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Abstract
Towards the goal of identifying functional elements in the human genome, the fourth and
final phase of the ENCODE consortium has newly profiled hundreds of human tissues using
sequencing-based measurements of genomic activity such as ChIP-seq measures of
transcription factor binding and histone modification. Chromatin state annotations created by
segmentation and genome annotation (SAGA) methods such as Segway have emerged as
the predominant integrative summary of such epigenomic data sets. Here, we present the
ENCODE4 catalog of Segway annotations, a set of sample-specific genome-wide Segway
chromatin state annotations for 234 ENCODE human biosamples inferred from 1,794
functional genomics experiments. We define an updated vocabulary of chromatin state terms
that includes patterns of activity present only in a subset of samples or identified only with
rarely-performed assays. We show that these ENCODE4 Segway annotations accurately
capture both general and cell-type-specific regulatory patterns, and do so with substantially
improved sensitivity relative to prior large-scale chromatin annotation sets. This catalog
facilitates the downstream discovery of regulatory mechanisms which underlie diseases and
traits identified by genome-wide association studies.

Introduction
Identifying functional elements in the genome is critical to understanding human biology and
disease. To that end, the ENCODE consortium has engaged in large-scale mapping of
human epigenomes using sequencing-based measurements of genomic activity, including
ChIP-seq measurement of transcription factor binding and histone modifications and
DNase-seq and ATAC-seq measurement of chromatin accessibility 1–3. The fourth and final
phase of ENCODE has greatly expanded the set of profiled biosamples. Epigenome
mapping facilitates the creation of reference genome annotations, which enable researchers
to understand genomic activity in any of the hundreds of characterized cell and tissue types
and thus understand the influence of genomic activity on disease and other phenomena 4,5.
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The ENCODE Encyclopedia is a collection of reference annotations that encompass all
outputs of the consortium, with the aim that these annotations provide a resource to the
research community. Here, we present a component of this Encyclopedia, the ENCODE4
Segway catalog of chromatin state annotations. Chromatin state annotations are the
predominant form of integrated genome annotation 6. They are created by segmentation and
genome annotation (SAGA) methods such as Segway, ChromHMM and IDEAS 6–12

(reviewed in Libbrecht et al. 2021 6). These methods take as input a collection of epigenomic
data sets from a given biosample, which may be a primary tissue sample or cell line, and
produce an annotation of chromatin states in the genome. Each chromatin state corresponds
to a pattern of epigenomic activity such as patterns of transcription, Polycomb repression, or
patterns associated with promoters, enhancers or other types of genomic regulatory
elements. SAGA methods are unsupervised in that they identify patterns of epigenomic
activity through learning a probabilistic model without predefined categories of genomic
elements. A researcher must interpret these learned patterns to map them to known
categories of genomic functions 7.

The ENCODE4 Segway catalog comprises chromatin state annotations for 234 samples
created through a SAGA pipeline based around the Segway model 13. This pipeline has two
main advantages relative to previous approaches (reviewed in Supplementary Material) for
performing chromatin state annotation. First, the model incorporates genomic signal
strength, as measured by normalized read count, avoiding a binarizing step. Thus Segway
chromatin state annotations can distinguish high-signal from low-signal elements. As we
show below, doing so greatly improves the model’s sensitivity, allowing it to identify a large
number of regulatory elements and in turn increasing its ability to capture gene regulation.

Second, this pipeline involves training an independent Segway model for each sample. This
independent approach, in contrast to the alternative “concatenated” approach 5 of using a
single model for all samples, allows the pipeline to incorporate all data sets available for
each sample. To handle the added challenge of interpreting independent models, we used
an automated interpretation process as described. Doing so also obviates the need to resort
to imputing unperformed assays 14–17. While imputation can reduce noise, it creates the risk
that annotations may be biased by data observed in other samples 7,15. In particular,
imputation tends to drive all samples toward a single average and thus can make it harder to
identify sample-specific activity 4,9. The sample-specific SAGA model can identify epigenetic
patterns specific to each sample, and is not at risk of modeling artifacts introduced by
applying the sample model to datasets exhibiting experiment-specific patterns. To allow this
independent modeling approach to scale, we employ an automated interpretation process
which assigns a controlled vocabulary of common chromatin state descriptor terms (e.g.
“Promoter”, “Enhancer”) to each identified Segway state.

