with glial cell dysfunction in BD. We have
recently shown that Positron Emission Tomography (PET) imaging measuring the 18 kDa-
Transclocator Protein (TSPO) in the CNS is a marker of microglial density®”. PET TSPO
imaging is the appropriate tool to further explore the clinical correlates of microglial density
alterations in BD. The only PET TSPO study to date in BD included patients from various mood
states, thus the upregulation that was highlighted could have been driven by individuals
experiencing a disease episode'. In addition, there may still be peripheral inflammatory
markers that show variations consistent with those in the brain, such as IL-10 and VEGF-D so
further research should validate these markers.

Metabolic dysregulation was prominent in our proteomic and transcriptomic datasets.
Insulin signalling genes were found downregulated in both microglia and astrocytes, potentially
underlining a mechanism through which central glucose metabolism is implicated in BD
pathophysiology®®. ADCY2 upregulation in vitro reduced astrocytic glucose uptake. At the
same time, ADCY2 is a BD GWAS gene: it could thus be an upstream of these metabolic
alterations in astrocytes. This is particularly relevant, given the evidence in favour of an
imbalanced cAMP and calcium signalling and glycogen synthesis, with a potential impact on

99-101 "Clinical imaging studies have shown

lactate metabolism and the overall cortical activity
that glucose metabolism is altered in BD'°%'% and our study, in accordance with literature,
underlines the contribution of microglia and astrocytes in this process'®%. It is important to
note that 5 of the patients in our cohort where diabetic, although they were equally distributed

between the samples (n =2 in BD, n= 3 in CT) so the downregulation of insulin pathway genes

is therefore probably not the result of this comorbidity.
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Our spatial transcriptomic experiment allowed us to obtain information on the phenotypic
characteristics of cortical GM and WM astrocytes. This finding provides potentially mechanistic

t'% and GM volume alterations in BD.

insight into the WM connectivity impairmen

We recognize that our study has limitations. The principal one is the small group size and,
though we have provided multiples lines of evidence using independent experimental
approaches to validate our most important results (including the use of a particularly large bulk
RNAseq dataset). In addition, several individuals of our BD cohort (3 out of 9) were on BD
medication (lithium, clozapine and quetiapine) at the time of death. This could have an impact
on some of our results, but the relative contribution of any of those individuals on the whole
cohort should be small. We specifically tested for overlap between the genes that we were
altered in our snRNAseq analysis and genes altered in response to these medications from
previous studies. We did not find any significant overlap and this supports the argument that
the results of our DGE analysis in microglia and astrocytes is likely not due to the effects of
psychotropic medication. Furthermore, if the results of our DGE analysis were biased by
medication, we would most likely expect an opposite effects on mechanisms such as brain
proinflammatory activation'®” than what our results suggest. Another limitation stems from the
fact that We studied samples from one brain region and our results warrant further validation
in other brain regions implicated in BD. Finally, knowing that BD and other severe psychiatric
disorders, such as schizophrenia and major depressive disorder may share common
pathophysiological mechanisms, our study is limited by the fact that it does not provide any
information on the specificity of our findings in BD.

In summary, we have performed a multi-omic analysis of human brain samples in BD and
identified potential mechanisms affecting microglial and astrocytic function. We show that brain
infammatory signalling is reduced in BD and highlight potential serum cytokines that could
reflect their brain levels, while glucose and lipid metabolism alterations also characterise the
disease. Our work prompts the assessment of the clinical impact of these alterations with

metabolomic profiling of serum as well as through carefully designed clinical studies.
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Materials and Methods

Human samples

Flash Frozen (FF) and Formalin Fixed Paraffin Embedded (FFPE) human postmortem
cingulate cortex samples were obtained from the same 9 BD and 9 age- and sex-matched
non-neurological and non-psychotic CT subjects. The brain samples and/or bio samples were
obtained from The Netherlands Brain Bank (Netherlands Institute for Neuroscience,
Amsterdam, www.brainbank.nl). All Material has been collected from donors for or from whom
a written informed consent for a brain autopsy and the use of the material and clinical
information for research purposes had been obtained by the NBB. Three of the BD subjects
were treated with lithium of which, one was also taking quetiapine and lamotrigine, one bipolar
subject was taking clozapine, and one was taking olanzapine with carbamazepine up to the
last week prior to death. Serum from 25 BD and 17 age- and sex-matched non-demented CT
subjects were collected and stored by the University Hospitals of Geneva. Detailed information
can be found in Table 1 and Table S6. The exclusion criterion was the diagnosis of dementia
and substance use disorder. All experimental procedures were performed with the agreement

of the Cantonal Commission for Research Ethics (CCER) of the Canton of Geneva.

CT BD P value
Age 79.67 (£ 11.8) 74.44 (£ 10.04) 0.32696
Sample age 52.67 (+ 9.61) 55 (£ 8.5) 0.59965
Sex (F/M) 6F/3M 6F/3M 1
Braak 2.56 (£ 1.42) 1.83 (+ 1.33) 0.34163
Postmortem Delay 6.22 (+ 1.48) 7.73 (£ 1.91) 0.07944
Weight 1232.11 (£ 107.26) g  1175(x 134.68) g 0.33448
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Table 1 — Clinical details of postmortem human brain samples. Values are expressed as mean
+ SD. All numeric values were compared with student t.test except for sex that was compared

with Chi-squared test. Detailed information about subjects can be found in Table S6.

