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Abstract 19	

The functional diversity of natural killer (NK) cell repertoires stems from differentiation, 20	

homeostatic receptor-ligand interactions, and adaptive-like responses to viral infections. Here, we 21	

generated a single-cell transcriptional reference map of healthy human blood and tissue-derived 22	

NK cells, with temporal resolution and fate-specific expression of gene regulator networks 23	

defining NK cell differentiation. Using transfer learning, transcriptomes of tumor-infiltrating NK 24	

cells from seven solid tumor types (427 patients), combined from 39 datasets, were incorporated 25	

into the reference map and interrogated for tumor microenvironment (TME)-induced 26	

perturbations. We identified six functionally distinct NK cellular states in healthy and malignant 27	

tissues, two of which were commonly enriched for across tumor types: a dysfunctional ‘stressed’ 28	

CD56bright state susceptible to TME-induced immunosuppression and a cytotoxic TME-resistant 29	

‘effector’ CD56dim state. The ratio of ‘stressed’ CD56bright and ‘effector’ CD56dim was predictive 30	

of patient outcome in malignant melanoma and osteosarcoma. This resource may inform the design 31	

of novel NK cell therapies and can be extended endlessly through transfer learning to interrogate 32	

new datasets from experimental perturbations or disease conditions. 33	

 34	
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Introduction 35	

Natural killer (NK) cells are innate lymphocytes that play a vital role in the immune response 36	

through their ability to directly kill transformed and virus infected cells, and by orchestrating the 37	

early phase of the adaptive immune response1. NK cells are commonly divided into two 38	

functionally distinct subsets, CD56bright and CD56dim NK cells2, 3. However, this is an 39	

oversimplified view of the repertoire. Mass cytometry profiling of NK cell repertoires at the single 40	

cell level revealed an extensive phenotypic diversity comprising up to 100,000 unique subsets in 41	

healthy individuals4. Much of this diversity is based on combinatorial expression of stochastically 42	

expressed germline encoded activating and inhibitory receptors that bind to HLA class I and tune 43	

NK cell function in a process termed NK cell education5, 6. Another layer of diversity reflects the 44	

continuous differentiation through well-defined intermediate phenotypes from the naïve CD56bright 45	

NK cells through CD62L+NKG2A+KIR-CD57-CD56dim NK cells to terminally differentiated, 46	

adaptive CD62L-NKG2C+CD57+KIR+CD56dim NK cells, associated with past infection of 47	

cytomegalovirus (CMV)7, 8, 9, 10. Given the increasing interest to harness the cytolytic potential of 48	

NK cells in cell therapy against cancer, it is of fundamental importance to understand the molecular 49	

programs and gene regulatory circuits driving NK cell differentiation and the underlying functional 50	

diversification of the human NK cell repertoire. 51	

Utilizing single-cell RNA sequencing (scRNA-seq), Crinier et al. discovered organ-52	

specific signatures in human spleen NK cells and two major transcriptional clusters in blood-53	

derived NK cells (PB-NK), corresponding to CD56dim (NK1) and CD56bright (NK2) NK cell 54	

subsets2. Bulk RNA and ChIP sequencing identified dominant transcription factor (TF) axes 55	

defining CD56bright (TCF1-LEF-MYC) and CD56dim (PRDM1) phenotypic subsets, respectively11. 56	

Later research reported additional diversity with unique transcriptional clusters, including IL-2 and 57	
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type I interferon-responding NK cell subsets12 and an intermediate CD56dimGzmK+ stage, 58	

potentially bridging CD56bright and CD56dim NK cells13. A comprehensive analysis unveiled 59	

Bcl11b's role in driving NK cell differentiation towards the adaptive state, reciprocally suppressing 60	

early TFs like RUNX2 and ZBTB1614. Combining gene expression analysis, chromatin 61	

accessibility, and lineage tracing via mitochondrial DNA (mtDNA) mutations, Rückert et al. 62	

revealed a clonal expansion and a distinct inflammatory memory signature in adaptive NK cells15. 63	

Using a pan-cancer single-cell atlas approach, Tang et al.16 identified a tumor-enriched 64	

dysfunctional CD56dim CD16hi NK cell population interacting with LAMP3+ dendritic cells in the 65	

tumor microenvironment (TME). Hence, scRNA-seq and bulk RNA-seq usage has defined major 66	

transcriptional regulatory hubs during NK cell differentiation and identified a persistent memory 67	

state in human innate immunity. However, it remains unclear how the regulatory gene circuits that 68	

operate under homeostasis in healthy tissues are affected by cellular and/or soluble cues in the 69	

TME, resulting in perturbed functional states within tumor-infiltrating NK cells. 70	

Here we establish a single-cell transcriptional reference map that resolves gene expression 71	

trends and dominating TF-target interactions during NK cell differentiation in blood and normal 72	

tissues. Reference mapping enables the analysis of cellular differences and gene programs in 73	

diseases and various conditions by contextualizing new datasets within a healthy transcriptional 74	

reference, facilitating the identification of novel states not found in the reference17. We utilize our 75	

NK cell reference map, compiled from 44,640 PB-NK cells (12 donors) and 27,489 tissue resident 76	

NK (TrNK) cells (136 donors), to query the regulones and functional states, as defined through 77	

gene expression signatures, of tumor infiltrating NK (TiNK) cells derived from 427 patients with 78	

seven distinct solid tumors (38,862 TiNKs). We found that TrNK and TiNK cells have a clear 79	

tissue residency signature but still share the dominant regulons of blood CD56bright and CD56dim 80	
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NK cells. Of the six functional states identified in our pan-cancer atlas, a dysfunctional ‘stressed’ 81	

CD56bright state susceptible to TME-associated cellular communication and a cytotoxic ‘effector’ 82	

CD56dim state resistant to TME-associated cellular communication were commonly enriched 83	

across tumor types. Stratification of patient survival data identified a high ratio of ‘effector’ 84	

CD56dim to ‘stressed’ CD56bright state to correlate with improved survival in osteosarcoma and 85	

melanoma patients. This resource provides a granular view of cancer-specific alterations of solid-86	

tumor infiltrating NK cells, identifying how the TME can lead to NK cell dysfunction and may 87	

inspire new strategies to engineer cell therapy products with robust functional phenotypes resistant 88	

to TME-induced suppressive mechanisms.  89	

  90	
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Results 91	

NK cell subset annotation of single-cell RNA sequencing data using predictive gene 92	

signatures. To establish a pan-cancer atlas of tumor-infiltrating NK cells, we first defined NK cell 93	

differentiation at the transcriptional level. We performed single-cell RNA sequencing (scRNA-94	

seq) of the total NK cell population from 7 healthy donors and integrated our transcriptomes with 95	

