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Abstract

The functional diversity of natural killer (NK) cell repertoires stems from differentiation,
homeostatic receptor-ligand interactions, and adaptive-like responses to viral infections. Here, we
generated a single-cell transcriptional reference map of healthy human blood and tissue-derived
NK cells, with temporal resolution and fate-specific expression of gene regulator networks
defining NK cell differentiation. Using transfer learning, transcriptomes of tumor-infiltrating NK
cells from seven solid tumor types (427 patients), combined from 39 datasets, were incorporated
into the reference map and interrogated for tumor microenvironment (TME)-induced
perturbations. We identified six functionally distinct NK cellular states in healthy and malignant
tissues, two of which were commonly enriched for across tumor types: a dysfunctional ‘stressed’
CD56ieht state susceptible to TME-induced immunosuppression and a cytotoxic TME-resistant
‘effector’ CD56%™ state. The ratio of ‘stressed’” CD56" 8" and ‘effector’ CD56%™ was predictive
of patient outcome in malignant melanoma and osteosarcoma. This resource may inform the design
of novel NK cell therapies and can be extended endlessly through transfer learning to interrogate

new datasets from experimental perturbations or disease conditions.


https://doi.org/10.1101/2023.10.26.564050
http://creativecommons.org/licenses/by/4.0/

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.564050; this version posted October 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Introduction

Natural killer (NK) cells are innate lymphocytes that play a vital role in the immune response
through their ability to directly kill transformed and virus infected cells, and by orchestrating the
early phase of the adaptive immune response'. NK cells are commonly divided into two
functionally distinct subsets, CD56#" and CD56%™ NK cells> 3. However, this is an
oversimplified view of the repertoire. Mass cytometry profiling of NK cell repertoires at the single
cell level revealed an extensive phenotypic diversity comprising up to 100,000 unique subsets in
healthy individuals*. Much of this diversity is based on combinatorial expression of stochastically
expressed germline encoded activating and inhibitory receptors that bind to HLA class I and tune
NK cell function in a process termed NK cell education® ®. Another layer of diversity reflects the
continuous differentiation through well-defined intermediate phenotypes from the naive CD56°"iht
NK cells through CD62L"NKG2AKIR"CD57-CD56%™ NK cells to terminally differentiated,
adaptive CD62L"NKG2C*CD57'KIR'CD56%™ NK cells, associated with past infection of
cytomegalovirus (CMV)”-% % 10 Given the increasing interest to harness the cytolytic potential of
NK cells in cell therapy against cancer, it is of fundamental importance to understand the molecular
programs and gene regulatory circuits driving NK cell differentiation and the underlying functional

diversification of the human NK cell repertoire.

Utilizing single-cell RNA sequencing (scRNA-seq), Crinier et al. discovered organ-
specific signatures in human spleen NK cells and two major transcriptional clusters in blood-
derived NK cells (PB-NK), corresponding to CD56%™ (NK1) and CD56%g (NK2) NK cell
subsets?. Bulk RNA and ChIP sequencing identified dominant transcription factor (TF) axes
defining CD56"€" (TCF1-LEF-MYC) and CD56%™ (PRDM 1) phenotypic subsets, respectively''.

Later research reported additional diversity with unique transcriptional clusters, including IL-2 and
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type 1 interferon-responding NK cell subsets'> and an intermediate CD569™GzmK" stage,
potentially bridging CD56¢" and CD56%™ NK cells'3. A comprehensive analysis unveiled
Bcell1b's role in driving NK cell differentiation towards the adaptive state, reciprocally suppressing
early TFs like RUNX2 and ZBTB16!%. Combining gene expression analysis, chromatin
accessibility, and lineage tracing via mitochondrial DNA (mtDNA) mutations, Riickert et al.
revealed a clonal expansion and a distinct inflammatory memory signature in adaptive NK cells'>.
Using a pan-cancer single-cell atlas approach, Tang et al.'® identified a tumor-enriched
dysfunctional CD56%™ CD16" NK cell population interacting with LAMP3" dendritic cells in the
tumor microenvironment (TME). Hence, scRNA-seq and bulk RNA-seq usage has defined major
transcriptional regulatory hubs during NK cell differentiation and identified a persistent memory
state in human innate immunity. However, it remains unclear how the regulatory gene circuits that
operate under homeostasis in healthy tissues are affected by cellular and/or soluble cues in the

TME, resulting in perturbed functional states within tumor-infiltrating NK cells.

Here we establish a single-cell transcriptional reference map that resolves gene expression
trends and dominating TF-target interactions during NK cell differentiation in blood and normal
tissues. Reference mapping enables the analysis of cellular differences and gene programs in
diseases and various conditions by contextualizing new datasets within a healthy transcriptional
reference, facilitating the identification of novel states not found in the reference!’. We utilize our
NK cell reference map, compiled from 44,640 PB-NK cells (12 donors) and 27,489 tissue resident
NK (TrNK) cells (136 donors), to query the regulones and functional states, as defined through
gene expression signatures, of tumor infiltrating NK (TiNK) cells derived from 427 patients with
seven distinct solid tumors (38,862 TiNKs). We found that TrNK and TiNK cells have a clear

tissue residency signature but still share the dominant regulons of blood CD56"¢h and CD56%™
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NK cells. Of the six functional states identified in our pan-cancer atlas, a dysfunctional ‘stressed’
CD56ieht gtate susceptible to TME-associated cellular communication and a cytotoxic ‘effector’
CD56%™m state resistant to TME-associated cellular communication were commonly enriched
across tumor types. Stratification of patient survival data identified a high ratio of ‘effector’
CD56%™ to ‘stressed” CD561eh state to correlate with improved survival in osteosarcoma and
melanoma patients. This resource provides a granular view of cancer-specific alterations of solid-
tumor infiltrating NK cells, identifying how the TME can lead to NK cell dysfunction and may
inspire new strategies to engineer cell therapy products with robust functional phenotypes resistant

to TME-induced suppressive mechanisms.
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91 Results

92 NK cell subset annotation of single-cell RNA sequencing data using predictive gene
93  signatures. To establish a pan-cancer atlas of tumor-infiltrating NK cells, we first defined NK cell
94  differentiation at the transcriptional level. We performed single-cell RNA sequencing (scRNA-
95  seq) of the total NK cell population from 7 healthy donors and integrated our transcriptomes with

2 18 ysing scVI'? (Supplemental Table 1). By retaining only

96 5 publicly available donor datasets
97  cell-to-cell variation independent from sample-to-sample variation, the initial clustering by donor
98 and laboratory origin was successfully integrated into a homogenous population of cells and
99  visualized using diffusion maps?® to preserve the continuous trajectories observed with biological
100  differentiation (Figure 1A). Although NK differentiation is best described as a continuum,
101  CDS56%ig and CD56%™ NK cell represent two distinct stages of differentiation. By performing

102  gene signature scoring using AUCell?!

