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1 

 

Abstract 23 

Most deleterious variants are recessive and segregate at relatively low frequency. Therefore, high sample sizes 24 

are required to identify these variants. In this study we report a large-scale sequence based genome-wide 25 

association study (GWAS) in pigs, with a total of 120,000 Large White and 80,000 Synthetic breed animals 26 

imputed to sequence using a reference population of approximately 1,100 whole genome sequenced pigs. We 27 

imputed over 20 million variants with high accuracies (R2>0.9) even for low frequency variants (1-5% minor 28 

allele frequency). This sequence-based analysis revealed a total of 13 additive and 8 non-additive significant 29 

quantitative trait loci (QTLs) for growth rate and backfat thickness. With the non-additive (recessive) model, 30 

we identified a deleterious missense SNP in the CDHR2 gene reducing growth rate and backfat in homozygous 31 

Large White animals. For the Synthetic breed, we revealed a QTL on chromosome 15 with a frameshift variant 32 

in the OBSL1 gene. This QTL has a major impact on both growth rate and backfat, resembling human 3M-33 

syndrome 2 which is related to the same gene. With the additive model, we confirmed known QTLs on 34 

chromosomes 1 and 5 for both breeds, including variants in the MC4R and CCND2 genes. On chromosome 1, 35 

we disentangled a complex QTL region with multiple variants affecting both traits, harboring 4 independent 36 

QTLs in the span of 5 Mb.  Together we present a large scale sequence-based association study that provides a 37 

key resource to scan for novel variants at high resolution for breeding and to further reduce the frequency of 38 

deleterious alleles at an early stage in the breeding program.  39 
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Author Summary 47 

In this study we investigated the effect of over 20 million genetic variants on the growth rate and backfat 48 

thickness of approximately 140,000 pigs across two commercial breeds, with specific focus on recessive harmful 49 

variation. We identified 14 regions with a significant additive effect and 8 regions with a significant recessive 50 

effect on these traits. By looking at recessive effects we identified several rare deleterious variants with high 51 

impacts on animal fitness. These include a deletion on chromosome 15 in the OBSL1 gene, which leads to a 52 

growth reduction of 100 grams a day on average. Interestingly, loss-of-function mutations in OBSL1 are 53 

associated with short stature in humans. Looking at additive effects with this high-resolution dataset allowed us 54 

to gain more insight into the locus around the MC4R gene on chromosome 1. Here we found a small complex 55 

region containing several independent variants affecting both growth rate and backfat. With this study we have 56 

shown that by using several gene models and a large dataset, we can identify novel genetic variants at high 57 

resolution (<0.01 frequency) with significant impact on animal fitness and production. These results can help us 58 

in further eradicating deleterious genetic variants from pig populations. 59 
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Introduction 74 

In livestock, genomic selection has accelerated genetic gain due to its major impact on increasing the accuracy 75 

of breeding value estimation at a young age and reducing the generation interval [1]. Genomic selection, while 76 

boosting desirable trait improvement, can inadvertently exacerbate the frequency of deleterious alleles. By 77 

favoring individuals with superior trait-associated genetic markers, carriers of rare recessive deleterious alleles 78 

can be unknowingly propagated in breeding populations, potentially leading to the expression of harmful 79 

phenotypes in subsequent generations and compromising overall genetic health [2]. Balancing accelerated 80 

genetic gain with the need to mitigate the accumulation of deleterious alleles becomes a critical consideration 81 

in sustainable breeding strategies.  82 

Deleterious recessive alleles can remain hidden because the harmful effects are only present in a homozygous 83 

state, and their impact may not be fully captured by traditional additive genetic models [2]. Especially for low 84 

frequency alleles, a large study population is crucial for identifying deleterious recessive alleles because the 85 

number of homozygous animals for the minor allele is small. In addition, imputing to sequence is essential for 86 

identifying deleterious alleles as it extends the scope of genetic analysis beyond genotyped variants, enabling 87 

the discovery of rare and non-genotyped variants associated with deleterious effects [3]. Imputation is a method 88 

that allows for predicting the genotypes of organisms at a higher density, based on a reference population of 89 

which this higher density data is already available [4]. In commercial pig populations, imputation with good 90 

accuracies is possible because there is a limited set of haplotypes segregating [5]. By performing imputation, we 91 

accurately predict the large majority of genetic variation within populations as long as a sufficiently large 92 

reference population is available. With whole genome sequencing (WGS) becoming more accessible and 93 

affordable, it is now possible to obtain reference populations allowing for performing imputation up to whole 94 

genome sequence level with high accuracies. Imputation to sequence is not only useful to fine map QTL regions, 95 

but also to identify novel deleterious alleles affecting the fitness of animals by focusing on non-additive effects. 96 

