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Abstract

Complete characterization of the genetic effects on gene expression is needed to elucidate
tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous
adipose tissue samples and identified 34K conditionally distinct expression quantitative trait
locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL
signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor
allele frequencies, and less promoter enrichment; they corresponded to genes with higher
heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally
distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605
eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized
signals by 46%. Among 30 genes with =2 pairs of colocalized signals, 21 showed a mediating
gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms
underlying complex traits and improves understanding of the complexity of gene expression

regulation.
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Genetic regulation of gene expression influences the etiology of complex traits." Many
genome-wide association study (GWAS) signals are located in non-coding regions and lack
obvious candidate genes or mechanisms.?* Integrating trait and disease GWAS signals with
expression quantitative trait locus (eQTL) signals has identified candidate genes and their
directions of effect relative to disease risk at thousands of loci'*'°. However, most reported
eQTL studies either have not explored or have had limited power to observe the complexities of
genetic regulation beyond a single eQTL for each gene. Larger eQTL studies with greater power
are needed to better understand the genetic architecture of gene expression and its impact on

complex traits.

Both GWAS and eQTL loci exhibit allelic heterogeneity,"'"™"* and the detection of multiple
association signals within a locus can reveal complex regulatory mechanisms.'*'® Simultaneous
analysis of multiple signals associated with gene expression and complex traits in large sample
sizes has the potential to identify more shared signals than previously described or
predicted.'®' One method to detect allelic heterogeneity in eQTLs is to identify conditionally
distinct signals associated with expression of the same gene."®%1"-131518 Ajjglic heterogeneity

15,18

is identified more frequently in eQTL studies with larger sample sizes, and the relatively

modest sample sizes in most eQTL studies have resulted in limited power to detect more than
one signal per gene. eQTL meta-analyses enable larger sample sizes, but few eQTL meta-
analysis studies have identified non-primary signals (secondary, tertiary, quaternary, etc.).'®'®
Identifying non-primary signals with individual-level data from multiple eQTL studies can be
tedious,'® however methods exist to detect conditionally distinct signals with both summary

statistics and individual-level data.?° 2!

1,22,23

Although many eQTL are shared across tissues, some are tissue-specific,2* motivating

studies in disease-relevant tissues. Adipose tissue is intrinsically linked to cardiometabolic
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93  diseases such as obesity and type 2 diabetes, plays a role in the management of dyslipidemia,
94  and is a contributing factor in insulin resistance and metabolic disease pathogenesis.?>%’

95  Additionally, subcutaneous adipose tissue is relatively accessible from research volunteers, in
96 contrast to other tissues relevant for the pathophysiology of cardiometabolic diseases, such as
97  visceral adipose, heart and liver, that are primarily obtained from disease cohorts or deceased
98 individuals. Several subcutaneous adipose eQTL studies of relatively healthy individuals have

16.28-30 [yt these studies have not been

99  been conducted with sample sizes up to 722 individuals
100  analyzed together.
101
102 Here, we introduce AdipoExpress, an eQTL meta-analysis of five studies, two of which have not
103 been reported previously, with a total of 2,344 subcutaneous adipose tissue samples. We
104  provide a widely applicable approach to effectively identify conditionally distinct eQTL signals
105  across multiple studies and we illustrated the genetic and genomic characteristics of the eQTL
106  and their corresponding genes. We then carried out colocalization analysis of distinct adipose
107  eQTL signals with distinct GWAS signals from 28 cardiometabolic traits and detected thousands
108  of shared signals. For sets of eQTL signals that colocalized with sets of GWAS signals for the
109  same trait, we used Mendelian randomization to quantify gene dosage effects on traits. This
110  expanded discovery of eQTL enabled us to identify new putative risk genes and mechanisms for
111  cardiometabolic traits. The full marginal and conditional eQTL summary statistics are publicly
112 available (see data availability), enabling further integration with additional GWAS and
113 molecular QTL studies.
114
115
116  Results

117

118  eQTL meta-analysis gene and signal discovery
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119

120  We performed a subcutaneous adipose tissue stepwise eQTL meta-analysis of conditionally
121  distinct signals. We implemented a forward and backward selection model from five studies
122 consisting of up to 2,344 individuals using 29,254 genes and 6.4 million variants with minor

123 allele frequency (MAF) of 2 0.01 across autosomes and the X chromosome (Table 1; Tables
124  $1-S2; Figure 1, Figure S1, Figure S2). Analyzing all genes tested in at least two studies, we
125  identified 18,476 eQTL genes and 34,774 eQTL signals (P < 1e-6) (Table 1; Table S3), which is
126  >1.6-fold more eQTL genes and 2.3-fold more signals than any of the individual studies (Figure
127  1A-B). Each gene in the meta-analysis had an average of 1.9 eQTL signals, and 51% of the
128  genes had at least two signals, compared to the maximum 27% in any individual study (Figure
129  1). Among the 34,774 eQTL signals, 47% would have been missed if we had only identified
130  primary eQTL signals. Almost all study participants (2,256/2,344) were of European ancestry,
131  and a meta-analysis of these individuals identified 18,345 eQTL genes and 34,216 signals

132 (Table 1; Table S4); 98% of eQTL genes and 87% of eQTL signals were shared between the
133  meta-analyses. As downstream colocalization analyses depend on genetic similarity between
134 GWAS signals of primarily European ancestry individuals and the eQTL samples, subsequent
135 analyses included only participants of European ancestry.

136

137  Due to the role of adipose tissue in GWAS traits with substantial sex differences®', we also

138  conducted sex-stratified stepwise conditional eQTL meta-analyses using 270 female and 418
139  male individuals from the GTEx and FUSION studies that contained individuals of both sexes.
140  We detected 8,473 eQTL genes and 10,510 eQTL signals in males and 6,834 eQTL genes and
141 8,035 eQTL signals in females (Tables S5-S6). Altogether, 45% of male eQTL signals are

142 shared with female signals and 59% of female eQTL signals are shared with the male signals

143 (LD r? 2 0.8). The male and female marginal eQTL signals showed highly correlated effect sizes
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144  (Pearson r? = 0.93) (Figure S3). Larger studies are needed to detect sex differences among
145  adipose eQTL.

146

147  Torelate eQTL discovery in adipose to a more accessible tissue, we compared the adipose

148  eQTL signals to blood eQTL signals from the much larger eQTLGen* study (n = 31,684). The
149  studies had several differences in design (Table S7), including that eQTLGen reported only

150  primary eQTL signals. Of the 18,345 primary adipose eQTL signals, 38% were potentially the
151  same signal in blood (r?20.2), 29% corresponded to a gene not tested in blood, and 33% had an
152 eQTL in blood that was not in LD (r?<0.2) with the adipose eQTL signal (Figure S4; Table S8).
153  Of the 15,871 non-primary adipose eQTL signals, 21% were potentially the same signal in blood
154  (r*20.2), 23% correspond to a gene not tested in blood, and 55% had an eQTL in blood that was
155  notin LD (r?<0.2) with the adipose eQTL signal (Figure S4; Table S8).Thus, even with a 10-
156  fold smaller sample size in adipose than in blood, 62% of adipose eQTL were not detected as
157  primary blood eQTL. A stepwise conditional analysis of eQTL signals in blood would likely

158  detect additional signals shared across tissues.

159

160

161  Characteristics of eQTL signals

162

163  Many eQTL studies only identify primary eQTL signals, and non-primary signals remain poorly
164  characterized. Therefore, we compared characteristics of eQTL signals based on the order in
165  which they were discovered in the stepwise conditional analysis. This order may depend on

166  multiple factors, including effect sizes, minor allele frequencies, and cell-type composition, and
167  can differ across studies. For example, at the GLYCTK gene, which encodes an enzyme

168 involved in serine degradation and fructose metabolism, the meta-analysis identified two signals

169  (signal 1 = chr3:52,273,421, rs610060; signal 2 = chr3:52,276,901, rs11711914; LD r?>=0.14),
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170 while conditional analysis in the individual studies each only detected one significant signal

171  (Figure 2). The individual studies identified different signals as significant: the studies with Finns
172 identified signal 1 while the studies with non-Finnish Europeans identified signal 2 (Figure 2).
173  Additionally, the lead variant allele frequencies differed between these populations, suggesting
174  the difference in signal detection may be influenced by population (Table S9). Similarly, at the
175  well-characterized ADIPOQ gene, the meta-analysis identified two signals in moderate pairwise
176 LD (signal 1 = chr3:186,574,282, rs35469083; signal 2 = chr3:186,551,888, rs143257534; LD r?
177  =0.35), while conditional analysis in the individual studies detected different single signals

178  (Figure S5; Table S10). These examples show one way that the meta-analysis eQTL signals
179  are more comprehensive than the signals detected by individual studies.

