

A fully sequenced collection of homozygous EMS mutants for forward and reverse genetic screens in *Arabidopsis thaliana*

4 Sébastien Carrère¹, Jean-Marc Routaboul¹, Pauline Savourat², Caroline Bellenot¹, Hernán López³,
5 Thomas Quiroz Monnens¹, Anthony Ricou², Christine Camilleri², Patrick Laufs², Raphael Mercier³
6 and Laurent D. Noël^{1,*}

7

⁸ ¹ LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France.

⁹ ² Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000,
¹⁰ Versailles, France.

11 ³Department of Chromosome Biology, Max Planck Institute for plant breeding research, Carl-von-
12 Linné-Weg 10, Cologne, Germany.

13

14 *Author for correspondence:

15 Laurent D. Noël, laurent.noel@inrae.fr, ORCID: 0000-0002-0110-1423

16

17 Abstract (146 words)

18 Genetic screens are powerful tools for biological research and are one of the reasons for the success
19 of the thale cress *Arabidopsis thaliana* as a model species. Here, we describe the whole-genome
20 sequencing of 871 *Arabidopsis* lines from the Homozygous EMS Mutant (HEM) collection as a novel
21 resource for forward and reverse genetics. With an average 576 high-confidence mutations per HEM
22 line, over three independent mutations altering protein sequence are found on average per gene in the
23 collection. Pilot reverse genetics experiments on reproductive, developmental and physiological traits
24 confirmed the efficacy of the tool for identifying both null and knockdown alleles. The possibility of
25 conducting subtle repeated phenotyping of HEM lines and the immediate availability of the mutations
26 will empower forward genetic approaches. The sequence resource is searchable with the ATHEM

27 web interface (<https://lipm-browsers.toulouse.inra.fr/pub/ATHEM/>), and the biological material is
28 distributed by the Versailles Arabidopsis Stock Center.

29

30 **Introduction**

31 Model organisms are typically characterised by relative genetic simplicity (gene number, genome
32 size), short reproductive cycle, abundant offspring, amenability for genetic manipulation, small size
33 and straightforward growth conditions. *Arabidopsis thaliana* is a wild Brassicaceae that meets these
34 criteria and has been the main plant model for basic research programs since the 90s¹. Thousands of
35 forward genetic screens have been conducted worldwide using this plant, Columbia-0 (Col-0) being
36 the most commonly used accession. Such screens commonly require the phenotyping of tens of
37 thousands of individuals, thus limiting our capacity to conduct labour-intensive or expensive
38 phenotypic characterizations. With more than 32,000 genes annotated in the Col-0 reference genome,
39 using homozygous T-DNA insertion mutants also represents an important workload. Besides, such
40 mutants are mostly null loss-of-function mutants, which limits the range of induced genetic variations
41 and hinders the isolation of mutants in essential genes whose analysis would benefit from
42 hypomorphic or conditional alleles.

43 In order to circumvent some of these limitations, a set of 897 homozygous EMS mutant (HEM) lines
44 were produced by single seed descent or haploid doubling in the Col-0 accession². The whole-genome
45 sequence analysis of 47 HEM lines has previously shown that each line carried ca. 700 homozygous
46 mutations, 28% of which affect a protein sequence. By construction, most of the mutations in the
47 HEM lines are fixed, which means that phenotypes can be replicated and multiple traits can be
48 explored in these immortalised lines. A previous forward genetic screen looking for meiotic defects
49 identified 43 lines, 21 of which carried mutations in genes previously identified to have a key role in
50 meiosis. Several allelic series were also found, suggesting that sequencing the whole HEM library
51 could facilitate the identification of the causal genes.

52 In this study, through whole-genome sequencing of 871 HEM lines, we describe the complete set of
53 mutations present in the collection. We experimentally validated a selected subset of detected
54 mutations, at both the molecular and phenotypic levels. To help the community exploit this new
55 resource, we have constructed a web interface to facilitate forward and reverse genetic approaches
56 with the HEM collection.

57

58 **Results**

59 *Sequencing of HEM lines and detection of EMS-induced mutations*

60 DNA was extracted from pooled leaf samples originating from five seedlings of each of the 897 HEM
61 lines and 71 wild-type Col-0 controls. Genomic DNA was sequenced on three NovaSeq6000 lanes
62 (Illumina) yielding 2.43 Tb of sequences (8.1 billions paired-end reads of 2 x 150bp). Quality-filtered
63 reads (e.g., adapter trimming, removal of duplicates) from each HEM line were mapped to the
64 reference genome using relaxed criteria in order to minimise the chance of missing EMS-induced
65 polymorphisms (see Material and Methods for detailed parameters). Considering a genome size of
66 119 Mb, the effective median coverage is 10.06 per HEM line (Fig. 1a). This analysis identified
67 433,918 putative polymorphic sites in the 871 HEM lines. Twenty-six HEM lines were not retained
68 for further analyses due to poor sequence coverage or aberrant patterns of polymorphisms. As
69 expected for an EMS mutagenesis, 96% of the polymorphisms corresponded to SNPs, 97% of which
70 were transitions (G->A or C->T). The other observed polymorphisms resulted from small InDels (1%
71 insertions, 3% deletions). Considering only transition mutations falling into genes (including UTRs
72 and introns), 85% (251,285) were predicted to be homozygous (refer to Materials and Methods).

73

74 *Prediction of the impact of HEM polymorphisms on gene function*

75 On average, 576 mutations were detected per HEM line, 135 (23%) of which are predicted to have a
76 high or moderate impact on gene function (Table 1, Fig. 1b) using the SnpEff software
77 (https://pcingola.github.io/SnpEff/se_inputoutput/#effect-prediction-details). High-impact mutations

78 include premature stop codons, frameshift mutations or splicing alterations that likely result in protein
79 truncation. Moderate-impact mutations correspond to missense mutations or inframe deletions that
80 might affect protein function. Low or modifier mutations correspond to synonymous mutations or
81 mutations in non-coding regions, respectively, and together represent 77% of the polymorphisms. All
82 of the 32,723 genes of *Arabidopsis* accession Col-0 harbour one or more detected mutations, with an
83 average of 3.25 polymorphisms per kilobase. Importantly, 20% and 73% of the genes harbour at least
84 one high-impact or high/moderate-impact mutation, respectively (Fig. 1c). The 8,700 (27%) genes
85 without high- and moderate-impact mutations might be small and/or essential for viability or
86 reproduction. Indeed, we observed a positive correlation between gene size and mutation frequency
87 (Fig. 1d). In conclusion, it is expected that at least two high- or moderate-impact mutations can be
88 identified for 57% of *Arabidopsis* genes (Fig. 1d), thus contributing to a high likelihood of identifying
89 allelic series in the HEM resource. This collection is thus suitable for use in both forward and reverse
90 genetic screens.