Immunohistology

Brains were fixed in 10% formalin solution for 4 weeks before embedding in paraffin
according to the NBB procedure. Twelve ym sections were cut on a microtome then dewaxed,
rehydrated, treated for 10 minutes with 14 mmol/L Glycine, and used for immunohistology. For
ADCY2 staining, sections were treated in a solution of Citrate-EDTA pH6.2 in a decloaking
chamber for 25 min at 95°C, then treated with Akoya Biosciences TSA Blocking Buffer for 1
hour at room temperature before being treated according to Akoya Biosciences Tyramide
Signal Amplification Cyanine 3 procedure. Primary antibodies were used as follows: ADCY2
(orb34050, Biorbyt — 1/20), GFAP (MA5-12023, Invitrogen — 1/250), NEUN (266 004, Synaptic
Systems — 1/250). After PBS washing, secondary antibodies for GFAP and NEUN were used
and amplification antibodies according to the kit were used for ADCY2. For CD44, SPP1 and
GFAP staining, sections were placed in a decloaking chamber for 20 min at 95°C in a solution
of citrate pH6.0. Primary antibodies were used as follows: GFAP (ab5541, Sigma-Aldrich —
1/100), CD44 (F10-44-2, abcam - 1/80) and SPP1 (ab63856, abcam - 1/100).
Immunohistochemistry was performed for NCAN, amyloid B (AB) and hyperphosphorylated
Tau (pTau) quantification. For NCAN, sections were treated in a solution of EDTA pH8 in a
decloaking chamber for 25 minutes at 95°C, then incubated in 1xPBS + 0.5% Tritton X-100 +
3% Bovine Serum Albumin before adding the primary antibody (HPA036814, Sigma-Aldrich —
1/1000) for 48h at 4°C. For AB, sections were immerged in a 100% formic acid for 10 min
followed by a brief wash in DI H20 and PBS and an incubation with anti- Ab (800701,
Biolegend — 1/500) for 24h at 4°C. For pTau, sections were treated with a solution of 0.25%
KMnO4 for 10 min followed by an incubation in a solution of 1% Alkaline phosphatase for 90

seconds. Slides were then incubated for 24h with anti-pTau primary antibody (MN1020,
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Thermo Fisher — 1/500). After PBS washing, the HRP secondary antibody was added for 1
hour at RT. The DAB (Sigma-Aldrich, 0.2 mg/ml) revelation of staining was performed in
1xPBS + H>O, (100 pl/L). Sections were then treated in 0.01% Cresyl violet for 10 min for
nucleus staining. All images were acquired using a Zeiss Axio Scan.Z1 (Carl Zeiss) with a 10x
objective (10x / NA 0.45 Plan Apochromat), with a Hamamatsu Orca Flash 4 monochrome
camera (0.65 pm/pixel) for fluorescence, or a Hitachi HV-F202FCL color camera (0.44
um/pixel) for brightfield imaging. Confocal imaging was executed on an LSM800 Airyscan
confocal microscope (Carl Zeiss) with a 40x objective (Plan-APO 40x/1.4 Qil DIC (UV) VIS-
IR). Acquisition was done with Zen 2.3 (Carl Zeiss) software. Images were processed Qupath

198 or with the Fiji distribution of ImageJ'®.

(version 4.3)
Proteomic analysis

Tissues were flash frozen into a block by diving them into liquid nitrogen according to the
NBB procedure. Punches were made into the blocks mostly in grey matter, then put in 0.1%
RapiGest (Waters) in 100 mM TEAB (Sigma Aldrich) for ultrasonic tissue lysis and protein
extraction. After centrifugation, supernatants were subjected to protein digestion using trypsin.
Resulting peptides were analyzed by nanoLC-MSMS using an easynLC1200 (Thermo Fisher
Scientific) liquid chromatography system coupled with an Orbitrap Fusion Lumos mass
spectrometer (Thermo Fisher Scientific). Data extraction and directDIA analysis was
performed with SpectroNaut v15 (Biognosys) using the Human reference proteome database
(Uniprot). We performed a post-hoc exclusion of 4 of the samples based on their high
heterogeneity observed by PCA plot (n =2 CT and n = 2 BD), as compared with the 14 other
samples. Further analysis was performed with R (4.2) with the limma''® package for differential
protein abundance analysis, and weighted correlation network analysis (WGCNA)

package'" """ for co-expression module analysis''?.

Nanostring nCounter

Sample preparation
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Tissues were flash frozen into a block by using liquid nitrogen according to the NBB
procedure. Punches were made into the grey and white matter. Tissues were immediately
immerged in TRIzol® (Invitrogen) then chloroform was added to the solution, and the RNA
extraction was then performed according to the RNeasy Micro kit. RNA quantity and quality
was assessed with a 2100 Bioanalyzer Instrument (Agilent). Samples were then processed in
the nCounter (Nanostring) according to manufacturer procedure using the Glial Profiling Panel

supplemented with 55 more genes (Table S3).

Quality control and Differential Expression

Quality control and normalization were done on raw data with the NanoTube'"® R package.
Differential expression (DGE) was performed with the same package, referring to the Limma
DGE method, integrated in the package and accounting for known cofounders, according to

the following design: ~ diagnosis + batch + age + sex.

Single nuclei RNA sequencing
Sample preparation

The nuclei isolation for 10X Genomics nuclei capture was performed according to the
protocol explained by Krishnaswami et al.?’, adapted by Smith et al.?®. Briefly, punches on GM
and WM were made into blocks of tissue. The punches were then placed into nuclease-free
buffer and crushed in a Douncer to obtain a liquid solution of tissue extraction. After
centrifugation, the nuclei were then stained with anti-SOX10 antibody (R&D Systems, AF2864,
1:250) + anti-Goat AF488 (Invitrogen, A11055, 1:1000) and anti-NEUN AF647 (abcam,
ab190565, 1:500) antibodies. Nuclei were then stained with Hoechst 33342 (abcam,
ab228551) just before the Fluorescence Activated Cell Sorting (FACS) procedure, done in a
MoFlo Astrios (Beckman Coulter). Around 15’000 NEUN-AF647-/SOX10-AF488- ‘double

negative’ nuclei were selected and sorted for further processing. Nuclei were prepared
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according to 10X Genomics Chromium Next GEM Single Cell 3’ v3.1 protocol targeting 6000
nuclei and captured on a Chromium Controller (10X Genomics). The sequencing was

performed on an HiSeq 4000 (lllumina), with a sequencing depth of 1 line per sample.

Processing of FASTQ files

Demultiplexing, alignment, barcode filtering and UMI counting of the FASTQ files were
processed with the CellRanger pipeline v6.1.2 (10X Genomics) with the inclusion of introns,
aligned on the GRCh38 genome reference. Only protein coding genes were retained for further

analysis.