180

181  We compared primary and non-primary eQTL signals detected in the stepwise conditional

182  analysis with respect to effect size, MAF, and distance to gene transcription start site (TSS).
183  Effect sizes were typically lower for signals identified later; among the 661 genes with at least
184  five eQTL signals, the median absolute value of the effect size for 1% signals was twice as large
185  as for 5" signals (0.4 vs 0.2, P < 2e-16) (Figure 3A). In addition, MAF was typically lower for
186  signals identified later; among genes with at least five signals, the median MAFs for 15 and 5™
187  signals were 0.25 and 0.11, respectively (P < 2e-16) (Figure 3B). Finally, the distance from the
188 lead eQTL variant to gene TSS became larger for signals identified later, indicating that the

189  signals closest to a gene TSS tend to be discovered first. Among genes with five or more

190  signals, the median distance to gene TSS was 26.4 kb for 1% signals and 76.4 kb for 5" signals
191 (P < 2e-16) (Figure 3C). For all three characteristics, the same trends were observed for genes
192 with two, three, or four signals (Figure S6). Thus, primary adipose eQTL signals had larger

193  effect sizes, were discovered with more common variants, and the variants were closer to the
194  TSS than subsequent signals.

195
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196  We next assessed eQTL gene expression levels, heritability, and the probability of the gene

197  being intolerant of loss-of-function variants (pLI)**. Genes in the lowest quartile of expression
198 levels made up the smallest proportion of multi-signal genes (23%), while genes in the highest
199  quartile of expression levels contributed to the largest proportion of multi-signal genes (46%; P
200  =0.002; Figure 3D). We estimated heritability using the twin structure of the TwinsUK study
201  and determined that eQTL genes had higher expression heritability (median heritability estimate
202 0.19) than non-eQTL genes (median heritability estimate 0.07) (P < 2e-16; Table S$11), and

203  genes with more eQTL signals showed higher heritability (Figure 3E). This trend persisted

204  when genes were separated into quartiles of expression levels, suggesting that genes with

205  higher heritability have more identified eQTL signals independent of the expression level of the
206  gene (Figure S7). Lastly, we estimated how tolerant the eQTL genes were to protein-truncating
207  variation based on their pLI scores from GnomAD®*. Of 12,643 eQTL genes with available pLlI
208  scores, 10,625 (84%) were tolerant of truncating variants (pLI < 0.9). eQTL genes with few

209  eQTL signals were more likely to be intolerant of truncating variants than genes with more eQTL
210  signals (Figure 3F). For each expression level quartile, the proportion of genes with multiple
211  signals was substantially lower for genes with pLI =20.9 than for genes with pLI <0.9. This trend
212 was particularly pronounced in the highest expression category which also has the highest

213 proportion of genes with pLI 20.9 (Figure S8). We observed the same gene expression and pLI
214  score trends using METSIM gene expression level quartiles (Figure S9). Thus, we identified
215  more eQTL signals in highly expressed, more heritable genes that were more tolerant to loss-of-
216  function variants. Higher expression level may be a proxy for power to detect eQTL signals,

217  while higher heritability may reflect a more limited contribution of the environment or technical
218  variation in expression quantification.

219

220

221  Adipose eQTL identify genes for cardiometabolic trait GWAS signals
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222

223 To predict candidate genes for GWAS signals, we performed colocalization of conditionally
224  distinct adipose eQTL signals with conditionally distinct GWAS signals for 28 cardiometabolic
225  traits***? (see Methods)(Table S12). We identified 3,605 eQTL signals for 1,861 unique genes
226  that colocalized with signals from at least one GWAS trait (Table 2; Table S13-15). All

227  colocalized GWAS-eQTL signals can be visualized using our interactive colocalization browser:

228  https://adipose.colocus.app/. The ten traits with the largest number of eQTL-GWAS signal

229  colocalizations were high-density-lipoprotein cholesterol (HDL-C), log-transformed triglycerides
230  (logTG), total cholesterol (TC), body mass index (BMI), low density lipoprotein cholesterol (LDL-
231  C), waist-to-hip ratio adjusted for BMI (WHRadjBMI), non-HDL-C cholesterol (nonHDL-C), hip
232 circumference (HC), waist-to-hip ratio (WHR), and diastolic blood pressure (DBP) (Table 2;

233 Table S14). Among the colocalized eQTL and GWAS signals, only 31% correspond to the gene
234 nearest to the GWAS signal (Table S14). On average, 34% of GWAS signals for these 28

235  cardiometabolic traits had at least one colocalized eQTL signal (Table S15). For traits expected
236  to be more relevant to adipose tissue, such as the ratio of abdominal subcutaneous and

237  gluteofemoral adipose tissue volume, 63% of GWAS signals (10 of 16) colocalized with an

238  adipose eQTL signal (Table $15). The number of cardiometabolic trait signals with a

239  colocalized eQTL in this meta-analysis is four times greater than the number of results from
240  similar analyses in the METSIM (N) study alone when using the same LD threshold (r* = 0.8)°.
241  Thus, larger eQTL studies can identify colocalized eQTL genes for more GWAS signals.

242

243 We assessed the colocalized conditionally distinct GWAS-eQTL signals for evidence of gene
244 expression mediating the effect of a genetic variant on a trait using summary Mendelian

245  randomization (SMR)'’; 2,860 of the 3,587 (80%) analyzed signals had evidence of mediation
246 (P < 1.4e-5) (Table S$16). The subset of signals with evidence of mediation may be more likely

247  to act via those genes to influence the traits.
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248

249  We next evaluated the contribution of primary versus non-primary signals to GWAS

250  colocalization. We observed 2,468 primary eQTL signals for 1,373 genes and 1,137 non-

251  primary eQTL signals for 596 genes that colocalized with at least one GWAS signal. Inclusion of
252 the non-primary eQTL signals increased the number of GWAS-colocalized signals by 46%. The
253  proportion of eQTL signals that colocalized with at least one GWAS signal was highest for

254 primary eQTL signals and lower for each successively detected eQTL signal, even when

255  accounting for eQTL signal strength (Figure S10; Table S$17). However, colocalizations for 488
256  of these 596 genes were only detected using non-primary signals (Table 2; Table $14). Overall,
257  the analysis of non-primary eQTL greatly increased the number of GWAS colocalizations.

258

259  Many previous studies have performed colocalization with un-conditioned, ‘marginal’ eQTL and
260  GWAS summary statistics. To directly compare the differences between using marginal and
261  conditional results, we also performed colocalization using the marginal eQTL and GWAS

262  statistics. Colocalization analyses with marginal GWAS and eQTL signals identified 1,073

263  colocalized genes (Table S$18), 89 of which were detected only in the marginal analysis.

264  Colocalization analyses of the conditionally distinct signals identified 864 (47%) additional

265  genes, 666 of which have multiple eQTL signals (Table S18). These results are consistent with
266  previously described limitations of colocalization analysis when marginal eQTL results are used
267  at loci with multiple signals”**#*, These results demonstrate the importance of using

268  conditionally distinct signals to identify GWAS candidate genes, yet suggest that analyses of
269  marginal, unconditioned loci may still provide some value at complex multi-signal loci.

270

271  We also colocalized male and female eQTL signals with male and female GWAS signals for a
272  set of sex-biased cardiometabolic traits****2, including WHRadjBMI, WC, HC, and body fat

273  distribution®*%42, We identified 144 GWAS-eQTL colocalizations in females and 71 in males

10
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274  (Table $19-S20). Of the 138 GWAS-eQTL colocalized signals for WHRadjBMI in only one sex,
275 82 do not have a corresponding GWAS-eQTL colocalization in the sex-combined analysis. For
276  example, a female eQTL signal at ADORA1 colocalized with WHRadjBMI in females (Figure 4).
277  ADORA1 encodes an adenosine receptor that suppresses lipolysis in adipocytes, and loss of
278  the receptor leads to glucose intolerance in obese mice*. Although the sex-stratified eQTL

279  analysis has limited power, we were able to identify 144 candidate genes for male and/or female
280  GWAS signals, one-third of which were not found in the corresponding sex-combined studies.
281

282  Multiple eQTL signals for the same gene, termed allelic series, that colocalize with multiple

283  GWAS signals from the same trait can provide additional confidence that the gene influences
284  the trait. In the eQTL meta-analysis, 33 unique genes harbored allelic series that colocalized
285  with allelic series for at least one GWAS trait, corresponding to 144 of 3,605 (4%) GWAS-eQTL
286  colocalized signal pairs (Table S14; Table S21). We used only the 30 genes that harbored

287  nearly independent eQTL signals (LD r? < 0.05) to estimate causal effects using MRLocus;* all
288  eQTL signals for the gene, including those that did not colocalize with GWAS signals, were

