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Abstract  52 

Complete characterization of the genetic effects on gene expression is needed to elucidate 53 

tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous 54 

adipose tissue samples and identified 34K conditionally distinct expression quantitative trait 55 

locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL 56 

signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor 57 

allele frequencies, and less promoter enrichment; they corresponded to genes with higher 58 

heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally 59 

distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 60 

eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized 61 

signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating 62 

gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms 63 

underlying complex traits and improves understanding of the complexity of gene expression 64 

regulation.  65 

  66 
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Genetic regulation of gene expression influences the etiology of complex traits.1–3 Many 67 

genome-wide association study (GWAS) signals are located in non-coding regions and lack 68 

obvious candidate genes or mechanisms.2,4 Integrating trait and disease GWAS signals with 69 

expression quantitative trait locus (eQTL) signals has identified candidate genes and their 70 

directions of effect relative to disease risk at thousands of loci1,3–10. However, most reported 71 

eQTL studies either have not explored or have had limited power to observe the complexities of 72 

genetic regulation beyond a single eQTL for each gene. Larger eQTL studies with greater power 73 

are needed to better understand the genetic architecture of gene expression and its impact on 74 

complex traits.   75 

 76 

Both GWAS and eQTL loci exhibit allelic heterogeneity,1,11–13 and the detection of multiple 77 

association signals within a locus can reveal complex regulatory mechanisms.14,15 Simultaneous 78 

analysis of multiple signals associated with gene expression and complex traits in large sample 79 

sizes has the potential to identify more shared signals than previously described or 80 

predicted.16,17 One method to detect allelic heterogeneity in eQTLs is to identify conditionally 81 

distinct signals associated with expression of the same gene.1,6–9,11–13,15,18 Allelic heterogeneity 82 

is identified more frequently in eQTL studies with larger sample sizes,15,18 and the relatively 83 

modest sample sizes in most eQTL studies have resulted in limited power to detect more than 84 

one signal per gene. eQTL meta-analyses enable larger sample sizes, but few eQTL meta-85 

analysis studies have identified non-primary signals (secondary, tertiary, quaternary, etc.).15,18 86 

Identifying non-primary signals with individual-level data from multiple eQTL studies can be 87 

tedious,19 however methods exist to detect conditionally distinct signals with both summary 88 

statistics and individual-level data.20 21 89 

 90 

Although many eQTL are shared across tissues,1,22,23 some are tissue-specific,2,24 motivating 91 

studies in disease-relevant tissues. Adipose tissue is intrinsically linked to cardiometabolic 92 
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diseases such as obesity and type 2 diabetes, plays a role in the management of dyslipidemia, 93 

and is a contributing factor in insulin resistance and metabolic disease pathogenesis.25–27 94 

Additionally, subcutaneous adipose tissue is relatively accessible from research volunteers, in 95 

contrast to other tissues relevant for the pathophysiology of cardiometabolic diseases, such as 96 

visceral adipose, heart and liver, that are primarily obtained from disease cohorts or deceased 97 

individuals. Several subcutaneous adipose eQTL studies of relatively healthy individuals have 98 

been conducted with sample sizes up to 722 individuals1,6,28–30, but these studies have not been 99 

analyzed together.  100 

 101 

Here, we introduce AdipoExpress, an eQTL meta-analysis of five studies, two of which have not 102 

been reported previously, with a total of 2,344 subcutaneous adipose tissue samples. We 103 

provide a widely applicable approach to effectively identify conditionally distinct eQTL signals 104 

across multiple studies and we illustrated the genetic and genomic characteristics of the eQTL 105 

and their corresponding genes. We then carried out colocalization analysis of distinct adipose 106 

eQTL signals with distinct GWAS signals from 28 cardiometabolic traits and detected thousands 107 

of shared signals. For sets of eQTL signals that colocalized with sets of GWAS signals for the 108 

same trait, we used Mendelian randomization to quantify gene dosage effects on traits. This 109 

expanded discovery of eQTL enabled us to identify new putative risk genes and mechanisms for 110 

cardiometabolic traits. The full marginal and conditional eQTL summary statistics are publicly 111 

available (see data availability), enabling further integration with additional GWAS and 112 

molecular QTL studies. 113 

 114 

 115 

Results 116 

 117 

eQTL meta-analysis gene and signal discovery  118 
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 119 

We performed a subcutaneous adipose tissue stepwise eQTL meta-analysis of conditionally 120 

distinct signals. We implemented a forward and backward selection model from five studies 121 

consisting of up to 2,344 individuals using 29,254 genes and 6.4 million variants with minor 122 

allele frequency (MAF) of ≥ 0.01 across autosomes and the X chromosome (Table 1; Tables 123 

S1-S2; Figure 1, Figure S1, Figure S2). Analyzing all genes tested in at least two studies, we 124 

identified 18,476 eQTL genes and 34,774 eQTL signals (P ≤ 1e-6) (Table 1; Table S3), which is 125 

>1.6-fold more eQTL genes and 2.3-fold more signals than any of the individual studies (Figure 126 

1A-B). Each gene in the meta-analysis had an average of 1.9 eQTL signals, and 51% of the 127 

genes had at least two signals, compared to the maximum 27% in any individual study (Figure 128 

1). Among the 34,774 eQTL signals, 47% would have been missed if we had only identified 129 

primary eQTL signals. Almost all study participants (2,256/2,344) were of European ancestry, 130 

and a meta-analysis of these individuals identified 18,345 eQTL genes and 34,216 signals 131 

(Table 1; Table S4); 98% of eQTL genes and 87% of eQTL signals were shared between the 132 

meta-analyses. As downstream colocalization analyses depend on genetic similarity between 133 

GWAS signals of primarily European ancestry individuals and the eQTL samples, subsequent 134 

analyses included only participants of European ancestry.  135 

 136 

Due to the role of adipose tissue in GWAS traits with substantial sex differences31, we also 137 

conducted sex-stratified stepwise conditional eQTL meta-analyses using 270 female and 418 138 

male individuals from the GTEx and FUSION studies that contained individuals of both sexes. 139 

We detected 8,473 eQTL genes and 10,510 eQTL signals in males and 6,834 eQTL genes and 140 

8,035 eQTL signals in females (Tables S5-S6). Altogether, 45% of male eQTL signals are 141 

shared with female signals and 59% of female eQTL signals are shared with the male signals 142 

(LD r2 ≥ 0.8). The male and female marginal eQTL signals showed highly correlated effect sizes 143 
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(Pearson r2 = 0.93) (Figure S3). Larger studies are needed to detect sex differences among 144 

adipose eQTL.   145 

 146 

To relate eQTL discovery in adipose to a more accessible tissue, we compared the adipose 147 

eQTL signals to blood eQTL signals from the much larger eQTLGen32 study (n = 31,684). The 148 

studies had several differences in design (Table S7), including that eQTLGen reported only 149 

primary eQTL signals. Of the 18,345 primary adipose eQTL signals, 38% were potentially the 150 

same signal in blood (r2≥0.2), 29% corresponded to a gene not tested in blood, and 33% had an 151 

eQTL in blood that was not in LD (r2<0.2) with the adipose eQTL signal (Figure S4; Table S8). 152 

Of the 15,871 non-primary adipose eQTL signals, 21% were potentially the same signal in blood 153 

(r2≥0.2), 23% correspond to a gene not tested in blood, and 55% had an eQTL in blood that was 154 

not in LD (r 2<0.2) with the adipose eQTL signal (Figure S4; Table S8).Thus, even with a 10-155 

fold smaller sample size in adipose than in blood, 62% of adipose eQTL were not detected as 156 

primary blood eQTL. A stepwise conditional analysis of eQTL signals in blood would likely 157 

detect additional signals shared across tissues. 158 

 159 

 160 

Characteristics of eQTL signals 161 

 162 

Many eQTL studies only identify primary eQTL signals, and non-primary signals remain poorly 163 

characterized. Therefore, we compared characteristics of eQTL signals based on the order in 164 

which they were discovered in the stepwise conditional analysis. This order may depend on 165 

multiple factors, including effect sizes, minor allele frequencies, and cell-type composition, and 166 

can differ across studies. For example, at the GLYCTK gene, which encodes an enzyme 167 

involved in serine degradation and fructose metabolism, the meta-analysis identified two signals 168 

(signal 1 = chr3:52,273,421, rs610060; signal 2 = chr3:52,276,901, rs11711914; LD r2=0.14), 169 
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while conditional analysis in the individual studies each only detected one significant signal 170 

(Figure 2). The individual studies identified different signals as significant: the studies with Finns 171 

identified signal 1 while the studies with non-Finnish Europeans identified signal 2 (Figure 2). 172 

Additionally, the lead variant allele frequencies differed between these populations, suggesting 173 

the difference in signal detection may be influenced by population (Table S9). Similarly, at the 174 

well-characterized ADIPOQ gene, the meta-analysis identified two signals in moderate pairwise 175 

LD (signal 1 = chr3:186,574,282, rs35469083; signal 2 = chr3:186,551,888, rs143257534; LD r2 176 