5 publicly available donor datasets2, 18 using scVI19 (Supplemental Table 1). By retaining only 96	

cell-to-cell variation independent from sample-to-sample variation, the initial clustering by donor 97	

and laboratory origin was successfully integrated into a homogenous population of cells and 98	

visualized using diffusion maps20 to preserve the continuous trajectories observed with biological 99	

differentiation (Figure 1A). Although NK differentiation is best described as a continuum, 100	

CD56bright and CD56dim NK cell represent two distinct stages of differentiation. By performing 101	

gene signature scoring using AUCell21, we identified cells at the top of the diffusion map 102	

embedding scoring high for the CD56bright gene signature2, while the main body of the embedding 103	

exhibited increasing intensity of the CD56dim signature2 (Figure 1B). Scoring of two independent 104	

gene signatures based on the CD56bright/dim regulon11 and proteome22 confirmed our results 105	

(Supplemental Figure 1A-B).  106	

The relatively large and heterogeneous population of CD56dim NK cells is commonly 107	

phenotypically defined into functionally distinct subsets based on a selected number of inhibitory 108	

and activating receptors contributing to the functional tuning7. To identify predictive gene 109	

signatures associated with these functional stages encompassing NK cell differentiation, we sorted 110	

and sequenced equal numbers of CD56bright NK cells and four CD56dim NK cell subsets 111	

(NKG2A+KIR-CD57-, NKG2A-self-KIR+CD57-, NKG2A-nonself-KIR+CD57-, NKG2A-self-112	

KIR+CD57+ or NKG2A-/+self-KIR+CD57+NKG2C+) from two donors, one without and one with 113	
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a large adaptive NK cell expansion (Figure 1C, Supplemental Figure 1C-D). Transcriptionally, 114	

the adaptive NK cell subset was the most distinct as the remaining CD56dim subsets exhibited a 115	

high degree of transcriptional overlap, while still ordering themselves along the previously defined 116	

maturation scheme (Figure 1C). As previously observed in bulk RNA-seq data23, the 117	

transcriptomes of self and non-self KIR+ NK cells were highly similar even at the single cell level 118	

and thus merged for subsequent analysis (Figure 1C). The five transcriptionally distinct NK 119	

subsets were renamed to reflect their maturation stage: ‘CD56bright’, ‘early CD56dim’, ‘intermediate 120	

CD56dim’, ‘late CD56dim’ and ‘adaptive’ (Figure 1C).   121	

We next utilized a semi-supervised model, scANVI24, to leverage our identified NK cell 122	

subset gene signatures to predict and infer subset annotation of compiled bulk NK cell scRNA-seq 123	

datasets. We first tested the accuracy of the prediction model (M1) on 15% of the subset-sorted 124	

NK cells (Figure 1C) which were not included in the training of the model. Transcriptionally 125	

distinct subsets (CD56bright, adaptive) were annotated with high accuracy, while subsets exhibiting 126	

higher transcriptional overlap were annotated with slightly reduced accuracy (Figure 1D). 127	

Implementing the model, we could annotate the total NK cell dataset comprising 23,253 single 128	

cell transcriptomes (12 donors) at the subset level (Figure 1E). The models top three differentially 129	

expressed genes (up and down) for each subset’s gene signature showed some overlap, further 130	

highlighting the continuous nature of NK cell differentiation at the transcriptional level (Figure 131	

1F). To validate our annotation model, we performed unbiased clustering (Leiden) of the total NK 132	

cell dataset (12 donors), identifying five clusters closely matching our annotated five NK cell 133	

subsets (Figure 1G). A small portion of intermediate CD56dim annotated NK cells clustered 134	

together with late CD56dim annotated NK cells in cluster 4 (Figure 1H), likely corresponding to 135	

more mature cells within the population. Having confirmed the validity of our 5 NK cell subsets, 136	
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M1 was utilized to identify donors with an adaptive NK cell expansion, which were all confirmed 137	

to be CMV seropositive (Figure 1I). Thus, this first scANVI model forms a basis to interrogate 138	

cellular states layered on top of the natural transcriptional changes with NK cell subsets at different 139	

stages of differentiation.  140	

 141	

Temporal resolution of gene regulator networks with fate-specific expression. To decipher the 142	

regulatory gene pathways driving NK cell differentiation at the transcriptional level, we 143	

implemented two different methods to calculate pseudotime, namely Palantir25 and RNA velocity-144	

based pseudotime26, 27. Palantir identifies terminal cells based on a chosen starting cell, placing the 145	

remaining cells along a timeline (pseudotime). Defining the starting cell (blue) based on the lowest 146	

CD56dim score2 (Figure 1B) identified two terminal cells (orange), predicted to be part of the late 147	

CD56dim and adaptive population respectively (Figure 2A). To validate this trajectory, we utilized 148	

the dynamic model implemented in scVelo26 to compute RNA velocity (spliced versus unspliced 149	

transcripts), inferring pseudotime without a predefined starting cell (Supplemental Figure 2A-150	

B). The resulting vector field and extrapolated pseudotime confirmed a trajectory starting within 151	

the CD56bright NK cell subset and terminating in the adaptive subset (Figure 2B). Lastly, to infer 152	

developmental relationships at the resolution of the five subsets, representing functionally distinct 153	

subsets and proposed stages of NK cell differentiation7, we applied Partition-based graph 154	

abstraction (PAGA)28 to quantify their connectivity and estimate transitions. In line with the two 155	

terminal fates (late CD56dim, adaptive) identified by Palantir, we analyzed conventional and 156	

adaptive donors separately (Figure 1I). In both types of donors, early CD56dim NK cells formed 157	

the connecting link between CD56bright and the remaining CD56dim populations (Figure 2C-D). 158	

However, while adaptive donors NK cells continued their progression to intermediate CD56dim 159	
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cells, terminating in the adaptive population, conventional donors instead branched into the 160	

intermediate or late CD56dim populations (Figure 2C-D).  161	

 Having established a temporal axis to NK cell differentiation, we utilized generalized 162	

additive models to compute gene expression trends as a function of time for each gene25, which 163	

clustered into five distinct trends (Figure 2E). Genes varying in expression across the two terminal 164	

fates were depicted in their trends for each fate, exemplified by KLRC2, CD5215, 18, IL32 clustering 165	

into Trend 1 in the conventional late CD56dim fate and into Trend 4 in the adaptive fate (Figure 166	

2E). Based on the two-fate model, we constructed gene regulatory networks (GRN)21  stratified by 167	

the five gene trends, identifying the dominant TFs across pseudotime and their known downstream 168	

target genes (Figure 2F). Trend 1 is dominated by genes which are downregulated with 169	

differentiation from CD56bright to CD56dim cells, including previously reported TFs (MYC, LEF1, 170	

RUNX2)11, RBPJ29 involved in Notch signaling, the retinoic acid receptor (RXRA), and TFs 171	

regulating ID2 expression (HOXA9, HOXA10)30 (Figure 2E-F). Trend 2 genes, compared to 172	

