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ABSTRACT

The composition of the gut microbiome is determined by a complex interplay of diet, host
genetics, microbe-microbe competition, abiotic factors, and stochasticity. Previous
studies have demonstrated the importance of host genetics in community assembly of
the Caenorhabditis elegans gut microbiome and identified a pivotal role for DBL-1/BMP
immune signaling in determining the abundance of gut Enterobacteriaceae, in particular
of the genus Enterobacter. However, the effects of DBL-1 signaling on gut bacteria were
found to depend on its activation in extra-intestinal tissues, suggesting that yet
unidentified intestinal factors must mediate these effects. In the present study, we used
RNA-seq gene expression analysis of wildtype, dbl-1 and sma-3 mutants, and dbl-1 over-
expressors to identify genes regulated by DBL-1/BMP signaling that take part in
interactions with gut commensals. Following confirmation of several putative targets by
gRT-PCR, we carried out colonization experiments with respective mutants raised on
monocultures as well as on defined bacterial communities. These experiments identified
five intestinal DBL-1/BMP targets, predicted to be secreted, that showed increased
Enterobacteriaceae abundance compared to wildtype. The extent of increases was for
the most part lower than those seen in DBL-1 pathway mutants, suggesting that identified
mediators are components of a DBL-1-regulated antibacterial cocktail, which may

additively contribute to shaping of gut microbiome composition.

IMPORTANCE Compared to the roles of diet, environmental availability, or lifestyle in
determining gut microbiome composition, that of genetic factors is the least understood
and often underestimated. The identification of intestinal mediators acting downstream of

DBL-1/BMP signaling to control enteric bacteria, describes a cocktail of effectors with
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distinct molecular functions, thus offering a glimpse into the genetic logic of microbiome

control as well as a list of targets for future exploration of this logic.

INTRODUCTION

Animals harbor large gut microbial communities (microbiomes) that play important roles
in host health and fitness. The composition of these communities is shaped by various
factors, including environmental microbial availability, diet, lifestyle, and host genetics (1).
In recent years, a greater appreciation is emerging of the roles that host genetics play in
the interactions between animals and microbes (2), but overall, host genetics remains
less characterized than other determinants of gut microbiome composition. In humans,
genome-wide association studies have revealed associations between gene variants and
gut microbiome composition, including between variants of the LCT lactase gene and
Bifidobacteriaceae, thought to be linked through lactose availability, or between ABO
blood type variants and several different bacterial families depending on the cohort (3).
In turn, studies in mice comparing gut microbiome composition between wildtype mice
and loss-of-function mutants revealed contributions of several innate immune related
genes to determining the composition of the gut microbiome (4-7). However, the role of
host genes in determining microbiome composition is sometimes not immediately
discernable in mouse mutants, requiring several generations to become evident, which in
some cases was interpreted to be the result of drift rather than the mutation itself, although
in other cases such “drift” was subsequently shown to be indeed due to accumulating

effects of candidate gene disruptions (8—10).
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Invertebrate model organisms such as Drosophila melanogaster and Caenorhabditis
elegans offer alternative models with greater genetic tractability, and similar to
vertebrates, have demonstrated the importance of host immunity for controlling gut
microbiome composition (11-14). Work in drosophila further revealed differential
activation of immune mechanisms by pathogens or by non-pathogenic gut commensals,
highlighting the ability of the innate immune system (which drosophila, as all other
invertebrates, solely rely on) to provide variable responses to maintain homeostasis and
prevent collateral damage (11, 15). Work with age-synchronized populations of C.
elegans in turn demonstrated how an age-dependent decline in a pathway of immune
control was associated with age-dependent dysbiosis, and the importance of a diverse

gut community for preventing the detrimental consequences of this dysbiosis (16).