91

92 *Web-based search interface to mine HEM SNP repertoire*

93 A web-based interface named ATHEM was created to visualise sequence alignment results per HEM
94 line, per gene, per genomic region and per impact of mutation ([https://lipm-](https://lipm-browsers.toulouse.inra.fr/pub/ATHEM/)
95 [browsers.toulouse.inra.fr/pub/ATHEM/](https://lipm-browsers.toulouse.inra.fr/pub/ATHEM/)). This site also offers a user-friendly searchable tool,
96 including a genome browser, to allow mining of the resource for forward and reverse genetics
97 applications. The user can evaluate the quality of the predicted polymorphisms and the homozygosity
98 state based on sequence alignments using the genome browser.

99

100 *Mutations inferred from the HEM database sequences reliably identify homozygous mutants for*
101 *reverse genetic approaches.*

102 We conducted a number of quality controls which first included the comparison of the polymorphisms
103 detected here in 47 sequenced lines with those previously identified in their progenitors². The analysis

104 showed that the closest hit for each progenitor was indeed its expected HEM descendant. In a previous
105 forward genetic screen for meiotic defects conducted on the HEM collection², causal mutations were
106 identified in 18 lines re-sequenced here. Among these 18 mutations, 11 were found in the HEM
107 database in the expected lines. The seven remaining mutations are not found in the HEM database.
108 This could be explained by genetic segregation as the initial forward screen ² was performed in an
109 earlier generation than the mutant plants sequenced here.

110

111 Next, to further investigate the quality and potential for functional analysis of this population, we
112 conducted reverse genetic screens with five functionally well-characterised genes (Table 2). These
113 included genes involved in flavonoid production in seeds, meiosis or shoot and flower development.
114 A first reverse genetic screen was undertaken for the *CHALCONE SYNTHASE (TT4)* gene and the
115 *TRANSPARENT TESTA 2 (TT2)* gene encoding a R2R3 MYB domain transcription factor. These
116 genes are both key determinants in the accumulation of flavonoids, including proanthocyanidins, that
117 are responsible for the brown colour of mature seeds. Four and three HEM lines were predicted to
118 have high- or moderate-impact mutations in *TT4* and *TT2*, respectively. Sanger sequencing of five
119 individual plants per line showed that all seven HEM lines carried their expected mutation in *TT2* or
120 *TT4*. Six mutations were homozygous and one was segregating (ES1M5S03056) (Table 2), matching
121 the Illumina sequencing. The three lines predicted to have a high impact (ES1M5S02007 and
122 EH1S1B627 for *TT2*; ES1M5S10055 for *TT4*) and a single one predicted to have moderate impact
123 on *TT4* (EH1S1B670) displayed a yellow colour indicative of a lack of proanthocyanidin
124 accumulation in seeds (Fig. 2a), as expected for a null mutation in this metabolic pathway.

125

126 HEI10 is an evolutionarily conserved RING finger-containing protein involved in the formation of
127 meiotic crossovers³. Meiotic crossovers shuffle genetic information and create physical links between
128 homologous chromosomes – chiasmata – which are essential for balanced chromosome segregation.
129 In the absence of a functional HEI10, crossover (CO) formation is strongly reduced, unconnected

130 chromosomes (univalents) segregate erratically at meiosis I, and fertility is impaired. We identified
131 two mutations in the HEM lines that modify the *HEI10* coding region (Table 2). One mutation with
132 predicted high impact in the ES1M5S02042 line (C580T) introduces a premature stop at codon 194
133 (Q194*) and is predicted to result in the production of a HEI10 protein truncated at its C-terminal
134 unstructured region, based on AlphaFold modelling. The second mutation (C800T) present in the
135 ES1M5S10109 line is predicted to have a moderate impact (P267L). We confirmed that both
136 mutations were present and segregated in the ES1M5S02042 and ES1M5S10109 lines, corroborating
137 the whole-genome sequencing data (Table 2 and Supplementary Table S1). Plants homozygous for
138 the *hei10*^{Q194*} mutation showed strongly reduced fertility, as assessed by visual examination of fruit
139 length. Meiotic chromosome spreads revealed the presence of univalents, phenocopying the
140 previously described *hei10*-2 mutant (Fig. 2b). This shows that the *hei10*^{Q194*} mutation disrupts
141 *HEI10* function and indicates that the C-terminal unstructured region of HEI10 is important for its
142 function in CO formation.

143 We finally searched for mutants in the *CUP-SHAPED COTYLEDON1* (*CUC1*) or *CUC2* genes which
144 are required for boundary domain specification in the aerial organs. Mutants in these genes show
145 multiple phenotypes including fusion between organs such as cotyledons and sepals and reduced leaf
146 serration for *cuc2*^{4,5}. Seven and five HEM lines were predicted to have high- or moderate-impact
147 mutations in *CUC1* and *CUC2*, respectively. Sequencing of *CUC1* or *CUC2* in eight individual plants
148 per HEM line showed that most were homozygous mutants as inferred from genome sequences. The
149 only exceptions were the ES1M5S03067 and ES1M5S11077 lines in which, among the eight plants
150 investigated, a single wild-type plant for the *CUC1* and *CUC2* genes was identified, respectively. In
151 the absence of heterozygous plants in the same HEM lines, we hypothesise that those plants wild-
152 type for *CUC1* or *CUC2* may result from occasional seed contamination that occurred during seed
153 collection or after sowing. Mutations affected both conserved and nonconserved amino acid residues
154 of CUC proteins (Supplementary Fig. S1). All seven *cuc1* and four out of five *cuc2* candidate
155 moderate-impact mutants showed fused cotyledons and/or sepals (Table 2, Supplementary Table S1,

