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Abstract

Most deleterious variants are recessive and segregate at relatively low frequency. Therefore, high sample sizes
are required to identify these variants. In this study we report a large-scale sequence based genome-wide
association study (GWAS) in pigs, with a total of 120,000 Large White and 80,000 Synthetic breed animals
imputed to sequence using a reference population of approximately 1,100 whole genome sequenced pigs. We
imputed over 20 million variants with high accuracies (R?>0.9) even for low frequency variants (1-5% minor
allele frequency). This sequence-based analysis revealed a total of 13 additive and 8 non-additive significant
quantitative trait loci (QTLs) for growth rate and backfat thickness. With the non-additive (recessive) model,
we identified a deleterious missense SNP in the CDHR2 gene reducing growth rate and backfat in homozygous
Large White animals. For the Synthetic breed, we revealed a QTL on chromosome 15 with a frameshift variant
in the OBSL1 gene. This QTL has a major impact on both growth rate and backfat, resembling human 3M-
syndrome 2 which is related to the same gene. With the additive model, we confirmed known QTLs on
chromosomes 1 and 5 for both breeds, including variants in the MC4R and CCND2 genes. On chromosome 1,
we disentangled a complex QTL region with multiple variants affecting both traits, harboring 4 independent
QTLs in the span of 5 Mb. Together we present a large scale sequence-based association study that provides a
key resource to scan for novel variants at high resolution for breeding and to further reduce the frequency of

deleterious alleles at an early stage in the breeding program.
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Author Summary

In this study we investigated the effect of over 20 million genetic variants on the growth rate and backfat
thickness of approximately 140,000 pigs across two commercial breeds, with specific focus on recessive harmful
variation. We identified 14 regions with a significant additive effect and 8 regions with a significant recessive
effect on these traits. By looking at recessive effects we identified several rare deleterious variants with high
impacts on animal fitness. These include a deletion on chromosome 15 in the OBSL1 gene, which leads to a
growth reduction of 100 grams a day on average. Interestingly, loss-of-function mutations in OBSL1 are
associated with short stature in humans. Looking at additive effects with this high-resolution dataset allowed us
to gain more insight into the locus around the MC4R gene on chromosome 1. Here we found a small complex
region containing several independent variants affecting both growth rate and backfat. With this study we have
shown that by using several gene models and a large dataset, we can identify novel genetic variants at high
resolution (<0.01 frequency) with significant impact on animal fitness and production. These results can help us

in further eradicating deleterious genetic variants from pig populations.
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74 Introduction

75 In livestock, genomic selection has accelerated genetic gain due to its major impact on increasing the accuracy
76 of breeding value estimation at a young age and reducing the generation interval [1]. Genomic selection, while
77 boosting desirable trait improvement, can inadvertently exacerbate the frequency of deleterious alleles. By
78 favoring individuals with superior trait-associated genetic markers, carriers of rare recessive deleterious alleles
79 can be unknowingly propagated in breeding populations, potentially leading to the expression of harmful
80 phenotypes in subsequent generations and compromising overall genetic health [2]. Balancing accelerated
81 genetic gain with the need to mitigate the accumulation of deleterious alleles becomes a critical consideration

82 in sustainable breeding strategies.

83 Deleterious recessive alleles can remain hidden because the harmful effects are only present in a homozygous
84 state, and their impact may not be fully captured by traditional additive genetic models [2]. Especially for low
85 frequency alleles, a large study population is crucial for identifying deleterious recessive alleles because the
86 number of homozygous animals for the minor allele is small. In addition, imputing to sequence is essential for
87 identifying deleterious alleles as it extends the scope of genetic analysis beyond genotyped variants, enabling
88 the discovery of rare and non-genotyped variants associated with deleterious effects [3]. Imputation is a method
89 that allows for predicting the genotypes of organisms at a higher density, based on a reference population of
90 which this higher density data is already available [4]. In commercial pig populations, imputation with good
91 accuracies is possible because there is a limited set of haplotypes segregating [5]. By performing imputation, we
92 accurately predict the large majority of genetic variation within populations as long as a sufficiently large
93 reference population is available. With whole genome sequencing (WGS) becoming more accessible and
94 affordable, it is now possible to obtain reference populations allowing for performing imputation up to whole
95 genome sequence level with high accuracies. Imputation to sequence is not only useful to fine map QTL regions,
96 but also to identify novel deleterious alleles affecting the fitness of animals by focusing on non-additive effects.
97 This can be done by performing genome-wide association studies (GWAS) using different models [6]. Previous
98 studies have identified non-additive (recessive) effects, mainly by focusing on depletion of homozygotes [7] [8].
99 This method allows for identifying recessive variants with lethal effects, but not recessive variants decreasing

