

1 **Pan-cancer profiling of tumor-infiltrating natural killer cells through
2 transcriptional reference mapping**

3 Herman Netskar^{1,2†}, Aline Pfefferle^{3†*}, Jodie P Goodridge⁴, Ebba Sohlberg^{3,4}, Olli Dufva^{5,6}, Sara
4 A Teichmann^{5,6}, Trevor Clancy⁷, Amir Horowitz^{8,9‡}, Karl-Johan Malmberg^{1,2,3*‡}

5 ¹Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital,
6 Oslo, Norway. ²Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway. ³Center for
7 Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm,
8 Sweden. ⁴Fate Therapeutics, San Diego, USA. ⁵Wellcome Sanger Institute, Wellcome Genome
9 Campus, Cambridge, UK. ⁶Theory of Condensed Matter Group, the Cavendish Laboratory,
10 University of Cambridge, Cambridge, UK. ⁷Oslo Cancer Cluster, NEC OncoImmunity AS, Oslo,
11 Norway. ⁸Department of Immunology & Immunotherapy, Lipschultz Precision Immunology
12 Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁹Department of
13 Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New
14 York, NY, USA.

15 *Corresponding author.

16 †Shared first author.

17 ‡Shared last author.

18

19 **Abstract**

20 The functional diversity of natural killer (NK) cell repertoires stems from differentiation,
21 homeostatic receptor-ligand interactions, and adaptive-like responses to viral infections. Here, we
22 generated a single-cell transcriptional reference map of healthy human blood and tissue-derived
23 NK cells, with temporal resolution and fate-specific expression of gene regulator networks
24 defining NK cell differentiation. Using transfer learning, transcriptomes of tumor-infiltrating NK
25 cells from seven solid tumor types (427 patients), combined from 39 datasets, were incorporated
26 into the reference map and interrogated for tumor microenvironment (TME)-induced
27 perturbations. We identified six functionally distinct NK cellular states in healthy and malignant
28 tissues, two of which were commonly enriched for across tumor types: a dysfunctional ‘stressed’
29 CD56^{bright} state susceptible to TME-induced immunosuppression and a cytotoxic TME-resistant
30 ‘effector’ CD56^{dim} state. The ratio of ‘stressed’ CD56^{bright} and ‘effector’ CD56^{dim} was predictive
31 of patient outcome in malignant melanoma and osteosarcoma. This resource may inform the design
32 of novel NK cell therapies and can be extended endlessly through transfer learning to interrogate
33 new datasets from experimental perturbations or disease conditions.

34

35 **Introduction**

36 Natural killer (NK) cells are innate lymphocytes that play a vital role in the immune response
37 through their ability to directly kill transformed and virus infected cells, and by orchestrating the
38 early phase of the adaptive immune response¹. NK cells are commonly divided into two
39 functionally distinct subsets, CD56^{bright} and CD56^{dim} NK cells^{2, 3}. However, this is an
40 oversimplified view of the repertoire. Mass cytometry profiling of NK cell repertoires at the single
41 cell level revealed an extensive phenotypic diversity comprising up to 100,000 unique subsets in
42 healthy individuals⁴. Much of this diversity is based on combinatorial expression of stochastically
43 expressed germline encoded activating and inhibitory receptors that bind to HLA class I and tune
44 NK cell function in a process termed NK cell education^{5, 6}. Another layer of diversity reflects the
45 continuous differentiation through well-defined intermediate phenotypes from the naïve CD56^{bright}
46 NK cells through CD62L⁺NKG2A⁺KIR⁻CD57⁻CD56^{dim} NK cells to terminally differentiated,
47 adaptive CD62L⁻NKG2C⁺CD57⁺KIR⁺CD56^{dim} NK cells, associated with past infection of
48 cytomegalovirus (CMV)^{7, 8, 9, 10}. Given the increasing interest to harness the cytolytic potential of
49 NK cells in cell therapy against cancer, it is of fundamental importance to understand the molecular
50 programs and gene regulatory circuits driving NK cell differentiation and the underlying functional
51 diversification of the human NK cell repertoire.

52 Utilizing single-cell RNA sequencing (scRNA-seq), Crinier et al. discovered organ-
53 specific signatures in human spleen NK cells and two major transcriptional clusters in blood-
54 derived NK cells (PB-NK), corresponding to CD56^{dim} (NK1) and CD56^{bright} (NK2) NK cell
55 subsets². Bulk RNA and ChIP sequencing identified dominant transcription factor (TF) axes
56 defining CD56^{bright} (TCF1-LEF-MYC) and CD56^{dim} (PRDM1) phenotypic subsets, respectively¹¹.
57 Later research reported additional diversity with unique transcriptional clusters, including IL-2 and

58 type I interferon-responding NK cell subsets¹² and an intermediate CD56^{dim}GzmK⁺ stage,
59 potentially bridging CD56^{bright} and CD56^{dim} NK cells¹³. A comprehensive analysis unveiled
60 Bcl11b's role in driving NK cell differentiation towards the adaptive state, reciprocally suppressing
61 early TFs like RUNX2 and ZBTB16¹⁴. Combining gene expression analysis, chromatin
62 accessibility, and lineage tracing via mitochondrial DNA (mtDNA) mutations, Rückert et al.
63 revealed a clonal expansion and a distinct inflammatory memory signature in adaptive NK cells¹⁵.
64 Using a pan-cancer single-cell atlas approach, Tang et al.¹⁶ identified a tumor-enriched
65 dysfunctional CD56^{dim} CD16^{hi} NK cell population interacting with LAMP3⁺ dendritic cells in the
66 tumor microenvironment (TME). Hence, scRNA-seq and bulk RNA-seq usage has defined major
67 transcriptional regulatory hubs during NK cell differentiation and identified a persistent memory
68 state in human innate immunity. However, it remains unclear how the regulatory gene circuits that
69 operate under homeostasis in healthy tissues are affected by cellular and/or soluble cues in the
70 TME, resulting in perturbed functional states within tumor-infiltrating NK cells.

71 Here we establish a single-cell transcriptional reference map that resolves gene expression
72 trends and dominating TF-target interactions during NK cell differentiation in blood and normal
73 tissues. Reference mapping enables the analysis of cellular differences and gene programs in
74 diseases and various conditions by contextualizing new datasets within a healthy transcriptional
75 reference, facilitating the identification of novel states not found in the reference¹⁷. We utilize our
76 NK cell reference map, compiled from 44,640 PB-NK cells (12 donors) and 27,489 tissue resident
77 NK (TrNK) cells (136 donors), to query the regulones and functional states, as defined through
78 gene expression signatures, of tumor infiltrating NK (TiNK) cells derived from 427 patients with
79 seven distinct solid tumors (38,862 TiNKs). We found that TrNK and TiNK cells have a clear
80 tissue residency signature but still share the dominant regulons of blood CD56^{bright} and CD56^{dim}

81 NK cells. Of the six functional states identified in our pan-cancer atlas, a dysfunctional ‘stressed’
82 CD56^{bright} state susceptible to TME-associated cellular communication and a cytotoxic ‘effector’
83 CD56^{dim} state resistant to TME-associated cellular communication were commonly enriched
84 across tumor types. Stratification of patient survival data identified a high ratio of ‘effector’
85 CD56^{dim} to ‘stressed’ CD56^{bright} state to correlate with improved survival in osteosarcoma and
86 melanoma patients. This resource provides a granular view of cancer-specific alterations of solid-
87 tumor infiltrating NK cells, identifying how the TME can lead to NK cell dysfunction and may
88 inspire new strategies to engineer cell therapy products with robust functional phenotypes resistant
89 to TME-induced suppressive mechanisms.

90

91 Results

92 **NK cell subset annotation of single-cell RNA sequencing data using predictive gene**
93 **signatures.** To establish a pan-cancer atlas of tumor-infiltrating NK cells, we first defined NK cell
94 differentiation at the transcriptional level. We performed single-cell RNA sequencing (scRNA-
95 seq) of the total NK cell population from 7 healthy donors and integrated our transcriptomes with
96 5 publicly available donor datasets^{2, 18} using scVI¹⁹ (**Supplemental Table 1**). By retaining only
97 cell-to-cell variation independent from sample-to-sample variation, the initial clustering by donor
98 and laboratory origin was successfully integrated into a homogenous population of cells and
99 visualized using diffusion maps²⁰ to preserve the continuous trajectories observed with biological
100 differentiation (**Figure 1A**). Although NK differentiation is best described as a continuum,
101 CD56^{bright} and CD56^{dim} NK cell represent two distinct stages of differentiation. By performing
102 gene signature scoring using AUCell²¹, we identified cells at the top of the diffusion map
103 embedding scoring high for the CD56^{bright} gene signature², while the main body of the embedding
104 exhibited increasing intensity of the CD56^{dim} signature² (**Figure 1B**). Scoring of two independent
105 gene signatures based on the CD56^{bright/dim} regulon¹¹ and proteome²² confirmed our results
106 (**Supplemental Figure 1A-B**).

107 The relatively large and heterogeneous population of CD56^{dim} NK cells is commonly
108 phenotypically defined into functionally distinct subsets based on a selected number of inhibitory
109 and activating receptors contributing to the functional tuning⁷. To identify predictive gene
110 signatures associated with these functional stages encompassing NK cell differentiation, we sorted
111 and sequenced equal numbers of CD56^{bright} NK cells and four CD56^{dim} NK cell subsets
112 (NKG2A⁺KIR⁻CD57⁻, NKG2A⁻self-KIR⁺CD57⁻, NKG2A⁻nonself-KIR⁺CD57⁻, NKG2A⁻self-
113 KIR⁺CD57⁺ or NKG2A^{-/+}self-KIR⁺CD57⁺NKG2C⁺) from two donors, one without and one with

114 a large adaptive NK cell expansion (**Figure 1C, Supplemental Figure 1C-D**). Transcriptionally,
115 the adaptive NK cell subset was the most distinct as the remaining CD56^{dim} subsets exhibited a
116 high degree of transcriptional overlap, while still ordering themselves along the previously defined
117 maturation scheme (**Figure 1C**). As previously observed in bulk RNA-seq data²³, the
118 transcriptomes of self and non-self KIR⁺ NK cells were highly similar even at the single cell level
119 and thus merged for subsequent analysis (**Figure 1C**). The five transcriptionally distinct NK
120 subsets were renamed to reflect their maturation stage: ‘CD56^{bright}’, ‘early CD56^{dim}’, ‘intermediate
121 CD56^{dim}’, ‘late CD56^{dim}’ and ‘adaptive’ (**Figure 1C**).

122 We next utilized a semi-supervised model, scANVI²⁴, to leverage our identified NK cell
123 subset gene signatures to predict and infer subset annotation of compiled bulk NK cell scRNA-seq
124 datasets. We first tested the accuracy of the prediction model (M1) on 15% of the subset-sorted
125 NK cells (**Figure 1C**) which were not included in the training of the model. Transcriptionally
126 distinct subsets (CD56^{bright}, adaptive) were annotated with high accuracy, while subsets exhibiting
127 higher transcriptional overlap were annotated with slightly reduced accuracy (**Figure 1D**).
128 Implementing the model, we could annotate the total NK cell dataset comprising 23,253 single
129 cell transcriptomes (12 donors) at the subset level (**Figure 1E**). The models top three differentially
130 expressed genes (up and down) for each subset’s gene signature showed some overlap, further
131 highlighting the continuous nature of NK cell differentiation at the transcriptional level (**Figure**
132 **1F**). To validate our annotation model, we performed unbiased clustering (Leiden) of the total NK
133 cell dataset (12 donors), identifying five clusters closely matching our annotated five NK cell
134 subsets (**Figure 1G**). A small portion of intermediate CD56^{dim} annotated NK cells clustered
135 together with late CD56^{dim} annotated NK cells in cluster 4 (**Figure 1H**), likely corresponding to
136 more mature cells within the population. Having confirmed the validity of our 5 NK cell subsets,

137 M1 was utilized to identify donors with an adaptive NK cell expansion, which were all confirmed
138 to be CMV seropositive (**Figure 1I**). Thus, this first scANVI model forms a basis to interrogate
139 cellular states layered on top of the natural transcriptional changes with NK cell subsets at different
140 stages of differentiation.