, we identified cells at the top of the diffusion map
103  embedding scoring high for the CD56#" gene signature?, while the main body of the embedding
104  exhibited increasing intensity of the CD56%™ signature? (Figure 1B). Scoring of two independent

105  gene signatures based on the CD56€dim reoylon!! and proteome?? confirmed our results

106  (Supplemental Figure 1A-B).

107 The relatively large and heterogeneous population of CD56%™ NK cells is commonly
108  phenotypically defined into functionally distinct subsets based on a selected number of inhibitory
109 and activating receptors contributing to the functional tuning’. To identify predictive gene
110  signatures associated with these functional stages encompassing NK cell differentiation, we sorted
111  and sequenced equal numbers of CD56Ye NK cells and four CD56%™ NK cell subsets
112 (NKG2A'KIR'CD57, NKG2A<self-KIR"CD57-, NKG2Anonself-KIR*CD57-, NKG2Aself-

113 KIR'CD57" or NKG2A""self-KIR"CD57*"NKG2C") from two donors, one without and one with
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114  alarge adaptive NK cell expansion (Figure 1C, Supplemental Figure 1C-D). Transcriptionally,
115  the adaptive NK cell subset was the most distinct as the remaining CD56%™ subsets exhibited a
116  high degree of transcriptional overlap, while still ordering themselves along the previously defined
117  maturation scheme (Figure 1C). As previously observed in bulk RNA-seq data?, the
118  transcriptomes of self and non-self KIR" NK cells were highly similar even at the single cell level
119  and thus merged for subsequent analysis (Figure 1C). The five transcriptionally distinct NK
120  subsets were renamed to reflect their maturation stage: ‘CD562" ‘early CD56%™, ‘intermediate

121 CD56%™, ‘late CD56%™ and ‘adaptive’ (Figure 1C).

122 We next utilized a semi-supervised model, scANVI?, to leverage our identified NK cell
123 subset gene signatures to predict and infer subset annotation of compiled bulk NK cell scRNA-seq
124  datasets. We first tested the accuracy of the prediction model (M1) on 15% of the subset-sorted
125 NK cells (Figure 1C) which were not included in the training of the model. Transcriptionally
126  distinct subsets (CD56€" adaptive) were annotated with high accuracy, while subsets exhibiting
127  higher transcriptional overlap were annotated with slightly reduced accuracy (Figure 1D).
128  Implementing the model, we could annotate the total NK cell dataset comprising 23,253 single
129  cell transcriptomes (12 donors) at the subset level (Figure 1E). The models top three differentially
130  expressed genes (up and down) for each subset’s gene signature showed some overlap, further
131  highlighting the continuous nature of NK cell differentiation at the transcriptional level (Figure
132 1F). To validate our annotation model, we performed unbiased clustering (Leiden) of the total NK
133 cell dataset (12 donors), identifying five clusters closely matching our annotated five NK cell
134  subsets (Figure 1G). A small portion of intermediate CD56%™ annotated NK cells clustered
135  together with late CD56%™ annotated NK cells in cluster 4 (Figure 1H), likely corresponding to

136  more mature cells within the population. Having confirmed the validity of our 5 NK cell subsets,
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137 M1 was utilized to identify donors with an adaptive NK cell expansion, which were all confirmed
138 to be CMV seropositive (Figure 1I). Thus, this first sScANVI model forms a basis to interrogate
139  cellular states layered on top of the natural transcriptional changes with NK cell subsets at different

140  stages of differentiation.
141

142  Temporal resolution of gene regulator networks with fate-specific expression. To decipher the
143  regulatory gene pathways driving NK cell differentiation at the transcriptional level, we
144  implemented two different methods to calculate pseudotime, namely Palantir®® and RNA velocity-
145  based pseudotime?®®2’. Palantir identifies terminal cells based on a chosen starting cell, placing the
146  remaining cells along a timeline (pseudotime). Defining the starting cell (blue) based on the lowest
147  CD56%™ score? (Figure 1B) identified two terminal cells (orange), predicted to be part of the late
148  CD56%™ and adaptive population respectively (Figure 2A). To validate this trajectory, we utilized
149  the dynamic model implemented in scVelo?® to compute RNA velocity (spliced versus unspliced
150 transcripts), inferring pseudotime without a predefined starting cell (Supplemental Figure 2A-
151  B). The resulting vector field and extrapolated pseudotime confirmed a trajectory starting within
152  the CD56eh NK cell subset and terminating in the adaptive subset (Figure 2B). Lastly, to infer
153  developmental relationships at the resolution of the five subsets, representing functionally distinct
154  subsets and proposed stages of NK cell differentiation’, we applied Partition-based graph
155  abstraction (PAGA)? to quantify their connectivity and estimate transitions. In line with the two
156  terminal fates (late CD56%™, adaptive) identified by Palantir, we analyzed conventional and
157  adaptive donors separately (Figure 1I). In both types of donors, early CD56%™ NK cells formed
158  the connecting link between CD56 € and the remaining CD56%™ populations (Figure 2C-D).

159  However, while adaptive donors NK cells continued their progression to intermediate CD56%™
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160 cells, terminating in the adaptive population, conventional donors instead branched into the

161  intermediate or late CD56%™ populations (Figure 2C-D).

162 Having established a temporal axis to NK cell differentiation, we utilized generalized
163  additive models to compute gene expression trends as a function of time for each gene?, which
164  clustered into five distinct trends (Figure 2E). Genes varying in expression across the two terminal
165  fates were depicted in their trends for each fate, exemplified by KLRC2, CD52!> 13 1L.32 clustering
166  into Trend 1 in the conventional late CD56%™ fate and into Trend 4 in the adaptive fate (Figure
167  2E). Based on the two-fate model, we constructed gene regulatory networks (GRN)?! stratified by
168  the five gene trends, identifying the dominant TFs across pseudotime and their known downstream
169  target genes (Figure 2F). Trend 1 is dominated by genes which are downregulated with
170  differentiation from CD56¢" to CD56%™ cells, including previously reported TFs (MYC, LEF1,
171  RUNX2)!!, RBPJ? involved in Notch signaling, the retinoic acid receptor (RXRA), and TFs
172 regulating ID2 expression (HOXA9, HOXA10)** (Figure 2E-F). Trend 2 genes, compared to
173  Trend 1, are upregulated during differentiation from early to intermediate CD56%™ cells and
174  include among others EGR13! (cell survival, proliferation, apoptosis, regulates TRAIL
175  expression), BHLHE403% 33 (associated with NK cell activation and represses RXRA) and IRF8**
176 ¥ (role in orchestrating adaptive response, essential NK cell gene) (Figure 2E-F). TFs exhibiting
177  less dynamic changes across pseudotime are clustered in Trend 3, such as IKZF1, XBP1 and KLF2
178  which play a role in regulating homeostatic proliferation, effector function and cytokine
179  responsiveness®® 3’. TFs exhibiting higher expression at the start and end of pseudotime fall into
180 Trend 4, including STAT3 (cell survival, IFNy production) and DDIT33® (stress response,
181  metabolism). Lastly, expression of Trend 5 genes steadily increases with differentiation,