= 0.35), while conditional analysis in the individual studies detected different single signals 177 

(Figure S5; Table S10). These examples show one way that the meta-analysis eQTL signals 178 

are more comprehensive than the signals detected by individual studies. 179 

 180 

We compared primary and non-primary eQTL signals detected in the stepwise conditional 181 

analysis with respect to effect size, MAF, and distance to gene transcription start site (TSS). 182 

Effect sizes were typically lower for signals identified later; among the 661 genes with at least 183 

five eQTL signals, the median absolute value of the effect size for 1st signals was twice as large 184 

as for 5th signals (0.4 vs 0.2, P < 2e-16) (Figure 3A). In addition, MAF was typically lower for 185 

signals identified later; among genes with at least five signals, the median MAFs for 1st and 5th 186 

signals were 0.25 and 0.11, respectively (P < 2e-16) (Figure 3B). Finally, the distance from the 187 

lead eQTL variant to gene TSS became larger for signals identified later, indicating that the 188 

signals closest to a gene TSS tend to be discovered first. Among genes with five or more 189 

signals, the median distance to gene TSS was 26.4 kb for 1st signals and 76.4 kb for 5th signals 190 

(P < 2e-16) (Figure 3C). For all three characteristics, the same trends were observed for genes 191 

with two, three, or four signals (Figure S6). Thus, primary adipose eQTL signals had larger 192 

effect sizes, were discovered with more common variants, and the variants were closer to the 193 

TSS than subsequent signals.   194 

 195 
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We next assessed eQTL gene expression levels, heritability, and the probability of the gene 196 

being intolerant of loss-of-function variants (pLI)33. Genes in the lowest quartile of expression 197 

levels made up the smallest proportion of multi-signal genes (23%), while genes in the highest 198 

quartile of expression levels contributed to the largest proportion of multi-signal genes (46%; P 199 

= 0.002; Figure 3D). We estimated heritability using the twin structure of the TwinsUK study 200 

and determined that eQTL genes had higher expression heritability (median heritability estimate 201 

0.19) than non-eQTL genes (median heritability estimate 0.07) (P ≤ 2e-16; Table S11), and 202 

genes with more eQTL signals showed higher heritability (Figure 3E). This trend persisted 203 

when genes were separated into quartiles of expression levels, suggesting that genes with 204 

higher heritability have more identified eQTL signals independent of the expression level of the 205 

gene (Figure S7). Lastly, we estimated how tolerant the eQTL genes were to protein-truncating 206 

variation based on their pLI scores from GnomAD33. Of 12,643 eQTL genes with available pLI 207 

scores, 10,625 (84%) were tolerant of truncating variants (pLI < 0.9). eQTL genes with few 208 

eQTL signals were more likely to be intolerant of truncating variants than genes with more eQTL 209 

signals (Figure 3F). For each expression level quartile, the proportion of genes with multiple 210 

signals was substantially lower for genes with pLI ≥0.9 than for genes with pLI <0.9. This trend 211 

was particularly pronounced in the highest expression category which also has the highest 212 

proportion of genes with pLI ≥0.9 (Figure S8). We observed the same gene expression and pLI 213 

score trends using METSIM gene expression level quartiles (Figure S9). Thus, we identified 214 

more eQTL signals in highly expressed, more heritable genes that were more tolerant to loss-of-215 

function variants. Higher expression level may be a proxy for power to detect eQTL signals, 216 

while higher heritability may reflect a more limited contribution of the environment or technical 217 

variation in expression quantification. 218 

 219 

 220 

Adipose eQTL identify genes for cardiometabolic trait GWAS signals 221 
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 222 

To predict candidate genes for GWAS signals, we performed colocalization of conditionally 223 

distinct adipose eQTL signals with conditionally distinct GWAS signals for 28 cardiometabolic 224 

traits34–42 (see Methods)(Table S12). We identified 3,605 eQTL signals for 1,861 unique genes 225 

that colocalized with signals from at least one GWAS trait (Table 2; Table S13-15). All 226 

colocalized GWAS-eQTL signals can be visualized using our interactive colocalization browser: 227 

https://adipose.colocus.app/. The ten traits with the largest number of eQTL-GWAS signal 228 

colocalizations were high-density-lipoprotein cholesterol (HDL-C), log-transformed triglycerides 229 

(logTG), total cholesterol (TC), body mass index (BMI), low density lipoprotein cholesterol (LDL-230 

C), waist-to-hip ratio adjusted for BMI (WHRadjBMI), non-HDL-C cholesterol (nonHDL-C), hip 231 

circumference (HC), waist-to-hip ratio (WHR), and diastolic blood pressure (DBP) (Table 2; 232 

Table S14). Among the colocalized eQTL and GWAS signals, only 31% correspond to the gene 233 

nearest to the GWAS signal (Table S14). On average, 34% of GWAS signals for these 28 234 

cardiometabolic traits had at least one colocalized eQTL signal (Table S15). For traits expected 235 

to be more relevant to adipose tissue, such as the ratio of abdominal subcutaneous and 236 

gluteofemoral adipose tissue volume, 63% of GWAS signals (10 of 16) colocalized with an 237 

adipose eQTL signal (Table S15). The number of cardiometabolic trait signals with a 238 

colocalized eQTL in this meta-analysis is four times greater than the number of results from 239 

similar analyses in the METSIM (N) study alone when using the same LD threshold (r2 ≥ 0.8)6. 240 

Thus, larger eQTL studies can identify colocalized eQTL genes for more GWAS signals.  241 

 242 

We assessed the colocalized conditionally distinct GWAS-eQTL signals for evidence of gene 243 

expression mediating the effect of a genetic variant on a trait using summary Mendelian 244 

randomization (SMR)10; 2,860 of the 3,587 (80%) analyzed signals had evidence of mediation 245 

(P < 1.4e-5) (Table S16). The subset of signals with evidence of mediation may be more likely 246 

to act via those genes to influence the traits. 247 
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 248 

We next evaluated the contribution of primary versus non-primary signals to GWAS 249 

colocalization. We observed 2,468 primary eQTL signals for 1,373 genes and 1,137 non-250 

primary eQTL signals for 596 genes that colocalized with at least one GWAS signal. Inclusion of 251 

the non-primary eQTL signals increased the number of GWAS-colocalized signals by 46%. The 252 

proportion of eQTL signals that colocalized with at least one GWAS signal was highest for 253 

primary eQTL signals and lower for each successively detected eQTL signal, even when 254 

accounting for eQTL signal strength (Figure S10; Table S17). However, colocalizations for 488 255 

of these 596 genes were only detected using non-primary signals (Table 2; Table S14). Overall, 256 

the analysis of non-primary eQTL greatly increased the number of GWAS colocalizations.  257 

 258 

Many previous studies have performed colocalization with un-conditioned, ‘marginal’ eQTL and 259 

GWAS summary statistics. To directly compare the differences between using marginal and 260 

conditional results, we also performed colocalization using the marginal eQTL and GWAS 261 

statistics. Colocalization analyses with marginal GWAS and eQTL signals identified 1,073 262 

colocalized genes (Table S18), 89 of which were detected only in the marginal analysis. 263 

Colocalization analyses of the conditionally distinct signals identified 864 (47%) additional 264 

genes, 666 of which have multiple eQTL signals (Table S18). These results are consistent with 265 

previously described limitations of colocalization analysis when marginal eQTL results are used 266 

at loci with multiple signals7,43,44. These results demonstrate the importance of using 267 

conditionally distinct signals to identify GWAS candidate genes, yet suggest that analyses of 268 

marginal, unconditioned loci may still provide some value at complex multi-signal loci. 269 

 270 

We also colocalized male and female eQTL signals with male and female GWAS signals for a 271 

set of sex-biased cardiometabolic traits37,38,42, including WHRadjBMI, WC, HC, and body fat 272 

distribution37,38,42. We identified 144 GWAS-eQTL colocalizations in females and 71 in males 273 
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(Table S19-S20). Of the 138 GWAS-eQTL colocalized signals for WHRadjBMI in only one sex, 274 

82 do not have a corresponding GWAS-eQTL colocalization in the sex-combined analysis. For 275 

example, a female eQTL signal at ADORA1 colocalized with WHRadjBMI in females (Figure 4). 276 

ADORA1 encodes an adenosine receptor that suppresses lipolysis in adipocytes, and loss of 277 

the receptor leads to glucose intolerance in obese mice45. Although the sex-stratified eQTL 278 

analysis has limited power, we were able to identify 144 candidate genes for male and/or female 279 

GWAS signals, one-third of which were not found in the corresponding sex-combined studies.     280 

 281 

Multiple eQTL signals for the same gene, termed allelic series, that colocalize with multiple 282 

GWAS signals from the same trait can provide additional confidence that the gene influences 283 

the trait. In the eQTL meta-analysis, 33 unique genes harbored allelic series that colocalized 284 

with allelic series for at least one GWAS trait, corresponding to 144 of 3,605 (4%) GWAS-eQTL 285 

colocalized signal pairs (Table S14; Table S21). We used only the 30 genes that harbored 286 

nearly independent eQTL signals (LD r2 < 0.05) to estimate causal effects using MRLocus;46 all 287 

eQTL signals for the gene, including those that did not colocalize with GWAS signals, were 288 

included in the MR analysis. Among the 30 genes, 21 have evidence of mediation (adjusted P ≤ 289 

