

1 Diatom pyrenoids are encased in a protein shell

2 that enables efficient CO₂ fixation

3

4 **Authors:**

5 Ginga Shimakawa^{1†}, Manon Demulder^{2†}, Serena Flori^{2,3†}, Akihiro Kawamoto^{4†},
6 Yoshinori Tsuji^{1,5}, Hermanus Nawaly¹, Atsuko Tanaka⁶, Rei Tohda^{4†}, Tadayoshi Ota¹,
7 Hiroaki Matsui¹, Natsumi Morishima¹, Ryosuke Okubo¹, Wojciech Wietrzynski², Lorenz
8 Lamm^{2,7}, Ricardo D. Righetto², Clarisse Uwizeye³, Benoit Gallet⁸, Pierre-Henri
9 Jouneau⁹, Christoph Gerle^{4‡}, Genji Kurisu⁴, Giovanni Finazzi³, Benjamin D. Engel^{2,*},
10 Yusuke Matsuda^{1,*}

11 **Addresses:**

12 ¹Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-
13 Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.

14 ²Biozentrum, University of Basel, Spitastrasse 41, 4056 Basel, Switzerland.

15 ³Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA,
16 INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France.

17 ⁴Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871
18 Japan.

19 ⁵Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.

20 ⁶Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the
21 Ryukyus, Nishihara, 903-0213 Japan.

22 ⁷HelmholtzAI, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.

23 ⁸University of Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France.

24 ⁹University of Grenoble Alpes, CEA, IRIG-MEM, F-38000 Grenoble, France.

25 [†]Theses authors contributed equally to this study.

26 ¹Current Address: Exploratory Research Center on Life and Living Systems, National Institute
27 of Natural Sciences, Okazaki, Aichi, Japan

28 [‡]Current Address: Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto,
29 Hyogo, Japan

30 **Correspondence to:** ben.engel@unibas.ch, yusuke@kwansei.ac.jp

31 **Short title:** Structure and function of the diatom pyrenoid shell

36 **ORCID IDs:** 0000-0002-8557-2096 (G.S.), 0000-0002-6015-850X (M.D.), 0000-0003-
37 3407-2785 (S.F.), 0000-0002-7380-0127 (A.K.), 0000-0002-5323-6098 (C.U.), 0000-
38 0001-8758-7681 (B.G), 0000-0003-0350-4901 (P-H. J.), 0000-0002-5354-0807 (G.K.),
39 0000-0003-0597-7075 (GF), 0000-0002-0941-4387 (B.D.E.), 0000-0002-1892-4397
40 (Y.M.)

41

42 **Keywords:** marine diatoms, chloroplast, pyrenoids, photosynthesis, CO₂ assimilation,
43 CO₂-concentrating mechanism, mass spectrometry, *in vitro* reconstitution, cryo-EM,
44 focused ion beam, cryo-ET

45

46 **Abbreviations:** CA, carbonic anhydrase; CCM, CO₂-concentrating mechanism; cryo-
47 ET, cryo-electron tomography; DIC, dissolved inorganic carbon; EPYC1, essential
48 pyrenoid component 1; FBA, fructose 1,6-bisphosphate aldolase; FIB, focused ion
49 beam; GC-FID, gas-chromatography flame ionization detector; HC, high (1%) CO₂; LC,
50 low (0.04%) CO₂; LC-MS/MS, liquid chromatography coupled with tandem mass
51 spectrometry; pAA, photo-reactive amino acids; PyShell, pyrenoid shell; Rubisco,
52 ribulose 1,5-bisphosphate carboxylase/oxygenase; RbcL, Rubisco large subunit; STA,
53 subtomogram averaging; SPA, single particle analysis.

