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Abstract

Since the first Genome-Wide Association Studies (GWAS), thousands of variant-trait associations
have been discovered. However, the sample size required to detect additional variants using standard
univariate association screening is increasingly prohibitive. Multi-trait GWAS offers a relevant
alternative: it can improve statistical power and lead to new insights about gene function and the joint
genetic architecture of human phenotypes. Although many methodological hurdles of multi-trait
testing have been discussed, the strategy to select trait, among overwhelming possibilities, has been
overlooked. In this study, we conducted extensive multi-trait tests using JASS (Joint Analysis of

Summary Statistics) and assessed which genetic features of the analysed sets were associated with an
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increased detection of variants as compared to univariate screening. Our analyses identified multiple
factors associated with the gain in the association detection in multi-trait tests. Together, these factors
of the analysed sets are predictive of the gain of the multi-trait test (Pearson's p equal to 0.43 between
the observed and predicted gain, P < 1.6 x 10°°). Applying an alternative multi-trait approach (MTAG,
multi-trait analysis of GWAS), we found that in most scenarios but particularly those with larger
numbers of traits, JASS outperformed MTAG. Finally, we benchmark several strategies to select set of
traits including the prevalent strategy of selecting clinically similar traits, which systematically
underperformed selecting clinically heterogenous traits or selecting sets that issued from our data-
driven models. This work provides a unique picture of the determinant of multi-trait GWAS statistical

power and outline practical strategies for multi-trait testing.
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Introduction

Despite a continuous increase of the sample size of Genome-Wide Association Studies (GWAS),
many genetic variants underlying human complex traits and diseases remain undetected. To increase
statistical power and detection of associations at low cost, investigators have developed various multi-
trait approaches based on GWAS summary statistics’™. Although other factors might also be involved,
few studies investigated how the choice of phenotypes impacts the gain in the power of multi-trait
approaches. In the standard univariate GWAS, statistical power mostly depends on minor allele
frequency, sample size, the size of genetic effect, and polygenicity (the number of causal variants)’. In
the multi-trait GWAS, it additionally depends on complex characteristics of the set of traits: their
shared aetiology, their genetic correlation, and the number of traits in the set. As previously described,
the increased power of multi-trait test partly comes from adjusting for the correlation across GWAS
studies due to sample overlaps and genetic relationships across phenotypes*®°. Previous works
explored this question using simulated data®°. However, simulations are limited in their scope, and

more studies are needed to better characterise scenarios increasing the gain of multi-trait tests.

Here we empirically examined how trait characteristics impact the statistical power of multi-trait
GWAS. We performed our analyses on 72 curated GWAS summary statistics and analysed the impact
of 11 genetic features describing both individual and collective characteristics of sets of GWAS. Among
available multi-trait methods, we used a standard k-degree of freedom joint test (omnibus test) of k
GWAS implemented in JASS? as our primary analysis. The JASS package and its associated tools solve
all practical issues commonly encountered in multi-trait GWAS analyses, including missing data and
computational efficiency, allowing for a large-scale power analysis on real data. We inspected the
association between these genetic features and the gain in the association detection in multi-trait
GWAS over univariate GWAS. We then assessed how well these genetic features predict the gain. We
further compared JASS and MTAG, an alternative multi-trait approach, in terms of the impact of the

trait selection strategy on the gain of multi-trait GWAS.
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Results

Study Overview

We conducted a series of analyses to identify features that influence the gain in association
detection of multi-trait GWAS relative to univariate GWAS. The key principles and main steps of the
study are depicted in Figure 1. We used 72 curated GWAS summary statistics spanning a range of
clinical domains (Table S1) and considered 11 features describing the univariate and multivariate
genetic architecture of the phenotypes. Five of them characterise single GWAS: mean genetic effect
size (MES), polygenicity, effective sample size (N,), linear additive heritability of common variants
(h2,, 45), the proportion of uncaptured linear additive heritability of common variants (%h3). The
remaining six features characterise sets of GWAS. It includes the number of GWAS analysed jointly,
and five metrics related to the genetic (£4, Table S2 and Fig. S1) and residual (Z,,, Table S3 and Fig.
S2) covariance matrices, where the latter represents the covariance between the Z-score statistics of
two GWAS due to sample overlap and phenotypic correlation. Those five features are the mean of the
off-diagonal terms denoted as fg and Z,; the conditional numbers of ¥, and X, denoted as k4 and
K, which we used as a measure of multi-collinearity; and the average difference between the two
matrices Ay. Ay is expected to be a key driver of the power of multi-trait test®° (Supplementary note
1, 2, Fig. S3).

Given the 72 traits, there are over 4.7 x 10*! possible sets of two to 72 traits. In this study, we used
19,266 unique random sets of two to 12 GWAS drawn using a stratified sampling conditional on mean
effect size, heritability and the number of traits to maximize the range of the genetic features studied
(see Material and methods, Supplementary note 3). For each set, we derived the average of the single
GWAS feature (polygenicity, MES, Neg, h’cwas, and %h?,) and the six set features (fg, z., Ky, Kr, As,

and the number of GWAS selected). Note that we used the log of polygenicity, MES, fg, z,, Kg, Kr,
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84  and Ay when investigating their association with other variables due to their skewed distributions (Fig.
85  S4). Then, we compared multi-trait and univariate GWAS results based on the minimum P-value of the
86  multi-trait test across all variants within LD-independent loci (Pj4ss) and the minimum P-value of
87  univariate tests across all variants and all GWAS within the same loci (P,,;). We used two metrics: i)
88  the proportion of significant loci found associated at genome-wide level (P < 5 x 10%) by JASS and
89  missed by the univariate GWAS, and ii) the fraction of loci where P;,5s was smaller than Pyy;
0 (frass<univ)-
91 We first describe the distribution of the genetic features and their correlation. Second, we applied
92  JASSto each set and compared multi-trait and univariate GWAS association results (Fig. 1B). Third, we
93 build a predictive model of the association gain using a five-fold cross-validation approach (Fig. 1C).
94 For each cross-validation, we pulled a training set of 1,980 out of the 19,266 unique random sets and
95 conducted a regression analysis to estimate the contribution of a subset of genetic features of trait
96 sets using a joint model of the features. We measured the correlation between observed and
97 predicted gain in an independent validation dataset. Fourth, we compared the association gain from
98  JASS against MTAG?, a popular multi-trait approach that leverages genetic correlation across traits to
99 boost statistical power. Finally, we compare common trait selection strategies—e.g. choosing clinically
100 homogenous or heterogeneous traits—in their impacts on the association gain to evaluate our model

101 prediction and provide a practical strategy in multi-trait test (Fig. 1D).