‘Common garden’ experiments, in which different C. elegans strains and related species
were raised in identical compost microcosms, identified a significant contribution of host
genetics to determining microbiome composition (17). Subsequent studies identified
conserved regulatory pathways, including insulin/insulin-like (11S) signaling (18, 19) and
the DBL-1/BMP pathway (12), as contributing to shaping of the gut microbiome. DBL-1
signaling further came to the forefront as a mechanism that controls a specific subset of
gut bacteria, which has the potential to cause detrimental effects when control was
impaired (12). The DBL-1 ligand, a BMP-1 homolog, is primarily expressed in neurons
(20), and upon secretion activates a broadly expressed heterodimer receptor, and
downstream to it drives nuclear localization of transcriptional regulators SMA-2, -3 and -
4, to activate gene expression (21). While DBL-1 signaling contributes both to larval

development and to immunity, its effects on the gut microbiome were linked specifically
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88 to its immune contributions (12). Disruption of genes for any of the DBL-1 pathway’s
89 components led to an expansion specifically of gut bacteria of the Enterobacteriaceae
90 family, particularly of the genus Enterobacter. However, experiments attempting to rescue
91 DBL-1 control in sma-3 mutants, through tissue specific sma-3 expression, revealed that
92  control over gut Enterobacter could not be achieved through intestinal sma-3 expression,
93 and that, instead, expression from the epidermis or pharynx could restore control,
94  suggesting that DBL-1 and SMA-3 signaling affected the gut microbiome cell non-

95 autonomously, likely dependent on downstream activation of intestinal mediators.

96 Contributions of central regulatory pathways to shaping of the gut microbiome are large
97 and thus easier to detect. Identifying smaller contributions of each individual downstream
98 effector is more of a challenge. To understand how DBL-1 signaling affected the gut
99 microbiome, we carried out RNA-seq analysis and subsequent functional characterization
100 of candidate mediators, which led to identification of several DBL-1-regulated intestinal
101 effectors with potential additive contributions to control of Enterobacteriaceae gut
102  colonization. This expands our understanding of the contributions of DBL-1 signaling to
103  describe a gene network operating downstream to it, which contributes to shaping of the

104  gut microbiome.

105 RESULTS

106 Targets of DBL-1/BMP signaling include microbiome-modulated immune genes.

107 To identify genes regulated by DBL-1/BMP signaling in the context of interactions with a
108 complex microbial community, we performed RNA-seq analysis comparing gene

109 expression in adult wildtype worms, dbl-1 and sma-3 mutants, and dbl-1 over-expressing
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110 transgenics, raised either on non-colonizing E. coli or on the CeMbio community (22).
111  Sleuth analysis identified 2291 genes differentially expressed in DBL-1/BMP-perturbed
112  strains (g < 0.005), divided between four clusters with distinct expression patterns (Figure
113 1A, Supplementary Data 1). Cluster 1 included 742 genes that were upregulated to a
114  varying extent on CeMbio, less so in either one of the two mutant strains, and much more
115 in dbl-1 over-expressing worms; Cluster 2 included 503 genes, which while also
116  dependent for their basal expression on DBL-1 signaling (lower in mutants, higher in over-
117  expressing animals), were repressed on CeMbio. Analysis of enriched annotations
118 revealed enrichment for immune and stress response genes in both clusters, including C-
119 type lectins and genes involved in detoxification, supporting the role of the DBL-1 pathway
120 inimmune regulation. However, differences in gene composition between the two clusters
121  were also apparent, with the CeMbio-upregulated genes of Cluster 1 showing a prominent
122 enrichment for C-type lectins, while the CeMbio-downregulated genes of Cluster 2,
123  showed more significant enrichment for detoxification genes, suggesting that DBL-1
124  signaling contributed differentially to the expression of different subsets of immune and
125 stress genes. Cluster 1 further featured a significant enrichment for genes previously
126 identified to be induced in response to two different complex communities (6 of 30 genes,
127  p < 0.001, hypergeometric test, Supplementary table 1) (12). Cluster 4 was of additional
128 interest, including 844 genes that were negatively regulated by DBL-1 signaling. Among
129 them, enrichment was found for genes involved in house-keeping functions, such as
130 mRNA processing (e.g. prp-x/xx, rnp-x/xx) and protein synthesis (e.g. rps-x/xx and rpl-x),

131  suggesting the involvement of DBL-1 signaling in negative regulation of growth and
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132  maintenance functions in adults, in contrast to its better known positive contributions to

133  cell growth in larvae (23).