Trend 1, are upregulated during differentiation from early to intermediate CD56dim cells and 173	

include among others EGR131 (cell survival, proliferation, apoptosis, regulates TRAIL 174	

expression), BHLHE4032, 33 (associated with NK cell activation and represses RXRA) and IRF834, 175	

35 (role in orchestrating adaptive response, essential NK cell gene) (Figure 2E-F). TFs exhibiting 176	

less dynamic changes across pseudotime are clustered in Trend 3, such as IKZF1, XBP1 and KLF2 177	

which play a role in regulating homeostatic proliferation, effector function and cytokine 178	

responsiveness36, 37. TFs exhibiting higher expression at the start and end of pseudotime fall into 179	

Trend 4, including STAT3 (cell survival, IFNg production) and DDIT338 (stress response, 180	

metabolism). Lastly, expression of Trend 5 genes steadily increases with differentiation, 181	

decreasing only during late differentiation and includes previously reported TFs associated with 182	
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CD56dim NK cells (MAF, PRDM1, TBX21) )11, the AP-1 family member BATF, the ETS family 183	

member ETV7, and the Wnt target gene ASCL2 (Figure 2E-F). The TF-based GRNs were further 184	

curated to only retain direct targets with significant motif enrichment, referred to as ‘regulons’ 185	

(denoted by ‘(+)’), expression of which was confirmed in an independent bulk RNA-seq data set 186	

on sorted NK cell subsets. Regulon expression substantially differing between the conventional 187	

and adaptive fate include conventional fate associated BHLHE4033, IRF834, 35 and DDIT338 and 188	

adaptive fate associated MAF11 and BATF regulons (Figure 2G). Clustering dominant TFs 189	

according to their temporal expression during NK cell differentiation revealed a set of highly 190	

connected regulatory circuits, expression of which diverged during terminal differentiation into 191	

one of the two cell fates, conventional or adaptive.  192	

 193	

Transfer learning to generate pan-cancer atlas of tissue-derived and solid tumor-infiltrating 194	

NK cells. Having transcriptionally defined NK cell differentiation in peripheral blood, we 195	

proceeded to train a second model (M2) with publicly available scRNA-seq datasets encompassing 196	

six healthy tissues (brain, breast, lung, pancreas, prostate, skin) from a total of 136 donors using 197	

scVI19 (Figure 3A, Supplemental Table 2). The tissue-specific datasets were integrated and 198	

annotated using scANVI, and  CellTypist39 was used to identify immune subsets of interest (Figure 199	

3B, Supplemental Figure 3A-E). The annotated tissue-derived CD56bright and CD56dim NK cell 200	

populations (27,489 cells) were extracted from the datasets and integrated into our reference map 201	

(Figure 3C). Tissue-residency status was confirmed by scoring for a tissue residency (Tr) 202	

signature, which was most pronounced in TrCD56bright NK cells but also increased in TrCD56dim 203	

NK cells (Figure 3D). CD56bright and CD56dim subsets from peripheral blood and tissues clustered 204	

together (Figure 3E) and were more tightly connected than to their respective tissues, apart from 205	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.26.564050doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564050
http://creativecommons.org/licenses/by/4.0/


	 11	

skin-derived NK cells (Figure 3F). Therefore, differentiation stage has a greater influence on the 206	

NK cell transcriptome compared to tissue origin. Notably, CellTypist did not identify a CD56bright 207	

NK cell population in neither brain nor breast tissue (Supplemental Figure 3A, Figure 3E).  208	

Next, scRNA-seq datasets from seven solid tumors (breast cancer (BRAC), Glioblastoma 209	

(GBM), Lung (NSCLC), Melanoma (SKCM), Pancreas (PAAD), Prostate (PRAD) and 210	

Osteosarcoma (SARC)) from a total of 427 patients were annotated and integrated for each tumor 211	

type using scANVI19 and CellTypist39 (Figure 3G, Supplemental Figure 3F-L, Supplemental 212	

Table 3). The CD56bright and CD56dim annotated tumor-infiltrating NK (TiNK) cells were mapped 213	

onto the reference map (PB-NK, TrNK) using transfer learning (scArches40) to generate the final 214	

model (M3) (Figure 3H). TiNK cells also clustered based on their differentiation stage together 215	

with the corresponding PB-NK and TrNK subsets (Figure 3I). SKCM-derived CD56dim NK cells 216	

exhibited the lowest connectivity score when compared to all other populations (Figure 3J). 217	

GBM-derived TiCD56bright NK cells and SKCM-derived TiCD56dim scored highest for tissue 218	

residency within their respective subsets (Supplemental Figure 3M). Transfer learning facilitated 219	

incorporation of TiNK cells onto our healthy reference map of PB and TrNK cells, allowing for 220	

downstream systematic interrogation of cellular states within these solid-tumor infiltrating NK 221	

cells.  222	

 223	

Altered NK cell subset frequencies within healthy tissue and solid tumors. The tumor 224	

microenvironment (TME) is shaped by its cellular composition, particular by the infiltrating 225	

immune cells, which in turn can be modulated by their surroundings. A pan-cancer comparison of 226	

the healthy tissue and tumor annotated immune subtypes (Figure 3B), identified an increased 227	

proportion of plasma cells and a decreased proportion of CD56dim NK cells, dendritic cells, NKT 228	
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cells, helper TEM/EFF, cytotoxic TEM/EMRA and cytotoxic TRM cells in the tumor datasets (Figure 229	

4A-B). The fraction of CD56bright NK cells out of total immune cells was enriched in BRAC, while 230	

CD56dim NK cells were enriched in SKCM, but decreased in NSCLC and BRAC (Figure 4B, 231	

Supplemental Figure 4A). SKCM uniquely exhibited a tendency for increased proportions of 232	

both NK cell subsets (Figure 4B), in line with an overall increased frequency of immune cells, 233	

including NK cells (Figure 4C-D). Utilizing our subset-trained model (M1) to annotate CellTypist 234	

defined NK cells into the five NK cell subsets we observed increased proportions of CD56bright 235	

cells across numerous tumor types (Figure 4E). Within the CD56dim compartment, a skewing 236	

towards more mature NK cells (late CD56dim) in tissues and tumors compared to blood 237	

(intermediate CD56dim) was detected, with adaptive NK cells notably absent in Tr/TiNK cells 238	

(Figure 4E). Solid tumor-infiltrating NK cells were enriched for a CD56bright transcriptional 239	

phenotype while the CD56dim compartment in both healthy tissue and solid tumors was skewed 240	

towards increased maturity (late CD56dim).  241	

 242	

Six distinct functional states of NK cells in peripheral blood, tissues, and tumors  243	