Quality control, nuclei integration, dimension reduction and clustering

Resulting feature-barcode matrices files were processed following Nextflow (version
22.04.0) pipeline nf-core/scflow (version 0.7.0dev)"*. Briefly, this pipeline performed QC for
each sample, with exclusion criteria of a minimum and maximum of feature per nuclei between
700 and 2500. Nuclei with more than 5% of mitochondrial transcripts were excluded. When
performing the QC, we noticed that one sample (BD, n = 1) needed to be removed due to an
abnormally low number of captured nuclei, all the subsequent analysis were thus done without
this sample. Sample integration was done using the Liger method®® which is included in the
pipeline. For this integration, the optimal k value was found to be 30 and the optimal lambda
value was found to be 5. Integration threshold value was set to 0.0001 and the maximum
number of iterations was set to 100. Integrated nuclei were then clustered with the UMAP
method®’. Automated cell type annotation was performed following the nf-core/scflow pipeline,
according to the prediction given with the use of the expression weighted cell type enrichment

(EWCE) package?®®. Data were then processed with the Seurat suite of packages''® in R.

Differential gene expression analysis
Differential gene expression (DGE) analysis was performed separately in astrocyte and

microglia clusters using the MAST®* package, which fits a zero inflated, negative binomial
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mixed effects statistical model using the following model: diagnosis+sex+batch+1|individual,

where individual was the random effects variable.

Cell communication analysis

Cell communication analysis was performed on astrocytes and microglia using the
CellChat® package in R. This package predicted CT- or BD-specific as well as incoming-
outcoming-, shared-, or incoming & outcoming-specific pathways, predicting expression of

pairs of ligands and receptors.

Nanostring GeoMx® Digital Spatial Profiler (DSP) Spatial transcriptomics
Sample preparation

Brains were fixed in 10% formalin solution for 4 weeks before embedding in paraffin
according to the NBB procedure. Slide preparation and immunostaining were done according
to Nanostring procedures, briefly: five um section were cut followed by a Heat-Induced Epitope
Retrieval at 100°C during 20 min in BOND Epitope Retrieval 2 (ER2) solution (Leica) with 0.1
Proteinase K before Deparaffinizing. Morphology marker staining was performed as the
following: SYTO13 for nucleus staining (Nanostring), IBA1 (Millipore, MABN92-AF647, 1:100),
GFAP (Novus Biologicals, NBP233184DL594, 1:300). In Situ Hybridization was then
performed overnight. Finally, slides were placed in the GeoMx DSP. Regions of interest (ROI)
were drawn as a circle of 650 ym of diameter in both grey and white matter. In each of the
ROI, areas of illumination (AOIl) were set. In the GM 2 AQIs per ROI were set, one for GFAP*
areas and one for IBA1" areas. In the WM, AOIs were only set around GFAP* areas. AOI
selection was done with default parameters, except for the N-dilate parameter that was set to
3. AOI selection was carried out in such a way as to select only either GFAP*/IBA1" or
IBA1*/GFAP" areas. After the selection of AOls, the chosen areas were UV-micro-dissected
according to the machine parameters and the transcripts thus released were recovered and

whole transcriptome-sequenced according to Nanostring procedures.
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Quality control

The resulting DCC and PKC files were proceeded with the help of the NanoStringNCTools,
GeomxTools and GeoMxWorkflows packages with R. The default parameters were set for
quality control filtering of the segments except for the minimum of read stitched that was set to
70%, the minimum of reads aligned to 65%, the minimum of negative control counts to 1, the
maximum counts observed in NTC well to 25000, the minimum of nuclei estimated to 8 and
the minimum of segment area to 1000. Then, genes that were not expressed by at least 10%
of the segments were subtracted. Finally, gene expression was normalized with the quartile 3

(Q3) method.

Bulk RNA sequencing

Previously published and publicly available bulk RNA sequencing data published by Zandi
et al. (2022)"° were obtained from PsychENCODE Consortium on the NIMH Repository via
Synapse under the BipSeq study (syn5844980). This study was made on a total of 511
samples from 295 individuals (138 cases and 157 controls) across the two brain regions:
amygdala (n = 121, 121 BD and 122 CT) and subgenual anterior cingulate cortex (aCG, n =
268, 126 BD and 142 CT). Data was processed using the rna-seq nextflow pipeline''®. The
DGE analysis was performed using the limma-voom method, from the limma R package'"
contained in the edgeR pipeline’"”. Gene set variation analysis was performed using the GSVA

package in R, as previously described'®,

Functional enrichment analysis

Functional enrichment analysis (FEA) was performed using the enrichR'® package in R.
Several functional enrichment databases were consulted including
Wikipathways_2021_Human, KEGG_ 2021 Human, GO_Cellular_Component_ 2023,
GO_Molecular_fonction_2023, GO_Biological_Process 2023, Reactome_ 2022 or
BioPlanet_2019, using the significantly differentially expressed genes (DEG). FEA was also

performed using the fgsea''® package in R.
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['®F]-FDG uptake on primary astrocyte
ADCY?2 vector

Human ADCY2 cDNA sequence (NM_020546.3) was fused to the 14 amino acids V5 tag'®
at the 5’ end and placed under the control of a GFAP promoter. A Green Fluorescent Protein
(GFP) coding sequence was placed under ubiquitous hPGK promoter as a viral infection
control. Same lentiviral construction was made with mCherry construction in place of ADCY2
sequence as control. The DNA sequence was synthetized by GeneArt Gene Synthetize
(ThermoFisher) transfected with JetPRIME (Polyplus) in pCLX-EF1-GFP vector plasmid with
psPAX2 packaging plasmid and pCAG-VSVG envelope plasmid and cloned in 293T cells. The
full sequence can be found in Table S7. Lentiviral vectors have been produced by the Vector

Lab core facility of the University of Geneva.

Cell culture

Primary mouse astrocytes were produced and given by GliaPharm (Geneva, Switzerland).
Astrocytes were cultured in Poly-L-Ornitine pre-coated flat bottom 12-well plate in a high
glucose DMEM (Sigma, D7777) medium supplemented with 44 mM NaHCOs (Sigma, S4019),
0.01% Antibiotic antimycotic 100x (Sigma, A5955) and 10% FCS at 37 °C with 5% CO.. Cells
were incubated during seven days prior either LV-ADCY2 or control LV-mCherry infection at
1.8x10* transducing unit per well (TU/well). Three days after infection, medium was replaced
by fresh virus-free D7777 medium. Seven days after infection, D7777 medium was replaced
by glucose-free DMEM (Sigma, D5030) medium with 44 mM NaHCO3 (Sigma, S4019) and

2mM D-Glucose (Sigma, G7021).