134  Focusing on genes of Cluster 1 — positively regulated by DBI-1 signaling and upregulated
135 in response to CeMbio — we selected five, scl-2, lys-7, clec-52 nuc-1, and clec-66 (of
136  which the first four were previously identified to be upregulated by complex communities
137 (12)) for additional analyses using gRT-PCR. Overall, qRT-PCR measurements
138 supported the identification of these genes as regulated by DBL-1, most clearly seen in
139 the dbl-1 over-expressing strain (Fig. 1B). However, only lys-7 and clec-66 showed some
140 indication of reduced expression in sma-3 mutants, suggesting that identified DBL-1
141 targets receive additional regulatory inputs that could keep their expression at normal
142 levels in sma-3 mutants. Indeed, lys-7, clec-52 and nuc-1 were previously reported to be
143  regulated also by the longevity and immune-associated transcription factor DAF-16 (24),
144  and lys-7 and clec-52 were reported also as targets of the stress activated p38 MAPK
145 pathway (25, 26). Thus, these genes appear to be regulated redundantly, with DBL-1

146  signaling being one of several regulatory inputs.

147  Involvement of DBL-1 targets in determining gut microbiome composition.

148  The five verified DBL-1 targets are known to be expressed in the intestine (wormbase.org)
149  and all contain signal peptides targeting for their secretion (27), suggesting that they could
150 interact directly with gut bacteria. scl-2 encodes a yet uncharacterized protein
151 homologous to mammalian cysteine-rich secreted proteins and peptidase inhibitors,
152  which are best characterized for their ability to coat sperm cells to facilitate fertilization

153  (28); lys-7 encodes a lysozyme with documented roles in anti-bacterial defense (29); clec-
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154 52 (ortholog of human Reg3a) and clec-66 encode C-type lectins, thought to bind
155 bacterial surface saccharides (30, 31); and lastly, nuc-1 encodes a nuclease that
156  degrades apoptotic DNA (32), which was additionally reported to digest bacterial DNA in

157  the intestine (33).

158  Previously, we identified the role of DBL-1 signaling in regulating the colonization of
159  Enterobacter hormaechei strain CEentl. To determine if the presently-identified five DBL-
160 1 targets may serve as downstream mediators of this interaction, we tested the level of
161  colonization of a fluorescently tagged derivative of CEentl in mutant strains for the five
162 DBL-1 targets (12, 16). Among worms raised on monocultures of CEentl-dsRed,
163  significantly increased colonization was observed in four of the examined mutants
164 compared to wildtype worms (excluding clec-52), but for the most part the extent of
165 increase was lower than in sma-3 mutants, supporting the candidate genes’ involvement
166  in mediating the contributions of DBL-1 signaling to control of gut bacterial colonization
167 (Fig. 2). Interestingly, nuc-1 mutants showed exceptionally increased colonization,
168 greater than that seen in sma-3. To test how the disruption of the candidate genes may
169 affect a more complex gut community rather than a single colonizer, we raised wildtype
170 and mutant worms on the CeMbio community of twelve strains and analyzed their gut
171  microbiome composition using V4 16S sequencing. This analysis identified significant
172  differences between wildtype animals and most mutants, excluding clec-66 (Fig. 3A). Gut
173  microbiomes assembled from CeMbio tend to be dominated by two strains -
174 Ochrobactrum vermis (MYb71) and Stenotrophomonas indicatrix (JUb19) - contributing
175 70-80% of total bacterial abundance (22), and this dominance was maintained in the