156 Fig. 3a,b). The *cuc2*^{P59L} and *cuc2*^{G196D} mutants also showed reduced leaf serration (Fig. 3c). These
157 phenotypes were indicative of impaired CUC1 and CUC2 function. To further test if the phenotypes
158 were due to mutations in *CUC1* or *CUC2* genes, we performed allelism tests. F1 plants of a cross
159 between either one of the two of the strongest *cuc1* HEM mutants based on the sepal fusion phenotype
160 (*cuc1*^{E75K} or *cuc1*^{G120R}) with the strong mutants *cuc1-13* showed fused sepals. Similarly, F1 plants
161 resulting from the cross of either *cuc2*^{P59L} or *cuc2*^{G196D} with the strong mutant *cuc2-1* showed fused
162 sepals and reduced leaf serration (Fig. 3c). Together, this confirmed that the phenotypes observed in
163 the HEM lines were due to mutation of *CUC1* or *CUC2*. Double *cuc1* *cuc2* mutants show strong
164 cotyledon fusion defects and form cup-shaped cotyledons⁴. Similar cup-shaped cotyledon seedlings
165 were formed in the F2s between *cuc2-1* and *cuc1*^{E75K} or *cuc1*^{G120R}, suggesting that these two *CUC1*
166 alleles severely affected its function (Fig. 3a). In contrast, no cup-shaped cotyledon phenotype was
167 observed in the F2 population between *cuc1-13* and the two novel *cuc2*^{P59L} and *cuc2*^{G196D} alleles,
168 suggesting that these are hypomorphic alleles, consistent with the limited suppression of their leaf
169 serration compared to the smooth leaves of the strong *cuc2-1* allele (Fig. 3c)⁶. Altogether, these
170 observations indicated that both strong and hypomorphic alleles of *CUC1* and *CUC2* could be
171 identified in the HEM collection.

172 Our results showed that the mutations inferred from the HEM database were reliably confirmed, that
173 the corresponding homozygous mutants could be easily retrieved in the HEM collection and that both
174 strong and hypomorphic mutants for those genes of interest could be identified.

175

176 *A unique cuc2 mutation in the miR164 binding sequence important for the repression of CUC2*
177 *expression*

178 While identifying mutations that affect protein sequence may be the primary use of the HEM
179 collection, other mutations classified as Low or Modifier may nevertheless be useful and yield
180 informative mutant phenotypes. For instance, we identified the ES1M5S03057 HEM line as

181 containing a synonymous point mutation in *CUC2* (S264S) inside the known binding site for *miR164*
182 microRNA, a negative regulator of *CUC1* and *CUC2* expression (Fig 3d)^{6,7}. Interestingly, the
183 *cuc2*^{S264S} line showed increased leaf serration (leaf dissection index was 1.30 on the 6th rosette leaf
184 compared to 1.23 for wild type, n>14), and ectopic structures developed along the pistil (Fig. 3e).
185 These phenotypes are very reminiscent of the *cuc2*-1D mutant, which was demonstrated to disrupt
186 the *miR164* binding site resulting in increased *CUC2* expression⁸. This suggested that the regulation
187 of the endogenous *CUC2* gene by *miR164* was compromised in *cuc2*^{S264S}. This example illustrates
188 the usefulness of a fully sequenced collection of SNP mutants for the identification of rare alleles
189 affecting regulation of gene expression.

190

191 **Discussion**

192 **Using the HEM resource to go from genes to phenotypes, and *vice versa***

193 Here, we fully sequenced a collection of more than 800 *Arabidopsis* mutants, thus generating a new
194 genetic resource for forward and reverse genetics that we are making available for the community.
195 This resource is complementary to the numerous insertion mutant collections available for
196 *Arabidopsis* and parallels those developed for other species such as wheat⁹.

197 To demonstrate the usefulness of this resource, we first confirmed the reliability of our SNP analysis
198 by Sanger-sequencing of 23 gene fragments from 23 distinct HEM lines. Second, we identified novel
199 alleles in well-characterised reproductive, developmental or physiological processes, including loss-
200 of-function, hypomorphic and gain-of-functions alleles resulting in gene expression misregulation
201 that could not have been found in insertional mutant collections. We have developed a user-friendly
202 web interface that allows for the efficient mining of the resource. With over 500 mutations per line,
203 characterization of given mutants identified in reverse genetic approaches will still require
204 backcrossing and/or complementation. Identification of allelic series within the HEM collection is
205 possible and may be used to rapidly identify candidate causal mutations linked with phenotypic

206 defects. Because the saturation of the mutagenesis still remains limited, one may still proceed to a
207 mapping-by-sequencing strategy for mutants of particular significance without allelic series.

208

209 **The HEM resource in the landscape of *Arabidopsis* mutant collections**

210 Numerous genetic tools are available for conducting reverse genetic screens in *Arabidopsis*. These
211 include large transposon or T-DNA mutant collections, some of which are homozygous
212 (<https://arabidopsis.info/BrowsePage>). This allowed the assembly of homozygous mutant collections
213 for specific gene families such as root-expressed LRR-RLK (69 genes)¹⁰ or disease resistance genes
214 (ARTIC collection, 171 genes)¹¹. A number of large TILLING (Targeting Induced Local Lesions IN
215 Genomes) resources produced by EMS mutagenesis in accessions *Col-erecta*, C24 and Landsberg
216 *erecta* were also generated and were used successfully¹²⁻¹⁴, though the trend would be to prefer
217 CRISPR-generated mutants for targeted reverse genetic approaches. TILLING by sequencing relies
218 on high-throughput amplicon sequencing on DNA pools to identify desired mutants in collections¹⁵.
219 Yet, whole genome sequencing of such TILLING resources is still difficult to consider due to the
220 constant segregation of EMS-induced mutations and the population sizes which usually exceed tens
221 of thousands of individuals. Furthermore, the heterozygous nature of such TILLING populations
222 would render some forward genetic screens particularly tedious. With the high frequency of
223 homozygous mutations, the HEM collection is therefore particularly valuable for reverse genetic
224 approaches. Beyond null alleles that can attribute a function to a gene, specific alleles can provide
225 important insights into the mechanistics or the regulation of important developmental or physiological
226 processes, as exemplified here. The HEM collection thus provides a fully sequenced collection of
227 homozygous mutants whose population size is suitable with both reverse and forward genetic
228 applications.