Tumor microenvironments of solid tumors are hostile and often immunosuppressive environments 244	

for immune cells to infiltrate.41 Understanding how the TME can modulate NK cells at the 245	

transcriptional level can provide important insights into understanding the tumor-mediated 246	

immunosuppressive mechanisms and how to overcome them.  247	

We implemented an unbiased approach (Milo42) to ascertain cellular states in our pan-248	

cancer NK cell atlas by identifying individual neighborhoods (~6000) without pre-clustering based 249	

on cellular origin. Annotating individual neighborhoods as subset specific (>70% of cells in 250	

neighborhood) identified TiCD56bright NK cells as having the most frequent, but also most unique 251	
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(differentially abundant) specific neighborhoods (Supplemental Figure 5A). Notably, the 252	

majority of neighborhoods were annotated as ‘mixed’, highlighting transcriptional similarities 253	

among NK cells found in peripheral blood, tissues and tumors (Supplemental Figure 5A). The 254	

approximately 6000 neighborhoods were grouped into six distinctive neighborhood groups and we 255	

tested for differential abundance of neighborhoods between TiNK cells and Ref-NK cells (Figure 256	

5A, Supplemental Figure 5B). Neighborhood groups 1 and 2 consisted of neighborhoods 257	

significantly enriched for TiNK cells and group 6 included neighborhoods enriched for Ref-NK 258	

cells (Figure 5B, Supplemental Figure 5B).  259	

Next, we visualized the distribution of NK cell subsets within each group using our 260	

annotation model (M1). Group 1 and 2 were enriched for, but not exclusive to CD56bright cells, 261	

while groups 3-6 were dominated by CD56dim NK cell subsets (Figure 5C). The dominant TF 262	

regulons of PB-NK cell differentiation previously identified (Figure 2F), confirmed Group 1 and 263	

2 as two CD56bright states and group 3-6 as four CD56dim NK cells states (Figure 5D).  264	

Cell-state specific GRN, DEG, GSEA, and signature scoring informed our annotation of 265	

the states as ‘stressed’ CD56bright (Group 1), ‘typical’ CD56bright (Group 2), ‘effector’ CD56dim 266	

(Group 3), ‘stressed’ CD56dim (Group 4), ‘activated’ CD56dim (Group 5) and ‘typical’ CD56dim 267	

(Group 6) (Figure 5E-M, Supplemental Figure 5C-F). Comparing the ‘stressed’ to the ‘typical’ 268	

CD56bright state identified increased expression of the cellular stress response ATF3 regulon, the 269	

hypoxia-induced MAFF regulon, and numerous heat shock proteins (Figure 5E, G, J). The 270	

‘stressed’ CD56bright cell state scored highly for immunosuppressive pathways (TGF-b signaling, 271	

hypoxia, ROS) and exhibited increased metabolic activation (glycolysis, cholesterol homeostasis, 272	

fatty acid metabolism), proliferation (G2M checkpoint) and activation of the MYC/mTORC1 axis 273	

(Figure 5G, J, M). Furthermore, a significant decrease in the apical junction hallmark (indicative 274	
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of lower polarization and conjugate formation) and a low NK cytotoxicity score was suggestive of 275	

reduced functionality in this ‘stressed’ CD56bright cellular state, which was uniquely enriched 276	

across all 7 tumor types (Figure 5J, M-N). In line with increased infiltration of CD56bright cells in 277	

the TME, the ‘typical’ CD56bright cellular state was also enriched in 5 of 7 tumor types compared 278	

to healthy tissue (Figure 5N).  279	

Of the CD56dim state, the ‘effector’ state was most frequently enriched across tumor types 280	

(SARC, PAAD, PRAD), characterized by an enrichment for apical junction, actin and 281	

cytoskeleton-related associated genes (Figure 5H, K, N). This state, phenotypically enriched for 282	

intermediate and late CD56dim NK cell subsets, scored highly for NK cytotoxicity and oxidative 283	

phosphorylation, and importantly, lowly for immune suppression (Figure 5C, M). The ‘stressed’ 284	

CD56dim state, characterized by downregulated apical junction related genes and effector 285	

molecules (GZMB, PRF1, GNLY) and upregulated heat shock proteins, was more prominent in 286	

healthy tissues and only enriched for in PRAD (Figure 5I, L-N). The ‘activated’ CD56dim state 287	

was distinguished by increased hypoxia, proliferation and NFkB activation (Supplemental Figure 288	

5C, E, Figure 5M) while the PB-enriched ‘typical’ CD56dim state exhibited highest expression of 289	

NK-associated genes (PRF1, GZMB, CST7, FCGR3A, NKG7, FGFBP2) (Supplemental Figure 290	

5D, F, Figure 5N). Notably, while we observed enrichment of individual cellular states in the 291	

TME, including the two CD56bright and the ‘effector’ CD56dim states, all states were represented in 292	

healthy blood and tissue samples, albeit at different frequencies.  293	

 294	

Decreased TME-specific incoming signaling in the ‘effector’ CD56dim NK state associated 295	

with improved survival  296	
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The clinical benefit of NK cell infiltration in solid tumors has previously been assessed through a 297	

general NK cell signature score43, 44. Having identified six functional states of NK cells in blood, 298	

tissue and solid tumors, we proceeded to test clinical relevance of these cellular states by using 299	

BayesPRISM45	 to deconvoluted TCGA survival data46, 47. The combination of high ‘effector’ 300	

CD56dim and low ‘stressed’ CD56bright cell signatures correlated with increased improved survival 301	

in SARC and SKCM patients (Figure 6A). To elucidate any TME-based influence on these 302	

outcome-associated functional states, we employed CellChat48 to infer intercellular 303	

communication, focusing on commonly enriched signaling pathways in SARC and SKCM. 304	

Increased outgoing signaling (MHC-I, CD99, ITGB2, ICAM, PARs) was noted in group 3 NK 305	

cells, while group 1 NK cells were enriched for incoming signaling (MHC-I, MIF, ADGRE5, FN1, 306	

GALECTIN, COLLAGEN) (Figure 6B, Supplemental Figure 6A). Increased expression of 307	

CD44, and to a lesser degree CXCR4, upon which numerous signals from fibroblasts, CAFs, 308	

endothelial cells and osteoblasts/clasts converged (COLLAGEN, MIF GALECTIN; FN1), 309	

facilitated the augmented incoming signaling in group 1 (Figure 5C, E). Notably, fibroblasts, 310	

CAFs, endothelial cells and osteoblasts/clasts also exhibited the strongest outgoing interaction 311	

strength of all cell types in SARC (Supplemental Figure 6A). Furthermore, group 1 NK cells 312	

preferentially received inhibitory input via the MHC-I (HLA-E/KLRC1) and ADGRE5 313	

