

1 **Identification of intestinal mediators of *Caenorhabditis elegans* DBL-1/BMP**
2 **immune signaling shaping gut microbiome composition**

3 Kenneth Trang ^{a*}, Barbara Pees ^{a,b*}, Siavash Karimzadegan ^{a,c*}, Rahul Bodkhe ^a, Sabrina
4 Hammond ^a, Michael Shapira^{a#}

5 ^a Department of Integrative Biology, University of California, Berkeley, Berkeley,
6 California, USA

7 ^b Present Address: Department of Evolutionary Ecology and Genetics, Zoological
8 Institute, Christian-Albrecht University, Kiel, Germany

9 ^c Present Address: Department of Biological Sciences, Contra Costa College, San Pablo,
10 California, USA

11 * These authors contributed equally to the manuscript: KT, BP, and SK all performed
12 experiments and analyzed data vital to the manuscript, with KT leading with manuscript
13 writing, BP involved in the initial project conception, and SK involved in figure preparation.
14 The order of these three lead-co-authors was determined by slight differences in the
15 extent of contributions.

16 #Address for correspondence: mshapira@berkeley.edu

17 Running Head: Mediators of DBL-1 signaling shape gut microbiome

18 Abstract word count: 208

19 Importance word count: 74

20 Text word count: 3461

21 **ABSTRACT**

22 The composition of the gut microbiome is determined by a complex interplay of diet, host
23 genetics, microbe-microbe competition, abiotic factors, and stochasticity. Previous
24 studies have demonstrated the importance of host genetics in community assembly of
25 the *Caenorhabditis elegans* gut microbiome and identified a pivotal role for DBL-1/BMP
26 immune signaling in determining the abundance of gut *Enterobacteriaceae*, in particular
27 of the genus *Enterobacter*. However, the effects of DBL-1 signaling on gut bacteria were
28 found to depend on its activation in extra-intestinal tissues, suggesting that yet
29 unidentified intestinal factors must mediate these effects. In the present study, we used
30 RNA-seq gene expression analysis of wildtype, *dbl-1* and *sma-3* mutants, and *dbl-1* over-
31 expressors to identify genes regulated by DBL-1/BMP signaling that take part in
32 interactions with gut commensals. Following confirmation of several putative targets by
33 qRT-PCR, we carried out colonization experiments with respective mutants raised on
34 monocultures as well as on defined bacterial communities. These experiments identified
35 five intestinal DBL-1/BMP targets, predicted to be secreted, that showed increased
36 *Enterobacteriaceae* abundance compared to wildtype. The extent of increases was for
37 the most part lower than those seen in DBL-1 pathway mutants, suggesting that identified
38 mediators are components of a DBL-1-regulated antibacterial cocktail, which may
39 additively contribute to shaping of gut microbiome composition.

40 **IMPORTANCE** Compared to the roles of diet, environmental availability, or lifestyle in
41 determining gut microbiome composition, that of genetic factors is the least understood
42 and often underestimated. The identification of intestinal mediators acting downstream of
43 DBL-1/BMP signaling to control enteric bacteria, describes a cocktail of effectors with

44 distinct molecular functions, thus offering a glimpse into the genetic logic of microbiome
45 control as well as a list of targets for future exploration of this logic.

46 **INTRODUCTION**

47 Animals harbor large gut microbial communities (microbiomes) that play important roles
48 in host health and fitness. The composition of these communities is shaped by various
49 factors, including environmental microbial availability, diet, lifestyle, and host genetics (1).
50 In recent years, a greater appreciation is emerging of the roles that host genetics play in
51 the interactions between animals and microbes (2), but overall, host genetics remains
52 less characterized than other determinants of gut microbiome composition. In humans,
53 genome-wide association studies have revealed associations between gene variants and
54 gut microbiome composition, including between variants of the LCT lactase gene and
55 *Bifidobacteriaceae*, thought to be linked through lactose availability, or between *ABO*
56 blood type variants and several different bacterial families depending on the cohort (3).
57 In turn, studies in mice comparing gut microbiome composition between wildtype mice
58 and loss-of-function mutants revealed contributions of several innate immune related
59 genes to determining the composition of the gut microbiome (4–7). However, the role of
60 host genes in determining microbiome composition is sometimes not immediately
61 discernable in mouse mutants, requiring several generations to become evident, which in
62 some cases was interpreted to be the result of drift rather than the mutation itself, although
63 in other cases such “drift” was subsequently shown to be indeed due to accumulating
64 effects of candidate gene disruptions (8–10).

65 Invertebrate model organisms such as *Drosophila melanogaster* and *Caenorhabditis*
66 *elegans* offer alternative models with greater genetic tractability, and similar to
67 vertebrates, have demonstrated the importance of host immunity for controlling gut
68 microbiome composition (11–14). Work in drosophila further revealed differential
69 activation of immune mechanisms by pathogens or by non-pathogenic gut commensals,
70 highlighting the ability of the innate immune system (which drosophila, as all other
71 invertebrates, solely rely on) to provide variable responses to maintain homeostasis and
72 prevent collateral damage (11, 15). Work with age-synchronized populations of *C.*
73 *elegans* in turn demonstrated how an age-dependent decline in a pathway of immune
74 control was associated with age-dependent dysbiosis, and the importance of a diverse
75 gut community for preventing the detrimental consequences of this dysbiosis (16).

76 ‘Common garden’ experiments, in which different *C. elegans* strains and related species
77 were raised in identical compost microcosms, identified a significant contribution of host
78 genetics to determining microbiome composition (17). Subsequent studies identified
79 conserved regulatory pathways, including insulin/insulin-like (IIS) signaling (18, 19) and
80 the DBL-1/BMP pathway (12), as contributing to shaping of the gut microbiome. DBL-1
81 signaling further came to the forefront as a mechanism that controls a specific subset of
82 gut bacteria, which has the potential to cause detrimental effects when control was
83 impaired (12). The DBL-1 ligand, a BMP-1 homolog, is primarily expressed in neurons
84 (20), and upon secretion activates a broadly expressed heterodimer receptor, and
85 downstream to it drives nuclear localization of transcriptional regulators SMA-2, -3 and -
86 4, to activate gene expression (21). While DBL-1 signaling contributes both to larval
87 development and to immunity, its effects on the gut microbiome were linked specifically

88 to its immune contributions (12). Disruption of genes for any of the DBL-1 pathway's
89 components led to an expansion specifically of gut bacteria of the *Enterobacteriaceae*
90 family, particularly of the genus *Enterobacter*. However, experiments attempting to rescue
91 DBL-1 control in *sma-3* mutants, through tissue specific *sma-3* expression, revealed that
92 control over gut *Enterobacter* could not be achieved through intestinal *sma-3* expression,
93 and that, instead, expression from the epidermis or pharynx could restore control,
94 suggesting that DBL-1 and SMA-3 signaling affected the gut microbiome cell non-
95 autonomously, likely dependent on downstream activation of intestinal mediators.