229

230

231 **The HEM core mutant collection**

232 The “immortal” nature of the HEM collection, a property resulting from the homozygosity of the
233 mutants, will allow the community to conduct large-scale phenotyping on a small core collection of
234 sharable stable mutants. This will allow scientists to conduct screens based on omics methodologies
235 (transcriptomics, metabolomics, epigenetics, proteomics) as well as labour-intensive forward screens
236 (molecular, microscopic, biochemical) that would otherwise not be conducted on larger collections.
237 Furthermore, because the screens will be conducted on the same material, they have the potential to
238 reveal correlations between different traits quantified in independent screens. HEM lines should also
239 identify genes other than those revealed by genome-wide association studies in natural accessions,
240 which may not be polymorphic due to strong natural selection. It will thus be exciting to test in the
241 near future whether such approaches will unveil unexpected correlations between phenotypes and
242 biological processes that would not have been connected otherwise. Last but not least, the EMS-
243 generated HEM mutants are considered as non-GMO organisms which can thus be freely used for *in*
244 *natura* screens.

245

246 **Online Methods**

247 *Plant material*

248 The 897 homozygous EMS mutant (HEM) lines (Col-0 accession) were obtained by either single
249 seed descent or haploid doubling² and are available from the Versailles Arabidopsis stock center
250 (<https://publiclines.versailles.inrae.fr/catalogue/hem>). Plants were grown in a greenhouse or in a
251 growth chamber on *Jiffy*-7® peat pellets (<http://www.jiffypot.com>) under short-day conditions (8h
252 light, 100-120µE).

253

254 *Sequencing of genomic DNA from the HEM line*

255 Single 3-mm leaf discs were sampled from five seedlings per HEM line, pooled and subjected to
256 DNA extraction and library preparations by the Max Planck Genome Center, as described¹⁶. Seventy-
257 one wild-type Col-0 plants were included in the sequencing protocol as internal references.

258 Sequencing libraries were multiplexed in three pools for sequencing. Paired-end sequencing
259 (2x150bp) was conducted on NovaSeq6000 (Illumina) in three pools yielding 2.43 Tb (8.1 x 10⁹
260 paired reads). Libraries with initially low sequencing output were resequenced on Nextseq2000.

261

262 *Sequence analyses and SNP identification*

263 Raw sequence reads were processed using a new Nextflow pipeline nf-mutdetect2. This pipeline first
264 trimmed raw reads based on quality scores using trimmomatic software¹⁷ (parameters: LEADING:20
265 TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:50). Trimmed reads were mapped onto the
266 reference genome of *A. thaliana* (TAIR10) with bwa-mem¹⁸ (default parameters), and alignments
267 were filtered to remove duplicates and keep only paired alignments with the samtools suite¹⁹
268 (parameters: samtools view -f 0x02 | samtools fixmate -c -r | samtools rmdup | samtools view -b -q 1
269 -F 4 -F 256). SNPs and small INDELs were called using samtools mpileup (parameters: samtools
270 mpileup -B --max-depth 100) and varscan (HEM lines parameters : --min_coverage=3 --
271 min_reads2=3 --avg_qual=15 --var_freq=0.2 --var_freq_for_hom=0.8 --pvalue=0.01 ; Wild-Type
272 lines parameters: --min_coverage=5 --min_reads2=4 --avg_qual=15 --var_freq=0.2 --
273 var_freq_for_hom=0.8 --pvalue=0.01) tools²⁰. Polymorphic sites found in HEM lines and in at least
274 three parental Col-0 lines (out of 71 sequenced individuals) were excluded, because these mutations
275 are likely originating from the parent. We also excluded polymorphisms shared between more than
276 four HEM lines, since mutations induced by EMS are expected to be random and distinct between
277 distinct HEM lines. A final filtering step was applied in order to discard variation with low impact
278 predicted by the SNPeff tool²¹ and the TAIR10 genome annotation.

279

280 *Setup of a HEM searchable web tool*

281 All informative intermediate data files such as clean alignments and complete variation matrices are
282 provided on a dedicated web site <https://lipm-browsers.toulouse.inra.fr/pub/ATHEM/>. This website
283 also provides access to summary tables (list of genes with a mutation in each line and list of lines

284 showing a mutation in each *A. thaliana* gene, all classified by predicted impact), statistical summaries
285 and finally a search engine with direct access to pre-filtered variation sites (chromosomal sites with
286 a maximum coverage of 100x). Users can look for genes/lines or chromosomal regions and select
287 only a minimum impact level.

288

289 Polymorphic sites can be displayed on a dedicated genome browser providing both clean alignments
290 and genome annotations.

291

292 *Phenotyping of HEM mutants for reproductive, developmental and physiological responses*

293 Putative mutant plants were grown in the greenhouse or growth chambers. Genomic DNA was
294 extracted from five to eight individual plants. The region of the target gene containing the mutation
295 was amplified by PCR using the appropriate primers (Supplementary Table S2), and the PCR product
296 was sequenced. The phenotype was observed on the same set of plants. Pictures for HEM lines mutant
297 for *TT2* and *TT4* genes controlling flavonoid accumulation were taken using a Zeiss Axio Zoom V16
298 with a Plant Neo Fluar Z 1.0X objective and brightfield reflected light. Meiotic chromosome spreads
299 were performed as described²². Leaf morphology was determined using MorphoLeaf software²³.
300 Scanning electron microscopy of sepals was performed as described²⁴.

301

302 **Data and Software Availability**

303 The sequence datasets generated and analysed during the current study are available in the NCBI
304 Sequence Read Archive (SRA) repository under accession SRP429727. The source code of the
305 pipeline used to analyse these datasets is available at <https://github.com/lipme/nf-mutdetect2>. HEM
306 seeds are available from the Versailles Arabidopsis Stock Center
307 (<https://publiclines.versailles.inrae.fr/catalogue/hem>)

308

309 **Acknowledgements**

310 We wish to thank all SIX team members for their sampling effort (LIPME, Toulouse, France;
311 www.xantho.fr) and in particular Carine Gris for the resequencing of the *TT2* and *TT4* genes. We
312 would also like to thank the Max Planck Genome Center for library preparation and sequencing
313 (Cologne, Germany).