(ADGRE5/CD55) pathways, while group 3 NK cells exhibited increased ITGB2 and ICAM2 314	

expression, facilitating binding to other NK cell states and macrophages (Figure 6D-E). Hence, 315	

group 3 NK cells preferentially communicated with other tumor-infiltrating immune cells while 316	

group 1 NK cells were more receptive to TME-induced immunosuppressive signals via 317	

upregulated CD44.  318	
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A higher ratio of ‘effector’ CD56dim to ‘stressed’ CD56bright NK state signatures was 319	

predictive of improved survival in SARC and SKCM. Inferred increased inhibitory signaling and 320	

augmented susceptibility to TME-induced suppression likely contributes to the ‘stressed’ 321	

CD56bright states unfavorable prognosis.  322	

 323	

Discussion 324	

Here we report a compact description of the transcriptional diversification encompassing human 325	

NK cell differentiation at the single cell level. By enriching for less frequent, but phenotypically 326	

well-defined functionally distinct NK cell subsets, we could first train a model to correctly annotate 327	

five transcriptional subsets from bulk NK cell populations. By applying probabilistic models 328	

implemented in scVI-tools, we created a transcriptional reference map of human blood and tissue 329	

resident NK (TrNK) cells from normal tissues including blood, pancreas, lung, breast, skin, 330	

prostate and brain. Transfer learning using scArches facilitated integration of query datasets 331	

comprising a total of 2,176,214 transcriptomes from 427 patients spanning seven solid tumor 332	

types. By extracting, annotating, and mapping the tumor-infiltrating NK (TiNK) cells onto our 333	

healthy reference map, we could systematically interrogate TME-induced perturbations of gene 334	

regulatory networks and functional states of TiNK cells (Supplemental Figure 7). Our pan-cancer 335	

atlas revealed six functionally distinct NK cell states with varying abundance across blood, tissues 336	

and tumor types. Two states commonly enriched for across tumor types included a dysfunctional 337	

CD56bright cellular state susceptible to TME-induced immunosuppression and a cytotoxic TME-338	

resistant CD56dim state, the ratio of which was predictive of patient outcome.  339	
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The view that NK cells, like T cells and other immune cells, undergo a continuous process 340	

of NK cell differentiation is relatively recent and was originally based on phenotypic and 341	

functional classification of discrete subsets7, 49. There is abundant evidence suggesting that the 342	

CD56bright NK cell subset is the most naïve, giving rise to the more differentiated CD56dim NK 343	

cells which can further differentiate towards terminal stages, a process accelerated by CMV 344	

infection8, 50, 51. Instead of forcing individual NK cells into arbitrary clusters representing a 345	

snapshot of a given time point of differentiation, we clustered TFs and their target genes into five 346	

distinct gene expression trends as a function pseudotime, reflecting continuous differentiation. By 347	

retaining fate-specific expression profiles, conventional versus adaptive fate in donors with CMV-348	

induced clonal NK cell expansions, we could observe clear divergence of regulon expression (eg, 349	

BATF, MAF) during terminal differentiation. BATF belongs to the AP-1 TF family which have 350	

been identified as potential drivers in shaping adaptive NK cell chromatin accessibility and thus 351	

dictating the unique functional features of this subset, including enhanced IFNg response to 352	

receptor stimulation15. Establishing dominant regulons defining NK cell differentiation in 353	

peripheral blood provided a vital reference for downstream interrogation of both tissue resident 354	

and solid tumor-infiltrating NK cells.  355	

Utilizing CellTypist, we harmonized annotations of individual cell subtypes across 356	

multiple datasets from six different healthy tissues, extracting and integrating CD56bright and 357	

CD56dim NK cells using scVI19 to expand our transcriptional reference map. Importantly, tissue, 358	

as well as tumor-annotated NK cells did not express human ILC signature genes, instead 359	

expressing both EOMES and TBX21. Tissue residency genes (e.g., CD69, ITGAE, ITGA1, 360	

CXCR6, ZNF683, IKZF3) were more highly expressed in tissue-derived NK cells, particularly in 361	

CD56bright NK cells. Notably, we could not identify a CD56bright population in both healthy brain 362	
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and breast datasets. This could be attributed to the absence of CX3CR152 expression in CD56bright 363	

NK cells, an important receptor for NK cell migration to the brain, or could be an artefact due to 364	

higher blood contamination (lower CD56bright frequency) in this dataset in line with a lower tissue 365	

residency score.  366	

The presence and abundance of NK cells that reside in the tumor bed varies across tumor 367	

types, treatments and between patients and appears to be associated with the chemokine profiles 368	

in the different tissues/tumor microenvironments53, 54, 55, 56. Immune and NK cell subset 369	

composition greatly varied among tissue and tumor type, with the highest and lowest frequency of 370	

CD56bright NK cells being found in skin and lung respectively.  Consistently across tissue and tumor 371	

type, a clear maturation of the CD56dim subset was noted, with late CD56dim NK cells making up 372	

the largest fraction. Notably, no Tr nor TiNK cells were annotated as adaptive using our  subset 373	

annotation model, confirmed by Tang et al.16 but contrary to previous reports describing adaptive-374	

like NK cells with a tissue-residency phenotype in the lung57. Transcriptional differences between 375	

previously described tissue-resident adaptive NK cells and our PB-derived gene signature trained 376	

annotation model could explain these discrepancies.  377	

In agreement with previous studies54, 58, we observed a predominance of CD56bright NK 378	

cells in tumors compared to the corresponding normal tissue. Tumor-resident NK cells are likely 379	

a mixed population including naturally residing TrNK cells and TiNK cells. Compositional 380	

differences between normal and tumor tissues suggests some degree of active recruitment, 381	

particularly in SKCM where NK cell frequencies starkly increased, albeit expansion from tissue 382	

resident pools cannot be excluded. Migration into the TME is regulated by a broad family of 383	

integrins, selectins and chemokine receptors that are differentially expressed during NK cell 384	

differentiation. CXCR3, primarily expressed CD56bright NK cells, has been implicated in homing 385	
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to several solid tumors based on CXCL10 gradients59, and thus may contribute to the 386	

predominance of this subset in tumors. CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10, and 387	

CXCL12, have similarly been implicated in mediating predominantly CD56bright NK cell 388	

trafficking into solid tumors based on chemokine receptor expression56. We observed heightened 389	

CXCR4 expression in CD56bright Tr and TiNK cells, and a modest upregulation of CX3CR1 on 390	

CD56dim Tr and TiNK cells, with levels varying across tissue/tumor type. Previous reports60, 61 391	

have demonstrated CD44-induced CXCR4 upregulation resulting in increased migration and 392	

invasiveness of malignant cells. Notably, CD44 was highly expressed on the tumor-enriched 393	

‘stressed’ CD56bright state, possibly sensitizing this population to TME-mediated 394	

immunosuppression from CAFs, fibroblasts, endothelial and tumor cells, as noted by high scores 395	

for TGFb signaling, hypoxia and ROS. Conversely, the ‘effector’ CD56dim state associating with 396	

improved patient outcome, lacked CD44 expression and uniquely expressed ICAM2 and high 397	