182  decreasing only during late differentiation and includes previously reported TFs associated with
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183  CDS56%™ NK cells (MAF, PRDM1, TBX21) )!!, the AP-1 family member BATF, the ETS family
184  member ETV7, and the Wnt target gene ASCL2 (Figure 2E-F). The TF-based GRNs were further
185  curated to only retain direct targets with significant motif enrichment, referred to as ‘regulons’
186  (denoted by ‘(+)’), expression of which was confirmed in an independent bulk RNA-seq data set
187  on sorted NK cell subsets. Regulon expression substantially differing between the conventional
188  and adaptive fate include conventional fate associated BHLHE40%, IRF83* 3 and DDIT33® and
189  adaptive fate associated MAF!'! and BATF regulons (Figure 2G). Clustering dominant TFs
190 according to their temporal expression during NK cell differentiation revealed a set of highly
191  connected regulatory circuits, expression of which diverged during terminal differentiation into

192  one of the two cell fates, conventional or adaptive.
193

194  Transfer learning to generate pan-cancer atlas of tissue-derived and solid tumor-infiltrating
195 NK cells. Having transcriptionally defined NK cell differentiation in peripheral blood, we
196  proceeded to train a second model (M2) with publicly available scRNA-seq datasets encompassing
197  six healthy tissues (brain, breast, lung, pancreas, prostate, skin) from a total of 136 donors using
198  scVIY (Figure 3A, Supplemental Table 2). The tissue-specific datasets were integrated and
199  annotated using scANVI, and CellTypist*® was used to identify immune subsets of interest (Figure
200 3B, Supplemental Figure 3A-E). The annotated tissue-derived CD567€" and CD56%™ NK cell
201  populations (27,489 cells) were extracted from the datasets and integrated into our reference map
202  (Figure 3C). Tissue-residency status was confirmed by scoring for a tissue residency (Tr)
203  signature, which was most pronounced in TrCD567€" NK cells but also increased in TrCD564™
204  NK cells (Figure 3D). CD56¢" and CD56%™ subsets from peripheral blood and tissues clustered

205  together (Figure 3E) and were more tightly connected than to their respective tissues, apart from

10
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206  skin-derived NK cells (Figure 3F). Therefore, differentiation stage has a greater influence on the
207  NK cell transcriptome compared to tissue origin. Notably, CellTypist did not identify a CD56°right

208  NK cell population in neither brain nor breast tissue (Supplemental Figure 3A, Figure 3E).

209 Next, scRNA-seq datasets from seven solid tumors (breast cancer (BRAC), Glioblastoma
210 (GBM), Lung (NSCLC), Melanoma (SKCM), Pancreas (PAAD), Prostate (PRAD) and
211  Osteosarcoma (SARC)) from a total of 427 patients were annotated and integrated for each tumor
212 type using scANVI'® and CellTypist* (Figure 3G, Supplemental Figure 3F-L, Supplemental
213 Table 3). The CD56"¢" and CD56%™ annotated tumor-infiltrating NK (TiNK) cells were mapped
214  onto the reference map (PB-NK, TrNK) using transfer learning (scArches*’) to generate the final
215  model (M3) (Figure 3H). TiNK cells also clustered based on their differentiation stage together
216  with the corresponding PB-NK and TrNK subsets (Figure 3I). SKCM-derived CD56%™ NK cells
217  exhibited the lowest connectivity score when compared to all other populations (Figure 3J).
218  GBM-derived TiCD56%e NK cells and SKCM-derived TiCD56%™ scored highest for tissue
219  residency within their respective subsets (Supplemental Figure 3M). Transfer learning facilitated
220  incorporation of TiNK cells onto our healthy reference map of PB and TrNK cells, allowing for
221  downstream systematic interrogation of cellular states within these solid-tumor infiltrating NK

222 cells.
223

224  Altered NK cell subset frequencies within healthy tissue and solid tumors. The tumor
225  microenvironment (TME) is shaped by its cellular composition, particular by the infiltrating
226  immune cells, which in turn can be modulated by their surroundings. A pan-cancer comparison of
227  the healthy tissue and tumor annotated immune subtypes (Figure 3B), identified an increased

228  proportion of plasma cells and a decreased proportion of CD56%™ NK cells, dendritic cells, NKT

11


https://doi.org/10.1101/2023.10.26.564050
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.564050; this version posted October 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

229  cells, helper Temkrr, cytotoxic Tememra and cytotoxic Trm cells in the tumor datasets (Figure
230  4A-B). The fraction of CD56"#" NK cells out of total immune cells was enriched in BRAC, while
231 CD56%m NK cells were enriched in SKCM, but decreased in NSCLC and BRAC (Figure 4B,
232 Supplemental Figure 4A). SKCM uniquely exhibited a tendency for increased proportions of
233 both NK cell subsets (Figure 4B), in line with an overall increased frequency of immune cells,
234  including NK cells (Figure 4C-D). Utilizing our subset-trained model (M1) to annotate CellTypist
235  defined NK cells into the five NK cell subsets we observed increased proportions of CD56right
236  cells across numerous tumor types (Figure 4E). Within the CD56%™ compartment, a skewing
237  towards more mature NK cells (late CD56%™) in tissues and tumors compared to blood
238  (intermediate CD56%™) was detected, with adaptive NK cells notably absent in Tr/TiNK cells
239  (Figure 4E). Solid tumor-infiltrating NK cells were enriched for a CD56€" transcriptional
240  phenotype while the CD56%™ compartment in both healthy tissue and solid tumors was skewed

241  towards increased maturity (late CD56%™),

242

243  Six distinct functional states of NK cells in peripheral blood, tissues, and tumors

244  Tumor microenvironments of solid tumors are hostile and often immunosuppressive environments
245  for immune cells to infiltrate.*! Understanding how the TME can modulate NK cells at the
246  transcriptional level can provide important insights into understanding the tumor-mediated
247  immunosuppressive mechanisms and how to overcome them.