314

315 **Funding**

316 This work was supported by a grant from the Agence Nationale de la Recherche NEPHRON project
317 (ANR-18-CE20-0020-01) to SC, JMR, PM, PL and LDN. SC, JMR, CB, TQM and LDN belong to
318 the ‘Laboratoires d’Excellences’ (LABEX) TULIP (ANR-10-LABX-41) and the ‘Ecole Universitaire
319 de Recherche’ (EUR) TULIP-GS (ANR-18-EURE-0019). This work has benefited from a French
320 State grant (Saclay Plant Sciences, ANR-17-EUR-0007, EUR SPS-GSR) managed by the French
321 National Research Agency under an Investments for the Future program integrated into France 2030
322 (ANR-11-IDEX-0003-02).

323

324 **References**

325

- 326 1 Meyerowitz, E. M. Prehistory and history of *Arabidopsis* research. *Plant Physiol* **125**, 15-19,
327 doi:10.1104/pp.125.1.15 (2001).
- 328 2 Capilla-Perez, L. *et al.* The HEM Lines: A New Library of Homozygous *Arabidopsis thaliana*
329 EMS Mutants and its Potential to Detect Meiotic Phenotypes. *Front Plant Sci* **9**, 1339,
330 doi:10.3389/fpls.2018.01339 (2018).
- 331 3 Chelysheva, L. *et al.* The *Arabidopsis* HEI10 is a new ZMM protein related to Zip3. *PLoS
332 Genet* **8**, e1002799, doi:10.1371/journal.pgen.1002799 (2012).
- 333 4 Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. & Tasaka, M. Genes involved in organ
334 separation in *Arabidopsis*: an analysis of the cup-shaped cotyledon mutant. *Plant Cell* **9**, 841-
335 857, doi:10.1105/tpc.9.6.841 (1997).

336 5 Hasson, A. *et al.* Evolution and diverse roles of the *CUP-SHAPED COTYLEDON* genes in
337 Arabidopsis leaf development. *Plant Cell* **23**, 54-68, doi:10.1105/tpc.110.081448 (2011).

338 6 Nikovics, K. *et al.* The balance between the *MIR164A* and *CUC2* Genes controls leaf margin
339 serration in Arabidopsis. *Plant Cell* **18**, 2929-2945, doi:10.1105/tpc.106.045617 (2006).

340 7 Laufs, P., Peaucelle, A., Morin, H. & Traas, J. MicroRNA regulation of the *CUC* genes is
341 required for boundary size control in Arabidopsis meristems. *Development* **131**, 4311-4322,
342 doi:10.1242/dev.01320 (2004).

343 8 Larue, C. T., Wen, J. & Walker, J. C. Genetic interactions between the *miRNA164-CUC2*
344 regulatory module and *BREVIPEDICELLUS* in Arabidopsis developmental patterning. *Plant*
345 *Signal Behav* **4**, 666-668, doi:10.4161/psb.4.7.9037 (2009).

346 9 Xiong, H. *et al.* A large-scale whole-exome sequencing mutant resource for functional
347 genomics in wheat. *Plant Biotechnol J* **21**, 2047-2056, doi:10.1111/pbi.14111 (2023).

348 10 ten Hove, C. A. *et al.* Probing the roles of *LRR RLK* genes in *Arabidopsis thaliana* roots using
349 a custom T-DNA insertion set. *Plant Mol Biol* **76**, 69-83, doi:10.1007/s11103-011-9769-x
350 (2011).

351 11 Lewis, J. D., Wu, R., Guttman, D. S. & Desveaux, D. Allele-specific virulence attenuation of
352 the *Pseudomonas syringae* HopZ1a type III effector via the Arabidopsis ZAR1 resistance
353 protein. *PLoS Genet* **6**, e1000894, doi:10.1371/journal.pgen.1000894 (2010).

354 12 Till, B. J. *et al.* Large-scale discovery of induced point mutations with high-throughput
355 TILLING. *Genome Res* **13**, 524-530, doi:10.1101/gr.977903 (2003).

356 13 Lai, K. S., Kaothien-Nakayama, P., Iwano, M. & Takayama, S. A TILLING resource for
357 functional genomics in *Arabidopsis thaliana* accession C24. *Genes Genet Syst* **87**, 291-297,
358 doi:10.1266/ggs.87.291 (2012).

359 14 Martin, B., Ramiro, M., Martinez-Zapater, J. M. & Alonso-Blanco, C. A high-density collection
360 of EMS-induced mutations for TILLING in *Landsberg erecta* genetic background of
361 Arabidopsis. *BMC Plant Biol* **9**, 147, doi:10.1186/1471-2229-9-147 (2009).

362 15 Fanelli, V. *et al.* A TILLING by sequencing approach to identify induced mutations in
363 sunflower genes. *Sci Rep* **11**, 9885, doi:10.1038/s41598-021-89237-w (2021).

364 16 Rowan, B. A., Patel, V., Weigel, D. & Schneeberger, K. Rapid and inexpensive whole-
365 genome genotyping-by-sequencing for crossover localization and fine-scale genetic
366 mapping. *G3 (Bethesda)* **5**, 385-398, doi:10.1534/g3.114.016501 (2015).

367 17 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence
368 data. *Bioinformatics* **30**, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).

369 18 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
370 *arXiv*, 1303.3997v1302, doi:<https://doi.org/10.48550/arXiv.1303.3997> (2013).

371 19 Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**,
372 doi:10.1093/gigascience/giab008 (2021).

373 20 Koboldt, D. C. *et al.* VarScan 2: somatic mutation and copy number alteration discovery in
374 cancer by exome sequencing. *Genome Res* **22**, 568-576, doi:10.1101/gr.129684.111 (2012).

375 21 Cingolani, P. *et al.* A program for annotating and predicting the effects of single nucleotide
376 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-
377 2; iso-3. *Fly (Austin)* **6**, 80-92, doi:10.4161/fly.19695 (2012).

378 22 Cromer, L. *et al.* Patronus is the elusive plant securin, preventing chromosome separation
379 by antagonizing separase. *Proc Natl Acad Sci U S A* **116**, 16018-16027,
380 doi:10.1073/pnas.1906237116 (2019).

381 23 Oughou, M. *et al.* Model-based reconstruction of whole organ growth dynamics reveals
382 invariant patterns in leaf morphogenesis. *Quant Plant Biol* **4**, e1, doi:10.1017/qpb.2022.23
383 (2023).