100 fitness without leading to death.
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101 By performing GWAS, we can test the association between SNPs and phenotypic records of traits of interest,
102 which allows us to identify quantitative trait loci (QTLs). Several models can be used for GWAS, with the additive
103 model being most commonly used [9]. An additive GWAS model assumes that the effects of different alleles on
104 the trait are cumulative and can be estimated linearly based on the number of alleles present. However, this
105 model can fail to pick up non-additive genetic variation, such as recessive and dominance effects. Recessive
106 effects are especially of interest when trying to identify deleterious variants [2]. To identify SNPs with recessive
107 effects, we can use a non-additive model. Recently several novel deleterious (coding) variants were identified in

108 cattle using a non-additive GWAS on imputed sequence of >100,000 individuals [10].

109 In this study, we performed imputation to sequence of 120,000 pigs of a Large White sow breed and 80,000 pigs
110 of a Synthetic boar breed. We performed GWAS on this imputed sequence data using both an additive and a
111 non-additive (recessive) model for the production traits growth rate (GR) and backfat (BF). Using the non-
112 additive model, we identified novel low frequent deleterious alleles affecting our traits of interest including loss-

113 of-function mutations that can be purged from the population.

114
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Results

Imputation to sequence

The dataset consists of 120,147 Large White and 81,250 Synthetic animals genotyped on medium density SNP
panels (25K/50K). These animals were first imputed to 660K density with a reference population of 3500 animals.
Subsequently, the imputed 660K genotypes were imputed to whole genome sequence level, with a reference
population of 1069 animals (S1 Figure). We filtered the results to only include variants with an allele count of at
least 100. This gave us a total of 28,190,307 variants for Large White and 24,124,813 variants for Synthetic. The
majority of these variants were SNPs (Table 1). For SNPs with MAFs above 1-2% we were able to obtain very

good imputation accuracies (R? > 0.9), and even for half of the SNPs below 1% frequency we obtained accuracies

of R?> 0.5 (Fig 1).

Table 1: Number of variants imputed to sequence split by variant type and MAF.

Large White Synthetic

SNPs Indels SNPs Indels
Total 22,840,678 5,349,629 19,398,280 4,726,533
< 1% MAF 4,329,777 600,075 4,496,085 641,335
< 5% MAF 8,109,989 1,472,040 7,510,302 1,400,929

MAF, minor allele frequency; SNP, single nucleotide polymorphism; Indel, insertion / deletion.

i )

Breed
I Large White
0.0 = == [ Synthetic

T T T T T T
0-1% 1-2% 2-5% 5-10% 10-25% 25-50%
MAF

Fig 1: Imputation accuracies (R2) of all SNPs grouped by Minor Allele Frequency (MAF)
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Additive and non-additive sequence-based GWAS on growth rate and backfat

We performed both an additive and non-additive (recessive) GWAS on growth rate and backfat thickness in the
Large White (Fig 2 A-B) and Synthetic breed (Fig 2 C-D) using the imputed sequence data. For Large White, we
used 67K phenotypes for growth rate and 72K for backfat. For the Synthetic breed, we used 74K phenotypes for
both traits. From the results, we observe a large number of QTLs with distinct QTLs for additive and non-additive
effects. Across traits and breeds, we find a total of 14 additive and 8 non-additive QTLs, using a significance
threshold of p-value < 1E-10 (Fig 3). For each QTL, we examined the top SNPs and their associated effects on
genes using Ensembl VEP [11], SIFT scores [12] and pCADD scores [13], and we assessed the impact these QTLs

have on the phenotypes (Fig 4, S2 Table). We managed to identify potential causal variants for some of these

effects.
o A GR 0, € GR
50 50
121MB
0 40 2
_ 79MB - i
% % i
g 30 § 30 )
7 159MB T 55MB
: 66MB
20 ' 30MB 20
{ 60MB - 146MB S 24l\|a15 50MB 161MB 63MB |
i | . |/ 66MB )
1 2 3 4 5 6 T B 9 0112 3 14 15 16 1718 1 2 3 4 5 6 7 8 9 011 12 13 14 15 16 17 18
Chromosome Chromosome
B BF D BF 35MB 10MB*
6 L 121MB*
0 66MB 0 104MB—;
» 2MB 10MB ® l
g g :
H i £oMB )
3 3 114MB 25MB, :
" . . .78MB