96 Contributions of central regulatory pathways to shaping of the gut microbiome are large
97 and thus easier to detect. Identifying smaller contributions of each individual downstream
98 effector is more of a challenge. To understand how DBL-1 signaling affected the gut
99 microbiome, we carried out RNA-seq analysis and subsequent functional characterization
100 of candidate mediators, which led to identification of several DBL-1-regulated intestinal
101 effectors with potential additive contributions to control of *Enterobacteriaceae* gut
102 colonization. This expands our understanding of the contributions of DBL-1 signaling to
103 describe a gene network operating downstream to it, which contributes to shaping of the
104 gut microbiome.

105 **RESULTS**

106 **Targets of DBL-1/BMP signaling include microbiome-modulated immune genes.**

107 To identify genes regulated by DBL-1/BMP signaling in the context of interactions with a
108 complex microbial community, we performed RNA-seq analysis comparing gene
109 expression in adult wildtype worms, *dbl-1* and *sma-3* mutants, and *dbl-1* over-expressing

110 transgenics, raised either on non-colonizing *E. coli* or on the CeMbio community (22).
111 Sleuth analysis identified 2291 genes differentially expressed in DBL-1/BMP-perturbed
112 strains ($q < 0.005$), divided between four clusters with distinct expression patterns (Figure
113 1A, Supplementary Data 1). Cluster 1 included 742 genes that were upregulated to a
114 varying extent on CeMbio, less so in either one of the two mutant strains, and much more
115 in *dbl-1* over-expressing worms; Cluster 2 included 503 genes, which while also
116 dependent for their basal expression on DBL-1 signaling (lower in mutants, higher in over-
117 expressing animals), were repressed on CeMbio. Analysis of enriched annotations
118 revealed enrichment for immune and stress response genes in both clusters, including C-
119 type lectins and genes involved in detoxification, supporting the role of the DBL-1 pathway
120 in immune regulation. However, differences in gene composition between the two clusters
121 were also apparent, with the CeMbio-upregulated genes of Cluster 1 showing a prominent
122 enrichment for C-type lectins, while the CeMbio-downregulated genes of Cluster 2,
123 showed more significant enrichment for detoxification genes, suggesting that DBL-1
124 signaling contributed differentially to the expression of different subsets of immune and
125 stress genes. Cluster 1 further featured a significant enrichment for genes previously
126 identified to be induced in response to two different complex communities (6 of 30 genes,
127 $p < 0.001$, hypergeometric test, Supplementary table 1) (12). Cluster 4 was of additional
128 interest, including 844 genes that were negatively regulated by DBL-1 signaling. Among
129 them, enrichment was found for genes involved in house-keeping functions, such as
130 mRNA processing (e.g. *prp-x/xx*, *rnp-x/xx*) and protein synthesis (e.g. *rps-x/xx* and *rpl-x*),
131 suggesting the involvement of DBL-1 signaling in negative regulation of growth and

132 maintenance functions in adults, in contrast to its better known positive contributions to
133 cell growth in larvae (23).

134 Focusing on genes of Cluster 1 – positively regulated by DBL-1 signaling and upregulated
135 in response to CeMbio – we selected five, *scl-2*, *lys-7*, *clec-52* *nuc-1*, and *clec-66* (of
136 which the first four were previously identified to be upregulated by complex communities
137 (12)) for additional analyses using qRT-PCR. Overall, qRT-PCR measurements
138 supported the identification of these genes as regulated by DBL-1, most clearly seen in
139 the *dbl-1* over-expressing strain (Fig. 1B). However, only *lys-7* and *clec-66* showed some
140 indication of reduced expression in *sma-3* mutants, suggesting that identified DBL-1
141 targets receive additional regulatory inputs that could keep their expression at normal
142 levels in *sma-3* mutants. Indeed, *lys-7*, *clec-52* and *nuc-1* were previously reported to be
143 regulated also by the longevity and immune-associated transcription factor DAF-16 (24),
144 and *lys-7* and *clec-52* were reported also as targets of the stress activated p38 MAPK
145 pathway (25, 26). Thus, these genes appear to be regulated redundantly, with DBL-1
146 signaling being one of several regulatory inputs.

147 **Involvement of DBL-1 targets in determining gut microbiome composition.**

148 The five verified DBL-1 targets are known to be expressed in the intestine (wormbase.org)
149 and all contain signal peptides targeting for their secretion (27), suggesting that they could
150 interact directly with gut bacteria. *scl-2* encodes a yet uncharacterized protein
151 homologous to mammalian cysteine-rich secreted proteins and peptidase inhibitors,
152 which are best characterized for their ability to coat sperm cells to facilitate fertilization
153 (28); *lys-7* encodes a lysozyme with documented roles in anti-bacterial defense (29); *clec-*

154 52 (ortholog of human Reg3a) and *clec-66* encode C-type lectins, thought to bind
155 bacterial surface saccharides (30, 31); and lastly, *nuc-1* encodes a nuclease that
156 degrades apoptotic DNA (32), which was additionally reported to digest bacterial DNA in
157 the intestine (33).

158 Previously, we identified the role of DBL-1 signaling in regulating the colonization of
159 *Enterobacter hormaechei* strain CEent1. To determine if the presently-identified five DBL-
160 1 targets may serve as downstream mediators of this interaction, we tested the level of
161 colonization of a fluorescently tagged derivative of CEent1 in mutant strains for the five
162 DBL-1 targets (12, 16). Among worms raised on monocultures of CEent1-dsRed,
163 significantly increased colonization was observed in four of the examined mutants
164 compared to wildtype worms (excluding *clec-52*), but for the most part the extent of
165 increase was lower than in *sma-3* mutants, supporting the candidate genes' involvement
166 in mediating the contributions of DBL-1 signaling to control of gut bacterial colonization
167 (Fig. 2). Interestingly, *nuc-1* mutants showed exceptionally increased colonization,
168 greater than that seen in *sma-3*. To test how the disruption of the candidate genes may
169 affect a more complex gut community rather than a single colonizer, we raised wildtype
170 and mutant worms on the CeMbio community of twelve strains and analyzed their gut
171 microbiome composition using V4 16S sequencing. This analysis identified significant
172 differences between wildtype animals and most mutants, excluding *clec-66* (Fig. 3A). Gut
173 microbiomes assembled from CeMbio tend to be dominated by two strains -
174 *Ochrobactrum vermis* (MYb71) and *Stenotrophomonas indicatrix* (JUb19) - contributing
175 70-80% of total bacterial abundance (22), and this dominance was maintained in the
176 examined mutants (Supplementary Data 2). However, relative abundance of

177 *Enterobacteriaceae* strains *E. hormaechei* (CEent1) and *Lelliottia amnigena* (JUb66),
178 which cannot be distinguished based on V4 16S sequencing, increased reproducibly in
179 four out of five mutants (excluding *lys-7*), extending the previously described role of DBL-
180 1 signaling in control of members of the *Enterobacteriaceae* family to its putative
181 downstream mediators (Fig. 3B and C) (12). Additional experiments were performed to
182 complement the sequencing analysis of gut microbiome composition, using CFU counts
183 of gut bacteria isolated from wildtype and mutant worms raised on CeMbio. Samples were
184 split between rich media and *Enterobacteriaceae*-selective VRBG media plates, to assess
185 total bacterial load, or *Enterobacteriaceae* load, respectively. While total bacterial load
186 did not change significantly in most mutants compared to wildtype animals (Fig. 4A), the
187 proportion of *Enterobacteriaceae* increased significantly in most examined mutants,
188 excluding *clec-66* (Fig. 4B and C). Together, the results from these different experimental
189 techniques support the involvement of *scl-2* and *nuc-1* in controlling *Enterobacteriaceae*
190 gut abundance in both monocultures and in the context of the CeMbio community, with
191 *lys-7*, *clec-52* and *clec-66* showing smaller and less reproducible contributions.