384 24 Nicolas, A. *et al.* De novo stem cell establishment in meristems requires repression of organ
385 boundary cell fate. *Plant Cell* **34**, 4738-4759, doi:10.1093/plcell/koac269 (2022).

386 25 Nesi, N., Jond, C., Debeaujon, I., Caboche, M. & Lepiniec, L. The *Arabidopsis TT2* gene
387 encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin
388 accumulation in developing seed. *Plant Cell* **13**, 2099-2114, doi:10.1105/tpc.010098 (2001).

389 26 Shirley, B. W. *et al.* Analysis of *Arabidopsis* mutants deficient in flavonoid biosynthesis. *Plant*
390 *J* **8**, 659-671, doi:10.1046/j.1365-313x.1995.08050659.x (1995).

391 27 Takada, S., Hibara, K., Ishida, T. & Tasaka, M. The *CUP-SHAPED COTYLEDON1* gene of
392 Arabidopsis regulates shoot apical meristem formation. *Development* **128**, 1127-1135,
393 doi:10.1242/dev.128.7.1127 (2001).

394

395 Tables

396 **Table 1: Nature and mean number of mutations detected in 871 HEM lines and 32,723 genes**

Predicted impact of mutations ^a	Mutations per HEM line	Mutations per gene (Mutations per kb of gene)
All mutations	576	7.03 (3.25)
Modifier	381 (66.1%)	2.79 (1.29)
Low	60 (10.4%)	1.36 (0.63)
Moderate	125 (21.7%)	2.64 (1.22)
High	10 (1.7%)	0.25 (0.11)

397 ^aImpact of mutations: high: premature stop codon; moderate: nonsynonymous substitution; low: synonymous
398 substitution; modifier: unpredictable effect of mutations in non-coding regions of a gene or in non-coding genes.

399

400

401 **Table 2: Phenotypic characterization of HEM mutant phenotypes by reverse genetics**

Gene	Null mutant phenotype	Gene size (kb)	Predicted lines 5'->3' UTR with H/Mr/L/Mf	Observed SNPs ^{a,b}	Homozygous H/Mr/L/Mf SNPs ^{a,b,c}	Mutant phenotype H/Mr/L/Mf mutants ^{a,b}	Reference
							observed for
<i>TT2</i> (At5g35550)	Transparent testa seeds	1.1	2/1/3/6	2/1/NT/NT	2/0/NT/NT	2/-/-	25
<i>TT4</i> (At5g13930)	Transparent testa seeds	1.6	1/3/3/3	1/3/NT/NT	1/3/NT/NT	1/1/-	26
<i>CUC1</i> (At3g15170)	Cup-shaped cotyledon	1.6	-/7/-/3	-/7/-/NT	-/7/-/NT	-/7/-/NT	27
<i>CUC2</i> (At5g53950)	Cup-shaped cotyledon	1.9	-/5/5/4	-/5/1 ^d /NT	-/5/1 ^d /NT	-/4/1 ^d /NT	4
<i>HEI10</i> (At1G53490)	Meiotic Crossover formation	3.6	1/1/3/14	1/1 ^e /NT/NT	0/0/-/-	1/NT/-/-	3

402

403 ^a Predicted impact of mutations: high (H), moderate (Mr), low (L) and modifier (Mf).404 ^b NT: not tested405 ^c At least one homozygous mutant plant identified in five plants genotyped406 ^d A single low-impact mutant (ES1M5S03057) was analysed for *CUC2*.407 ^e A single moderate-impact mutant (ES1M5S10109) was analysed for *HEI10*.

408

409 **Figure Legends:**

410 **Fig. 1: Features of the genome sequences of 871 HEM lines.** **a**, violin plot representation of the
411 distribution of mean coverage of sequencing per HEM line. **b**, violin plot representation of the
412 distribution of the number of mutations per line and per predicted impact of mutation. **c**, violin plot
413 representation of the distribution of the number of mutations per gene and per predicted impact of
414 mutation. The maximum width of each violin was made equal to increase the readability, so that the
415 surface area of each violin is not proportional to their sample size. **d**, Proportion of genes of given
416 sizes for which at least two mutations of the impact categories high (dot), high+moderate (square) or
417 high+moderate+low (triangle) can be found in the HEM collection. Open symbols correspond to all
418 genes independent of their size. Red dots represent medians. Impact of mutations: high, premature
419 stop codon, splicing alteration or frameshift mutation; moderate, nonsynonymous substitution; low,
420 synonymous substitution; modifier, unpredictable effect of mutations in non-coding regions of a gene
421 or in non-coding genes.

422

423 **Fig. 2: Selected mutant phenotypes identified by reverse genetics in HEM lines.** **a**, Seeds of HEM
424 lines mutant for *TT2* and *TT4* genes controlling flavonoid accumulation. HEM line and predicted
425 functional impact of the mutation on *TT* gene function: High, moderate, SDVIV (Splice donor
426 variation and intron variant); SAVIV (Splice acceptor variation and intron variant). WT, wild-type
427 accession Col-0. Impact of the mutation on protein sequence is indicated. Scale: 0.2 mm. **b**,
428 Chromosome spreads of wild-type (WT), *hei10^{Q194*}* (ES1M5S02042) and *hei10-2* male meiocytes at
429 metaphase I. Wild type shows five bivalents (b) whereas in the representative spreads of *hei10^{Q194*}*
430 and *hei10-2*, the meiocytes showed one bivalent and four pairs of univalent (u) chromosomes. Scale:
431 5 μ m.