54 **Abstract**

55 Pyrenoids are subcompartments of algal chloroplasts that concentrate Rubisco
56 enzymes and their CO₂ substrate, thereby increasing the efficiency of carbon fixation.
57 Diatoms perform up to 20% of global CO₂ fixation, but their pyrenoids remain poorly
58 characterized at a molecular level. Here, we used *in vivo* photo-crosslinking to
59 catalogue components of diatom pyrenoids and identified a pyrenoid shell (PyShell)
60 protein, which we localized to the pyrenoid periphery of both the pennate diatom,
61 *Pheodactylum tricornutum*, and the centric diatom, *Thalassiosira pseudonana*. *In situ*
62 cryo-electron tomography (cryo-ET) revealed that the pyrenoids of both diatom species
63 are encased in a lattice-like protein sheath. Disruption of PyShell expression in *T.*
64 *pseudonana* resulted in the absence of this protein sheath, altered pyrenoid
65 morphology, and a high-CO₂ requiring phenotype, with impaired growth and reduced
66 carbon fixation efficiency under standard atmospheric conditions. Pyrenoids in mutant
67 cells were fragmented and lacked the thylakoid membranes that normally traverse the
68 Rubisco matrix, demonstrating how the PyShell plays a guiding role in establishing
69 pyrenoid architecture. Recombinant PyShell proteins self-assembled into helical tubes,
70 enabling us to determine a 3.0 Å-resolution PyShell structure. We then fit this *in vitro*
71 structure into an *in situ* subtomogram average of the pyrenoid's protein sheath, yielding
72 a putative atomic model of the PyShell within diatom cells. The structure and function
73 of the diatom PyShell provides a new molecular view of how CO₂ is assimilated in the
74 ocean, a crucial biome that is on the front lines of climate change.

75 **Introduction**

76 Diatoms are one of the most dominant groups of phytoplankton in the ocean. They are
77 responsible for 15-20% of the annual global primary production (Falkowski et al., 1998;
78 Smetacek, 1999), powering the Earth's carbon cycle and feeding energy into vast
79 marine food webs. Despite their importance, the underlying molecular mechanisms
80 that enable diatoms to efficiently assimilate CO₂ remain poorly understood. Diverse
81 clades of eukaryotic algae, including diatoms, rely on a biophysical CO₂-concentrating
82 mechanism (CCM) to thrive in CO₂-limited aquatic environments. Algal CCMs use
83 HCO₃⁻ transporters to actively accumulate dissolved inorganic carbon (DIC) in the
84 chloroplast and then use carbonic anhydrases (CAs) to convert this HCO₃⁻ into a high
85 local concentration of CO₂ in the pyrenoid, a chloroplast subcompartment packed with
86 the carbon-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco).
87 The pyrenoid thereby floods Rubisco with its CO₂ substrate, while suppressing
88 Rubisco's competitive oxygenase reaction, enabling rates of carbon fixation that
89 exceed those of land plants (Giordano et al., 2005; Tsuji et al., 2017; Hennacy and
90 Jonikas, 2020; Shimakawa et al., 2023).

91 Pyrenoids are a general feature of algal CCMs. However, these chloroplast
92 subcompartments have convergently evolved numerous times and exhibit a wide
93 variety of morphologies (Meyer et al., 2017; Barrett et al., 2021; Uwizeye et al., 2021),
94 indicating that pyrenoids in different clades may have distinct components and
95 specialized mechanisms. To date, only the pyrenoid of the freshwater green alga
96 *Chlamydomonas reinhardtii* has been characterized in molecular detail. The *C.*
97 *reinhardtii* pyrenoid consists of a spherical matrix of densely packed Rubisco
98 complexes, surrounded by a starch sheath and fenestrated by a network of membrane
99 tubules (Griffiths, 1970; Lacoste-Royal and Gibbs, 1987; Engel et al., 2015). These
100 tubules contain an α -type CA that produces a source of CO₂ at the center of the
101 pyrenoid (Funke et al., 1997; Raven, 1997; Karlsson et al., 1998; Hanson et al., 2003).
102 The matrix is formed by the liquid-liquid phase separation of Rubisco with its linker
103 protein EPYC1 (Mackinder et al., 2016; Freeman Rosenzweig et al., 2017; Wunder et
104 al., 2018; He et al., 2020), and it dynamically condenses or disperses in response to
105 changes in CO₂ concentration (Ramazanov et al., 1994; Morita et al., 1997;
106 Borkhsenious et al., 1998).