0.25) (Table S21; Figure S11). For example, ZNRF3 has two eQTL signals that are colocalized 290 

with two WHRadjBMI GWAS signals (Figure 5A; Figure S12). The alleles associated with 291 

lower WHRadjBMI at both signals were associated with higher ZNRF3 expression levels, as 292 

displayed by a negative GWAS vs eQTL slope from MRLocus (adjusted P = 0.18; Figure 5B; 293 

Table S21). The two signals provide evidence for an estimated gene-to-trait effect of -0.19, 294 

indicating that increasing adipose ZNRF3 expression level by one population standard deviation 295 

should reduce WHRadjBMI by 19% of its population standard deviation. For further support, the 296 

observed trait-gene association in METSIM shows higher ZNRF3 expression level associated 297 

with lower WHR (P = 0.04; beta = -0.85; Figure 5C), although this association may be 298 

confounded by factors that influence both ZNRF3 and WHR, or reverse causal effects. ZNRF3 299 
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encodes a membrane-bound E3 ubiquitin ligase, which is a receptor for R-spondins and 300 

functions as a negative feedback regulator in the WNT signaling pathway. 47,48 When we further 301 

limit the allelic series to pairs of signals for which LD D’ < 0.1, 9 genes had independent allelic 302 

series and 7 of them showed evidence of mediation (Table S21). For example, PDE3A has four 303 

eQTL signals that colocalized with four HDL-C GWAS signals (Figure 5D-F; Figure S13). For 304 

all four signals, the alleles associated with lower HDL-C were associated with higher PDE3A 305 

expression level. Two of the signals are nearly independent (lead variants pairwise LD r2<0.05, 306 

D’ <0.1) and provide evidence for an estimated gene-to-trait effect of -0.14 (adjusted P = 0.15; 307 

Figure 5E). PDE3A regulates cAMP signaling and has been shown to have higher expression 308 

in the hearts of diabetic than non-diabetic rats.49,50 Colocalized allelic series of GWAS and eQTL 309 

signals provide stronger confidence that gene expression in the assayed tissue influences the 310 

trait, and gene-based dosage effects may help predict the impact that therapies modulating a 311 

gene will have on traits.   312 

 313 

 314 

Regulatory variants within eQTL signals 315 

 316 

To predict the genomic features that may be responsible for eQTL signals, we investigated the 317 

location of eQTL variants relative to adipose chromatin states. We compared enrichment of 318 

conditionally distinct eQTL signals (lead and proxy variants r2>0.8) relative to signals for genes 319 

without an eQTL in Roadmap Epigenomics adipose tissue promoters and enhancers based on 320 

the order signals were discovered in the stepwise conditional analysis.51 The 1st through 4th 321 

eQTL signals were significantly enriched in promoters and enhancers, whereas the 5th and 322 

higher eQTL signals were not (Figure 6A; Figure S14; Table S22). Primary eQTL signals were 323 

much more strongly enriched in promoters (odds ratio = 3.5) than enhancers (odds ratio = 2.2). 324 

2nd through 4th signals were slightly more enriched in promoters than enhancers and each signal 325 
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showed sequentially decreasing enrichment levels (Figure 6A; Figure S14; Table S22). These 326 

results show that non-primary signals are less often located in promoters and increase the total 327 

number of signals detected in both promoters and enhancers. 328 

 329 

To identify candidate regulatory variants that may act through adipose regulatory elements, we 330 

compared eQTL variants to sites of accessible chromatin defined by ATAC-seq peaks in 331 

adipose tissue and preadipocytes and mature adipocytes of the human Simpson Golabi Behmel 332 

Syndrome (SGBS) cell strain.52 Of the 34,438 eQTL signals, 40% had at least one proxy variant 333 

located in an adipose tissue accessible chromatin region, and 51% had at least one variant in a 334 

mature adipocyte region (Table S23). Among the eQTL signals colocalized with GWAS signals, 335 

60% and 72% had at least one variant in adipose tissue or mature adipocyte accessible 336 

chromatin, respectively (Table S23). Among ~16K chromatin regions more accessible in 337 

adipocytes than preadipocytes,53 adipose eQTL enrichment was significant for the 1st through 338 

3rd signals (odds ratio for primary signals = 1.6) while no signals were significantly enriched in 339 

~18K chromatin regions more accessible in preadipocytes than adipocytes53 (odds ratio for 340 

primary signals = 1.0; Figure S14; Table S22). Thus, more than half of meta-analysis eQTL 341 

signals contain plausible regulatory variants located in regions of adipose or adipocyte 342 

accessible chromatin. 343 

 344 

We further investigated potential regulatory variants at one colocalized GWAS-eQTL signal. The 345 

primary SEMA3C eQTL signal colocalized with a WHRadjBMI GWAS signal (LD between lead 346 

variants, r2 = 1.0; coloc PP4 = 1.0) (Figure 6B). SEMA3C is an adipokine predominantly 347 

expressed in mature adipocytes and regulated by weight changes.54 The lead variant 348 

(chr7:80,570,871; rs917191) is located in an accessible chromatin region in both adipose and 349 

adipocytes53 (Figure 6C, Table S24), while a variant in high LD with the lead variant 350 

(chr7:80,580,219; rs12537553, r2 = 0.89) is located in an accessible chromatin region in 351 
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muscle55. We tested both variants for allelic differences in transcriptional activity in 352 

preadipocytes and differentiated adipocytes from hWAT and SGBS cell lines, as well as 353 

myoblasts and differentiated myocytes from the LHCN-M2 cell line. rs917191 showed strong 354 

enhancer activity and 2.3- to 6.2-fold higher transcriptional activity for the C allele in 355 

preadipocytes, adipocytes, myoblasts, and myocytes, whereas the proxy variant rs12537553 356 

showed no significant differences in activity (Figure 6; Figure S15-S16). The rs917191-C allele 357 

was associated with increased WHRadjBMI risk, higher SEMA3C gene expression levels, and 358 

greater transcriptional activity than the rs917191-G allele. The trait-gene association in METSIM 359 

also indicates that higher SEMA3C expression is associated with higher WHR (P = 0.02; beta = 360 

0.11; Figure 6). These data suggest that rs917191 may alter SEMA3C activity in adipose tissue 361 

and lead to effects on WHR. The hundreds of other colocalized GWAS and eQTL signals 362 

suggest that many additional regulatory mechanisms responsible for GWAS signals may be 363 

discovered (Table S14).   364 
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Discussion 365 

 366 

We carried out the largest adipose tissue eQTL study to date and present a broadly applicable 367 

framework to efficiently define conditionally distinct eQTL signals across multiple studies. We 368 

detected 34K conditionally distinct eQTL signals in 18K genes, which is 2.3-fold more signals 369 

and >1.6-fold more eQTL genes than detected by any of the five studies alone. On average, 370 

each gene had ~2 eQTL signals, and some highly expressed genes harbored as many as 10 371 

signals. Colocalization of eQTL with GWAS identified 1,861 candidate genes for over 2,000 372 

cardiometabolic trait GWAS signals across 28 traits, at least 4-fold more than any previous 373 

adipose eQTL study when accounting for differences in LD threhsolds.6 Including non-primary 374 

eQTL signals enabled discovery of 46% more GWAS-eQTL colocalized signals than using 375 

primary signals alone, suggesting that current, widely used eQTL studies remain underpowered 376 

and that non-primary eQTL signals can help explain some of the “missing regulation.”  377 

 378 

The newly identified eQTL signals identified more distal variant effects on expression. Previous 379 

studies by us and others have shown that non-primary eQTL signal lead variants are located 380 

further away from the gene transcription start sites than primary eQTL lead variants.6,15 We 381 

show that this trend continues with additional eQTL signals and that the median distance from 382 

variant to gene TSS between 1st and 5th signals increases 2.8-fold. In addition, eQTL variants 383 

for 2nd, 3rd, and 4th signals showed successively less enrichment in adipose promoters and 384 

enhancers, especially for promoters, consistent with other studies23 and the hypothesis that 385 

primary eQTL tend to act on promoters. The non-primary eQTL signal distances to TSS are thus 386 

more like GWAS signals, suggesting that a larger proportion of non-primary eQTL would 387 

colocalize with GWAS signals; however, primary eQTL showed more GWAS colocalizations, 388 

which may reflect still limited power to detect eQTL.  389 

 390 
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The conditionally distinct signals also provided a more thorough understanding of gene 391 

regulation. Although a prior study showed consistent effect sizes among primary and non-392 

primary eQTL signals,15 in our previous study6 and here we observed that effect sizes for 1st 393 

signals were twice as large as those from 5th signals, which is expected because variants with 394 

stronger effects on a trait are easier to detect against a background of other genetic and 395 

environmental factors. We also found that the median heritability for genes with five or more 396 

signals was 2.5-fold higher than genes with only one signal, consistent with a study of blood 397 

eQTL.12  398 

 399 

We found that genes with high levels of intolerance of loss-of-function mutations are less likely 400 

to have multiple signals than those with lower levels of constraint, as shown previously in brain 401 

tissue15. For genes in the highest quartile of expression we observed two opposing forces that 402 

affected the probability of detecting an eQTL. Genes in the higher quantiles of expression have 403 

greater power to be detected as eQTLs due to higher read counts, however genes in the higher 404 

quantiles of expression are also substantially more likely to have low tolerance of loss-of-405 

function mutations, thus decreasing the power to detect eQTLs. Overall, using a larger, better-406 

powered eQTL study allowed us to more comprehensively dissect gene regulation.  407 