102

103  Distribution of the genetic features across GWAS trait sets

104 The individual genetic features of the 72 studied traits were distributed as follows. The sample sizes
105  ranged from 5,318 to 697,828 with a median of 85,559. Heritability (h%,,45) ranged from 1% to 48%
106  with a median at 10% (Fig. 2A) and was consistent across the software used for its estimation (Fig. S5).
107 Polygenicity and MES were highly variable: Polygenicity (i.e. the estimated number of causal variants)

108 ranged from 6.9 (Estimated Glomerular Filtration Rate from Cystatin C) to 570,102 (variability sleep
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109 duration) with a median of 1,110, and MES ranged from 4.48 x 10°® (variability sleep duration) to 3.3 x
110 103 (Fasting proinsulin) with a median of 1.0 x 10*“. The distribution of the average these parameters
111 across the 19,266 random sets is presented in Figure 2B along with the GWAS set features. The latter
112 metrics ranged (in 25-75 percentiles) as -2.04 to -1.79 for log; fg, -1.96 to -1.44 for log,o Z,, 0.36 to
113 0.78for logyg kg, 0.05 to 0.32 for logy K, and -1.11 to -0.89 for log, o Ay. In particular, the variability

114  inlogq As was limited (given the theoretical upper bound of log;¢ As is log;g 2 = 0.3).

115 We measured the correlation across features at the trait and set levels (Fig. 2C, 2D). The
116 proportion of uncaptured linear additive heritability of common variants (%h?2) was strongly
117  associated with log;, polygenicity (p = 0.76, P = 8.8 x 10"*°) and with log;, MES (p = -0.8, P = 3.5 x
118 10") (Fig. 2C, S6), in agreement with previous reports showing that univariate GWAS performs better
119  for traits with a larger MES and a smaller polygenicity’. As expected, the means of individual trait
120  feature were correlated in the same way across sets as across traits (e.g. mean %h2 and mean
121 polygenicity are highly correlated as are %h2 and polygenicity, Fig. 2D). Metrics of genetic and
122 covariance matrices were positively correlated to each other, i.e. log, fg with log,o Z,- and log;, Ay,
123 logyo kg with logyg K, and log,, I, with log;, k, and log;, kg, which further correlated with the

124 number of traits.

125  Multi-trait versus univariate GWAS across 19,266 random sets

126 We applied JASS to all 19,266 sets and quantified the gain in association detection of the multi-
127  trait against univariate test. On average, in a set, JASS detected 26 new loci while 285 were previously
128 associated with the univariate tests, i.e. a 1.1-fold increase in the total number of loci detected (Fig.
129  S7A). JASS gain was maximal for sets with a relatively low number (< 300 loci) of previously detected
130 loci (Fig. S7B). JASS detected at least one new association in 98% of the trait sets (18,787 sets, Fig.
131  S7C), and 508,829 new associations in total (note that these can be overlapping loci). These numbers
132 are obtained when applying JASS on variants with beta coefficients available for all traits in the set.

133  When analysing all variants including those with missing values as allowed by JASS (see Material and
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134 methods), about 1.4 times more new associations were detected (693,382 new associations in total

135 by JASS including variants with missing values, Fig. S7D).

136 We assessed the marginal relationship between genetic features and the number of loci detected
137 by the univariate and multi-trait GWAS tests, and the association gain of multi-trait test. Figure 3
138 presents the correlation between each feature and the number of univariate and multi-trait GWAS
139 associated loci. As expected, the number of univariate associated loci was positively correlated with
140 the number of traits, mean Ny, the mean h’swas and mean MES, and negatively correlated with mean
141  uncaptured linear additive heritability (mean %h?2). Multi-trait GWAS gain over univariate GWAS was
142 positively associated with mean polygenicity and mean %h2 while negatively associated with mean
143 MES. Mean h%:was show opposite effect, being slightly positively associated with gain, but negatively
144  associated with gain. Overall, this suggests that the multi-trait test can be highly complementary to
145  the univariate test, performing better in situations where the univariate tests display low power. We
146 noted in a recent study'® that a high multicollinearity of the matrix underlying the null hypothesis (Z,)

147 can lead to a lack of robustness of the omnibus test®

. We checked how the condition number k,- was
148 related to JASS gain (Fig. 3B, Fig. S8). The condition number stayed in a reasonable range for 99% of
149  sets (min=1, max=11). The rest (1%) of sets were flagged for having singular residual matrices.
150 Furthermore, note that the trait sets contained overlapping traits and are therefore not fully
151 independent from each other. To robustly assess the impacts of genetic features on the multi-trait

152  gain by addressing this issue, below we conducted regression analyses with a cross validation scheme

153 establishing independence between training and validation data (Fig. S9).