107 In contrast to the *C. reinhardtii* pyrenoid, the Rubisco matrix of the diatom
108 pyrenoid has an elongated oval shape and is typically traversed along its long axis by

109 one or two specialized thylakoids (Jenks and Gibbs, 2000; Bedoshvili et al., 2009; Flori
110 et al., 2017). Several proteins have been localized to the pyrenoid of the marine diatom,
111 *Phaeodactylum tricornutum*. In addition to Rubisco, this pyrenoid contains β -type CAs
112 (Tachibana et al., 2011), fructose 1,6-bisphosphate aldolases (FBAs) (Allen et al.,
113 2011), and a θ -type CA specifically localized in the lumen of the thylakoids at the center
114 of the pyrenoid (Kikutani et al., 2016; Shimakawa et al., 2023). Although these
115 observations strongly suggest that diatom pyrenoids increase CO_2 concentration
116 around Rubisco in a similar fashion to green algae, the pyrenoid components in *P.*
117 *tricornutum* have distinct origins and arose from endosymbiotic red algae, stramenopile
118 host cells, or diatom-specific bacterial gene transfer (Allen et al., 2011; Nonoyama et
119 al., 2019; Kroth and Matsuda, 2022). In the other words, the pyrenoids of diatoms and
120 green algae may have convergently evolved similar functions from a different set of
121 proteins.

122 In this study, we identify and characterize a distinct component of diatom
123 pyrenoids that is not present in *C. reinhardtii*: the pyrenoid shell (PyShell). This
124 proteinaceous sheath tightly encases the Rubisco matrix, is required for establishing
125 pyrenoid architecture, and is essential for efficient CO_2 assimilation and cell growth.
126 We directly observe PyShells in both pennate diatoms (*P. tricornutum*) and centric
127 diatoms (*Thalassiosira pseudonana*), while bioinformatic analysis suggests that
128 PyShells are common in several clades of marine algae, and thus, likely play a major
129 role in driving the ocean's carbon cycle.

130

131 **Results**

132 **Identification and localization of diatom PyShell proteins**

133 To identify novel components of diatom pyrenoids, we performed *in vivo* photo-
134 crosslinking (Suchanek et al., 2005), then disrupted the cells and looked for proteins
135 that co-migrated with the Rubisco large subunit (RbcL) by sucrose density gradient
136 centrifugation and SDS-PAGE (diagrammed in [Figure 1A](#)). *P. tricornutum* cells were
137 fed with L-photo-leucine and L-photo-methionine, synthetic amino acid derivatives with
138 diazirine rings in their side chains. Because they are structurally similar to natural
139 amino acids, these photo-reactive amino acids (pAAs) are taken up by the cells and
140 incorporated during protein synthesis. These *P. tricornutum* cells were then irradiated
141 with UV light, causing the pAAs to form reactive carbenes that enable zero-distance
142 photo-crosslinking with directly interacting proteins. Crude extracts from the photo-

143 crosslinked cells were separated by SDS-PAGE and immunoblotted for RbcL
144 (“Procedure A”, [Figure 1B](#)). In only the sample with both pAAs and UV irradiation, we
145 observed a RbcL-positive band trapped in the stacking gel, which we analyzed by liquid
146 chromatography tandem mass spectrometry (LC-MS/MS). In an alternative approach,
147 the crude extracts were separated by sucrose density gradient followed by SDS-PAGE
148 (“Procedure B”, [Figure 1C](#)). The sample treated with both pAAs and UV irradiation
149 showed RbcL bands in denser sucrose fractions, which we subjected to LC-MS/MS
150 analysis.

151 From these two procedures, we identified more than 100 candidates for *P.*
152 *tricornutum* pyrenoid proteins. We then filtered this list for the presence of the
153 stramenopile-specific plastid targeting sequence (ER+ASAFAp) at the N-terminus
154 (Gruber et al., 2007), yielding 49 and 14 candidate chloroplast proteins from
155 Procedures A and B, respectively ([Tables S1, S2](#)). In addition to known pyrenoid
156 proteins such as Rubisco, β-CAs (Tachibana et al., 2011), and FBAs (C1 and C5) (Allen
157 et al., 2011), we identified several new candidates, which include an unknown protein
158 (JGI protein ID: 45465), a putative acetyl-CoA carboxylase (JGI protein ID: 54926),
159 cytochrome *c*₆ (JGI protein ID: 44056), and a bestrophin-like protein (JGI protein ID:
160 46336). In the present study, we focused on the Pt45465 protein and its orthologues
161 in the model diatoms *P. tricornutum* and *T. pseudonana*.