ITGB2 levels. Notably, this state exhibited high expression of the KLF2, PRDM1, BATF, TBX21 398	

and IKZF1 regulons, indicative of high effector function, regulation of homeostatic proliferation 399	

and survival, but also cell migration and tissue residency. Unique TiNK specific regulons in this 400	

state consisted of NFYC, CTBP1, POLE4 and CEBPA, which are involved in DNA repair, 401	

monitoring of proliferation, regulating MHC expression and maintaining structural homeostasis in 402	

the Golgi complex62, 63, 64, 65. Conversely, TiNK specific regulons in the ‘stressed’ CD56bright state 403	

included hypoxia induced MAFF, cellular stress response regulon ATF3 and EGR2/366 which 404	

induce negative regulators in response to activation. Contrary to Tang et al.16, increased gene 405	

signature scoring of the tumor enriched ‘stressed’ CD56bright state did not consistently associate 406	

with reduced survival across tumor types. Instead, we observed increased survival in patients 407	

exhibiting a high ‘effector’ CD56dim state which was further augmented with a low signature for 408	
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the ‘stressed’ CD56bright state. Of the four CD56dim states, the ‘effector’ CD56dim state was most 409	

commonly enriched across tumor types, painting a promising picture for the role of solid-tumor 410	

infiltrating NK cells.  411	

This resource provides a transcriptional reference map of human NK cells across healthy 412	

blood and tissues with harmonized annotations of transcriptional NK cell subsets. Uncovering the 413	

dominant gene regulatory circuits during NK cell differentiation enabled identification of TME-414	

induced perturbations in solid tumor-infiltrating NK cells across tumor type. We identified 415	

functionally distinct NK cell states across healthy and malignant tissues, including tumor enriched 416	

states predictive of patient outcome. Modelling of the intercellular communication pathways of 417	

outcome-predicting NK cell states with the surrounding TME identified potential pathways of 418	

TME-induced NK cell suppression.  Thus, our analysis has the potential to design more potent NK 419	

cell therapy products able to resist suppressive factors operating within the TME of solid tumors. 420	

Ultimately, this resource can be extended endlessly through transfer learning to interrogate new 421	

datasets from experimental perturbations or different tumor types.  422	

 423	

  424	
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Figure legends 452	

Figure 1. NK cell differentiation at the transcriptional level. (A) Integration process of scRNA-453	

seq data of NK cells from 12 donors and 4 different laboratories using scVI showing UMAP 454	

representation followed by diffusion mapping. (B) AUCell scores of gene signatures for CD56bright 455	

and CD56dim NK cell subsets. (C) UMAP representation of 5 sorted subsets from a donor with an 456	

adaptive expansion (left) and a donor without an adaptive expansion (right). (D) Heatmap 457	

depicting accuracy of our prediction model for subset annotation tested on 15% of heldout cells 458	

from the subset-specific dataset (2 donors). (E) UMAP representation showing annotation of NK 459	

cells (12 donors, left) with subset labels (right) using a scANVI model trained with sorted subset 460	

data (2 donors) and the final diffusion map depicting subset annotations. (F) Dotplots showing the 461	

top three up and downregulated genes between all pairs of subsets as identified by the differential 462	

expression module in scANVI, visualized across the differentiation spectrum. (G) Diffusion map 463	

depicting Leiden clustering of the 12 donor NK cell dataset. (H) Heatmap showing distribution of 464	

our annotated 12 donor NK cell subsets over the 5 Leiden clusters. (I) Frequency of annotated late 465	

CD56dim and adaptive NK cell subsets in donors with and without an adaptive NK cell expansion.  466	

Figure 2. Gene regulatory networks defining conventional and adaptive NK cell fates. (A) 467	

UMAP representation highlighting the starting cell (blue) with the lowest value CD56dim signature 468	

score and the two terminal cells (orange) as predicted by Palantir. (B) UMAP representation of the 469	

data from the sorted subsets (2 donors) showing the RNA velocity vector field as a stream plot and 470	

the inferred pseudotime. (C-D) PAGA graph with directionality and transitions from RNA velocity 471	

analysis for the sorted subsets (2 donors) (C) subset-inferred bulk donors (12 donors) stratified 472	

based on presence or absence of adaptive expansion (D). (E) Gene trends clustered into five overall 473	

trends of expression along pseudotime, showing expression of KLRC2, CD52 and IL32 in both 474	
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terminal fates (pink = conventional fate, orange = adaptive fate). (F) Inferred gene regulatory 475	

networks where dominant transcription factors for each trend are highlighted. (G) Selection of 476	

regulons showing differential expression over pseudotime within the conventional and adaptive 477	

fate.  478	

Figure 3. Pan-cancer atlas of healthy tissue resident and solid tumor-infiltrating NK cells. 479	

(A) Graphical overview of healthy tissue datasets included in the analysis, with the number of 480	

donors denoted in brackets. (B) Dotplot showing selected signature genes, and their expression in 481	

healthy lung, used to annotate major immune subsets in the compiled dataset. (C) UMAP 482	

representation showing integration of subset annotated peripheral blood-derived (PB-NK) and 483	

tissue-derived NK cells (TrNK). (D) Scoring of tissue residency signature in PB-NK cell subsets 484	

and CD56bright and CD56dim annotated TrNK subsets. (E-F) PAGA graph (E) and connectivity 485	

heatmap (F) showing connectivity of PB-NK and TrNK subsets across all tissues, with individual 486	

tissues highlighted (E). (G) Graphical overview of solid tumor datasets included in the analysis, 487	

with the number of donors denoted in brackets. (H) UMAP representation showing integration of 488	

subset annotated PB-NK, TrNK and tumor-infiltrating NK cells (TiNK) as pan-cancer atlas and 489	

stratified by solid-tumor type. (I-J) PAGA graph (I) and connectivity heatmap (J) showing 490	

connectivity of PB-NK, TrNK and TiNK subsets across all tissues/tumor types, with individual 491	

tissue/tumor types highlighted.   492	

Figure 4. Cellular composition of pan-cancer cell atlas and subset distribution of tumor-493	

infiltrating NK cells. (A) Distribution of major immune subsets across all tissue and tumor types. 494	

(B) Heatmap depicting changes in immune subset proportion in tumor samples compared to 495	

healthy tissue samples at the pan-cancer level and within individual tumor types. (C) Proportion 496	

of immune cells out of total cells within healthy tissue samples and tumor samples. (D) Proportions 497	
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of major immune subsets within healthy tissue and tumor samples. (E) Predicted subset 498	

annotations of CellTypist identified NK cells in healthy tissue and tumor samples compared to 499	

annotated PB-NK cells. Boxplots (center line – median, box limits – upper/lower quartiles, 500	

whiskers – distribution). Data were analyzed using two-sample t-test with Bonferroni correction; 501	

* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.  502	

Figure 5. Distinct cellular states of NK cells identified in pan-cancer atlas. (A) UMAP 503	

depicting neighborhood groups identified by Milo. (B) Beaswarm plot depicting differential 504	

abundance of neighborhoods (TiNK vs Ref-NK enriched). Colored neighborhoods are 505	

differentially abundant at FDR 0.1. (C) Pie charts showing distribution of NK subsets across 506	

neighborhood groups annotated using our annotation Model (Figure 1). (D) Expression of 507	

dominant transcription factor (TF) regulons of NK cell differentiation across NK cell states 508	

(neighborhood groups). (E) Expression of TF regulons uniquely expressed across cellular states. 509	

(F) Graphical representation of cellular states. (G-L) Volcano plots depicting differentially 510	

expressed genes (DEGs) and corresponding gene set enrichment analysis (GSEA) between Group 511	

1 vs. Group 2 (G, J), Group 3 vs. Group 4/5/6 (H, K) and Group 4 vs. Group 3/5/6 (I, L) cellular 512	

states. (M) Scoring of pathway gene signatures in NK cells states. (N) Pie charts depicting 513	

distribution of NK cell states in blood, tissues and tumors. Volcano plots: log fold change cutoff 514	

at 0.5, p < 0.05. GSEA plots: p value cutoff 0.5 (red line).  515	

Figure 6. Intercellular communication of distinct cellular states associated with patient 516	

outcome. (A) Kaplan-Meier survival curves showing association of high/low Group 1/3 gene 517	

signatures with patient outcome across tumor types. (B) Selected predicted outgoing (top) and 518	

incoming (bottom) signaling pathways involving TiNK cells in SARC as identified by CellChat. 519	

Pathways in red are enriched for in Group 1 NK cells and pathways in green are enriched for in 520	
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Group 3 NK cells. (C) Circle plot depicting predicted incoming signaling via CD44 expression on 521	

Group 1 and Group 3 TiNK cells (SARC). (D) Heatmap depicting importance and interaction role 522	

of individual cell populations in CLEC, ITGB2, MHC-1 and ICAM signaling pathways in SARC 523	

based on network centrality analysis in. (E) Violin plots showing expression of receptors and 524	

ligands of communication pathways involving TiNK cells in SARC. MHC-I (HLA-E – KLRC1), 525	

ITGB2 (ICAM2 – ITGB2), COLLAGEN/GALECTIN/FN1 (CD44), MIF (CD44+CXCR4). 526	

Survival analysis was performed using the Cox proportional hazards model, p values were 527	

computed using the log-rank test. 528	

  529	
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Methods 

Cell processing 

Peripheral mononuclear cells (PBMC) were isolated using density gradient centrifugation from 

anonymized healthy blood donors (Oslo University Hospital; Karolinska University Hospital) 

with informed consent. The study was approved by the regional ethics committee in Norway 

(2018/2482) and Sweden (2016/1415-32, 2020-05289). Donor-derived PBMCs were screened 

for KIR education and adaptive status using flow cytometry. NK cells were purified using an 

AutoMACS (DepleteS program, Miltenyi Biotec) and prior to overnight resting in complete 

RPMI (10% Fetal calf serum, 2mM L-glutamine) at 37°C/5% CO2.  

Flow cytometry screening 

PBMC were stained for surface antigens and viability in a 96 V-bottom plate, followed by 

fixation/permeabilization and intracellular staining at 4°C. The following antibodies were used 

in the screening panel: CD3-V500 (UCHT1), CD14-V500 (MφP9), CD19-V500 (HIB19), 

Granzyme B-AF700 (GB11) from Beckton Dickinson; CD57-FITC (HNK-1), CD38-BV650 

(HB-7), KIR3DL1-BV421 (DX9) from BioLegend; KIR2DL1-APC-Cy7 (REA284), 

CD158a,h-PE-Cy7 (11PB6), from Miltenyi Biotec; CD158b1/b2,j-PE-Cy5.5 (GL183), 

NKG2A-APC (Z199), CD56-ECD (N901) from Beckman Coulter. LIVE/DEAD Fixable Aqua 

Dead Stain kit for 405 nM excitation (Life Technologies) was used to determine viability. 

Samples were acquired on an LSR-Fortessa equipped with a blue, red and violet laser and 

analyzed in FlowJo version 9 (TreeStar, Inc.). 

FACS sorting 

Cells were harvested and surface stained with the following antibodies: CD57-FITC (HNK-1) 

from BioLegend; KIR3DL1S1-APC (Z27.3.7), CD56-ECD (N901), CD158b1/b2,j-PE-Cy5.5 
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(GL183), from Beckman Coulter; KIR2DL1-APC-Cy7 (REA284), NKG2C-PE (REA205), 

NKG2A-PE Vio770 (REA110) from Miltenyi Biotec. 12,000 cells were directly sorted into 

Eppendorf tubes at 4°C for each sample using a FACSAriaII (Beckton Dickinson). Sorting 

strategies for single-cell RNA sequencing for the donor with an adaptive NK cell expansion 

and without are depicted in Supplemental Figure 1C and 1D respectively.  

Single-cell RNA sequencing  

Following sorting, cells were kept on ice during the washing (PBS + 0.05% BSA) and counting 

step. 10,000 cells were resuspended in 35 µL (PBS + 0.05% BSA) and immediately processed 

at the Genomics Core Facility (Oslo University Hospital) using the Chromium Single Cell 3’ 

Library & Gel Bead Kit v2 (Chromium Controller System, 10X Genomics). The recommended 

10x Genomics protocol was used to generate the sequencing libraries, which was performed 

on a NextSeq500 (Illumina) with 5~ % PhiX as spike-inn. Sequencing raw data were converted 

into fastq files by running the Illumina`s bcl2fastq v2.  

ScRNAseq data collection and processing 

Previously published scRNA-seq data were collected mostly in the form of count matrices 

already aligned to GRCh38, the rest was collected as fastq files. For the datasets where we 

collected fastq files, the data was aligned to GRCh38 using Cell Ranger (10x Genomics Cell 

Ranger 7.0.0).  

Quality control and normalization of scRNA-seq data 

Data cleaning steps were first carried out whereby cells not expressing a minimum of 1000 

molecules and genes expressed by less than 10 cells were filtered out. Doublets were removed 

using the SOLO algorithm1. The data was normalized using log transformation for some of the 

downstream analysis as well as for visualization of gene expression like dot plots. Quality 
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control, transformation and most of the visualization of the gene expression data was performed 

using Scanpy2. For analysis using scVI and scANVI the raw count data was used.  

Integration of scRNA-seq data 

The probabilistic models scVI and scANVI as implemented in scvi-tools3 were used for 

integration of scRNA-seq data. These methods have been shown to perform well for integration 

of scRNA-seq data, especially when dealing with complex batch effects and integrating atlas-

level data4. For cell type and subset annotations and prediction scANVI was used to capture 

annotation of single-cell profiles. For the analysis of PB-NK subsets the sorted subsets 

provided labels for training the scANVI model. The subset prediction provided by the model 

was tested on a held out set of cells (15%) from the sorted subset data giving us a confusion 

matrix summarizing the performance of the prediction.  