 408 

Integration of GWAS, eQTL, and regulatory elements helped identify plausible regulatory 409 

mechanisms. Over 1,800 eQTL genes colocalized with GWAS signals, and 72% of the 410 

colocalized signals had lead or proxy variants (LD r2≥0.8) located in mature adipocyte 411 

accessible chromatin regions, providing candidate regulatory variants, including a variant we 412 

validated by showing allelic differences in transcriptional activity at SEMA3C. One challenge of 413 

discovering more eQTL and colocalizations is that cardiometabolic GWAS signals can show 414 

evidence of colocalization with eQTL for more than one gene, even if genetic effects on each 415 

gene do not affect the GWAS trait. To address this challenge, we examined mediation using 416 
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MRLocus on the subset of genes for which two or more apparently independent eQTL signals 417 

(LD r2< 0.05) colocalized with two or more GWAS signals. This analysis provided stronger 418 

evidence of causal effects for 21 genes and estimates of their gene-based dosage effects on 419 

the GWAS trait. Despite our desire to analyze pairs of independent colocalized signals, 80% of 420 

the 70 signal pairs tested for mediation still have D’> 0.1, suggesting that haplotype effects may 421 

still influence gene dosage estimates. Nonetheless, evidence of mediation and estimates of the 422 

dosage effect of genes on traits strengthens the support for targeting a gene with drug 423 

therapeutics to ameliorate disease.    424 

 425 

Although this study of >2,000 individuals is relatively large, it still has limitations. Continued 426 

increase in sample size should identify additional signals, even after the number of detected 427 

eQTL genes reaches saturation. Expanded studies in more diverse populations would enable 428 

analysis of additional variants and thus detection of additional eQTL signals. In addition, our 429 

sex-stratified eQTL meta-analyses were underpowered (270 female and 418 male individuals), 430 

and additional sex-dependent eQTL remain to be identified. Lastly, we identified eQTL in bulk 431 

adipose tissue, which integrates the eQTL signals across cell types; we may not have detected 432 

some cell-type-specific eQTL. Future eQTL discovery from single cells or nuclei are needed to 433 

distinguish these cell type effects.   434 

 435 

In summary, this adipose eQTL analysis tripled the size of previous studies, furthered 436 

understanding of allelic heterogeneity in gene regulation, greatly expanded discovery of eQTL 437 

colocalized with cardiometabolic trait GWAS signals, and identified thousands of candidate 438 

genes that may lead to new drug therapies. 439 

  440 
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Online Methods 441 

 442 

Study cohorts, quality control, and RNA-sequencing 443 

METSIM: The sample collection and genotyping of 10,197 male individuals from Kuopio, 444 

Finland in the METabolic Syndrome In Men (METSIM) study was described previously.28,56  445 

Subcutaneous adipose tissue was sampled from near the umbilicus for two non-overlapping 446 

sets of samples for which the RNA-sequencing was performed at separate times. One 447 

subgroup, referred to as METSIM (N), has 426 participants who provided a needle tissue biopsy 448 

for which RNA-seq was previously described.6 Compared to the previous report, we removed 449 

eight samples from individuals who also participated in the FUSION study described below. The 450 

second subgroup, referred to as METSIM (S), has 420 participants who provided surgical 451 

biopsies; these individuals are independent from METSIM (N) and FUSION, and the RNA-seq 452 

was described previously, although this is the first report of eQTL.57 Briefly, for both METSIM 453 

(N) and METSIM (S), we removed adaptor sequences and sequences with phred quality scores 454 

of < 20 using Fastx-toolkit58 and Cutadapt59 (v.1.18) respectively, as described.6 We aligned 455 

RNA-seq reads to the hg19 reference genome using STAR60 for both METSIM (N) (v. 2.4.2a) 456 

and METSIM (S) (v. 2.7.3a) as described.6 457 

  458 

FUSION: Inclusion criteria for the Finland-United States Investigation of NIDDM (FUSION) 459 

tissue collection has been described previously.30,55 Genotyping of FUSION tissue biopsy 460 

participants has been described previously.55 Briefly, we collected subcutaneous adipose tissue 461 

samples from near the umbilicus using surgical biopsy.30 We followed the same procedures of 462 

RNA extraction and mRNA-seq, and quality control (QC) as for muscle.55  Subcutaneous 463 

adipose tissue sample RIN ranged from 5.1 to 8.8 (median 7.4). RNA-seq reads from 280 464 

subcutaneous adipose tissue samples were aligned to the hg19 reference genome using 465 

STAR60 (v.2.7.3a).  466 
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 467 

TwinsUK: Sample collection, SNP genotyping, and quality control were conducted as previously 468 

described.30,61 Genotype data were available for 722 participants for whom adipose tissue gene 469 

expression data were available. Subcutaneous adipose tissue RNA was extracted from punch 470 

biopsies from a sun-protected area of the abdomen, and RNA sequencing and data processing 471 

carried out as described elsewhere.30,62,63 RNA-Seq reads were aligned to the hg19 reference 472 

genome using STAR60 version 2.4.0.1.  473 

 474 

GTEx: Genotype-Tissue Expression (GTEx) V8 sample collection, whole genome sequencing, 475 

RNA-sequencing and quality control for all samples, including subcutaneous adipose tissue, has 476 

been described previously.1 We obtained dbGaP permissions and accessed the genotype files 477 

(phs000424). We subset the subcutaneous adipose tissue samples that had genotype 478 

information. In our analysis, we tested two GTEx studies, one with all individuals and the other 479 

with only individuals with European ancestry as estimated through use of principal component 480 

analysis described in the original study.1 We downloaded the previously described reads per 481 

gene from the GTEx portal.1 We lifted over the variants from hg38 to hg19 using the variant 482 

look-up file provided by GTEx and kept the gene assignments as reported. 483 

 484 

Genotype Imputation of array-genotyped samples and inclusion of WGS samples 485 

In studies except the whole genome sequenced GTEx study, samples were imputed using the 486 

Haplotype Reference Consortium panel (hg19)64 as previously described.28,30,55,61 In each study 487 

with imputed genotype data, we excluded variants with low imputation quality (R2 < 0.3 or 488 

0.5)(Table S1). In all studies we excluded variants with MAF <0.01.  We coded the X 489 

chromosome genotypes as diploid (0/2) for males. For analysis, we retained 6,995,803 variants 490 

that were present in all five studies. 491 

 492 
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Gene level quantification and ADIPOQ expression-based sample inclusion 493 

For all studies except GTEx, to quantify the read counts per gene, we used GENCODE v1965 as 494 

the reference and the quan function from QTLtools package19 (METSIM and TwinsUK) or 495 

QoRTs66 (v.1.3.6) (FUSION). In each study, to select for more highly expressed genes, we 496 

retained genes with 5 or more counts in at least 25% of the individuals in each study. We 497 

calculated counts per million (CPMs) normalized for library size by adjusting the CPMs by the 498 

Trimmed mean of M-values (TMM)67 using edgeR68 (v.3.36.0). We included subcutaneous 499 

adipose tissue samples that had >150 CPM for ADIPOQ gene expression (Figure S2), an 500 

arbitrary threshold we used as a proxy for substantial adipocyte content. The total sample sizes 501 

used for analysis are given in Tables 1, S1, and S2. 502 

 503 

Study-level eQTL analysis  504 

In each study, we inverse normalized the gene expression values. To account for technical and 505 

physiological differences across samples we constructed probabilistic estimation of expression 506 

residuals (PEER) factors69 using the inverse-normalized gene expression. For all studies except 507 

TwinsUK (see below), we performed linear regression of expression values with BMI as a 508 

covariate to remove the effect of BMI from the residuals (which will remove the effect of BMI 509 

from those captured by the subsequent PEER factor analysis). To account for unknown 510 

technical variation we generated PEER69 using the gene expression residuals adjusted for BMI. 511 