192 DISCUSSION

193 Previous identification of DBL-1/BMP immune signaling as a factor determining gut
194 microbiome composition, specifically controlling abundance of *Enterobacteriaceae*,
195 raised the question of what mediated its effects on gut bacteria. DBL-1-dependent control
196 was deemed to involve several regulatory levels, as its effects depended on activation of
197 transcriptional regulators in extra-intestinal tissues (12, 34). The results described here
198 begin to fill-in this gap by identifying several intestinal mediators, likely secreted, which
199 could directly interact with gut bacteria to control their abundance. The five examined

200 mediator genes, *scl-2*, *lys-7*, *clec-52*, *clec-66*, and *nuc-1* are positively regulated by DBL-
201 1 signaling, but very likely not directly, as they were upregulated by *dbl-1* overexpression,
202 but not downregulated by *dbl-1* disruption, suggesting additional regulatory inputs. For
203 some, i.e. *lys-7*, *clec-52* and *nuc-1*, such inputs - by DAF-16 and p38 MAPK signaling,
204 were previously described, and may also be responsible for relaying extra-intestinal DBL-
205 1 signaling to activate intestinal mediators (24–26). Although to a varying extent and
206 reproducibility, disruption of each of the five putative mediators led to increases in the
207 relative abundance of species of the *Enterobacteriaceae* family and in the actual number
208 of such cells in the gut, supporting their importance for gut bacterial control.

209 The lysozyme gene and the C-type lectin genes are known to be associated with
210 responses to pathogenic bacteria (35–38). Our results extend their function to controlling
211 non-pathogenic commensal bacteria. At least for one of these genes, *clec-52*, this
212 involvement may be conserved, as enteric delivery of the human *clec-52* homolog Reg3A
213 in mice was shown to alter gut microbiome composition and to reduce colitis (39). In
214 contrast, *scl-2* and *nuc-1* are not typically associated with immune responses, but are
215 consistently found to be upregulated in worms exposed to complex microbial communities
216 (12), supporting their involvement in host-microbiome interactions.

217 The experiments presented in Fig. 2, following worm gut colonization with CEent1-dsRed,
218 demonstrated that with the exception of *nuc-1*, the effect of disrupting each of the putative
219 mediator genes was smaller than that seen in worms disrupted for the upstream regulator
220 gene, *sma-3*. This supports the hypothesis that control of *Enterobacter* colonization by
221 DBL-1 signaling relies on a cocktail of downstream effectors, each with a small
222 contribution and together accumulating to the full effect seen in *sma-3* mutants. Other

223 regulatory pathways may induce the expression of other antimicrobial cocktails, partially
224 overlapping in their composition to those regulated by DBL-1 and affect non-
225 *Enterobacteriaceae* gut bacteria. For example, insulin signaling (IIS), mediated by DAF-
226 16 (which contributes also to the expression of some of the DBL-1 targets identified here),
227 was shown to control abundance of bacteria of the genus *Ochrobactrum*, also common
228 inhabitants of the worm gut (18). Through partially overlapping antimicrobial cocktails, a
229 few regulatory pathways could differentially control gut microbes and shape microbiome
230 composition. Several studies, primarily in drosophila, demonstrate the contributions of
231 different immune regulators to the abundance of different gut constituents (11). A recent
232 study, also in drosophila, nicely demonstrated differential control, describing specific
233 effects of Diptericin A and B, two antimicrobial peptides regulated by the Imd immune
234 pathway, on two distinct gut commensals (40). This observation further suggests that
235 diversification of antimicrobial proteins may be driven not only by the need to fight
236 pathogens but also by the need to control gut microbiome composition.

237 Unlike most of the examined mediators, *nuc-1* disruption led to a dramatic increase in
238 *Enterobacteriaceae* abundance, larger than seen in its *sma-3* regulator. *nuc-1*, encoding
239 a DNase II homolog, is thought to be important for degradation of DNA in cells undergoing
240 apoptosis (32). It has been also reported to be involved in degradation of bacterial DNA
241 in the intestinal lumen (33), but this suggestion could not explain the effects of its
242 disruption on the increase of intact gut bacteria, as observed in analysis of colony forming
243 units. Another study suggested that *nuc-1* disruption in the germline upregulated
244 antimicrobial peptides (41), but this again could not explain the increase in gut bacteria

245 that we observed. Thus, while *nuc-1* appears to play an important role in controlling gut
246 bacteria, at this point, the mechanism remains unknown.

247 While the mechanisms underlying the effects of the identified intestinal mediators on the
248 gut microbiome remain to be investigated, our results describe a new layer in worm
249 control over its gut bacteria and expand our understanding of the role of DBL-1 signaling
250 in such control to describe an underlying gene network that mediates its effects on the
251 worm gut microbiome.

252 METHODS

253 **Worm strains used** in this study included the N2 wildtype strain, *dbl-1(nk3)*, *sma-*
254 *3(e491)*, and the *dbl-1* overexpressing strain BW1940[*dbl-1p::dbl-1;sur-5::gfp*] (20), *lys-*
255 *7(ok1384)*, *nuc-1(e1392)*, and *clec-66(ok2230)*, all obtained from the *Caenorhabditis*
256 Genome Center (CGC), and *clec-52(tm8126)* and *scl-2(tm2428)*, obtained from the
257 National Bioresource Project (42). Worms were raised on standard nematode growth
258 medium (NGM) or on peptone-free medium (43), with bacteria as food or as colonizers.

259 **Bacterial strains and communities** included the non-colonizing *E. coli* strain OP50,
260 used as food and as control, CeMbio (22), a defined community of *C. elegans* gut
261 commensals consisting of twelve characterized strains selected to represent the core *C.*
262 *elegans* gut microbiome, and CEent1-dsRed, a fluorescently-tagged derivative of the
263 *Enterobacter hormachei* strain CEent1, a member of the CeMbio community (16). CeMbio
264 strains were raised as previously described (22), normalized based on optical density,
265 mixed in equal proportions and seeded on appropriate plates.

266 **RNA-seq.** Germ-free L1 larvae obtained from gravid worms by bleaching (three
267 independent populations per worm strain) were raised at 25°C on NGM plates seeded
268 with CeMbio as described above. Gravid worms were rinsed off plates with M9 including
269 0.025% Triton, washed 5 times to get rid of offspring and bacteria, mixed with TRIzol
270 Reagent (Invitrogen; Waltham, USA), snap-frozen in liquid nitrogen, taken through 5-7
271 thaw-freeze cycles to break them open, and kept at -80°C until use. RNA isolation was
272 performed using the NucleoSpin RNA purification kit, manual protocol 5.2 (Macherey-
273 Nagel; Düren, Germany).