The resulting reference chromatin state annotations encompass 234 samples and are
inferred from 1,794 functional genomics experiments. We define an updated vocabulary of
chromatin state terms that includes patterns of activity present only in a subset of samples or
identified only with rarely-performed assays. We show that these annotations accurately
capture genome biology, and that they do so with enhanced accuracy relative to existing
reference chromatin state annotations. We demonstrate they can be used to accurately
identify causal genomic elements and cell types underlying associated genetic variation.
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Results

Genome annotation for 234 samples using Segway
We obtained Segway annotations for each of the samples independently, using a two-step
annotation pipeline (Methods, Figure 1A,B,F). In the first step, we applied Segway, which
partitions the genome based on data from epigenomic tracks and assigns a state label to
each segment such that sections with the same label share similar patterns in the
epigenomic tracks (Methods). At this stage, the state labels assigned by Segway solely
distinguish different regions and do not bear any biological or functional meaning. We
determined the number of labels for each sample according to the count of input tracks,
following the previous work 7 (Methods); each of the 234 samples has 6-12 input tracks and
14-16 labels.

In the second step, we map the state labels to the interpretation terms based on the features
from each of the state labels. As Segway is an unsupervised model, its identified state labels
must be mapped to human-recognizable interpretation terms (e.g. ‘Enhancer’; these are also
known as “mnemonics”). In the past, this interpretable process was performed manually by
evaluating each label’s pattern to input tracks and relationship to known genomic elements.

Here, we used a recently-developed automated interpretation process to obtain an unbiased
and fast mapping of the interpretation terms to biological state labels 7. To do so, we
manually interpreted a subset of labels and used this subset as a training set to train a
random forest classifier to interpret the remaining labels (Figure 1B, Methods). The classifier
takes as input a set of 16 features for each Segway state label and outputs one of 11
interpretation terms (Figure 1B, Table 1). Six of the features encode the mean signal of six
different histone modification marks in label-associated regions. The remaining 10 features
quantify the enrichment of the label at various regions relative to gene bodies (Figure 1D,
Methods).

We developed a new vocabulary of 11 interpretation terms in order to capture the diversity of
epigenomic patterns present in the 234 samples (Table 1). This vocabulary identifies
regulatory regions using six terms: Promoter, PromoterFlanking, Enhancer, EnhancerLow,
Bivalent and CTCF; inactive heterochromatin using three terms: FacultativeHet,
ConstitutiveHet and Quiescent, as well as a term for transcribed genes (Transcribed) and
one for an uncommon combination of histone marks associated with zinc finger genes
(K9K36). We should highlight that each term describes an empirically-observed pattern of
epigenetic activity and not a functional hypothesis. For example, “Enhancer” labels mark
segments with enhancer-associated epigenetic marks but we do not intend to assert that all
such segments act as functional enhancers 6. Similarly, the distinction between Enhancer
and EnhancerLow describes high versus low epigenetic read counts, not necessarily high
versus low strength of regulatory function.

We found that the interpreter accurately recapitulates manual labeling (Figure 1C, SFigure1).
When the interpreter disagrees with manual interpretation, the disagreement occurs between
similar terms (Figure 1C, SFigure 3). For example, Promoter and PromoterFlanking are often
switched, but rarely e.g. Promoter and Quiescent. However, we also found that a confused
interpreter is a good indicator of poor data quality for a given sample (SFigure04).
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Specifically, samples with low posterior probabilities of label assignment from the interpreter
tend to be dominated by inactive labels in other annotations based on the same data,
suggesting poor data quality (Pearson correlation -0.37 between median classifier posterior
and inactive coverage). Thus interpreter posterior can be used as a quality control metric.
Based on this, we identified a list of 16 low quality samples (Supplementary Table ST04).
Although our interpretation process does not explicitly require that each sample include
labels with all the different interpretation terms, most samples do so. Automatic interpretation
of Segway annotations identifies all the labels active promoter, enhancer, and transcribed
regions and inactive FacultativeHet, ConstitutiveHet, and Quiescent regions in almost all of
the samples (> 94%). Only a subset of samples include Bivalent and K9K36 labels (SFigures
5,6), likely because these chromatin states are not present in all cell types. Furthermore,
CTCF ChIP-seq data is present in only 51% of samples and thus the corresponding label is
present in only a subset (32%) of samples. Also note that the interpreter does not take CTCF
signal as input, yet it is still able to reliably identify CTCF labels based on its associated
features (SFigure 1).