1 2 3 4 5 6 7 8 9 wur B3 ¥15 161718
Chromosome

Fig 2: Additive (red) and recessive (blue) Manhattan plots for growth rate (GR) and backfat (BF). For peaks with a p-value
significance below 1E-10 (green line) the genomic location is shown. QTLs only supported by a single significant SNP are
neglected. A) Large White growth rate B) Large White backfat C) Synthetic growth rate D) Synthetic backfat. *The 121MB

and 10MB peaks have top SNPs with p-values of 6,91E-154 and 1,63E-135 respectively.
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159 Fig 3: Number of significant GWAS QTLs overlapping between breeds and traits.
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161 Fig 4: Phenotypic effect sizes of top SNPs from the significant QTLs
162 QTLs with phenotypic effects < 0.1 standard deviations are excluded. Square size indicates significance (bigger square is

163 lower p-value, ranging from 1E-10 to 1E-50+).
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164 Non-additive GWAS identifies loss-of-function variants associated with poor

165 performance in homozygous individuals

166  Non-additive effect on chromosome 2 shows decrease in growth rate and backfat in Large

167  White

168 We find a very significant non-additive QTL on chromosome 2 for both growth rate and backfat. The QTL is
169 located around 79Mb with MAFs of 10%. The SNPs in this QTL show a negative impact on growth and backfat in
170 homozygous individuals, and a negligible effect in heterozygous individuals. Homozygous animals grow on
171 average 20 grams a day less (0.24 SDs) and have 0.7mm less backfat (0.47 SDs). The top SNP for growth is located
172 at 79,261,674bp and the top SNP for backfat is located at 79,236,726bp. Both SNPs are also present very
173 significantly in the other traits’ GWAS. The QTLs consist mostly of intron variants of ADAMTS2 (A Disintegrin-Like
174 and Metalloproteinase with Thrombospondin Type 1 Motif 2). Interestingly, the QTL comprises a deleterious
175 missense SNP (pCADD: 22.6, SIFT: 0) in the CDHR2 (Cadherin-Related Family Member 2) gene at 81,336,954bp,

176 known to affect body size in knockout mice [14].

177  Stop gain SNP in ANKRD55 affects backfat levels in both Large White and Synthetic breeds

178 For backfat we find a very significant non-additive QTL on chromosome 16 that segregates in both breeds. The
179 SNPs in the QTL have a MAF of around 10% in Large White and 19% in the Synthetic breed. The top SNP for the
180 Synthetic breed and also a very significant SNP in the Large White GWAS is a stop gain SNP in the ANKRD55
181 (ankyrin repeat domain 55) gene, located at 35,245,909bp. Homozygous animals show increased backfat levels,
182 whereas heterozygous animals show some decrease in backfat. Homozygous animals have 0.29mm (0.17 SDs)
183 more backfat in the Large White breed and 0.18mm (0.13 SDs) more backfat in the Synthetic breed.

184 Heterozygous animals show 0.11mm less backfat in both breeds.

185  Missense SNP in MPIG6B decreases growth rate in the Synthetic breed

186 In the Synthetic breed, we observe a non-additive QTL on chromosome 7. Homozygous animals show a decrease
187 in growth of 30 grams a day (0.2 SDs). The fourth most significant SNP in this QTL is a deleterious missense SNP
188 (pCADD: 24.4, SIFT: 0.01) in MPIG6B (Megakaryocyte And Platelet Inhibitory Receptor G6b). The SNP is located

189 at 23,835,601bp with a MAF of 28%.
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190  Frameshift variant in OBSL1 strongly affects growth rate and backfat the Synthetic breed

191 In the Synthetic breed, we identified a very significant QTL for both growth rate and backfat on chromosome 15.
192 The top SNP is the same for both traits (121,500,039bp) and has a MAF of 5%. Homozygous animals show very
193 poor growth and highly elevated levels of backfat, growing on average around 100 grams a day less (-1.08 SDs)
194 and showing an increase in backfat of 2.2mm (2.24 SDs) compared to non-homozygotes. We identified the most
195 likely causal mutation to be a frameshift variant located at 121,576,506bp, in high LD with the top SNP from the
196  GWAS (R*=0.95). The frameshift is caused by a 5bp deletion in the 5" exon of the OBSL1 (Obscurin Like
197 Cytoskeletal Adaptor 1) gene (Fig 5 [15]). This induces a premature stop-codon in the 6™ exon. To validate the
198 presence of the 5bp deletion we genotyped 31 pigs from three litters where the sow was carrier of the deletion
199 (using a dye-labeled primer). We confirmed the presence of the deletion and confirmed 15 carriers using this

200 test (Table S3).