In each study, to identify the number of PEER factors to include as covariates in our eQTL 512 

analysis, we generated PEER factors in sets of 10 from 0 to 100 and performed eQTL analysis 513 

for each PEER factor set using the ordinary least squares local-eQTL analysis from APEX.21 We 514 

calculated the number of significant genes as genes with ≥1 variants with FDR <1%. We 515 

quantitated the percent change in the number of significant genes for each successive increase 516 

in PEER factors and selected the PEER factor number after which the increase in significant 517 

genes was < 1%. For TwinsUK, we used a linear mixed effects regression model of gene 518 
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expression70, including BMI, family zygosity, and SNP genotyping chip to create adjusted gene 519 

expression residuals. We then used the same PEER factor generation on the adjusted residuals 520 

and selection process described above.  521 

 522 

For each study, we performed local-eQTL analysis of variants within 1 Mb of the canonical gene 523 

transcription start site using the ordinary least squares analysis in APEX.21 The APEX 524 

regression model is equivalent to the FastQTL model.71 We performed eQTL analysis using 525 

inverse normal transformed gene expression, including BMI, study-specific factors, and PEER 526 

factors as covariates. We output a summary statistics file for use in subsequent analyses.21  527 

 528 

eQTL meta-analysis and conditional meta-analysis 529 

For meta-analysis and in the stepwise conditional meta-analysis, we included variants present 530 

in all studies and genes that were expressed in ≥2 studies. We performed inverse-variance 531 

weighted meta-analyses in APEX using the study-specific eQTL summary statistics, including 532 

either the GTEx-all populations or GTEx- European Americans samples. To enable summary 533 

statistic-based conditional analysis, for each study we created a covariate-adjusted genotype 534 

variance-covariance matrix (APEX).21 Using study-specific summary statistics and covariate-535 

adjusted variance-covariance matrices, we performed sequential rounds of stepwise study-536 

specific conditional analysis followed by inverse-variance weighted meta-analysis to detect a 537 

new lead conditionally distinct signal across studies.21 Specifically, for genes with at least one 538 

variant with a P ≤ 1e-6, we performed a forward and backward selection with a threshold of P ≤ 539 

1e-6 on the conditional P-values. For entry into the model we required lead variants of 540 

conditionally distinct signals to have LD r2 ≤ 0.7 with the lead variants of the prior signal(s). For 541 

eQTL genes with more than one conditionally distinct signal, we extracted the lead variants for 542 

the conditionally distinct signals, and for each lead variant, performed eQTL analysis 543 

conditioning on all other lead variants (termed all-but-one analysis) as implemented the Apex2R 544 
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software.72 To create comprehensive summary statistics for all eQTL genes (P ≤ 1e-6), we 545 

combined these all-but-one results for multi-signal genes with the marginal meta-analysis 546 

summary results for single-signal genes.  547 

 548 

We also performed conditional analysis for each individual study, using the same forward-549 

backward selection procedure, variant inclusion r2 criteria, and P-value threshold for signal 550 

inclusion as for the conditional meta-analysis. 551 

 552 

To compare the conditionally distinct lead variants from the meta-analysis including GTEx-553 

European Americans to conditionally distinct lead variants from the meta-analysis with the 554 

GTEx-all samples, we estimated the LD r2 between all combinations of lead variants for 555 

conditionally distinct eQTL signals of the same eQTL gene using PLINK73 (v.1.90b3). We used 556 

40,000 unrelated United Kingdom Biobank (UKBB) subjects as the LD reference panel74. We 557 

considered any lead gene-variant pairs with the same variant or that had an LD r2 ≥ 0.8 to be 558 

the same signal. All LD look-ups used this UKBB reference panel unless stated otherwise.  559 

 560 

Sex-stratified eQTL meta-analysis and conditional meta-analysis 561 

We performed sex-stratified eQTL meta-analyses in the studies that contained both males and 562 

females (FUSION and GTEx-European American). For each study and sex, we identified sets of 563 

PEER factors and ran the local-eQTL analysis as described above. We performed sex-specific 564 

meta-analysis and conditional meta-analysis as described above.  565 

 566 

To ask if we identified the same eQTL signals in females and males, for each gene we 567 

estimated the LD r2 for all pairs of female and male conditionally distinct lead variants, using 568 

PLINK73 (v.1.90b3) and UKBB as the LD reference panel. To compare the male and female 569 

eQTL effect sizes for each gene, we extracted the female marginal meta-analysis lead variant 570 
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and the same variant from the male marginal meta-analysis. We repeated the analysis 571 

extracting the male marginal meta-analysis lead variant and the same variant from the female 572 

marginal meta-analysis. We plotted the effect size comparisons using ggplot2 (v.3.4.0).75  573 

 574 

Adipose and blood eQTL comparison 575 

We downloaded the full blood local-eQTL summary statistics from the eQTLGen32 website. If 576 

the gene had ≥ 1 variant with an eQTL (FDR ≤0.05; P < 2e-5), we extracted the lead variant per 577 

gene in the blood study. For genes with >1 variant with P = 3e-310, we extracted all variants 578 

with that P-value. For each gene tested in common between the blood and adipose eQTL 579 

studies, and for each of the adipose conditionally distinct signals in the gene, we determined the 580 

LD r2 between each lead conditionally distinct adipose variant and the gene’s lead blood 581 

eQTLgen variant using UKBB as a LD reference in PLINK (v.1.90b3).73 If eQTLGen contained 582 

multiple potential lead variants with a P ≤ 3e-310, we chose the variant with the highest LD r2 583 

with the adipose eQTL lead variant. We defined shared adipose and blood eQTL signals as 584 

those with r2 ≥ 0.2 and repeated the analysis with other more stringent LD r2 thresholds (≥0.4, 585 

0.6, and 0.8). We considered the blood eQTL signals not shared if the pairwise LD r2 < 0.2 586 

between adipose and blood lead variants per gene. We repeated this process using only 587 

adipose primary signals or adipose non-primary signals.  588 

 589 

eQTL signal characterization 590 

We compared various characteristics across conditionally distinct eQTL signals and genes. We 591 

extracted the conditionally distinct eQTL betas and took the absolute value. We calculated the 592 

effect allele frequency (EAF) in METSIM (N), METSIM (S), FUSION, and TwinsUK based on the 593 

individuals present in the meta-analysis and in GTEx based on all individuals with genotypes. 594 

To estimate the across-study allele frequency, we estimated a sample size-weighted effect 595 

allele frequency using METAL76 and then used the resulting EAF to calculate the MAF. For each 596 
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gene, we extracted the initial TSS position from the GENCODE v1965 gtf file (gene start for 597 

positive strand, gene end for reverse strand). We calculated the distance from the lead 598 

conditionally distinct variant to gene TSS by taking the absolute value of the difference between 599 

the TSS position and the variant position. To test for differences in eQTL betas, MAF and 600 

distance to TSS between pairs of eQTL signal numbers, we used Mood’s median test77 which 601 

tests for a difference in medians using median_test() in R (v.4.1.3). 602 

 603 

We used the LocusZoom software (v.1.4) with the November 2014 1000G EUR reference panel 604 

to create all locus plots.78 We used marginal eQTL meta-analysis summary results for all plots 605 

unless specified as an all-but-one (AB1) plot. The AB1 plots are conditioned on all the signals 606 

except the one specified. All other plots were created using ggplot275 (v.3.4.0) in R (v. 4.1.3). 607 

 608 

Heritability estimations 609 

We estimated the heritability of gene expression levels in TwinsUK using 186 dizygotic and 131 610 

monozygotic twin pairs. We calculated the residuals of gene expression level adjusted for 611 

technical covariates, including GC mean, median insert size, primer index, date of sequencing 612 

and RNA extraction batch. Then, we used the residuals to calculate heritability with twinlm() 613 

function from mets package in R (v.4.0.3). We reported the heritability estimated by the ACE 614 

model, which assumes the variance in gene expression level to be partitioned into variances of 615 

additive genetic factors (A), shared environmental factors (C) between co-twins, and unique 616 

environmental factors (E) that are not related between co-twins. Inclusion or exclusion of age as 617 

a covariate did not significantly change the results. We tested the relationship between 618 

heritability and the number of eQTL meta-analysis signals using linear regression models. As 619 

genes with higher expression levels have more statistical power to detect an eQTL or have 620 

higher heritability estimates, we also adjusted for the quartile groups of gene expression levels 621 

in the model. We calculated the quartiles with the median expression levels among all the 622 
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samples for each gene within TwinsUK and METSIM (S). We tested for statistical difference 623 

between proportions using prop.test() in R.   624 

 625 

pLI scores 626 

We downloaded the gnomAD33 (v.2.1.1) loss-of-function metrics by gene table from the 627 

gnomAD website. We matched the adipose eQTL genes with the gnomAD table to extract the 628 

values for the probability of loss-of-function intolerance (pLI). Then, we calculated the proportion 629 

of genes tested for an eQTL with a pLI score ≥ 0.9 out of all genes (with pLI scores available) 630 

separated by the number of eQTL signals per gene. We repeated this using only genes 631 

expressed in TwinsUK or genes expressed in METSIM (S) and separated the genes by meta-632 

analysis eQTL signal number and TwinsUK or METSIM (S) gene expression quartile (described 633 

above).  634 

 635 

GWAS signal identification and conditional analysis 636 

We downloaded GWAS summary statistics for 28 traits from the locations listed in Table S12, 637 

including sex-stratified GWAS summary statistics for WHRadjBMI37, WC38, HC38, and the fat 638 

depot traits.42 For each trait, we used GWAS summary data from analysis of European-ancestry 639 

individuals.  640 

 641 

To meet the coloc assumption of no more than one signal in a region per dataset43, we isolated 642 

conditionally distinct GWAS signals. When conditionally distinct signals were described, we 643 

used the reported lead variants. To isolate each signal, we conditioned on any reported lead 644 

variant within 500 kb of the signal of interest. We ran GCTA cojo-cond with default parameters 645 

and used the UKBB LD reference panel. This process generated approximate conditional 646 

summary statistics for each signal of interest (termed ‘all-but-one’ summary statistics), including 647 

variants ±500 kb from the lead variant. If no other lead variant was located within 500 kb of the 648 
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lead variant of interest, we used the marginal summary statistics as the all-but-one summary 649 

statistics.  650 

 651 

When conditionally distinct GWAS signals were not reported for a dataset (UKBB traits WC and 652 