Our annotations capture a large amount of previously unannotated activity. Our annotations
label 12-48% (median 27%) of the genome with one of the 8 active labels (Figure 1E,
SFigure 2), mostly due to Transcribed and EnhancerLow labels. For comparison, the largest
existing set of reference chromatin state annotations is the EpiMap reference generated in
Boix et al. 2021 20; these annotations assign 35-92% (median 72%) of the genome to the
uninformative Quiescent label (SFigure 2). In contrast, our annotations assign just 10-75%
(median 35%) as Quiescent. Instead, they label on average an additional 12% and 15% as
the more-specific heterochromatin types ConstitutiveHet and FacultativeHet, and label on
average an additional 9% as one of the 8 active types. This large increase in sensitivity is
likely due to Segway’s use of genomic signals as opposed to binarized peak calls.
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Figure 1: (A) Top left: matrix of input data sets. For each sample, we trained an independent Segway model,
then used that model to annotate the genome of that cell type (Methods). We used an automated process
to assign a controlled vocabulary of chromatin state descriptor terms to each Segway state (Methods). (B)
The automated interpretation process defines a vector of features defining the properties of a given state
that researchers usually use for manual interpretation, such as the association with the input data sets and
enrichment around annotated genes. We manually interpreted a subset of 90 states to form a training set,
then trained a multi-label random forest to recapitulate this interpretation process for the other 3,408 states
(Methods). (C) Accuracy of the automated interpreter. Each box shows the distribution of the probabilities
for each of the interpretation terms; background color denotes median probability. The term with the
highest probability is the output of the classifier for each of the state labels. (D) Association between
interpretation terms (vertical) and features input to the interpretation model (horizontal). Color indicates
z-score. (E) Distribution of genomic coverage for each interpretation term. Boxplot shows the distribution for
a given interpretation term across the 234 samples. (F) Annotations of an example locus in chromosome 15.
Vertical axis indicates sample and color indicates annotation label.
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Table 1: Vocabulary of interpretation terms for ENCODE4 Segway states.

Annotations accurately capture regulatory activity and transcription
We found that Segway annotations accurately distinguish expressed versus silent genes
(Figure 2A). Highly-expressed genes tend to have the Promoter label at their transcription
start site (TSS) and the Transcribed label throughout their gene bodies. Conversely, silent
genes more often have the Bivalent label at their promoter and their gene bodies are
enriched for FacultativeHet and show no particular enrichment for the Transcribed state.
Genes expressed at a low level are disproportionately labeled with Bivalent and are only
slightly enriched for the Transcribed label. Our annotations show a clear difference between
the enrichment of labels around the genes with zero, low and moderate to high expression,
reflecting the expected genomic activities around the genes. Overall, relative enrichment or
depletion of labels is low for the genes that are not expressed compared to the expressed
genes, while for genes with moderate to high expression suppressed labels are depleted
and active labels are highly enriched. Transcribed label, for example, is enriched at
moderate to low levels for genes with moderate to high and low expression, and it is mildly
depleted for genes that are not expressed. On the contrary,FacultativeHet, associated with
tissue-specific repression, is highly depleted among the expressed genes, and has moderate
enrichment at genes that are not expressed.
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Figure 2: (A) Enrichment of the labels around genes, divided by expression level. Vertical axis indicates the

degree to which the label occurs more at a given position than would be expected by chance if labels were

distributed randomly (in the case of negative enrichment, less than expected by chance). (B) Pipeline for

prediction of gene expression and active promoter regions based on the annotations (Methods). (C)

Annotations predict gene expression and active promoter with high AUC. Vertical axis indicates the area under

the receiver-operator curve (AUC) for predicting RNA-seq expression from labels at the gene body (left) and

promoter (right) respectively (Methods). (D) Same as (C), but for predicting transcribed enhancers (eRNA

production).

To quantitatively assess these annotations, we evaluated their efficacy towards
understanding tissue-specific gene regulation by performing three analyses.
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First, we evaluated how well Segway annotations of promoter activity capture gene
transcription. Following previous work7,12, we used logistic regression to predict
sample-specific gene expression based on either (1) the Segway labels at the gene’s
promoter and (2) labels at its gene body, for a set of 88 samples with transcriptomic data
available (Figure 2B, Methods).We found that the labels within each region are strongly
predictive of expression (median AUC 0.84), indicating that the annotations accurately
capture gene regulation. Our annotations are more predictive than those of EpiMap for both
the gene body (median AUC 0.84 compared to 0.81 for Epimap), promoter regions (median
AUC 0.84 versus 0.82). We also examined the association between Enhancer annotation
labels and enhancer eRNA transcription measured by the FANTOM5 consortium 18,19, and
although both Segway and EpiMap are predictive, their difference is not statistically
significant (Figure 2D, see Methods).

Similarly, we found that Enhancer labels distal to a gene’s TSS are predictive of gene
expression. We used the coverage of Enhancer labels within the 5kbp of the gene TSS and
TTS as a predictor of gene expression, excluding 2000 bp upstream and 300 bp
downstream around the TSS area for the promoter activity (Figure 3A, Methods). Results are
similar for alternative choices of distal regions (see SFigure 7). Enhancer activity identified
by ENCODE4 Segway is a predictor of gene expression with median AUCs of 0.72, 0.72,
0.69 for the three extended regions among the 88 samples (see Figure 3B). In comparison,
EnhancerLow activity is not a strong predictor of gene expression (median AUCs of 0.59,
0.62, 0.6). EpiMap coverage of the combination of Enhancer labels (EnhA1, EnhA2, EnhG1,
EnhG2, see SFigure 2 for mapping of labels) is a much weaker predictor of gene expression
for most samples (median AUCs of 0.56, 0.59, 0.6, highest value 0.67). The combination of
Enhancer and EnhancerLow state labels resulted in slightly lower prediction values for
ENCODE4 Segway and higher prediction values for Epimap annotations.