< OBSL1-203 - ENSSSCT00000058924
protein coding
0—a4tis—4 8 58 sEE- 85— 8B B B SEIE—_—E
< OBSL1-202 - ENSSSCT00000056125
protein coding
NN  —SNaE .
< 0BSL1-201 - ENSSSCT00000067285
protein coding
121.56Mb 121.57Mb 121.58Mb
B Wildtype ...CGGGAAGAAGAGGTGTGCCATGGCGTCCCGGEE...
Affected ..CGGGAAGAAGAGGTG————— TGGCGTCCCGGGG...
c Exon 6 Exon 5
Wildtype | <- ..CTLVVRESTTFTLSVKDQPSLIHVPSE---QITLAASDQVGPCSFGVLAGSDQHKVAQLILRHQLGKKEYV | RYRLAG...
Affected <- *LDAGGEGLDHLDVVGQGPPEPHAGPE---PHHPRSLGARRPLQLRGPGRQGPAQCSAPHTQAAPGEEGC | RYRLAG...

201

202 Fig 5: Genomic overview of the OBSL1 frameshift variant

203 A) OBSL1 gene model adapted from Ensembl 110, exon 5 affected by the frameshift highlighted in blue. B) DNA sequence

204 alignment showing the 5bp deletion causing a frameshift in affected animals. C) Protein alignhment showing the frameshift
205 inducing a premature stop-codon on exon 6.
206
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207 Additive GWAS identifies known, novel, and complex QTLs with varying effects

208 on performance

209  Additive model shows expected QTLs on chromosomes 1 and 5 in Large White and Synthetic

210 breed

211 In the additive GWAS results we find two QTLs that we consistently observe when performing GWAS on these
212 traits. One is located on chromosome 1 where we find a missense SNP in the MC4R (melanocortin 4 receptor)
213 gene located at 160,773,437bp. This missense SNP has been described before, animals with the major allele (G)
214 show less backfat while animals with the minor allele (A) show faster growth [16], hence the QTL showing up for
215 both traits. On chromosome 5, we find a QTL especially significant for backfat. The top SNP of this QTL is an
216 intron variant of the CCND2 (cyclin D2) gene affecting gene expression, located at 66,103,958bp. The G allele for

217 this SNP has been reported earlier to increase backfat [16].

218  Low frequent additive QTL on chromosome 2 strongly affects backfat in Large White

219 At the start of chromosome 2, we find a very significant novel QTL for backfat with SNPs located from 17Kb to
220 2.3Mb. These SNPs are very low frequent with MAFs between 0.4%-0.5%. Despite the low frequency, the SNPs
221 in the QTL have high imputation accuracies (R?>0.9). Heterozygous animals on average have an increased backfat

222 thickness of around 0.7mm (0.43 SDs). Due to the very low frequency of these variants, our dataset only includes
223 3 homozygous animals, of which 2 show an increase in backfat of over 2.3mm (1.36 SDs). The QTL is located in
224 a region encompassing different genes including NADSYN1 (NAD synthetase 1), INS (Insulin) and IGF2 (Insulin
225 like growth factor Il). Both INS and IGF2 play a role in glucose regulation and affect lipid metabolism, making
226 them interesting candidate genes for the phenotypic effects we observe in this QTL. Another significant SNP

227 present in the QTL is a missense SNP in ANO9, (anoctamin 9) located at 245,676bp with a pCADD score of 21.78.
228
229

230
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Small complex region on chromosome 1 contains several independent variants affecting
growth rate and backfat

On chromosome 1 we find a very complex region located from approximately 150-165Mb (Fig 6). This region is
present for both traits and both breeds, but most effects and highest significances are observed for growth rate
in Large White. In the Synthetic breed we find only a single significant SNP for backfat (Fig 6 D)I, which is also

present in the other breed and trait.