248 We implemented an unbiased approach (Milo*?) to ascertain cellular states in our pan-
249  cancer NK cell atlas by identifying individual neighborhoods (~6000) without pre-clustering based
250  on cellular origin. Annotating individual neighborhoods as subset specific (>70% of cells in

251  neighborhood) identified TiCD56€" NK cells as having the most frequent, but also most unique

12


https://doi.org/10.1101/2023.10.26.564050
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.564050; this version posted October 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

252  (differentially abundant) specific neighborhoods (Supplemental Figure SA). Notably, the
253  majority of neighborhoods were annotated as ‘mixed’, highlighting transcriptional similarities
254  among NK cells found in peripheral blood, tissues and tumors (Supplemental Figure SA). The
255  approximately 6000 neighborhoods were grouped into six distinctive neighborhood groups and we
256  tested for differential abundance of neighborhoods between TiNK cells and Ref-NK cells (Figure
257  5A, Supplemental Figure 5B). Neighborhood groups 1 and 2 consisted of neighborhoods
258  significantly enriched for TiNK cells and group 6 included neighborhoods enriched for Ref-NK
259  cells (Figure 5B, Supplemental Figure 5B).

260 Next, we visualized the distribution of NK cell subsets within each group using our
261  annotation model (M1). Group 1 and 2 were enriched for, but not exclusive to CD56%1h cells,
262  while groups 3-6 were dominated by CD56%™ NK cell subsets (Figure 5C). The dominant TF
263  regulons of PB-NK cell differentiation previously identified (Figure 2F), confirmed Group 1 and
264 2 as two CD56"eh states and group 3-6 as four CD56%™ NK cells states (Figure 5D).

265 Cell-state specific GRN, DEG, GSEA, and signature scoring informed our annotation of
266  the states as ‘stressed” CD56€" (Group 1), ‘typical’ CD56¢" (Group 2), ‘effector’ CD56%™
267  (Group 3), ‘stressed’ CD56%™ (Group 4), ‘activated” CD56%™ (Group 5) and ‘typical’ CD56%™
268  (Group 6) (Figure SE-M, Supplemental Figure 5C-F). Comparing the ‘stressed’ to the ‘typical’
269  CD56 i state identified increased expression of the cellular stress response ATF3 regulon, the
270  hypoxia-induced MAFF regulon, and numerous heat shock proteins (Figure SE, G, J). The
271  ‘stressed’ CD561e" cell state scored highly for immunosuppressive pathways (TGF-J signaling,
272 hypoxia, ROS) and exhibited increased metabolic activation (glycolysis, cholesterol homeostasis,
273  fatty acid metabolism), proliferation (G2M checkpoint) and activation of the MYC/mTORCI axis

274  (Figure 5G, J, M). Furthermore, a significant decrease in the apical junction hallmark (indicative

13
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275  oflower polarization and conjugate formation) and a low NK cytotoxicity score was suggestive of
276  reduced functionality in this ‘stressed’ CD56€" cellular state, which was uniquely enriched
277  across all 7 tumor types (Figure 5J, M-N). In line with increased infiltration of CD56"€" cells in
278  the TME, the ‘typical’ CD56€ cellular state was also enriched in 5 of 7 tumor types compared
279  to healthy tissue (Figure 5N).

280 Of the CD56%™ state, the ‘effector’ state was most frequently enriched across tumor types
281 (SARC, PAAD, PRAD), characterized by an enrichment for apical junction, actin and
282  cytoskeleton-related associated genes (Figure SH, K, N). This state, phenotypically enriched for
283  intermediate and late CD56%™ NK cell subsets, scored highly for NK cytotoxicity and oxidative
284  phosphorylation, and importantly, lowly for immune suppression (Figure SC, M). The ‘stressed’
285 CD56%m state, characterized by downregulated apical junction related genes and effector
286  molecules (GZMB, PRF1, GNLY) and upregulated heat shock proteins, was more prominent in
287  healthy tissues and only enriched for in PRAD (Figure 51, L-N). The ‘activated” CD56%™ state
288  was distinguished by increased hypoxia, proliferation and NFxB activation (Supplemental Figure
289  5C, E, Figure SM) while the PB-enriched ‘typical” CD56%™ state exhibited highest expression of
290 NK-associated genes (PRF1, GZMB, CST7, FCGR3A, NKG7, FGFBP2) (Supplemental Figure
291 5D, F, Figure 5N). Notably, while we observed enrichment of individual cellular states in the
292  TME, including the two CD56€" and the ‘effector’ CD56%™ states, all states were represented in

293  healthy blood and tissue samples, albeit at different frequencies.
294

295  Decreased TME-specific incoming signaling in the ‘effector’ CD56%™ NK state associated

296  with improved survival
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297  The clinical benefit of NK cell infiltration in solid tumors has previously been assessed through a
298  general NK cell signature score** *. Having identified six functional states of NK cells in blood,
299  tissue and solid tumors, we proceeded to test clinical relevance of these cellular states by using
300 BayesPRISM* to deconvoluted TCGA survival data* 4’. The combination of high ‘effector’
301 CD56%M and low ‘stressed’ CD5612" cell signatures correlated with increased improved survival
302 in SARC and SKCM patients (Figure 6A). To elucidate any TME-based influence on these

t* to infer intercellular

303 outcome-associated functional states, we employed CellCha
304 communication, focusing on commonly enriched signaling pathways in SARC and SKCM.
305 Increased outgoing signaling (MHC-I, CD99, ITGB2, ICAM, PARs) was noted in group 3 NK
306 cells, while group 1 NK cells were enriched for incoming signaling (MHC-I, MIF, ADGRES, FNI1,
307 GALECTIN, COLLAGEN) (Figure 6B, Supplemental Figure 6A). Increased expression of
308 CD44, and to a lesser degree CXCR4, upon which numerous signals from fibroblasts, CAFs,
309 endothelial cells and osteoblasts/clasts converged (COLLAGEN, MIF GALECTIN; FNI),
310 facilitated the augmented incoming signaling in group 1 (Figure 5C, E). Notably, fibroblasts,
311  CAFs, endothelial cells and osteoblasts/clasts also exhibited the strongest outgoing interaction
312  strength of all cell types in SARC (Supplemental Figure 6A). Furthermore, group 1 NK cells
313  preferentially received inhibitory input via the MHC-I (HLA-E/KLRC1) and ADGRES
314 (ADGRES/CDSS5) pathways, while group 3 NK cells exhibited increased ITGB2 and ICAM?2
315  expression, facilitating binding to other NK cell states and macrophages (Figure 6D-E). Hence,
316  group 3 NK cells preferentially communicated with other tumor-infiltrating immune cells while

317 group 1 NK cells were more receptive to TME-induced immunosuppressive signals via