We hypothesized that our higher accuracy at detecting transcription-associated activity
derives from the use of genomic signals rather than binarized peak calls, leading to
increased sensitivity for enhancer activity. To evaluate this hypothesis, we evaluated the
sensitivity of each annotation set for enhancers as a function of H3K4me1 signal, a
canonical mark of enhancers. Specifically, we examined the coverage of ENCODE4 Segway
labels as a function of the intensity of H3K4me1 fold change values. As expected, we found
that positions with higher H3K4me1 values are more likely to be annotated as Enhancer:
42% of positions H3K4me1 values >4 are labeled Enhancer (and have some kind of active
label nearly 100% of the time), whereas only 0.4% of those with H3K4me1 values of 0-1 are
labeled as Enhancer (Methods, Figure 3C, SFigure 08 for examples of individual samples).
A similar pattern holds for EpiMap. However, whereas positions with moderate H3K4me1
signal (2-3 fold change) are rarely labeled as any type of enhancer by Epimap (median 0.16
EnhA1/EnhA2/EnhG1/EnhG2 and 0.07 EnhWk respectively), our annotations usually label
such positions are as EnhancerLow ( 0.36 for Enhancer, 0.12 for EnhancerLow; Figure 3C).
Finally, we observed that the coverage of the Enhancer label around the gene body and the
mean intensity of the signal is a predictor of gene expression for individual samples ( Figure
3D, SFigure 8). Our results show that ENCODE4 Segway Enhancer annotations are a good
representative of moderate-to-high H3K4me1 fold change signal. We have also shown that
the coverage of the Segway Enhancer label around the gene body is a predictor of gene
expression.
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Figure 3: (A) Regions within 5kbps around genes TSS were selected for examination of Enhancer activity,

excluding 2300bps (2000bp upstream, 300bp downstream of the TSS) promoter region (Methods). (B)

Prediction of the gene expression based on the coverage of Enhancer labels in the 5kbps regions, for both
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EpiMap and ENCODE4 Segway annotations (Methods) . (C) Boxplots showing the coverage of Enhancer for

ENCODE4 Segway annotations and EnhA1/EnhA2/EnhG1/EnhG2 for EpiMap annotations as a function of

H3K4me1 signal. (D) Similar to C, but for EnhancerLow for ENCODE4 Segway and EnhWk for EpiMap

annotations. (E) Similar to C/D, but including all active labels. (F) For one sample (ENCODE annotation

accession ENCSR388IAJ), from top to bottom: first plot shows mean H3K4me1 values surrounding (5kb

up/downstream, excluding 2300bp promoter region) each gene, for bins of 100 genes, sorted by this mean

H3K4me1 value. Second plot shows the fraction of genes that are expressed (TPM>0). Third and forth plots

show the mean fraction of coverage for labels Enhancer/EnhA1/EnhA2/EnhG1/EnhG2 and

EnhancerLow/EnhWk respectively for the same region around each gene.

Annotations identify meaningful disease-cell type associations
We hypothesized that each variant-phenotype association identified by a genome-wide
association study (GWAS) is driven by a functional genomic element which is active in a
subset of cell types. Due to linkage disequilibrium, a GWAS can identify the
phenotype-associated genomic regions, but not the exact SNP 21,22. Other works have
demonstrated how chromatin state annotations can be utilized to identify both the functional
elements driving the associations and the cell types in which these functional elements are
selectively active 7,20,23–30. Here we use Segway annotations and conservation-associated
activity scores (CAAS) 7 to identify cell type-specific functional genomic elements associated
with GWAS traits.

We assigned the conservation-associated activity score (CAAS) to each chromatin state
label to distinguish putatively functional types of activity (e.g. active regulatory elements or
transcribed genes) from putatively nonfunctional types (e.g. inactive heterochromatin).
Briefly, following previous work 7 , we calculated the CAAS of each label using the phyloP
conservation scores 31 of genomic positions which were annotated by that label, taking the
seventy fifth percentile of absolute phyloP values at these label-associated positions as the
label’s CAAS; higher CAAS indicates that label-associated genomic loci tended to have
more extreme levels of conservation activity, which could in turn be interpreted as indicating
a higher degree of biological functionality. Label CAAS was computed separately for each
biosample because Segway produces sample-specific maps of regulatory activity from
epigenetic signal tracks.