274 Sequencing libraries were prepared from total RNA using the TruSeq RNA Library Kit v2
275 (Illumina; San Diego, USA), with indexed adaptors for multiplex sequencing, assessed
276 for quality on an Agilent Bio-analyzer (Agilent; Santa Clara, USA) and submitted for 100
277 bp paired-end sequencing on a NovaSeq 6000 at the QB3 Genomic Sequencing
278 Laboratory (UC Berkeley, Berkeley, CA; RRID:SCR_022170). Raw reads obtained were
279 pre-processed with *fastp* (44) and pseudo-aligned to the WormBase transcriptome
280 version WS235 using *kallisto* (45). Transcript counts were then normalized with *Sleuth*
281 (46) and analyzed to identify genes differentially expressed between worm strains and
282 bacterial treatment using the likelihood ratio test. Heatmaps following *k*-means clustering
283 ($k = 4$) were generated with *Morpheus* (<https://software.broadinstitute.org/morpheus>) and
284 gene set enrichment analyses were performed using WormCat (47).

285 **Quantitative (q)RT-PCR** measurements were performed on RNA extracted as described
286 above from worms raised at 20°C as described above. mRNA was reverse transcribed
287 with the iScript Reverse Transcription Supermix (BioRad, Hercules, USA), and cDNA was
288 used for amplification using the SsoAdvanced Universal SYBR Green Supermix (BioRad,

289 Hercules, USA) on an Applied Biosystems StepOnePlus cycler (Waltham, USA). Ct
290 values obtained in amplification of specific mRNAs were normalized to those obtained by
291 amplification of three conserved *C. elegans* actin genes with the pan-actin primer pair
292 (35).

293 Primers used included:

294 *scl-2*: F: 5'- GATTCGCCACGCCATTG-3'; R: 5'- ACTCAGAAATGCCGGGAAC -3'

295 *lys-7*: F 5'- TTGCAGTACTCTGCCATTG-3'; R: 5'- GCACAATAACCGCTTGT -3'

296 *clec-52*: F: 5'- AGCCAAATCTCCTCCATCAGC-3';

297 R: 5'- GATCAACCGCCTGTATGCAAC -3'

298 *nuc-1*: F: 5'- CCTGGAAGATGGTCTTGTCA-3';

299 R: 5'- GGGAACTTGACTCCTCTGC -3'

300 *clec-66*: F: 5'- GCAGAAGGCGGTTTGGC-3'; R: 5'- GCGGCGAATTAGTCATGGC -3'

301 PanActin: F: 5'- TCGGTATGGGACAGAAGGAC-3';

302 R: 5'- CATCCCATGTGGTGACGATA -3'

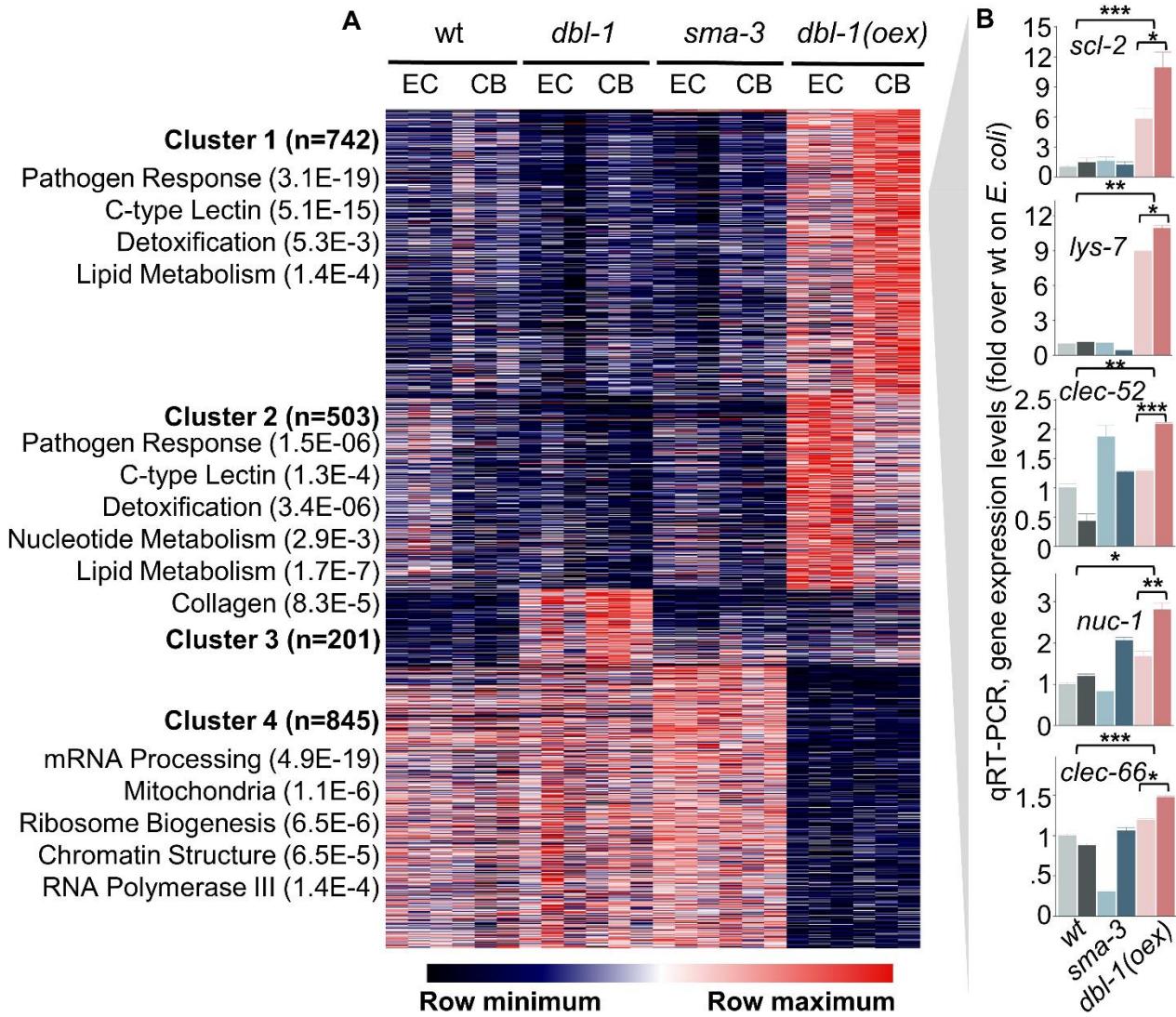
303 **DNA extraction for gut microbiome analysis.** Gravid worms raised at 20°C on NGM
304 plates with CeMbio (three independent populations per worm strain) were washed off
305 plates, washed 5 times with M9 + 0.025% Triton, paralyzed with levamisole to seal the
306 intestine, surface sterilized with bleach as described elsewhere (22, 48), and kept at 4 °C
307 until use. DNA was extracted using the Qiagen DNeasy PowerSoil Pro Kit, with
308 modifications as described elsewhere (48).

