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Abstract 15 

Since the first Genome-Wide Association Studies (GWAS), thousands of variant-trait associations 16 

have been discovered. However, the sample size required to detect additional variants using standard 17 

univariate association screening is increasingly prohibitive. Multi-trait GWAS offers a relevant 18 

alternative: it can improve statistical power and lead to new insights about gene function and the joint 19 

genetic architecture of human phenotypes. Although many methodological hurdles of multi-trait 20 

testing have been discussed, the strategy to select trait, among overwhelming possibilities, has been 21 

overlooked. In this study, we conducted extensive multi-trait tests using JASS (Joint Analysis of 22 

Summary Statistics) and assessed which genetic features of the analysed sets were associated with an 23 
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increased detection of variants as compared to univariate screening. Our analyses identified multiple 24 

factors associated with the gain in the association detection in multi-trait tests. Together, these factors 25 

of the analysed sets are predictive of the gain of the multi-trait test (Pearson's 𝜌 equal to 0.43 between 26 

the observed and predicted gain, P < 1.6 x 10-60). Applying an alternative multi-trait approach (MTAG, 27 

multi-trait analysis of GWAS), we found that in most scenarios but particularly those with larger 28 

numbers of traits, JASS outperformed MTAG. Finally, we benchmark several strategies to select set of 29 

traits including the prevalent strategy of selecting clinically similar traits, which systematically 30 

underperformed selecting clinically heterogenous traits or selecting sets that issued from our data-31 

driven models. This work provides a unique picture of the determinant of multi-trait GWAS statistical 32 

power and outline practical strategies for multi-trait testing. 33 

  34 
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Introduction 35 

Despite a continuous increase of the sample size of Genome-Wide Association Studies (GWAS), 36 

many genetic variants underlying human complex traits and diseases remain undetected. To increase 37 

statistical power and detection of associations at low cost, investigators have developed various multi-38 

trait approaches based on GWAS summary statistics1–6. Although other factors might also be involved, 39 

few studies investigated how the choice of phenotypes impacts the gain in the power of multi-trait 40 

approaches. In the standard univariate GWAS, statistical power mostly depends on minor allele 41 

frequency, sample size, the size of genetic effect, and polygenicity (the number of causal variants)7. In 42 

the multi-trait GWAS, it additionally depends on complex characteristics of the set of traits: their 43 

shared aetiology, their genetic correlation, and the number of traits in the set. As previously described, 44 

the increased power of multi-trait test partly comes from adjusting for the correlation across GWAS 45 

studies due to sample overlaps and genetic relationships across phenotypes4,8,9. Previous works 46 

explored this question using simulated data8,9. However, simulations are limited in their scope, and 47 

more studies are needed to better characterise scenarios increasing the gain of multi-trait tests. 48 

Here we empirically examined how trait characteristics impact the statistical power of multi-trait 49 

GWAS. We performed our analyses on 72 curated GWAS summary statistics and analysed the impact 50 

of 11 genetic features describing both individual and collective characteristics of sets of GWAS. Among 51 

available multi-trait methods, we used a standard 𝑘-degree of freedom joint test (omnibus test) of 𝑘 52 

GWAS implemented in JASS2 as our primary analysis. The JASS package and its associated tools solve 53 

all practical issues commonly encountered in multi-trait GWAS analyses, including missing data and 54 

computational efficiency, allowing for a large-scale power analysis on real data. We inspected the 55 

association between these genetic features and the gain in the association detection in multi-trait 56 

GWAS over univariate GWAS. We then assessed how well these genetic features predict the gain. We 57 

further compared JASS and MTAG, an alternative multi-trait approach, in terms of the impact of the 58 

trait selection strategy on the gain of multi-trait GWAS.  59 
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 60 

Results 61 

Study Overview 62 

We conducted a series of analyses to identify features that influence the gain in association 63 

detection of multi-trait GWAS relative to univariate GWAS. The key principles and main steps of the 64 

study are depicted in Figure 1. We used 72 curated GWAS summary statistics spanning a range of 65 

clinical domains (Table S1) and considered 11 features describing the univariate and multivariate 66 

genetic architecture of the phenotypes. Five of them characterise single GWAS: mean genetic effect 67 

size (MES), polygenicity, effective sample size (𝑁!""), linear additive heritability of common variants 68 

(ℎ#$%&
' ), the proportion of uncaptured linear additive heritability of common variants (%ℎ(' ). The 69 

remaining six features characterise sets of GWAS. It includes the number of GWAS analysed jointly, 70 

and five metrics related to the genetic (Σ), Table S2 and Fig. S1) and residual (Σ*, Table S3 and Fig. 71 

S2) covariance matrices, where the latter represents the covariance between the Z-score statistics of 72 

two GWAS due to sample overlap and phenotypic correlation. Those five features are the mean of the 73 

off-diagonal terms denoted as Σ') and Σ'*; the conditional numbers of Σ) and Σ*  denoted as 𝜅) and 74 

𝜅*, which we used as a measure of multi-collinearity; and the average difference between the two 75 

matrices Δ+.  Δ+ is expected to be a key driver of the power of multi-trait test8,9 (Supplementary note 76 

1, 2, Fig. S3). 77 

Given the 72 traits, there are over 4.7 x 1021 possible sets of two to 72 traits. In this study, we used 78 

19,266 unique random sets of two to 12 GWAS drawn using a stratified sampling conditional on mean 79 

effect size, heritability and the number of traits to maximize the range of the genetic features studied 80 

(see Material and methods, Supplementary note 3). For each set, we derived the average of the single 81 

GWAS feature (polygenicity, MES, Neff, h2
GWAS, and %h2

u) and the six set features (Σ'), Σ'*, 𝜅), 𝜅*, Δ+, 82 

and the number of GWAS selected). Note that we used the log of polygenicity, MES, Σ'), Σ'*, 𝜅), 𝜅*, 83 
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and Δ+ when investigating their association with other variables due to their skewed distributions (Fig. 84 

S4). Then, we compared multi-trait and univariate GWAS results based on the minimum P-value of the 85 

multi-trait test across all variants within LD-independent loci (𝑃,%&& ) and the minimum P-value of 86 

univariate tests across all variants and all GWAS within the same loci (𝑃(-.). We used two metrics: i) 87 

the proportion of significant loci found associated at genome-wide level (P < 5 x 10-8) by JASS and 88 

missed by the univariate GWAS, and ii) the fraction of loci where 𝑃,%&&  was smaller than 𝑃(-.  89 

(𝑓,%&&/(-.0). 90 

We first describe the distribution of the genetic features and their correlation. Second, we applied 91 