289 included in the MR analysis. Among the 30 genes, 21 have evidence of mediation (adjusted P <
290  0.25) (Table S21; Figure S11). For example, ZNRF3 has two eQTL signals that are colocalized
291  with two WHRadjBMI GWAS signals (Figure 5A; Figure S12). The alleles associated with

292  lower WHRadjBMI at both signals were associated with higher ZNRF3 expression levels, as
293  displayed by a negative GWAS vs eQTL slope from MRLocus (adjusted P = 0.18; Figure 5B;
294  Table S21). The two signals provide evidence for an estimated gene-to-trait effect of -0.19,

295  indicating that increasing adipose ZNRF3 expression level by one population standard deviation
296  should reduce WHRadjBMI by 19% of its population standard deviation. For further support, the
297  observed trait-gene association in METSIM shows higher ZNRF3 expression level associated
298  with lower WHR (P = 0.04; beta = -0.85; Figure 5C), although this association may be

299  confounded by factors that influence both ZNRF3 and WHR, or reverse causal effects. ZNRF3

11
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300 encodes a membrane-bound E3 ubiquitin ligase, which is a receptor for R-spondins and

301 functions as a negative feedback regulator in the WNT signaling pathway. *"*® When we further
302 limit the allelic series to pairs of signals for which LD D’ < 0.1, 9 genes had independent allelic
303  series and 7 of them showed evidence of mediation (Table S21). For example, PDE3A has four
304 eQTL signals that colocalized with four HDL-C GWAS signals (Figure 5D-F; Figure S$13). For
305  all four signals, the alleles associated with lower HDL-C were associated with higher PDE3A
306 expression level. Two of the signals are nearly independent (lead variants pairwise LD r?<0.05,
307 D’ <0.1) and provide evidence for an estimated gene-to-trait effect of -0.14 (adjusted P = 0.15;
308 Figure 5E). PDE3A regulates cAMP signaling and has been shown to have higher expression
309 in the hearts of diabetic than non-diabetic rats.***° Colocalized allelic series of GWAS and eQTL
310  signals provide stronger confidence that gene expression in the assayed tissue influences the
311 trait, and gene-based dosage effects may help predict the impact that therapies modulating a
312  gene will have on traits.

313

314

315  Regulatory variants within eQTL signals

316

317  To predict the genomic features that may be responsible for eQTL signals, we investigated the
318 location of eQTL variants relative to adipose chromatin states. We compared enrichment of
319  conditionally distinct eQTL signals (lead and proxy variants r>0.8) relative to signals for genes
320  without an eQTL in Roadmap Epigenomics adipose tissue promoters and enhancers based on
321 the order signals were discovered in the stepwise conditional analysis.®’ The 1% through 4"

322  eQTL signals were significantly enriched in promoters and enhancers, whereas the 5™ and

323  higher eQTL signals were not (Figure 6A; Figure S14; Table S22). Primary eQTL signals were
324  much more strongly enriched in promoters (odds ratio = 3.5) than enhancers (odds ratio = 2.2).

325 2" through 4" signals were slightly more enriched in promoters than enhancers and each signal
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326  showed sequentially decreasing enrichment levels (Figure 6A; Figure S14; Table S22). These
327  results show that non-primary signals are less often located in promoters and increase the total
328  number of signals detected in both promoters and enhancers.

329

330 To identify candidate regulatory variants that may act through adipose regulatory elements, we
331 compared eQTL variants to sites of accessible chromatin defined by ATAC-seq peaks in

332  adipose tissue and preadipocytes and mature adipocytes of the human Simpson Golabi Behmel
333  Syndrome (SGBS) cell strain.®? Of the 34,438 eQTL signals, 40% had at least one proxy variant
334  located in an adipose tissue accessible chromatin region, and 51% had at least one variant in a
335  mature adipocyte region (Table $23). Among the eQTL signals colocalized with GWAS signals,
336 60% and 72% had at least one variant in adipose tissue or mature adipocyte accessible

337  chromatin, respectively (Table $23). Among ~16K chromatin regions more accessible in

338  adipocytes than preadipocytes,®® adipose eQTL enrichment was significant for the 15! through
339 3" signals (odds ratio for primary signals = 1.6) while no signals were significantly enriched in
340  ~18K chromatin regions more accessible in preadipocytes than adipocytes® (odds ratio for

341  primary signals = 1.0; Figure S14; Table S22). Thus, more than half of meta-analysis eQTL
342 signals contain plausible regulatory variants located in regions of adipose or adipocyte

343  accessible chromatin.

344

345  We further investigated potential regulatory variants at one colocalized GWAS-eQTL signal. The
346  primary SEMA3C eQTL signal colocalized with a WHRadjBMI GWAS signal (LD between lead
347  variants, r? = 1.0; coloc PP4 = 1.0) (Figure 6B). SEMA3C is an adipokine predominantly

348  expressed in mature adipocytes and regulated by weight changes.> The lead variant

349  (chr7:80,570,871; rs917191) is located in an accessible chromatin region in both adipose and
350 adipocytes® (Figure 6C, Table S24), while a variant in high LD with the lead variant

351 (chr7:80,580,219; rs12537553, r? = 0.89) is located in an accessible chromatin region in
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352  muscle®®. We tested both variants for allelic differences in transcriptional activity in

353  preadipocytes and differentiated adipocytes from hWAT and SGBS cell lines, as well as

354  myoblasts and differentiated myocytes from the LHCN-M2 cell line. rs917191 showed strong
355  enhancer activity and 2.3- to 6.2-fold higher transcriptional activity for the C allele in

356 preadipocytes, adipocytes, myoblasts, and myocytes, whereas the proxy variant rs12537553
357  showed no significant differences in activity (Figure 6; Figure $15-S16). The rs917191-C allele
358  was associated with increased WHRadjBMI risk, higher SEMA3C gene expression levels, and
359  greater transcriptional activity than the rs917191-G allele. The trait-gene association in METSIM
360 also indicates that higher SEMA3C expression is associated with higher WHR (P = 0.02; beta =
361 0.11; Figure 6). These data suggest that rs917191 may alter SEMA3C activity in adipose tissue
362 and lead to effects on WHR. The hundreds of other colocalized GWAS and eQTL signals

363  suggest that many additional regulatory mechanisms responsible for GWAS signals may be

364 discovered (Table S14).
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365 Discussion

366

367  We carried out the largest adipose tissue eQTL study to date and present a broadly applicable
368 framework to efficiently define conditionally distinct eQTL signals across multiple studies. We
369  detected 34K conditionally distinct eQTL signals in 18K genes, which is 2.3-fold more signals
370  and >1.6-fold more eQTL genes than detected by any of the five studies alone. On average,
371  each gene had ~2 eQTL signals, and some highly expressed genes harbored as many as 10
372  signals. Colocalization of eQTL with GWAS identified 1,861 candidate genes for over 2,000
373  cardiometabolic trait GWAS signals across 28 traits, at least 4-fold more than any previous

374  adipose eQTL study when accounting for differences in LD threhsolds.® Including non-primary
375  eQTL signals enabled discovery of 46% more GWAS-eQTL colocalized signals than using

376  primary signals alone, suggesting that current, widely used eQTL studies remain underpowered
377 and that non-primary eQTL signals can help explain some of the “missing regulation.”

378

379  The newly identified eQTL signals identified more distal variant effects on expression. Previous
380  studies by us and others have shown that non-primary eQTL signal lead variants are located
381 further away from the gene transcription start sites than primary eQTL lead variants.®'® We
382  show that this trend continues with additional eQTL signals and that the median distance from
383  variant to gene TSS between 1% and 5" signals increases 2.8-fold. In addition, eQTL variants
384  for 2", 3 and 4" signals showed successively less enrichment in adipose promoters and

385  enhancers, especially for promoters, consistent with other studies?® and the hypothesis that
386  primary eQTL tend to act on promoters. The non-primary eQTL signal distances to TSS are thus
387  more like GWAS signals, suggesting that a larger proportion of non-primary eQTL would

388  colocalize with GWAS signals; however, primary eQTL showed more GWAS colocalizations,
389  which may reflect still limited power to detect eQTL.