309 **16S rRNA gene sequencing** of the amplicon libraries of the V4 variable region generated
310 with primers 515F and 806R containing Illumina overhang adapter sequences according
311 to the manufacturer instructions, with slight cycling modifications described elsewhere.
312 Dual indices and Illumina sequencing adapters were added using the Nextera XT Index
313 Kit. Sequencing was performed on an Illumina MiniSeq.

314 Demultiplexed forward and reverse sequences were filtered for quality, resulting in
315 roughly 11,000 reads per sample, and assigned amplicon sequence variants (ASVs) with
316 DADA2 (49) and *DECIPHER* (50). Taxonomy assignments for ASVs were obtained based
317 on a custom database with 16S sequences of the twelve CeMbio strains, and counts were
318 normalized for the different 16S gene copy number of the different strains. Microbiome
319 analyses were performed in R using *phyloseq* (51), *phangorn* (52), and *vegan* (53), to
320 calculate UniFrac distances for Principle Component Analysis; and MiRKAT (54), for
321 statistical evaluation of differences between microbiomes.

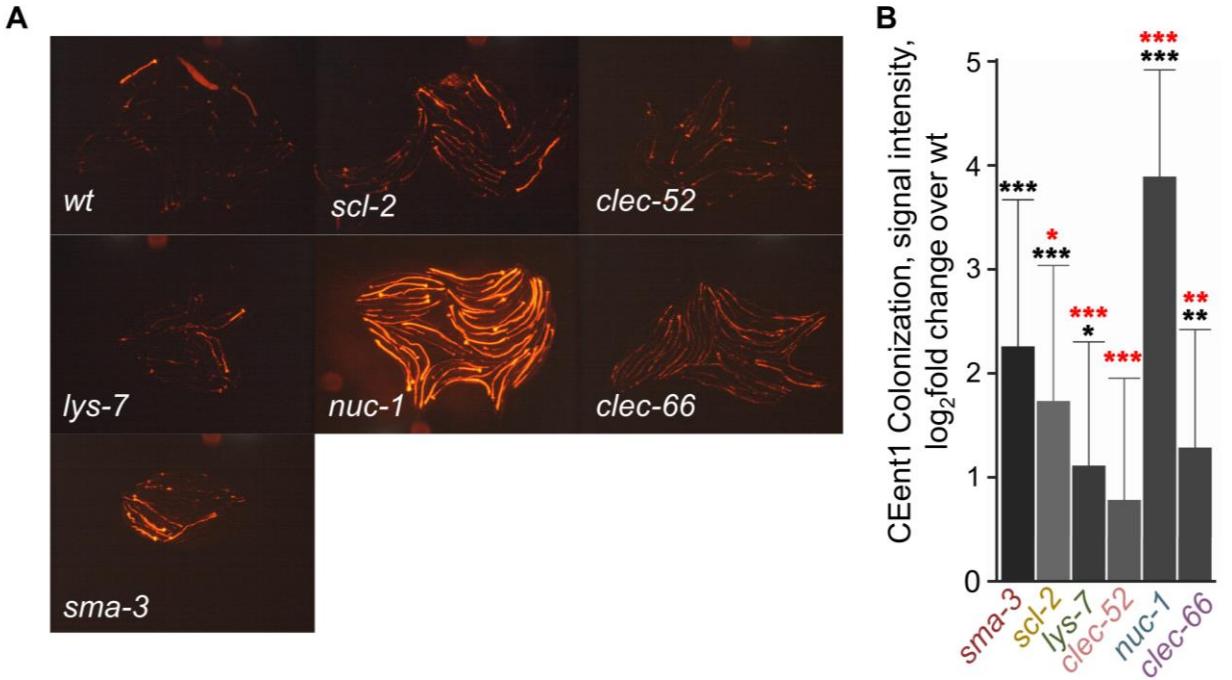
322 **Colony forming unit (CFU) Counts** of gut commensals were evaluated in worms raised,
323 harvested and surface-sterilized as described above. Gut bacteria were released from
324 worms by vortexing together with zirconium beads, until degradation could be confirmed
325 using a light microscope. Serially diluted worm lysates were plated on either
326 *Enterobacteriaceae*-selective media (Violet Red Bile Glucose, VRBG; Difco Becton
327 Dickinson) or on rich LB media and incubated at 28°C for 24 h before counting colonies.

328 **Fluorescence Imaging** was employed to follow worm colonization by *E. hormachei*
329 CEent1, using the CEent1-dsRed derivative. Worms were raised from the L1 stage on a
330 lawn of CEent-1-dsRed at 20°C. Following three days, gravid worms were washed off


331 plates, washed three times with M9 and imaged. Fluorescent images were captured using
332 a Leica MZ16F equipped with a QImaging MicroPublisher 5.0 camera and fluorescent
333 signal of colonizing bacteria was quantified on the Fiji plugin of ImageJ v2.10/1.53c as
334 previously described (55), producing background-subtracted average intensity for each
335 worm.

336 **Acknowledgements** Research toward this manuscript was made possible thanks to NIH
337 grant 1R01OD024780-01A1. K.T. was supported by summer fellowships funded by the
338 Rose Hills Foundation and the Office of Undergraduate Research & Scholarship at UC
339 Berkeley. Some strains were provided by the CGC, which is funded by NIH Office of
340 Research Infrastructure Programs (P40 OD010440).

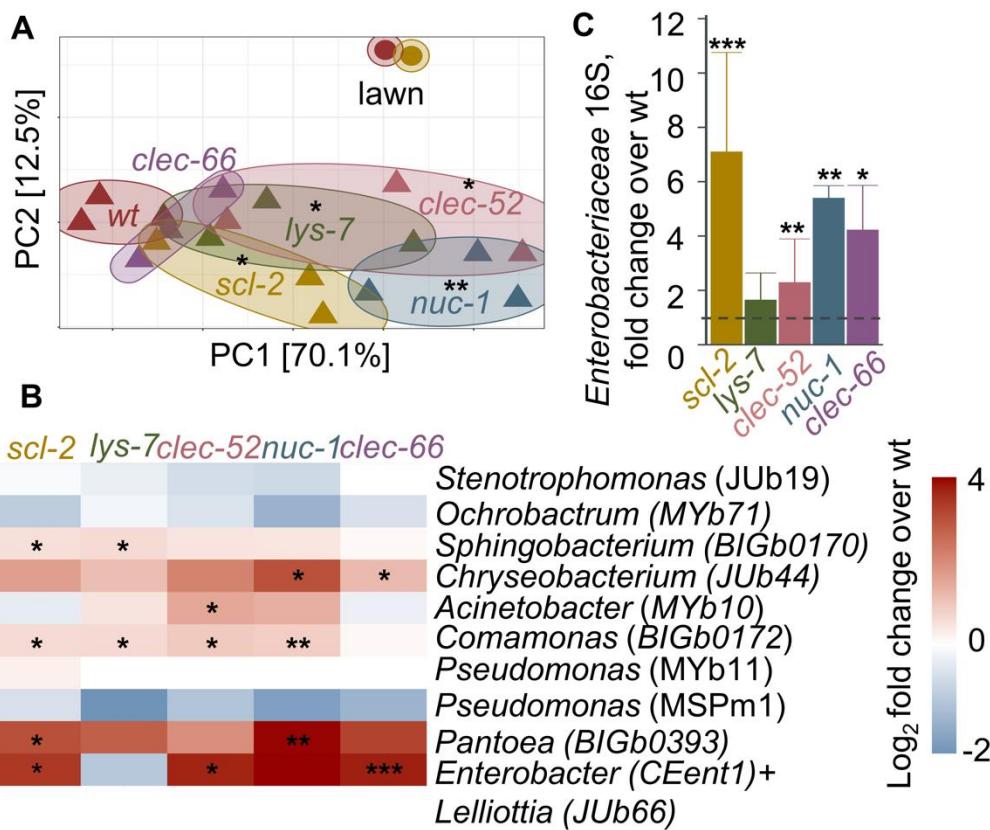
341 **Author Contributions** BP and MS conceived the project; KT, BP, SK, assisted by RB
342 and SH, performed all experiments, and analyzed their results. KT and MS wrote the
343 manuscript, with edits from BP.