['®F]-FDG incubation
Two days after Glucose deprived D5030 medium incubation, cells were incubated with
0.037 MBq per well of ['®F]-Fluorodeoxyglucose (FDG) during 25 min, then immediately placed

on ice to stop the reaction, washed with 4°C sterile PBS and harvested with 10 mM NaOH
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(Merck), 0.1% Triton X-100 (Sigma, 93426) supplemented with proteases/phosphatase
inhibitors (Thermo Scientific, A32959), before gamma counting using a gamma counter

(Wizard 3, PerkinElmer). ['®F]-FDG uptake was normalized by quantity of protein for each well.

Multiplex cytokines ELISA

Multiple target ELISA was performed on frozen serum sample from BD and age- and sex-
matched CT subjects, using antibody-coated magnetic beads to determine the abundance of
inflammatory cytokines, chemokines and growth factors, for a total of 45 different targets
(EPX450-12171-901, Invitrogen). The complete list of targets can be found in Table S5.
Samples were diluted 1:100 in the buffer provided in the kit (1X Universal Assay Buffer) and
procedure was performed according to user guide (revision A.0). Plate was read using a
MAGPIX (Luminex) xMAP instrument. Data analysis was done with the free online software
ProcartaPlex Analysis App (Thermo Fisher) using the 5PL algorithm, and statistical analysis
was performed uising ProcartaPlex nonparametric M-statistics algorithm for group

comparisons.
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Figure Legends

Figure 1 — Proteomic modules altered in BD are enriched in astrocytic and microglial
genes (Cg). (A-B) Eigenprotein score of module 17 (M17, A) and module 0 (MO, B) proteins
in control (CT) and bipolar disorder (BD) subjects in cingulate gyrus (Cg). (C) Functional
enrichment analysis (FEA) results of the 104 proteins of the M17. (D) Differential abundance
of individual proteins in bulk proteomics PFKL (paqj < 0.0001, LogFC = -0.313), ACSS1 (padgj =
0.00481, LogFC =-0.303), OAT (paq = 0.0164, LogFC =-0.251), IDH3G (paq = 0.00208, LogFC
= -0.230), APOE (paq < 0.0001, LogFC = 0.373), APOA1 (pag; = 0.0491, LogFC = 0.431),
FABP3 (padqj = 0.0293, LogFC = 0.333), (E) FEA results of the 185 proteins of the MO. (F-G)
Expression Weighted Cell Type Enrichment (EWCE) results of the 104 genes composing the

M17 (F) and of the 185 proteins composing the MO (G).

Figure 2 - snRNAseq assessment of astrocytes and microglia (A) UMAP 2D visualization
of the 18,176 clustered nuclei from the cingulate cortex (average 1652 nuclei per sample),
made up of 9868 (54.29%) microglia, 6386 (35.13%) astrocytes, 716 (3.94%)
oligodendrocytes, 575 (3.16%) inhibitory neurons, 304 (1.67%) endothelial cells, 238 (1.31%)
excitatory neurons and 89 (0.49%) OPCs. (B-C) Feature plot of the expression of the
astrocyte- (B) and microglia-specific (C) gene sets, identifying the astrocytic and microglial
clusters. (D) Dot plot representing the average expression of the various cluster-specific

genes.

Figure 3— BD GWAS genes are expressed in microglia and astrocytes (A) Expression of
the BD GWAS genes identified by Stahl et al. and Mullins et al. in microglia and astrocytes.
(B) Differential expression of the BD GWAS genes ADCY?2 (padj = 0.0923, LogFC = 0.699),
CACNB2 (padj = 0.0669, LogFC = -2.607444), NCAN (padj = 0.0151, LogFC = 0.785),
SLC25A17 (padj = 0.0369, LogFC = 0.268) and FSTL5 (padj = 0.00704, LogFC = -0.577) in

astrocytes of BD vs CT. (C) Differential expression of the GWAS genes SSBP2 (padj =
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0.000185, LogFC = 0.755), STK4 (padj = 0.0231, LogFC = -0.150) and CD47 (padj = 0.0856,
LogFC =-0.199) in microglia of BD vs CT. (correspondence of adjusted p value in graphs: * :

p<0.1,*:p<0.05 **p<0.01, ***:p<0.001)

Figure 4 — Microglial in BD shows lower proinflammatory gene expression along with
increased apoptosis and reduced density in the Cg (A) Volcano plot of the differentially
expressed genes in microglia calculated with MAST. (B) Pathways enriched in microglial
DEGs. (C) Expression of the antiapoptotic genes TUBA1B (paq = 0.00192, logFC = -0.3400),
NAIP (paqi = 0.01229, logFC = -0.4780), YWHAG (paqj = 0.02118, logFC = -0.2563), YWHAQ
(Pagj = 0.06241, logFC = -0.2763), BCL2 (paq = 0.0005483869, logFC = -0.81141), BCL2L1
(Pagj = 0.0156834605, logFC = -0.66311), GLUD1 (pag = 0.0002807306, logFC = -0.3679) and
ACTG1 (pagj = 0.0005346, logFC = -0.4303) in microglia in BD vs CT. (D) Volcano plot of the
nCounter DEGs, only showing the microglia-specific genes highlighted by Butovsky et al. (E)
GSVA score of the enrichment of the Butovsky microglial gene set in the the nCounter bulk
transcriptomic dataset (ttest, p = 0.03057). (F) Representative image of the
immunofluorescence staining of IBA1 (red) and nuclei (blue) on Cinglulate Cortex (Cg) of the
CT (up) and BD (down). Scale bar = 50 um. (G-l) Quantification of the mean intensity
quantification of the IBA1 staining (G), IBA1 positive area (% of total tissue , H) and the number
of detected IBA1 positive cells over total tissue area (cell/um2, 1) in the Cg of BD as compared
with control in the whole tissue (WT, filled boxes, m), white matter (WM, blank boxes, o) or grey

matter (GM, dashed boxes, e) (significance as the result of bilateral t-test, *: p < 0.05).