CAAS is a fully data-driven estimate of putative functionality; it is an alternative to manually
choosing a subset of labels (e.g. Promoter and Enhancer) as putatively functional. A
data-driven approach is important because different cell types may exhibit different functional
activity; for example, functional regulatory elements may be poised in embryonic cell types
and active in developed cell types. Notably, while the CAAS of labels at a given genomic
position is correlated with evolutionary conservation, it represents an orthogonal measure of
functionality to conservation, as it can identify human-specific functional elements. Note that
we performed all analysis at the level of Segway state labels, not interpretation terms, to
avoid potential bias introduced by the interpretation process.

We found that our functional and nonfunctional states are effectively distinguished by the
CAAS value. CAAS was consistently higher for states receiving functional interpretation
terms in the automated annotation pipeline (Figure 4A), with Promoter, Enhancer,
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Transcribed, and Bivalent states typically displaying the highest CAAS and Quiescent,
ConstitutiveHet, FacultativeHet, and K9K36 states typically displaying the lowest CAAS.
Furthermore, labels which received the same interpretation terms generally displayed similar
but not identical CAAS, (SFigure 08), allowing downstream analysis to distinguish
identically-interpreted labels which exhibit subtle differences in functionality (Methods).

Given the effectiveness of our annotations at capturing biological functionality, we used the
predicted sample-specific maps of regulatory activity to identify putative causal loci of GWAS
associations 32 by examining the functional elements in the vicinity of their associated SNPs
(Methods). We hypothesized that, if a given cell type plays a role in a trait, functional
genomic elements involved in the trait are active in that cell type and thus GWAS SNPs are
located near such elements. To evaluate this hypothesis, for each trait studied with a GWAS
in the NHGRI-EBI GWAS Catalog, we first measured the significance of association between
each trait-sample pair, then compared associations by ranking and clustering to assess their
quality relative to known biology (Methods). We found that, as expected, GWAS SNPs are
highly enriched nearby active regulatory elements, suggesting that such elements are good
candidate causal drivers of disease association (Figure 4B). Furthermore, this enrichment is
particularly strong in samples identified to be associated with the trait in question (Figure 4B,
following paragraphs).

To identify samples involved in GWAS traits, we computed the mean label CAAS in the region
surrounding trait SNPs for each sample, obtaining a metric which quantified the degree of
functional activity in the vicinity of each SNP within that sample (Methods). We then used
mean CAAS to rank the functional activity around every SNP across all samples, and used
the Wilcoxon signed-rank test to assign a P-value to each trait-sample pair based on the
ranks of that trait’s SNPs within the sample. A small P-value for a trait-sample pair indicated
that trait SNPs exhibited more regulatory activity in the sample relative to the same trait in
other samples and relative to different traits in the same sample (Methods). Relative to
existing approaches for identifying cell type-disease associations 29,33–39, this approach has
the advantage that each identified sample-trait association is supported by putative driver
elements with measured activity across 234 samples.

The test for differential trait-sample associations resulted in 16,127 significant
(Bonferroni-corrected p<0.05) trait-sample associations after correcting for multiple testing
(Methods). SNP regions from significant associations were more enriched in functional
elements than SNP regions from insignificant associations, as expected from the way the
test was designed (Figure 4B). Conversely, in samples not associated with the trait in
question, SNP regions are more likely to receive FacultativeHet, suggesting that the activity
of such loci is often specific to associated samples and that they are repressed in
non-associated samples (Figure 4B).

Statistical testing for differential association revealed associations between traits and cell
types that align with known biology. For example, the five biosamples most associated with
the coronary artery disease trait were all heart tissues; three of the five significant
associations with the colorectal cancer trait were colon tissues (the remaining two being
rectum cells and adrenal gland cells); and the top seven significant associations with the
bipolar disorder trait were brain tissues and cell types (Figure 4C). Additionally, hierarchical
clustering based on P-values resulted in co-clustering of similar cell types from different
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donors and in co-clustering of similar traits, reinforcing the quality of our annotations (Figure
4D). Interestingly, the Parkinson’s disease trait clustered with traits for eye color, sunburn,
and cutaneous melanoma, and the entire cluster of traits exhibited significant association
with two melanocyte samples; these associations again align with known biology, as multiple
studies have shown a link between Parkinson’s disease and melanoma 40. Traits with a huge
number of associated SNPs (many hundreds or thousands) have significant p-values for
many samples; these traits tend to be those, such as “educational attainment”, with likely
very complicated biology and potential for bias in data collection (Figure 4D, top right corner;
see STable 04 for complete list of significant associations).
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Figure 4: (A) Heatmap showing the CAAS values for the labels for 234 biosamples. Samples with multiple colors