344 **Data availability** Raw RNA-seq data and *kallisto* output files have been deposited in
345 GEO with accession number GSE186653; the associated computational pipeline is
346 available online at https://github.com/rahulnccs/TGF-beta_RNAseq_Analysis. 16S
347 sequencing data is available in the NCBI Sequence Read Archive (Bioproject ID
348 PRJNA1031602), with the computational pipeline available at
349 https://github.com/kennytrang/DBL-1_Mediators.

350 **Figures**

351

Figure 1. DBL-1/BMP-dependent gene expression. (A) Expression profiles of Sleuth-identified DBL-1 pathway targets ($p < 0.005$, BH-corrected, see methods) in wildtype and designated mutant and transgenic strains raised on *E. coli* (EC) or on CeMbio (CB). Genes are *k*-means-clustered (with number of genes for each cluster) and colored following median-centering for each gene to highlight patterns. Enriched gene annotations were identified using WormCat, with Bonferroni-corrected p -values **(B)** qRT-PCR verification of expression patterns for putative DBL-1 pathway targets of Cluster 1 in the designated strains; light and dark colors represent expression in worms raised on *E. coli* or CeMbio, respectively. Shown for each graph are averages of two independent experiments ($N = 2$) \pm SDs. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, pairwise t-test.



352

Figure 2. Disruption of intestinal DBL-1 target genes increases *Enterobacter* colonization. (A) Representative images of DBL-1/BMP effector mutant strains grown on CEent-1-dsRed bacteria, compared to wildtype (wt), recorded 1 d after L4. Scale bar, 200 μ m. (B) Quantification of signal intensity in worms as in A. Bars mark average single worm fluorescence + SDs; 20-46 worms per experiment (N=4 independent experiments for *scl-2* and *clec-52*; N=3, for *lys-7* and *clec-66*; and N=2, for *nuc-1*); * $p < 0.05$, *** $p < 0.001$, t-test compared to wt; red for comparison to *sma-3*.

353

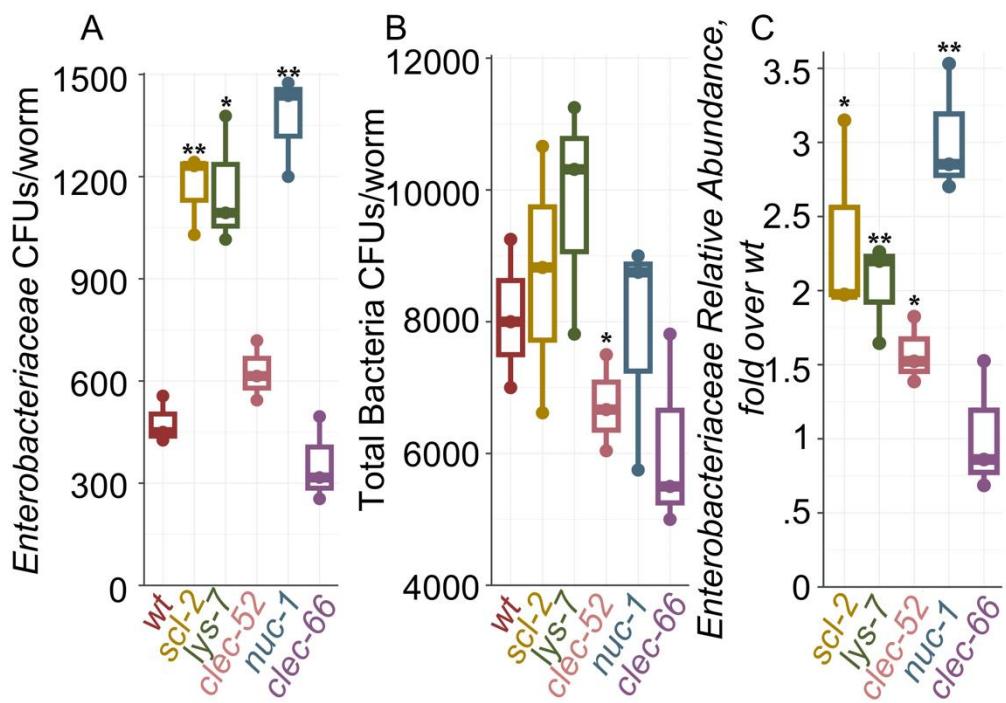

354

Figure 3. Disruption of intestinal DBL-1 targets alters gut microbiome composition.
 (A) PCoA based on weighted UniFrac distances highlighting differences in microbiome composition (analyzed by 16S NGS) between wildtype and mutant worms in one experiment, analyzed for each strain in three independent populations; * $p < 0.05$, ** $p < 0.01$, UniFrac regression-based kernel association test with small-sample size correction. (B) Data from A, highlighting relative abundances of CeMbion members in tested mutants, shown as fold over wildtype; * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, t-test, compared to wildtype. (C) *Enterobacteriaceae* relative abundance in designated mutants, including results from several independent experiments as the one presented in A (N = 4 for *scl-2* and *clec-52* mutants, N = 2 for *nuc-1* and *clec-66*, and N = 1 for *lys-7*), each performed with 3-5 worm populations. Values are shown as fold over wildtype, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, t-test compared to wildtype.

355

356

Figure 4. Disruption of intestinal DBL-1 targets increases gut *Enterobacteriaceae* load. (A) *Enterobacteriaceae* gut load, represented by CFU counts on selective VRBG media. (B) Total bacterial load, counted on LB plates. (C) *Enterobacteriaceae* proportion of total bacterial load relative to wildtype calculated from data in A and B. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, t-test compared to wildtype.