JASS to each set and compared multi-trait and univariate GWAS association results (Fig. 1B). Third, we 92 

build a predictive model of the association gain using a five-fold cross-validation approach (Fig. 1C). 93 

For each cross-validation, we pulled a training set of 1,980 out of the 19,266 unique random sets and 94 

conducted a regression analysis to estimate the contribution of a subset of genetic features of trait 95 

sets using a joint model of the features. We measured the correlation between observed and 96 

predicted gain in an independent validation dataset. Fourth, we compared the association gain from 97 

JASS against MTAG4, a popular multi-trait approach that leverages genetic correlation across traits to 98 

boost statistical power. Finally, we compare common trait selection strategies—e.g. choosing clinically 99 

homogenous or heterogeneous traits—in their impacts on the association gain to evaluate our model 100 

prediction and provide a practical strategy in multi-trait test (Fig. 1D). 101 

 102 

Distribution of the genetic features across GWAS trait sets 103 

The individual genetic features of the 72 studied traits were distributed as follows. The sample sizes 104 

ranged from 5,318 to 697,828 with a median of 85,559. Heritability (ℎ#$%&
' ) ranged from 1% to 48% 105 

with a median at 10% (Fig. 2A) and was consistent across the software used for its estimation (Fig. S5). 106 

Polygenicity and MES were highly variable: Polygenicity (i.e. the estimated number of causal variants) 107 

ranged from 6.9 (Estimated Glomerular Filtration Rate from Cystatin C) to 570,102 (variability sleep 108 
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duration) with a median of 1,110, and MES ranged from 4.48 x 10-8 (variability sleep duration) to 3.3 x 109 

10-3 (Fasting proinsulin) with a median of 1.0 x 10-4. The distribution of the average these parameters 110 

across the 19,266 random sets is presented in Figure 2B along with the GWAS set features. The latter 111 

metrics ranged (in 25-75 percentiles) as -2.04 to -1.79 for log12 Σ'), -1.96 to -1.44 for log12 Σ'*, 0.36 to 112 

0.78 for log12 𝜅), 0.05 to 0.32 for log12 𝜅*, and -1.11 to -0.89 for log12 Δ+. In particular, the variability 113 

in log12 Δ+ was limited (given the theoretical upper bound of  log12 Δ+ is log12 2 ≅ 0.3). 114 

 We measured the correlation across features at the trait and set levels (Fig. 2C, 2D). The 115 

proportion of uncaptured linear additive heritability of common variants (%ℎ(' ) was strongly 116 

associated with log12 polygenicity	(𝜌 = 0.76, P = 8.8 x 10-15) and with log12MES	 (𝜌 = -0.8, P = 3.5 x 117 

10-17) (Fig. 2C, S6), in agreement with previous reports showing that univariate GWAS performs better 118 

for traits with a larger MES and a smaller polygenicity7. As expected, the means of individual trait 119 

feature were correlated in the same way across sets as across traits (e.g. mean %ℎ('  and mean 120 

polygenicity are highly correlated as are %ℎ('   and polygenicity, Fig. 2D). Metrics of genetic and 121 

covariance matrices were positively correlated to each other, i.e. log12 Σ') with log12 Σ'*  and log12 Δ+, 122 

log12 𝜅)  with log12 𝜅* , and log12 Σ'* 	with  log12 𝜅*  and log12 𝜅) , which further correlated with the 123 

number of traits. 124 

Multi-trait versus univariate GWAS across 19,266 random sets 125 

We applied JASS to all 19,266 sets and quantified the gain in association detection of the multi-126 

trait against univariate test. On average, in a set, JASS detected 26 new loci while 285 were previously 127 

associated with the univariate tests, i.e. a 1.1-fold increase in the total number of loci detected (Fig. 128 

S7A). JASS gain was maximal for sets with a relatively low number (< 300 loci) of previously detected 129 

loci (Fig. S7B). JASS detected at least one new association in 98% of the trait sets (18,787 sets, Fig. 130 

S7C), and 508,829 new associations in total (note that these can be overlapping loci). These numbers 131 

are obtained when applying JASS on variants with beta coefficients available for all traits in the set. 132 

When analysing all variants including those with missing values as allowed by JASS (see Material and 133 
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methods), about 1.4 times more new associations were detected (693,382 new associations in total 134 

by JASS including variants with missing values, Fig. S7D). 135 

We assessed the marginal relationship between genetic features and the number of loci detected 136 

by the univariate and multi-trait GWAS tests, and the association gain of multi-trait test. Figure 3 137 

presents the correlation between each feature and the number of univariate and multi-trait GWAS 138 

associated loci. As expected, the number of univariate associated loci was positively correlated with 139 

the number of traits, mean Neff, the mean h2
GWAS and mean MES, and negatively correlated with mean 140 

uncaptured linear additive heritability (mean %ℎ(' ). Multi-trait GWAS gain over univariate GWAS was 141 

positively associated with mean polygenicity and mean %ℎ('  while negatively associated with mean 142 

MES. Mean h²GWAS show opposite effect, being slightly positively associated with gain, but negatively 143 

associated with gain. Overall, this suggests that the multi-trait test can be highly complementary to 144 

the univariate test, performing better in situations where the univariate tests display low power. We 145 

noted in a recent study10 that a high multicollinearity of the matrix underlying the null hypothesis (Σ*) 146 

can lead to a lack of robustness of the omnibus test10. We checked how the condition number 𝜅* 	was 147 

related to JASS gain (Fig. 3B, Fig. S8). The condition number stayed in a reasonable range for 99% of 148 

sets (min=1, max=11). The rest (1%) of sets were flagged for having singular residual matrices. 149 

Furthermore, note that the trait sets contained overlapping traits and are therefore not fully 150 

independent from each other. To robustly assess the impacts of genetic features on the multi-trait 151 

gain by addressing this issue, below we conducted regression analyses with a cross validation scheme 152 

establishing independence between training and validation data (Fig. S9). 153 

Predicting multi-trait test gain from genetic features 154 

We investigated the predictive power of the association gain (𝑓,%&&/(-.0) from a joint modelling of 155 

the genetic features (Fig. 4). Note that some features are almost linear combinations of other ones 156 

(e.g. Δ+  is proportional to the difference between Σ')  and Σ'* ). To avoid extreme collinearity and 157 

ensure parsimony, we selected six moderately correlated features: the number of traits, log12 Δ+, 158 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2023. ; https://doi.org/10.1101/2023.10.27.564319doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.27.564319
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

log12 Σ'), mean Neff, mean h²GWAS, and mean %ℎ('  (see Material and methods). We favoured mean 159 