141

142 **Temporal resolution of gene regulator networks with fate-specific expression.** To decipher the
143 regulatory gene pathways driving NK cell differentiation at the transcriptional level, we
144 implemented two different methods to calculate pseudotime, namely Palantir²⁵ and RNA velocity-
145 based pseudotime^{26, 27}. Palantir identifies terminal cells based on a chosen starting cell, placing the
146 remaining cells along a timeline (pseudotime). Defining the starting cell (blue) based on the lowest
147 CD56^{dim} score² (**Figure 1B**) identified two terminal cells (orange), predicted to be part of the late
148 CD56^{dim} and adaptive population respectively (**Figure 2A**). To validate this trajectory, we utilized
149 the dynamic model implemented in scVelo²⁶ to compute RNA velocity (spliced versus unspliced
150 transcripts), inferring pseudotime without a predefined starting cell (**Supplemental Figure 2A-**
151 **B**). The resulting vector field and extrapolated pseudotime confirmed a trajectory starting within
152 the CD56^{bright} NK cell subset and terminating in the adaptive subset (**Figure 2B**). Lastly, to infer
153 developmental relationships at the resolution of the five subsets, representing functionally distinct
154 subsets and proposed stages of NK cell differentiation⁷, we applied Partition-based graph
155 abstraction (PAGA)²⁸ to quantify their connectivity and estimate transitions. In line with the two
156 terminal fates (late CD56^{dim}, adaptive) identified by Palantir, we analyzed conventional and
157 adaptive donors separately (**Figure 1I**). In both types of donors, early CD56^{dim} NK cells formed
158 the connecting link between CD56^{bright} and the remaining CD56^{dim} populations (**Figure 2C-D**).
159 However, while adaptive donors NK cells continued their progression to intermediate CD56^{dim}

160 cells, terminating in the adaptive population, conventional donors instead branched into the
161 intermediate or late CD56^{dim} populations (**Figure 2C-D**).

162 Having established a temporal axis to NK cell differentiation, we utilized generalized
163 additive models to compute gene expression trends as a function of time for each gene²⁵, which
164 clustered into five distinct trends (**Figure 2E**). Genes varying in expression across the two terminal
165 fates were depicted in their trends for each fate, exemplified by KLRC2, CD52^{15, 18}, IL32 clustering
166 into Trend 1 in the conventional late CD56^{dim} fate and into Trend 4 in the adaptive fate (**Figure**
167 **2E**). Based on the two-fate model, we constructed gene regulatory networks (GRN)²¹ stratified by
168 the five gene trends, identifying the dominant TFs across pseudotime and their known downstream
169 target genes (**Figure 2F**). Trend 1 is dominated by genes which are downregulated with
170 differentiation from CD56^{bright} to CD56^{dim} cells, including previously reported TFs (MYC, LEF1,
171 RUNX2)¹¹, RBPJ²⁹ involved in Notch signaling, the retinoic acid receptor (RXRA), and TFs
172 regulating ID2 expression (HOXA9, HOXA10)³⁰ (**Figure 2E-F**). Trend 2 genes, compared to
173 Trend 1, are upregulated during differentiation from early to intermediate CD56^{dim} cells and
174 include among others EGR1³¹ (cell survival, proliferation, apoptosis, regulates TRAIL
175 expression), BHLHE40^{32, 33} (associated with NK cell activation and represses RXRA) and IRF8³⁴,
176³⁵ (role in orchestrating adaptive response, essential NK cell gene) (**Figure 2E-F**). TFs exhibiting
177 less dynamic changes across pseudotime are clustered in Trend 3, such as IKZF1, XBP1 and KLF2
178 which play a role in regulating homeostatic proliferation, effector function and cytokine
179 responsiveness^{36, 37}. TFs exhibiting higher expression at the start and end of pseudotime fall into
180 Trend 4, including STAT3 (cell survival, IFN γ production) and DDIT3³⁸ (stress response,
181 metabolism). Lastly, expression of Trend 5 genes steadily increases with differentiation,
182 decreasing only during late differentiation and includes previously reported TFs associated with

183 CD56^{dim} NK cells (MAF, PRDM1, TBX21))¹¹, the AP-1 family member BATF, the ETS family
184 member ETV7, and the Wnt target gene ASCL2 (**Figure 2E-F**). The TF-based GRNs were further
185 curated to only retain direct targets with significant motif enrichment, referred to as ‘regulons’
186 (denoted by ‘(+)’), expression of which was confirmed in an independent bulk RNA-seq data set
187 on sorted NK cell subsets. Regulon expression substantially differing between the conventional
188 and adaptive fate include conventional fate associated BHLHE40³³, IRF8^{34, 35} and DDT3³⁸ and
189 adaptive fate associated MAF¹¹ and BATF regulons (**Figure 2G**). Clustering dominant TFs
190 according to their temporal expression during NK cell differentiation revealed a set of highly
191 connected regulatory circuits, expression of which diverged during terminal differentiation into
192 one of the two cell fates, conventional or adaptive.

193

194 **Transfer learning to generate pan-cancer atlas of tissue-derived and solid tumor-infiltrating**
195 **NK cells.** Having transcriptionally defined NK cell differentiation in peripheral blood, we
196 proceeded to train a second model (M2) with publicly available scRNA-seq datasets encompassing
197 six healthy tissues (brain, breast, lung, pancreas, prostate, skin) from a total of 136 donors using
198 scVI¹⁹ (**Figure 3A, Supplemental Table 2**). The tissue-specific datasets were integrated and
199 annotated using scANVI, and CellTypist³⁹ was used to identify immune subsets of interest (**Figure**
200 **3B, Supplemental Figure 3A-E**). The annotated tissue-derived CD56^{bright} and CD56^{dim} NK cell
201 populations (27,489 cells) were extracted from the datasets and integrated into our reference map
202 (**Figure 3C**). Tissue-residency status was confirmed by scoring for a tissue residency (Tr)
203 signature, which was most pronounced in TrCD56^{bright} NK cells but also increased in TrCD56^{dim}
204 NK cells (**Figure 3D**). CD56^{bright} and CD56^{dim} subsets from peripheral blood and tissues clustered
205 together (**Figure 3E**) and were more tightly connected than to their respective tissues, apart from

206 skin-derived NK cells (**Figure 3F**). Therefore, differentiation stage has a greater influence on the
207 NK cell transcriptome compared to tissue origin. Notably, CellTypist did not identify a CD56^{bright}
208 NK cell population in neither brain nor breast tissue (**Supplemental Figure 3A, Figure 3E**).

209 Next, scRNA-seq datasets from seven solid tumors (breast cancer (BRAC), Glioblastoma
210 (GBM), Lung (NSCLC), Melanoma (SKCM), Pancreas (PAAD), Prostate (PRAD) and
211 Osteosarcoma (SARC)) from a total of 427 patients were annotated and integrated for each tumor
212 type using scANVI¹⁹ and CellTypist³⁹ (**Figure 3G, Supplemental Figure 3F-L, Supplemental**
213 **Table 3**). The CD56^{bright} and CD56^{dim} annotated tumor-infiltrating NK (TiNK) cells were mapped
214 onto the reference map (PB-NK, TrNK) using transfer learning (scArches⁴⁰) to generate the final
215 model (M3) (**Figure 3H**). TiNK cells also clustered based on their differentiation stage together
216 with the corresponding PB-NK and TrNK subsets (**Figure 3I**). SKCM-derived CD56^{dim} NK cells
217 exhibited the lowest connectivity score when compared to all other populations (**Figure 3J**).
218 GBM-derived TiCD56^{bright} NK cells and SKCM-derived TiCD56^{dim} scored highest for tissue
219 residency within their respective subsets (**Supplemental Figure 3M**). Transfer learning facilitated
220 incorporation of TiNK cells onto our healthy reference map of PB and TrNK cells, allowing for
221 downstream systematic interrogation of cellular states within these solid-tumor infiltrating NK
222 cells.

223

224 **Altered NK cell subset frequencies within healthy tissue and solid tumors.** The tumor
225 microenvironment (TME) is shaped by its cellular composition, particular by the infiltrating
226 immune cells, which in turn can be modulated by their surroundings. A pan-cancer comparison of
227 the healthy tissue and tumor annotated immune subtypes (**Figure 3B**), identified an increased
228 proportion of plasma cells and a decreased proportion of CD56^{dim} NK cells, dendritic cells, NKT

229 cells, helper T_{EM/EFF}, cytotoxic T_{EM/EMRA} and cytotoxic T_{RM} cells in the tumor datasets (**Figure**
230 **4A-B**). The fraction of CD56^{bright} NK cells out of total immune cells was enriched in BRAC, while
231 CD56^{dim} NK cells were enriched in SKCM, but decreased in NSCLC and BRAC (**Figure 4B**,
232 **Supplemental Figure 4A**). SKCM uniquely exhibited a tendency for increased proportions of
233 both NK cell subsets (**Figure 4B**), in line with an overall increased frequency of immune cells,
234 including NK cells (**Figure 4C-D**). Utilizing our subset-trained model (M1) to annotate CellTypist
235 defined NK cells into the five NK cell subsets we observed increased proportions of CD56^{bright}
236 cells across numerous tumor types (**Figure 4E**). Within the CD56^{dim} compartment, a skewing
237 towards more mature NK cells (late CD56^{dim}) in tissues and tumors compared to blood
238 (intermediate CD56^{dim}) was detected, with adaptive NK cells notably absent in Tr/TiNK cells
239 (**Figure 4E**). Solid tumor-infiltrating NK cells were enriched for a CD56^{bright} transcriptional
240 phenotype while the CD56^{dim} compartment in both healthy tissue and solid tumors was skewed
241 towards increased maturity (late CD56^{dim}).

242

243 **Six distinct functional states of NK cells in peripheral blood, tissues, and tumors**

244 Tumor microenvironments of solid tumors are hostile and often immunosuppressive environments
245 for immune cells to infiltrate.⁴¹ Understanding how the TME can modulate NK cells at the
246 transcriptional level can provide important insights into understanding the tumor-mediated
247 immunosuppressive mechanisms and how to overcome them.

248 We implemented an unbiased approach (Milo⁴²) to ascertain cellular states in our pan-
249 cancer NK cell atlas by identifying individual neighborhoods (~6000) without pre-clustering based
250 on cellular origin. Annotating individual neighborhoods as subset specific (>70% of cells in
251 neighborhood) identified TiCD56^{bright} NK cells as having the most frequent, but also most unique

252 (differentially abundant) specific neighborhoods (**Supplemental Figure 5A**). Notably, the
253 majority of neighborhoods were annotated as ‘mixed’, highlighting transcriptional similarities
254 among NK cells found in peripheral blood, tissues and tumors (**Supplemental Figure 5A**). The
255 approximately 6000 neighborhoods were grouped into six distinctive neighborhood groups and we
256 tested for differential abundance of neighborhoods between TiNK cells and Ref-NK cells (**Figure**
257 **5A, Supplemental Figure 5B**). Neighborhood groups 1 and 2 consisted of neighborhoods
258 significantly enriched for TiNK cells and group 6 included neighborhoods enriched for Ref-NK
259 cells (**Figure 5B, Supplemental Figure 5B**).

260 Next, we visualized the distribution of NK cell subsets within each group using our
261 annotation model (M1). Group 1 and 2 were enriched for, but not exclusive to CD56^{bright} cells,
262 while groups 3-6 were dominated by CD56^{dim} NK cell subsets (**Figure 5C**). The dominant TF
263 regulons of PB-NK cell differentiation previously identified (**Figure 2F**), confirmed Group 1 and
264 2 as two CD56^{bright} states and group 3-6 as four CD56^{dim} NK cells states (**Figure 5D**).

265 Cell-state specific GRN, DEG, GSEA, and signature scoring informed our annotation of
266 the states as ‘stressed’ CD56^{bright} (Group 1), ‘typical’ CD56^{bright} (Group 2), ‘effector’ CD56^{dim}
267 (Group 3), ‘stressed’ CD56^{dim} (Group 4), ‘activated’ CD56^{dim} (Group 5) and ‘typical’ CD56^{dim}
268 (Group 6) (**Figure 5E-M, Supplemental Figure 5C-F**). Comparing the ‘stressed’ to the ‘typical’
269 CD56^{bright} state identified increased expression of the cellular stress response ATF3 regulon, the
270 hypoxia-induced MAFF regulon, and numerous heat shock proteins (**Figure 5E, G, J**). The
271 ‘stressed’ CD56^{bright} cell state scored highly for immunosuppressive pathways (TGF- β signaling,
272 hypoxia, ROS) and exhibited increased metabolic activation (glycolysis, cholesterol homeostasis,
273 fatty acid metabolism), proliferation (G2M checkpoint) and activation of the MYC/mTORC1 axis
274 (**Figure 5G, J, M**). Furthermore, a significant decrease in the apical junction hallmark (indicative

275 of lower polarization and conjugate formation) and a low NK cytotoxicity score was suggestive of
276 reduced functionality in this ‘stressed’ CD56^{bright} cellular state, which was uniquely enriched
277 across all 7 tumor types (**Figure 5J, M-N**). In line with increased infiltration of CD56^{bright} cells in
278 the TME, the ‘typical’ CD56^{bright} cellular state was also enriched in 5 of 7 tumor types compared
279 to healthy tissue (**Figure 5N**).