176 examined mutants (Supplementary Data 2). However, relative abundance of
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177 Enterobacteriaceae strains E. hormaechei (CEentl) and Lelliottia amnigena (JUb66),
178  which cannot be distinguished based on V4 16S sequencing, increased reproducibly in
179  four out of five mutants (excluding lys-7), extending the previously described role of DBL-
180 1 signaling in control of members of the Enterobacteriaceae family to its putative
181 downstream mediators (Fig. 3B and C) (12). Additional experiments were performed to
182 complement the sequencing analysis of gut microbiome composition, using CFU counts
183  of gut bacteria isolated from wildtype and mutant worms raised on CeMbio. Samples were
184  split between rich media and Enterobacteriaceae-selective VRBG media plates, to assess
185 total bacterial load, or Enterobacteriaceae load, respectively. While total bacterial load
186  did not change significantly in most mutants compared to wildtype animals (Fig. 4A), the
187  proportion of Enterobacteriaceae increased significantly in most examined mutants,
188  excluding clec-66 (Fig. 4B and C). Together, the results from these different experimental
189 techniques support the involvement of scl-2 and nuc-1 in controlling Enterobacteriaceae
190 gut abundance in both monocultures and in the context of the CeMbio community, with

191 lys-7, clec-52 and clec-66 showing smaller and less reproducible contributions.

192 DISCUSSION

193  Previous identification of DBL-1/BMP immune signaling as a factor determining gut
194  microbiome composition, specifically controlling abundance of Enterobacteriaceae,
195 raised the question of what mediated its effects on gut bacteria. DBL-1-dependent control
196 was deemed to involve several regulatory levels, as its effects depended on activation of
197  transcriptional regulators in extra-intestinal tissues (12, 34). The results described here
198  begin to fill-in this gap by identifying several intestinal mediators, likely secreted, which

199 could directly interact with gut bacteria to control their abundance. The five examined
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200 mediator genes, scl-2, lys-7, clec-52, clec-66, and nuc-1 are positively regulated by DBL-
201 1 signaling, but very likely not directly, as they were upregulated by dbl-1 overexpression,
202  but not downregulated by dbl-1 disruption, suggesting additional regulatory inputs. For
203 some, i.e. lys-7, clec-52 and nuc-1, such inputs - by DAF-16 and p38 MAPK signaling,
204  were previously described, and may also be responsible for relaying extra-intestinal DBL-
205 1 signaling to activate intestinal mediators (24-26). Although to a varying extent and
206  reproducibility, disruption of each of the five putative mediators led to increases in the
207  relative abundance of species of the Enterobacteriaceae family and in the actual number

208  of such cells in the gut, supporting their importance for gut bacterial control.

209 The lysozyme gene and the C-type lectin genes are known to be associated with
210 responses to pathogenic bacteria (35—-38). Our results extend their function to controlling
211 non-pathogenic commensal bacteria. At least for one of these genes, clec-52, this
212  involvement may be conserved, as enteric delivery of the human clec-52 homolog Reg3A
213 in mice was shown to alter gut microbiome composition and to reduce colitis (39). In
214  contrast, scl-2 and nuc-1 are not typically associated with immune responses, but are
215 consistently found to be upregulated in worms exposed to complex microbial communities

216  (12), supporting their involvement in host-microbiome interactions.

217  The experiments presented in Fig. 2, following worm gut colonization with CEent1-dsRed,
218 demonstrated that with the exception of nuc-1, the effect of disrupting each of the putative
219 mediator genes was smaller than that seen in worms disrupted for the upstream regulator
220 gene, sma-3. This supports the hypothesis that control of Enterobacter colonization by
221 DBL-1 signaling relies on a cocktail of downstream effectors, each with a small