This can be done by performing genome-wide association studies (GWAS) using different models [6]. Previous 97 

studies have identified non-additive (recessive) effects, mainly by focusing on depletion of homozygotes [7] [8]. 98 

This method allows for identifying recessive variants with lethal effects, but not recessive variants decreasing 99 

fitness without leading to death.  100 
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By performing GWAS, we can test the association between SNPs and phenotypic records of traits of interest, 101 

which allows us to identify quantitative trait loci (QTLs). Several models can be used for GWAS, with the additive 102 

model being most commonly used [9]. An additive GWAS model assumes that the effects of different alleles on 103 

the trait are cumulative and can be estimated linearly based on the number of alleles present. However, this 104 

model can fail to pick up non-additive genetic variation, such as recessive and dominance effects. Recessive 105 

effects are especially of interest when trying to identify deleterious variants [2]. To identify SNPs with recessive 106 

effects, we can use a non-additive model. Recently several novel deleterious (coding) variants were identified in 107 

cattle using a non-additive GWAS on imputed sequence of >100,000 individuals [10].  108 

In this study, we performed imputation to sequence of 120,000 pigs of a Large White sow breed and 80,000 pigs 109 

of a Synthetic boar breed. We performed GWAS on this imputed sequence data using both an additive and a 110 

non-additive (recessive) model for the production traits growth rate (GR) and backfat (BF). Using the non-111 

additive model, we identified novel low frequent deleterious alleles affecting our traits of interest including loss-112 

of-function mutations that can be purged from the population.  113 

 114 
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Results 128 

Imputation to sequence 129 

The dataset consists of 120,147 Large White and 81,250 Synthetic animals genotyped on medium density SNP 130 

panels (25K/50K). These animals were first imputed to 660K density with a reference population of 3500 animals. 131 

Subsequently, the imputed 660K genotypes were imputed to whole genome sequence level, with a reference 132 

population of 1069 animals (S1 Figure). We filtered the results to only include variants with an allele count of at 133 

least 100. This gave us a total of 28,190,307 variants for Large White and 24,124,813 variants for Synthetic. The 134 

majority of these variants were SNPs (Table 1). For SNPs with MAFs above 1-2% we were able to obtain very 135 

good imputation accuracies (R2 > 0.9), and even for half of the SNPs below 1% frequency we obtained accuracies 136 

of R2 > 0.5 (Fig 1).  137 

Table 1: Number of variants imputed to sequence split by variant type and MAF.   138 
 Large White Synthetic 

SNPs Indels SNPs Indels 

Total 22,840,678 5,349,629 19,398,280 4,726,533 

< 1% MAF 4,329,777 600,075 4,496,085 641,335 

< 5% MAF 8,109,989 1,472,040 7,510,302 1,400,929 

139 

 140 

Fig 1: Imputation accuracies (R2) of all SNPs grouped by Minor Allele Frequency (MAF) 141 

MAF, minor allele frequency; SNP, single nucleotide polymorphism; Indel, insertion / deletion. 
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Additive and non-additive sequence-based GWAS on growth rate and backfat 142 

We performed both an additive and non-additive (recessive) GWAS on growth rate and backfat thickness in the 143 

Large White (Fig 2 A-B) and Synthetic breed (Fig 2 C-D) using the imputed sequence data. For Large White, we 144 

used 67K phenotypes for growth rate and 72K for backfat. For the Synthetic breed, we used 74K phenotypes for 145 

both traits. From the results, we observe a large number of QTLs with distinct QTLs for additive and non-additive 146 

effects. Across traits and breeds, we find a total of 14 additive and 8 non-additive QTLs, using a significance 147 

threshold of p-value < 1E-10 (Fig 3). For each QTL, we examined the top SNPs and their associated effects on 148 

genes using Ensembl VEP [11], SIFT scores [12] and pCADD scores [13], and we assessed the impact these QTLs 149 

have on the phenotypes (Fig 4, S2 Table). We managed to identify potential causal variants for some of these 150 

effects. 151 

 