Large White Synthetic
GR BF GR BF
30 4 30 1 30 q 30 -
25 254 254
20 204 20 4
T = 160ME = T
-—2- -2- 150MB .° 161 E 161IME E IE:]MB
g g 15 |: g 15 A 15008, ) 162M8 3 15
| I L ] |
10 10 4
5 54
0- 0-
1 1 1 1
140MB 170MB 140MB 170MB 140MB 170MB 140MB 170MB
A B Cc D

Fig 6: Manhattan plots of region on chromosome 1 showing several QTLs for growth rate (GR) and backfat (BF).

In this region we find 5 independent QTLs within this span of 15Mb, of which 3 within a 3Mb span. Within some
of the QTLs, we find SNPs with different and opposing effects. The majority of the top SNPs of the different QTLs
and effects are not in linkage disequilibrium (LD) (Table 2), indicating that these are mostly independently

segregating haplotypes.

11


https://doi.org/10.1101/2023.10.26.564309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.564309; this version posted October 31, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

248
249 Table 2: LD within the QTL rich 15MB region on chromosome 1 in Large White.
LD (R?) /SNP | 150364747

150364747 1| 154978577

154978577 | 0.216699 1 | 159788889

159788889 | 0.207151 0.0420421 1| 159821786

159821786 | 0.0492199 | 0.00678435 | 0.280964 1 159869511

159869511 | 0.104494 0.495845 0.0342459 | 0.00947161 1| 160883673

160883673 | 0.166053 0.696078 0.0550575 | 0.0154966 | 0.48608 1 | 162020747

162020747 | 0.194158 0.0348452 | 0.726328 0.237485 0.0274089 0.0538396 1| 162062651

162062651 | 0.0639927 | 0.00931752 | 0.202506 0.677308 0.0112798 0.0187777 | 0.339906 1 | 164838503

164838503 | 0.0195427 | 0.157152 0.0581801 | 0.00639335 | 0.0786844 0.219678 0.042347 0.00143272 1

164909824 | 0.0425097 | 0.00175518 | 0.147268 0.00425724 | 0.000552646 | 0.00572898 | 0.131389 0.0052275 0.146082
250 . ) I .

LD, Linkage Disequilibrium; Cell shading; orange: RZ = 0.40-0.60, yellow: R2 = 0.60-0.70, green: R2 > 0.70

251
252 The QTLs at 150 and 154Mb in Large White both consist of only intergenic variants with allele frequencies
253 ranging from 30-35%. One of the positive effects we observe in the 3Mb span from 159-162Mb is due to a
254 missense SNP in the MC4R gene. This effect is represented by the top SNP at 160Mb in figure 5, which is in high
255 LD with the MC4R missense SNP. The SNP in the QTL at 160Mb for backfat, as well as the QTLs for both traits at
256 160Mb in Synthetic also show LD with the MC4R missense SNP.
257 The top SNP for growth rate in Large White for this whole region is located at 159,788,889bp with a MAF of 10%
258 and a negative effect on growth. This SNP and the variants that are in LD are all intergenic variants, located near
259 the CDH20 (cadherin 20) gene. We also find significant intron variants of CDH20, however, some of these SNPs
260 have a frequency of 23% and a positive effect on growth, while others have a frequency of 3% and a negative
261 effect on growth. The top SNP of 23% MAF is located at 159,869,511bp and the top SNP of 3% MAF is located at
262 159,821,786bp. The same locus around the CDH20 gene shows up in the Synthetic breed.
263 We looked at gene expression in this region in liver, muscle, spleen and lung. We found several SNPs between
264 159 and 161Mb to significantly affect the expression of the PYGL (glycogen phosphorylase L) gene, located at
265 180Mb on the same chromosome 1, an allosteric enzyme that catalyzes the rate-limiting step in glycogen
266 catabolism [17].
267
268
269
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270 Discussion

271 In this study, we performed sequence based GWAS on a large scale with both an additive and non-additive
272 model, allowing us to identify novel and low frequent deleterious variants. By using a non-additive (recessive)
273 model, we identified completely novel QTLs compared to the additive model, which are in most cases extremely
274 significant due to their deleterious nature. As these recessive deleterious variants tend to be present with low
275 allele frequencies, it is essential to have large datasets when attempting to identify them through GWAS.
276 Especially when using WGS data, this leads to very computationally intense analyses. We experienced mainly
277 the high number of phenotypes to be a bottleneck for memory usage, as the genome can be split up in segments
278 to run parallel analysis. The computational limitations are naturally very dependent on the type of software used
279 and the available computing infrastructure. In our situation, we found a number of around 75,000 phenotypes
280 to be the maximum. This number is sufficient when mainly focusing on SNPs with MAFs above 1%, which was
281 the case in this study due to imputation accuracies. If in the future we would be able to accurately impute even
282 lower frequent SNPs with high accuracy, new methods would be needed to include a larger number of

283 phenotypes for GWAS.