154  Predicting multi-trait test gain from genetic features

155 We investigated the predictive power of the association gain (f;ass<uni») from a joint modelling of
156  the genetic features (Fig. 4). Note that some features are almost linear combinations of other ones
157 (e.g. Ay is proportional to the difference between fg and Z,.). To avoid extreme collinearity and

158  ensure parsimony, we selected six moderately correlated features: the number of traits, log,o As,


https://doi.org/10.1101/2023.10.27.564319
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.27.564319; this version posted October 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

159  logqg fg, mean Ney, mean h%was, and mean %h? (see Material and methods). We favoured mean
160  %h2 over mean MES and mean polygenicity since mean %h? captures both logio(MES) and
161  logio(polygenicity) (Fig. 2). We assessed performances using a five-fold cross validation (CV). For each
162 CV the model parameters were derived on a training data, and the prediction accuracy was derived in
163 an independent data (Material and methods, Fig. S9). All six features were highly associated to the
164  multi-trait gain (Table 1). Mean %h?% was overall positively associated to multi-trait gain, whereas
165 mean h%was was negatively associated. Overall, the association gain of multi-trait test, more
166  specifically the omnibus test, seems driven by genetic correlation, polygenicity, and the number of
167  traits. The predicted gain was significantly correlated with the observed gain on validation data

168  (median Pearson p=0.43, P < 1.6 x 10, Fig. S10).

169 We conducted a series of sensitivity analyses to explore further performances. First, to interpret
170  this model behaviour from the perspective of polygenicity and MES, we fitted two models replacing
171 mean %h?2 with mean logio(polygenicity) and mean logio(MES) in turn (Fig. S11). In these models,
172  mean logio(polygenicity) had a positive contribution to the gain, whereas mean logio(MES) had a
173 negative contribution. In other words, multi-trait tests likely detect new associations in settings where
174 univariate tests perform poorly, confirming the correlation analysis (Fig. 3). Additionally, the model
175 suggested the number of traits and log; fg further enhance multi-trait test gain. Contrary to previous
176  observation on simulation studies, log;qAs likely diminishes the multi-trait test gain (see
177  Supplementary note 4 for a hypothetical explanation). Second, we also considered two nonlinear
178 models for comparison purposes, support vector regression and random forest regression. As showed
179 in Figure S12, these two models appear to outperform the multivariate linear model on the training
180  datasets. However, they performed similarly or worse on the test dataset, suggesting a strong
181 overfitting in the training data. Overall, we did not find any benefit in using these more complex

182 models.
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183  Comparison of JASS versus MTAG

184 We repeated the association screening and the prediction analysis using MTAG (Multi-Trait
185  Analysis of GWAS), a popular multi-trait approach leveraging genetic correlation among closely related
186  traits to inform GWAS screening. Regarding the association screening, MTAG detected 153,061 new
187 association regions in total across the sets (30% of the number of new associations detected by JASS).
188 On average, MTAG detected eight new association loci per set and at least one new association locus
189 on 63.3% of sets (12,195 out of 19,266) compared to 98% of sets for JASS. In 93% of all the trait sets,
190 MTAG detected fewer associations than JASS did (Fig. 5A). The performance difference further
191 increased when applying JASS also on variants with missing values (in 96% of trait sets MTAG detected
192  fewer associations). Despite these discrepancies in the number of association loci, the number of new
193 association loci in MTAG and JASS were strongly correlated (Pearson p =0.72, P < 2.2 x 10°%), and as
194  well as the P-values of MTAG and JASS for the same loci (Pearson p =0.75, P < 2.2 x 10°%). This
195 concordance suggests common determinants for statistical power between the two methods. We next
196 fitted a multivariate linear model to predict MTAG gain from the same six genetic features and training
197 data used for JASS (Fig. S13). The most notable difference from JASS was that the number of traits in
198 the set was, consistently across cross-validation folds, negatively associated with the gain of MTAG.

199 Indeed, JASS particularly outperformed MTAG on larger set of traits (Fig. 5B).

200 To test whether the pronounced gain of JASS compared with MTAG on large sets was mostly due
201  tomultiple testing correction—as MTAG performs one test by trait present in the set of traits, multiple
202  testing correction is applied to MTAG P-values (Material and methods)—we compared the number of
203 associations detected by JASS and by MTAG without correction (Fig. $14). In the absence of multiple
204  testing correction, MTAG type 1 error expectedly increased with the number of traits in the set (e.g.
205 genomic inflation factor A was 1.3, 1.66, 1.72, and 1.77 for four cases with 2, 5, 9, and 12 traits).
206 Despite the increased P-value inflation for large sets, MTAG detected fewer associations overall (Fig.
207  S14A) than JASS on most of the sets (in 71% and 83% of sets when excluding and including variants

208  with partly unavailable summary statistics, respectively). The performance of JASS and MTAG were
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209 most similar in small trait sets (Fig. S14B), while JASS was particularly advantageous when analysing

210 large trait set especially when allowing for variants with summary statistics partly unavailable.

211

212 Aninformed strategy for trait set selection in multi-trait GWAS

213 A common and seemingly sound strategy when conducting multi-trait analyse is to use closely
214 related traits. This choice is partly driven by investigators’ interest in delineating the shared genetic
215 aetiology between a disease and closely related phenotypes. This might also arise from the intuitive
216 idea that closely related phenotypes share a fair amount of genetic aetiology that the multi-test could
217 leverage. However, its impact on statistical power has not been evaluated. To advise investigators on
218  the best strategy to compose sets, we compared multi-trait gain and the number of new association
219 loci obtained using this clinically-driven strategy (referred as “homogenous”, see Material and
220 methods) to three alternatives: i) including GWAS from two to four clinical groups (noted “low
221  heterogeneity”), ii) including GWAS from five clinical groups or more (noted “high heterogeneity”),
222 and iii) a data-driven approach based on the linear regression predicted gain (Material and methods).
223  The data-driven strategy had a higher gain and larger number of new association loci by JASS
224  compared to the other strategies (Fig. 6A and 6B). The gain and the number of new association loci
225 increased systematically with the clinical heterogeneity of the traits, and the increases were
226  statistically significant for most pairs of trait selection strategies compared, especially when comparing
227  the data-driven approach with the other approaches (P < 4.4 x 10 for gain and P < 6.7 x 107 for the
228 number of new association loci). The average number of new association loci detected in validation
229 data equalled 14, 20, 32, and 61 for homogeneous, low heterogeneity, high heterogeneity, and data-

230  driven sets, respectively.