Figure 5 — Overexpression of GWAS genes ADCY2 and NCAN in astrocytes is
associated with altered metabolism, reduced proinflammatory gene expression and
altered ECM composition. (A) Volcano plot of the astrocytic DEGs. (B) Pathways significantly
modulated by the differentially expressed genes (DEGs) in astrocytes. (C) Result of the
normalized quantification of ["*FJFDG y counting from cells infected with either LV-mCherry or

LV-ADCY?2 viruses. Paired t-test, p = 0.0188. (D) Representing images of the NEUN (green),
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GFAP (grey) and ADCY2 (orange) immunofluorescence staining in the Cg of BD and CT
subjects. Scale bar = 20 um. (E) Results of the quantification of the mean grey value of ADCY?2
in various cell types. Results of a three-way anova with effect on diagnosis (p = 0.02) and
region (p = 0.0107), but no interaction effect between those 2 parameters (p = 0.9059). (F)
Results of the quantification of the mean grey value of ADCY2 in NEUN" cells. Results of a
three-way anova with effect only on diagnosis (p = 0.0282), but not on region (p = 0.3973). (G)
Results of the quantification of the mean grey value of ADCY2 in GFAP" cells. Results of a
three-way anova with effect on diagnosis (p = 0.02503) and region (p = 0.00514), but no
interaction effect between the 2 parameters (p = 0.7985). (H) Results of the quantification of
the mean grey value of ADCY2 in GFAP/NEUN cells. Results of a three-way anova with effect
on diagnosis (p = 0.0278) and region (p < 0.005), but no interaction effect between the 2
parameters (p = 0.9289). (I) Representative image of NCAN immunohistochemistry staining in
the Cg of CT (up) and BD (down) subjects. Scale bar = 250 um. (J) Results of the quantification
of NCAN-positive pixels over total pixel (in %) in the Cg of BD as compared with control

(significance as the result of unilateral t-test, *: p < 0.05).

Figure 6 — Spatial mapping of astrocyte dysfunctional pathways. (A) Representative
image of the region of interest (ROI) localization in the GM and the WM (area of illumination
(AOI) on GFAP staining for astrocytes selection). (B) EWCE results from the top 50 expressed
genes of the GFAP positive AOI demonstrating that the sequenced ROl were enriched in
astrocytic transcripts. (C) UMAP plot of the 3 astrocytic subclusters. (D) Results of the GSVA
of the average expression profile of the 3 astrocyte subclusters with spatial transcriptomics in

GM and WM. (E) Pathways significantly modulated by the DEGs in astrocytes subclusters.

Figure 7 — CD44/SPP1 communication is enhanced in BD. (A) Results of the expression of
SPP1 and CD44 in the GFAP® AOIs in spatial transcriptomics in BD and CT. (B)

Representative image of the immunofluorescence staining of GFAP (red), CD44 (green) and
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SPP1 (white) in the Cq of BD and CT subjects. Blue arrows emphasise colocalization. Scale
bar = 20 um. (C) Result of the quantification of GFAP*/CD44"/SPP1*positive cells over total
GFAP positive cells (%). Expression of Tukey post-hoc test after 3-way ANOVA: adjusted p =
0.0066. (D) Three-way ANOVA result of the quantification of GFAP*/CD44"/SPP1* voxel as the

percentage of total volume (%), diagnosis effect: p = 0.0188.

Figure S1 — Detailed characterization of the snRNAseq results. (A) Representation of the
negative nuclei selection by Fluorescence Activated Nucleus Sorting (FACS). Nuclei were first
sorted by their shape and height, then by Hoechst-positive staining. Singlets were then
selected, and the population of double Sox10- and NeuN-negative nuclei (= double negative,
average = 16.98%, no difference between CT and BD, p = 0.496) was selected for further
capture and single nucleus RNA sequencing analysis. (B-C) UMAP distribution of the nuclei
respecting to the diagnosis (B) and the sex (F = Female, M = Male, C). (D) Distribution of every
cell captured in snRNAseq according to their identified cell-type and subject diagnosis. (E)
Distribution of every cell captured in snRNAseq by sex and diagnosis. (F-G) Expression plot

of several microglia-specific (F) or astrocytes-specific markers (G).

Figure S2 — GSVA scores of microglial gen set in the nCounter results and bulk RNA
seq from Zandi et al.”” (A) Representative pathways that were significantly enriched in the
DEGs in the Zandi et al. bulk RNAseq dataset. (B) Volcano plot of the nCounter DEG in the
white matter, only showing the microglial genes highlighted by Butovsky et al. (C) GSVA score
of the enrichment of the Butovsky microglial gene set and the DGE from the nCounter
experiment in the WM (t.test, p = 0.1929). (D) Volcano plot of the nCounter differentially
expressed genes in the grey matter, only showing the microglial genes highlighted by Butovsky
et al. (E) GSVA score of the enrichment of the Butovsky microglial gene set and the DGE from

the nCounter experiment in the grey matter (t.test, p = 0.3833). (F) GSVA score of the DEG
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from Zandi et al. in the anterior cingulate cortex of BD and CT subjects with the curated
microglial gene set from Butovsky et al. (t.test, p < 0.001). (F) GSVA score of the DEG from
Zandi et al. in the amygdala of BD and CT subjects with the curated microglial gene set from

Butovsky et al. (t.test, p = 0.01976).

Figure S3 — Evaluation of amyloid and Tau pathology in our cohort. (A) Representative
image of the amyloid 3 specific 4G8 IHC staining of CT, BD and an AD case as positive control.
(B) Representative image of the phosphorylated Tau specific AT8 IHC staining of CT, BD and
an AD case as positive control. (C) Results of the quantification Amyloid 3 -positive pixels over
total pixel (in %) in the GM and WM of Cg in BD subjects compared to CT (expression of the
result of student t-test). (D) Results of the quantification hyperphosphorylated Tau -positive
pixels over total pixel (in %) in the Cg of BD subjects compared to CT (expression of the result

of student t-test). AD case is shown as positive control example.