Fig 2: Additive (red) and recessive (blue) Manhattan plots for growth rate (GR) and backfat (BF). For peaks with a p-value 152 

significance below 1E-10 (green line) the genomic location is shown. QTLs only supported by a single significant SNP are 153 

neglected. A) Large White growth rate B) Large White backfat C) Synthetic growth rate D) Synthetic backfat. *The 121MB 154 

and 10MB peaks have top SNPs with p-values of 6,91E-154 and 1,63E-135 respectively. 155 
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 158 
 

Fig 3: Number of significant GWAS QTLs overlapping between breeds and traits. 159 

 160 

 

Fig 4: Phenotypic effect sizes of top SNPs from the significant QTLs  161 

QTLs with phenotypic effects < 0.1 standard deviations are excluded. Square size indicates significance (bigger square is 162 

lower p-value, ranging from 1E-10 to 1E-50+). 163 
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Non-additive GWAS identifies loss-of-function variants associated with poor 164 

performance in homozygous individuals 165 

Non-additive effect on chromosome 2 shows decrease in growth rate and backfat in Large 166 

White 167 

We find a very significant non-additive QTL on chromosome 2 for both growth rate and backfat. The QTL is 168 

located around 79Mb with MAFs of 10%. The SNPs in this QTL show a negative impact on growth and backfat in 169 

homozygous individuals, and a negligible effect in heterozygous individuals. Homozygous animals grow on 170 

average 20 grams a day less (0.24 SDs) and have 0.7mm less backfat (0.47 SDs). The top SNP for growth is located 171 

at 79,261,674bp and the top SNP for backfat is located at 79,236,726bp. Both SNPs are also present very 172 

significantly in the other traits’ GWAS. The QTLs consist mostly of intron variants of ADAMTS2 (A Disintegrin-Like 173 

and Metalloproteinase with Thrombospondin Type 1 Motif 2). Interestingly, the QTL comprises a deleterious 174 

missense SNP (pCADD: 22.6, SIFT: 0) in the CDHR2 (Cadherin-Related Family Member 2) gene at 81,336,954bp, 175 

known to affect body size in knockout mice [14].  176 

Stop gain SNP in ANKRD55 affects backfat levels in both Large White and Synthetic breeds 177 

For backfat we find a very significant non-additive QTL on chromosome 16 that segregates in both breeds. The 178 

SNPs in the QTL have a MAF of around 10% in Large White and 19% in the Synthetic breed. The top SNP for the 179 

Synthetic breed and also a very significant SNP in the Large White GWAS is a stop gain SNP in the ANKRD55 180 

(ankyrin repeat domain 55) gene, located at 35,245,909bp. Homozygous animals show increased backfat levels, 181 

whereas heterozygous animals show some decrease in backfat. Homozygous animals have 0.29mm (0.17 SDs) 182 

more backfat in the Large White breed and 0.18mm (0.13 SDs) more backfat in the Synthetic breed. 183 

Heterozygous animals show 0.11mm less backfat in both breeds.  184 

Missense SNP in MPIG6B decreases growth rate in the Synthetic breed 185 

In the Synthetic breed, we observe a non-additive QTL on chromosome 7. Homozygous animals show a decrease 186 

in growth of 30 grams a day (0.2 SDs). The fourth most significant SNP in this QTL is a deleterious missense SNP 187 

(pCADD: 24.4, SIFT: 0.01) in MPIG6B (Megakaryocyte And Platelet Inhibitory Receptor G6b). The SNP is located 188 

at 23,835,601bp with a MAF of 28%.  189 
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Frameshift variant in OBSL1 strongly affects growth rate and backfat the Synthetic breed 190 

In the Synthetic breed, we identified a very significant QTL for both growth rate and backfat on chromosome 15. 191 

The top SNP is the same for both traits (121,500,039bp) and has a MAF of 5%. Homozygous animals show very 192 

poor growth and highly elevated levels of backfat, growing on average around 100 grams a day less (-1.08 SDs) 193 

and showing an increase in backfat of 2.2mm (2.24 SDs) compared to non-homozygotes. We identified the most 194 

likely causal mutation to be a frameshift variant located at 121,576,506bp, in high LD with the top SNP from the 195 