231 We further decomposed the gain of the homogenous sets by clinical groups (Fig. 6C, 6D). Two
232 groups consistently yielded more new association loci than others, namely: ‘Circulatory and

233 Respiratory Physiological Phenomena’ and ‘Physiological Phenomena.” The first group was composed

10
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234  of spirometry traits and asthma, characterised by a large sample size, substantial genetic correlation,
235 and moderate heritability: a favourable setting for JASS. The second group contained anthropometric
236  traits (Height, BMI, Hip circumference, waist circumference, and Waist hip ratio). We next investigated
237  whether multi-trait gain was associated with specific traits and derived the fold enrichment for traits
238 between the top 10% yielding sets (corresponding to >169 new associated loci by JASS) and the least
239 10% yielding sets. BMI and hip circumference were amongst the top traits (Fig. S15). Notably, we
240  found that high yielding trait sets (i.e., those that yielded 169 or more new association regions by JASS)
241 all contained BMI. In contrast, out of the remaining trait sets, only 9% of the trait sets contained BMI.
242 Other traits enriched in top sets included spirometry and to a lesser extend mental disorders, arterial
243 pressure, and sleep patterns. BMI genetics is increasingly recognized to be a complex entanglement
244  of metabolic and behavioural factors®!, and suggests that complex traits that reflect multiple biologic

245 processes may benefit more from multi-trait analysis.

246 We additionally compared the multi-trait gain and the number of new association loci by MTAG
247 across the four groups of trait sets. The results were rather opposite to what we observed above with
248  JASS: MTAG gain increased as the trait sets became more homogenous (Fig. S17A, P< 1.4 x 107), and
249  the number of new association loci was greater for trait sets of low heterogeneity than high
250 heterogeneity (Fig. S17B, P = 2.7 x 10°®). We then tested whether MTAG outperforms JASS on
251 homogenous trait sets (Fig. $17C,D) and found that there was little difference between the two
252 (P=0.084 for gain, P=0.063 for the number of new association loci). We further tested whether MTAG
253 outperforms JASS on homogenous trait sets of certain clinical groups (Fig. S17E,F). JASS significantly
254  outperformed on ‘Immune System Diseases’ and ‘Psychological Phenomena’ (‘Immune System
255 Diseases’: P=8.2 x 10™ for gain and P = 6.7 x 107 for the number of new association loci, ‘Psychological
256 Phenomena’: P = 2.5 x 10 for the number of new association loci). In contrast, MTAG outperformed

257 on ‘Musculoskeletal and Neural Physiological Phenomena’ (which contains only one trait set).

258 While JASS type 1 error in JASS is properly calibrated, this large number of new associations could

259 be spurious, and irrelevant to biology. To ensure that new associations detected by JASS are relevant,

11
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260  we focussed on BMI and tested if we could predict novel associations observed in a larger study
261 (sample size= 683,365 !?) from multi-trait GWAS applied on the BMI study in the present analysis
262 (sample size= 339,224 13, Table S1). Across the 1,776 sets containing BMI, JASS detected 1,167 new
263 associations (after Bonferroni correction, Material and methods) of which 537 corresponded to a new
264  association in the larger BMI GWAS. 86 associations of the larger GWAS were missed by JASS. Hence,
265  JASS was able to flag loci with a high recall (0.86, probability of new association detected in the larger
266  GWAS to be detected by JASS) but a moderate specificity (0.46, probability of a detected loci to be
267 associated in the larger GWAS). This can be explained by the generality of the null hypothesis used in
268  JASS which requires only one trait in the set to be significant (not necessarily BMI). To improve
269 specificity, we fitted a logistic regression predicting if a locus would be associated with BMI in the
270 larger GWAS by combining the number of sets where the locus was associated by JASS and the
271 minimum P-value across sets (Fig. $16). This model reached an AUC of 0.75, an accuracy 0.74, a recall
272 of 46% and a specificity of 75% when applying a standard probability threshold of 0.5. Based on JASS
273 results, we were able to infer a substantial number of loci associated in a GWAS with twice as many

274  samples as the one used in the present study.

275 Discussion

276 This study investigated the genetic features associated with the statistical power of multi-trait
277 GWAS. On average, the power increase relative to the univariate GWAS was substantial: JASS detected
278 new association loci in 98% of 19,266 sets, with an average of 26 new association loci. This power
279 increase appears to be highly associated with the genetic features of trait sets. More specifically,
280  multi-trait gain tends to be higher for sets with 1) a moderate mean heritability (mean h2,, ), 2) a
281 smaller mean MES, 3) a larger mean polygenicity, 4) a larger genetic covariance across traits, and 5) a
282 smaller distance between the residual and genetic covariance. Although some features, such as
283 increased distance between genetic and residual correlation, have been previously found associated

284  with the gain in association detection, this analysis suggests a negative or negligible gain in real data.
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285  This might be explained by the complex correlation across features, highlighting the importance of
286  considering multiple features jointly or by variations of genetic architecture being narrower in real
287 data than assumed by previous simulation studies. We also found that selecting specific traits such as
288 BMI, and more clinically heterogenous sets, specifically for the omnibus test, can strongly outperform
289 approaches that select clinically homogenous sets. Finally, we investigated the predictive power of a
290 multivariate linear model that could predict trait sets that most likely benefit from the multi-trait test
291 (median Pearson’s p=0.43, P < 1.6 x 10®°), which can be used to astutely select traits to be tested
292  jointly. Our findings provide an approach that can increase the identification of genetic associations
293 using existing GWAS data, with relevance to traits in which genetic signal is scarce. We summarize in

294 Figure S18 a guideline for selecting the best suited methods according to the feature of their data.

295 Selecting clinically homogenous traits is the strategy most commonly used*®1%141 |n our previous
296 large-scale analysis®, an heterogeneous set yielded the largest number of new association as
297 compared to clinically homogenous sets. In this work we further showed that a data-driven strategy
298 is expected to outperform other strategies based on clinical insights. Such sets might capture highly
299 pleiotropic signals hard to detect using univariate GWAS and recommend that investigators compose

300 aheterogeneous set or use our predictive model to build a set of traits.