HC, and GLGC lipid traits), we identified conditionally distinct lead variants from the marginal 653 

GWAS summary statistics. We defined a locus as a lead variant (marginal P ≤ 5e-8) and its 500 654 

kb flanking regions using swiss (v.1.1.1). If another lead variant was within 1 Mb, we clumped 655 

their two loci together into a super-locus. We repeated this clumping until there was greater than 656 

1 Mb between any lead variant in the super-locus and any lead variant in another locus or 657 

super-locus. We then used GCTA20 cojo-slct (MAF ≥ 1%; collinearity < 0.5; conditional P ≤ 5e-8; 658 

UKBB LD reference panel) to identify conditionally distinct lead variants within each locus or 659 

super-locus. For loci/super-loci with more than one signal, we isolated each signal using GCTA 660 

cojo-cond (MAF ≥ 1%; collinearity < 0.5; UKBB LD reference panel), generating all-but-one 661 

summary statistics spanning the entire region of the locus/super-locus. For signals in single-662 

signal loci, we used marginal summary statistics as the all-but-one summary statistics. We 663 

repeated the conditional analysis for the male and female GWAS datasets.  664 

 665 

Colocalization  666 

For each trait, we used PLINK (v.1.90b3) to calculate the LD r2 between all conditionally distinct 667 

GWAS lead variants and conditionally distinct adipose eQTL lead variants within 500 kb of each 668 

other using the UKBB LD reference panel described above. If the LD r2 was ≥ 0.5, we tested 669 

GWAS-eQTL pairs for colocalization using coloc (v.5.1.0.1, coloc.abf, default settings).44 For 670 

each GWAS-eQTL pair, we used the lead variant’s all-but-one eQTL and all-but-one GWAS 671 

summary statistics for the colocalization analysis. We considered GWAS-eQTL signal pairs 672 

colocalized if the coloc PP4 was ≥ 0.5. To determine the nearest gene to the GWAS signal, we 673 

used all of GENCODE v19 genes and bedtools79 closest function (v.2.3.0) on the GWAS lead 674 
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variants. We used the same procedure to colocalize conditionally distinct signals from the 675 

female GWAS signals with female eQTL signals and to colocalize the male GWAS signals with 676 

male eQTL signals. 677 

 678 

To compare the conditional eQTL and GWAS colocalization results to colocalization using 679 

marginal eQTL and GWAS signals, we repeated the colocalization analysis using marginal 680 

eQTL signals and GWAS full summary statistics (P < 5e-8). We defined the marginal eQTL 681 

signal as the most significant variant per gene in the marginal eQTL analysis for genes with ≥1 682 

variant with P ≤ 1e-6.  683 

 684 

To show visually if non-primary eQTL signals are equally likely to be colocalized compared to 685 

primary eQTL signals independent of P-value strength, we combined the 1st-5th eQTL signals 686 

and divided them into four P-value quartiles. In each quartile and eQTL signal number we 687 

counted the number of eQTL signals and the number of eQTL signals colocalized with at least 688 

one GWAS signal. We calculated the proportion and standard error for the number of eQTL 689 

signals colocalized out of the total eQTL signals separated by signal number and quartile.  690 

 691 

SMR 692 

We used SMR10 (v.1.3.1) on colocalized all-but-one conditionally distinct GWAS-eQTL signals 693 

using default parameters and a P < 1e-6 threshold to select the lead eQTL for the SMR test. 694 

Results were obtained for 3,587 of the 3,605 GWAS-eQTL signal pairs tested. We considered 695 

SMR results significant at P ≤ 1.4e-5 (0.05/3,605).  696 

 697 

MRLocus 698 

We used MRLocus46 (v.0.0.26) on colocalized GWAS-eQTL signals for which multiple GWAS 699 

signals for the same trait were colocalized with multiple eQTL signals for the same gene (allelic 700 
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series). To limit MRLocus analyses to nearly independent allelic series, we excluded genes for 701 

which eQTL signals had an LD r2 > 0.05, and then in a second analysis, we further excluded 702 

genes if eQTL signals had an LD D’ > 0.1. We also included eQTL signals that did not 703 

colocalize with GWAS signals in the MR analysis.  704 

 705 

Association of gene expression with metabolic traits 706 

To follow-up the ZNRF3, PDE3A, and SEMA3C colocalized GWAS-eQTL pairs, we performed 707 

trait-gene expression associations in METSIM (S) using HDL-C and WHR measurements. We 708 

inverse normal transformed the gene expression and phenotypes and performed linear 709 

regression using the lm() function in R, adjusting for BMI, age, sequencing batch, RIN, mean 710 

read insert size, and read deletion size.  711 

 712 

Enrichment of eQTL with chromatin states and chromatin accessibility 713 

We used GARFIELD80 (v2) to test for enrichment of eQTL signals in adipose tissue promoter 714 

and enhancer chromatin states from the NIH Roadmap Epigenomics project,51 and chromatin 715 

accessibility ATAC-seq peaks from six datasets: the top 100K peaks from SGBS cells at day 0 716 

of differentiation (preadipocytes), day 4 (partially differentiated adipocytes), and day 14 (mature 717 

adipocytes); preadipocyte-dependent peaks; adipocyte-dependent peaks; and METSIM adipose 718 

tissue consensus peaks.53 We tested for enrichment separately by eQTL signal number, 719 

including the lead variants for genes without a significant eQTL as background in all analyses. 720 

We used GARFIELD to separate variants into “test” and “background” sets based on an eQTL 721 

threshold of P <1e-6 and estimated independent variants by clumping both the test and 722 

background variants using an LD r2 threshold of 0.1. We tested for overlap of both the clumped 723 

variants and their LD proxies (r2>0.8, PLINK, UKBB) with the regulatory elements and compared 724 

the proportion of overlaps in the test set to that in the background set for each regulatory 725 

element class using logistic regression, controlling for variant MAF, number of LD proxies, and 726 
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distance to nearest gene. We used the beta from the logistic regression model, which is the 727 

natural log of the odds ratio, as the effect size and its P-value to assess significance. 728 

Additionally, we created a BED file of the eQTL gene, eQTL lead variants, and their proxies, and 729 

used the bedtools79 intersectBed function79 (v.2.3.0) to overlap the eQTL variants and their 730 

proxies with ATAC peak accessible chromatin regions from the same datasets as the 731 

enrichment.  732 

 733 

Cell culture  734 

We cultured hWAT-A41 preadipocytes (provided by Yu-Hua Tseng, Joslin Diabetes Center81) in 735 

DMEM-high glucose (Sigma) supplemented with 10% fetal bovine serum (FBS). For 736 

differentiation, we plated 40,000 preadipocytes per well in a 24-well plate, grew them to 737 

confluence, and differentiated them for 5 days using induction media containing DMEM-high 738 

glucose supplemented with 2% FBS, 17 μM pantothenate, 33 μM biotin, 0.5 μM human insulin, 739 

2 nM triiodothyronine, 0.1 μM dexamethasone, 500 μM IBMX and 30 μM indomethacin. We 740 

replaced the media every two days for five days.  741 

 742 

We cultured SGBS preadipocytes (provided by Dr. Martin Wabitsch, University of Ulm) in basal 743 

medium (DMEM:F12, 17 μM pantothenate and 33 μM biotin) with 10% FBS. For day 5 744 

differentiated adipocytes, we plated 40,000 preadipocytes per well in a 24-well plate, grew the 745 

cells to confluency, and induced differentiation for five days as described previously53. 746 

 747 

We cultured LHCN-M2 human myoblasts (Evercyte GmbH, Vienna, Austria) as previously 748 

described82 in DMEM/medium 199 (Gibco, 4 +1) with 15% FBS, 0.02 M HEPES, 0.03 μg/ml zinc 749 

sulfate, 1.4 μg/ml vitamin B12, 0.055 μg/ml dexamethasone, 2.5 ng/ml recombinant human 750 

hepatocyte growth factor (Pepro Tech cat# 100-39), and 10 ng/ml basic FGF (Pepro Tech cat# 751 

100-18B). For differentiation, we plated 25,000 LHCN-M2 myoblasts per well in a 24-well plate, 752 
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grew the cells to confluency, and changed to DMEM-5.5 mM glucose with 2% horse serum for 753 

four days. We maintained all cells at 37°C in a humidified incubator with 5% CO2. 754 