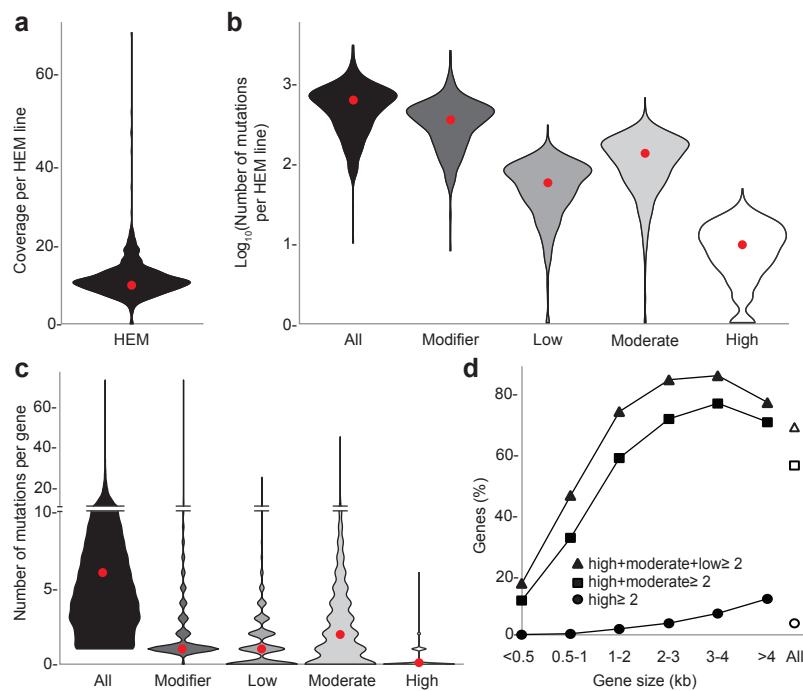
432

433 **Fig. 3: Phenotypic description of *cuc1* and *cuc2* mutants identified in HEM lines.** **a**, Cotyledon
434 phenotypes ranging from no fusion (WT, wild-type Col-0) to monocotyledon or cup-shaped

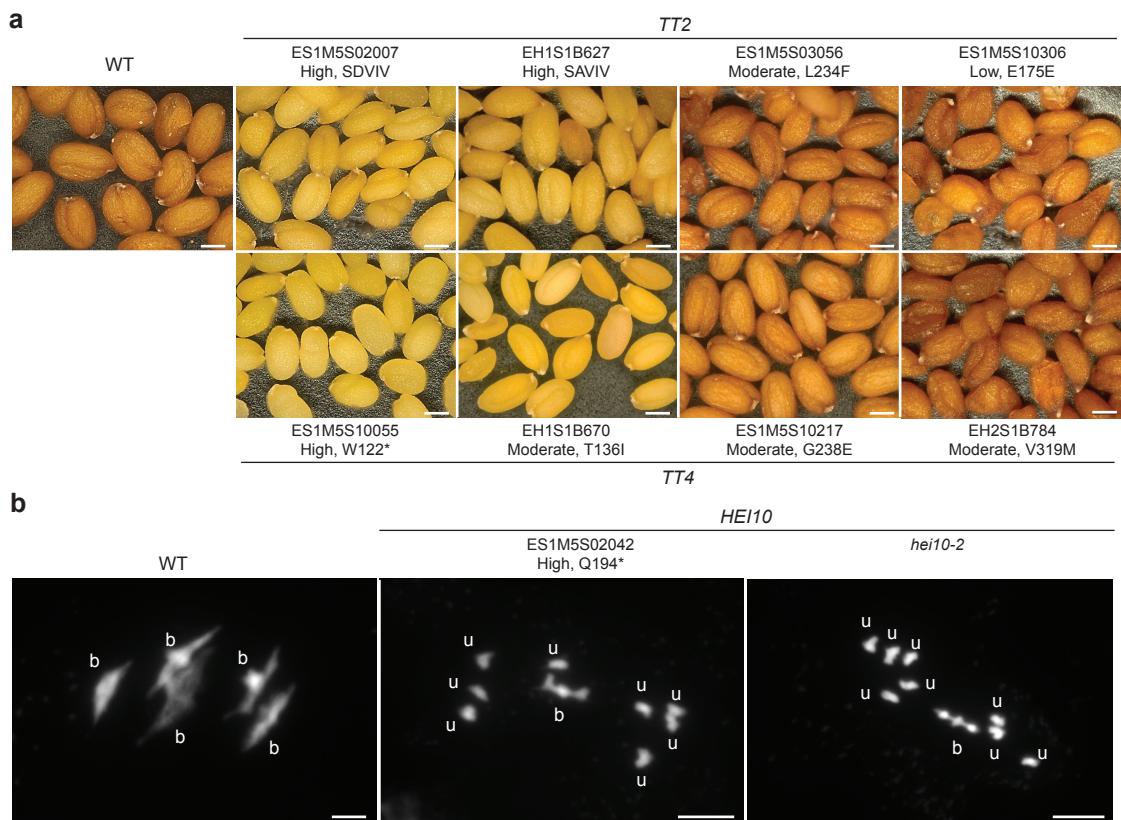
435 cotyledon observed in the ES1M5S03046 HEM line carrying the *cuc1*^{E75K} mutation and the
436 *cuc1*^{E75K}*cuc2-1* double mutant. Scale: 4 mm. **b**, Sepal fusion (Arrohead) observed by scanning
437 electron microscopy in the ES1M5S10280 HEM line carrying the *cuc2*^{P59L} mutation compared to
438 wild-type Col-0 plants. False colours were used to visualise sepals (green). Scale: 1 mm. **c**,
439 Representative shape of the 8th leaf of the rosette of HEM lines carrying mutations in *CUC2* and their
440 F1 progenies of a cross with the strong *cuc2-1* mutant. Scale: 10 mm. **d**, Alignment of RNA sequences
441 for wild-type *CUC2*, *miR164* and *CUC2* allele from HEM line ES1M5S03057 (*cuc2*^{S264S}).
442 Polymorphic base is highlighted in red. **e**, Outgrowths (orange) observed on the pistil of HEM line
443 ES1M5S03057 (*cuc2*^{S264S}) compared to the wild type are indicated by arrowheads. Scale bar is 1mm.
444

445 **Supplemental Tables:**

446 **Table S1: Sequence and phenotypic analyses of allelic series identified in the HEM collection**
447 **for five genes of interest**