222  contribution and together accumulating to the full effect seen in sma-3 mutants. Other
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223  regulatory pathways may induce the expression of other antimicrobial cocktails, partially
224  overlapping in their composition to those regulated by DBL-1 and affect non-
225 Enterobacteriaceae gut bacteria. For example, insulin signaling (11S), mediated by DAF-
226 16 (which contributes also to the expression of some of the DBL-1 targets identified here),
227  was shown to control abundance of bacteria of the genus Ochrobactrum, also common
228 inhabitants of the worm gut (18). Through partially overlapping antimicrobial cocktails, a
229 few regulatory pathways could differentially control gut microbes and shape microbiome
230 composition. Several studies, primarily in drosophila, demonstrate the contributions of
231 different immune regulators to the abundance of different gut constituents (11). A recent
232  study, also in drosophila, nicely demonstrated differential control, describing specific
233 effects of Diptericin A and B, two antimicrobial peptides regulated by the Imd immune
234  pathway, on two distinct gut commensals (40). This observation further suggests that
235 diversification of antimicrobial proteins may be driven not only by the need to fight

236  pathogens but also by the need to control gut microbiome composition.

237  Unlike most of the examined mediators, nuc-1 disruption led to a dramatic increase in
238 Enterobacteriaceae abundance, larger than seen in its sma-3 regulator. nuc-1, encoding
239 aDNase Il homolog, is thought to be important for degradation of DNA in cells undergoing
240 apoptosis (32). It has been also reported to be involved in degradation of bacterial DNA
241 in the intestinal lumen (33), but this suggestion could not explain the effects of its
242  disruption of the increase of intact gut bacteria, as observed in analysis of colony forming
243  units. Another study suggested that nuc-1 disruption in the germline upregulated

244  antimicrobial peptides (41), but this again could not explain the increase in gut bacteria
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245 that we observed. Thus, while nuc-1 appears to play an important role in controlling gut

246  bacteria, at this point, the mechanism remains unknown.

247  While the mechanisms underlying the effects of the identified intestinal mediators on the
248 gut microbiome remain to be investigated, our results describe a new layer in worm
249  control over its gut bacteria and expand our understanding of the role of DBL-1 signaling
250 in such control to describe an underlying gene network that mediates its effects on the

251  worm gut microbiome.

252 METHODS

253 Worm strains used in this study included the N2 wildtype strain, dbl-1(nk3), sma-
254  3(e491), and the dbl-1 overexpressing strain BW1940[dbl-1p::dbl-1;sur-5::gfp] (20), lys-
255  7(0k1384), nuc-1(e1392), and clec-66(0k2230), all obtained from the Caenorhabditis
256 Genome Center (CGC), and clec-52(tm8126) and scl-2(tm2428), obtained from the
257  National Bioresource Project (42). Worms were raised on standard nematode growth

258 medium (NGM) or on peptone-free medium (43), with bacteria as food or as colonizers.

259 Bacterial strains and communities included the non-colonizing E. coli strain OP50,
260 used as food and as control, CeMbio (22), a defined community of C. elegans gut
261 commensals consisting of twelve characterized strains selected to represent the core C.
262 elegans gut microbiome, and CEentl-dsRed, a fluorescently-tagged derivative of the
263  Enterobacter hormachei strain CEentl, a member of the CeMbio community (16). CeMbio
264  strains were raised as previously described (22), normalized based on optical density,

265 mixed in equal proportions and seeded on appropriate plates.
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266 RNA-seq. Germ-free L1 larvae obtained from gravid worms by bleaching (three
267 independent populations per worm strain) were raised at 25°C on NGM plates seeded
268  with CeMbio as described above. Gravid worms were rinsed off plates with M9 including
269  0.025% Triton, washed 5 times to get rid of offspring and bacteria, mixed with TRIzol
270  Reagent (Invitrogen; Waltham, USA), snap-frozen in liquid nitrogen, taken through 5-7
271 thaw-freeze cycles to break them open, and kept at -80°C until use. RNA isolation was
272  performed using the NucleoSpin RNA purification kit, manual protocol 5.2 (Macherey-