%ℎ('  over mean MES and mean polygenicity since mean %ℎ('  captures both log10(MES) and 160 

log10(polygenicity) (Fig. 2). We assessed performances using a five-fold cross validation (CV). For each 161 

CV the model parameters were derived on a training data, and the prediction accuracy was derived in 162 

an independent data (Material and methods, Fig. S9). All six features were highly associated to the 163 

multi-trait gain (Table 1). Mean %ℎ('  was overall positively associated to multi-trait gain, whereas 164 

mean h²GWAS was negatively associated. Overall, the association gain of multi-trait test, more 165 

specifically the omnibus test, seems driven by genetic correlation, polygenicity, and the number of 166 

traits. The predicted gain was significantly correlated with the observed gain on validation data 167 

(median Pearson 𝜌=0.43, P < 1.6 x 10-60, Fig. S10). 168 

We conducted a series of sensitivity analyses to explore further performances. First, to interpret 169 

this model behaviour from the perspective of polygenicity and MES, we fitted two models replacing 170 

mean %ℎ('  with mean log10(polygenicity) and mean log10(MES) in turn (Fig. S11). In these models, 171 

mean log10(polygenicity) had a positive contribution to the gain, whereas mean log10(MES) had a 172 

negative contribution. In other words, multi-trait tests likely detect new associations in settings where 173 

univariate tests perform poorly, confirming the correlation analysis (Fig. 3). Additionally, the model 174 

suggested the number of traits and log12 Σ') further enhance multi-trait test gain. Contrary to previous 175 

observation on simulation studies, log12 Δ+  likely diminishes the multi-trait test gain (see 176 

Supplementary note 4 for a hypothetical explanation). Second, we also considered two nonlinear 177 

models for comparison purposes, support vector regression and random forest regression. As showed 178 

in Figure S12, these two models appear to outperform the multivariate linear model on the training 179 

datasets. However, they performed similarly or worse on the test dataset, suggesting a strong 180 

overfitting in the training data. Overall, we did not find any benefit in using these more complex 181 

models. 182 
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Comparison of JASS versus MTAG 183 

We repeated the association screening and the prediction analysis using MTAG (Multi-Trait 184 

Analysis of GWAS), a popular multi-trait approach leveraging genetic correlation among closely related 185 

traits to inform GWAS screening. Regarding the association screening, MTAG detected 153,061 new 186 

association regions in total across the sets (30% of the number of new associations detected by JASS). 187 

On average, MTAG detected eight new association loci per set and at least one new association locus 188 

on 63.3% of sets (12,195 out of 19,266) compared to 98% of sets for JASS. In 93% of all the trait sets, 189 

MTAG detected fewer associations than JASS did (Fig. 5A). The performance difference further 190 

increased when applying JASS also on variants with missing values (in 96% of trait sets MTAG detected 191 

fewer associations). Despite these discrepancies in the number of association loci, the number of new 192 

association loci in MTAG and JASS were strongly correlated (Pearson 𝜌 = 0.72, P < 2.2 x 10-308), and as 193 

well as the P-values of MTAG and JASS for the same loci (Pearson 𝜌 =0.75, P < 2.2 x 10-308). This 194 

concordance suggests common determinants for statistical power between the two methods. We next 195 

fitted a multivariate linear model to predict MTAG gain from the same six genetic features and training 196 

data used for JASS (Fig. S13). The most notable difference from JASS was that the number of traits in 197 

the set was, consistently across cross-validation folds, negatively associated with the gain of MTAG. 198 

Indeed, JASS particularly outperformed MTAG on larger set of traits (Fig. 5B). 199 

To test whether the pronounced gain of JASS compared with MTAG on large sets was mostly due 200 

to multiple testing correction—as MTAG performs one test by trait present in the set of traits, multiple 201 

testing correction is applied to MTAG P-values (Material and methods)—we compared the number of 202 

associations detected by JASS and by MTAG without correction (Fig. S14). In the absence of multiple 203 

testing correction, MTAG type 1 error expectedly increased with the number of traits in the set (e.g. 204 

genomic inflation factor l was 1.3, 1.66, 1.72, and 1.77 for four cases with 2, 5, 9, and 12 traits). 205 

Despite the increased P-value inflation for large sets, MTAG detected fewer associations overall (Fig. 206 

S14A) than JASS on most of the sets (in 71% and 83% of sets when excluding and including variants 207 

with partly unavailable summary statistics, respectively). The performance of JASS and MTAG were 208 
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most similar in small trait sets (Fig. S14B), while JASS was particularly advantageous when analysing 209 

large trait set especially when allowing for variants with summary statistics partly unavailable. 210 

 211 

An informed strategy for trait set selection in multi-trait GWAS 212 

A common and seemingly sound strategy when conducting multi-trait analyse is to use closely 213 

related traits. This choice is partly driven by investigators’ interest in delineating the shared genetic 214 

aetiology between a disease and closely related phenotypes. This might also arise from the intuitive 215 

idea that closely related phenotypes share a fair amount of genetic aetiology that the multi-test could 216 

leverage. However, its impact on statistical power has not been evaluated. To advise investigators on 217 

the best strategy to compose sets, we compared multi-trait gain and the number of new association 218 

loci obtained using this clinically-driven strategy (referred as “homogenous”, see Material and 219 

methods) to three alternatives: i) including GWAS from two to four clinical groups (noted “low 220 

heterogeneity”), ii) including GWAS from five clinical groups or more (noted “high heterogeneity”), 221 

and iii) a data-driven approach based on the linear regression predicted gain (Material and methods). 222 

The data-driven strategy had a higher gain and larger number of new association loci by JASS 223 

compared to the other strategies (Fig. 6A and 6B). The gain and the number of new association loci 224 

increased systematically with the clinical heterogeneity of the traits, and the increases were 225 

statistically significant for most pairs of trait selection strategies compared, especially when comparing 226 

the data-driven approach with the other approaches (P < 4.4 x 10-8 for gain and P < 6.7 x 10-7 for the 227 

number of new association loci). The average number of new association loci detected in validation 228 

data equalled 14, 20, 32, and 61 for homogeneous, low heterogeneity, high heterogeneity, and data-229 

driven sets, respectively.  230 

We further decomposed the gain of the homogenous sets by clinical groups (Fig. 6C, 6D). Two 231 

groups consistently yielded more new association loci than others, namely: ‘Circulatory and 232 