357

358

359 **References**

360 1. Gilbert JA, Lynch SV. 2019. Community ecology as a framework for human
361 microbiome research. *Nat Med* 25:884–889.

362 2. Ryu EP, Davenport ER. 2022. Host Genetic Determinants of the Microbiome Across
363 Animals: From *Caenorhabditis elegans* to Cattle. *Annu Rev Anim Biosci* 10:203–226.

364 3. Sanna S, Kurilshikov A, Van Der Graaf A, Fu J, Zhernakova A. 2022. Challenges and
365 future directions for studying effects of host genetics on the gut microbiome. *Nat*
366 *Genet* 54:100–106.

367 4. Lamas B, Richard ML, Leducq V, Pham H-P, Michel M-L, Da Costa G, Bridonneau C,
368 Jegou S, Hoffmann TW, Natividad JM, Brot L, Taleb S, Couturier-Maillard A, Nion-
369 Larmurier I, Merabtene F, Seksik P, Bourrier A, Cosnes J, Ryffel B, Beaugerie L,
370 Launay J-M, Langella P, Xavier RJ, Sokol H. 2016. CARD9 impacts colitis by altering
371 gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. *Nat*
372 *Med* 22:598–605.

373 5. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjöberg J, Amir E, Teggatz P,
374 Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM,
375 Bevins CL, Williams CB, Bos NA. 2010. Enteric defensins are essential regulators of
376 intestinal microbial ecology. *Nat Immunol* 11:76–82.

377 6. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S,
378 Sitaraman SV, Knight R, Ley RE, Gewirtz AT. 2010. Metabolic Syndrome and Altered
379 Gut Microbiota in Mice Lacking Toll-Like Receptor 5. *Science* 328:228–231.

380 7. Petnicki-Ocwieja T, Hrncir T, Liu Y-J, Biswas A, Hudcovic T, Tlaskalova-Hogenova H,
381 Kobayashi KS. 2009. Nod2 is required for the regulation of commensal microbiota in
382 the intestine. *Proc Natl Acad Sci* 106:15813–15818.

383 8. Viennois E, Pujada A, Sung J, Yang C, Gewirtz AT, Chassaing B, Merlin D. 2020.
384 Impact of PepT1 deletion on microbiota composition and colitis requires multiple
385 generations. *Npj Biofilms Microbiomes* 6:27.

386 9. Lemire P, Robertson SJ, Maughan H, Tattoli I, Streutker CJ, Platnich JM, Muruve DA,
387 Philpott DJ, Girardin SE. 2017. The NLR Protein NLRP6 Does Not Impact Gut
388 Microbiota Composition. *Cell Rep* 21:3653–3661.

389 10. Mamantopoulos M, Ronchi F, Van Hauwermeiren F, Vieira-Silva S, Yilmaz B,
390 Martens L, Saeys Y, Drexler SK, Yazdi AS, Raes J, Lamkanfi M, McCoy KD, Wullaert
391 A. 2017. Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal
392 Gut Microbiota Composition. *Immunity* 47:339-348.e4.

393 11. Lesperance DN, Broderick NA. 2020. Microbiomes as modulators of *Drosophila*
394 melanogaster homeostasis and disease. *Curr Opin Insect Sci* 39:84–90.

395 12. Berg M, Monnin D, Cho J, Nelson L, Crits-Christoph A, Shapira M. 2019.
396 TGF β /BMP immune signaling affects abundance and function of *C. elegans* gut
397 commensals. *Nat Commun* 10:604.

398 13. Zhang F, Berg M, Dierking K, Félix M-A, Shapira M, Samuel BS, Schulenburg H.
399 2017. *Caenorhabditis elegans* as a Model for Microbiome Research. *Front Microbiol*
400 8.

401 14. Shapira M. 2017. Host–microbiota interactions in *Caenorhabditis elegans* and their
402 significance. *Curr Opin Microbiol* 38:142–147.

403 15. Bosch TCG, Zasloff M. 2021. Antimicrobial Peptides—or How Our Ancestors
404 Learned to Control the Microbiome. *mBio* 12:e01847-21.

405 16. Choi R, Bodkhe R, Pees B, Kim D, Berg M, Monnin D, Cho J, Narayan V, Deller
406 E, Shapira M. 2023. An Enterobacteriaceae bloom in aging animals is restrained by
407 the gut microbiome. *bioRxiv* <https://doi.org/10.1101/2023.06.13.544815>.

408 17. Berg M, Zhou XY, Shapira M. 2016. Host-Specific Functional Significance of
409 *Caenorhabditis* Gut Commensals. *Front Microbiol* 7.

410 18. Zhang F, Weckhorst JL, Assié A, Hosea C, Ayoub CA, Khodakova AS, Cabrera
411 ML, Vidal Vilchis D, Félix M-A, Samuel BS. 2021. Natural genetic variation drives
412 microbiome selection in the *Caenorhabditis elegans* gut. *Curr Biol* 31:2603-2618.e9.

413 19. Taylor M, Vega NM. 2021. Host Immunity Alters Community Ecology and Stability
414 of the Microbiome in a *Caenorhabditis elegans* Model. *mSystems* 6:e00608-20.

415 20. Suzuki Y, Yandell MD, Roy PJ, Krishna S, Savage-Dunn C, Ross RM, Padgett
416 RW, Wood WB. 1999. A BMP homolog acts as a dose-dependent regulator of body
417 size and male tail patterning in *Caenorhabditis elegans*. *Development* 126:241–250.

418 21. Savage-Dunn C. 2001. Targets of TGF β -related signaling in *Caenorhabditis*
419 *elegans*. *Cytokine Growth Factor Rev* 12:305–312.

420 22. Dirksen P, Assié A, Zimmermann J, Zhang F, Tietje A-M, Marsh SA, Félix M-A,
421 Shapira M, Kaleta C, Schulenburg H, Samuel BS. 2020. CeMbio - The *Caenorhabditis*
422 *elegans* Microbiome Resource. *G3 GenesGenomesGenetics* 10:3025–3039.

423 23. Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW. 1996.
424 *Caenorhabditis elegans* genes *sma-2*, *sma-3*, and *sma-4* define a conserved family
425 of transforming growth factor beta pathway components. *Proc Natl Acad Sci* 93:790–
426 794.

427 24. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H,
428 Kenyon C. 2003. Genes that act downstream of DAF-16 to influence the lifespan of
429 *Caenorhabditis elegans*. 6946. *Nature* 424:277–283.

430 25. Fletcher M, Tillman EJ, Butty VL, Levine SS, Kim DH. 2019. Global transcriptional
431 regulation of innate immunity by ATF-7 in *C. elegans*. *PLOS Genet* 15:e1007830.

432 26. Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH. 2006. p38 MAPK
433 Regulates Expression of Immune Response Genes and Contributes to Longevity in
434 *C. elegans*. *PLoS Genet* 2:e183.

435 27. Suh J, Hutter H. 2012. A survey of putative secreted and transmembrane proteins
436 encoded in the *C. elegans* genome. *BMC Genomics* 13:333.