162 The *P. tricornutum* gene *Pt45465* (*PtPyShell1a*) is located on chromosome 7
163 together with a parologue *Pt45466* (*PtPyShell2a*), which shares 74.3% similarity. There
164 are duplications of both genes on chromosome 28: *Pt50215* (*PtPyShell1b*) and
165 *Pt50214* (*PtPyShell2b*). All PtPyShell orthologs harbor stramenopile-type plastid
166 targeting sequences. These proteins contain no transmembrane helices and thus are
167 likely localized to the stroma. We defined two conserved regions (CR1 and CR2) in the
168 PyShell proteins ([Figure S1A](#)), which were comprised of >50% hydrophobic amino
169 acids. Using CR1 and CR2 as reference sequences, we searched for candidate
170 Pyshell genes and found homologues primarily in diatoms and haptophytes, but also
171 in a few marine algae from other clades ([Figure S1C](#)).

172 In *T. pseudonana*, we identified three putative PyShell orthologs: *Tp7881*
173 (*TpPyShell1*), *Tp23918* (*TpPyShell2*), and *Tp7883* (*TpPyShell3*). Expression of these
174 TpPyShell genes was analyzed in *T. pseudonana* wild-type cells grown under normal
175 atmospheric CO₂ (0.04%, hereafter “LC” for “low CO₂”) and high CO₂ (1%, hereafter
176 “HC”), indicating that TpPyShell1 and 2 are the most abundant isoforms ([Figure S1B](#)).

177 We next checked the subcellular localization of PyShell proteins in *P.*
178 *tricornutum* and *T. pseudonana* by fluorescence microscopy (Figures 1D, S2). We
179 generated strains of these two diatom species expressing PtPyShell1a:GFP and
180 TpPyShell1:GFP (C-terminal GFP tags), respectively. In *P. tricornutum*,
181 PtPyShell1a:GFP signal was clearly detected in a hollow rod shape at the center of the
182 chloroplast where the chlorophyll autofluorescence was dim, suggesting localization to
183 the pyrenoid, perhaps surrounding the Rubisco matrix (Figures 1D, S2A-B). In *T.*
184 *pseudonana*, we similarly observed TpPyShell1:GFP signal in a rod shape at the
185 center of the chloroplast (Figures 1D, S2B). We further analyzed the *P. tricornutum*
186 strain by immunoelectron microscopy, with anti-GFP nanogold localization confirming
187 that the PtPyShell1a:GFP proteins were accumulated along the peripheral regions of
188 the pyrenoid (Figure 1E).

189

190 **Molecular architecture of the PyShell lattice inside native diatom cells**

191 To gain a higher resolution view of the pyrenoid periphery, we turned to *in situ* cryo-
192 electron tomography (cryo-ET) (Turk and Baumeister, 2020; Hylton and Swulius, 2021).
193 *P. tricornutum* and *T. pseudonana* cells were vitreously plunge-frozen on EM grids,
194 thinned with a focused ion beam (Schaffer et al., 2017), and imaged in three
195 dimensions with cryo-ET. We observed that the pyrenoids of both diatom species are
196 surrounded by a proteinaceous sheath, which tightly encloses the Rubisco matrix
197 (Figures 2A-D, S3). Closer inspection of these sheaths revealed that they are
198 apparently formed from a repetitive lattice of protein subunits (Figures 2E-F; S3C, G).
199 We hereafter refer to this pyrenoid-encapsulating shell as “the PyShell”; its location is
200 consistent with our observations of PtPyShell1a:GFP and TpPyShell1:GFP, while our
201 structural and mutational analysis described later in this study definitively implicate
202 PyShell proteins in sheath formation.

203 The native cellular views provided by cryo-ET revealed some species-specific
204 differences in pyrenoid architecture. In *P. tricornutum*, the PyShell is relatively flat and
205 straight. Two specialized thylakoids penetrate the rubisco matrix and run the length of
206 the pyrenoid (Figures 2A, G; S3B). The luminal space of these traversing thylakoids is
207 swollen and sometimes filled with dense particles (red arrowheads). At the two ends of
208 the pyrenoid, the PyShell closely associates with these two traversing thylakoids,
209 which exit the pyrenoid and connect to the rest of the thylakoid network (Figures 2A,
210 B, G; S3A). In *T. pseudonana*, the PyShell has more regions of high local curvature.

211 This pyrenoid is also bisected by one or two specialized thylakoids (Figures 2C, D, H,
212 I; S3F) that frequently contain dense particles in their lumen; however, we never
213 observed these thylakoids exiting the pyrenoid. Instead, at the two ends of the pyrenoid,
214 the PyShell interacts with itself like a zipper to seal the Rubisco matrix (Fig 2C, D, H;
215 S3E). Due to the limited cell area visualized by cryo-ET, we cannot definitely conclude
216 that the pyrenoid thylakoids in *T. pseudonana* are disconnected from the rest of the
217 thylakoid network. However, if such connection sites exist, they are much rarer than in
218 *P. tricornutum*.