301 We compared the results from the standard omnibus test (implemented in JASS) against MTAG, a
302  popular multi-trait GWAS method? 2. For the data we used, the omnibus almost systematically
303 outperformed MTAG, with an overall three-fold increase in the number of loci detected. The
304  difference was particularly striking on larger trait sets. MTAG is built on the hypothesis of
305 homogeneous genetic correlation across genetic variants, and therefore is expected to have maximum
306 power when this assumption is valid. Indeed, we observed that more homogenous trait sets yielded
307 larger MTAG gain than heterogenous trait sets (Fig. S17A,B). Yet, the omnibus generally performed
308 equally well or better than MTAG even on the homogenous trait sets (Fig. S17C-F). In contrast, by
309 construction, the omnibus test allows for substantial heterogeneity, although at the cost of an

310 increase in the degree of freedom. In line with previous work suggesting that genetic correlation might
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311 be fairly heterogenous across the genome?*, this cost appears to be outweighed by the additional
312 flexibility in capturing heterogeneous multi-trait genetic patterns® (Supplementary notes 1, 2). Thus,
313  the omnibus test is recommended for general identification of variants that impact phenotypes, while

314 MTAG is suitable for identifying variants associated with specific traits (Fig. S18).

315 Our study has some limitations. First, we focused on commonly measured genetic features, but
316 based on these results, a number of other refined metrics could be used. These include effect size
317 distribution as measured by the alpha parameters®®. Second, we considered GWAS derived from
318 common diseases and anthropometric traits. Future studies might explore performances using a wider
319  variety of molecular traits, for which GWAS summary statistics are becoming increasingly available.
320  Third, the estimation of the features might be also refined. Here, we used MiXeR?%?’ to estimate most
321  features. However, we observed a dependency of MES and polygenicity on Neg. Improving these
322 metrics could improve the overall analysis and interpretations of the results. Fourth, we focused on
323 European ancestry summary statistics. This decision was motivated by the availability of large GWAS
324  and using one ancestry for linkage disequilibrium; however, by doing so, we disposed of many traits
325  with which we could have had a wider variety of genetic features, which might have improved the
326 performance of the predictive model. This focus should not lead the reader to think that multi-trait
327 GWAS is useful only on large sample studies of European ancestry. We actually recently updated the
328  JASS pipeline to run a Multi-ancestry Multi-trait GWAS, which was able to detect 367 new association
329 loci, despite the modest sample size of the non-European cohorts used®’. Future work might leverage
330 non-European existing?® and upcoming biobanks? to investigate the validity of our results for non-

331 European ancestries.

332 In conclusion, this study provides a first overview of what to expect when applying multi-trait tests
333  toavariety of data and how to maximise new discoveries. These insights can be leveraged to discover
334  genetic variants associated with human complex traits and diseases missed by univariate analysis at

335 no cost. Beyond mapping, JASS used on clinically heterogeneous trait sets might offer a way to
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understand a shared genetic aetiology among unexpected traits®*® and contribute to deeper

understanding of pleiotropy.
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Web resources

JASS https://jass.pasteur.fr/

MeSH Browser https://meshb-prev.nlm.nih.gov/search

Data and Code availability

https://gitlab.pasteur.f/statistical-genetics/jass_suite pipeline

https://gitlab.pasteur.fr/statistical-genetics/jass

https://gitlab.pasteur. fr/statistical-genetics/multitrait power_traitselection

Material and Methods

Database of curated summary statistics

We assembled a database of 72 genome-wide GWAS summary statistics of quantitative traits and
diseases conducted in European ancestry population pulled from the GWAS catalogue3! and a variety
of publicly available meta-analyses. We cleaned, harmonised and imputed each study using our
previously developed pipeline?. In brief, the process includes the following steps: 1) alignment of each
GWAS to the 1000G GRCh37 reference panel®?, 2) imputation of missing summary statistics using
RAISS %3, 3) computation of the heritability, genetic and residual covariance matrices, referred further
as h(Z;WAS, X, and L, using LD-score regression3t, 4) aggregation of curated GWAS in a unique entry
file used as input for JASS. We filtered all GWAS with negative heritability, resulting in a total of 72
traits (Table S1). Curated GWAS summary statistics used in the analysis are available on the JASS

webserver https://jass.pasteur.fr/.
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379  Joint test and association gain

380 Multi-trait analyses were conducted using the omnibus test implemented in the JASS package??.
381 For a set of k GWAS, the omnibus statistics is defined as Ty, = ZtZ, z where z is the vector of Z-
382  scores across traits z = (z; ... z;) and X,. is the residual Z-score covariance derived using the LD-score
383 regression. Under the null hypothesis of no association with any of the k phenotypes, Ty;,ni follows a
384  x? distribution with k degree of freedom. To maximize data usage, the default setting of JASS uses all
385 variants even those with missing association statistics. In this case, JASS returns association P-value
386 based on the subset of Z-scores available. In contrast, the —-remove-nans option removes variants with
387 incomplete data. Here, we used —-remove-nans option as the primary analysis for a better
388 characterisation of trait sets and for a fair comparison with the default setting of MTAG* that do not
389 allow for missing statistics, whereas we also provide some results from the default setting of JASS as
390  an additional information.

391 All power comparisons were conducted at a locus level. The entire genome was split into a total of
392 1,703 quasi-independent loci defined based on linkage disequilibrium (LD)-independent blocks, as
393 proposed by Berisa and Pickrell®>. For both multi-trait and univariate analyses, we obtained the
394 minimum P-value across variants in each locus. The gain of the multi-trait test was derived as the
395 fraction of loci whose P-values were smaller than corresponding P-values in univariate GWAS

396  corrected for the number of traits jointly analysed:
397 gain = fmulti<univ = El(Pmulti.i < Puni.i ' k)/R (1)
l

398 where R is the number of loci (R=1,703), k is the number of traits (the number of GWAS studies)
399  jointly analysed, Pyt is the minimum P-value of the multi-trait test in region i, and P,,;,,; is the

400 minimum P-value of the univariate tests across all GWAS analysed in locus i.