437 28. Gibbs GM, Roelants K, O'Bryan MK. 2008. The CAP Superfamily: Cysteine-Rich
438 Secretory Proteins, Antigen 5, and Pathogenesis-Related 1 Proteins—Roles in
439 Reproduction, Cancer, and Immune Defense. *Endocr Rev* 29:865–897.

440 29. Boehnisch C, Wong D, Habig M, Isermann K, Michiels NK, Roeder T, May RC,
441 Schulenburg H. 2011. Protist-Type Lysozymes of the Nematode *Caenorhabditis*
442 *elegans* Contribute to Resistance against Pathogenic *Bacillus thuringiensis*. *PLoS*
443 ONE 6:e24619.

444 30. Pees B, Yang W, Kloock A, Petersen C, Peters L, Fan L, Friedrichsen M, Butze S,
445 Zárate-Potes A, Schulenburg H, Dierking K. 2021. Effector and regulator: Diverse
446 functions of *C. elegans* C-type lectin-like domain proteins. *PLOS Pathog*
447 17:e1009454.

448 31. Pees B, Yang W, Zárate-Potes A, Schulenburg H, Dierking K. 2016. High Innate
449 Immune Specificity through Diversified C-Type Lectin-Like Domain Proteins in
450 Invertebrates. *J Innate Immun* 8:129–142.

451 32. Wu Y-C, Stanfield GM, Horvitz HR. 2000. NUC-1, a *Caenorhabditis elegans*
452 DNase II homolog, functions in an intermediate step of DNA degradation during
453 apoptosis. *Genes Dev* 14:536–548.

454 33. Lai H-J, Lo SJ, Kage-Nakadai E, Mitani S, Xue D. 2009. The Roles and Acting
455 Mechanism of *Caenorhabditis elegans* DNase II Genes in Apoptotic DNA Degradation
456 and Development. *PLOS ONE* 4:e7348.

457 34. Choi R, Kim D, Li S, Massot M, Narayan V, Slowinski S, Schulenburg H, Shapira
458 M. 2020. Extra-intestinal regulation of the gut microbiome: The case of *C. elegans*
459 TGF β /SMA signaling, p. 119–134. *In* *Cellular Dialogues in the Holobiont*. CRC Press.

460 35. Shapira M, Hamlin BJ, Rong J, Chen K, Ronen M, Tan M-W. 2006. A conserved
461 role for a GATA transcription factor in regulating epithelial innate immune responses.
462 *Proc Natl Acad Sci* 103:14086–14091.

463 36. Mallo GV, Kurz CL, Couillaud C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ.
464 2002. Inducible Antibacterial Defense System in *C. elegans*. *Curr Biol* 12:1209–1214.

465 37. Evans EA, Kawli T, Tan M-W. 2008. *Pseudomonas aeruginosa* Suppresses Host
466 Immunity by Activating the DAF-2 Insulin-Like Signaling Pathway in *Caenorhabditis*
467 *elegans*. *PLoS Pathog* 4:e1000175.

468 38. Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel
469 FM. 2010. Distinct Pathogenesis and Host Responses during Infection of *C. elegans*
470 by *P. aeruginosa* and *S. aureus*. *PLoS Pathog* 6:e1000982.

471 39. Darnaud M, Dos Santos A, Gonzalez P, Augui S, Lacoste C, Desterke C, De
472 Hertogh G, Valentino E, Braun E, Zheng J, Boisgard R, Neut C, Dubuquoy L,
473 Chiappini F, Samuel D, Lepage P, Guerrieri F, Doré J, Bréchot C, Moniaux N, Faivre
474 J. 2018. Enteric Delivery of Regenerating Family Member 3 alpha Alters the Intestinal
475 Microbiota and Controls Inflammation in Mice With Colitis. *Gastroenterology*
476 154:1009-1023.e14.

477 40. Hanson MA, Grollmus L, Lemaitre B. 2023. Ecology-relevant bacteria drive the
478 evolution of host antimicrobial peptides in *Drosophila*. *Science* 381:eadg5725.

479 41. Yu H, Lai H-J, Lin T-W, Chen C-S, Lo SJ. 2015. Loss of DNase II function in the
480 gonad is associated with a higher expression of antimicrobial genes in *Caenorhabditis*
481 *elegans*. *Biochem J* 470:145–154.

482 42. Yamazaki Y, Akashi R, Banno Y, Endo T, Ezura H, Fukami-Kobayashi K, Inaba K,
483 Isa T, Kamei K, Kasai F, Kobayashi M, Kurata N, Kusaba M, Matuzawa T, Mitani S,
484 Nakamura T, Nakamura Y, Nakatsuji N, Naruse K, Niki H, Nitasaka E, Obata Y,
485 Okamoto H, Okuma M, Sato K, Serikawa T, Shiroishi T, Sugawara H, Urushibara H,
486 Yamamoto M, Yaoita Y, Yoshiki A, Kohara Y. 2010. NBRP databases: databases of
487 biological resources in Japan. *Nucleic Acids Res* 38:D26–D32.

488 43. Stiernagle T. 2006. Maintenance of *C. elegans*. WormBook
489 <https://doi.org/10.1895/wormbook.1.101.1>.

490 44. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ
491 preprocessor. *Bioinformatics* 34:i884–i890.

492 45. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-
493 seq quantification. 5. *Nat Biotechnol* 34:525–527.

494 46. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. 2017. Differential analysis
495 of RNA-seq incorporating quantification uncertainty. 7. *Nat Methods* 14:687–690.

496 47. Higgins DP, Weisman CM, Lui DS, D'Agostino FA, Walker AK. 2022. Defining
497 characteristics and conservation of poorly annotated genes in *Caenorhabditis elegans*
498 using WormCat 2.0. *Genetics* 221:iyac085.

499 48. Trang K, Bodkhe R, Shapira M. 2022. Compost Microcosms as Microbially
500 Diverse, Natural-like Environments for Microbiome Research in *Caenorhabditis*
501 *elegans*. *JoVE J Vis Exp* e64393.

502 49. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016.
503 DADA2: High-resolution sample inference from Illumina amplicon data. *Nat Methods*
504 13:581–583.

505 50. Wright ES. 2015. DECIPHER: harnessing local sequence context to improve
506 protein multiple sequence alignment. *BMC Bioinformatics* 16:322.

507 51. McMurdie PJ, Holmes S. 2013. phyloseq: An R Package for Reproducible
508 Interactive Analysis and Graphics of Microbiome Census Data. *PLOS ONE* 8:e61217.

509 52. Schliep KP. 2011. phangorn: phylogenetic analysis in R. *Bioinformatics* 27:592–
510 593.

511 53. Dixon P. 2003. VEGAN, a package of R functions for community ecology. *J Veg
512 Sci* 14:927–930.

513 54. Wilson N, Zhao N, Zhan X, Koh H, Fu W, Chen J, Li H, Wu MC, Plantinga AM.
514 2021. MiRKAT: kernel machine regression-based global association tests for the
515 microbiome. *Bioinformatics* 37:1595–1597.

516 55. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,
517 Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V,

518 Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-
519 image analysis. 7. Nat Methods 9:676–682.

520