273  Nagel; Duren, Germany).

274  Sequencing libraries were prepared from total RNA using the TruSeq RNA Library Kit v2
275 (lllumina; San Diego, USA), with indexed adaptors for multiplex sequencing, assessed
276  for quality on an Agilent Bio-analyzer (Agilent; Santa Clara, USA) and submitted for 100
277 bp paired-end sequencing on a NovaSeq 6000 at the QB3 Genomic Sequencing
278 Laboratory (UC Berkeley, Berkeley, CA; RRID:SCR_022170). Raw reads obtained were
279  pre-processed with fastp (44) and pseudo-aligned to the WormBase transcriptome
280 version WS235 using kallisto (45). Transcript counts were then normalized with Sleuth
281 (46) and analyzed to identify genes differentially expressed between worm strains and
282  bacterial treatment using the likelihood ratio test. Heatmaps following k-means clustering
283  (k = 4) were generated with Morpheus (https://software.broadinstitute.org/morpheus) and

284  gene set enrichment analyses were performed using WormCat (47).

285 Quantitative (q)RT-PCR measurements were performed on RNA extracted as described
286 above from worms raised at 20°C as described above. mMRNA was reverse transcribed
287  with the iScript Reverse Transcription Supermix (BioRad, Hercules, USA), and cDNA was

288  used for amplification using the SsoAdvanced Universal SYBR Green Supermix (BioRad,
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289  Hercules, USA) on an Applied Biosystems StepOnePlus cycler (Waltham, USA). Ct
290 values obtained in amplification of specific mMRNAs were normalized to those obtained by
291 amplification of three conserved C. elegans actin genes with the pan-actin primer pair

292 (35).

293  Primers used included:

294  scl-2: F: 5- GATTTCGCCCACGCCATTTG-3’; R: 5'- ACTCAGAAATCGCCGGGAAC -3’

295 lys-7: F 5- TTGCAGTACTCTGCCATTCG-3’; R: 5’- GCACAATAACCCGCTTGTTT -3’

296 clec-52: F: 5’- AGCCAAATCTCCTCCATCAGC-3’;

297 R:5- GATCAACCGCCTGTATGCAAC -3’

298 nuc-1: F: 5- CCTGGAAGATGGTCTTGTCA-3’;

299 R:5-GGGAACTTTGACTCCTTCTGC -3

300 clec-66: F: 8- GCAGAAGGCGGTTTTGGC-3’; R: 5'- GCGGCGAATTTAGTCATGGC -3

301 PanActin: F: 5’- TCGGTATGGGACAGAAGGAC-3;

302 R:5-CATCCCATGTGGTGACGATA -3’

303 DNA extraction for gut microbiome analysis. Gravid worms raised at 20°C on NGM
304 plates with CeMbio (three independent populations per worm strain) were washed off
305 plates, washed 5 times with M9 + 0.025% Triton, paralyzed with levamisole to seal the
306 intestine, surface sterilized with bleach as described elsewhere (22, 48), and kept at 4 °C
307 until use. DNA was extracted using the Qiagen DNeasy PowerSoil Pro Kit, with

308 modifications as described elsewhere (48).
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309 16SrRNA gene sequencing of the amplicon libraries of the V4 variable region generated
310  with primers 515F and 806R containing Illumina overhang adapter sequences according
311 to the manufacturer instructions, with slight cycling modifications described elsewhere.
312 Dual indices and Illumina sequencing adapters were added using the Nextera XT Index

313  Kit. Sequencing was performed on an Illumina MiniSeq.

314 Demultiplexed forward and reverse sequences were filtered for quality, resulting in
315 roughly 11,000 reads per sample, and assigned amplicon sequence variants (ASVs) with
316 DADAZ2 (49) and DECIPHER (50). Taxonomy assignments for ASVs were obtained based
317 onacustom database with 16S sequences of the twelve CeMbio strains, and counts were
318 normalized for the different 16S gene copy number of the different strains. Microbiome
319 analyses were performed in R using phyloseq (51), phangorn (52), and vegan (53), to
320 calculate UniFrac distances for Principle Component Analysis; and MiRKAT (54), for

321 statistical evaluation of differences between microbiomes.