280 Of the CD56^{dim} state, the ‘effector’ state was most frequently enriched across tumor types
281 (SARC, PAAD, PRAD), characterized by an enrichment for apical junction, actin and
282 cytoskeleton-related associated genes (**Figure 5H, K, N**). This state, phenotypically enriched for
283 intermediate and late CD56^{dim} NK cell subsets, scored highly for NK cytotoxicity and oxidative
284 phosphorylation, and importantly, lowly for immune suppression (**Figure 5C, M**). The ‘stressed’
285 CD56^{dim} state, characterized by downregulated apical junction related genes and effector
286 molecules (GZMB, PRF1, GNLY) and upregulated heat shock proteins, was more prominent in
287 healthy tissues and only enriched for in PRAD (**Figure 5I, L-N**). The ‘activated’ CD56^{dim} state
288 was distinguished by increased hypoxia, proliferation and NF κ B activation (**Supplemental Figure**
289 **5C, E, Figure 5M**) while the PB-enriched ‘typical’ CD56^{dim} state exhibited highest expression of
290 NK-associated genes (PRF1, GZMB, CST7, FCGR3A, NKG7, FGFBP2) (**Supplemental Figure**
291 **5D, F, Figure 5N**). Notably, while we observed enrichment of individual cellular states in the
292 TME, including the two CD56^{bright} and the ‘effector’ CD56^{dim} states, all states were represented in
293 healthy blood and tissue samples, albeit at different frequencies.

294

295 **Decreased TME-specific incoming signaling in the ‘effector’ CD56^{dim} NK state associated**
296 **with improved survival**

297 The clinical benefit of NK cell infiltration in solid tumors has previously been assessed through a
298 general NK cell signature score^{43, 44}. Having identified six functional states of NK cells in blood,
299 tissue and solid tumors, we proceeded to test clinical relevance of these cellular states by using
300 BayesPRISM⁴⁵ to deconvoluted TCGA survival data^{46, 47}. The combination of high ‘effector’
301 CD56^{dim} and low ‘stressed’ CD56^{bright} cell signatures correlated with increased improved survival
302 in SARC and SKCM patients (**Figure 6A**). To elucidate any TME-based influence on these
303 outcome-associated functional states, we employed CellChat⁴⁸ to infer intercellular
304 communication, focusing on commonly enriched signaling pathways in SARC and SKCM.
305 Increased outgoing signaling (MHC-I, CD99, ITGB2, ICAM, PARs) was noted in group 3 NK
306 cells, while group 1 NK cells were enriched for incoming signaling (MHC-I, MIF, ADGRE5, FN1,
307 GALECTIN, COLLAGEN) (**Figure 6B, Supplemental Figure 6A**). Increased expression of
308 CD44, and to a lesser degree CXCR4, upon which numerous signals from fibroblasts, CAFs,
309 endothelial cells and osteoblasts/clasts converged (COLLAGEN, MIF GALECTIN; FN1),
310 facilitated the augmented incoming signaling in group 1 (**Figure 5C, E**). Notably, fibroblasts,
311 CAFs, endothelial cells and osteoblasts/clasts also exhibited the strongest outgoing interaction
312 strength of all cell types in SARC (**Supplemental Figure 6A**). Furthermore, group 1 NK cells
313 preferentially received inhibitory input via the MHC-I (HLA-E/KLRC1) and ADGRE5
314 (ADGRE5/CD55) pathways, while group 3 NK cells exhibited increased ITGB2 and ICAM2
315 expression, facilitating binding to other NK cell states and macrophages (**Figure 6D-E**). Hence,
316 group 3 NK cells preferentially communicated with other tumor-infiltrating immune cells while
317 group 1 NK cells were more receptive to TME-induced immunosuppressive signals via
318 upregulated CD44.

319 A higher ratio of ‘effector’ CD56^{dim} to ‘stressed’ CD56^{bright} NK state signatures was
320 predictive of improved survival in SARC and SKCM. Inferred increased inhibitory signaling and
321 augmented susceptibility to TME-induced suppression likely contributes to the ‘stressed’
322 CD56^{bright} states unfavorable prognosis.

323

324 **Discussion**

325 Here we report a compact description of the transcriptional diversification encompassing human
326 NK cell differentiation at the single cell level. By enriching for less frequent, but phenotypically
327 well-defined functionally distinct NK cell subsets, we could first train a model to correctly annotate
328 five transcriptional subsets from bulk NK cell populations. By applying probabilistic models
329 implemented in scVI-tools, we created a transcriptional reference map of human blood and tissue
330 resident NK (TrNK) cells from normal tissues including blood, pancreas, lung, breast, skin,
331 prostate and brain. Transfer learning using scArches facilitated integration of query datasets
332 comprising a total of 2,176,214 transcriptomes from 427 patients spanning seven solid tumor
333 types. By extracting, annotating, and mapping the tumor-infiltrating NK (TiNK) cells onto our
334 healthy reference map, we could systematically interrogate TME-induced perturbations of gene
335 regulatory networks and functional states of TiNK cells (**Supplemental Figure 7**). Our pan-cancer
336 atlas revealed six functionally distinct NK cell states with varying abundance across blood, tissues
337 and tumor types. Two states commonly enriched for across tumor types included a dysfunctional
338 CD56^{bright} cellular state susceptible to TME-induced immunosuppression and a cytotoxic TME-
339 resistant CD56^{dim} state, the ratio of which was predictive of patient outcome.

340 The view that NK cells, like T cells and other immune cells, undergo a continuous process
341 of NK cell differentiation is relatively recent and was originally based on phenotypic and
342 functional classification of discrete subsets^{7, 49}. There is abundant evidence suggesting that the
343 CD56^{bright} NK cell subset is the most naïve, giving rise to the more differentiated CD56^{dim} NK
344 cells which can further differentiate towards terminal stages, a process accelerated by CMV
345 infection^{8, 50, 51}. Instead of forcing individual NK cells into arbitrary clusters representing a
346 snapshot of a given time point of differentiation, we clustered TFs and their target genes into five
347 distinct gene expression trends as a function pseudotime, reflecting continuous differentiation. By
348 retaining fate-specific expression profiles, conventional versus adaptive fate in donors with CMV-
349 induced clonal NK cell expansions, we could observe clear divergence of regulon expression (eg,
350 BATF, MAF) during terminal differentiation. BATF belongs to the AP-1 TF family which have
351 been identified as potential drivers in shaping adaptive NK cell chromatin accessibility and thus
352 dictating the unique functional features of this subset, including enhanced IFN γ response to
353 receptor stimulation¹⁵. Establishing dominant regulons defining NK cell differentiation in
354 peripheral blood provided a vital reference for downstream interrogation of both tissue resident
355 and solid tumor-infiltrating NK cells.

356 Utilizing CellTypist, we harmonized annotations of individual cell subtypes across
357 multiple datasets from six different healthy tissues, extracting and integrating CD56^{bright} and
358 CD56^{dim} NK cells using scVI¹⁹ to expand our transcriptional reference map. Importantly, tissue,
359 as well as tumor-annotated NK cells did not express human ILC signature genes, instead
360 expressing both EOMES and TBX21. Tissue residency genes (e.g., CD69, ITGAE, ITGA1,
361 CXCR6, ZNF683, IKZF3) were more highly expressed in tissue-derived NK cells, particularly in
362 CD56^{bright} NK cells. Notably, we could not identify a CD56^{bright} population in both healthy brain

363 and breast datasets. This could be attributed to the absence of CX3CR1⁵² expression in CD56^{bright}
364 NK cells, an important receptor for NK cell migration to the brain, or could be an artefact due to
365 higher blood contamination (lower CD56^{bright} frequency) in this dataset in line with a lower tissue
366 residency score.

367 The presence and abundance of NK cells that reside in the tumor bed varies across tumor
368 types, treatments and between patients and appears to be associated with the chemokine profiles
369 in the different tissues/tumor microenvironments^{53, 54, 55, 56}. Immune and NK cell subset
370 composition greatly varied among tissue and tumor type, with the highest and lowest frequency of
371 CD56^{bright} NK cells being found in skin and lung respectively. Consistently across tissue and tumor
372 type, a clear maturation of the CD56^{dim} subset was noted, with late CD56^{dim} NK cells making up
373 the largest fraction. Notably, no Tr nor TiNK cells were annotated as adaptive using our subset
374 annotation model, confirmed by Tang et al.¹⁶ but contrary to previous reports describing adaptive-
375 like NK cells with a tissue-residency phenotype in the lung⁵⁷. Transcriptional differences between
376 previously described tissue-resident adaptive NK cells and our PB-derived gene signature trained
377 annotation model could explain these discrepancies.

378 In agreement with previous studies^{54, 58}, we observed a predominance of CD56^{bright} NK
379 cells in tumors compared to the corresponding normal tissue. Tumor-resident NK cells are likely
380 a mixed population including naturally residing TrNK cells and TiNK cells. Compositional
381 differences between normal and tumor tissues suggests some degree of active recruitment,
382 particularly in SKCM where NK cell frequencies starkly increased, albeit expansion from tissue
383 resident pools cannot be excluded. Migration into the TME is regulated by a broad family of
384 integrins, selectins and chemokine receptors that are differentially expressed during NK cell
385 differentiation. CXCR3, primarily expressed CD56^{bright} NK cells, has been implicated in homing

386 to several solid tumors based on CXCL10 gradients⁵⁹, and thus may contribute to the
387 predominance of this subset in tumors. CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10, and
388 CXCL12, have similarly been implicated in mediating predominantly CD56^{bright} NK cell
389 trafficking into solid tumors based on chemokine receptor expression⁵⁶. We observed heightened
390 CXCR4 expression in CD56^{bright} Tr and TiNK cells, and a modest upregulation of CX3CR1 on
391 CD56^{dim} Tr and TiNK cells, with levels varying across tissue/tumor type. Previous reports^{60, 61}
392 have demonstrated CD44-induced CXCR4 upregulation resulting in increased migration and
393 invasiveness of malignant cells. Notably, CD44 was highly expressed on the tumor-enriched
394 ‘stressed’ CD56^{bright} state, possibly sensitizing this population to TME-mediated
395 immunosuppression from CAFs, fibroblasts, endothelial and tumor cells, as noted by high scores
396 for TGF β signaling, hypoxia and ROS. Conversely, the ‘effector’ CD56^{dim} state associating with
397 improved patient outcome, lacked CD44 expression and uniquely expressed ICAM2 and high
398 ITGB2 levels. Notably, this state exhibited high expression of the KLF2, PRDM1, BATF, TBX21
399 and IKZF1 regulons, indicative of high effector function, regulation of homeostatic proliferation
400 and survival, but also cell migration and tissue residency. Unique TiNK specific regulons in this
401 state consisted of NFYC, CTBP1, POLE4 and CEBPA, which are involved in DNA repair,
402 monitoring of proliferation, regulating MHC expression and maintaining structural homeostasis in
403 the Golgi complex^{62, 63, 64, 65}. Conversely, TiNK specific regulons in the ‘stressed’ CD56^{bright} state
404 included hypoxia induced MAFF, cellular stress response regulon ATF3 and EGR2/3⁶⁶ which
405 induce negative regulators in response to activation. Contrary to Tang et al.¹⁶, increased gene
406 signature scoring of the tumor enriched ‘stressed’ CD56^{bright} state did not consistently associate
407 with reduced survival across tumor types. Instead, we observed increased survival in patients
408 exhibiting a high ‘effector’ CD56^{dim} state which was further augmented with a low signature for

409 the ‘stressed’ CD56^{bright} state. Of the four CD56^{dim} states, the ‘effector’ CD56^{dim} state was most
410 commonly enriched across tumor types, painting a promising picture for the role of solid-tumor
411 infiltrating NK cells.

412 This resource provides a transcriptional reference map of human NK cells across healthy
413 blood and tissues with harmonized annotations of transcriptional NK cell subsets. Uncovering the
414 dominant gene regulatory circuits during NK cell differentiation enabled identification of TME-
415 induced perturbations in solid tumor-infiltrating NK cells across tumor type. We identified
416 functionally distinct NK cell states across healthy and malignant tissues, including tumor enriched
417 states predictive of patient outcome. Modelling of the intercellular communication pathways of
418 outcome-predicting NK cell states with the surrounding TME identified potential pathways of
419 TME-induced NK cell suppression. Thus, our analysis has the potential to design more potent NK
420 cell therapy products able to resist suppressive factors operating within the TME of solid tumors.
421 Ultimately, this resource can be extended endlessly through transfer learning to interrogate new
422 datasets from experimental perturbations or different tumor types.

423

424

425 *Acknowledgements*

426 Large parts of the analyses were run using the Machine learning infrastructure (ML Nodes),
427 University Centre for Information Technology, University of Oslo, Norway. This publication is
428 part of the Human Cell Atlas –www.humancellatlas.org/publications/

429

430 *Data availability*

431 The gene expression data generated for this paper is available at NCBI GEO with accession
432 number GSE245690 and raw sequencing data is available at EGA with accession number
433 EGAS50000000014. The details about the publicly available data included in the analysis are
434 available in **Supplemental tables S1, S2 and S3**. Processed data and models have also been made
435 available on Zenodo (<https://doi.org/10.5281/zenodo.8434224>) and as an online resource at
436 <http://nk-scrna.malmberglab.com/>.