Figure S4 — IF results of GFAP staining and GSVA scores of microglial gene set in the
nCounter results and bulk RNA seq from Zandi et al. (A) Representing image of the GFAP
staining. (B) Mean intensity quantification of the GFAP staining in the Cg of BD as compared
with CT in the whole tissue (WT, filled boxes, m), white matter (WM, blank boxes, o) or grey
matter (GM, dashed boxes, ®) (significance as the result of bilateral t-test, *: p < 0.05). (C)
GFAP positive area (% of total tissue) quantification in the Cg of BD as compared with CT in
the whole tissue (WT, filled boxes, m), white matter (WM, blank boxes, o) or grey matter (GM,
dashed boxes, ®) (significance as the result of bilateral t-test, *: p < 0.05). (D) Quantification
of the area of the detected GFAP" cells over total tissue area (cell/lum?) as compared with CT
in the whole tissue (WT, filled boxes, m), white matter (WM, blank boxes, o) or grey matter
(GM, dashed boxes, ®) (significance as the result of bilateral t-test, *: p < 0.05). (E) Volcano
plot of the nCounter differentially expressed genes, only showing the astrocytic genes

highlighted by Zhang et al. in the whole tissue. (F) GSVA score of the enrichment of the Zhang
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et al astrocyte-specific gene set and the DGE from the nCounter experiment in the whole
tissue (t.test, p = 0.8446). (G) Volcano plot of the nCounter differentially expressed genes in
the white matter, only showing the astrocytic genes highlighted by Zhang et al. (H) GSVA score
of the enrichment of the Zhang astrocytic gene set and the DGE from the nCounter experiment
in the white matter (t.test, p = 0.4921). (I) Volcano plot of the nCounter differentially expressed
genes in the grey matter, only showing the astrocytic genes highlighted by Zhang et al. (J)
GSVA score of the enrichment of the Zhang astrocytic gene set and the DGE from the
nCounter experiment in the grey matter (t.test, p = 0.5863). (K) GSVA score of the DEG from
Zandi et al. in the anterior cingulate cortex of BD and CT subjects with the curated astrocytic
gene set from Zhang et al. (t.test, p = 0.07423). (L) GSVA score of the DEG from Zandi et al.
in the amygdala of BD and CT subjects with the curated microglia-specific gene set from
Butovsky et al. (t.test, p = 0.01139). (M) Volcano plot of the proteomic differentially abundant

proteins highlighting the ACAN protein.

Figure S5 — Multiplex ELISA results on the 45-plex human cytokines panel identifies
serum cytokine alterations that parallel those of the CNS. (A-L) Significantly different (p <
0.05) results of the comparisons of serum concentration (in pg/mL) of pro-inflammatory
cytokines in CT (n = 17) and BD subjects (n = 25). (M-P) Significantly different (p < 0.05) results
of the comparisons of serum concentration (in pg/mL) of anti-inflammatory cytokines in CT (n
= 17) and BD subjects (n = 25). Results are the expression of the nonparametric M-statistics
algorithm for group comparisons. (Q) GSVA score of the DEG from Zandi et al. in the anterior
cingulate cortex of BD and CT subjects with the significantly increased pro-inflammatory
cytokines in the serum of BD subjects (n = 25) as compared with CT (n = 17), (t.test, p =
0.6899). (R) GSVA score of the DEG from Zandi et al. in the anterior cingulate cortex of BD
and CT subjects with the significantly decreased pro-inflammatory cytokines in the serum of
BD subjects as compared with CT, (t.test, p = 0.188). (S) GSVA score of the DEG from Zandi

et al. in the anterior cingulate cortex of BD and CT subjects with the significantly increased

33


https://doi.org/10.1101/2023.10.29.564621
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.29.564621; this version posted November 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

anti-inflammatory cytokines in the serum of BD subjects as compared with CT, (t.test, p =
0.0001083). (T) GSVA score of the DEG from Zandi et al. in the anterior cingulate cortex of
BD and CT subjects with the significantly decreased anti-inflammatory cytokines in the serum
of BD subjects as compared with CT, (t.test, p = 0.04423). (correspondence of p value in

graphs: *:p <0.05, **: p <0.01, *™* p <0.001, ****p < 0.0001).

Supplementary data

Table S1— Proteomic results of the WGCNA module coexpression analysis.

Table S2 — Astrocytic and microglial expression of the GWAS genes identified by Stahl et al.”

and Mullins et al.™.

Table S3 — Set of genes used for nCounter experiment composed of the Glial Profiling Panel

and 55 supplemented genes.

Table S4 — snRNA seq results containing markers for all clusters (and astrocytes subclusters),
DEG for astrocytes and microglia as well as FEA results for astrocytes, astrocyte subclusters

and microglia.
Table S5 — Multiplex 45-target ELISA results of serum samples.
Table S6 — Metadata of all the cohorts of subjects samples used throughout the experiments.

Table S7 — Sequence of the ADCY2 LV-ADCY?2 Lentiviral construction.
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Figure 1 — Proteomic modules altered in BD are enriched in astrocytic and microglial
genes (Cg). (A-B) Eigenprotein score of module 17 (M17, A) and module 0 (MO, B) proteins
in control (CT) and bipolar disorder (BD) subjects in cingulate gyrus (Cg). (C) Functional
enrichment analysis (FEA) results of the 104 proteins of the M17. (D) Differential abundance
of individual proteins in bulk proteomics PFKL (paqi < 0.0001, LogFC =-0.313), ACSS1 (paq =
0.00481, LogFC = -0.303), OAT (pag = 0.0164, LogFC = -0.251), IDH3G (paq = 0.00208,
LogFC = -0.230), APOE (paqi < 0.0001, LogFC = 0.373), APOAT (paq = 0.0491, LogFC =

0.431), FABP3 (pagj = 0.0293, LogFC = 0.333), (E) FEA results of the 185 proteins of the MO.
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(F-G) Expression Weighted Cell Type Enrichment (EWCE) results of the 104 genes

composing the M17 (F) and of the 185 proteins composing the MO (G).
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Figure 2 - snRNAseq assessment of astrocytes and microglia (A) UMAP 2D visualization
of the 18,176 clustered nuclei from the cingulate cortex (average 1652 nuclei per sample),
made up of 9868 (54.29%) microglia, 6386 (35.13%) astrocytes, 716 (3.94%)
oligodendrocytes, 575 (3.16%) inhibitory neurons, 304 (1.67%) endothelial cells, 238 (1.31%)

excitatory neurons and 89 (0.49%) OPCs. (B-C) Feature plot of the expression of the
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astrocyte- (B) and microglia-specific (C) gene sets, identifying the astrocytic and microglial
clusters. (D) Dot plot representing the average expression of the various cluster-specific