Respiratory Physiological Phenomena’ and ‘Physiological Phenomena.’ The first group was composed 233 
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of spirometry traits and asthma, characterised by a large sample size, substantial genetic correlation, 234 

and moderate heritability: a favourable setting for JASS. The second group contained anthropometric 235 

traits (Height, BMI, Hip circumference, waist circumference, and Waist hip ratio). We next investigated 236 

whether multi-trait gain was associated with specific traits and derived the fold enrichment for traits 237 

between the top 10% yielding sets (corresponding to >169 new associated loci by JASS) and the least 238 

10% yielding sets. BMI and hip circumference were amongst the top traits (Fig. S15). Notably, we 239 

found that high yielding trait sets (i.e., those that yielded 169 or more new association regions by JASS) 240 

all contained BMI. In contrast, out of the remaining trait sets, only 9% of the trait sets contained BMI. 241 

Other traits enriched in top sets included spirometry and to a lesser extend mental disorders, arterial 242 

pressure, and sleep patterns. BMI genetics is increasingly recognized to be a complex entanglement 243 

of metabolic and behavioural factors11, and suggests that complex traits that reflect multiple biologic 244 

processes may benefit more from multi-trait analysis. 245 

We additionally compared the multi-trait gain and the number of new association loci by MTAG 246 

across the four groups of trait sets. The results were rather opposite to what we observed above with 247 

JASS: MTAG gain increased as the trait sets became more homogenous (Fig. S17A, P < 1.4 x 10-7), and 248 

the number of new association loci was greater for trait sets of low heterogeneity than high 249 

heterogeneity (Fig. S17B, P = 2.7 x 10-6). We then tested whether MTAG outperforms JASS on 250 

homogenous trait sets (Fig. S17C,D) and found that there was little difference between the two 251 

(P=0.084 for gain, P=0.063 for the number of new association loci). We further tested whether MTAG 252 

outperforms JASS on homogenous trait sets of certain clinical groups (Fig. S17E,F). JASS significantly 253 

outperformed on ‘Immune System Diseases’ and ‘Psychological Phenomena’ (‘Immune System 254 

Diseases’: P = 8.2 x 10-4 for gain and P = 6.7 x 10-7 for the number of new association loci, ‘Psychological 255 

Phenomena’: P = 2.5 x 10-5 for the number of new association loci). In contrast, MTAG outperformed 256 

on ‘Musculoskeletal and Neural Physiological Phenomena’ (which contains only one trait set). 257 

While JASS type 1 error in JASS is properly calibrated, this large number of new associations could 258 

be spurious, and irrelevant to biology. To ensure that new associations detected by JASS are relevant, 259 
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we focussed on BMI and tested if we could predict novel associations observed in a larger study 260 

(sample size= 683,365 12) from multi-trait GWAS applied on the BMI study in the present analysis 261 

(sample size= 339,224 13, Table S1). Across the 1,776 sets containing BMI, JASS detected 1,167 new 262 

associations (after Bonferroni correction, Material and methods) of which 537 corresponded to a new 263 

association in the larger BMI GWAS. 86 associations of the larger GWAS were missed by JASS. Hence, 264 

JASS was able to flag loci with a high recall (0.86, probability of new association detected in the larger 265 

GWAS to be detected by JASS) but a moderate specificity (0.46, probability of a detected loci to be 266 

associated in the larger GWAS). This can be explained by the generality of the null hypothesis used in 267 

JASS which requires only one trait in the set to be significant (not necessarily BMI). To improve 268 

specificity, we fitted a logistic regression predicting if a locus would be associated with BMI in the 269 

larger GWAS by combining the number of sets where the locus was associated by JASS and the 270 

minimum P-value across sets (Fig. S16). This model reached an AUC of 0.75, an accuracy 0.74, a recall 271 

of 46% and a specificity of 75% when applying a standard probability threshold of 0.5. Based on JASS 272 

results, we were able to infer a substantial number of loci associated in a GWAS with twice as many 273 

samples as the one used in the present study. 274 

Discussion 275 

This study investigated the genetic features associated with the statistical power of multi-trait 276 

GWAS. On average, the power increase relative to the univariate GWAS was substantial: JASS detected 277 

new association loci in 98% of 19,266 sets, with an average of 26 new association loci. This power 278 

increase appears to be highly associated with the genetic features of trait sets. More specifically, 279 

multi-trait gain tends to be higher for sets with 1) a moderate mean heritability (mean ℎ#$%&
' ), 2) a 280 

smaller mean MES, 3) a larger mean polygenicity, 4) a larger genetic covariance across traits, and 5) a 281 

smaller distance between the residual and genetic covariance. Although some features, such as 282 

increased distance between genetic and residual correlation, have been previously found associated 283 

with the gain in association detection, this analysis suggests a negative or negligible gain in real data. 284 
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This might be explained by the complex correlation across features, highlighting the importance of 285 

considering multiple features jointly or by variations of genetic architecture being narrower in real 286 

data than assumed by previous simulation studies. We also found that selecting specific traits such as 287 

BMI, and more clinically heterogenous sets, specifically for the omnibus test, can strongly outperform 288 

approaches that select clinically homogenous sets. Finally, we investigated the predictive power of a 289 

multivariate linear model that could predict trait sets that most likely benefit from the multi-trait test 290 

(median Pearson’s r=0.43, P < 1.6 x 10-60), which can be used to astutely select traits to be tested 291 

jointly. Our findings provide an approach that can increase the identification of genetic associations 292 

using existing GWAS data, with relevance to traits in which genetic signal is scarce. We summarize in 293 

Figure S18 a guideline for selecting the best suited methods according to the feature of their data. 294 

Selecting clinically homogenous traits is the strategy most commonly used4,8,10,14–19. In our previous 295 

large-scale analysis8, an heterogeneous set yielded the largest number of new association as 296 

compared to clinically homogenous sets. In this work we further showed that a data-driven strategy 297 

is expected to outperform other strategies based on clinical insights. Such sets might capture highly 298 

pleiotropic signals hard to detect using univariate GWAS and recommend that investigators compose 299 

a heterogeneous set or use our predictive model to build a set of traits.  300 

We compared the results from the standard omnibus test (implemented in JASS) against MTAG, a 301 

popular multi-trait GWAS method20–23. For the data we used, the omnibus almost systematically 302 

outperformed MTAG, with an overall three-fold increase in the number of loci detected. The 303 

difference was particularly striking on larger trait sets. MTAG is built on the hypothesis of 304 

homogeneous genetic correlation across genetic variants, and therefore is expected to have maximum 305 

power when this assumption is valid. Indeed, we observed that more homogenous trait sets yielded 306 

larger MTAG gain than heterogenous trait sets (Fig. S17A,B). Yet, the omnibus generally performed 307 

equally well or better than MTAG even on the homogenous trait sets (Fig. S17C-F). In contrast, by 308 

construction, the omnibus test allows for substantial heterogeneity, although at the cost of an 309 

increase in the degree of freedom. In line with previous work suggesting that genetic correlation might 310 
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be fairly heterogenous across the genome24, this cost appears to be outweighed by the additional 311 

flexibility in capturing heterogeneous multi-trait genetic patterns8 (Supplementary notes 1, 2). Thus, 312 

the omnibus test is recommended for general identification of variants that impact phenotypes, while 313 