390
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391  The conditionally distinct signals also provided a more thorough understanding of gene

392  regulation. Although a prior study showed consistent effect sizes among primary and non-

393 primary eQTL signals,’ in our previous study® and here we observed that effect sizes for 15
394  signals were twice as large as those from 5" signals, which is expected because variants with
395  stronger effects on a trait are easier to detect against a background of other genetic and

396  environmental factors. We also found that the median heritability for genes with five or more
397  signals was 2.5-fold higher than genes with only one signal, consistent with a study of blood
398  eQTL.™

399

400  We found that genes with high levels of intolerance of loss-of-function mutations are less likely
401  to have multiple signals than those with lower levels of constraint, as shown previously in brain
402  tissue'®. For genes in the highest quartile of expression we observed two opposing forces that
403  affected the probability of detecting an eQTL. Genes in the higher quantiles of expression have
404  greater power to be detected as eQTLs due to higher read counts, however genes in the higher
405 quantiles of expression are also substantially more likely to have low tolerance of loss-of-

406  function mutations, thus decreasing the power to detect eQTLs. Overall, using a larger, better-
407  powered eQTL study allowed us to more comprehensively dissect gene regulation.

408

409 Integration of GWAS, eQTL, and regulatory elements helped identify plausible regulatory

410  mechanisms. Over 1,800 eQTL genes colocalized with GWAS signals, and 72% of the

411  colocalized signals had lead or proxy variants (LD r’=0.8) located in mature adipocyte

412  accessible chromatin regions, providing candidate regulatory variants, including a variant we
413  validated by showing allelic differences in transcriptional activity at SEMA3C. One challenge of
414  discovering more eQTL and colocalizations is that cardiometabolic GWAS signals can show
415  evidence of colocalization with eQTL for more than one gene, even if genetic effects on each

416  gene do not affect the GWAS trait. To address this challenge, we examined mediation using
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417  MRLocus on the subset of genes for which two or more apparently independent eQTL signals
418 (LD r’< 0.05) colocalized with two or more GWAS signals. This analysis provided stronger

419 evidence of causal effects for 21 genes and estimates of their gene-based dosage effects on
420  the GWAS trait. Despite our desire to analyze pairs of independent colocalized signals, 80% of
421  the 70 signal pairs tested for mediation still have D’> 0.1, suggesting that haplotype effects may
422  still influence gene dosage estimates. Nonetheless, evidence of mediation and estimates of the
423  dosage effect of genes on traits strengthens the support for targeting a gene with drug

424  therapeutics to ameliorate disease.

425

426  Although this study of >2,000 individuals is relatively large, it still has limitations. Continued
427  increase in sample size should identify additional signals, even after the number of detected
428  eQTL genes reaches saturation. Expanded studies in more diverse populations would enable
429  analysis of additional variants and thus detection of additional eQTL signals. In addition, our
430  sex-stratified eQTL meta-analyses were underpowered (270 female and 418 male individuals),
431  and additional sex-dependent eQTL remain to be identified. Lastly, we identified eQTL in bulk
432  adipose tissue, which integrates the eQTL signals across cell types; we may not have detected
433 some cell-type-specific eQTL. Future eQTL discovery from single cells or nuclei are needed to
434  distinguish these cell type effects.

435

436  In summary, this adipose eQTL analysis tripled the size of previous studies, furthered

437  understanding of allelic heterogeneity in gene regulation, greatly expanded discovery of eQTL
438  colocalized with cardiometabolic trait GWAS signals, and identified thousands of candidate
439  genes that may lead to new drug therapies.

440
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441  Online Methods

442

443  Study cohorts, quality control, and RNA-sequencing

444  METSIM: The sample collection and genotyping of 10,197 male individuals from Kuopio,

445  Finland in the METabolic Syndrome In Men (METSIM) study was described previously.?®*

446  Subcutaneous adipose tissue was sampled from near the umbilicus for two non-overlapping
447  sets of samples for which the RNA-sequencing was performed at separate times. One

448  subgroup, referred to as METSIM (N), has 426 participants who provided a needle tissue biopsy
449  for which RNA-seq was previously described.® Compared to the previous report, we removed
450  eight samples from individuals who also participated in the FUSION study described below. The
451  second subgroup, referred to as METSIM (S), has 420 participants who provided surgical

452  biopsies; these individuals are independent from METSIM (N) and FUSION, and the RNA-seq
453 was described previously, although this is the first report of eQTL.%” Briefly, for both METSIM
454  (N) and METSIM (S), we removed adaptor sequences and sequences with phred quality scores
455  of < 20 using Fastx-toolkit>® and Cutadapt®® (v.1.18) respectively, as described.® We aligned
456  RNA-seq reads to the hg19 reference genome using STAR® for both METSIM (N) (v. 2.4.2a)
457  and METSIM (S) (v. 2.7.3a) as described.®

458

459  EUSION: Inclusion criteria for the Finland-United States Investigation of NIDDM (FUSION)

460 tissue collection has been described previously.***°* Genotyping of FUSION tissue biopsy

461  participants has been described previously.*® Briefly, we collected subcutaneous adipose tissue
462  samples from near the umbilicus using surgical biopsy.*® We followed the same procedures of
463  RNA extraction and mRNA-seq, and quality control (QC) as for muscle.>® Subcutaneous

464  adipose tissue sample RIN ranged from 5.1 to 8.8 (median 7.4). RNA-seq reads from 280

465  subcutaneous adipose tissue samples were aligned to the hg19 reference genome using

466  STAR® (v.2.7.3a).

18


https://doi.org/10.1101/2023.10.26.563798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.563798; this version posted October 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

467

468  TwinsUK: Sample collection, SNP genotyping, and quality control were conducted as previously
469  described.**5' Genotype data were available for 722 participants for whom adipose tissue gene
470  expression data were available. Subcutaneous adipose tissue RNA was extracted from punch
471  Dbiopsies from a sun-protected area of the abdomen, and RNA sequencing and data processing
472  carried out as described elsewhere.**¢2%3 RNA-Seq reads were aligned to the hg19 reference
473 genome using STAR® version 2.4.0.1.

474

475  GTEx: Genotype-Tissue Expression (GTEx) V8 sample collection, whole genome sequencing,
476  RNA-sequencing and quality control for all samples, including subcutaneous adipose tissue, has
477  been described previously." We obtained dbGaP permissions and accessed the genotype files
478  (phs000424). We subset the subcutaneous adipose tissue samples that had genotype

479 information. In our analysis, we tested two GTEXx studies, one with all individuals and the other
480  with only individuals with European ancestry as estimated through use of principal component
481  analysis described in the original study.” We downloaded the previously described reads per
482  gene from the GTEXx portal.” We lifted over the variants from hg38 to hg19 using the variant

483  look-up file provided by GTEx and kept the gene assignments as reported.

484

485  Genotype Imputation of array-genotyped samples and inclusion of WGS samples

486 In studies except the whole genome sequenced GTEXx study, samples were imputed using the
487  Haplotype Reference Consortium panel (hg19)% as previously described.?3%°56" |n each study
488  with imputed genotype data, we excluded variants with low imputation quality (R? < 0.3 or

489  0.5)(Table S1). In all studies we excluded variants with MAF <0.01. We coded the X

490 chromosome genotypes as diploid (0/2) for males. For analysis, we retained 6,995,803 variants

491  that were present in all five studies.

492
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493  Gene level quantification and ADIPOQ expression-based sample inclusion

494  For all studies except GTEXx, to quantify the read counts per gene, we used GENCODE v19% as
495  the reference and the quan function from QTLtools package'® (METSIM and TwinsUK) or

496  QoRTs® (v.1.3.6) (FUSION). In each study, to select for more highly expressed genes, we

497  retained genes with 5 or more counts in at least 25% of the individuals in each study. We

498  calculated counts per million (CPMs) normalized for library size by adjusting the CPMs by the
499  Trimmed mean of M-values (TMM)®” using edgeR®® (v.3.36.0). We included subcutaneous

500 adipose tissue samples that had >150 CPM for ADIPOQ gene expression (Figure S2), an

501  arbitrary threshold we used as a proxy for substantial adipocyte content. The total sample sizes
502  used for analysis are given in Tables 1, $1, and S2.

503

504  Study-level eQTL analysis

505 In each study, we inverse normalized the gene expression values. To account for technical and
506  physiological differences across samples we constructed probabilistic estimation of expression
507 residuals (PEER) factors®® using the inverse-normalized gene expression. For all studies except
508  TwinsUK (see below), we performed linear regression of expression values with BMI as a

509  covariate to remove the effect of BMI from the residuals (which will remove the effect of BMI
510  from those captured by the subsequent PEER factor analysis). To account for unknown

511 technical variation we generated PEER®® using the gene expression residuals adjusted for BMI.
512 In each study, to identify the number of PEER factors to include as covariates in our eQTL

513  analysis, we generated PEER factors in sets of 10 from 0 to 100 and performed eQTL analysis
514  for each PEER factor set using the ordinary least squares local-eQTL analysis from APEX.2' We
515  calculated the number of significant genes as genes with 21 variants with FDR <1%. We

516  quantitated the percent change in the number of significant genes for each successive increase
517  in PEER factors and selected the PEER factor number after which the increase in significant

518 genes was < 1%. For TwinsUK, we used a linear mixed effects regression model of gene
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519  expression’®, including BMI, family zygosity, and SNP genotyping chip to create adjusted gene
520  expression residuals. We then used the same PEER factor generation on the adjusted residuals
521 and selection process described above.