437

438 *Code availability*

439 The code generated for our analysis is available on GitHub at
440 <http://github.com/hernet/transcriptional-map-nk>

441

442 *Authorship and conflict-of-interest statements*

443 J.G, A.H and A.P. performed the single-cell RNA sequencing experiments. H. N., A.P. and T. C.
444 performed the bioinformatic analysis. E.S., O.D., S.A.T., A.H. and K-J.M. provided scientific
445 input. A.P. H.N, and K-J.M. wrote the manuscript. J.G. is an employee at Fate Therapeutics. K-

446 J.M. is a consultant at Fate Therapeutics and Vycellix and has research support from Fate
447 Therapeutics, Oncopeptides for studies unrelated to this work. S.A.T. is a co-founder and board
448 member of and holds equity in Transition Bio. Figures were partly generated using Biorender
449 software.

450

451

452 **Figure legends**

453 **Figure 1. NK cell differentiation at the transcriptional level.** (A) Integration process of scRNA-
454 seq data of NK cells from 12 donors and 4 different laboratories using scVI showing UMAP
455 representation followed by diffusion mapping. (B) AUCell scores of gene signatures for CD56^{bright}
456 and CD56^{dim} NK cell subsets. (C) UMAP representation of 5 sorted subsets from a donor with an
457 adaptive expansion (left) and a donor without an adaptive expansion (right). (D) Heatmap
458 depicting accuracy of our prediction model for subset annotation tested on 15% of heldout cells
459 from the subset-specific dataset (2 donors). (E) UMAP representation showing annotation of NK
460 cells (12 donors, left) with subset labels (right) using a scANVI model trained with sorted subset
461 data (2 donors) and the final diffusion map depicting subset annotations. (F) Dotplots showing the
462 top three up and downregulated genes between all pairs of subsets as identified by the differential
463 expression module in scANVI, visualized across the differentiation spectrum. (G) Diffusion map
464 depicting Leiden clustering of the 12 donor NK cell dataset. (H) Heatmap showing distribution of
465 our annotated 12 donor NK cell subsets over the 5 Leiden clusters. (I) Frequency of annotated late
466 CD56^{dim} and adaptive NK cell subsets in donors with and without an adaptive NK cell expansion.

467 **Figure 2. Gene regulatory networks defining conventional and adaptive NK cell fates.** (A)
468 UMAP representation highlighting the starting cell (blue) with the lowest value CD56^{dim} signature
469 score and the two terminal cells (orange) as predicted by Palantir. (B) UMAP representation of the
470 data from the sorted subsets (2 donors) showing the RNA velocity vector field as a stream plot and
471 the inferred pseudotime. (C-D) PAGA graph with directionality and transitions from RNA velocity
472 analysis for the sorted subsets (2 donors) (C) subset-inferred bulk donors (12 donors) stratified
473 based on presence or absence of adaptive expansion (D). (E) Gene trends clustered into five overall
474 trends of expression along pseudotime, showing expression of KLRC2, CD52 and IL32 in both

475 terminal fates (pink = conventional fate, orange = adaptive fate). **(F)** Inferred gene regulatory
476 networks where dominant transcription factors for each trend are highlighted. **(G)** Selection of
477 regulons showing differential expression over pseudotime within the conventional and adaptive
478 fate.

479 **Figure 3. Pan-cancer atlas of healthy tissue resident and solid tumor-infiltrating NK cells.**
480 **(A)** Graphical overview of healthy tissue datasets included in the analysis, with the number of
481 donors denoted in brackets. **(B)** Dotplot showing selected signature genes, and their expression in
482 healthy lung, used to annotate major immune subsets in the compiled dataset. **(C)** UMAP
483 representation showing integration of subset annotated peripheral blood-derived (PB-NK) and
484 tissue-derived NK cells (TrNK). **(D)** Scoring of tissue residency signature in PB-NK cell subsets
485 and CD56^{bright} and CD56^{dim} annotated TrNK subsets. **(E-F)** PAGA graph **(E)** and connectivity
486 heatmap **(F)** showing connectivity of PB-NK and TrNK subsets across all tissues, with individual
487 tissues highlighted **(E)**. **(G)** Graphical overview of solid tumor datasets included in the analysis,
488 with the number of donors denoted in brackets. **(H)** UMAP representation showing integration of
489 subset annotated PB-NK, TrNK and tumor-infiltrating NK cells (TiNK) as pan-cancer atlas and
490 stratified by solid-tumor type. **(I-J)** PAGA graph **(I)** and connectivity heatmap **(J)** showing
491 connectivity of PB-NK, TrNK and TiNK subsets across all tissues/tumor types, with individual
492 tissue/tumor types highlighted.

493 **Figure 4. Cellular composition of pan-cancer cell atlas and subset distribution of tumor-**
494 **infiltrating NK cells.** **(A)** Distribution of major immune subsets across all tissue and tumor types.
495 **(B)** Heatmap depicting changes in immune subset proportion in tumor samples compared to
496 healthy tissue samples at the pan-cancer level and within individual tumor types. **(C)** Proportion
497 of immune cells out of total cells within healthy tissue samples and tumor samples. **(D)** Proportions

498 of major immune subsets within healthy tissue and tumor samples. **(E)** Predicted subset
499 annotations of CellTypist identified NK cells in healthy tissue and tumor samples compared to
500 annotated PB-NK cells. Boxplots (center line – median, box limits – upper/lower quartiles,
501 whiskers – distribution). Data were analyzed using two-sample t-test with Bonferroni correction;
502 * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

503 **Figure 5. Distinct cellular states of NK cells identified in pan-cancer atlas.** **(A)** UMAP
504 depicting neighborhood groups identified by Milo. **(B)** Beaswarm plot depicting differential
505 abundance of neighborhoods (TiNK vs Ref-NK enriched). Colored neighborhoods are
506 differentially abundant at FDR 0.1. **(C)** Pie charts showing distribution of NK subsets across
507 neighborhood groups annotated using our annotation Model (**Figure 1**). **(D)** Expression of
508 dominant transcription factor (TF) regulons of NK cell differentiation across NK cell states
509 (neighborhood groups). **(E)** Expression of TF regulons uniquely expressed across cellular states.
510 **(F)** Graphical representation of cellular states. **(G-L)** Volcano plots depicting differentially
511 expressed genes (DEGs) and corresponding gene set enrichment analysis (GSEA) between Group
512 1 vs. Group 2 (**G, J**), Group 3 vs. Group 4/5/6 (**H, K**) and Group 4 vs. Group 3/5/6 (**I, L**) cellular
513 states. **(M)** Scoring of pathway gene signatures in NK cells states. **(N)** Pie charts depicting
514 distribution of NK cell states in blood, tissues and tumors. Volcano plots: log fold change cutoff
515 at 0.5, p < 0.05. GSEA plots: p value cutoff 0.5 (red line).

516 **Figure 6. Intercellular communication of distinct cellular states associated with patient**
517 **outcome.** **(A)** Kaplan-Meier survival curves showing association of high/low Group 1/3 gene
518 signatures with patient outcome across tumor types. **(B)** Selected predicted outgoing (top) and
519 incoming (bottom) signaling pathways involving TiNK cells in SARC as identified by CellChat.
520 Pathways in red are enriched for in Group 1 NK cells and pathways in green are enriched for in

521 Group 3 NK cells. **(C)** Circle plot depicting predicted incoming signaling via CD44 expression on
522 Group 1 and Group 3 TiNK cells (SARC). **(D)** Heatmap depicting importance and interaction role
523 of individual cell populations in CLEC, ITGB2, MHC-1 and ICAM signaling pathways in SARC
524 based on network centrality analysis in. **(E)** Violin plots showing expression of receptors and
525 ligands of communication pathways involving TiNK cells in SARC. MHC-I (HLA-E – KLRC1),
526 ITGB2 (ICAM2 – ITGB2), COLLAGEN/GALECTIN/FN1 (CD44), MIF (CD44+CXCR4).
527 Survival analysis was performed using the Cox proportional hazards model, p values were
528 computed using the log-rank test.

529

530 **References**

531 1. Moretta, A., Bottino, C., Mingari, M.C., Biassoni, R. & Moretta, L. What is a natural killer
532 cell? *Nat Immunol* **3** (2002).

533 2. Crinier, A. *et al.* High-Dimensional Single-Cell Analysis Identifies Organ-Specific
534 Signatures and Conserved NK Cell Subsets in Humans and Mice. *Immunity* **49**, 971-
535 986.e975 (2018).

536 3. Cooper, M.A., Fehniger, T.A. & Caligiuri, M.A. The biology of human natural killer-cell
537 subsets. *Trends Immunol* **22**, 633-640 (2001).

538 4. Horowitz, A. *et al.* Genetic and environmental determinants of human NK cell diversity
539 revealed by mass cytometry. *Sci Transl Med* **5**, 208ra145 (2013).

540 5. Horowitz, A. *et al.* Class I HLA haplotypes form two schools that educate NK cells in
541 different ways. *Sci Immunol* **1**, eaag1672 (2016).

542 6. Goodridge, J.P., Önfelt, B. & Malmberg, K.-J. Newtonian cell interactions shape natural
543 killer cell education. *Immunol Rev* **267**, 197-213 (2015).

544 7. Björkström, N.K. *et al.* Expression patterns of NKG2A, KIR, and CD57 define a process
545 of CD56dim NK-cell differentiation uncoupled from NK-cell education. *Blood* **116**, 3853-
546 3864 (2010).

547 8. Schlums, H. *et al.* Cytomegalovirus infection drives adaptive epigenetic diversification of
548 NK cells with altered signaling and effector function. *Immunity* **42**, 443-456 (2015).

549 9. Lopez-Vergès, S. *et al.* CD57 defines a functionally distinct population of mature NK cells
550 in the human CD56dimCD16+ NK-cell subset. *Blood* **116**, 3865-3874 (2010).

551 10. Juelke, K. *et al.* CD62L expression identifies a unique subset of polyfunctional CD56dim
552 NK cells. *Blood* **116**, 1299-1307 (2010).

553 11. Collins, P.L. *et al.* Gene Regulatory Programs Conferring Phenotypic Identities to Human
554 NK Cells. *Cell* **176**, 348-360.e312 (2019).

566 12. Smith, S.L. *et al.* Diversity of peripheral blood human NK cells identified by single-cell
567 RNA sequencing. *Blood Adv* **4**, 1388-1406 (2020).

568 13. Melsen, J.E. *et al.* Single-cell transcriptomics in bone marrow delineates
569 CD56(dim)GranzymeK(+) subset as intermediate stage in NK cell differentiation.
570 *Frontiers in immunology* **13**, 1044398 (2022).

572 14. Holmes, T.D. *et al.* The transcription factor Bcl11b promotes both canonical and adaptive
573 NK cell differentiation. *Sci Immunol* **6**, eabc9801 (2021).

575 15. Rückert, T., Lareau, C.A., Mashreghi, M.-F., Ludwig, L.S. & Romagnani, C. Clonal
576 expansion and epigenetic inheritance of long-lasting NK cell memory. *Nat Immunol* **23**,
577 1551-1563 (2022).

579 16. Tang, F. *et al.* A pan-cancer single-cell panorama of human natural killer cells. *Cell* **186**,
580 4235-4251.e4220 (2023).

582 17. Rood, J.E., Maartens, A., Hupalowska, A., Teichmann, S.A. & Regev, A. Impact of the
583 Human Cell Atlas on medicine. *Nat Med* **28**, 2486-2496 (2022).

585 18. Yang, C. *et al.* Heterogeneity of human bone marrow and blood natural killer cells defined
586 by single-cell transcriptome. *Nat Commun* **10** (2019).

588 19. Gayoso, A. *et al.* A Python library for probabilistic analysis of single-cell omics data.
589 *Nature Biotechnology* **40**, 163-166 (2022).

591 20. Haghverdi, L., Buettner, F. & Theis, F.J. Diffusion maps for high-dimensional single-cell
592 analysis of differentiation data. *Bioinformatics* **31** (2015).

594 21. Aibar, S. *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nat
595 Methods* **14** (2017).

597 22. Scheiter, M. *et al.* Proteome Analysis of Distinct Developmental Stages of Human Natural
598 Killer (NK) Cells. *Molecular & Cellular Proteomics* **12**, 1099-1114 (2013).

600 23. Goodridge, J.P. *et al.* Remodeling of secretory lysosomes during education tunes functional
601 potential in NK cells. *Nat Commun* **10**, 514 (2019).

603

604 24. Xu, C. *et al.* Probabilistic harmonization and annotation of single-cell transcriptomics data
605 with deep generative models. *Mol Syst Biol* **17** (2021).