MTAG is suitable for identifying variants associated with specific traits (Fig. S18). 314 

Our study has some limitations. First, we focused on commonly measured genetic features, but 315 

based on these results, a number of other refined metrics could be used. These include effect size 316 

distribution as measured by the alpha parameters25. Second, we considered GWAS derived from 317 

common diseases and anthropometric traits. Future studies might explore performances using a wider 318 

variety of molecular traits, for which GWAS summary statistics are becoming increasingly available. 319 

Third, the estimation of the features might be also refined. Here, we used MiXeR26,27 to estimate most 320 

features. However, we observed a dependency of MES and polygenicity on Neff. Improving these 321 

metrics could improve the overall analysis and interpretations of the results. Fourth, we focused on 322 

European ancestry summary statistics. This decision was motivated by the availability of large GWAS 323 

and using one ancestry for linkage disequilibrium; however, by doing so, we disposed of many traits 324 

with which we could have had a wider variety of genetic features, which might have improved the 325 

performance of the predictive model. This focus should not lead the reader to think that multi-trait 326 

GWAS is useful only on large sample studies of European ancestry. We actually recently updated the 327 

JASS pipeline to run a Multi-ancestry Multi-trait GWAS, which was able to detect 367 new association 328 

loci, despite the modest sample size of the non-European cohorts used10. Future work might leverage 329 

non-European existing28 and upcoming biobanks29 to investigate the validity of our results for non-330 

European ancestries. 331 

In conclusion, this study provides a first overview of what to expect when applying multi-trait tests 332 

to a variety of data and how to maximise new discoveries. These insights can be leveraged to discover 333 

genetic variants associated with human complex traits and diseases missed by univariate analysis at 334 

no cost. Beyond mapping, JASS used on clinically heterogeneous trait sets might offer a way to 335 
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understand a shared genetic aetiology among unexpected traits30 and contribute to deeper 336 

understanding of pleiotropy. 337 
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Web resources 360 

JASS https://jass.pasteur.fr/ 361 

MeSH Browser https://meshb-prev.nlm.nih.gov/search 362 

Data and Code availability 363 

https://gitlab.pasteur.fr/statistical-genetics/jass_suite_pipeline 364 

https://gitlab.pasteur.fr/statistical-genetics/jass 365 

https://gitlab.pasteur.fr/statistical-genetics/multitrait_power_traitselection 366 

Material and Methods 367 

Database of curated summary statistics 368 

We assembled a database of 72 genome-wide GWAS summary statistics of quantitative traits and 369 

diseases conducted in European ancestry population pulled from the GWAS catalogue31 and a variety 370 

of publicly available meta-analyses. We cleaned, harmonised and imputed each study using our 371 

previously developed pipeline2. In brief, the process includes the following steps: 1) alignment of each 372 

GWAS to the 1000G GRCh37 reference panel32, 2) imputation of missing summary statistics using 373 

RAISS 33, 3) computation of the heritability, genetic and residual covariance matrices, referred further 374 

as ℎ#$%&
' , 𝚺𝒈 and 𝚺𝒓, using LD-score regression34, 4) aggregation of curated GWAS in a unique entry 375 

file used as input for JASS. We filtered all GWAS with negative heritability, resulting in a total of 72 376 

traits (Table S1). Curated GWAS summary statistics used in the analysis are available on the JASS 377 

webserver https://jass.pasteur.fr/.  378 
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Joint test and association gain  379 

Multi-trait analyses were conducted using the omnibus test implemented in the JASS package2,8. 380 

For a set of 𝑘 GWAS, the omnibus statistics is defined as 𝑇56-. = 𝐳7𝚺𝒓	𝒛 where 𝐳 is the vector of Z-381 

scores across traits 𝐳 = (𝑧1…𝑧8) and 𝚺𝒓 is the residual Z-score covariance derived using the LD-score 382 

regression. Under the null hypothesis of no association with any of the 𝑘 phenotypes, 𝑇56-.  follows a 383 

𝜒' distribution with 𝑘 degree of freedom. To maximize data usage, the default setting of JASS uses all 384 

variants even those with missing association statistics. In this case, JASS returns association P-value 385 

based on the subset of Z-scores available. In contrast, the –remove-nans option removes variants with 386 

incomplete data. Here, we used –remove-nans option as the primary analysis for a better 387 

characterisation of trait sets and for a fair comparison with the default setting of MTAG4 that do not 388 

allow for missing statistics, whereas we also provide some results from the default setting of JASS as 389 

an additional information. 390 

All power comparisons were conducted at a locus level. The entire genome was split into a total of 391 

1,703 quasi-independent loci defined based on linkage disequilibrium (LD)-independent blocks, as 392 

proposed by Berisa and Pickrell35. For both multi-trait and univariate analyses, we obtained the 393 

minimum P-value across variants in each locus. The gain of the multi-trait test was derived as the 394 

fraction of loci whose P-values were smaller than corresponding P-values in univariate GWAS 395 

corrected for the number of traits jointly analysed: 396 

𝑔𝑎𝑖𝑛 = 𝑓6(97./(-.0 =N (𝑃6(97... < 𝑃(-... ∙ 𝑘)
.