522

523  For each study, we performed local-eQTL analysis of variants within 1 Mb of the canonical gene
524  transcription start site using the ordinary least squares analysis in APEX.?" The APEX

525  regression model is equivalent to the FastQTL model.”

We performed eQTL analysis using
526 inverse normal transformed gene expression, including BMI, study-specific factors, and PEER
527 factors as covariates. We output a summary statistics file for use in subsequent analyses.?’
528

529  eQTL meta-analysis and conditional meta-analysis

530  For meta-analysis and in the stepwise conditional meta-analysis, we included variants present
531 inall studies and genes that were expressed in =2 studies. We performed inverse-variance
532  weighted meta-analyses in APEX using the study-specific eQTL summary statistics, including
533  either the GTEx-all populations or GTEx- European Americans samples. To enable summary
534  statistic-based conditional analysis, for each study we created a covariate-adjusted genotype
535  variance-covariance matrix (APEX).?! Using study-specific summary statistics and covariate-
536  adjusted variance-covariance matrices, we performed sequential rounds of stepwise study-
537  specific conditional analysis followed by inverse-variance weighted meta-analysis to detect a
538 new lead conditionally distinct signal across studies.?' Specifically, for genes with at least one
539  variant with a P < 1e-6, we performed a forward and backward selection with a threshold of P <
540  1e-6 on the conditional P-values. For entry into the model we required lead variants of

541  conditionally distinct signals to have LD r? < 0.7 with the lead variants of the prior signal(s). For
542 eQTL genes with more than one conditionally distinct signal, we extracted the lead variants for
543  the conditionally distinct signals, and for each lead variant, performed eQTL analysis

544  conditioning on all other lead variants (termed all-but-one analysis) as implemented the Apex2R
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software.”” To create comprehensive summary statistics for all eQTL genes (P < 1e-6), we
combined these all-but-one results for multi-signal genes with the marginal meta-analysis

summary results for single-signal genes.

We also performed conditional analysis for each individual study, using the same forward-
backward selection procedure, variant inclusion r? criteria, and P-value threshold for signal

inclusion as for the conditional meta-analysis.

To compare the conditionally distinct lead variants from the meta-analysis including GTEx-
European Americans to conditionally distinct lead variants from the meta-analysis with the
GTEx-all samples, we estimated the LD r? between all combinations of lead variants for
conditionally distinct eQTL signals of the same eQTL gene using PLINK™ (v.1.90b3). We used
40,000 unrelated United Kingdom Biobank (UKBB) subjects as the LD reference panel™. We
considered any lead gene-variant pairs with the same variant or that had an LD r? = 0.8 to be

the same signal. All LD look-ups used this UKBB reference panel unless stated otherwise.

Sex-stratified eQTL meta-analysis and conditional meta-analysis

We performed sex-stratified eQTL meta-analyses in the studies that contained both males and
females (FUSION and GTEx-European American). For each study and sex, we identified sets of
PEER factors and ran the local-eQTL analysis as described above. We performed sex-specific

meta-analysis and conditional meta-analysis as described above.

To ask if we identified the same eQTL signals in females and males, for each gene we
estimated the LD r? for all pairs of female and male conditionally distinct lead variants, using
PLINK™ (v.1.90b3) and UKBB as the LD reference panel. To compare the male and female

eQTL effect sizes for each gene, we extracted the female marginal meta-analysis lead variant
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571  and the same variant from the male marginal meta-analysis. We repeated the analysis

572  extracting the male marginal meta-analysis lead variant and the same variant from the female
573  marginal meta-analysis. We plotted the effect size comparisons using ggplot2 (v.3.4.0).”

574

575  Adipose and blood eQTL comparison

576  We downloaded the full blood local-eQTL summary statistics from the eQTLGen>? website. If
577  the gene had = 1 variant with an eQTL (FDR <0.05; P < 2e-5), we extracted the lead variant per
578  gene in the blood study. For genes with >1 variant with P = 3e-310, we extracted all variants
579  with that P-value. For each gene tested in common between the blood and adipose eQTL

580  studies, and for each of the adipose conditionally distinct signals in the gene, we determined the
581 LD r? between each lead conditionally distinct adipose variant and the gene’s lead blood

582  eQTLgen variant using UKBB as a LD reference in PLINK (v.1.90b3).”® If eQTLGen contained
583  multiple potential lead variants with a P < 3e-310, we chose the variant with the highest LD r?
584  with the adipose eQTL lead variant. We defined shared adipose and blood eQTL signals as

585  those with r* 2 0.2 and repeated the analysis with other more stringent LD r? thresholds (20.4,
586 0.6, and 0.8). We considered the blood eQTL signals not shared if the pairwise LD r? < 0.2

587  between adipose and blood lead variants per gene. We repeated this process using only

588 adipose primary signals or adipose non-primary signals.

589

590 eQTL signal characterization

591  We compared various characteristics across conditionally distinct eQTL signals and genes. We
592  extracted the conditionally distinct eQTL betas and took the absolute value. We calculated the
593 effect allele frequency (EAF) in METSIM (N), METSIM (S), FUSION, and TwinsUK based on the
594  individuals present in the meta-analysis and in GTEx based on all individuals with genotypes.
595  To estimate the across-study allele frequency, we estimated a sample size-weighted effect

596 allele frequency using METAL® and then used the resulting EAF to calculate the MAF. For each
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597  gene, we extracted the initial TSS position from the GENCODE v19% gtf file (gene start for

598  positive strand, gene end for reverse strand). We calculated the distance from the lead

599  conditionally distinct variant to gene TSS by taking the absolute value of the difference between
600 the TSS position and the variant position. To test for differences in eQTL betas, MAF and

t’” which

601 distance to TSS between pairs of eQTL signal numbers, we used Mood’s median tes
602 tests for a difference in medians using median_test() in R (v.4.1.3).

603

604  We used the LocusZoom software (v.1.4) with the November 2014 1000G EUR reference panel
605 to create all locus plots.”® We used marginal eQTL meta-analysis summary results for all plots
606  unless specified as an all-but-one (AB1) plot. The AB1 plots are conditioned on all the signals
607  except the one specified. All other plots were created using ggplot2”® (v.3.4.0) in R (v. 4.1.3).
608

609  Heritability estimations

610  We estimated the heritability of gene expression levels in TwinsUK using 186 dizygotic and 131
611  monozygotic twin pairs. We calculated the residuals of gene expression level adjusted for

612  technical covariates, including GC mean, median insert size, primer index, date of sequencing
613  and RNA extraction batch. Then, we used the residuals to calculate heritability with twinlm()
614  function from mets package in R (v.4.0.3). We reported the heritability estimated by the ACE
615  model, which assumes the variance in gene expression level to be partitioned into variances of
616  additive genetic factors (A), shared environmental factors (C) between co-twins, and unique
617  environmental factors (E) that are not related between co-twins. Inclusion or exclusion of age as
618  a covariate did not significantly change the results. We tested the relationship between

619  heritability and the number of eQTL meta-analysis signals using linear regression models. As
620  genes with higher expression levels have more statistical power to detect an eQTL or have

621  higher heritability estimates, we also adjusted for the quartile groups of gene expression levels

622  in the model. We calculated the quartiles with the median expression levels among all the

24


https://doi.org/10.1101/2023.10.26.563798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.563798; this version posted October 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

623  samples for each gene within TwinsUK and METSIM (S). We tested for statistical difference
624  between proportions using prop.test() in R.

625

626  pLl scores

627  We downloaded the gnomAD??® (v.2.1.1) loss-of-function metrics by gene table from the

628  gnomAD website. We matched the adipose eQTL genes with the gnomAD table to extract the
629  values for the probability of loss-of-function intolerance (pLI). Then, we calculated the proportion
630  of genes tested for an eQTL with a pLI score = 0.9 out of all genes (with pLI scores available)
631  separated by the number of eQTL signals per gene. We repeated this using only genes

632  expressed in TwinsUK or genes expressed in METSIM (S) and separated the genes by meta-
633  analysis eQTL signal number and TwinsUK or METSIM (S) gene expression quartile (described
634  above).

635

636  GWAS signal identification and conditional analysis

637  We downloaded GWAS summary statistics for 28 traits from the locations listed in Table $12,
638 including sex-stratified GWAS summary statistics for WHRadjBMI*”, WC3, HC®, and the fat
639  depot traits.*? For each trait, we used GWAS summary data from analysis of European-ancestry
640 individuals.