606 25. Setty, M. *et al.* Characterization of cell fate probabilities in single-cell data with Palantir.
608 *Nature Biotechnology* **37** (2019).

609 26. Bergen, V., Lange, M., Peidli, S., Wolf, F.A. & Theis, F.J. Generalizing RNA velocity to
611 transient cell states through dynamical modeling. *Nature Biotechnology* (2020).

612 27. Manno, G.L. *et al.* RNA velocity of single cells. *Nature* **560**, 494 (2018).

614 28. Wolf, F.A. *et al.* PAGA: graph abstraction reconciles clustering with trajectory inference
616 through a topology preserving map of single cells. *Genome Biology* **20**, 59 (2019).

617 29. Chaves, P. *et al.* Loss of Canonical Notch Signaling Affects Multiple Steps in NK Cell
619 Development in Mice. *J Immunol* **201**, 3307-3319 (2018).

620 30. Nagel, S. *et al.* Polycomb repressor complex 2 regulates HOXA9 and HOXA10, activating
622 ID2 in NK/T-cell lines. *Mol Cancer* **9**, 151 (2010).

623 31. Balzarolo, M., Watzl, C., Medema, J.P. & Wolkers, M.C. NAB2 and EGR-1 exert opposite
625 roles in regulating TRAIL expression in human Natural Killer cells. *Immunol Lett* **151**, 61-
626 67 (2013).

627 32. Wiencke, J.K. *et al.* The DNA methylation profile of activated human natural killer cells.
629 *Epigenetics* **11**, 363-380 (2016).

630 33. Cho, Y. *et al.* The basic helix-loop-helix proteins differentiated embryo chondrocyte
631 (DEC) 1 and DEC2 function as corepressors of retinoid X receptors. *Mol Pharmacol* **76**,
632 1360-1369 (2009).

634 34. Adams, N.M. *et al.* Transcription Factor IRF8 Orchestrates the Adaptive Natural Killer
635 Cell Response. *Immunity* **48**, 1172-1182.e1176 (2018).

637 35. Mace, E.M. *et al.* Biallelic mutations in IRF8 impair human NK cell maturation and
639 function. *J Clin Invest* **127**, 306-320 (2017).

640

641 36. Wang, Y. *et al.* The IL-15-AKT-XBP1s signaling pathway contributes to effector functions
642 and survival in human NK cells. *Nat Immunol* **20**, 10-17 (2019).

643 37. Rabacal, W. *et al.* Transcription factor KLF2 regulates homeostatic NK cell proliferation
644 and survival. *Proc Natl Acad Sci U S A* **113**, 5370-5375 (2016).

645 38. Li, M. *et al.* DDIT3 Directs a Dual Mechanism to Balance Glycolysis and Oxidative
646 Phosphorylation during Glutamine Deprivation. *Adv Sci (Weinh)* **8**, e2003732 (2021).

647 39. Domínguez Conde, C. *et al.* Cross-tissue immune cell analysis reveals tissue-specific
648 features in humans. *Science* **376**, eabl5197 (2022).

649 40. Lotfollahi, M. *et al.* Mapping single-cell data to reference atlases by transfer learning.
650 *Nature Biotechnology*, 1-10 (2021).

651 41. Combes, A.J., Samad, B. & Krummel, M.F. Defining and using immune archetypes to
652 classify and treat cancer. *Nat Rev Cancer* **23**, 491-505 (2023).

653 42. Dann, E., Henderson, N.C., Teichmann, S.A., Morgan, M.D. & Marioni, J.C. Differential
654 abundance testing on single-cell data using k-nearest neighbor graphs. *Nature
655 Biotechnology* **40**, 245-253 (2022).

656 43. Nersesian, S. *et al.* NK cell infiltration is associated with improved overall survival in solid
657 cancers: A systematic review and meta-analysis. *Transl Oncol* **14**, 100930 (2021).

658 44. Cursons, J. *et al.* A Gene Signature Predicting Natural Killer Cell Infiltration and Improved
659 Survival in Melanoma Patients. *Cancer Immunol Res* **7**, 1162-1174 (2019).

660 45. Chu, T., Wang, Z., Pe'er, D. & Danko, C.G. Cell type and gene expression deconvolution
661 with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA
662 sequencing in oncology. *Nat Cancer* **3**, 505-517 (2022).

663 46. Colaprico, A. *et al.* TCGAbiolinks: an R/Bioconductor package for integrative analysis of
664 TCGA data. *Nucleic Acids Research* **44**, e71 (2016).

665 47. Goldman, M.J. *et al.* Visualizing and interpreting cancer genomics data via the Xena
666 platform. *Nature Biotechnology* **38**, 675-678 (2020).

667 678

679 48. Jin, S. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nat*
680 *Commun* **12**, 1088 (2021).

681 49. Béziat, V., Descours, B., Parizot, C., Debré, P. & Vieillard, V. NK Cell Terminal
682 Differentiation: Correlated Stepwise Decrease of NKG2A and Acquisition of KIRs. *PLoS*
683 *One* **5**, e11966 (2010).

684

685 50. Béziat, V. *et al.* NK cell responses to cytomegalovirus infection lead to stable imprints in
686 the human KIR repertoire and involve activating KIRs. *Blood* **121**, 2678-2688 (2013).

687

688 51. Lee, J. *et al.* Epigenetic modification and antibody-dependent expansion of memory-like
689 NK cells in human cytomegalovirus-infected individuals. *Immunity* **42**, 431-442 (2015).

690

691 52. Huang, D. *et al.* The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells
692 that modify experimental autoimmune encephalomyelitis within the central nervous
693 system. *FASEB J* **20**, 896-905 (2006).

694

695 53. Cantoni, C. *et al.* NK Cells, Tumor Cell Transition, and Tumor Progression in Solid
696 Malignancies: New Hints for NK-Based Immunotherapy? *J Immunol Res* **2016**, 4684268
697 (2016).

698

699 54. Platonova, S. *et al.* Profound coordinated alterations of intratumoral NK cell phenotype
700 and function in lung carcinoma. *Cancer Res* **71**, 5412-5422 (2011).

701

702 55. Carrega, P. *et al.* CD56(bright)perforin(low) noncytotoxic human NK cells are abundant
703 in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs
704 via afferent lymph. *J Immunol* **192**, 3805-3815 (2014).

705

706 56. Lachota, M. *et al.* Mapping the chemotactic landscape in NK cells reveals subset-specific
707 synergistic migratory responses to dual chemokine receptor ligation. *EBioMedicine* **96**,
708 104811 (2023).

709

710 57. Brownlie, D. *et al.* Expansions of adaptive-like NK cells with a tissue-resident phenotype
711 in human lung and blood. *Proc Natl Acad Sci U S A* **118**, e2016580118 (2021).

712

713 58. Carrega, P. *et al.* Natural killer cells infiltrating human nonsmall-cell lung cancer are
714 enriched in CD56 bright CD16(-) cells and display an impaired capability to kill tumor
715 cells. *Cancer* **112**, 863-875 (2008).

716

717

718 59. Rezaeifard, S., Talei, A., Shariat, M. & Erfani, N. Tumor infiltrating NK cell (TINK)
719 subsets and functional molecules in patients with breast cancer. *Mol Immunol* **136**, 161-
720 167 (2021).

721

722 60. Bao, W. *et al.* HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing
723 of microRNA-139 in gastric cancer cells. *Gastroenterology* **141**, 2076-2087.e2076 (2011).

724

725 61. Xie, P. *et al.* CD44 potentiates hepatocellular carcinoma migration and extrahepatic
726 metastases via the AKT/ERK signaling CXCR4 axis. *Ann Transl Med* **10**, 689 (2022).

727

728 62. Zhu, X.S. *et al.* Transcriptional scaffold: CIITA interacts with NF-Y, RFX, and CREB to
729 cause stereospecific regulation of the class II major histocompatibility complex promoter.
730 *Mol Cell Biol* **20**, 6051-6061 (2000).

731

732 63. Porse, B.T. *et al.* Loss of C/EBP alpha cell cycle control increases myeloid progenitor
733 proliferation and transforms the neutrophil granulocyte lineage. *J Exp Med* **202**, 85-96
734 (2005).

735

736 64. Colanzi, A. *et al.* Molecular mechanism and functional role of brefeldin A-mediated ADP-
737 ribosylation of CtBP1/BARS. *Proc Natl Acad Sci U S A* **110**, 9794-9799 (2013).

738

739 65. Bellelli, R. *et al.* POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin
740 Integrity during DNA Replication. *Mol Cell* **72**, 112-126.e115 (2018).

741

742 66. Li, S. *et al.* The transcription factors Egr2 and Egr3 are essential for the control of
743 inflammation and antigen-induced proliferation of B and T cells. *Immunity* **37**, 685-696
744 (2012).

745

746

Methods

Cell processing

Peripheral mononuclear cells (PBMC) were isolated using density gradient centrifugation from anonymized healthy blood donors (Oslo University Hospital; Karolinska University Hospital) with informed consent. The study was approved by the regional ethics committee in Norway (2018/2482) and Sweden (2016/1415-32, 2020-05289). Donor-derived PBMCs were screened for KIR education and adaptive status using flow cytometry. NK cells were purified using an AutoMACS (DepleteS program, Miltenyi Biotec) and prior to overnight resting in complete RPMI (10% Fetal calf serum, 2mM L-glutamine) at 37°C/5% CO₂.

Flow cytometry screening

PBMC were stained for surface antigens and viability in a 96 V-bottom plate, followed by fixation/permeabilization and intracellular staining at 4°C. The following antibodies were used in the screening panel: CD3-V500 (UCHT1), CD14-V500 (MφP9), CD19-V500 (HIB19), Granzyme B-AF700 (GB11) from Beckton Dickinson; CD57-FITC (HNK-1), CD38-BV650 (HB-7), KIR3DL1-BV421 (DX9) from BioLegend; KIR2DL1-APC-Cy7 (REA284), CD158a,h-PE-Cy7 (11PB6), from Miltenyi Biotec; CD158b1/b2,j-PE-Cy5.5 (GL183), NKG2A-APC (Z199), CD56-ECD (N901) from Beckman Coulter. LIVE/DEAD Fixable Aqua Dead Stain kit for 405 nM excitation (Life Technologies) was used to determine viability. Samples were acquired on an LSR-Fortessa equipped with a blue, red and violet laser and analyzed in FlowJo version 9 (TreeStar, Inc.).

FACS sorting

Cells were harvested and surface stained with the following antibodies: CD57-FITC (HNK-1) from BioLegend; KIR3DL1S1-APC (Z27.3.7), CD56-ECD (N901), CD158b1/b2,j-PE-Cy5.5

(GL183), from Beckman Coulter, KIR2DL1-APC-Cy7 (REA284), NKG2C-PE (REA205), NKG2A-PE Vio770 (REA110) from Miltenyi Biotec. 12,000 cells were directly sorted into Eppendorf tubes at 4°C for each sample using a FACS AriaII (Beckton Dickinson). Sorting strategies for single-cell RNA sequencing for the donor with an adaptive NK cell expansion and without are depicted in **Supplemental Figure 1C** and **1D** respectively.

Single-cell RNA sequencing

Following sorting, cells were kept on ice during the washing (PBS + 0.05% BSA) and counting step. 10,000 cells were resuspended in 35 µL (PBS + 0.05% BSA) and immediately processed at the Genomics Core Facility (Oslo University Hospital) using the Chromium Single Cell 3' Library & Gel Bead Kit v2 (Chromium Controller System, 10X Genomics). The recommended 10x Genomics protocol was used to generate the sequencing libraries, which was performed on a NextSeq500 (Illumina) with 5~ % PhiX as spike-inn. Sequencing raw data were converted into fastq files by running the Illumina's bcl2fastq v2.

ScRNAseq data collection and processing

Previously published scRNA-seq data were collected mostly in the form of count matrices already aligned to GRCh38, the rest was collected as fastq files. For the datasets where we collected fastq files, the data was aligned to GRCh38 using Cell Ranger (10x Genomics Cell Ranger 7.0.0).

Quality control and normalization of scRNA-seq data

Data cleaning steps were first carried out whereby cells not expressing a minimum of 1000 molecules and genes expressed by less than 10 cells were filtered out. Doublets were removed using the SOLO algorithm¹. The data was normalized using log transformation for some of the downstream analysis as well as for visualization of gene expression like dot plots. Quality

control, transformation and most of the visualization of the gene expression data was performed using Scanpy². For analysis using scVI and scANVI the raw count data was used.