𝑅R 						(1) 397 

where 𝑅 is the number of loci (R=1,703), 𝑘 is the number of traits (the number of GWAS studies) 398 

jointly analysed, 𝑃6(97...  is the minimum P-value of the multi-trait test in region 𝑖, and 𝑃(-.0,.  is the 399 

minimum P-value of the univariate tests across all GWAS analysed in locus 𝑖. 400 

 401 
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Estimated and derived genetic features 402 

We investigated the effect of both single and multi-trait features. Single GWAS features include 403 

the effective sample size (𝑁!""), linear additive common variants heritability (ℎ#$%&
' ), polygenicity, 404 

MES, and the proportion of uncaptured linear additive common variants heritability (%h²u). Multi-trait 405 

GWAS features include the number of traits in a trait set (k), the average of the off-diagonal of genetic 406 

covariance and the residual covariance (Σ')  and Σ'* , respectively), condition numbers of genetic 407 

covariance matrix and residual covariance matrix (κ)	and κ<, respectively) across traits, and average 408 

distance between the genetic and residual correlation matrices (Δ+). All parameters were aggregated 409 

to form a vector of 11 features per trait set. For the single GWAS parameters, MES, polygenicity, 𝑁!"", 410 

ℎ#$%&
' , and %h²u, we calculated mean values across each set of traits. 411 

Polygenicity and heritability (ℎ#$%&
' ) were estimated using MiXeR26,27, with the 1000 Genomes 412 

Phase3 reference panel provided along the MiXeR package containing approximately 10 million 413 

common variants32. Following the authors recommendation, we defined the parameter for effective 414 

sample size as 𝑁!"" = 1 (1 𝑁=>?!⁄ + 1 𝑁=5-7*59?⁄ )⁄ . For comparison purposes, we also estimated 415 

h2
GWAS using the LDscore regression34, and the two metrics were consistent (Pearson 𝜌=0.86, Fig. S5). 416 

The estimated polygenicity by MiXeR showed a dependency on the GWAS sample size, with about a 417 

10-fold increase of the polygenicity for an increase of 500,000 of the sample size (Fig. S19). We 418 

therefore adjusted polygenicity by taking the residuals of linear regression between log10 polygenicity 419 

and 𝑁!"" : log12 𝑝𝑜𝑙𝑦𝑔𝑒𝑛𝑖𝑐𝑖𝑡𝑦	(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) = log12 𝑝𝑜𝑙𝑦𝑔𝑒𝑛𝑖𝑐𝑖𝑡𝑦	(𝑚𝑖𝑥𝑒𝑟) − 𝛼𝑁!"" , where 𝛼  was 420 

estimated by a linear regression log12 𝑝𝑜𝑙𝑦𝑔𝑒𝑛𝑖𝑐𝑖𝑡𝑦	(𝑚𝑖𝑥𝑒𝑟)	~	𝛼𝑁!"" + 𝜀. We obtained ‘adjusted 421 

polygenicity’ as 10[ABC!" D59E)!-.=.7E	(>HI(?7!H)]. We computed MES as L#$%&
'

D59E)!-.=.7E	(>HI(?7!H)
.  422 

The proportion of uncaptured linear additive common variants heritability (%ℎM') was derived as 423 

(ℎ#$%&
' − ℎ#$%&NL.7?

' )/ℎ#$%&
' , where ℎ#$%&NL.7?

'  denotes the heritability accounted by the 424 

univariate GWAS association loci. It was derived using the lead variants from each locus reaching 425 
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genome-wide significance (P < 5 x 10-8): ℎ#$%&NL.7?
' = ∑ 𝛽.'.∈P , where 𝛽. = 𝑧./l𝑁!"". We excluded 426 

loci with lead variant whose 𝑎𝑏𝑠(𝛽) > 0.19, because ℎ#$%&NL.7?
'  tended to become larger than ℎ#$%&

' .  427 

The mean genetic covariance and mean residual covariance were defined as the mean of the 428 

absolute value of the upper off-diagonal elements of the genetic and residual covariance matrices (𝚺𝒈 429 

and 𝚺𝒓 ), i.e. 𝜎') = ∑ 𝜎).I.,I;./I /∑ 1.,I;./I , and 𝜎'* = ∑ 𝜎*.I.,I;./I /∑ 1.,I;./I , respectively, where 430 

𝜎).Iand 𝜎*.I  are 𝑖𝑗 elements of 𝚺𝒈 and 𝚺𝒓, and k is the number of traits. The condition numbers of 431 

genetic and residual covariance matrices were computed as: 𝜅) = omaxs𝜆),.u /min	(𝜆),.), and 𝜅* =432 

	omaxs𝜆*,.u /min	(𝜆*,.)  where 𝜆),.  and 𝜆*,.  are the eigenvalues of the genetic and residual 433 

covariance matrices. We used numpy.linalg.eig36 for the eigen decomposition and assigned an infinite 434 

value to 𝜅 when the minimum eigenvalue was negative or close to zero. The average distance Δ+ was 435 

defined as the mean over the absolute values of pairwise difference between the corresponding upper 436 

off-diagonal elements in genetic and residual correlation matrices Δ+ 		=437 

	∑ v𝜌).I − 𝜌*.Iv.,I;./I ∑ 1.,I;./IR , where 𝜌).I and 𝜌*.I  indicate the 𝑖𝑗  elements in the genetic and 438 

residual correlation matrices. 439 

 440 

Assessment of features associated with multi-trait association gain 441 

The contribution of features to multi-trait gain was estimated using a five-fold cross validation. For 442 

each round of cross validation, the 72 GWAS were randomly split into a training and validation data, 443 

each including 36 GWAS. Within each cross validation, we generated 1,980 unique random trait sets, 444 

containing 2 to 12 traits, for each of the training and validation data: random sampling out of the 36 445 

traits (660 sets generated), random sampling out of traits with common SNP heritability below median 446 

(330 sets) and above median (330 sets); random sampling out of traits with MES below median (330 447 

sets) and above median (330 sets). For this stratification of traits by the median of MES, we used 448 

polygenicity / ℎ#$%&
'  estimated by MiXeR without adjusting for the effective sample size. For each set, 449 
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we ran JASS and derived the 11 features of interest (𝐹. , 𝑖 = 1,… , 11)  and the multi-trait gain. We used 450 

19,793 trait sets out of the total 19,800 (=1,980 x 2 x 5) sampled for which the whole analysis process 451 

completed without error. Errors include cases where there was no association detected by both the 452 

univariate and joint tests. 453 

Moving to the multivariate regression analysis, we selected six out of the 11 features based on 454 

collinearity analysis (as described below). The six features and the multi-trait gain were standardised 455 

into a range between 0 and 1 using MinMaxScaler in scikit-learn37. This standardisation was applied at 456 

once on the entire dataset including training and validation data across the five-fold cross validation 457 

sets. 458 

 We used the training data to estimate the joint effect 𝛿y.  of each feature i from a multiple 459 

regression: 𝑔𝑎𝑖𝑛7*>.-~	∑ 𝛿. 	𝐹7*>.-,.. . This was conducted using the OLS function in statsmodels in 460 

Python38. We report Pearson’s correlation coefficient as a metric of predictive power. 	461 