318  upregulated CD44.
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319 A higher ratio of ‘effector’ CD56%™ to ‘stressed’ CD56#"t NK state signatures was
320  predictive of improved survival in SARC and SKCM. Inferred increased inhibitory signaling and
321 augmented susceptibility to TME-induced suppression likely contributes to the ‘stressed’

322  CD56ieh states unfavorable prognosis.

323

324  Discussion

325  Here we report a compact description of the transcriptional diversification encompassing human
326  NK cell differentiation at the single cell level. By enriching for less frequent, but phenotypically
327  well-defined functionally distinct NK cell subsets, we could first train a model to correctly annotate
328 five transcriptional subsets from bulk NK cell populations. By applying probabilistic models
329  implemented in scVI-tools, we created a transcriptional reference map of human blood and tissue
330 resident NK (TrNK) cells from normal tissues including blood, pancreas, lung, breast, skin,
331 prostate and brain. Transfer learning using scArches facilitated integration of query datasets
332  comprising a total of 2,176,214 transcriptomes from 427 patients spanning seven solid tumor
333  types. By extracting, annotating, and mapping the tumor-infiltrating NK (TiNK) cells onto our
334  healthy reference map, we could systematically interrogate TME-induced perturbations of gene
335  regulatory networks and functional states of TiNK cells (Supplemental Figure 7). Our pan-cancer
336  atlas revealed six functionally distinct NK cell states with varying abundance across blood, tissues
337  and tumor types. Two states commonly enriched for across tumor types included a dysfunctional
338  CD56ieht cellular state susceptible to TME-induced immunosuppression and a cytotoxic TME-

339  resistant CD56%™ state, the ratio of which was predictive of patient outcome.
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340 The view that NK cells, like T cells and other immune cells, undergo a continuous process
341 of NK cell differentiation is relatively recent and was originally based on phenotypic and
342  functional classification of discrete subsets” *°. There is abundant evidence suggesting that the
343  CD56 i NK cell subset is the most naive, giving rise to the more differentiated CD56%™ NK
344  cells which can further differentiate towards terminal stages, a process accelerated by CMV
345 infection® 3% 3!, Instead of forcing individual NK cells into arbitrary clusters representing a
346  snapshot of a given time point of differentiation, we clustered TFs and their target genes into five
347  distinct gene expression trends as a function pseudotime, reflecting continuous differentiation. By
348  retaining fate-specific expression profiles, conventional versus adaptive fate in donors with CMV-
349  induced clonal NK cell expansions, we could observe clear divergence of regulon expression (eg,
350 BATF, MAF) during terminal differentiation. BATF belongs to the AP-1 TF family which have
351  been identified as potential drivers in shaping adaptive NK cell chromatin accessibility and thus
352  dictating the unique functional features of this subset, including enhanced IFNy response to
353  receptor stimulation!. Establishing dominant regulons defining NK cell differentiation in
354  peripheral blood provided a vital reference for downstream interrogation of both tissue resident

355  and solid tumor-infiltrating NK cells.

356 Utilizing CellTypist, we harmonized annotations of individual cell subtypes across
357 multiple datasets from six different healthy tissues, extracting and integrating CD56"¢" and
358 CD56%m NK cells using scVI' to expand our transcriptional reference map. Importantly, tissue,
359 as well as tumor-annotated NK cells did not express human ILC signature genes, instead
360 expressing both EOMES and TBX21. Tissue residency genes (e.g., CD69, ITGAE, ITGAL,
361 CXCR6, ZNF683, IKZF3) were more highly expressed in tissue-derived NK cells, particularly in

362  CD56 " NK cells. Notably, we could not identify a CD56°¢h population in both healthy brain
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363  and breast datasets. This could be attributed to the absence of CX3CR1%? expression in CD56°rieht
364  NK cells, an important receptor for NK cell migration to the brain, or could be an artefact due to
365  higher blood contamination (lower CD56¢ frequency) in this dataset in line with a lower tissue

366  residency score.

367 The presence and abundance of NK cells that reside in the tumor bed varies across tumor
368 types, treatments and between patients and appears to be associated with the chemokine profiles
369 in the different tissues/tumor microenvironments®: 3% 3> 36 Immune and NK cell subset
370  composition greatly varied among tissue and tumor type, with the highest and lowest frequency of
371  CD56e" NK cells being found in skin and lung respectively. Consistently across tissue and tumor
372  type, a clear maturation of the CD56%™ subset was noted, with late CD56%™ NK cells making up
373  the largest fraction. Notably, no Tr nor TiNK cells were annotated as adaptive using our subset
374  annotation model, confirmed by Tang et al.!® but contrary to previous reports describing adaptive-
375  like NK cells with a tissue-residency phenotype in the lung®’. Transcriptional differences between
376  previously described tissue-resident adaptive NK cells and our PB-derived gene signature trained

377  annotation model could explain these discrepancies.

378 In agreement with previous studies’® 38, we observed a predominance of CD561¢" NK
379  cells in tumors compared to the corresponding normal tissue. Tumor-resident NK cells are likely
380 a mixed population including naturally residing TrNK cells and TiNK cells. Compositional
381 differences between normal and tumor tissues suggests some degree of active recruitment,
382  particularly in SKCM where NK cell frequencies starkly increased, albeit expansion from tissue
383  resident pools cannot be excluded. Migration into the TME is regulated by a broad family of
384 integrins, selectins and chemokine receptors that are differentially expressed during NK cell

385 differentiation. CXCR3, primarily expressed CD56¢" NK cells, has been implicated in homing
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386 to several solid tumors based on CXCL10 gradients®®, and thus may contribute to the
387  predominance of this subset in tumors. CCL2, CCL3, CCL5, CXCLS8, CXCL9, CXCL10, and
388 CXCLI12, have similarly been implicated in mediating predominantly CD56#" NK cell
389 trafficking into solid tumors based on chemokine receptor expression®®. We observed heightened
390 CXCR4 expression in CD56"¢" Tr and TiNK cells, and a modest upregulation of CX3CR1 on
391 CD56%™ Tr and TiNK cells, with levels varying across tissue/tumor type. Previous reports®® ¢!
392  have demonstrated CD44-induced CXCR4 upregulation resulting in increased migration and
393 invasiveness of malignant cells. Notably, CD44 was highly expressed on the tumor-enriched
394  ‘stressed” CDS56ieht state, possibly sensitizing this population to TME-mediated
395 immunosuppression from CAFs, fibroblasts, endothelial and tumor cells, as noted by high scores
396  for TGFP signaling, hypoxia and ROS. Conversely, the ‘effector’ CD56%™ state associating with
397 improved patient outcome, lacked CD44 expression and uniquely expressed ICAM2 and high
398 ITGB?2 levels. Notably, this state exhibited high expression of the KLF2, PRDM1, BATF, TBX21
399  and IKZF1 regulons, indicative of high effector function, regulation of homeostatic proliferation
400  and survival, but also cell migration and tissue residency. Unique TiNK specific regulons in this
401  state consisted of NFYC, CTBP1, POLE4 and CEBPA, which are involved in DNA repair,
402  monitoring of proliferation, regulating MHC expression and maintaining structural homeostasis in
403  the Golgi complex®? 636465 Conversely, TiNK specific regulons in the ‘stressed” CD568" state
404  included hypoxia induced MAFF, cellular stress response regulon ATF3 and EGR2/3% which
405  induce negative regulators in response to activation. Contrary to Tang et al.!', increased gene
406  signature scoring of the tumor enriched ‘stressed” CD56%#" state did not consistently associate
407  with reduced survival across tumor types. Instead, we observed increased survival in patients