219 In our raw tomograms, the PyShell showed different features depending on its
220 orientation. When observed in cross-section, it resembled a solid line, a chain of dots,
221 or a zig-zag (Figure 2I, right). However, when the PyShell twisted 90 degrees to show
222 its face, we could observe a lattice of subunits producing clear stripe patterns (Figure
223 2I, middle). To understand the three-dimensional structure of the PyShell, we
224 performed subtomogram averaging (STA) (Wan and Briggs, 2016) of subvolumes
225 picked along PyShell sheaths from our highest quality tomograms of *T. pseudonana*.
226 After iterative alignment, classification, and polishing steps (see methods), we
227 ultimately resolved a ~20 Å density map of the native *T. pseudonana* PyShell using
228 14,341 subvolumes from seven tomograms (Figures 2J, S4). The STA density contains
229 the stripe and zig-zag features seen in the raw tomograms, and reveals the 3D
230 architecture of a tightly packed pseudocrystalline protein lattice.

231
232 **High-resolution *in vitro* structure of the *T. pseudonana* PyShell lattice**
233 We required even higher resolution to determine precisely how individual PyShell
234 proteins assemble to form a tight protein lattice. Therefore, we reconstituted the
235 PyShell *in vitro* and performed single particle cryo-electron microscopy (cryo-EM). We
236 expressed and purified recombinant TpPyShell1, which when concentrated *in vitro* to
237 2 mg/mL, self-assembled to form both flat sheets and hollow tubes with an outer
238 diameter of 30 nm (Figure S5A-C). Following cryo-EM imaging and particle picking
239 along the tubes, we used single particle analysis (SPA) and helical reconstruction to
240 attain a 3.0-Å density map (Figures 3A, S5E-F), enabling us to build an atomic model
241 of TpPyShell1 assembled in a homo-oligomeric lattice (Figure 3B-E, S5G).

242 The *in vitro* tube is an assembly of TpPyShell1 proteins in two alternating poses:
243 half of the monomers face inward, while the other half face outward with a 90 degree
244 in-plane rotation relative to the inward-facing monomers (Figure 3A, C-D). Thus, the

245 minimal building block of the tube is a homodimer of TpPyShell1 proteins adopting
246 these two poses ([Figures 3E](#)). The full tube has helical symmetry (rise of 25.14 Å, twist
247 of -32.46°) and a symmetric unit consisting of seven homodimers ([Figure S5G](#)).

248 Each TpPyShell1 monomer contains 16 β-strands arranged in two parallel β-
249 sheets, one slightly more extended than the other ([Figure 3B](#), teal and purple for more
250 and less extended sheets, respectively). The TpPyShell1 monomer has an internal
251 pseudo-two-fold symmetry that subdivides the two β-sheets into the two conserved
252 regions that we previously identified by bioinformatics: CR1 and CR2 ([Figure S5H](#)). A
253 short α-helix spanning residues 169-181 ([Figure 3B, S5H](#), pink) is positioned along the
254 wall of the less extended β-sheet and connects CR1 with CR2. The N-terminal 68
255 residues were not well resolved in our density map and are likely flexible; a second
256 short α-helix appears to be present in this region but could not be clearly modeled. The
257 C-terminal domain extends from one monomer and contacts a positively-charged
258 pocket on the adjacent monomer of the opposite pose, possibly providing a stabilizing
259 interaction for the lattice ([Figures 3E, S5J](#)). We also observed small ~1 nm gaps in the
260 lattice at the junctions between four monomers; the residues surrounding these gaps
261 do not have strong surface charge or hydrophobic properties ([Figure S5I](#)).