 755 

Transcriptional reporter luciferase assay 756 

To test the allelic differences in transcriptional activity, we designed PCR primers (Table S25) to 757 

amplify DNA fragments containing rs917191 (478 bp) or rs12537553 (693 bp). We generated 758 

PCR products using DNA from individuals homozygous for both alleles and cloned them into 759 

luciferase reporter vector pGL4.23 (Promega) in forward and reverse orientations with respect 760 

to the genome. We tested transcriptional activity in preadipocytes, day 3 differentiated 761 

adipocytes (hWAT and SGBS), myoblasts, and day 3 differentiated myocytes (LHCN-M2). We 762 

plated 35,000 cells per well for hWAT preadipocytes, SGBS preadipocytes, and LHCN-M2 763 

myoblasts in 24-well plates one day before transfection. We co-transfected three sequence-764 

verified constructs with phRL-TK Renilla reporter vector (Promega) using lipofectamine 3000 765 

(Life Technologies) for hWAT and SGBS cells and lipofectamine LTX (Life Technologies) for 766 

LHCN-M2 cells in triplicate according to manufacturer’s protocol. We measured luciferase 767 

activity 28 hours (SGBS) or 48 hours (hWAT and LHCN-M2) post-transfection using a dual-768 

luciferase assay system and normalized firefly luciferase activity to Renilla luciferase activity 769 

values.83 We quantified activity relative to an ‘empty’ vector without an added DNA fragment.  770 

For each variant, orientation, and cell type, we tested for significant (P<0.05) differences in the 771 

relative activity between the two alleles using unpaired t-tests. 772 

 773 

Data availability 774 

The AdipoExpress meta-analysis results are available at https://mohlke.web.unc.edu/data/. 775 

Results include full marginal eQTL summary statistics for all ancestries, only European-ancestry 776 

individuals, males, and females, along with the conditional all-but-one eQTL summary statistics 777 

for each signal. Locus plots for every GWAS-eQTL colocalized signal pair are also available. 778 
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METSIM genotypes and gene expression data are available at dbGaP phs000743.v3. FUSION 779 

genotypes and gene expression data are available at dbGaP phs001048. TwinsUK RNA-Seq 780 

data are available in the European Genome-phenome Archive (EGA) under accession 781 

EGAS00001000805. TwinsUK genotypes are available upon application to the TwinsUK 782 

Resource Executive Committee (TREC). For information on how to apply, see 783 

https://twinsuk.ac.uk/resources-for-researchers/access-our-data/. 784 

 785 

Code availability 786 

All software used in this study is publicly available. Apex2R can be found here: 787 

https://github.com/corbinq/apex2R.  788 
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Tables 
 
Table 1: Overall discovery of adipose eQTL 
 

  Number of  
samples 

Genes  
tested 

eQTL genes  
(P ≤ 1e-6) 

Percentage of 
eQTL genes 

among genes 
tested 

Conditionally 
distinct eQTL 

signals 

METSIM (N) 426 25,520 10,804 42.3% 14,092 
METSIM (S) 420 29,589 10,074 34.0% 13,392 
FUSION 280 29,596 11,493 38.8% 14,931 
TwinsUK 722 23,114 10,352 44.8% 13,796 
GTEx ALL 496 23,697 9,352 39.5% 12,354 
GTEx EUR 408 23,719 8,321 35.1% 10,453 
Meta-analysis ALL 2,344 29,254 18,476 63.2% 34,774 
Meta-analysis EUR 2,256 29,259 18,345 62.7% 34,216 

 
Summary of eQTL results across all individual studies and the meta-analyses. We conducted eQTL with and without non-European 
American GTEx samples. The meta-analyses only included eQTL genes present in at least two studies and variants present in all 
five studies. Conditionally distinct eQTL signals count one lead variant per gene per signal.  
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Table 2: Summary of GWAS signals colocalized with adipose eQTL signals 
 

GWAS trait GWAS 
signals 

eQTL 
genes 

Total 
colocalized 
signal pairs 

Primary 
eQTL 

signals 

Non-primary 
eQTL signals 

(percentage of 
colocalized) 

High density lipoprotein-C 213 344 369 237 132 36% 
Triglycerides (log) 213 372 393 264 129 33% 
Total cholesterol 181 294 297 204 93 31% 
Body mass index 164 266 272 186 86 32% 
Low density lipoprotein-C 154 231 236 153 83 35% 
Waist-to-hip ratio adjBMI 146 225 238 161 77 32% 
Non- High density lipoprotein 142 251 263 188 75 29% 
Hip circumference 124 200 207 150 57 28% 
Waist-to-hip ratio 105 176 186 125 61 33% 
Diastolic blood pressure 100 152 158 116 42 27% 
Waist circumference 87 170 174 116 58 33% 
Pulse pressure 81 119 120 88 32 27% 
Type 2 diabetes 81 152 160 115 45 28% 
Systolic blood pressure 73 131 135 91 44 33% 
Coronary artery disease 69 104 105 71 34 32% 
Hemoglobin A1c 23 40 40 29 11 28% 
Gluteofemoral AT adjBMI 19 33 34 24 10 29% 
Fasting glucose 17 29 29 19 10 34% 
Fasting insulin 16 28 28 17 11 39% 
Visceral/Subcutaneous 14 34 35 23 12 34% 
Visceral AT adjBMI 12 29 30 20 10 33% 
Visceral/Gluteofemoral 12 25 25 20 5 20% 
Subcutaneous AT adjBMI 10 22 22 16 6 27% 
Subcutaneous/Gluteofemoral 10 25 25 19 6 24% 
Gluteofemoral AT 8 14 15 10 5 33% 
2-hour glucose 3 3 3 2 1 33% 
Visceral AT 2 4 5 3 2 40% 
Subcutaneous AT 1 1 1 1 0 0% 
Total 2,080 3,474 3,605 2,468 1,137 32% 
Total unique -- 1,861 -- -- -- -- 

  
GWAS signals colocalized with eQTL signals based on lead variant LD r2≥0.5 and coloc 
PP4≥0.5. GWAS signals indicates the number of unique GWAS signals that are colocalized with 
at least one eQTL signal. eQTL genes indicates the unique eQTL genes colocalized with at 
least one GWAS signal. The total colocalized signals indicates the sum of primary and non-
primary GWAS-eQTL signal pairs. The total unique row is the total number of unique eQTL 
genes and signals colocalized with a GWAS signal. C, cholesterol; AT, adipose tissue. 
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Figures 
 

 
Figure 1. Conditionally distinct signals in adipose eQTL studies. 

A. Number of genes with 1 to 10 eQTL signals (P ≤ 1e-6) identified in each study and the 
meta-analyses. ‘≥1 signal’ column indicates the number of genes with at least one 
significant eQTL signal, ‘≥2 signals’ indicates the number of genes with two or more 
eQTL signals, and the percentage of genes with an eQTL that have two or more eQTL 
signals is in parentheses. 

B. The numbers of genes identified with an eQTL in each study are represented by filled 
circles, and the numbers of eQTL signals are represented by asterisks. Studies are 
shown by color: blue, METSIM (N); purple, METSIM (S); green, FUSION; orange, 
TwinsUK; pink, GTEx all populations; red, GTEx EUR; gray, meta-analysis with GTEx all 
populations; and black, meta-analysis with GTEx EUR.  

C. The number of genes with 1 through 10 eQTL signals detected in each study.  
 
  

A.

B. C.

Study Samples
Number of genes with the indicated number of signals Number of genes

1 2 3 4 5 ≥6 signals Tested ≥1 
signal

≥2 
signals (%)

METSIM (N) 426 8,134 (75%) 2,174 (20%) 399 (4%) 81 (1%) 12 (0%) 4 (0%) 25,519 10,804 2,670 (25%)

METSIM (S) 420 7,576 (75%) 1,912 (19%) 432 (4%) 103 (1%) 29 (0%) 22 (0%) 29,589 10,074 2,498 (25%)

FUSION 280 8,733 (76%) 2,203 (19%) 463 (4%) 74 (1%) 15 (0%) 5 (0%) 29,596 11,493 2,760 (24%)

TwinsUK 722 7,560 (73%) 2,259 (22%) 433 (4%) 84 (1%) 13 (0%) 3 (0%) 23,114 10,352 2,792 (27%)

GTEx 496 7,078 (76%) 1,756 (19%) 361 (4%) 116 (1%) 32 (0%) 9 (0%) 23,697 9,352 2,274 (24%)

GTEx EUR 408 6,633 (80%) 1,362 (16%) 239 (3%) 63 (1%) 19 (0%) 5 (0%) 23,719 8,321 1,688 (20%)

Meta 2,344 9,114 (49%) 5,334 (29%) 2,377 (13%) 952 (5%) 407 (2%) 292 (2%) 29,254 18,476 9,362 (51%)