408  exhibiting a high ‘effector’ CD569™ state which was further augmented with a low signature for
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409 the ‘stressed’ CD56gh state. Of the four CD564™ states, the ‘effector’ CD56%™ state was most
410  commonly enriched across tumor types, painting a promising picture for the role of solid-tumor

411  infiltrating NK cells.

412 This resource provides a transcriptional reference map of human NK cells across healthy
413  blood and tissues with harmonized annotations of transcriptional NK cell subsets. Uncovering the
414  dominant gene regulatory circuits during NK cell differentiation enabled identification of TME-
415  induced perturbations in solid tumor-infiltrating NK cells across tumor type. We identified
416  functionally distinct NK cell states across healthy and malignant tissues, including tumor enriched
417  states predictive of patient outcome. Modelling of the intercellular communication pathways of
418  outcome-predicting NK cell states with the surrounding TME identified potential pathways of
419  TME-induced NK cell suppression. Thus, our analysis has the potential to design more potent NK
420  cell therapy products able to resist suppressive factors operating within the TME of solid tumors.
421  Ultimately, this resource can be extended endlessly through transfer learning to interrogate new

422  datasets from experimental perturbations or different tumor types.

423

424
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452  Figure legends

453  Figure 1. NK cell differentiation at the transcriptional level. (A) Integration process of sScCRNA-
454  seq data of NK cells from 12 donors and 4 different laboratories using scVI showing UMAP
455  representation followed by diffusion mapping. (B) AUCell scores of gene signatures for CD56%"eht
456  and CD56%™ NK cell subsets. (C) UMAP representation of 5 sorted subsets from a donor with an
457  adaptive expansion (left) and a donor without an adaptive expansion (right). (D) Heatmap
458  depicting accuracy of our prediction model for subset annotation tested on 15% of heldout cells
459  from the subset-specific dataset (2 donors). (E) UMAP representation showing annotation of NK
460  cells (12 donors, left) with subset labels (right) using a scANVI model trained with sorted subset
461  data (2 donors) and the final diffusion map depicting subset annotations. (F) Dotplots showing the
462  top three up and downregulated genes between all pairs of subsets as identified by the differential
463  expression module in scANVI, visualized across the differentiation spectrum. (G) Diffusion map
464  depicting Leiden clustering of the 12 donor NK cell dataset. (H) Heatmap showing distribution of
465  our annotated 12 donor NK cell subsets over the 5 Leiden clusters. (I) Frequency of annotated late

466  CD56%M and adaptive NK cell subsets in donors with and without an adaptive NK cell expansion.

467  Figure 2. Gene regulatory networks defining conventional and adaptive NK cell fates. (A)
468  UMAP representation highlighting the starting cell (blue) with the lowest value CD56%™ signature
469  score and the two terminal cells (orange) as predicted by Palantir. (B) UMAP representation of the
470  data from the sorted subsets (2 donors) showing the RNA velocity vector field as a stream plot and
471  theinferred pseudotime. (C-D) PAGA graph with directionality and transitions from RNA velocity
472  analysis for the sorted subsets (2 donors) (C) subset-inferred bulk donors (12 donors) stratified
473  based on presence or absence of adaptive expansion (D). (E) Gene trends clustered into five overall

474  trends of expression along pseudotime, showing expression of KLRC2, CD52 and IL32 in both
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475  terminal fates (pink = conventional fate, orange = adaptive fate). (F) Inferred gene regulatory
476  networks where dominant transcription factors for each trend are highlighted. (G) Selection of
477  regulons showing differential expression over pseudotime within the conventional and adaptive

478  fate.

479  Figure 3. Pan-cancer atlas of healthy tissue resident and solid tumor-infiltrating NK cells.
480 (A) Graphical overview of healthy tissue datasets included in the analysis, with the number of
481  donors denoted in brackets. (B) Dotplot showing selected signature genes, and their expression in
482  healthy lung, used to annotate major immune subsets in the compiled dataset. (C) UMAP
483  representation showing integration of subset annotated peripheral blood-derived (PB-NK) and
484  tissue-derived NK cells (TrNK). (D) Scoring of tissue residency signature in PB-NK cell subsets
485  and CD56g" and CD56%™ annotated TrNK subsets. (E-F) PAGA graph (E) and connectivity
486  heatmap (F) showing connectivity of PB-NK and TrNK subsets across all tissues, with individual
487  tissues highlighted (E). (G) Graphical overview of solid tumor datasets included in the analysis,
488  with the number of donors denoted in brackets. (H) UMAP representation showing integration of
489  subset annotated PB-NK, TrNK and tumor-infiltrating NK cells (TiNK) as pan-cancer atlas and
490  stratified by solid-tumor type. (I-J) PAGA graph (I) and connectivity heatmap (J) showing
491  connectivity of PB-NK, TrNK and TiNK subsets across all tissues/tumor types, with individual

492  tissue/tumor types highlighted.

493  Figure 4. Cellular composition of pan-cancer cell atlas and subset distribution of tumor-
494 infiltrating NK cells. (A) Distribution of major immune subsets across all tissue and tumor types.
495  (B) Heatmap depicting changes in immune subset proportion in tumor samples compared to
496  healthy tissue samples at the pan-cancer level and within individual tumor types. (C) Proportion

497  of immune cells out of total cells within healthy tissue samples and tumor samples. (D) Proportions
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498  of major immune subsets within healthy tissue and tumor samples. (E) Predicted subset
499  annotations of CellTypist identified NK cells in healthy tissue and tumor samples compared to
500 annotated PB-NK cells. Boxplots (center line — median, box limits — upper/lower quartiles,
501  whiskers — distribution). Data were analyzed using two-sample t-test with Bonferroni correction;

502  *p<0.05, ** p<0.01, *** p <0.001, **** p <0.0001.