284 We observed a total of 22 QTLs across the two traits and breeds, of which most will require further research to
285 proof the causal variants and the biological mechanism. However, for some of the QTLs we identified potential
286 causal variants causing a loss of function and therefore expected to impair gene function. We found some of

287 these variants to cause very poor performance and therefore proving very interesting candidates for selection.

288 One of these variants is located on chromosome 2, where we observed a QTL in the non-additive GWAS, leading
289 to a reduction in both growth rate and backfat. The most significant SNPs in this QTL are mainly intron variants
290 of ADAMTS2. We do not observe any deleterious variants in this gene specifically. Inactivation of ADAMTS2 has
291 been associated with Ehlers-Danlos syndrome, a disorder affecting collagen formation and function [18].
292 Affected individuals suffer from hypermobile joints and flexible, fragile skin [19]. There are several mutations
293 known in several genes that can lead to development of this disorder. Though not a very common symptom,
294 short stature has been observed in some patients with Ehlers-Danlos syndrome [20]. The syndrome has been
295 observed in domestic animals including sheep and cattle, but not yet in pigs. Affected animals also display the

296 loose and fragile skin phenotype [21]. If the decreased growth we observe in pigs homozygous for this region

13


https://doi.org/10.1101/2023.10.26.564309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.564309; this version posted October 31, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

297 were to be caused by a similar syndrome, we would expect to observe similar phenotypes. This would require
298 further observation of homozygous animals. For now, since we do not observe deleterious variants in ADAMTS2
299 and are not aware of additional symptoms indicating Ehler-Danlos syndrome in these animals, we do not
300 consider this disorder to likely be the cause of the reduced growth. Another significant SNP in this QTL, though
301 not as significant as the top SNPs, is a missense SNP in CDHR2 with a very strong deleterious effect. Previous
302 research has studied the function of CDHR2 by knocking out the gene in mice. Knock-out animals showed a
303 decrease in body weight, likely due to absence of CDHR2 leading to shorter microvilli and a lower packing density
304 in the intestine [14]. Based on these findings we expect this missense SNP could be the causal variant leading to

305 the observed decrease in growth and backfat.

306 Another recessive causal loss of function variant we managed to identify is located on chromosome 15, affecting
307 the OBSL1 gene. This variant causes the strongest phenotypic effect we observed in all GWAS results.
308 Homozygous animals show a strong reduction in growth rate and increase in backfat thickness. We identified a
309 frameshift variant in OBSL1 to be the causal mutation. Cytoskeletal adaptors play an important role in ensuring
310 structural integrity of cells by linking the internal cytoskeleton to the cells membrane [22]. Defects in OBSL1 have
311 been found to lead to 3M-syndrome 2 in humans. Several cases have been studied and all mutations in OBSL1
312 causing the syndrome were null mutations within the first 6 exons of the gene, therefore affecting all transcripts
313 [23]. The variant we identified is located on exon 5 and causes a frameshift, therefore likely also leading to the
314 gene being fully defect. The most common symptom of 3M-syndrome is short stature due to growth restriction,
315 often accompanied by dysmorphic features and skeletal abnormalities [24]. Similar symptoms have been
316 observed in sheep with a defect in OBSL1, though unlike in humans, sheep homozygous for the defect are
317 stillborn [25]. 3M-syndrome has not yet been described in pigs before. We expect the identified frameshift
318 variant to cause a similar syndrome in pigs, explaining the severe reduction in growth we observe in homozygous

319 animals.

320 The MPIG6B gene, where we found a deleterious missense SNP in the Synthetic breed, hasn’t been directly
321 associated with variations in growth/body size. However, this gene is essential for blood platelet production and
322 function. Previous research has shown that knock-out of the gene in mice leads to a reduced number of blood
323 platelets and the occurrence of enlarged platelets. Additionally, these animals showed increased production of

324 metalloproteinase, leading to increased shedding of cell-surface receptors [26].
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325 We speculate that the missense SNP we identified might lead to similar issues in the blood of homozygous

326 animals, expressing overall lower performance including decreased growth.