Meta EUR 2,256 9,148 (50%) 5,310 (29%) 2,309 (13%) 917 (5%) 380 (2%) 281 (2%) 29,259 18,345 9,197 (50%)
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Figure 2. GLYCTK eQTL signals identified in each study and the meta-analysis. 
LocusZoom plots of the marginal GLYCTK eQTL for the meta-analysis and each individual 
study. The x-axes show position on chromosome 3 and y-axes show eQTL -log10 P-value. The 
lead variant of the 1st signal (chr3:52,273,421, rs610060) in the meta-analysis is represented by 
a red diamond in all plots, and the lead variant of the second signal (chr3:52,276,901, 
rs11711914) in the meta-analysis is represented by a blue diamond in all plots. The red circles 
represent variants in stronger LD with the lead variant of the 1st signal while the blue triangles 
represent variants in stronger LD with the lead variant of the second signal. Shading indicates 
LD r2 as shown in the legend. Although each study has both signals colored, only one signal 
was significant in the conditional eQTL analysis for each of the individual studies (P ≤ 1e-6).  
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Figure 3. Characteristics of eQTL variants and genes according to the number of 
significant eQTL signals. 
Violin plots with inset boxplots of the (A) absolute value of the effect sizes of lead variants, (B) 
MAF, and (C) distance of the lead variants to the gene TSS for the indicated signals in order of 
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discovery. Only the 661 genes with 5 or more signals were included. For the boxplots, the 
center line represents the median value, the box limits represent the upper and lower quartiles, 
whiskers represent the 1.5x interquartile range, and the black circles represent outliers. The 
black lines connect the median values of each signal group. In C, 163 points with a distance to 
TSS greater than 600 were excluded. See Figure S6 for genes with one to four eQTL signals. 
(D) Proportion of genes in TwinsUK with the specified number of eQTL signals separated by 
gene expression quartiles. Quartile 1 indicates the genes with the lowest expression. The 
darkest blue are the genes without an eQTL signal and the lightest blue are genes with five or 
more eQTL signals. (E) Violin plots with inset boxplots of the heritability of genes with the 
specified number of eQTL signals in TwinsUK. For the boxplots, the center line represents the 
median value, the box limits represent the upper and lower quartiles, whiskers represent the 
1.5x interquartile range, and the black circles represent outliers. The black lines connect the 
median values of each signal group. (F) Proportion of genes for each signal number with a pLI 
score ≥ 0.9 out of the total number of genes that have pLI scores available for that signal 
number. 
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Figure 4. Sex-stratified WHRadjBMI GWAS and ADORA1 eQTL signal plots.  
(A) LocusZoom plots for WHRadjBMI female GWAS signal and (B) ADORA1 female eQTL 
signal. (C) LocusZoom plots for WHRadjBMI male GWAS signal and (D) ADORA1 male eQTL 
signal. All plots are colored by LD with the female GWAS lead variant represented by a purple 
diamond. 
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Figure 5. Colocalization of two or more GWAS signals with two or more eQTL signals at 
ZNRF3 and PDE3A. 
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A. LocusZoom plots of WHRadjBMI GWAS summary statistics (Pulit et al 2019) (top) and 
marginal ZNRF3 eQTL data for the meta-analysis (bottom). Both plots show two signals 
colored by the GWAS lead variants (red diamond, 1st signal chr22:29,449,477, 
rs2294239; blue diamond, 2nd signal chr22:29,338,235, rs5762906). The red circles and 
blue triangles indicate genetic variants in stronger LD with the 1st or 2nd signal, 
respectively and are shaded based on LD. Signal 1 in the GWAS is colocalized with 
signal 1 of the eQTL dataset (LD r2 = 0.90; coloc PP4 = 0.99) and signal 2 for both 
datasets are also colocalized (LD r2 = 1.00; coloc PP4 = 0.98).  

B. Effect sizes of the WHRadjBMI GWAS signals (y-axis) versus the effect sizes of the 
ZNRF3 eQTL signals (x-axis) from MRLocus. Each point represents a colocalized eQTL 
signal with standard error bars. The solid blue line represents the slope of the effect of 
the gene on the trait, and dotted blue lines represent the confidence interval. The slope 
estimates a gene-to-trait effect of -0.19, meaning that increasing adipose ZNRF3 
expression level by one population standard deviation should reduce WHRadjBMI by 
19% of its population standard deviation.   

C. Scatter plot of inverse normalized waist-to-hip ratio (x-axis) and ZNRF3 gene expression 
(y-axis) in METSIM (S) (n = 420). Each point represents an individual sample, the blue 
line represents the linear regression slope and the 95% confidence interval is shown in 
gray. The correlation value and association P-value are shown. 

D. LocusZoom plot of the HDL-C GWAS summary statistics (Graham et al 2021) (top) and 
marginal PDE3A eQTL data for the meta-analysis at (bottom). Both plots show four 
signals colored by the GWAS lead variants (red diamond, 1st signal chr12:20,470,221, 
rs11045172; blue diamond, 2nd signal chr12:20,470,009, rs2044315; yellow diamond, 3rd 
signal chr12:20,579,083, rs11045237; green diamond, 4th signal chr12:20,591,332, 
rs7134150). The red circles, blue triangles, yellow squares, and green inverted triangles 
indicate genetic variants in stronger LD with the 1st, 2nd, 3rd, or 4th signal, respectively 
and are shaded based on LD. Signal 1 in the GWAS is colocalized with signal 1 of the 
eQTL dataset (LD r2 = 1.00; coloc PP4 = 1.00), signal 2 for the GWAS is colocalized with 
signal 4 of the eQTL dataset (LD r2 = 0.93; coloc PP4 = 1.00), signal 3 for the GWAS 
and signal 2 for the eQTL dataset are colocalized (LD r2 = 0.42; coloc PP4 = 1.00), and 
signal 4 for the GWAS and signal 3 for the eQTL dataset are colocalized (LD r2 = 0.94; 
coloc PP4 = 0.99).  

E. Effect sizes of the HDL-C GWAS signals (y-axis) versus the effect sizes of the PDE3A 
eQTL signals (x-axis) from MRLocus. Each point represents a colocalized eQTL signal 
with standard error bars. The solid blue line represents the slope of the effect of the 
gene on the trait, and dotted blue lines represent the confidence interval. The slope 
estimates a gene-to-trait effect of -0.14, meaning that increasing adipose PDE3A 
expression level by one population standard deviation should reduce HDL-C by 14% of 
its population standard deviation.   

F. Scatter plot of inverse normalized HDL-C (x-axis) and PDE3A gene expression (y-axis) 
in METSIM (S) (n = 420). Each point represents an individual sample, the blue line 
represents the linear regression slope and the 95% confidence interval is shown in gray. 
The correlation value and association P-value are shown. 
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Figure 6. Regulatory annotation enrichment of eQTL signals and validation of allelic 
effects on transcriptional activity at SEMA3C. 

A. eQTL signals enriched in Roadmap Epigenomics chromatin states in adipose tissue 
compared to genes without an eQTL separated by signal number. Dark red represents 
promoters and gold represents enhancers. The bars represent the upper and lower 95% 
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confidence intervals. The asterisk represents significant Bonferroni-adjusted enrichment 
values that do not overlap an odds ratio (OR) of 1 (black dashed line). 

B. LocusZoom plots of the WHRadjBMI GWAS summary statistics (Pulit et al 2019)(top) 
and the SEMA3C meta-analysis eQTL data conditioned on all but signal 1 (bottom). Both 
plots show the same lead variant represented by a purple diamond (chr7:80,570,871; 
rs917191). Other variants are colored based on the LD r2 1000G EUR with the lead 
variant. Signal 1 in the GWAS dataset is colocalized with signal 1 of the eQTL dataset 
(LD r2 = 1.0; coloc PP4 = 1.0). 

C. UCSC genome browser tracks showing regulatory annotations that overlap SEMA3C 
eQTL variants. In the SEMA3C SNPs track, the lead variant is shown in purple and 
proxy variants (LD r2 ≥ 0.8) are shown in black. The chromHMM tracks are from 
Epigenomic Roadmap for mesenchymal stem cell-derived adipocytes, adipose nuclei, 
skeletal muscle, liver, and brain hippocampus; red represents a promoter-like signature, 
yellow represents an enhancer-like signature, green represents a signature for 
elongating RNA polymerase, and gray represents low to no signal. The blue signal 
tracks represent ATAC-seq accessible chromatin in SGBS cells at differentiation day 0, 
day 4, and day 14. The METSIM adipose peaks are ATAC-seq peaks detected in at 
least 3 adipose tissue samples. SEMA3C gene annotations are from UCSC genes. The 
bottom figure shows the browser tracks zoomed in to the region around rs917191.  

D. Relative transcriptional activity of rs917191-G and rs917191-C in hWAT adipocytes from 
dual-luciferase reporter assays. Values indicate transcriptional activity relative to an 
empty vector (EV), points represent independent clones with standard error bars, and P-
values from Student’s unpaired t-tests compare activity between alleles.  

E. Scatter plot of inverse normalized waist-to-hip ratio (y-axis) and SEMA3C gene 
expression (x-axis) in METSIM (S) (n = 420). Each point represents an individual 
sample, the blue line represents the linear regression slope and the 95% confidence 
interval is shown in gray. The correlation value and association P-value are shown. 

 