Integration of scRNA-seq data

The probabilistic models scVI and scANVI as implemented in scvi-tools³ were used for integration of scRNA-seq data. These methods have been shown to perform well for integration of scRNA-seq data, especially when dealing with complex batch effects and integrating atlas-level data⁴. For cell type and subset annotations and prediction scANVI was used to capture annotation of single-cell profiles. For the analysis of PB-NK subsets the sorted subsets provided labels for training the scANVI model. The subset prediction provided by the model was tested on a held out set of cells (15%) from the sorted subset data giving us a confusion matrix summarizing the performance of the prediction.

Dimensionality reduction, clustering and visualization of scRNA-seq data

We computed the UMAP embeddings for visualization using the embedding learned from scVI and scANVI. Unsupervised clustering was also carried out using this learnt embedding using the Leiden algorithm as implemented in Scanpy. PAGA⁵ was used to quantify the connectivity of different groups of cells and thereby providing a representation of the data as a simpler graph. The various plots were mostly generated using the plotting functions in Scanpy.

Cell type annotations and harmonization

For many of the publicly available datasets cell type annotations were readily available and used as seed labels when training the scANVI model for that particular tissue/tumor type. The scANVI model allowed us to harmonize annotations which was needed for analysis across datasets. Celltypist⁶ was also used for annotations, specifically for the immune cell compartment in the various tissue/tumor types. The CD16- and CD16+ NK cells identified by Celltypist were annotated as CD56^{bright} and CD56^{dim} respectively. Where CITE-seq data was

For the identified NK cells the cells were also scored using NK1/NK2 ($CD56^{\text{bright}}/CD56^{\text{dim}}$) signatures to validate the annotation of $CD56^{\text{bright}}$ and $CD56^{\text{dim}}$ NK cells. We also performed our own unsupervised Leiden clustering which identified two dominating clusters corresponding to $CD56^{\text{bright}}$ and $CD56^{\text{dim}}$ NK cells.

Calculation of signature scores

Signature scores were computed using AUCell⁷ allowing for exploration of the relative expression of the signatures of interest in the data sets. Various gene sets were taken from the MSigDB Hallmark gene set collection⁸.

Pseudotime and RNA velocity analysis

Pseudotime was computed using Palantir⁹ which captures the continuous nature of differentiation and cell fate which allowed us to explore two terminal states and the gene expression changes seen along these trajectories. For this analysis the starting cell was defined as the cell that was the least $CD56^{\text{dim}}$ (the lowest score for the NK1 signature). Generalized-additive models (GAMs) fitted on cells ordered by pseudotime were used to calculate gene trends, where the contribution of cells was weighted by their probability to end up in the given terminal state as calculated by Palantir. The gene trends indicate how gene expression levels develop over the differentiation timeline. These trends were clustered using the Leiden clustering algorithm to give us five clusters of gene trends. RNA velocity¹⁰ was also used in order to take advantage splicing kinetics to identify directed dynamic information. We used velocyto¹⁰ and scVelo¹¹ for this analysis, specifically the dynamic model implemented in the scVelo toolkit. The RNA velocity analysis was run on the two donors where sorted subsets where sequenced separately, as well as on the integrated data from 12 blood donors.

Gene regulatory network analysis

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.26.564050>; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SCENIC⁷ was used to infer transcription factors and gene regulatory networks from the

scRNA-seq data. The SCENIC workflow¹² was followed and the pySCENIC implementation was used. TF-gene associations were inferred by GRNBoost¹³ and motif-to-TF associations were downloaded from the Aerts's lab website and used for pruning the inferred associations. The inferred regulatory networks were also further pruned by removing lowly expressed TFs based on the bulk RNA-seq data. AUCell was used to compute the activity of the final regulons. The regulon activity was visualized using matrix plots as implemented in Scanpy to look at the activity across different groups of cells.

Bulk RNA sequencing for TF and target validation

For validation of the TF and targets we checked their expression in bulk RNASeq data from four sorted NK cell populations ($CD56^{\text{bright}}$, $NKG2A^-KIR^-CD56^{\text{dim}}$, $NKG2A^-KIR^+CD56^{\text{dim}}$, and $NKG2A^-KIR^+NKG2C^+CD56^{\text{dim}}$). Sequencing was performed using single-cell tagged reverse transcription (STRT)¹⁴.

Reference mapping

The TiNK cells were added after the model for a healthy NK cell reference was trained. scArches¹⁵ as implemented in scvi-tools³ was used to map this new data onto the established reference.

Cell-cell communication inference using CellChat

To infer the communication between the various cell types in the tumor data sets we used CellChat¹⁶. Based on gene expression of receptors and ligands in the data and a curated database of pathways, CellChat computes the communication probability between various receptor-ligand pairs. CellChat also provided ways to aggregated this information and for us to visualize the inferred cell-cell communication networks. CellChat was computed separately for each of the tumor types included in the analysis.

Differential gene expression analysis

In order to perform differential gene expression analysis we used pseudobulk as this has shown good results when analyzing scRNA-seq data in various studies¹⁷. This allowed us to aggregate up counts for each sample and consider the samples instead of the cells as replicates. We then used edgeR¹⁸ on the pseudobulk data. We could then identify differentially expressed genes between healthy reference NK cells and TiNK cells within and across subsets.

Differential abundance analysis using Milo

We used Milo¹⁹ to assign cells to neighborhoods on the KNN graph. The differential abundance of these neighborhoods between the healthy reference and the TiNK cells were then computed. The neighborhoods were grouped into six groups using the *groupNhoods* function in Milo. These groups were considered as different NK cell states and further characterized using the functions in Milo for identification of differentially expressed genes. The single cells were also annotated using these groups for downstream analysis.

Gene set enrichment analysis

Gene set enrichment analysis was performed using the GSEA software²⁰ and the MSigDB collection of gene sets. Genes were first ordered based on the differential expression analysis either based on the pseudobulk approach or based on the Milo analysis.

Clinical and bulk RNA-seq data from TCGA and TARGET

Bulk RNA-seq data and clinical data was downloaded from TCGA and TARGET using TCGAbiolinks²¹ and curated survival data was downloaded from Xena²².

Deconvolution of bulk RNA-seq

Deconvolution of the bulk RNA-seq data was performed for each of the tumor types using BayesPrism²³. BayesPrism has been shown to work well for deconvolution of data from tumors

and especially well in dealing with high cell type granularity⁴. The annotated reference datasets for each of the tumor types were used as prior information in the deconvolution.

BayesPrism then computed both an expression matrix for each cell type as well as the cell type fraction for each sample.

Survival analysis

The NK expression matrix inferred by BayesPrism for the various tumor types were used to score the signature genes for each of the identified NK cell states. The patients were then assigned as high and low for a group/state based on belonging to the highest or lowest half in terms of expression of these signature genes within the group of patients with a specific tumor type. The high and low designations could then be combined in an approach where a patient could be assigned as high or low in multiple groups. Survival analysis was conducted using the Cox proportional hazards model from the R package *survival*²⁵, adjusting for confounding clinical factors such as tumor stage, gender and age. Subsequently, survival curves were derived using the Kaplan-Meier method within the same package. For visualization, the *ggsurvplot* function of the *survminer* package in R was utilized.

References

1. Bernstein, N.J. *et al.* Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-Supervised Deep Learning. *Cell Systems* **11** (2020).
2. Wolf, F.A., Angerer, P. & Theis, F.J. SCANPY: large-scale single-cell gene expression data analysis. *Genome Biology* **19**, 15 (2018).
3. Gayoso, A. *et al.* A Python library for probabilistic analysis of single-cell omics data. *Nature Biotechnology* **40**, 163-166 (2022).
4. Luecken, M.D. *et al.* Benchmarking atlas-level data integration in single-cell genomics. *Nat Methods* **19**, 41-50 (2022).

5. Wolf, F.A. *et al.* PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. *Genome Biology* **20**, 59 (2019).
6. Domínguez Conde, C. *et al.* Cross-tissue immune cell analysis reveals tissue-specific features in humans. *Science* **376**, eabl5197 (2022).
7. Aibar, S. *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nat Methods* **14** (2017).
8. Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell systems* **1** (2015).
9. Setty, M. *et al.* Characterization of cell fate probabilities in single-cell data with Palantir. *Nature Biotechnology* **37** (2019).
10. Manno, G.L. *et al.* RNA velocity of single cells. *Nature* **560**, 494 (2018).
11. Bergen, V., Lange, M., Peidli, S., Wolf, F.A. & Theis, F.J. Generalizing RNA velocity to transient cell states through dynamical modeling. *Nature Biotechnology* (2020).
12. Van de Sande, B. *et al.* A scalable SCENIC workflow for single-cell gene regulatory network analysis. *Nature Protocols* **15** (2020).
13. Moerman, T. *et al.* GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. *Bioinformatics* **35** (2019).
14. Islam, S. *et al.* Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. *Genome Res* **21**, 1160-1167 (2011).
15. Lotfollahi, M. *et al.* Mapping single-cell data to reference atlases by transfer learning. *Nature Biotechnology*, 1-10 (2021).
16. Jin, S. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nat Commun* **12**, 1088 (2021).
17. Murphy, A.E. & Skene, N.G. A balanced measure shows superior performance of pseudobulk methods in single-cell RNA-sequencing analysis. *Nat Commun* **13**, 7851 (2022).

18. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-140 (2010).
19. Dann, E., Henderson, N.C., Teichmann, S.A., Morgan, M.D. & Marioni, J.C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. *Nature Biotechnology* **40**, 245-253 (2022).
20. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences* **102**, 15545-15550 (2005).
21. Colaprico, A. *et al.* TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. *Nucleic Acids Research* **44**, e71 (2016).
22. Goldman, M.J. *et al.* Visualizing and interpreting cancer genomics data via the Xena platform. *Nature Biotechnology* **38**, 675-678 (2020).
23. Chu, T., Wang, Z., Pe'er, D. & Danko, C.G. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. *Nat Cancer* **3**, 505-517 (2022).
24. Tran, K.A. *et al.* Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures. *Nat Commun* **14**, 5758 (2023).
25. Therneau, T.M., Elizabeth, A. & Cynthia, C. survival: Survival Analysis. 2023.