327 Deleterious recessive variants are often observed segregating in a single breed [2]. Therefore, crossbred
328 offspring are generally not affected by these variants, which has been hypothesized to contribute to heterosis
329 [27]. We did identify one recessive stop-gain SNP present in both lines, in the ANKRD55 gene. The presence of
330 this SNP can now be monitored and crossbred mating resulting in potential homozygous offspring can be

331 avoided.

332 We also found some interesting novel QTLs in our additive GWAS for which we have not yet managed to pin
333 down specific causal variants, but we identified genes that are likely involved. At the start of chromosome 2, we
334 found a highly significant QTL with a frequency of only 0.5%, leading to strongly increased backfat. In this QTL,
335 both the INS and IGF2 genes are present. IGF2 produces a protein important in growth regulation and is also
336 involved in glucose metabolism [28], and INS plays a role in carbohydrate and lipid metabolism by regulating
337 glucose uptake [29]. A QTL in IGF2 has been previously identified to affect fat deposition in pigs [30]. Therefore,
338 we expect IGF2 to most likely be the causal gene, but we have not yet found a specific variant linked to it. Finding

339 the causal variant is especially hard due to the extremely low frequency of the QTL.

340 One of the most difficult to analyze results is the small complex region on chromosome 1 with several significant
341 effects on growth rate and backfat. The regions with different effects overlapping with each other makes it very
342 challenging to identify causal variants for these QTLs. We did find several SNPs for both breeds that have a
343 significant effect on the expression of PYGL. PYGL functions to create an enzyme that breaks down glycogen into
344 glucose in the liver [31]. Glycogen levels influence fat metabolism [32], explaining how changes in expression of
345 this gene could lead to reduced or increased growth rate and backfat thickness. In Large White, the SNPs
346 affecting PYGL expression are associated with a positive effect on growth, whereas in Synthetic they are
347 associated with a negative effect on growth. This likely indicates that it’s not the same causal variant affecting
348 PYGL expression in both breeds. Further in-depth investigation of this region will be needed to disentangle all
349 separate variants and effects in this QTL. This region highlights the benefit of using a high-resolution data set, as
350 previous analysis often considered this QTL to be caused only by the MC4R missense variant, while we can show

351 that several other variants and genes are involved.
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352 In conclusion, by performing a large-scale sequence based GWAS using a non-additive model we identified
353 several rare, recessive, and deleterious variants with high impact on pig performance and production.
354 Additionally, the high-resolution capacity of this data set enabled us to detect multiple independent QTL effects
355 in the well-known MC4R region. These results provide a valuable resource for breeding and for further reduction

356 of the frequency of deleterious alleles.
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375,  Methods

376  Genotyping & Sequencing

377 All animals imputed to sequence were initially genotyped on either (lllumina) Geneseek custom 50K or 25K SNP
378 chips, with 50,689 SNPs and 26,894 SNPs respectively (Lincoln, NE, USA). The chromosomal positions were
379 determined based on the Sscrofall.l reference assembly [33]. SNPs located on autosomal chromosomes were
380 kept for further analysis. Next, the SNPs were filtered using the following requirements: Each marker had a MAF
381 greater than 0.01, and a call rate greater than 0.85, and each animal a call rate greater than 0.7. SNPs with a p-
382 value below 1E-5 for the Hardy-Weinberg equilibrium exact test were also discarded. All pre-processing steps
383 were performed using Plink v1.90b3.30 [34]. The reference population for imputation to 660K was genotyped
384 on the Axiom porcine 660K SNP array from Affymetrix. Quality control was as described above for the 50K

385 genotyping.

386 DNA sequencing of the reference population was performed on the lllumina Hiseq. The reads were aligned to
387 Sus Scrofa 11.1 [33] using BWA-MEM v0.7.17 [35]. Variant calling was performed with Freebayes v1.3.1 with
388 settings --min-base-quality 20, --min-mapping-quality 30, --min-alternate-fraction 0.2, --haplotype-length 0 and
389 --min-alternate-count 3 [36]. Variants with a quality score below 20 were discarded. Variants were annotated

390 using the Ensembl variant effect predictor (VEP, release 103) [11].

391  Imputation

392 For imputation from 50K to 660K density we used Fimpute v3.0 [37]. The reference population consisted of 3500

393 animals of different breeds.