Dimensionality reduction, clustering and visualization of scRNA-seq data 

We computed the UMAP embeddings for visualization using the embedding learned from scVI 

and scANVI. Unsupervised clustering was also carried out using this learnt embedding using 

the Leiden algorithm as implemented in Scanpy. PAGA5 was used to quantify the connectivity 

of different groups of cells and thereby providing a representation of the data as a simpler 

graph. The various plots were mostly generated using the plotting functions in Scanpy.  

Cell type annotations and harmonization 

For many of the publicly available datasets cell type annotations were readily available and 

used as seed labels when training the scANVI model for that particular tissue/tumor type. The 

scANVI model allowed us to harmonize annotations which was needed for analysis across 

datasets. Celltypist6 was also used for annotations, specifically for the immune cell 

compartment in the various tissue/tumor types. The CD16- and CD16+ NK cells identified by 

Celltypist were annotated as CD56bright and CD56dim respectively. Where CITE-seq data was 
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available the surface expression of key markers also helped validate the cell type annotations. 

For the identified NK cells the cells were also scored using NK1/NK2 (CD56bright/CD56dim) 

signatures to validate the annotation of CD56bright and CD56dim NK cells. We also performed 

our own unsupervised Leiden clustering which identified two dominating clusters 

corresponding to CD56bright and CD56dim NK cells. 

Calculation of signature scores 

Signature scores were computed using AUCell7 allowing for exploration of the relative 

expression of the signatures of interest in the data sets. Various gene sets were taken from the 

MSigDB Hallmark gene set collection8. 

Pseudotime and RNA velocity analysis 

Pseudotime was computed using Palantir9 which captures the continuous nature of 

differentiation and cell fate which allowed us to explore two terminal states and the gene 

expression changes seen along these trajectories. For this analysis the starting cell was defined 

as the cell that was the least CD56dim (the lowest score for the NK1 signature). Generalized-

additive models (GAMs) fitted on cells ordered by pseudotime were used to calculate gene 

trends, where the contribution of cells was weighted by their probability to end up in the given 

terminal state as calculated by Palantir. The gene trends indicate how gene expression levels 

develop over the differentiation timeline. These trends were clustered using the Leiden 

clustering algorithm to give us five clusters of gene trends. RNA velocity10 was also used in 

order to take advantage splicing kinetics to identify directed dynamic information. We used 

velocyto10 and scVelo11 for this analysis, specifically the dynamic model implemented in the 

scVelo toolkit. The RNA velocity analysis was run on the two donors where sorted subsets 

where sequenced separately, as well as on the integrated data from 12 blood donors.  

Gene regulatory network analysis 
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SCENIC7 was used to infer transcription factors and gene regulatory networks from the 

scRNA-seq data. The SCENIC workflow12 was followed and the pySCENIC implementation 

was used. TF-gene associations were inferred by GRNBoost13 and motif-to-TF associations 

were downloaded from the Aerts’s lab website and used for pruning the inferred associations. 

The inferred regulatory networks were also further pruned by removing lowly expressed TFs 

based on the bulk RNA-seq data. AUCell was used to compute the activity of the final regulons. 

The regulon activity was visualized using matrix plots as implemented in Scanpy to look at the 

activity across different groups of cells. 

Bulk RNA sequencing for TF and target validation  

For validation of the TF and targets we checked their expression in bulk RNASeq data from 

four sorted NK cell populations (CD56bright, NKG2A-KIR-CD56dim, NKG2A-KIR+CD56dim, 

and NKG2A-KIR+NKG2C+CD56dim). Sequencing was performed using single-cell tagged 

reverse transcription (STRT)14.  

Reference mapping 

The TiNK cells were added after the model for a healthy NK cell reference was trained. 

scArches15 as implemented in scvi-tools3 was used to map this new data onto the established 

reference.  

Cell-cell communication inference using CellChat 

To infer the communication between the various cell types in the tumor data sets we used 

CellChat16. Based on gene expression of receptors and ligands in the data and a curated 

database of pathways, CellChat computes the communication probability between various 

receptor-ligand pairs. CellChat also provided ways to aggregated this information and for us to 

visualize the inferred cell-cell communication networks. CellChat was computed separately for 

each of the tumor types included in the analysis. 
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Differential gene expression analysis 

In order to perform differential gene expression analysis we used pseudobulk as this has shown 

good results when analyzing scRNA-seq data in various studies17. This allowed us to aggregate 

up counts for each sample and consider the samples instead of the cells as replicates. We then 

used edgeR18 on the pseudobulk data. We could then identify differentially expressed genes 

between healthy reference NK cells and TiNK cells within and across subsets.   

Differential abundance analysis using Milo 

We used Milo19 to assign cells to neighborhoods on the KNN graph. The differential abundance 

of these neighborhoods between the healthy reference and the TiNK cells were then computed. 

The neighborhoods were grouped into six groups using the groupNhoods function in Milo. 

These groups were considered as different NK cell states and further characterized using the 

functions in Milo for identification of differentially expressed genes. The single cells were also 

annotated using these groups for downstream analysis. 

Gene set enrichment analysis 

Gene set enrichment analysis was performed using the GSEA software20 and the MSigDB 

collection of gene sets. Genes were first ordered based on the differential expression analysis 

either based on the pseudobulk approach or based on the Milo analysis. 

Clinical and bulk RNA-seq data from TCGA and TARGET 

Bulk RNA-seq data and clinical data was downloaded from TCGA and TARGET using 

TCGAbiolinks21 and curated survival data was downloaded from Xena22.  

Deconvolution of bulk RNA-seq 

Deconvolution of the bulk RNA-seq data was performed for each of the tumor types using 

BayesPrism23. BayesPrism has been shown to work well for deconvolution of data from tumors 
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and especially well in dealing with high cell type granularity24. The annotated reference 

datasets for each of the tumor types were used as prior information in the deconvolution. 

BayesPrism then computed both an expression matrix for each cell type as well as the cell type 

fraction for each sample. 

Survival analysis 

The NK expression matrix inferred by BayesPrism for the various tumor types were used to 

score the signature genes for each of the identified NK cell states. The patients were then 

assigned as high and low for a group/state based on belonging to the highest or lowest half in 

terms of expression of these signature genes within the group of patients with a specific tumor 

type. The high and low designations could then be combined in an approach where a patient 

could be assigned as high or low in multiple groups. Survival analysis was conducted using the 

Cox proportional hazards model from the R package survival25, adjusting for confounding 

clinical factors such as tumor stage, gender and age. Subsequently, survival curves were 

derived using the Kaplan-Meier method within the same package. For visualization, the 

ggsurvplot function of the survminer package in R was utilized. 
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