per row contain multiple labels that are assigned the same interpretation term. Gray cells indicate that the

given sample does not have any labels with the corresponding interpretation term. (B) Enrichment of each

interpretation term's coverage within trait-associated SNP regions relative to the term's coverage within the

whole genome. Traits are grouped based on their association with each biosample; (trait, biosample) pairs

which have a significant association (P < 0.05, "Associated trait-sample pairs", solid bars), and pairs which do

not have a significant association ("Non-associated trait-sample pairs", hachured bars). (C) P-values for the

association between three selected traits and the 234 biosamples. The 10 biosamples with the highest

association (smallest P-values) are included in the plots. (*) indicates a significant association. (D) P-value

matrix for associations between a subset of traits (rows) and the 234 biosamples (columns). The matrix is

clustered along both axes. Non-black cells represent significant associations between a (trait, biosample) pair.

Discussion
Here we present the ENCODE4 Segway Encyclopedia, a collection of sample-specific
chromatin state annotations produced using the Segway pipeline. We showed here that
these annotations comprehensively summarize epigenomic data from each sample and
accurately capture many known genomic phenomena including gene regulation and
regulatory elements. We have distributed these annotations through the ENCODE portal,
which makes them easy to organize, view and download. As SAGA chromatin state
annotations are a simple and easy-to-use summary of a large collection of data, we expect
that these annotations will provide an easy entry point for researchers looking to make use
of epigenomic information.

The ENCODE4 Segway Encyclopedia has a number of advantages over alternative
annotations of genomic elements. Unlike annotation strategies that consider only a single
mark, this encyclopedia is integrative, and thus the annotated elements are informed by all
epigenomic data sets measured in the target sample. Relative to existing large-scale SAGA
annotations, we showed that the ENCODE4 Segway Encyclopedia has increased sensitivity,
likely due to its use of genomic signals.

We demonstrated here that the ENCODE4 Segway Encyclopedia enables researchers to
identify causal elements driving disease- and phenotype-associated genetic variation. We
found that observed disease-associated genetic variants can usually be explained by a
putatively functional genomic element within a typical linkage disequilibrium window of that
variant. Furthermore, we showed that doing so can elucidate the cell types involved in
disease.

An important caveat of this analysis is that all of ENCODE's epigenetic data sets are derived
from bulk samples and thus the resulting annotations do not necessarily represent the
activity of any one cell. This is particularly important to consider when considering the
difference between low- and high-signal loci. It is an open question whether low signal at a
locus represents a homogeneous set of cells with weak activity or a heterogeneous set of
cells, some with strong activity and some with no activity. As single-cell data becomes
available, it will increasingly become possible to untangle this open question, and perhaps
even to produce chromatin state annotations of single cells or homogeneous sets of single
cells.
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Data Availability

Each of the 234 ENCODE4 Segway annotations are available on the ENCODE portal in a
bed9+ file format. These genome-wide annotation files include the coordinates of genomic
regions, their chromatin state label, the RGB color used for that state label in the genome
browser and the label initially generated by Segway. The metadata for each sample, as well
as the list of the track files which were used to generate the annotations and visualization on
the ENCODE genome browsers are also available in the ENCODE portal
(https://www.encodeproject.org/report/?type=Annotation&lab.title=Maxwell+Libbrecht%2C+S
FU&field=accession&field=files&field=files.status&limit=200&status=released).

The ENCODE portal includes a unique accession for each annotation along with all relevant
metadata. This metadata includes all datasets from which the annotation is derived, each
with an accession and link to publicly-available raw data. It also includes the identity and
version number of every tool used in the pipeline from input to output.

On the ENCODE portal, we have also included a set of sample-specific plots demonstrating
the properties and statistics of each annotation. For each sample, four plots demonstrate the
mean signal value of the input tracks, the classifier probabilities from the interpretation
process, the emission probabilities and the genome coverage for each of the labels. A fifth
plot demonstrates enrichment of the labels around the gene body. For samples with
transcriptomic data available, this plot has sections for genes with zero expression, bottom
30% expression and top 70% expression (similar to Figure 2).

The annotation pipeline code is available at:
https://github.com/ENCODE-DCC/segway-pipeline/

Code for result sections 1 and 2 is available at:
https://github.com/marjanfarahbod/SegwayClustering

Code for result section 3 is available at:
https://github.com/ardiab/encode4_segway_catalog_gwas

Methods

Datasets
We annotated all ENCODE4 cell types with sufficient epigenomic data. We selected a panel
of data sets that were available in most cell types. Specifically, we used six ChIP-seq
measurements of histone modification H3K4me3, H3K4me1, H3K27ac, H3K36me3,
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H3K27me3, H3K9me3; DNase-seq or ATAC-seq measurements of open chromatin; and
ChIP-seq measurements of CTCF binding.