322  Colony forming unit (CFU) Counts of gut commensals were evaluated in worms raised,
323  harvested and surface-sterilized as described above. Gut bacteria were released from
324  worms by vortexing together with zirconium beads, until degradation could be confirmed
325 using a light microscope. Serially diluted worm lysates were plated on either
326  Enterobacteriaceae-selective media (Violet Red Bile Glucose, VRBG; Difco Becton

327  Dickinson) or on rich LB media and incubated at 28°C for 24 h before counting colonies.

328 Fluorescence Imaging was employed to follow worm colonization by E. hormachei
329 CEentl, using the CEentl-dsRed derivative. Worms were raised from the L1 stage on a

330 lawn of CEent-1-dsRed at 20°C. Following three days, gravid worms were washed off
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331 plates, washed three times with M9 and imaged. Fluorescent images were captured using
332 a Leica MZ16F equipped with a Qlmaging MicroPublisher 5.0 camera and fluorescent
333 signal of colonizing bacteria was quantified on the Fiji plugin of ImageJ v2.10/1.53c as
334  previously described (55), producing background-subtracted average intensity for each

335 worm.
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Figure 1. DBL-1/BMP-dependent gene expression. (A) Expression profiles of Sleuth-
identified DBL-1 pathway targets (p < 0.005, BH-corrected, see methods) in wildtype and
designated mutant and transgenic strains raised on E. coli (EC) or on CeMbio (CB).
Genes are k-means-clustered (with number of genes for each cluster) and colored
following median-centering for each gene to highlight patterns. Enriched gene
annotations were identified using WormCat, with Bonferroni-corrected p-values (B) gRT-
PCR verification of expression patterns for putative DBL-1 pathway targets of Cluster 1
in the designated strains; light and dark colors represent expression in worms raised on
E. coli or CeMbio, respectively. Shown for each graph are averages of two independent
experiments (N = 2) £ SDs. * p < 0.05, ** p < 0.01, *** p < 0.001, pairwise t-test.
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Figure 2. Disruption of intestinal DBL-1 target genes increases Enterobacter
colonization. (A) Representative images of DBL-1/BMP effector mutant strains grown
on CEent-1-dsRed bacteria, compared to wildtype (wt), recorded 1 d after L4. Scale bar,
200 pm. (B) Quantification of signal intensity in worms as in A. Bars mark average single
worm fluorescence + SDs; 20-46 worms per experiment (N=4 independent experiments
for scl-2 and clec-52; N=3, for lys-7 and clec-66; and N=2 2, for nuc-1); * p < 0.05, ** p
< 0.001, t-test compared to wt; red for comparison to sma-3.
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Figure 3. Disruption of intestinal DBL-1 targets alters gut microbiome composition.
(A) PCoA based on weighted UniFrac distances highlighting differences in microbiome
composition (analyzed by 16S NGS) between wildtype and mutant worms in one
experiment, analyzed for each strain in three independent populations; * p < 0.05, ** p <
0.01, UniFrac regression-based kernel association test with small-sample size correction.
(B) Data from A, highlighting relative abundances of CeMbio members in tested mutants,
shown as fold over wildtype; * p < 0.05, ** p < 0.01, ** p < 0.001, t-test, compared to
wildtype. (C) Enterobacteriaceae relative abundance in designated mutants, including
results from several independent experiments as the one presented in A (N = 4 for scl-2
and clec-52 mutants, N = 2 for nuc-1 and clec-66, and N = 1 for lys-7), each performed
with 3-5 worm populations. Values are shown as fold over wildtype, * p <0.05, ** p < 0.01,
*** p < 0.001, t-test compared to wildtype.
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Figure 4. Disruption of intestinal DBL-1 targets increases gut Enterobacteriaceae
load. (A) Enterobacteriaceae gut load, represented by CFU counts on selective VRBG
media. (B) Total bacterial load, counted on LB plates. (C) Enterobacteriaceae proportion
of total bacterial load relative to wildtype calculated from data in A and B. * p < 0.05, ** p <
0.01, *** p < 0.001, t-test compared to wildtype.
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