genes.
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Figure 3 — BD GWAS genes are expressed in microglia and astrocytes (A) Expression
of the BD GWAS genes identified by Stahl et al. and Mullins et al. in microglia and astrocytes.
(B) Differential expression of the BD GWAS genes ADCY?2 (padj = 0.0923, LogFC = 0.699),
CACNB2 (padj = 0.0669, LogFC = -2.607444), NCAN (padj = 0.0151, LogFC = 0.785),
SLC25A17 (padj = 0.0369, LogFC = 0.268) and FSTL5 (padj = 0.00704, LogFC = -0.577) in
astrocytes of BD vs CT. (C) Differential expression of the GWAS genes SSBP2 (padj =
0.000185, LogFC = 0.755), STK4 (padj = 0.0231, LogFC = -0.150) and CD47 (padj = 0.0856,
LogFC =-0.199) in microglia of BD vs CT. (correspondence of adjusted p value in graphs: * :

p<0.1,*:p<0.05 **p<0.01, ***:p<0.001)
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Figure 4 — Microglial in BD shows lower proinflammatory gene expression along with
increased apoptosis and reduced density in the Cg (A) Volcano plot of the differentially
expressed genes in microglia calculated with MAST. (B) Pathways enriched in microglial
DEGs. (C) Expression of the antiapoptotic genes TUBA1B (paq = 0.00192, logFC = -0.3400),
NAIP (pagj = 0.01229, logFC = -0.4780), YWHAG (paqj = 0.02118, logFC = -0.2563), YWHAQ
(Pagj = 0.05241, logFC = -0.2763), BCL2 (paqi = 0.0005483869, logFC = -0.81141), BCL2L1
(padj = 0.0156834605, logFC = -0.66311), GLUD1 (paqi = 0.0002807306, logFC = -0.3679) and

ACTGT1 (pagj = 0.0005346, logFC = -0.4303) in microglia in BD vs CT. (D) Volcano plot of the
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nCounter DEGs, only showing the microglia-specific genes highlighted by Butovsky et al. (E)
GSVA score of the enrichment of the Butovsky microglial gene set in the the nCounter bulk
transcriptomic dataset (t.test, p = 0.03057). (F) Representative image of the
immunofluorescence staining of IBA1 (red) and nuclei (blue) on Cinglulate Cortex (Cg) of the
CT (up) and BD (down). Scale bar = 50 um. (G-I) Quantification of the mean intensity
quantification of the IBA1 staining (G), IBA1 positive area (% of total tissue , H) and the number
of detected IBA1 positive cells over total tissue area (cell/um2, ) in the Cg of BD as compared
with control in the whole tissue (WT, filled boxes, m), white matter (WM, blank boxes, o) or

grey matter (GM, dashed boxes, o) (significance as the result of bilateral t-test, *: p < 0.05).
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Figure 5 — Overexpression of GWAS genes ADCY2 and NCAN in astrocytes is
associated with altered metabolism, reduced proinflammatory gene expression and
altered ECM composition. (A) Volcano plot of the astrocytic DEGs. (B) Pathways
significantly modulated by the differentially expressed genes (DEGSs) in astrocytes. (C) Result
of the normalized quantification of ["*FJFDG y counting from cells infected with either LV-
mCherry or LV-ADCY?2 viruses. Paired t-test, p = 0.0188. (D) Representing images of the
NEUN (green), GFAP (grey) and ADCY?2 (orange) immunofluorescence staining in the Cg of
BD and CT subjects. Scale bar = 20 um. (E) Results of the quantification of the mean grey
value of ADCY?2 in various cell types. Results of a three-way anova with effect on diagnosis

(p = 0.02) and region (p = 0.0107), but no interaction effect between those 2 parameters (p =
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0.9059). (F) Results of the quantification of the mean grey value of ADCY2 in NEUN" cells.
Results of a three-way anova with effect only on diagnosis (p = 0.0282), but not on region (p
= 0.3973). (G) Results of the quantification of the mean grey value of ADCY2 in GFAP" cells.
Results of a three-way anova with effect on diagnosis (p = 0.02503) and region (p = 0.00514),
but no interaction effect between the 2 parameters (p = 0.7985). (H) Results of the
quantification of the mean grey value of ADCY2 in GFAP/NEUN cells. Results of a three-way
anova with effect on diagnosis (p = 0.0278) and region (p < 0.005), but no interaction effect
between the 2 parameters (p = 0.9289). (I) Representative image of NCAN
immunohistochemistry staining in the Cg of CT (up) and BD (down) subjects. Scale bar = 250
um. (J) Results of the quantification of NCAN-positive pixels over total pixel (in %) in the Cg

of BD as compared with control (significance as the result of unilateral t-test, *: p < 0.05).
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Figure 6
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Figure 6 — Spatial mapping of astrocyte dysfunctional pathways. (A) Representative
image of the region of interest (ROI) localization in the GM and the WM (area of illumination
(AOI) on GFARP staining for astrocytes selection). (B) EWCE results from the top 50 expressed
genes of the GFAP positive AOI demonstrating that the sequenced ROl were enriched in
astrocytic transcripts. (C) UMAP plot of the 3 astrocytic subclusters. (D) Results of the GSVA
of the average expression profile of the 3 astrocyte subclusters with spatial transcriptomics in

GM and WM. (E) Pathways significantly modulated by the DEGs in astrocytes subclusters.
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Figure 7 — CD44/SPP1 communication is enhanced in BD. (A) Results of the expression
of SPP1 and CD44 in the GFAP® AOQIs in spatial transcriptomics in BD and CT. (B)
Representative image of the immunofluorescence staining of GFAP (red), CD44 (green) and
SPP1 (white) in the Cq of BD and CT subjects. Blue arrows emphasise colocalization. Scale
bar = 20 um. (C) Result of the quantification of GFAP*/CD44"/SPP1*positive cells over total
GFAP positive cells (%). Expression of Tukey post-hoc test after 3-way ANOVA: adjusted p =
0.0066. (D) Three-way ANOVA result of the quantification of GFAP*/CD44*/SPP1* voxel as

the percentage of total volume (%), diagnosis effect: p = 0.0188.
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Figure S1 - Detailed characterization of the snRNAseq results. (A) Representation of the
negative nuclei selection by Fluorescence Activated Nucleus Sorting (FACS). Nuclei were first
sorted by their shape and height, then by Hoechst-positive staining. Singlets were then
selected, and the population of double Sox10- and NeuN-negative nuclei (= double negative,
average = 16.98%, no difference between CT and BD, p = 0.496) was selected for further
capture and single nucleus RNA sequencing analysis. (B-C) UMAP distribution of the nuclei
respecting to the diagnosis (B) and the sex (F = Female, M = Male, C). (D) Distribution of
every cell captured in snRNAseq according to their identified cell-type and subject diagnosis.
(E) Distribution of every cell captured in snRNAseq by sex and diagnosis. (F-G) Expression