GWAS (R2=0.95). The frameshift is caused by a 5bp deletion in the 5th exon of the OBSL1 (Obscurin Like 196 

Cytoskeletal Adaptor 1) gene (Fig 5 [15]). This induces a premature stop-codon in the 6th exon. To validate the 197 

presence of the 5bp deletion we genotyped 31 pigs from three litters where the sow was carrier of the deletion 198 

(using a dye-labeled primer). We confirmed the presence of the deletion and confirmed 15 carriers using this 199 

test (Table S3).  200 

 201 

Fig 5: Genomic overview of the OBSL1 frameshift variant 202 

A) OBSL1 gene model adapted from Ensembl 110, exon 5 affected by the frameshift highlighted in blue. B) DNA sequence 203 

alignment showing the 5bp deletion causing a frameshift in affected animals. C) Protein alignment showing the frameshift 204 

inducing a premature stop-codon on exon 6. 205 

 206 
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Additive GWAS identifies known, novel, and complex QTLs with varying effects 207 

on performance  208 

Additive model shows expected QTLs on chromosomes 1 and 5 in Large White and Synthetic 209 

breed 210 

In the additive GWAS results we find two QTLs that we consistently observe when performing GWAS on these 211 

traits. One is located on chromosome 1 where we find a missense SNP in the MC4R (melanocortin 4 receptor) 212 

gene located at 160,773,437bp. This missense SNP has been described before, animals with the major allele (G) 213 

show less backfat while animals with the minor allele (A) show faster growth [16], hence the QTL showing up for 214 

both traits. On chromosome 5, we find a QTL especially significant for backfat. The top SNP of this QTL is an 215 

intron variant of the CCND2 (cyclin D2) gene affecting gene expression, located at 66,103,958bp. The G allele for 216 

this SNP has been reported earlier to increase backfat [16]. 217 

Low frequent additive QTL on chromosome 2 strongly affects backfat in Large White 218 

At the start of chromosome 2, we find a very significant novel QTL for backfat with SNPs located from 17Kb to 219 

2.3Mb. These SNPs are very low frequent with MAFs between 0.4%-0.5%. Despite the low frequency, the SNPs 220 

in the QTL have high imputation accuracies (R2>0.9). Heterozygous animals on average have an increased backfat 221 

thickness of around 0.7mm (0.43 SDs). Due to the very low frequency of these variants, our dataset only includes 222 

3 homozygous animals, of which 2 show an increase in backfat of over 2.3mm (1.36 SDs). The QTL is located in 223 

a region encompassing different genes including NADSYN1 (NAD synthetase 1) , INS (Insulin) and IGF2 (Insulin 224 

like growth factor II). Both INS and IGF2 play a role in glucose regulation and affect lipid metabolism, making 225 

them interesting candidate genes for the phenotypic effects we observe in this QTL.  Another significant SNP 226 

present in the QTL is a missense SNP in ANO9, (anoctamin 9) located at 245,676bp with a pCADD score of 21.78.  227 

 228 

 229 
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Small complex region on chromosome 1 contains several independent variants affecting 231 

growth rate and backfat  232 

On chromosome 1 we find a very complex region located from approximately 150-165Mb (Fig 6). This region is 233 

present for both traits and both breeds, but most effects and highest significances are observed for growth rate 234 

in Large White. In the Synthetic breed we find only a single significant SNP for backfat (Fig 6 D)l, which is also 235 

present in the other breed and trait. 236 

 237 

Fig 6: Manhattan plots of region on chromosome 1 showing several QTLs for growth rate (GR) and backfat (BF). 238 

 239 

In this region we find 5 independent QTLs within this span of 15Mb, of which 3 within a 3Mb span. Within some 240 

of the QTLs, we find SNPs with different and opposing effects. The majority of the top SNPs of the different QTLs 241 

and effects are not in linkage disequilibrium (LD) (Table 2), indicating that these are mostly independently 242 

segregating haplotypes.  243 

 244 

 245 

 246 

 247 
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 248 

Table 2: LD within the QTL rich 15MB region on chromosome 1 in Large White. 249 

 250 

 251 

The QTLs at 150 and 154Mb in Large White both consist of only intergenic variants with allele frequencies 252 

ranging from 30-35%. One of the positive effects we observe in the 3Mb span from 159-162Mb is due to a 253 

missense SNP in the MC4R gene. This effect is represented by the top SNP at 160Mb in figure 5, which is in high 254 