394 The first step in imputing to sequence is phasing of the haplotypes. For the phasing we used Beagle 5.4, with a
395 window of 20, overlap of 5, Ne of 100 and 16 threads [38]. We then ran the conform-gt tool to get consistent
396 allele coding between the reference and target VCF files. For the actual imputation we used Beagle 5.4, with a
397 window of 3, Ne of 100 and 20 threads [4]. For Large White, one round of imputation to sequence was performed
398 for 40,000 animals, and another round for 80,000 animals. We then merged the resulting VCF files of both
399 imputation runs into one file for each chromosome using bcftools merge [39], giving us sequence data on a total

400 of 117,244 animals after some were lost in the phasing steps.
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401 For Synthetic we performed imputation to sequence on 80,000 animals. We used Plink v1.90b3.38 [34] to recode
402 the VCF files so that all major alleles were set as reference alleles. To obtain more information on each SNP we
403 used the bcftools fill-tags plugin [39]. The reference population consisted of 884 whole genome sequences for
404 the imputation of the first 40,000 Large White animals, and 1069 whole genome sequences for the second
405 imputation of 80,000 animals as well as the Synthetic animals. This reference population contained animals of

406 the Large White, Synthetic, Landrace, Duroc and Pietrain breeds.

407 Genome-Wide Association Studies (GWAS)

408 We performed single-SNP GWAS on the imputed sequence data using GCTA v1.93.2 [40] with the following linear

409 model:

410  yu=u+X[ +uk+ek

411 where Y=k is the pre-corrected phenotype of the k animal (pre-corrected for all non-genetic effects); p is the
412 average of the pre-corrected phenotype; X is the genotype, coded as 0, 1, or 2 copies of one of the alleles of the
413 k animal for the evaluated SNP; [)" is the unknown allele substitution effect of the evaluated SNP; uk is the
414 residual polygenic effect, assuming u ~N (0, G 02u ), which accounted for the (co)variances between animals
415 due to relationships by formation of a G matrix (genomic numerator relationship matrix build using the imputed
416 genotypes), 02u is the additive genetic variance; and €k is the random residual effect which was assumed to be

417 distributed as ~N (0, | 02e ).

418 To run the non-additive model GWAS, all heterozygote genotypes were set to 0/0 to test the phenotypes of

419 wildtype and heterozygous animals against homozygous animals.

420 Gene expression

421 We had access to a gene expression dataset including expression data from 100 crossbred animals in four tissues:

422 liver, spleen, lung and muscle [41].
423
424
425
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426  Phenotypes

427 The phenotypes were pre-corrected for non-genetic effects. For the Large white breed we used 67,280 growth
428 rate phenotypes and 72,061 phenotypes for backfat thickness. For the Synthetic breed we used 74,145

429 phenotypes for both traits.

430 Validation of causal 5 bp OBSL1 Deletion

431 PCR was done using 60 ng of genomic DNA, with 0.4 um of each primer, 1.8 mM MgCl2, and 25 units/ml OneTaq®
432 DNA Polymerase (OneTaq® 2X Master Mix with Standard Buffer, New England Biolabs) in manufacturer’s PCR
433 buffer in a final volume of 12 pl. Initial denaturation for 1 min at 95°C was followed by 35 cycles of 95°C for 30
434 s, 55°C for 45 s, 72°C 90 s, followed by a 5 min extension 72°C. PCR primers for OBSL1 are
435 ACGTCCTTGATCCTGTCTGC forward and CTCTCCACCATCATCCAGGG reverse. The forward primer was dye-
436 labeled with either 6-FAM to produce a fluorescently labeled PCR product detectable on ABI 3730 DNA

437 sequencer (Applied Biosystems). Fragment sizes were determined using GeneMapper software 5 from ABI.

438  Further analysis & figures

439 To perform linkage disequilibrium (LD) analysis we used Plink v1.90b3.38 with settings --ld-window-r2 0 --Id-
440 window 99999999 --Id-window-kb 100000 [34]. To assess how deleterious a variant is we considered the SIFT
441 score as given by the VEP [11], as well as the Combined Annotation Dependent Depletion (CADD) score [42],
442 adapted for pigs (pCADD, [13]). Boxplots, heatmaps and manhattanplots were made using the python packages
443 seaborne [43], heatmapz [44] and QMplot [45] respectively. Additionally, pandas [46] and matplotlib [47] were

444 used in creating the figures.

445
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