262 We next compared this high-resolution *in vitro* structure of a TpPyShell1 tube to
263 our *in situ* structure of a PyShell sheet from inside *T. pseudonana* cells. To do so, we
264 first unrolled the SPA density and fit the TpPyShell1 monomer models to form a flat
265 lattice. It is noteworthy that, once flattened, the inside and outside surfaces of the *in*
266 *vitro* TpPyShell1 lattice are practically identical and only distinguished by the spatial
267 offset between alternating monomers. We next fit this flat lattice model into our *in situ*
268 STA density map to produce a putative atomic model of how PyShell proteins may be
269 arranged inside the cell ([Figure 3F](#)). The monomers of the SPA model matched the
270 lattice spacing of the STA map (unrolling may had minor effects on the model spacing).
271 Cross-sections through the fitted density ([Figure 3F](#), right) reveal how the more
272 extended β-sheets (teal) align to form a continuous tight wall at the center of the
273 PyShell. The less extended β-sheets (purple) protrude inward and outward, positioning
274 the short α-helices (pink) on each lobe as the most distant domain from the central wall
275 of the PyShell lattice. We note that there is some extra density at the tips of *in situ*
276 lobes that extends further than the α-helices and is not occupied by the fitted *in vitro*
277 TpPyShell1 lattice model.

278

279 **PyShell mutants have altered pyrenoid morphology and reduced CO₂ fixation**

280 To understand the physiological role of the PyShell *in vivo*, we performed simultaneous
281 gene disruptions of *TpPyShell1* and *TpPyShell2* in *T. pseudonana* using a
282 CRISPR/Cas9 (D10A) nickase approach that we recently developed for diatom gene
283 editing (Nawaly et al., 2020). Because these two genes share high sequence similarity
284 (92.8%), we were able to design a single set of guide RNAs targeting the CR1 domain
285 of both genes (Figure S5A). Two independent biallelic double knock-out mutants were
286 successfully obtained, denoted Δ TpPyShell1/2-1 (*m1*) and Δ TpPyShell1/2-2 (*m2*)
287 (Figure S6A-B). Western blotting indicated that *m1* and *m2* lacked both the TpPyShell1
288 and TpPyShell2 proteins (Figure 4A).

289 Mutants *m1* and *m2* both showed severely inhibited growth in normal
290 atmospheric CO₂ (LC, “low CO₂”) (Figure 4B). Compared to WT, the mutants had a
291 longer lag phase, a slower growth rate, and took twice as long to reach stationary
292 phase. In contrast, the growth profiles of WT, *m1*, and *m2* were similar when
293 supplemented with 1% (HC, “high CO₂”) (Figure 4C). This indicates that deletion of the
294 major PyShell genes in *T. pseudonana* gives a clear high-CO₂-requiring phenotype,
295 presumably because of an impaired CCM. To test this hypothesis, we analyzed the
296 photosynthetic affinity of WT and mutant cells for DIC by measuring net O₂ evolution
297 rate at increasing DIC concentrations (Figure 4D). Whereas WT cells reached their
298 maximum photosynthetic rate (P_{max}) at <0.5 mM [DIC], the mutants *m1* and *m2*
299 required >10 mM DIC to reach their P_{max} . Other photosynthetic parameters, including
300 the DIC compensation point and apparent photosynthetic conductance, also support
301 the highly impaired photosynthetic uptake of carbon in these mutants (Table S3),
302 indicating that they cannot efficiently provide CO₂ to Rubisco in seawater with less than
303 10 mM [DIC]. For perspective, the average [DIC] near the ocean surface is ~2 mM
304 (Cole et al., 2021).

305 To investigate how this high-CO₂-requiring mutant phenotype is related to
306 pyrenoid morphology, we reconstructed the 3D architecture of WT, *m1*, and *m2* cells
307 using focused ion beam scanning electron microscopy (FIB-SEM). Cells were cryo-
308 fixed at high-pressure to improve sample preservation, then subjected to freeze
309 substitution and resin embedding. Following FIB-SEM imaging (Figure 4E), we used
310 3D segmentation to quantify the volumes and shapes of chloroplast regions (Figure
311 4F-J). In WT *T. pseudonana*, pyrenoids consisted of a single elongated compartment
312 occupying around 10% of the chloroplast volume, similar to our previous measurements

313 of *P. tricornutum* (Uwizeye et al., 2021). Conversely, *m1* and *m2* chloroplasts contained
314 multiple oval pyrenoid-like structures (higher sphericity than WT) of heterogeneous
315 size, indicating that removal of the PyShell causes fragmentation of the Rubisco matrix
316 and loss of its normal elongated architecture. Furthermore, the total measured volume
317 of these mutant pyrenoids decreased to <5% of the chloroplast in the mutants (Figure
318 4J), suggesting that a portion of the Rubisco may be disperse in the stroma or present
319 as small aggregates not detectable by our FIB-SEM imaging.