LD with the MC4R missense SNP. The SNP in the QTL at 160Mb for backfat, as well as the QTLs for both traits at 255 

160Mb in Synthetic also show LD with the MC4R missense SNP.   256 

The top SNP for growth rate in Large White for this whole region is located at 159,788,889bp with a MAF of 10% 257 

and a negative effect on growth. This SNP and the variants that are in LD are all intergenic variants, located near 258 

the CDH20 (cadherin 20) gene. We also find significant intron variants of CDH20, however, some of these SNPs 259 

have a frequency of 23% and a positive effect on growth, while others have a frequency of 3% and a negative 260 

effect on growth. The top SNP of 23% MAF is located at 159,869,511bp and the top SNP of 3% MAF is located at 261 

159,821,786bp. The same locus around the CDH20 gene shows up in the Synthetic breed.  262 

We looked at gene expression in this region in liver, muscle, spleen and lung. We found several SNPs between 263 

159 and 161Mb to significantly affect the expression of the PYGL (glycogen phosphorylase L) gene, located at 264 

180Mb on the same chromosome 1, an allosteric enzyme that catalyzes the rate-limiting step in glycogen 265 

catabolism [17].  266 

 267 

 268 

 269 

LD (R2) / SNP 150364747 

150364747 1 154978577 

154978577 0.216699 1 159788889 

159788889 0.207151 0.0420421 1 159821786 

159821786 0.0492199 0.00678435 0.280964 1 159869511 

159869511 0.104494 0.495845 0.0342459 0.00947161 1 160883673 

160883673 0.166053 0.696078 0.0550575 0.0154966 0.48608 1 162020747 

162020747 0.194158 0.0348452 0.726328 0.237485 0.0274089 0.0538396 1 162062651 

162062651 0.0639927 0.00931752 0.202506 0.677308 0.0112798 0.0187777 0.339906 1 164838503 

164838503 0.0195427 0.157152 0.0581801 0.00639335 0.0786844 0.219678 0.042347 0.00143272 1 164909824 

164909824 0.0425097 0.00175518 0.147268 0.00425724 0.000552646 0.00572898 0.131389 0.0052275 0.146082 1 

LD, Linkage Disequilibrium; Cell shading; orange: R2 = 0.40-0.60, yellow: R2 = 0.60-0.70, green: R2 > 0.70 
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Discussion 270 

In this study, we performed sequence based GWAS on a large scale with both an additive and non-additive 271 

model, allowing us to identify novel and low frequent deleterious variants. By using a non-additive (recessive) 272 

model, we identified completely novel QTLs compared to the additive model, which are in most cases extremely 273 

significant due to their deleterious nature. As these recessive deleterious variants tend to be present with low 274 

allele frequencies, it is essential to have large datasets when attempting to identify them through GWAS. 275 

Especially when using WGS data, this leads to very computationally intense analyses. We experienced mainly 276 

the high number of phenotypes to be a bottleneck for memory usage, as the genome can be split up in segments 277 

to run parallel analysis. The computational limitations are naturally very dependent on the type of software used 278 

and the available computing infrastructure. In our situation, we found a number of around 75,000 phenotypes 279 

to be the maximum. This number is sufficient when mainly focusing on SNPs with MAFs above 1%, which was 280 

the case in this study due to imputation accuracies. If in the future we would be able to accurately impute even 281 

lower frequent SNPs with high accuracy, new methods would be needed to include a larger number of 282 

phenotypes for GWAS. 283 

We observed a total of 22 QTLs across the two traits and breeds, of which most will require further research to 284 

proof the causal variants and the biological mechanism. However, for some of the QTLs we identified potential 285 

causal variants causing a loss of function and therefore expected to impair gene function. We found some of 286 

these variants to cause very poor performance and therefore proving very interesting candidates for selection.  287 