641

642  To meet the coloc assumption of no more than one signal in a region per dataset*®, we isolated
643  conditionally distinct GWAS signals. When conditionally distinct signals were described, we

644  used the reported lead variants. To isolate each signal, we conditioned on any reported lead
645  variant within 500 kb of the signal of interest. We ran GCTA cojo-cond with default parameters
646  and used the UKBB LD reference panel. This process generated approximate conditional

647  summary statistics for each signal of interest (termed ‘all-but-one’ summary statistics), including

648 variants +500 kb from the lead variant. If no other lead variant was located within 500 kb of the
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649 lead variant of interest, we used the marginal summary statistics as the all-but-one summary
650  statistics.

651

652  When conditionally distinct GWAS signals were not reported for a dataset (UKBB traits WC and
653 HC, and GLGC lipid traits), we identified conditionally distinct lead variants from the marginal
654 GWAS summary statistics. We defined a locus as a lead variant (marginal P < 5e-8) and its 500
655 kb flanking regions using swiss (v.1.1.1). If another lead variant was within 1 Mb, we clumped
656  their two loci together into a super-locus. We repeated this clumping until there was greater than
657 1 Mb between any lead variant in the super-locus and any lead variant in another locus or

658  super-locus. We then used GCTA? cojo-slct (MAF = 1%; collinearity < 0.5; conditional P < 5e-8;
659  UKBB LD reference panel) to identify conditionally distinct lead variants within each locus or
660  super-locus. For loci/super-loci with more than one signal, we isolated each signal using GCTA
661  cojo-cond (MAF = 1%; collinearity < 0.5; UKBB LD reference panel), generating all-but-one

662  summary statistics spanning the entire region of the locus/super-locus. For signals in single-
663  signal loci, we used marginal summary statistics as the all-but-one summary statistics. We

664  repeated the conditional analysis for the male and female GWAS datasets.

665

666  Colocalization

667  For each trait, we used PLINK (v.1.90b3) to calculate the LD r? between all conditionally distinct
668  GWAS lead variants and conditionally distinct adipose eQTL lead variants within 500 kb of each
669  other using the UKBB LD reference panel described above. If the LD r* was = 0.5, we tested
670  GWAS-eQTL pairs for colocalization using coloc (v.5.1.0.1, coloc.abf, default settings).** For
671 each GWAS-eQTL pair, we used the lead variant’s all-but-one eQTL and all-but-one GWAS
672  summary statistics for the colocalization analysis. We considered GWAS-eQTL signal pairs

673  colocalized if the coloc PP4 was = 0.5. To determine the nearest gene to the GWAS signal, we

674  used all of GENCODE v19 genes and bedtools’ closest function (v.2.3.0) on the GWAS lead
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675  variants. We used the same procedure to colocalize conditionally distinct signals from the

676  female GWAS signals with female eQTL signals and to colocalize the male GWAS signals with
677  male eQTL signals.

678

679  To compare the conditional eQTL and GWAS colocalization results to colocalization using
680  marginal eQTL and GWAS signals, we repeated the colocalization analysis using marginal
681  eQTL signals and GWAS full summary statistics (P < 5e-8). We defined the marginal eQTL
682  signal as the most significant variant per gene in the marginal eQTL analysis for genes with =1
683  variant with P < 1e-6.

684

685  To show visually if non-primary eQTL signals are equally likely to be colocalized compared to
686  primary eQTL signals independent of P-value strength, we combined the 15-5" eQTL signals
687  and divided them into four P-value quartiles. In each quartile and eQTL signal number we

688  counted the number of eQTL signals and the number of eQTL signals colocalized with at least
689  one GWAS signal. We calculated the proportion and standard error for the number of eQTL
690  signals colocalized out of the total eQTL signals separated by signal number and quartile.

691

692 SMR

693  We used SMR' (v.1.3.1) on colocalized all-but-one conditionally distinct GWAS-eQTL signals
694  using default parameters and a P < 1e-6 threshold to select the lead eQTL for the SMR test.
695  Results were obtained for 3,587 of the 3,605 GWAS-eQTL signal pairs tested. We considered
696  SMR results significant at P < 1.4e-5 (0.05/3,605).

697

698 MRLocus

699  We used MRLocus*® (v.0.0.26) on colocalized GWAS-eQTL signals for which multiple GWAS

700  signals for the same trait were colocalized with multiple eQTL signals for the same gene (allelic
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701  series). To limit MRLocus analyses to nearly independent allelic series, we excluded genes for
702  which eQTL signals had an LD r? > 0.05, and then in a second analysis, we further excluded
703  genes if eQTL signals had an LD D’ > 0.1. We also included eQTL signals that did not

704  colocalize with GWAS signals in the MR analysis.

705

706  Association of gene expression with metabolic traits

707  To follow-up the ZNRF3, PDE3A, and SEMAS3C colocalized GWAS-eQTL pairs, we performed
708 trait-gene expression associations in METSIM (S) using HDL-C and WHR measurements. We
709 inverse normal transformed the gene expression and phenotypes and performed linear

710  regression using the Im() function in R, adjusting for BMI, age, sequencing batch, RIN, mean
711  read insert size, and read deletion size.

712

713 Enrichment of eQTL with chromatin states and chromatin accessibility

714  We used GARFIELD® (v2) to test for enrichment of eQTL signals in adipose tissue promoter
715  and enhancer chromatin states from the NIH Roadmap Epigenomics project,®' and chromatin
716  accessibility ATAC-seq peaks from six datasets: the top 100K peaks from SGBS cells at day 0
717  of differentiation (preadipocytes), day 4 (partially differentiated adipocytes), and day 14 (mature
718  adipocytes); preadipocyte-dependent peaks; adipocyte-dependent peaks; and METSIM adipose
719  tissue consensus peaks.> We tested for enrichment separately by eQTL signal number,

720  including the lead variants for genes without a significant eQTL as background in all analyses.
721  We used GARFIELD to separate variants into “test” and “background” sets based on an eQTL
722 threshold of P <1e-6 and estimated independent variants by clumping both the test and

723 background variants using an LD r? threshold of 0.1. We tested for overlap of both the clumped
724  variants and their LD proxies (r>>0.8, PLINK, UKBB) with the regulatory elements and compared
725  the proportion of overlaps in the test set to that in the background set for each regulatory

726  element class using logistic regression, controlling for variant MAF, number of LD proxies, and
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727  distance to nearest gene. We used the beta from the logistic regression model, which is the
728  natural log of the odds ratio, as the effect size and its P-value to assess significance.

729  Additionally, we created a BED file of the eQTL gene, eQTL lead variants, and their proxies, and
730  used the bedtools” intersectBed function’ (v.2.3.0) to overlap the eQTL variants and their

731  proxies with ATAC peak accessible chromatin regions from the same datasets as the

732 enrichment.

733

734  Cell culture

735  We cultured hWAT-A41 preadipocytes (provided by Yu-Hua Tseng, Joslin Diabetes Center®!) in
736  DMEM-high glucose (Sigma) supplemented with 10% fetal bovine serum (FBS). For

737  differentiation, we plated 40,000 preadipocytes per well in a 24-well plate, grew them to

738  confluence, and differentiated them for 5 days using induction media containing DMEM-high
739  glucose supplemented with 2% FBS, 17 uM pantothenate, 33 uM biotin, 0.5 uM human insulin,
740 2 nM triiodothyronine, 0.1 yM dexamethasone, 500 uM IBMX and 30 uM indomethacin. We

741  replaced the media every two days for five days.

742

743  We cultured SGBS preadipocytes (provided by Dr. Martin Wabitsch, University of Ulm) in basal
744  medium (DMEM:F12, 17 yM pantothenate and 33 pM biotin) with 10% FBS. For day 5

745  differentiated adipocytes, we plated 40,000 preadipocytes per well in a 24-well plate, grew the
746  cells to confluency, and induced differentiation for five days as described previously®?.

747

748  We cultured LHCN-M2 human myoblasts (Evercyte GmbH, Vienna, Austria) as previously

749  described®? in DMEM/medium 199 (Gibco, 4 +1) with 15% FBS, 0.02 M HEPES, 0.03 ug/ml zinc
750  sulfate, 1.4 pg/ml vitamin B12, 0.055 pg/ml dexamethasone, 2.5 ng/ml recombinant human

751  hepatocyte growth factor (Pepro Tech cat# 100-39), and 10 ng/ml basic FGF (Pepro Tech cat#

752 100-18B). For differentiation, we plated 25,000 LHCN-M2 myoblasts per well in a 24-well plate,
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753  grew the cells to confluency, and changed to DMEM-5.5 mM glucose with 2% horse serum for
754  four days. We maintained all cells at 37°C in a humidified incubator with 5% CO-.