320 We next performed *in situ* cryo-ET of *m1* and *m2* cells to gain a molecular-
321 resolution view of the mutant pyrenoids (Figure 4K-R). Consistent with the FIB-SEM
322 imaging, we observed pyrenoid-like aggregates of Rubisco matrix that were more oval
323 in shape than WT pyrenoids. With the resolution afforded by cryo-ET, we confirmed
324 that these mutant pyrenoids were not encased in a PyShell sheath. Nevertheless, the
325 cohesion of the Rubisco matrix was maintained without the PyShell, consistent with a
326 recent report of a linker protein that mediates phase separation of Rubisco in diatoms
327 (Oh et al., 2023). The rounder shape of the mutant pyrenoids and clear boundary
328 between the Rubisco matrix and the stroma (Figure 4O-P, S6E) are also consistent
329 with phase separation. Strikingly, the specialized thylakoids with luminal particles that
330 normally traverse the long axis of WT pyrenoids were strongly disturbed in the mutants.
331 Thylakoids containing luminal particles were frequently seen in the peripheral regions
332 of mutant pyrenoids (Figure 4Q-R, S6E) but often appeared fragmented and did not
333 pass through the matrix center (Figure 4K-N). Therefore, the PyShell appears to play
334 important roles both in maintaining the elongated shape and singular cohesiveness of
335 *T. pseudonana* pyrenoids, as well as helping position the specialized thylakoids on an
336 end-to-end trajectory bisecting the Rubisco matrix.

337

338 **Discussion**

339 In this study, we discovered the PyShell, a protein sheath that encases the
340 pyrenoids of *P. tricornutum* and *T. pseudonana*, model species of the pennate and
341 centric diatom clades, respectively (Figure 1). We characterized the structure of the *T.*
342 *pseudonana* PyShell lattice across scales, from near-atomic resolution *in vitro* to
343 molecular resolution within native diatom cells (Figures 2-3). Our functional analysis of
344 *T. pseudonana* PyShell deletion mutants showed that the PyShell sheath maintains
345 pyrenoid architecture and is essential for efficient function of the CCM, and thereby the
346 ability of diatoms to grow by assimilating environmental CO₂ (Figure 4).

347 How does the PyShell contribute so significantly to diatom CCM function?
348 Comparison to the most well-characterized pyrenoid system in the green alga *C.*
349 *reinhardtii* may help provide some insight. Reaction-diffusion modeling of *C. reinhardtii*
350 (Fei et al., 2022) suggests that all pyrenoid-based CCMs require the following essential
351 features: 1) an aggregation of most of the chloroplast's Rubisco enzymes in one
352 location, 2) a local source of high CO₂ concentration at the center of this Rubisco
353 aggregate, and 3) a diffusion barrier at the aggregate border to prevent CO₂ leakage.
354 Our data indicate that the PyShell contributes to the first two essential pyrenoid
355 features, and we speculate that the PyShell may directly perform the third (Figure 5).

356 In *C. reinhardtii*, the molecular mechanism underlying aggregation of pyrenoid
357 Rubisco (essential feature #1) has been well characterized. The multivalent linker
358 protein EPYC1 is necessary and sufficient for Rubisco to undergo liquid-liquid phase
359 separation both *in vitro* and *in vivo*, giving rise to a condensed yet fluid pyrenoid matrix
360 (Mackinder et al., 2016; Freeman Rosenzweig et al., 2017; Wunder et al., 2018; He et
361 al., 2020). Rubisco phase separation appears to be common throughout evolution, as
362 Rubisco has been observed to form liquid condensates during the biogenesis of
363 cyanobacterial carboxysomes (Wang et al., 2019; Oltrogge et al., 2020; Zang et al.,
364 2021). Evidence is now mounting that the Rubisco matrix of diatom pyrenoids also
365 forms by phase separation. Recently, the multivalent linker protein PYCO1 was shown
366 to localize to the *P. tricornutum* pyrenoid matrix and phase separate with Rubisco *in*
367 *vitro* (Oh et al., 2023). Furthermore, our FIB-SEM and *in situ* cryo-ET of the *T.*
368 *pseudonana* Δ TpPyShell1/2 mutants (*m1* and *m2*) show that Rubisco continues to
369 aggregate in the absence of the PyShell, forming rounder bodies with clear boundaries
370 between Rubisco and stroma that are consistent with phase-separated condensates
371 (Figures 4E,F, H, K-P; S6E). The PyShell is thus not required for phase separation of
372 Rubisco. However, it may still play a role in concentrating the majority of Rubisco at
373 one spot. In the *m1* and *m2* mutants, Rubisco forms multiple smaller condensates
374 throughout the chloroplast, and the combined volume of these dispersed condensates
375 is less than a single WT pyrenoid, suggesting that some Rubisco may not enter the
376 condensed phase (Figure 4E-G, I). We speculate that a direct or indirect interaction
377 between the PyShell and Rubisco helps concentrate all the condensed Rubisco at a
378 single location in the chloroplast. Indeed, in some cryo-ET images, it appears that a
379 single layer of ordered Rubisco is lined up along the PyShell lattice (Figures 2F; S3D,H).
380 The precise mechanism of this direct or indirect PyShell-Rubisco interaction requires