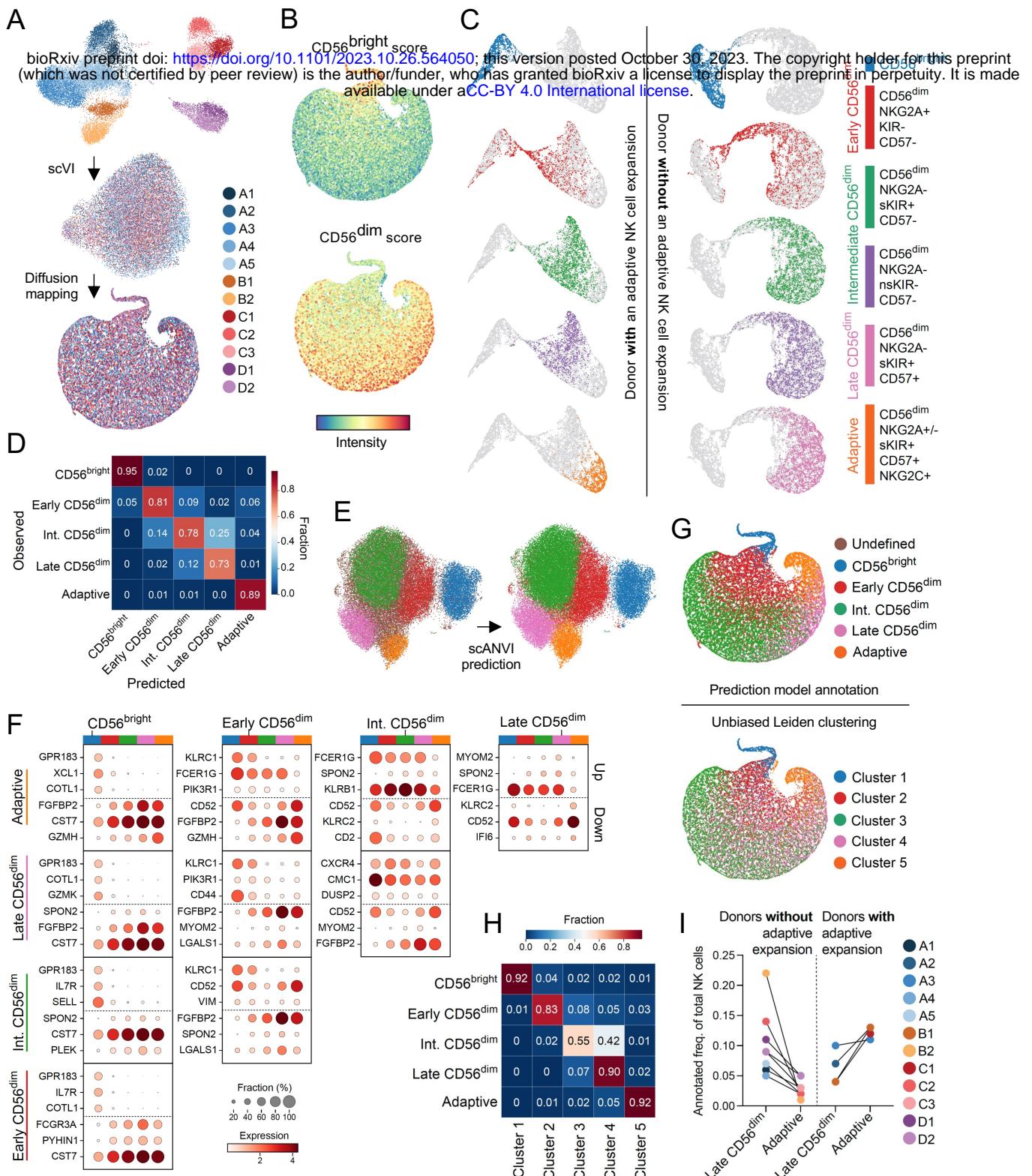


Figure 1

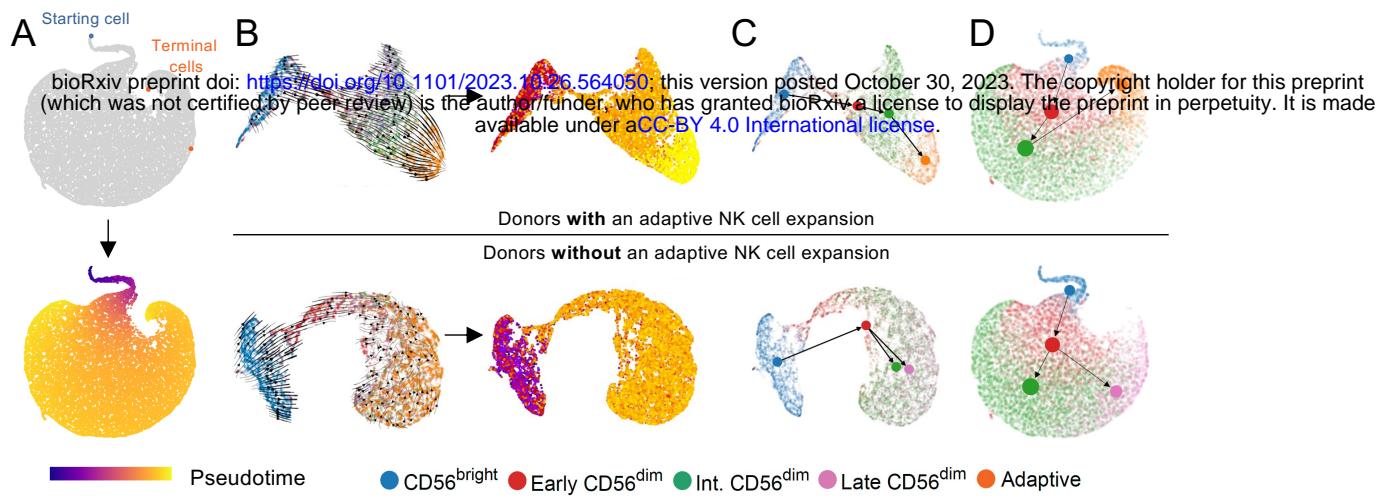
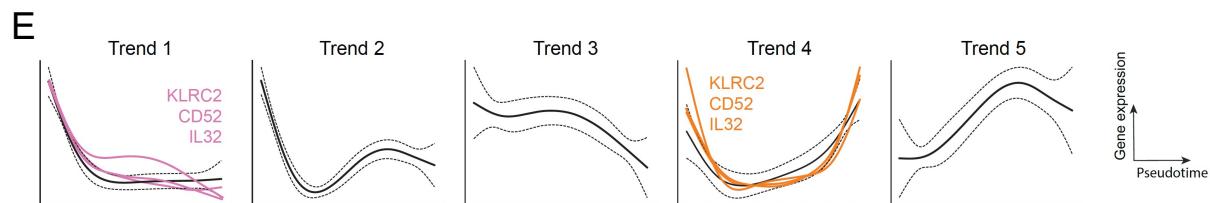
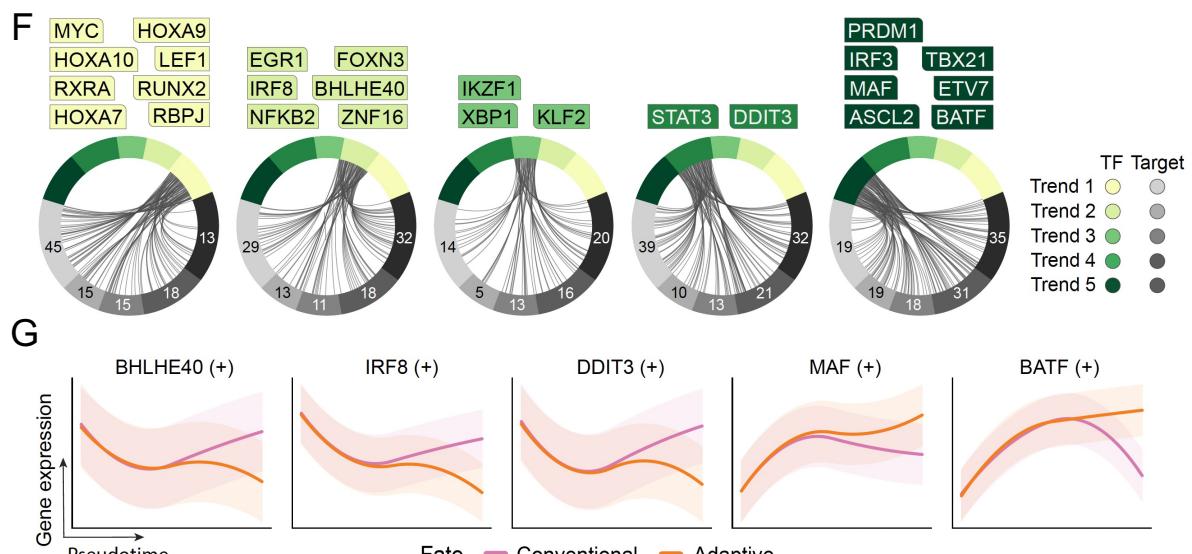
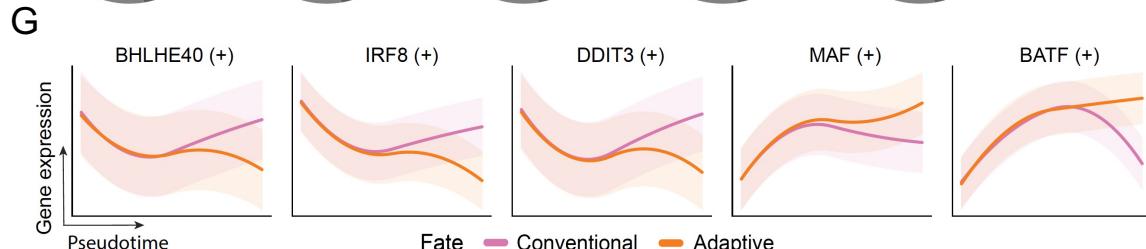


Figure 2

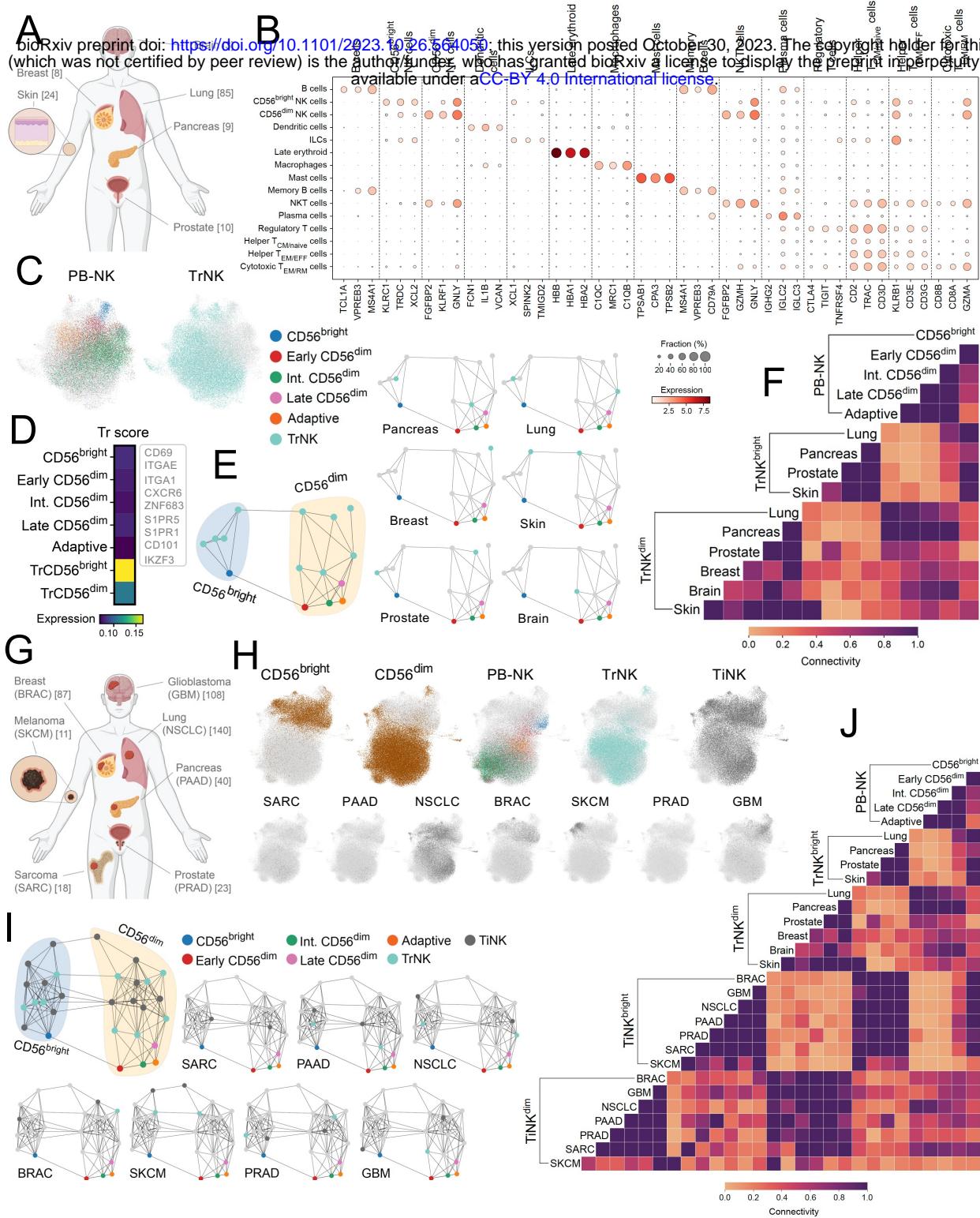
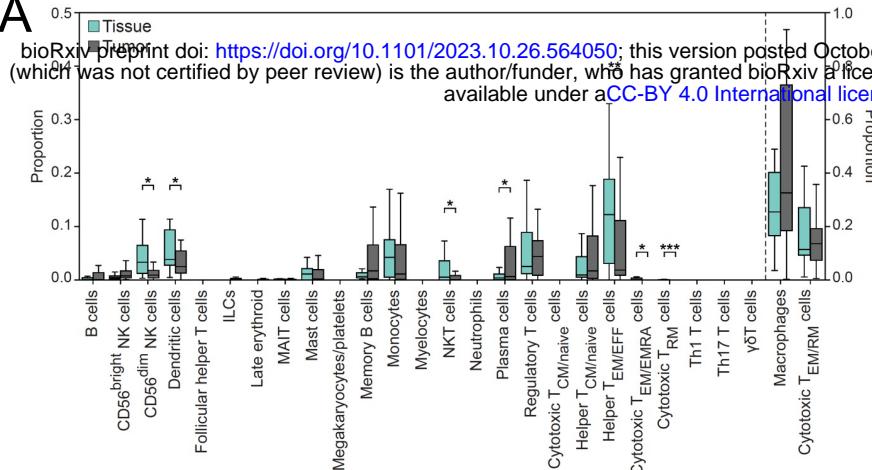
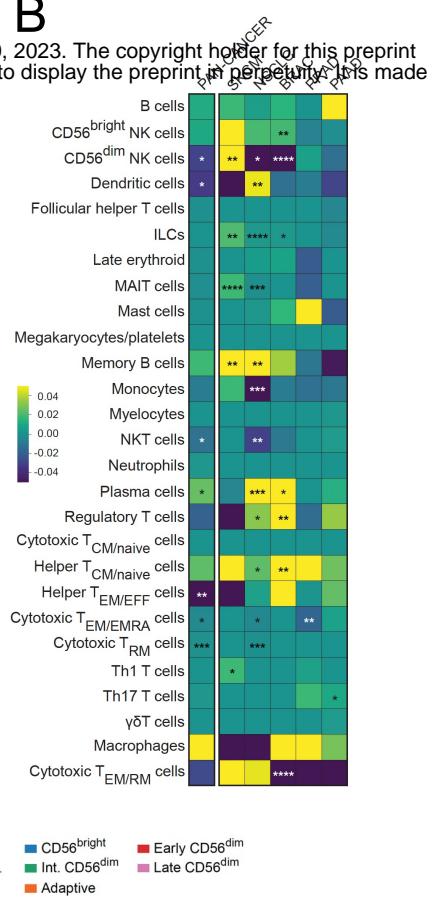
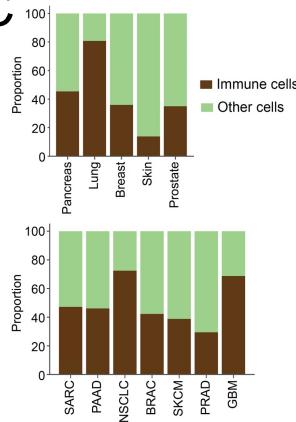
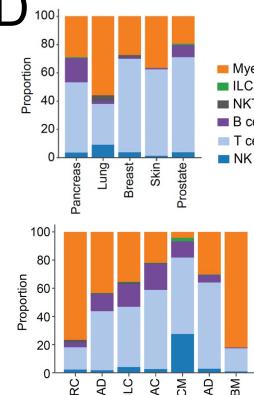
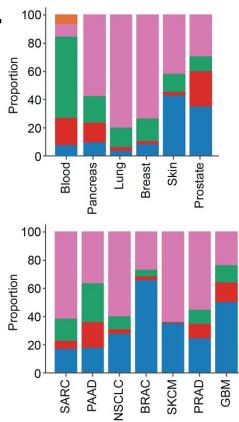