One of these variants is located on chromosome 2, where we observed a QTL in the non-additive GWAS, leading 288 

to a reduction in both growth rate and backfat. The most significant SNPs in this QTL are mainly intron variants 289 

of ADAMTS2. We do not observe any deleterious variants in this gene specifically. Inactivation of ADAMTS2 has 290 

been associated with Ehlers-Danlos syndrome, a disorder affecting collagen formation and function [18]. 291 

Affected individuals suffer from hypermobile joints and flexible, fragile skin [19].  There are several mutations 292 

known in several genes that can lead to development of this disorder. Though not a very common symptom, 293 

short stature has been observed in some patients with Ehlers-Danlos syndrome [20]. The syndrome has been 294 

observed in domestic animals including sheep and cattle, but not yet in pigs. Affected animals also display the 295 

loose and fragile skin phenotype [21]. If the decreased growth we observe in pigs homozygous for this region 296 
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were to be caused by a similar syndrome, we would expect to observe similar phenotypes. This would require 297 

further observation of homozygous animals. For now, since we do not observe deleterious variants in ADAMTS2 298 

and are not aware of additional symptoms indicating Ehler-Danlos syndrome in these animals, we do not 299 

consider this disorder to likely be the cause of the reduced growth. Another significant SNP in this QTL, though 300 

not as significant as the top SNPs, is a missense SNP in CDHR2 with a very strong deleterious effect. Previous 301 

research has studied the function of CDHR2 by knocking out the gene in mice. Knock-out animals showed a 302 

decrease in body weight, likely due to absence of CDHR2 leading to shorter microvilli and a lower packing density 303 

in the intestine [14]. Based on these findings we expect this missense SNP could be the causal variant leading to 304 

the observed decrease in growth and backfat.  305 

Another recessive causal loss of function variant we managed to identify is located on chromosome 15, affecting 306 

the OBSL1 gene. This variant causes the strongest phenotypic effect we observed in all GWAS results. 307 

Homozygous animals show a strong reduction in growth rate and increase in backfat thickness. We identified a 308 

frameshift variant in OBSL1 to be the causal mutation. Cytoskeletal adaptors play an important role in ensuring 309 

structural integrity of cells by linking the internal cytoskeleton to the cells membrane [22]. Defects in OBSL1 have 310 

been found to lead to 3M-syndrome 2 in humans. Several cases have been studied and all mutations in OBSL1 311 

causing the syndrome were null mutations within the first 6 exons of the gene, therefore affecting all transcripts 312 

[23]. The variant we identified is located on exon 5 and causes a frameshift, therefore likely also leading to the 313 

gene being fully defect. The most common symptom of 3M-syndrome is short stature due to growth restriction, 314 

often accompanied by dysmorphic features and skeletal abnormalities [24]. Similar symptoms have been 315 

observed in sheep with a defect in OBSL1, though unlike in humans, sheep homozygous for the defect are 316 

stillborn [25]. 3M-syndrome has not yet been described in pigs before. We expect the identified frameshift 317 

variant to cause a similar syndrome in pigs, explaining the severe reduction in growth we observe in homozygous 318 

animals.   319 

The MPIG6B gene, where we found a deleterious missense SNP in the Synthetic breed, hasn’t been directly 320 

associated with variations in growth/body size. However, this gene is essential for blood platelet production and 321 

function. Previous research has shown that knock-out of the gene in mice leads to a reduced number of blood 322 

platelets and the occurrence of enlarged platelets. Additionally, these animals showed increased production of 323 

metalloproteinase, leading to increased shedding of cell-surface receptors [26].  324 
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We speculate that the missense SNP we identified might lead to similar issues in the blood of homozygous 325 

animals, expressing overall lower performance including decreased growth.  326 

Deleterious recessive variants are often observed segregating in a single breed [2]. Therefore, crossbred 327 

offspring are generally not affected by these variants, which has been hypothesized to contribute to heterosis 328 