401
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402  Estimated and derived genetic features

403 We investigated the effect of both single and multi-trait features. Single GWAS features include
404  the effective sample size (N,fy), linear additive common variants heritability (h2,, 45), polygenicity,
405 MES, and the proportion of uncaptured linear additive common variants heritability (%h?,). Multi-trait
406  GWAS features include the number of traits in a trait set (k), the average of the off-diagonal of genetic
407 covariance and the residual covariance (fg and X,, respectively), condition numbers of genetic
408 covariance matrix and residual covariance matrix (K, and k;, respectively) across traits, and average
409 distance between the genetic and residual correlation matrices (As). All parameters were aggregated
410  toform avector of 11 features per trait set. For the single GWAS parameters, MES, polygenicity, Nos,

411  h2y 4, and %h?, we calculated mean values across each set of traits.

412 Polygenicity and heritability (hZ,,,5) were estimated using MiXeR?®?’, with the 1000 Genomes
413 Phase3 reference panel provided along the MiXeR package containing approximately 10 million
414  common variants®2, Following the authors recommendation, we defined the parameter for effective
415  sample size as Nogr = 1/(1/Negse + 1/Neontrois) - For comparison purposes, we also estimated
416  h%cwas using the LDscore regression®®, and the two metrics were consistent (Pearson p=0.86, Fig. S5).
417  The estimated polygenicity by MiXeR showed a dependency on the GWAS sample size, with about a
418 10-fold increase of the polygenicity for an increase of 500,000 of the sample size (Fig. $19). We
419  therefore adjusted polygenicity by taking the residuals of linear regression between logio polygenicity
420  and Nss: logyo polygenicity (adjusted) = log,o polygenicity (mixer) — aN.sf, where a was

421  estimated by a linear regression log;, polygenicity (mixer) ~ aN.ss + €. We obtained ‘adjusted

o, ici ; h2
422  polygenicity’ as 10010810 Polygenicity (adjusted)] \ne computed MES as —GWAS :
polygenicity (adjusted)

423 The proportion of uncaptured linear additive common variants heritability (%h?2) was derived as

424 (h%yas — hewas—nits)/Pewas » Where h2, s _nies denotes the heritability accounted by the

425 univariate GWAS association loci. It was derived using the lead variants from each locus reaching
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426  genome-wide significance (P < 5 x 10°®): h2, as_nits = ie1 BE, Where f; = z;/ Nesr. We excluded
427  loci with lead variant whose abs () >0.19, because h2y, ss_nits tended to become larger than hZ,, 4.

428 The mean genetic covariance and mean residual covariance were defined as the mean of the
429 absolute value of the upper off-diagonal elements of the genetic and residual covariance matrices (X4
430 and Zr ), i.e. 59 = Zi,j;i<j o-gij /Zi,j;i<j 1 , and 57« = Zi,j;i<j Orij /Zi,j;i<j 1 , respectively, where

431  oy;jand oy are ij elements of X4 and X, and k is the number of traits. The condition numbers of

432 genetic and residual covariance matrices were computed as: k; = \/max(lg,i) /min (44;), and k, =

433 \/max(lm-)/min (A4r,i) where A4; and A,; are the eigenvalues of the genetic and residual

434  covariance matrices. We used numpy.linalg.eig>® for the eigen decomposition and assigned an infinite
435  value to k when the minimum eigenvalue was negative or close to zero. The average distance As was
436  defined as the mean over the absolute values of pairwise difference between the corresponding upper
437 off-diagonal elements in genetic and residual correlation matrices Ay =
438 Zi,j;i<j|pgij — Prij |/Zi,j;i<j 1, where pg;;and p,;; indicate the ij elements in the genetic and
439 residual correlation matrices.

440

441  Assessment of features associated with multi-trait association gain

442 The contribution of features to multi-trait gain was estimated using a five-fold cross validation. For
443 each round of cross validation, the 72 GWAS were randomly split into a training and validation data,
444  each including 36 GWAS. Within each cross validation, we generated 1,980 unique random trait sets,
445 containing 2 to 12 traits, for each of the training and validation data: random sampling out of the 36
446  traits (660 sets generated), random sampling out of traits with common SNP heritability below median
447 (330 sets) and above median (330 sets); random sampling out of traits with MES below median (330
448 sets) and above median (330 sets). For this stratification of traits by the median of MES, we used

449 polygenicity / h(Z;WAS estimated by MiXeR without adjusting for the effective sample size. For each set,
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450 we ran JASS and derived the 11 features of interest (F;,i = 1, ..., 11) and the multi-trait gain. We used
451 19,793 trait sets out of the total 19,800 (=1,980 x 2 x 5) sampled for which the whole analysis process
452 completed without error. Errors include cases where there was no association detected by both the

453 univariate and joint tests.

454 Moving to the multivariate regression analysis, we selected six out of the 11 features based on
455 collinearity analysis (as described below). The six features and the multi-trait gain were standardised
456 into a range between 0 and 1 using MinMaxScaler in scikit-learn®’. This standardisation was applied at
457 once on the entire dataset including training and validation data across the five-fold cross validation

458 sets.