Figure 3

A**B****C****D****E****Figure 4**

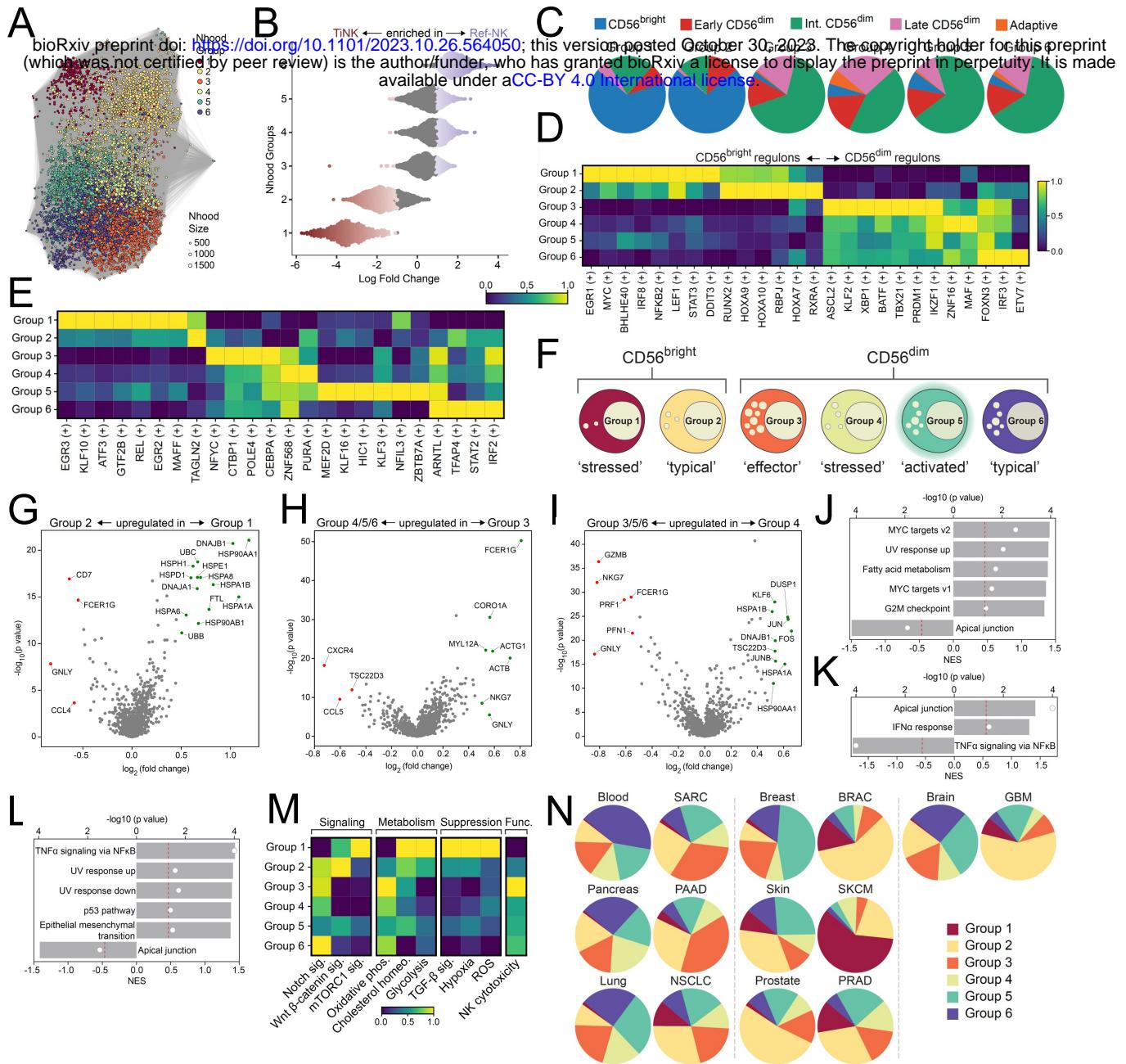


Figure 5

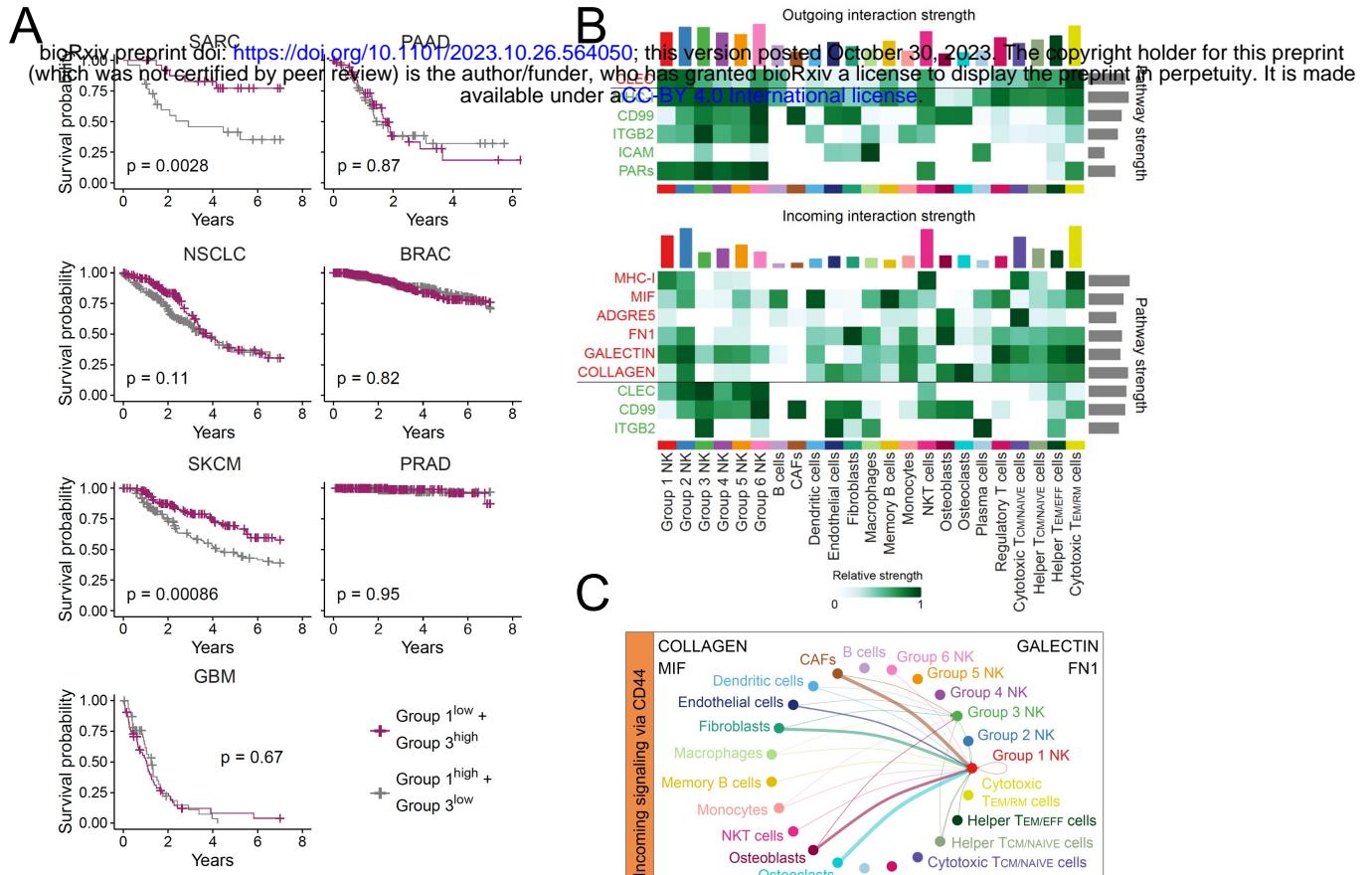
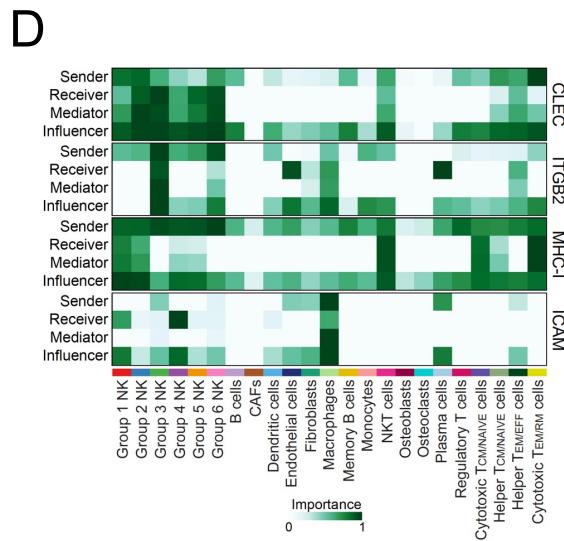
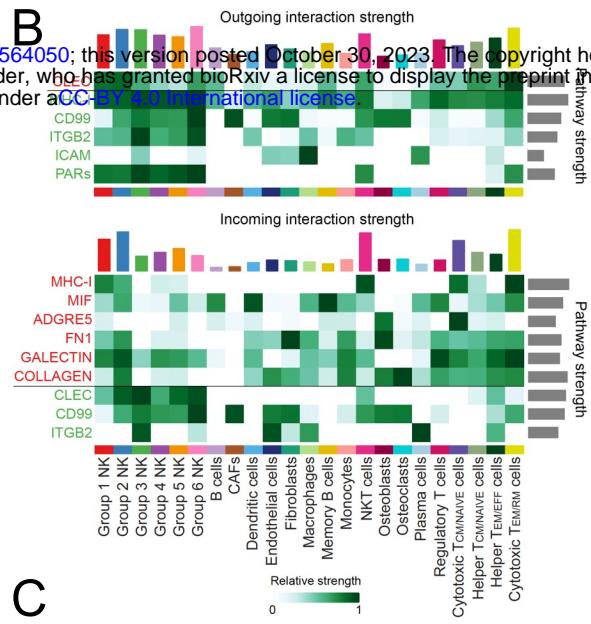
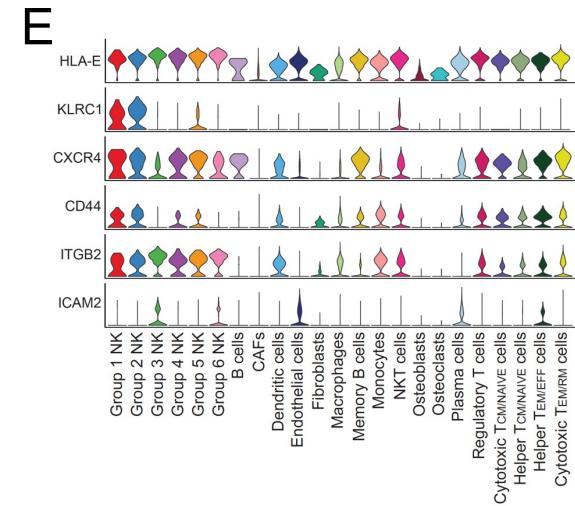


Figure 6