[27]. We did identify one recessive stop-gain SNP present in both lines, in the ANKRD55 gene.  The presence of 329 

this SNP can now be monitored and crossbred mating resulting in potential homozygous offspring can be 330 

avoided.  331 

We also found some interesting novel QTLs in our additive GWAS for which we have not yet managed to pin 332 

down specific causal variants, but we identified genes that are likely involved. At the start of chromosome 2, we 333 

found a highly significant QTL with a frequency of only 0.5%, leading to strongly increased backfat. In this QTL, 334 

both the INS and IGF2 genes are present. IGF2 produces a protein important in growth regulation and is also 335 

involved in glucose metabolism [28], and INS plays a role in carbohydrate and lipid metabolism by regulating 336 

glucose uptake [29]. A QTL in IGF2 has been previously identified to affect fat deposition in pigs [30]. Therefore, 337 

we expect IGF2 to most likely be the causal gene, but we have not yet found a specific variant linked to it. Finding 338 

the causal variant is especially hard due to the extremely low frequency of the QTL.   339 

One of the most difficult to analyze results is the small complex region on chromosome 1 with several significant 340 

effects on growth rate and backfat. The regions with different effects overlapping with each other makes it very 341 

challenging to identify causal variants for these QTLs. We did find several SNPs for both breeds that have a 342 

significant effect on the expression of PYGL. PYGL functions to create an enzyme that breaks down glycogen into 343 

glucose in the liver [31]. Glycogen levels influence fat metabolism [32], explaining how changes in expression of 344 

this gene could lead to reduced or increased growth rate and backfat thickness. In Large White, the SNPs 345 

affecting PYGL expression are associated with a positive effect on growth, whereas in Synthetic they are 346 

associated with a negative effect on growth. This likely indicates that it’s not the same causal variant affecting 347 

PYGL expression in both breeds. Further in-depth investigation of this region will be needed to disentangle all 348 

separate variants and effects in this QTL. This region highlights the benefit of using a high-resolution data set, as 349 

previous analysis often considered this QTL to be caused only by the MC4R missense variant, while we can show 350 

that several other variants and genes are involved. 351 
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In conclusion, by performing a large-scale sequence based GWAS using a non-additive model we identified 352 

several rare, recessive, and deleterious variants with high impact on pig performance and production. 353 

Additionally, the high-resolution capacity of this data set enabled us to detect multiple independent QTL effects 354 

in the well-known MC4R region. These results provide a valuable resource for breeding and for further reduction 355 

of the frequency of deleterious alleles.   356 

 357 
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Methods  375 

Genotyping & Sequencing 376 

All animals imputed to sequence were initially genotyped on either (Illumina) Geneseek custom 50K or 25K SNP 377 

chips, with 50,689 SNPs and 26,894 SNPs respectively (Lincoln, NE, USA). The chromosomal positions were 378 

determined based on the Sscrofa11.1 reference assembly [33]. SNPs located on autosomal chromosomes were 379 

kept for further analysis. Next, the SNPs were filtered using the following requirements: Each marker had a MAF 380 

greater than 0.01, and a call rate greater than 0.85, and each animal a call rate greater than 0.7. SNPs with a p-381 

value below 1E-5 for the Hardy-Weinberg equilibrium exact test were also discarded. All pre-processing steps 382 

were performed using Plink v1.90b3.30 [34]. The reference population for imputation to 660K was genotyped 383 

on the Axiom porcine 660K SNP array from Affymetrix. Quality control was as described above for the 50K 384 

genotyping.  385 

DNA sequencing of the reference population was performed on the Illumina Hiseq. The reads were aligned to 386 

Sus Scrofa 11.1 [33] using BWA-MEM v0.7.17 [35]. Variant calling was performed with Freebayes v1.3.1 with 387 

settings --min-base-quality 20, --min-mapping-quality 30, --min-alternate-fraction 0.2, --haplotype-length 0 and 388 

--min-alternate-count 3 [36]. Variants with a quality score below 20 were discarded. Variants were annotated 389 

using the Ensembl variant effect predictor (VEP, release 103) [11]. 390 

Imputation 391 

For imputation from 50K to 660K density we used Fimpute v3.0 [37]. The reference population consisted of 3500 392 

animals of different breeds.  393 

The first step in imputing to sequence is phasing of the haplotypes. For the phasing we used Beagle 5.4, with a 394 

window of 20, overlap of 5, Ne of 100 and 16 threads [38]. We then ran the conform-gt tool to get consistent 395 

allele coding between the reference and target VCF files. For the actual imputation we used Beagle 5.4, with a 396 