459 We used the training data to estimate the joint effect Si of each feature i from a multiple
460  regression: gaiN qin~ i 8; Firqin,i- This was conducted using the OLS function in statsmodels in

461 Python®. We report Pearson’s correlation coefficient as a metric of predictive power.
462
463  Collinearity and selection of features

464 We observed collinearity among some of the 11 features of traits across 19,266 unique trait sets.
465 Logio Ky, 10810 Ky, 10810 Z,, and the number of traits were highly correlated (Pearson p > 0.65).
466 Likewise, mean %h?,, mean logioMES, and mean logiopolygenicity were highly correlated (abs(p) >
467 0.8). These correlated features capture redundant characteristics of traits. Thus, we selected one out
468  of each correlated features: the number of traits and mean %h?,. We chose the number of traits
469 because it had the smallest P-value in a multivariate linear regression with all the features included,
470  where inf values in condition number were replaced with their non-inf max value. We chose
471  mean(%h?%,) because it captures both mean(logioMES) (p=-0.90) and mean(logiopolygenicity) (p=0.84).
472  The estimation of mean(%h?) is also more straightforward than mean(logioMES) and
473 mean(logiopolygenicity). After this pre-selection, we built models with the remaining six features as

474  described in the previous section.
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475  Non-linear models

476 We considered two alternative non-linear models for prediction purposes: support vector
477 regression (SVR), and random forest regression (RFR). SVR and RFR are regression approaches that
478 allow for non-linear relationships. SVR’s goal is to find a hyperplane (or line, in the case of two-
479 dimensional data) that best fits the data. It is effective at handling non-linear and complex data by
480 using the kernel trick—mapping data with a kernel function into a higher-dimensional space where it
481 is easier to find the best-fit hyperplane. SVR also penalises the complexity of the model and gives the
482  flexibility in how much error is acceptable. Random forest regression performs a regression using
483 decision trees. It generates multiple trees, fits each to a random subset of training data, and averages
484  the predictions across trees as the final prediction. While the random sampling and averaging
485 supposedly makes the model robust to outliers, RFR’s performance relies on a high quality of training
486  data; the training data needs to cover a wide range as RFR does not work well for extrapolation, and
487 RFR leads to biased predictions when the training data is sampled in a biased way*. In contrast, SVR
488 is suggested to be capable of extrapolation*®. We used the scikit-learn®” python implementation of
489 RFR and of the SVR. We fitted SVR and RFR models to the gain;,,i, including hyperparameters.
490 Hyperparameters were tuned using RandomizedSearchCV in scikit-lean across the following range:
491 SVR’s kernel=[linear, rbf, sigmoid, poly], C=[1,10,50,100], epsilon=[103,102,10%,1], degree=[2,3,4],
492 and RFR’s n_estimators=[5,20,50,100], max_features=[‘auto’,’sqrt’], max_depth=[12 values ranging
493 from 2 to 100], min_samples_split=[2,5,10], min_samples_leaf=[1,2,4], bootstrap=[True, False].

494

495  MTAG analyses

496 For comparison purposes, we repeated the multi-trait test and the prediction analyses with the
497 MTAG approach®. MTAG uses a weighted sum of Z-score (Supplementary note 1). Trait weights are
498  derived using the generalised method of moments, as (Bjﬁ; — 0 —2;) =0, where 2 is the genetic

499 covariance matrix to be estimated for the weights, and 2 is the genetic covariance matrix estimated
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500 using the LD score regressions by Bulik-Sullivan et al**. The model assumes that the genetic covariance
501 matrix is homogenous across variants. We used MTAG with its default setting, which considered only
502 complete cases. We ran MTAG for the same trait sets used for the analysis with JASS (all data used in
503 the five-fold cross validation). MTAG outputs P-values for each trait in each trait set, whereas JASS
504  gives a single P-value for a trait set. To account for the number of tests run by MTAG for one set, we
505 obtained minimum P-values by MTAG across traits and variants in each locus and multiplied the
506 minimum P-values by the number of traits in the set. For the comparison of the association gain
507 between MTAG and JASS, we used both the minimum P-values with and without multiple test

508  correction (Fig. 5, and Fig. S14).

509

510  Comparison of strategies for trait selection.

511 To compare the performances of trait selection strategies, we classified the 19,266 unique sets into
512 clinically homogenous, low heterogeneity, high heterogeneity, or high predicted gain according to our
513 predictive model. To assess clinical homogeneity, we first classified the 72 traits into clinical groups
514 using the broadest categories in the MeSH Tree Structures®'. The grouping was further refined based
515 on clinician’s insights (Table S1). We labeled each set of traits as ‘homogeneous’ if all the traits are in
516  the same clinical group, ‘low heterogeneity’ if trait belonged to two to four clinical groups, ‘high
517 heterogeneity’ if traits spanned five or more clinical groups. For the ‘data-driven’ method, we selected
518 100 sets of traits by CV fold that had the largest gains predicted by the linear model with aggregated
519 coefficients across CV folds (Table 1). We used the Welch’s t-test to evaluate the differences in gain
520 and the number of new associated loci. We used a two-sided Welch’s t-tests to determine whether
521  the data driven method achieves a greater association gain than other methods, and whether jointly
522 analysing clinically heterogenous traits achieves a greater association gain than jointly analysing
523 clinically homogenous traits. For this test, we used a pair of training data and validation data that are

524 mutually exclusive to ensure independence.

22


https://doi.org/10.1101/2023.10.27.564319
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.27.564319; this version posted October 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

525
526  Evaluation of the relevance of new association

527  To evaluate the relevance of new associations detected by JASS (i.e. if most of them were true
528 positive), we attempted to predict loci discovered in a recent large meta-analysis on BMI (sample size
529 of 683,365 on average across ~2.3 million variants!?) from the results of multi-trait GWAS applied on
530 1,776 trait sets containing a smaller study of BMI (sample size of 339,224, Table S1). First, we
531 compared loci detected by JASS (after a Bonferroni correction to account for the number of sets) and
532 in the larger GWAS using the standard genome wide significance threshold of 5 x 10®. Second, we
533 fitted a logistic regression to predict associated loci in the larger GWAS by combining JASS P-value and
534  the number of sets where the loci was considered associated with JASS. We use odd number
535 chromosomes to fit the logistic regression and evaluated its performances on even number

536 chromosomes.