plot of several microglia-specific (F) or astrocytes-specific markers (G).
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Figure S2 — GSVA scores of microglial gen set in the nCounter results and bulk RNA
seq from Zandi et al.”® (A) Representative pathways that were significantly enriched in the
DEGs in the Zandi et al. bulk RNAseq dataset. (B) Volcano plot of the nCounter DEG in the
white matter, only showing the microglial genes highlighted by Butovsky et al. (C) GSVA score
of the enrichment of the Butovsky microglial gene set and the DGE from the nCounter
experiment in the WM (t.test, p = 0.1929). (D) Volcano plot of the nCounter differentially
expressed genes in the grey matter, only showing the microglial genes highlighted by
Butovsky et al. (E) GSVA score of the enrichment of the Butovsky microglial gene set and the
DGE from the nCounter experiment in the grey matter (t.test, p = 0.3833). (F) GSVA score of
the DEG from Zandi et al. in the anterior cingulate cortex of BD and CT subjects with the
curated microglial gene set from Butovsky et al. (t.test, p < 0.001). (F) GSVA score of the DEG
from Zandi et al. in the amygdala of BD and CT subjects with the curated microglial gene set

from Butovsky et al. (t.test, p = 0.01976).
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Figure S3 — Evaluation of amyloid and Tau pathology in our cohort. (A) Representative
image of the amyloid f specific 4G8 IHC staining of CT, BD and an AD case as positive control.
(B) Representative image of the phosphorylated Tau specific AT8 IHC staining of CT, BD and
an AD case as positive control. (C) Results of the quantification Amyloid 3 -positive pixels over
total pixel (in %) in the GM and WM of Cg in BD subjects compared to CT (expression of the
result of student t-test). (D) Results of the quantification hyperphosphorylated Tau -positive
pixels over total pixel (in %) in the Cg of BD subjects compared to CT (expression of the result

of student t-test). AD case is shown as positive control example.
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Figure S4 - IF results of GFAP staining and GSVA scores of microglial gene set in the
nCounter results and bulk RNA seq from Zandi et al. (A) Representing image of the GFAP
staining. (B) Mean intensity quantification of the GFAP staining in the Cg of BD as compared
with CT in the whole tissue (WT, filled boxes, m), white matter (WM, blank boxes, o) or grey
matter (GM, dashed boxes, e) (significance as the result of bilateral t-test, *: p < 0.05). (C)
GFAP positive area (% of total tissue) quantification in the Cg of BD as compared with CT in
the whole tissue (WT, filled boxes, m), white matter (WM, blank boxes, o) or grey matter (GM,
dashed boxes, ®) (significance as the result of bilateral t-test, *: p < 0.05). (D) Quantification
of the area of the detected GFAP" cells over total tissue area (cell/um?) as compared with CT
in the whole tissue (WT, filled boxes, m), white matter (WM, blank boxes, o) or grey matter
(GM, dashed boxes, ) (significance as the result of bilateral t-test, *: p < 0.05). (E) Volcano
plot of the nCounter differentially expressed genes, only showing the astrocytic genes
highlighted by Zhang et al. in the whole tissue. (F) GSVA score of the enrichment of the Zhang
et al astrocyte-specific gene set and the DGE from the nCounter experiment in the whole
tissue (t.test, p = 0.8446). (G) Volcano plot of the nCounter differentially expressed genes in
the white matter, only showing the astrocytic genes highlighted by Zhang et al. (H) GSVA
score of the enrichment of the Zhang astrocytic gene set and the DGE from the nCounter
experiment in the white matter (t.test, p = 0.4921). (I) Volcano plot of the nCounter differentially
expressed genes in the grey matter, only showing the astrocytic genes highlighted by Zhang
et al. (J) GSVA score of the enrichment of the Zhang astrocytic gene set and the DGE from
the nCounter experiment in the grey matter (t.test, p = 0.5863). (K) GSVA score of the DEG
from Zandi et al. in the anterior cingulate cortex of BD and CT subjects with the curated
astrocytic gene set from Zhang et al. (t.test, p = 0.07423). (L) GSVA score of the DEG from
Zandi et al. in the amygdala of BD and CT subjects with the curated microglia-specific gene
set from Butovsky et al. (t.test, p = 0.01139). (M) Volcano plot of the proteomic differentially

abundant proteins highlighting the ACAN protein.
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Figure S5 — Multiplex ELISA results on the 45-plex human cytokines panel identifies
serum cytokine alterations that parallel those of the CNS. (A-L) Significantly different (p
< 0.05) results of the comparisons of serum concentration (in pg/mL) of pro-inflammatory
cytokines in CT (n = 17) and BD subjects (n = 25). (M-P) Significantly different (p < 0.05)
results of the comparisons of serum concentration (in pg/mL) of anti-inflammatory cytokines
in CT (n = 17) and BD subjects (n = 25). Results are the expression of the nonparametric M-
statistics algorithm for group comparisons. (Q) GSVA score of the DEG from Zandi et al. in
the anterior cingulate cortex of BD and CT subjects with the significantly increased pro-
inflammatory cytokines in the serum of BD subjects (n = 25) as compared with CT (n = 17),

(t.test, p = 0.6899). (R) GSVA score of the DEG from Zandi et al. in the anterior cingulate
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cortex of BD and CT subjects with the significantly decreased pro-inflammatory cytokines in
the serum of BD subjects as compared with CT, (t.test, p = 0.188). (S) GSVA score of the
DEG from Zandi et al. in the anterior cingulate cortex of BD and CT subjects with the
significantly increased anti-inflammatory cytokines in the serum of BD subjects as compared
with CT, (t.test, p = 0.0001083). (T) GSVA score of the DEG from Zandi et al. in the anterior
cingulate cortex of BD and CT subjects with the significantly decreased anti-inflammatory
cytokines in the serum of BD subjects as compared with CT, (t.test, p = 0.04423).

(correspondence of p value in graphs: *: p <0.05, **: p <0.01, ***p < 0.001, ****p < 0.0001).
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