window of 3, Ne of 100 and 20 threads [4]. For Large White, one round of imputation to sequence was performed 397 

for 40,000 animals, and another round for 80,000 animals. We then merged the resulting VCF files of both 398 

imputation runs into one file for each chromosome using bcftools merge [39], giving us sequence data on a total 399 

of 117,244 animals after some were lost in the phasing steps.  400 
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For Synthetic we performed imputation to sequence on 80,000 animals. We used Plink v1.90b3.38 [34] to recode 401 

the VCF files so that all major alleles were set as reference alleles. To obtain more information on each SNP we 402 

used the bcftools fill-tags plugin [39]. The reference population consisted of 884 whole genome sequences for 403 

the imputation of the first 40,000 Large White animals, and 1069 whole genome sequences for the second 404 

imputation of 80,000 animals as well as the Synthetic animals. This reference population contained animals of 405 

the Large White, Synthetic, Landrace, Duroc and Pietrain breeds. 406 

Genome-Wide Association Studies (GWAS) 407 

We performed single-SNP GWAS on the imputed sequence data using GCTA v1.93.2 [40] with the following linear 408 

model: 409 

y∗k=μ+Xβˆ+uk+ek 410 

where y∗k is the pre-corrected phenotype of the k animal (pre-corrected for all non-genetic effects); μ is the 411 

average of the pre-corrected phenotype; X is the genotype, coded as 0, 1, or 2 copies of one of the alleles of the 412 

k animal for the evaluated SNP; βˆ is the unknown allele substitution effect of the evaluated SNP; uk is the 413 

residual polygenic effect, assuming u ∼N (0, G σ2u ), which accounted for the (co)variances between animals 414 

due to relationships by formation of a G matrix (genomic numerator relationship matrix build using the imputed 415 

genotypes), σ2u is the additive genetic variance; and ek is the random residual effect which was assumed to be 416 

distributed as ∼N (0, I σ2e ). 417 

To run the non-additive model GWAS, all heterozygote genotypes were set to 0/0 to test the phenotypes of 418 

wildtype and heterozygous animals against homozygous animals.  419 

Gene expression  420 

We had access to a gene expression dataset including expression data from 100 crossbred animals in four tissues: 421 

liver, spleen, lung and muscle [41]. 422 

 423 

 424 

 425 
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Phenotypes 426 

The phenotypes were pre-corrected for non-genetic effects. For the Large white breed we used 67,280 growth 427 

rate phenotypes and 72,061 phenotypes for backfat thickness. For the Synthetic breed we used 74,145 428 

phenotypes for both traits. 429 

Validation of causal 5 bp OBSL1 Deletion 430 

PCR was done using 60 ng of genomic DNA, with 0.4 µm of each primer, 1.8 mM MgCl2, and 25 units/ml OneTaq® 431 

DNA Polymerase (OneTaq® 2X Master Mix with Standard Buffer, New England Biolabs) in manufacturer’s PCR 432 

buffer in a final volume of 12 µl. Initial denaturation for 1 min at 95°C was followed by 35 cycles of 95°C for 30 433 

s, 55°C for 45 s, 72°C 90 s, followed by a 5 min extension 72°C. PCR primers for OBSL1 are 434 

ACGTCCTTGATCCTGTCTGC forward and CTCTCCACCATCATCCAGGG reverse. The forward primer was dye-435 

labeled with either 6-FAM to produce a fluorescently labeled PCR product detectable on ABI 3730 DNA 436 

sequencer (Applied Biosystems). Fragment sizes were determined using GeneMapper software 5 from ABI. 437 

Further analysis & figures 438 

To perform linkage disequilibrium (LD) analysis we used Plink v1.90b3.38 with settings --ld-window-r2 0 --ld-439 

window 99999999 --ld-window-kb 100000 [34]. To assess how deleterious a variant is we considered the SIFT 440 

score as given by the VEP [11], as well as the Combined Annotation Dependent Depletion (CADD) score [42], 441 

adapted for pigs (pCADD, [13]). Boxplots, heatmaps and manhattanplots were made using the python packages 442 

seaborne [43], heatmapz [44] and QMplot [45] respectively. Additionally, pandas [46] and matplotlib [47] were 443 

used in creating the figures.   444 

 445 
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