448 **Table S2: Oligonucleotide sequences used in this study**

449


450 **Supplemental Figure**

451 **Fig. S1: Protein sequence alignment of CUC2 and CUC1 orthologues**

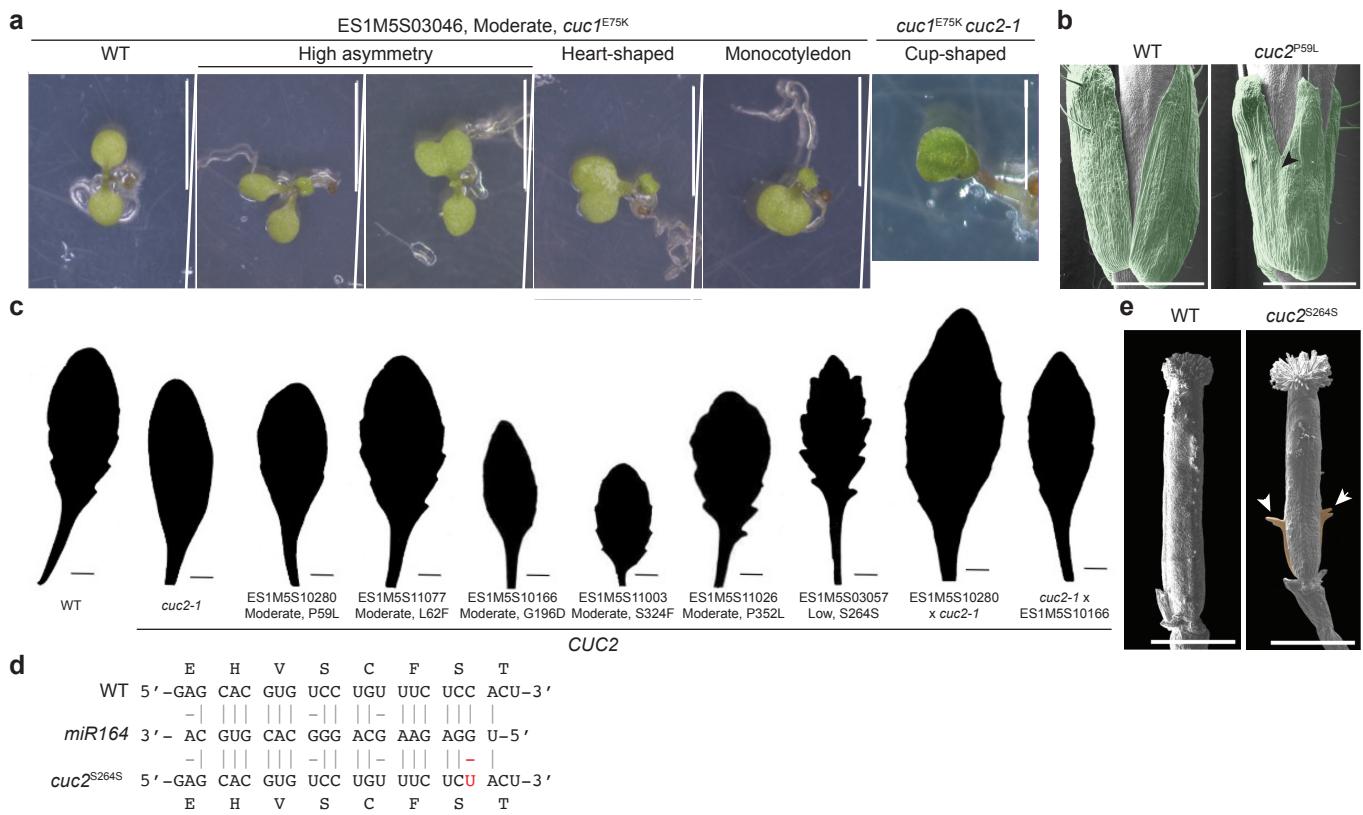

452

Fig. 1: Features of the genome sequences of 871 HEM lines. **a**, violin plot representation of the distribution of mean coverage of sequencing per HEM line. **b**, violin plot representation of the distribution of the number of mutations per line and per predicted impact of mutation. **c**, violin plot representation of the distribution of the number of mutations per gene and per predicted impact of mutation. The maximum width of each violin was made equal to increase the readability, so that the surface area of each violin is not proportional to their sample size. **d**, Proportion of genes of given sizes for which at least two mutations of the impact categories high (dot), high+moderate (square) or high+moderate+low (triangle) can be found in the HEM collection. Open symbols correspond to all genes independent of their size. Red dots represent medians. Impact of mutations: high, premature stop codon, splicing alteration or frameshift mutation; moderate, nonsynonymous substitution; low, synonymous substitution; modifier, unpredictable effect of mutations in non-coding regions of a gene or in non-coding genes.

Fig. 2: Selected mutant phenotypes identified by reverse genetics in HEM lines. a, Seeds of HEM lines mutant for *TT2* and *TT4* genes controlling flavonoid accumulation. HEM line and predicted functional impact of the mutation on *TT* gene function: High, moderate, SDVIV (Splice donor variation and intron variant); SAVIV (Splice acceptor variation and intron variant). WT, wild-type accession Col-0. Impact of the mutation on protein sequence is indicated. Scale: 0.2 mm. **b,** Chromosome spreads of wild-type (WT), *hei10*^{Q194*} (ES1M5S02042) and *hei10-2* male meiocytes at metaphase I. Wild type shows five bivalents (b) whereas in the representative spreads of *hei10*^{Q194*} and *hei10-2*, the meiocytes showed one bivalent and four pairs of univalent (u) chromosomes. Scale: 5 μ m.

Fig. 3: Phenotypic description of *cuc1* and *cuc2* mutants identified in HEM lines. a, Cotyledon phenotypes ranging from no fusion (WT, wild-type Col-0) to monocotyledon or cup-shaped cotyledon observed in the ES1M5S03046 HEM line carrying the *cuc1*^{E75K} mutation and the *cuc1*^{E75K}*cuc2-1* double mutant. Scale: 4 mm. **b**, Sepal fusion (Arrowhead) observed by scanning electron microscopy in the ES1M5S10280 HEM line carrying the *cuc2*^{P59L} mutation compared to wild-type Col-0 plants. False colours were used to visualise sepals (green). Scale: 1 mm. **c**, Representative shape of the 8th leaf of the rosette of HEM lines carrying mutations in *CUC2* and their F1 progenies of a cross with the strong *cuc2-1* mutant. Scale: 10 mm. **d**, Alignment of RNA sequences for wild-type *CUC2*, *miR164* and *CUC2* allele from HEM line ES1M5S03057 (*cuc2*^{S264S}). Polymorphic base is highlighted in red. **e**, Outgrowths (orange) observed on the pistil of HEM line ES1M5S03057 (*cuc2*^{S264S}) compared to the wild type are indicated by arrowheads. Scale bar is 1mm.