503  Figure 5. Distinct cellular states of NK cells identified in pan-cancer atlas. (A) UMAP
504  depicting neighborhood groups identified by Milo. (B) Beaswarm plot depicting differential
505 abundance of neighborhoods (TiNK vs Ref-NK enriched). Colored neighborhoods are
506 differentially abundant at FDR 0.1. (C) Pie charts showing distribution of NK subsets across
507  neighborhood groups annotated using our annotation Model (Figure 1). (D) Expression of
508 dominant transcription factor (TF) regulons of NK cell differentiation across NK cell states
509 (neighborhood groups). (E) Expression of TF regulons uniquely expressed across cellular states.
510 (F) Graphical representation of cellular states. (G-L) Volcano plots depicting differentially
511  expressed genes (DEGs) and corresponding gene set enrichment analysis (GSEA) between Group
512 1 vs. Group 2 (G, J), Group 3 vs. Group 4/5/6 (H, K) and Group 4 vs. Group 3/5/6 (I, L) cellular
513  states. (M) Scoring of pathway gene signatures in NK cells states. (N) Pie charts depicting
514  distribution of NK cell states in blood, tissues and tumors. Volcano plots: log fold change cutoff

515 at 0.5, p <0.05. GSEA plots: p value cutoff 0.5 (red line).

516  Figure 6. Intercellular communication of distinct cellular states associated with patient
517  outcome. (A) Kaplan-Meier survival curves showing association of high/low Group 1/3 gene
518  signatures with patient outcome across tumor types. (B) Selected predicted outgoing (top) and
519 incoming (bottom) signaling pathways involving TiNK cells in SARC as identified by CellChat.

520  Pathways in red are enriched for in Group 1 NK cells and pathways in green are enriched for in
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Group 3 NK cells. (C) Circle plot depicting predicted incoming signaling via CD44 expression on
Group 1 and Group 3 TiNK cells (SARC). (D) Heatmap depicting importance and interaction role
of individual cell populations in CLEC, ITGB2, MHC-1 and ICAM signaling pathways in SARC
based on network centrality analysis in. (E) Violin plots showing expression of receptors and
ligands of communication pathways involving TiNK cells in SARC. MHC-I (HLA-E — KLRC1),
ITGB2 (ICAM2 — ITGB2), COLLAGEN/GALECTIN/FN1 (CD44), MIF (CD44+CXCR4).
Survival analysis was performed using the Cox proportional hazards model, p values were

computed using the log-rank test.
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Cell processing

Peripheral mononuclear cells (PBMC) were isolated using density gradient centrifugation from
anonymized healthy blood donors (Oslo University Hospital; Karolinska University Hospital)
with informed consent. The study was approved by the regional ethics committee in Norway
(2018/2482) and Sweden (2016/1415-32, 2020-05289). Donor-derived PBMCs were screened
for KIR education and adaptive status using flow cytometry. NK cells were purified using an
AutoMACS (DepleteS program, Miltenyi Biotec) and prior to overnight resting in complete

RPMI (10% Fetal calf serum, 2mM L-glutamine) at 37°C/5% COx.

Flow cytometry screening

PBMC were stained for surface antigens and viability in a 96 V-bottom plate, followed by
fixation/permeabilization and intracellular staining at 4°C. The following antibodies were used
in the screening panel: CD3-V500 (UCHT1), CD14-V500 (MeP9), CD19-V500 (HIB19),
Granzyme B-AF700 (GB11) from Beckton Dickinson; CD57-FITC (HNK-1), CD38-BV650
(HB-7), KIR3DL1-BV421 (DX9) from BioLegend; KIR2DL1-APC-Cy7 (REA284),
CD158a,h-PE-Cy7 (11PB6), from Miltenyi Biotec; CD158bl1/b2,j-PE-Cy5.5 (GL183),
NKG2A-APC (Z199), CD56-ECD (N901) from Beckman Coulter. LIVE/DEAD Fixable Aqua
Dead Stain kit for 405 nM excitation (Life Technologies) was used to determine viability.
Samples were acquired on an LSR-Fortessa equipped with a blue, red and violet laser and

analyzed in FlowJo version 9 (TreeStar, Inc.).

FACS sorting

Cells were harvested and surface stained with the following antibodies: CD57-FITC (HNK-1)

from BioLegend; KIR3DL1S1-APC (Z27.3.7), CD56-ECD (N901), CD158b1/b2,j-PE-Cy5.5
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(GL183), from Beckman CoGtffPRIRIBICIEAPCICYFIRERPE4), NKG2C-PE (REA205),
NKG2A-PE Vio770 (REA110) from Miltenyi Biotec. 12,000 cells were directly sorted into
Eppendorf tubes at 4°C for each sample using a FACSAriall (Beckton Dickinson). Sorting
strategies for single-cell RNA sequencing for the donor with an adaptive NK cell expansion

and without are depicted in Supplemental Figure 1C and 1D respectively.
Single-cell RNA sequencing

Following sorting, cells were kept on ice during the washing (PBS + 0.05% BSA) and counting
step. 10,000 cells were resuspended in 35 pL. (PBS + 0.05% BSA) and immediately processed
at the Genomics Core Facility (Oslo University Hospital) using the Chromium Single Cell 3’
Library & Gel Bead Kit v2 (Chromium Controller System, 10X Genomics). The recommended
10x Genomics protocol was used to generate the sequencing libraries, which was performed
on a NextSeq500 (Illumina) with 5~ % PhiX as spike-inn. Sequencing raw data were converted

into fastq files by running the Illumina’s bel2fastq v2.

ScRNAseq data collection and processing

Previously published scRNA-seq data were collected mostly in the form of count matrices
already aligned to GRCh38, the rest was collected as fastq files. For the datasets where we
collected fastq files, the data was aligned to GRCh38 using Cell Ranger (10x Genomics Cell

Ranger 7.0.0).
Quality control and normalization of scRNA-seq data

Data cleaning steps were first carried out whereby cells not expressing a minimum of 1000
molecules and genes expressed by less than 10 cells were filtered out. Doublets were removed
using the SOLO algorithm!. The data was normalized using log transformation for some of the

downstream analysis as well as for visualization of gene expression like dot plots. Quality
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control, transformation and md¥FSPIHY YT AaHE I SH TR R AEpression data was performed

using Scanpy?. For analysis using scVI and scANVI the raw count data was used.
Integration of scRNA-seq data

The probabilistic models scVI and scANVI as implemented in scvi-tools® were used for
integration of scRNA-seq data. These methods have been shown to perform well for integration
of scRNA-seq data, especially when dealing with complex batch effects and integrating atlas-
level data*. For cell type and subset annotations and prediction scANVI was used to capture
annotation of single-cell profiles. For the analysis of PB-NK subsets the sorted subsets
provided labels for training the sScANVI model. The subset prediction provided by the model
was tested on a held out set of cells (15%) from the sorted subset data giving us a confusion

matrix summarizing the performance of the prediction.
Dimensionality reduction, clustering and visualization of scRNA-seq data