755

756  Transcriptional reporter luciferase assay

757  To test the allelic differences in transcriptional activity, we designed PCR primers (Table $25) to
758  amplify DNA fragments containing rs917191 (478 bp) or rs12537553 (693 bp). We generated
759  PCR products using DNA from individuals homozygous for both alleles and cloned them into
760 luciferase reporter vector pGL4.23 (Promega) in forward and reverse orientations with respect
761  to the genome. We tested transcriptional activity in preadipocytes, day 3 differentiated

762  adipocytes (hWAT and SGBS), myoblasts, and day 3 differentiated myocytes (LHCN-M2). We
763  plated 35,000 cells per well for hAWAT preadipocytes, SGBS preadipocytes, and LHCN-M2
764  myoblasts in 24-well plates one day before transfection. We co-transfected three sequence-
765  verified constructs with phRL-TK Renilla reporter vector (Promega) using lipofectamine 3000
766  (Life Technologies) for AWWAT and SGBS cells and lipofectamine LTX (Life Technologies) for
767  LHCN-M2 cells in triplicate according to manufacturer’s protocol. We measured luciferase

768  activity 28 hours (SGBS) or 48 hours (hWAT and LHCN-M2) post-transfection using a dual-
769 luciferase assay system and normalized firefly luciferase activity to Renilla luciferase activity
770  values.®® We quantified activity relative to an ‘empty’ vector without an added DNA fragment.
771  For each variant, orientation, and cell type, we tested for significant (P<0.05) differences in the
772 relative activity between the two alleles using unpaired t-tests.

773

774  Data availability

775  The AdipoExpress meta-analysis results are available at https://mohlke.web.unc.edu/data/.

776  Results include full marginal eQTL summary statistics for all ancestries, only European-ancestry
777  individuals, males, and females, along with the conditional all-but-one eQTL summary statistics

778  for each signal. Locus plots for every GWAS-eQTL colocalized signal pair are also available.
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779  METSIM genotypes and gene expression data are available at dbGaP phs000743.v3. FUSION
780  genotypes and gene expression data are available at dbGaP phs001048. TwinsUK RNA-Seq
781  data are available in the European Genome-phenome Archive (EGA) under accession

782  EGAS00001000805. TwinsUK genotypes are available upon application to the TwinsUK

783  Resource Executive Committee (TREC). For information on how to apply, see

784 https://twinsuk.ac.uk/resources-for-researchers/access-our-data/.

785
786  Code availability
787  All software used in this study is publicly available. Apex2R can be found here:

788 https://github.com/corbina/apex2R.
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Tables

Table 1: Overall discovery of adipose eQTL

Percentage of

Number of Genes eQTL genes eQTL genes C_on_dltlonally
distinct eQTL
samples tested (P <1e-6) among genes ianal

tested signals
METSIM (N) 426 25,520 10,804 42.3% 14,092
METSIM (S) 420 29,589 10,074 34.0% 13,392
FUSION 280 29,596 11,493 38.8% 14,931
TwinsUK 722 23,114 10,352 44.8% 13,796
GTEx ALL 496 23,697 9,352 39.5% 12,354
GTEx EUR 408 23,719 8,321 35.1% 10,453
Meta-analysis ALL 2,344 29,254 18,476 63.2% 34,774
Meta-analysis EUR 2,256 29,259 18,345 62.7% 34,216

Summary of eQTL results across all individual studies and the meta-analyses. We conducted eQTL with and without non-European

American GTEx samples. The meta-analyses only included eQTL genes present in at least two studies and variants present in all
five studies. Conditionally distinct eQTL signals count one lead variant per gene per signal.
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Table 2: Summary of GWAS signals colocalized with adipose eQTL signals

GWAS TL Total Primary No_lr_ll:pr_imarly
GWAS trait . eQ colocalized eQTL eQTL signals
signals genes _. - - (percentage of
signal pairs signals :
colocalized)
High density lipoprotein-C 213 344 369 237 132 36%
Triglycerides (log) 213 372 393 264 129 33%
Total cholesterol 181 294 297 204 93 31%
Body mass index 164 266 272 186 86 32%
Low density lipoprotein-C 154 231 236 153 83 35%
Waist-to-hip ratio adjBMI 146 225 238 161 77 32%
Non- High density lipoprotein 142 251 263 188 75 29%
Hip circumference 124 200 207 150 57 28%
Waist-to-hip ratio 105 176 186 125 61 33%
Diastolic blood pressure 100 152 158 116 42 27%
Waist circumference 87 170 174 116 58 33%
Pulse pressure 81 119 120 88 32 27%
Type 2 diabetes 81 152 160 115 45 28%
Systolic blood pressure 73 131 135 91 44 33%
Coronary artery disease 69 104 105 71 34 32%
Hemoglobin A1c 23 40 40 29 11 28%
Gluteofemoral AT adjBMI 19 33 34 24 10 29%
Fasting glucose 17 29 29 19 10 34%
Fasting insulin 16 28 28 17 11 39%
Visceral/Subcutaneous 14 34 35 23 12 34%
Visceral AT adjBMI 12 29 30 20 10 33%
Visceral/Gluteofemoral 12 25 25 20 5 20%
Subcutaneous AT adjBMI 10 22 22 16 6 27%
Subcutaneous/Gluteofemoral 10 25 25 19 6 24%
Gluteofemoral AT 8 14 15 10 5 33%
2-hour glucose 3 3 3 2 1 33%
Visceral AT 2 4 5 3 2 40%
Subcutaneous AT 1 1 1 1 0 0%
Total 2,080 3,474 3,605 2,468 1,137  32%
Total unique -- 1,861 - -- - --

GWAS signals colocalized with eQTL signals based on lead variant LD r?20.5 and coloc
PP4=0.5. GWAS signals indicates the number of unique GWAS signals that are colocalized with
at least one eQTL signal. eQTL genes indicates the unique eQTL genes colocalized with at
least one GWAS signal. The total colocalized signals indicates the sum of primary and non-
primary GWAS-eQTL signal pairs. The total unique row is the total number of unique eQTL
genes and signals colocalized with a GWAS signal. C, cholesterol; AT, adipose tissue.
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Figures
A.
Number of genes with the indicated number of signals Number of genes

Study  Samples 1 2 3 4 5  >6signals | Tested si::]al signz‘; %
METSIM (N) 426 8,134 (75%) 2,174 (20%) 399 (4%) 81 (1%) 12 (0%) 4 (0%)| 25,519 10,804 2,670 (25%)
METSIM (S) 420 7,576 (75%) 1,912 (19%) 432 (4%) 103 (1%) 29 (0%) 22 (0%)| 29,589 10,074 2,498 (25%)
FUSION 280 8,733 (76%) 2,203 (19%) 463 (4%) 74 (1%) 15 (0%) 5 (0%)| 29,596 11,493 2,760 (24%)
TwinsUK 722 7,560 (73%) 2,259 (22%) 433 (4%) 84 (1%) 13 (0%) 3 (0%)| 23,114 10,352 2,792 (27%)
GTEXx 496 7,078 (76%) 1,756 (19%) 361 (4%) 116 (1%) 32 (0%) 9 (0%)| 23,697 9,352 2,274 (24%)
GTEx EUR 408 6,633 (80%) 1,362 (16%) 239 (3%) 63 (1%) 19 (0%) 5 (0%)| 23,719 8,321 1,688 (20%)
Meta 2,344 9,114 (49%) 5,334 (29%) 2,377 (13%) 952 (5%) 407 (2%) 292 (2%)| 29,254 18,476 9,362 (51%)
Meta EUR 2,256 9,148 (50%) 5,310 (29%) 2,309 (13%) 917 (5%) 380 (2%) 281 (2%)| 29,259 18,345 9,197 (50%)

B C.
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Figure 1. Conditionally distinct signals in adipose eQTL studies.

A. Number of genes with 1 to 10 eQTL signals (P < 1e-6) identified in each study and the
meta-analyses. ‘21 signal’ column indicates the number of genes with at least one
significant eQTL signal, ‘=2 signals’ indicates the number of genes with two or more
eQTL signals, and the percentage of genes with an eQTL that have two or more eQTL
signals is in parentheses.

B. The numbers of genes identified with an eQTL in each study are represented by filled
circles, and the numbers of eQTL signals are represented by asterisks. Studies are
shown by color: blue, METSIM (N); purple, METSIM (S); green, FUSION; orange,
TwinsUK; pink, GTEXx all populations; red, GTEx EUR; gray, meta-analysis with GTEx all
populations; and black, meta-analysis with GTEx EUR.