	462 

Collinearity and selection of features 463 

We observed collinearity among some of the 11 features of traits across 19,266 unique trait sets. 464 

Log10 𝜅* , log10 𝜅) , log10 Σ'* , and the number of traits were highly correlated (Pearson 𝜌  > 0.65). 465 

Likewise, mean %h2
u, mean log10MES, and mean log10polygenicity were highly correlated (abs(𝜌) > 466 

0.8). These correlated features capture redundant characteristics of traits. Thus, we selected one out 467 

of each correlated features: the number of traits and mean %h2
u. We chose the number of traits 468 

because it had the smallest P-value in a multivariate linear regression with all the features included, 469 

where inf values in condition number were replaced with their non-inf max value. We chose 470 

mean(%h2
u) because it captures both mean(log10MES) (𝜌=-0.90) and mean(log10polygenicity) (𝜌=0.84). 471 

The estimation of mean(%h2
u) is also more straightforward than mean(log10MES) and 472 

mean(log10polygenicity). After this pre-selection, we built models with the remaining six features as 473 

described in the previous section. 474 
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Non-linear models 475 

We considered two alternative non-linear models for prediction purposes: support vector 476 

regression (SVR), and random forest regression (RFR). SVR and RFR are regression approaches that 477 

allow for non-linear relationships. SVR’s goal is to find a hyperplane (or line, in the case of two-478 

dimensional data) that best fits the data. It is effective at handling non-linear and complex data by 479 

using the kernel trick—mapping data with a kernel function into a higher-dimensional space where it 480 

is easier to find the best-fit hyperplane. SVR also penalises the complexity of the model and gives the 481 

flexibility in how much error is acceptable. Random forest regression performs a regression using 482 

decision trees. It generates multiple trees, fits each to a random subset of training data, and averages 483 

the predictions across trees as the final prediction. While the random sampling and averaging 484 

supposedly makes the model robust to outliers, RFR’s performance relies on a high quality of training 485 

data; the training data needs to cover a wide range as RFR does not work well for extrapolation, and 486 

RFR leads to biased predictions when the training data is sampled in a biased way39. In contrast, SVR 487 

is suggested to be capable of extrapolation40. We used the scikit-learn37 python implementation of 488 

RFR and of the SVR. We fitted SVR and RFR models to the 𝑔𝑎𝑖𝑛7*>.-  including hyperparameters. 489 

Hyperparameters were tuned using RandomizedSearchCV in scikit-lean across the following range: 490 

SVR’s kernel=[linear, rbf, sigmoid, poly], C=[1,10,50,100], epsilon=[10-3,10-2,10-1,1], degree=[2,3,4], 491 

and RFR’s n_estimators=[5,20,50,100], max_features=[‘auto’,’sqrt’], max_depth=[12 values ranging 492 

from 2 to 100], min_samples_split=[2,5,10], min_samples_leaf=[1,2,4], bootstrap=[True, False].    493 

 494 

MTAG analyses 495 

For comparison purposes, we repeated the multi-trait test and the prediction analyses with the 496 

MTAG approach4. MTAG uses a weighted sum of Z-score (Supplementary note 1). Trait weights are 497 

derived using the generalised method of moments, as (𝛽yI𝛽yIR − 𝛺 − 𝛴I) = 0 , where 𝛺 is the genetic 498 

covariance matrix to be estimated for the weights, and 𝛴I  is the genetic covariance matrix estimated 499 
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using the LD score regressions by Bulik-Sullivan et al34. The model assumes that the genetic covariance 500 

matrix is homogenous across variants. We used MTAG with its default setting, which considered only 501 

complete cases. We ran MTAG for the same trait sets used for the analysis with JASS (all data used in 502 

the five-fold cross validation). MTAG outputs P-values for each trait in each trait set, whereas JASS 503 

gives a single P-value for a trait set. To account for the number of tests run by MTAG for one set, we 504 

obtained minimum P-values by MTAG across traits and variants in each locus and multiplied the 505 

minimum P-values by the number of traits in the set. For the comparison of the association gain 506 

between MTAG and JASS, we used both the minimum P-values with and without multiple test 507 

correction (Fig. 5, and Fig. S14).  508 

 509 

Comparison of strategies for trait selection. 510 

To compare the performances of trait selection strategies, we classified the 19,266 unique sets into 511 

clinically homogenous, low heterogeneity, high heterogeneity, or high predicted gain according to our 512 

predictive model. To assess clinical homogeneity, we first classified the 72 traits into clinical groups 513 

using the broadest categories in the MeSH Tree Structures41. The grouping was further refined based 514 

on clinician’s insights (Table S1). We labeled each set of traits as ‘homogeneous’ if all the traits are in 515 

the same clinical group, ‘low heterogeneity’ if trait belonged to two to four clinical groups, ‘high 516 

heterogeneity’ if traits spanned five or more clinical groups. For the ‘data-driven’ method, we selected 517 

100 sets of traits by CV fold that had the largest gains predicted by the linear model with aggregated 518 

coefficients across CV folds (Table 1). We used the Welch’s t-test to evaluate the differences in gain 519 

and the number of new associated loci. We used a two-sided Welch’s t-tests to determine whether 520 

the data driven method achieves a greater association gain than other methods, and whether jointly 521 

analysing clinically heterogenous traits achieves a greater association gain than jointly analysing 522 

clinically homogenous traits. For this test, we used a pair of training data and validation data that are 523 

mutually exclusive to ensure independence. 524 
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 525 

Evaluation of the relevance of new association 526 

To evaluate the relevance of new associations detected by JASS (i.e. if most of them were true 527 

positive), we attempted to predict loci discovered in a recent large meta-analysis on BMI (sample size 528 

of 683,365 on average across ~2.3 million variants12) from the results of multi-trait GWAS applied on 529 

1,776 trait sets containing a smaller study of BMI (sample size of 339,224, Table S1). First, we 530 

compared loci detected by JASS (after a Bonferroni correction to account for the number of sets) and 531 

in the larger GWAS using the standard genome wide significance threshold of 5 x 10-8. Second, we 532 

fitted a logistic regression to predict associated loci in the larger GWAS by combining JASS P-value and 533 

the number of sets where the loci was considered associated with JASS. We use odd number 534 

chromosomes to fit the logistic regression and evaluated its performances on even number 535 

chromosomes.  536 

 537 
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Tables and Figures  668 

Table 1. Coefficients of the multivariate linear regression models from five-fold cross 669 

validations. Mean genetic residual distance and mean genetic covariance were log10 670 

transformed. All the features were scaled using MinMaxScaler in scikit-learn37. 671 