We computed the UMAP embeddings for visualization using the embedding learned from scVI
and scANVI. Unsupervised clustering was also carried out using this learnt embedding using
the Leiden algorithm as implemented in Scanpy. PAGA?® was used to quantify the connectivity
of different groups of cells and thereby providing a representation of the data as a simpler

graph. The various plots were mostly generated using the plotting functions in Scanpy.
Cell type annotations and harmonization

For many of the publicly available datasets cell type annotations were readily available and
used as seed labels when training the scANVI model for that particular tissue/tumor type. The
scANVI model allowed us to harmonize annotations which was needed for analysis across
datasets. Celltypist® was also used for annotations, specifically for the immune cell
compartment in the various tissue/tumor types. The CD16- and CD16+ NK cells identified by

Celltypist were annotated as CD56¢" and CD56%™ respectively. Where CITE-seq data was
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available the surface expressidiPRPRAEEE AR BERIEVETTate the cell type annotations.
For the identified NK cells the cells were also scored using NK1/NK2 (CD56ie"/CD564im)
signatures to validate the annotation of CD56¢" and CD56%™ NK cells. We also performed
our own unsupervised Leiden clustering which identified two dominating clusters

corresponding to CD56"¢" and CD56%™ NK cells.
Calculation of signature scores

Signature scores were computed using AUCell” allowing for exploration of the relative
expression of the signatures of interest in the data sets. Various gene sets were taken from the

MSigDB Hallmark gene set collection®.
Pseudotime and RNA velocity analysis

Pseudotime was computed using Palantir’ which captures the continuous nature of
differentiation and cell fate which allowed us to explore two terminal states and the gene
expression changes seen along these trajectories. For this analysis the starting cell was defined
as the cell that was the least CD56%™ (the lowest score for the NK1 signature). Generalized-
additive models (GAMs) fitted on cells ordered by pseudotime were used to calculate gene
trends, where the contribution of cells was weighted by their probability to end up in the given
terminal state as calculated by Palantir. The gene trends indicate how gene expression levels
develop over the differentiation timeline. These trends were clustered using the Leiden
clustering algorithm to give us five clusters of gene trends. RNA velocity!® was also used in
order to take advantage splicing kinetics to identify directed dynamic information. We used
velocyto!? and scVelo!! for this analysis, specifically the dynamic model implemented in the
scVelo toolkit. The RNA velocity analysis was run on the two donors where sorted subsets

where sequenced separately, as well as on the integrated data from 12 blood donors.

Gene regulatory network analysis
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SCENIC” was used to infer HARREHMILIT FaLA R YehEPeGulatory networks from the
scRNA-seq data. The SCENIC workflow!? was followed and the pySCENIC implementation
was used. TF-gene associations were inferred by GRNBoost!* and motif-to-TF associations
were downloaded from the Aerts’s lab website and used for pruning the inferred associations.
The inferred regulatory networks were also further pruned by removing lowly expressed TFs
based on the bulk RNA-seq data. AUCell was used to compute the activity of the final regulons.
The regulon activity was visualized using matrix plots as implemented in Scanpy to look at the
activity across different groups of cells.

Bulk RNA sequencing for TF and target validation

For validation of the TF and targets we checked their expression in bulk RNASeq data from
four sorted NK cell populations (CD56€" NKG2AKIR CD56%™ NKG2AKIR*CD56%™,
and NKG2A'KIR'NKG2C'CD56%™m). Sequencing was performed using single-cell tagged

reverse transcription (STRT)!.
Reference mapping

The TiNK cells were added after the model for a healthy NK cell reference was trained.
scArches!> as implemented in scvi-tools® was used to map this new data onto the established

reference.
Cell-cell communication inference using CellChat

To infer the communication between the various cell types in the tumor data sets we used
CellChat!S. Based on gene expression of receptors and ligands in the data and a curated
database of pathways, CellChat computes the communication probability between various
receptor-ligand pairs. CellChat also provided ways to aggregated this information and for us to
visualize the inferred cell-cell communication networks. CellChat was computed separately for

each of the tumor types included in the analysis.
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Differential gene expression aR@If8ss

In order to perform differential gene expression analysis we used pseudobulk as this has shown
good results when analyzing scRNA-seq data in various studies!’. This allowed us to aggregate
up counts for each sample and consider the samples instead of the cells as replicates. We then
used edgeR!® on the pseudobulk data. We could then identify differentially expressed genes

between healthy reference NK cells and TiNK cells within and across subsets.
Differential abundance analysis using Milo

We used Milo!? to assign cells to neighborhoods on the KNN graph. The differential abundance
of these neighborhoods between the healthy reference and the TiNK cells were then computed.
The neighborhoods were grouped into six groups using the groupNhoods function in Milo.
These groups were considered as different NK cell states and further characterized using the
functions in Milo for identification of differentially expressed genes. The single cells were also

annotated using these groups for downstream analysis.
Gene set enrichment analysis

Gene set enrichment analysis was performed using the GSEA software?® and the MSigDB
collection of gene sets. Genes were first ordered based on the differential expression analysis

either based on the pseudobulk approach or based on the Milo analysis.
Clinical and bulk RNA-seq data from TCGA and TARGET

Bulk RNA-seq data and clinical data was downloaded from TCGA and TARGET using

TCGADbiolinks?! and curated survival data was downloaded from Xena??.
Deconvolution of bulk RNA-seq

Deconvolution of the bulk RNA-seq data was performed for each of the tumor types using

BayesPrism?*. BayesPrism has been shown to work well for deconvolution of data from tumors
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and especially well in dealifd* Wi RESACET 49 BHNAATIES24. The annotated reference
datasets for each of the tumor types were used as prior information in the deconvolution.
BayesPrism then computed both an expression matrix for each cell type as well as the cell type

fraction for each sample.
Survival analysis

The NK expression matrix inferred by BayesPrism for the various tumor types were used to
score the signature genes for each of the identified NK cell states. The patients were then
assigned as high and low for a group/state based on belonging to the highest or lowest half in
terms of expression of these signature genes within the group of patients with a specific tumor
type. The high and low designations could then be combined in an approach where a patient
could be assigned as high or low in multiple groups. Survival analysis was conducted using the
Cox proportional hazards model from the R package survival®, adjusting for confounding
clinical factors such as tumor stage, gender and age. Subsequently, survival curves were
derived using the Kaplan-Meier method within the same package. For visualization, the

ggsurvplot function of the survminer package in R was utilized.
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