537
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Tables and Figures

transformed. All the features were scaled using MinMaxScaler in scikit-learn®’.
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Table 1. Coefficients of the multivariate linear regression models from five-fold cross

validations. Mean genetic residual distance and mean genetic covariance were logio

Ccvi Cv2 Cv3 cv4 CV5 Mean
# of traits 0.096 0.077 0.082 0.049 0.083 0.077
(p=3.447x10%)  (p=1.592x10""7)  (p= 1.638x10%) (p=6.148x10%)  (p=3.071x109) (std=0.017)
Mean |0g10 A): -0.787 -0.536 -0.393 -1.174 -0.610 -0.700
(p=8.338x10%)  (p=8.338x10%%)  (p=2.242x101°) (p=1.086x10%)  (p= 1.947x10°%) (std=0.301)
Mean |0g10 fg 0.767 0.789 0.355 1.149 0.675 0.747
(p=3.813x10%)  (p=2.055x102%  (p=5.990x10-'%) (p=1.604x10%)  (p= 5.636x1021) (std=0.284)
Mean Neff 0.206 -0.016 -0.071 0.260 -0.015 0.073
(p= 4.342x101%)  (p= 0.554) (p= 0.003) (p=1.099x10-19)  (p= 0.598) (std=0.149)
Mean hZGWAS -0.509 -0.437 -0.518 -0.690 -0.429 -0.516
(p=2.937x10%)  (p=1.455x10%%)  (p=2.216x10""")  (p=6.670x107%)  (p= 2.225x102) (std=0.105)
Mean %h?, 0.112 0.370 0.091 0.277 -0.064 0.157
(p=5.158x10%)  (p=4.353x10%)  (p=3.877x1019) (p=3.022x10%¥)  (p=0.002) (std=0.169)
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Figure 1. Study overview

We conducted a power analysis on real data to understand in which setting a standard multi-trait
test—the omnibus test—outperforms univariate GWAS. A) To assemble our real data, we curated 72
GWAS summary statistics and formed about 20k sets of traits by random sampling. Each set of traits
was characterised by assessing key genetic features such as polygenicity, mean effect size (MES), and
heritability. (B) For each set of traits, we ran omnibus test using JASS and computed the association
gain compared to the univariate test. We defined this association gain as the number of LD-
independent loci where the omnibus yields a smaller P-value than the univariate test. We repeated
the analysis using MTAG, a popular multi-trait approach. (C) To investigate which genetic features
(highlighted in A) explain the JASS (omnibus) association gain, we applied statistical models to predict
the gain as a function of genetic features. Several models were benchmarked to optimise prediction
performances. (D) To suggest a practical strategy for selecting traits that yield a large association gain,
we compared the performance of JASS on trait sets that are clinically similar, clinically heterogenous,

and that were predicted to have a large gain by the predictive model highlighted in (C).
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688  Figure 2. Genetic features characteristics derived from 72 traits and 19,266 random trait
689  sets.

690  Visualization of the investigated features and their relation at the level of individual trait (panels A, C,
691  and E) and at the level of set of traits (panels B, D, and F). A) Schematic of a genetic feature derived at
692  the level of an individual trait. B) Schematic of a genetic feature derived at the level of a set of traits.
693 C) Violin plots representing the distribution across the 72 summary statistics of heritability,
694 polygenicity, MES and sample size of the study. D) Violin plots representing the distribution across the
695 19,266 sets of traits of the 11 genetic features derived for each trait set. E) Pearson correlation among
696 polygenicity, MES, h’cwas, %h?,, and sample size across 72 traits. F) Pearson correlation among the 11

697  features across 19,266 trait sets. (g-value annotation: *** < 103, ** <1072,*< 5x10?)
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699  Figure 3. Determinant of JASS gain across trait sets.

700  A) lllustration of the three metrics to assess univariate and multi-trait GWAS outcomes. On a quadrant
701 plot representing the P-value of the multi-trait test with respect to the P-value of the univariate test,
702  the following areas represent regions where: (green) only the univariate test is significant, (pink) only
703  the multi-trait test is significant, (purple) the multi-trait test is more significant than the univariate
704  test. B) Heatmap of the Pearson correlation between the number of univariate association loci, the
705 number of new association loci detected by JASS, the association gain of JASS (fiass<univ) and the 11

706 genetic features across 19,266 trait sets.
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Figure 4. Model prediction power and feature contributions. (A) Boxplots of the prediction
power across the five-fold cross validations (CV) of the multivariate linear regression model
measured as the Pearson’s correlation coefficient between the predicted and observed gain.
The performance of each CV is represented as a coloured dot. Orange dashed line: median
correlation coefficient between the predicted and observed gain in the validation data. (B, C)
The boxplots show the coefficients and -logio(P-values) of the six features in the regression
model across five-fold cross validations using each corresponding training data. Red dashed

line: Bonferroni corrected nominal significance threshold.
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718  Figure 5. Comparison of MTAG with JASS. A) The number of new association loci found by
719  JASS with respect to the number of new association loci found MTAG across all the trait sets.
720  Each dot represents a set of traits. Dot colours represent the number of traits in the set. B)
721  Fraction of sets where the number of new association loci detected by JASS was superior to

722  the number of associations detected by MTAG stratified by the number of traits in the set.
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724  Figure 6. Comparison between clinical and data-driven trait sampling methods. (A, B)
725  Distribution of the gain and the number of new association loci for trait sets selected by four
726  trait selection strategies from the validation data. P-values are from the two-sided Welch’s t-
727  test. Differences in mean values in each pair compared in the test (right — left categories in
728  the order shown on the x-axis) are also shown. Note we used a pair of a training data and a
729  validation data to ensure independence for the test. The numbers under the labels on the x-
730 axis indicate the number of trait sets from each strategy. The observed JASS gain and the
731  number of new association loci are shown on the y-axis. (C,D) The observed gain and number
732 of new association loci detected for trait sets of the ‘homogenous’ category, visualised per
733 clinical grouping.
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