We processed each sequencing data set into a real-valued tracks using the ENCODE
uniform pipelines 41. Briefly, reads were mapped to the human reference genome; reads
were extended according to inferred fragment length. For ChIP-seq data, we applied a fold
enrichment normalization by dividing the observed signal by input control signal.
The output of this processing is a track over the genome that assigns a real-valued signal
strength to each genomic position.

We chose to annotate all samples with at least the six histone marks listed above; all
annotated samples have these marks, but some are missing DNase/ATAC-seq or CTCF.
Only a few have POLR2A and EP300. When multiple data sets for the same (cell type,
assay) pair were available, we chose the more recently processed data.

For input to Segway, we binned signal data sets at 100 base pair resolution by taking the
average for each 100 bp bin. We excluded unmappable positions and the ENCODE
exclusion list; these are considered to be unobserved by Segway (see below). We applied

the variance-stabilizing inverse hyperbolic sine transform to
all signal data sets.

For transcriptomics-based evaluation (see below), we used RNA-seq data for all annotated
cell types where this data was available. In total, 88 of samples (38%) had the transcriptomic
data available. For each of these samples, the “Total RNA-seq - Default - gene
quantifications'' was downloaded from ENCODE portal, matching the tissue and the donorID.

We acquired gene coordinates from
https://www.encodeproject.org/files/gencode.v29.primary_assembly.annotation_UCSC_nam
es for the 26,017 genes.

For enhancer eRNA evaluation (see below), we acquired Cap Analysis of Gene Expression
(CAGE) data from FANTOM5 18,19

(https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/). These data sets measure
eRNA transcription for 65,423 potential enhancer regions in 1,828 cell types. We were able
to match 175 of our samples to the same tissue type in the FANTOM5 data. Supplementary
Table ST02 contains the list of matched cell types.

EpiMap annotations 20 were obtained from the portal for all the Segway annotations from the
same cell type/tissue. When available, we used the EpiMap annotations from the matching
donors. Supplementary table ST03 contains the list of matching EpiMap and Segway
accessions.

Annotation interpretation
For the interpretation process, Random Forest classifier was used according to Libbrecht et
al. 2019 7. We trained the classifier using the available training data from the same
reference, (count of 210 states) and a set of 90 states from the new set of runs. We selected
the new interpretation term set based on these two sets of data.
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Evaluation based on prediction of transcription
For the 88 samples with the transcriptomic data available, we used coverage of the
annotation states on the gene body and promoter regions to train and test the logistic
regression to determine the expression of the genes (STable 01 includes the list of
transcriptomic data). We obtained gene coordinates from
https://www.encodeproject.org/files/gencode.v29.primary_assembly.annotation_UCSC_nam
es/ and considered 2000 upstream and 300 downstream of the TSS as the promoter region.
For each sample, we trained the classifier on 80% of the genes and tested on the remaining
20%.

For prediction of gene expression based on the coverage of
Enhancer/EnhA1/EnhA2/EnhG1/EnhG2 labels, we used the fraction of coverage of these
labels at regions within 2kbps, 5kbps and 10kbps around the gene TSS (excluding the
2300bps promoter region) as the predictor. (see STable 03 list of EpiMap annotations
obtained from the ENCODE portal)

Evaluation based on enhancer RNA transcription
We first converted the enhancer coordinates to match the genome assembly GRCh38/hg38
using the genome assembly converter available in http://genome.ucsc.edu 42. Similar to the
transcription analysis, for the 175 samples with a matching tissue in FANTOM5 eRNA
transcription 18,19, for each sample we trained the logistic regression on the 80% of the
potential enhancer regions and tested on the remaining 20%. The mapping of our samples
to FANTOM5 samples is available in STable 02.

GWAS SNP analysis

Processing SNPs from the EBI GWAS catalog
We obtained the locations of 209,555 unique trait-associated single nucleotide
polymorphisms (SNPs) identified by 5,197 genome-wide association studies (GWAS) from
the NHGRI-EBI catalog of human genome-wide association studies 32. The SNPs were
associated with 15,143 different traits, and were obtained after removing null entries from the
catalog. We then applied four preprocessing steps to the GWAS SNPs.