 CV1 CV2 CV3 CV4 CV5 Mean 

# of traits 0.096  

(p= 3.447x10-44) 
0.077  

(p= 1.592x10-17) 
0.082  

(p= 1.638x10-44) 
0.049  

(p= 6.148x10-8) 
0.083  

(p= 3.071x10-19) 
0.077 

(std=0.017) 

Mean log10 ∆! -0.787  

(p= 8.338x10-29) 
-0.536  

(p= 8.338x10-29) 
-0.393  

(p= 2.242x10-10) 
-1.174  

(p= 1.086x10-26) 
-0.610  

(p= 1.947x10-09) 
-0.700 

(std=0.301) 

Mean log10 Σ#" 0.767  

(p= 3.813x10-45) 
0.789  

(p= 2.055x10-20) 
0.355  

(p= 5.990x10-15) 
1.149  

(p= 1.604x10-56) 
0.675  

(p= 5.636x10-21) 
0.747 

(std=0.284) 

Mean Neff 0.206  

(p= 4.342x10-15) 
-0.016  

(p= 0.554) 

-0.071  

(p= 0.003) 
0.260  

(p= 1.099x10-10) 
-0.015  

(p= 0.598) 
0.073 

(std=0.149) 

Mean h2
GWAS -0.509  

(p= 2.937x10-96) 
-0.437  

(p= 1.455x10-34) 
-0.518  

(p= 2.216x10-111) 
-0.690  

(p= 6.670x10-79) 
-0.429  

(p= 2.225x10-26) 
-0.516 

(std=0.105) 

Mean %h2
u 0.112  

(p= 5.158x10-6) 
0.370  

(p= 4.353x10-35) 
0.091  

(p= 3.877x10-10) 
0.277  

(p= 3.022x10-33) 
-0.064  

(p= 0.002) 
0.157 

(std=0.169) 
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Figure 1. Study overview  673 

We conducted a power analysis on real data to understand in which setting a standard multi-trait 674 

test—the omnibus test—outperforms univariate GWAS. A) To assemble our real data, we curated 72 675 

GWAS summary statistics and formed about 20k sets of traits by random sampling. Each set of traits 676 

was characterised by assessing key genetic features such as polygenicity, mean effect size (MES), and 677 

heritability. (B) For each set of traits, we ran omnibus test using JASS and computed the association 678 

gain compared to the univariate test. We defined this association gain as the number of LD-679 

independent loci where the omnibus yields a smaller P-value than the univariate test. We repeated 680 

the analysis using MTAG, a popular multi-trait approach. (C) To investigate which genetic features 681 

(highlighted in A) explain the JASS (omnibus) association gain, we applied statistical models to predict 682 

the gain as a function of genetic features. Several models were benchmarked to optimise prediction 683 

performances. (D) To suggest a practical strategy for selecting traits that yield a large association gain, 684 

we compared the performance of JASS on trait sets that are clinically similar, clinically heterogenous, 685 

and that were predicted to have a large gain by the predictive model highlighted in (C). 686 
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Figure 2. Genetic features characteristics derived from 72 traits and 19,266 random trait 688 

sets. 689 

Visualization of the investigated features and their relation at the level of individual trait (panels A, C, 690 

and E) and at the level of set of traits (panels B, D, and F). A) Schematic of a genetic feature derived at 691 

the level of an individual trait. B) Schematic of a genetic feature derived at the level of a set of traits. 692 

C) Violin plots representing the distribution across the 72 summary statistics of heritability, 693 

polygenicity, MES and sample size of the study. D) Violin plots representing the distribution across the 694 

19,266 sets of traits of the 11 genetic features derived for each trait set. E) Pearson correlation among 695 

polygenicity, MES, h2
GWAS, %h2

u, and sample size across 72 traits. F) Pearson correlation among the 11 696 

features across 19,266 trait sets. (q-value annotation: *** < 10-3, ** <10-2,*< 5x10-2) 697 
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Figure 3. Determinant of JASS gain across trait sets.  699 

A) Illustration of the three metrics to assess univariate and multi-trait GWAS outcomes. On a quadrant 700 

plot representing the P-value of the multi-trait test with respect to the P-value of the univariate test, 701 

the following areas represent regions where: (green) only the univariate test is significant, (pink) only 702 

the multi-trait test is significant, (purple) the multi-trait test is more significant than the univariate 703 

test. B) Heatmap of the Pearson correlation between the number of univariate association loci, the 704 

number of new association loci detected by JASS, the association gain of JASS (fJASS<univ) and the 11 705 

genetic features across 19,266 trait sets. 706 
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Figure 4. Model prediction power and feature contributions. (A) Boxplots of the prediction 708 

power across the five-fold cross validations (CV) of the multivariate linear regression model 709 

measured as the Pearson’s correlation coefficient between the predicted and observed gain. 710 

The performance of each CV is represented as a coloured dot. Orange dashed line: median 711 

correlation coefficient between the predicted and observed gain in the validation data. (B, C) 712 

The boxplots show the coefficients and -log10(P-values) of the six features in the regression 713 

model across five-fold cross validations using each corresponding training data. Red dashed 714 

line: Bonferroni corrected nominal significance threshold.  715 
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Figure 5. Comparison of MTAG with JASS. A) The number of new association loci found by 718 

JASS with respect to the number of new association loci found MTAG across all the trait sets. 719 

Each dot represents a set of traits. Dot colours represent the number of traits in the set. B) 720 

Fraction of sets where the number of new association loci detected by JASS was superior to 721 

the number of associations detected by MTAG stratified by the number of traits in the set. 722 
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Figure 6. Comparison between clinical and data-driven trait sampling methods. (A, B) 724 

Distribution of the gain and the number of new association loci for trait sets selected by four 725 

trait selection strategies from the validation data. P-values are from the two-sided Welch’s t-726 

test. Differences in mean values in each pair compared in the test (right – left categories in 727 

the order shown on the x-axis) are also shown. Note we used a pair of a training data and a 728 

validation data to ensure independence for the test.  The numbers under the labels on the x-729 

axis indicate the number of trait sets from each strategy. The observed JASS gain and the 730 

number of new association loci are shown on the y-axis. (C,D) The observed gain and number 731 

of new association loci detected for trait sets of the ‘homogenous’ category, visualised per 732 

clinical grouping.  733 

  734 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2023. ; https://doi.org/10.1101/2023.10.27.564319doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.27.564319
http://creativecommons.org/licenses/by-nc-nd/4.0/