C. The number of genes with 1 through 10 eQTL signals detected in each study.
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Figure 2. GLYCTK eQTL signals identified in each study and the meta-analysis.
LocusZoom plots of the marginal GLYCTK eQTL for the meta-analysis and each individual
study. The x-axes show position on chromosome 3 and y-axes show eQTL -log1o P-value. The
lead variant of the 1% signal (chr3:52,273,421, rs610060) in the meta-analysis is represented by
a red diamond in all plots, and the lead variant of the second signal (chr3:52,276,901,
rs11711914) in the meta-analysis is represented by a blue diamond in all plots. The red circles
represent variants in stronger LD with the lead variant of the 1% signal while the blue triangles
represent variants in stronger LD with the lead variant of the second signal. Shading indicates
LD r? as shown in the legend. Although each study has both signals colored, only one signal
was significant in the conditional eQTL analysis for each of the individual studies (P < 1e-6).
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Figure 3. Characteristics of eQTL variants and genes according to the number of
significant eQTL signals.

Violin plots with inset boxplots of the (A) absolute value of the effect sizes of lead variants, (B)
MAF, and (C) distance of the lead variants to the gene TSS for the indicated signals in order of
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discovery. Only the 661 genes with 5 or more signals were included. For the boxplots, the
center line represents the median value, the box limits represent the upper and lower quartiles,
whiskers represent the 1.5x interquartile range, and the black circles represent outliers. The
black lines connect the median values of each signal group. In C, 163 points with a distance to
TSS greater than 600 were excluded. See Figure S6 for genes with one to four eQTL signals.
(D) Proportion of genes in TwinsUK with the specified number of eQTL signals separated by
gene expression quartiles. Quartile 1 indicates the genes with the lowest expression. The
darkest blue are the genes without an eQTL signal and the lightest blue are genes with five or
more eQTL signals. (E) Violin plots with inset boxplots of the heritability of genes with the
specified number of eQTL signals in TwinsUK. For the boxplots, the center line represents the
median value, the box limits represent the upper and lower quartiles, whiskers represent the
1.5x interquartile range, and the black circles represent outliers. The black lines connect the
median values of each signal group. (F) Proportion of genes for each signal number with a pLI
score = 0.9 out of the total number of genes that have pLI scores available for that signal
number.
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Figure 4. Sex-stratified WHRadjBMI GWAS and ADORA1 eQTL signal plots.

(A) LocusZoom plots for WHRadjBMI female GWAS signal and (B) ADORA1 female eQTL
signal. (C) LocusZoom plots for WHRadjBMI male GWAS signal and (D) ADORA1 male eQTL
signal. All plots are colored by LD with the female GWAS lead variant represented by a purple
diamond.
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Figure 5. Colocalization of two or more GWAS signals with two or more eQTL signals at
ZNRF3 and PDE3A.
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A. LocusZoom plots of WHRadjBMI GWAS summary statistics (Pulit et al 2019) (top) and
marginal ZNRF3 eQTL data for the meta-analysis (bottom). Both plots show two signals
colored by the GWAS lead variants (red diamond, 1% signal chr22:29,449,477,
rs2294239; blue diamond, 2" signal chr22:29,338,235, rs5762906). The red circles and
blue triangles indicate genetic variants in stronger LD with the 15 or 2" signal,
respectively and are shaded based on LD. Signal 1 in the GWAS is colocalized with
signal 1 of the eQTL dataset (LD r? = 0.90; coloc PP4 = 0.99) and signal 2 for both
datasets are also colocalized (LD r* = 1.00; coloc PP4 = 0.98).

B. Effect sizes of the WHRadjBMI GWAS signals (y-axis) versus the effect sizes of the
ZNRF3 eQTL signals (x-axis) from MRLocus. Each point represents a colocalized eQTL
signal with standard error bars. The solid blue line represents the slope of the effect of
the gene on the trait, and dotted blue lines represent the confidence interval. The slope
estimates a gene-to-trait effect of -0.19, meaning that increasing adipose ZNRF3
expression level by one population standard deviation should reduce WHRadjBMI by
19% of its population standard deviation.

C. Scatter plot of inverse normalized waist-to-hip ratio (x-axis) and ZNRF3 gene expression
(y-axis) in METSIM (S) (n = 420). Each point represents an individual sample, the blue
line represents the linear regression slope and the 95% confidence interval is shown in
gray. The correlation value and association P-value are shown.

D. LocusZoom plot of the HDL-C GWAS summary statistics (Graham et al 2021) (top) and
marginal PDE3A eQTL data for the meta-analysis at (bottom). Both plots show four
signals colored by the GWAS lead variants (red diamond, 1% signal chr12:20,470,221,
rs11045172; blue diamond, 2™ signal chr12:20,470,009, rs2044315; yellow diamond, 3™
signal chr12:20,579,083, rs11045237; green diamond, 4" signal chr12:20,591,332,
rs7134150). The red circles, blue triangles, yellow squares, and green inverted triangles
indicate genetic variants in stronger LD with the 1%, 2", 3", or 4" signal, respectively
and are shaded based on LD. Signal 1 in the GWAS is colocalized with signal 1 of the
eQTL dataset (LD r? = 1.00; coloc PP4 = 1.00), signal 2 for the GWAS is colocalized with
signal 4 of the eQTL dataset (LD r* = 0.93; coloc PP4 = 1.00), signal 3 for the GWAS
and signal 2 for the eQTL dataset are colocalized (LD r* = 0.42; coloc PP4 = 1.00), and
signal 4 for the GWAS and signal 3 for the eQTL dataset are colocalized (LD r? = 0.94;
coloc PP4 = 0.99).

E. Effect sizes of the HDL-C GWAS signals (y-axis) versus the effect sizes of the PDE3A
eQTL signals (x-axis) from MRLocus. Each point represents a colocalized eQTL signal
with standard error bars. The solid blue line represents the slope of the effect of the
gene on the trait, and dotted blue lines represent the confidence interval. The slope
estimates a gene-to-trait effect of -0.14, meaning that increasing adipose PDE3A
expression level by one population standard deviation should reduce HDL-C by 14% of
its population standard deviation.

F. Scatter plot of inverse normalized HDL-C (x-axis) and PDE3A gene expression (y-axis)
in METSIM (S) (n = 420). Each point represents an individual sample, the blue line
represents the linear regression slope and the 95% confidence interval is shown in gray.
The correlation value and association P-value are shown.
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Figure 6. Regulatory annotation enrichment of eQTL signals and validation of allelic
effects on transcriptional activity at SEMA3C.

A. eQTL signals enriched in Roadmap Epigenomics chromatin states in adipose tissue
compared to genes without an eQTL separated by signal number. Dark red represents

promoters and gold represents enhancers. The bars represent the upper and lower 95%
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confidence intervals. The asterisk represents significant Bonferroni-adjusted enrichment
values that do not overlap an odds ratio (OR) of 1 (black dashed line).

. LocusZoom plots of the WHRadjBMI GWAS summary statistics (Pulit et al 2019)(top)
and the SEMA3C meta-analysis eQTL data conditioned on all but signal 1 (bottom). Both
plots show the same lead variant represented by a purple diamond (chr7:80,570,871;
rs917191). Other variants are colored based on the LD r? 1000G EUR with the lead
variant. Signal 1 in the GWAS dataset is colocalized with signal 1 of the eQTL dataset
(LD r? = 1.0; coloc PP4 = 1.0).

. UCSC genome browser tracks showing regulatory annotations that overlap SEMA3C
eQTL variants. In the SEMA3C SNPs track, the lead variant is shown in purple and
proxy variants (LD r? = 0.8) are shown in black. The chromHMM tracks are from
Epigenomic Roadmap for mesenchymal stem cell-derived adipocytes, adipose nuclei,
skeletal muscle, liver, and brain hippocampus; red represents a promoter-like signature,
yellow represents an enhancer-like signature, green represents a signature for
elongating RNA polymerase, and gray represents low to no signal. The blue signal
tracks represent ATAC-seq accessible chromatin in SGBS cells at differentiation day 0,
day 4, and day 14. The METSIM adipose peaks are ATAC-seq peaks detected in at
least 3 adipose tissue samples. SEMA3C gene annotations are from UCSC genes. The
bottom figure shows the browser tracks zoomed in to the region around rs917191.

. Relative transcriptional activity of rs917191-G and rs917191-C in hWAT adipocytes from
dual-luciferase reporter assays. Values indicate transcriptional activity relative to an
empty vector (EV), points represent independent clones with standard error bars, and P-
values from Student’s unpaired t-tests compare activity between alleles.

. Scatter plot of inverse normalized waist-to-hip ratio (y-axis) and SEMA3C gene
expression (x-axis) in METSIM (S) (n = 420). Each point represents an individual
sample, the blue line represents the linear regression slope and the 95% confidence
interval is shown in gray. The correlation value and association P-value are shown.
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