First, we excluded all trait-associated SNPs which fall within the human MHC genomic
region. Second, we replaced each GWAS SNP with an associated “SNP region” to include
neighboring genomic positions which may be in LD with the GWAS-identified polymorphism
and which may underlie the disrupted biological process causing the observed phenotype 43.
SNP regions were defined as 20,001 bp genomic windows centered on the associated SNP,
and were clipped on the appropriate side when a SNP was located less than 10,001 bp from
one end of the chromosome. Third, we filtered the SNP regions associated with each GWAS
trait to prevent double-counting. Specifically, we sorted the SNP regions associated with
each trait in order of ascending SNP P-value and added regions greedily to the trait; a SNP
region created around a SNP with a larger P-value was only added to the trait if it had an
intersection of less than 50% with each previously-added trait SNP region that was created
around a lower P-value SNP. We note that this processing step was done at the trait level,
meaning that a given SNP which is associated with multiple traits could be filtered out for
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only a subset of the traits. In the fourth and final SNP processing step, we removed traits
with fewer than 30 filtered SNP regions.

After the preprocessing steps, 144,071 unique SNP regions and 1,274 traits remained.

Measuring enrichment of functional elements in SNP regions
To measure the level of functional activity within SNP regions, we intersected the 144,071
filtered SNP regions with Segway annotations for each of the 234 available biosamples,
using the bedtools package 44. The intersections yielded chromatin state distributions for
every (biosample, SNP region) pair, which we then used to calculate a biosample-specific
metric (mean CAAS) that encodes the functional activity of each SNP region in each
biosample.

Calculating label-wise conservation-associated activity score (CAAS)

We calculated the conservation-associated activity score of each Segway label in each
biosample following Libbrecht et al. 2019 7. We used phyloP scores 31 derived from the
genomes of 30 mammals, 27 of which are primates (download link
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP30way/hg38.30way.phyloP/ )

Let represent the set of all genomic bins assigned label by Segway in biosample .
Then, the CAAS of label in biosample is defined as:

where denotes the 75th percentile and denotes the phyloP score at position
. As previously observed, we found that the percentile achieved good separation in
phyloP between labels (SFigure 9).

Calculating mean CAAS in a SNP region

We measured the enrichment of regulatory activity within the SNP regions using their mean
CAAS. Given a SNP region and a chromatin state annotation

which assigns a label to each position
in biosample , the mean CAAS for the region in a given biosample was obtained by
taking the average of the label CAAS within the biosample, weighted by the proportion of the
SNP region covered by each label in that biosample (SFigure 9):

where is the number of bases in the SNP region.

Intuitively, a high mean CAAS within a SNP region indicates that the region received Segway
chromatin state annotations which were used to annotate highly-conserved positions in the
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genome; consequently, using conservation as a proxy for functional importance, such
regions can be thought of as having a high degree of functional activity.

Testing for differential biosample-trait association

We used the mean CAAS values for SNP regions to test for differential association between
(biosample, trait) pairs. For each of the SNP regions
defined in the SNP preprocessing step, we ranked the biosamples
by the CAAS of the SNP region, producing ranks between and , where a rank of
signifies that the biosample had the lowest CAAS for the SNP region, and a rank of
signifies that it had the highest CAAS. The overall ranking process produced a ranking
matrix , where row contains the CAAS ranks of all biosamples for
SNP region , column contains the CAAS ranks of biosample for all SNP regions

, and entry specifies the CAAS ranking of biosample for SNP region .

We then calculated a “null” rank for each biosample by taking the median rank across all
SNP regions for the biosample; the null rank for biosample is calculated as

To test for the degree of association between a biosample and a trait
that is associated with a subset of the SNP regions, we used the

Wilcoxon signed-rank test to test whether the median rank within the specific trait’s rank
distribution was greater than the null rank of the biosample. Intuitively, the test asks the
question

Biosample-specific null ranks were used as a normalization method to control for biosamples
which exhibit high overall regulatory activity, so that the test can better capture differential
association in biosamples which exhibit lower overall regulatory activity that is more specific
in nature.

The test produced a P-value matrix , where an entry specifies the
P-value for the association between trait and biosample . Lower
P-values can be interpreted as specifying higher-than-expected ranks for the trait's activity
within the biosample, and therefore as indicating a more significant association between the
(trait, biosample) pair. To control for multiple testing, we applied Bonferroni correction by
multiplying all P-values by the number of biosamples. STable 04 includes the list of
significant (biosample, trait) associations with the corresponding p-values.

Hierarchical clustering

To investigate whether the obtained (trait, biosample) associations captured biological
differences, we clustered the P-value matrix produced by the test for differential
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biosample-trait association. If the test detects real biological patterns, traits which share
underlying functional mechanisms are expected to co-cluster, whereas traits with differing
mechanisms are expected to appear in distinct clusters (indicating that the test successfully
assigned broadly similar P-values to similar traits and different P-values to dissimilar traits).
Analogously, biosamples consisting of similar cell types are expected to co-cluster.

We applied Euclidean hierarchical clustering to the P-value matrix produced by the test for
differential biosample-trait association. Our approach applied clustering along both axes of
the matrix (traits and biosamples) based on the computed P-values.
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