381 further investigation.

382 *C. reinhardtii* and diatoms use a common strategy to produce a local source of
383 high CO₂ concentration at the center of the pyrenoid's Rubisco matrix (essential feature
384 #2). Both algae have thylakoid-derived membrane systems that cross the center of the
385 pyrenoids, taking the shape of cylindrical tubules in *C. reinhardtii* (Ohad et al., 1967;
386 Engel et al., 2015) and specialized thylakoid sheets in *P. tricornutum* and *T. pseudonana* (Pyszniak and Gibbs, 1992; Bedoshvili et al., 2009). Inside the luminal
387 space of these pyrenoid-traversing tubules and thylakoids are carbonic anhydrases
388 (CAs; α -type CAH3 in *C. reinhardtii*, θ -type Pt θ -CA1 in *P. tricornutum* and Tp θ -CA2 in
389 *T. pseudonana*) (Karlsson et al., 1998; Kikutani et al., 2016; Nawaly et al., 2023;
390 Shimakawa et al., 2023), which convert HCO₃⁻ into CO₂ at the center of the pyrenoid.
391 This helps maximize Rubisco efficiency by saturating the enzyme with its CO₂
392 substrate and outcompeting unproductive binding of Rubisco to O₂. However, in the *T. pseudonana* *m1* and *m2* mutants, the specialized thylakoids are mislocalized to the
393 periphery of the Rubisco condensate, and therefore, cannot provide a source of CO₂
394 at the center of the pyrenoid (Figure 5). Our cryo-ET observations clearly show that
395 the PyShell is necessary to correctly position these specialized thylakoids along the
396 long axis of the Rubisco matrix (Figure 4K-N). By constricting the pyrenoid matrix into
397 a long tube surrounding the CA-containing thylakoids, the PyShell minimizes the
398 diffusion distance of CO₂ from CA-source to Rubisco-sink.

401 Modeling indicates that CCM efficiency is greatly enhanced when a pyrenoid's
402 Rubisco matrix is surrounded by a diffusion barrier to limit CO₂ leakage (essential
403 feature #3). In *C. reinhardtii*, the identity of this barrier is debated, with candidates
404 including a pyrenoid-peripheral CA and the pyrenoid's surrounding starch sheath
405 (Ramazanov et al., 1994; Fei et al., 2022). In diatoms, the PyShell forms a tight sheath
406 around the Rubisco matrix that larger molecules certainly cannot pass. In this way, the
407 PyShell is analogous to the proteinaceous shells of cyanobacterial carboxysomes
408 (Shively et al., 1973; Melnicki et al., 2021), which similarly form a dense wall around
409 an aggregate of encapsulated Rubisco. There is experimental evidence that
410 carboxysome shells may be selectively permeable, blocking diffusion of CO₂ and O₂,
411 while permitting passage of HCO₃⁻ through small pores in the wall (Dou et al., 2008;
412 Cai et al., 2009; Mahinthichaichan et al., 2018; Faulkner et al., 2020; Huang et al.,
413 2022). In this way, HCO₃⁻ would diffuse into the carboxysome, where it is converted to
414 CO₂ by a CA, trapping a high concentration of CO₂ with Rubisco inside the

415 carboxysome shell. Similarly, there is evidence that carboxysome shell pores can be
416 gated with an airlock-like mechanism to allow selective passage of sugar metabolite
417 substrates and products of Rubisco CO₂ fixation (Klein et al., 2009; Cai et al., 2013;
418 Larsson et al., 2017). Our high-resolution *in vitro* structure of a homo-oligomerized
419 TpPyshell1 tube revealed ~1 nm gaps in the otherwise densely packed lattice (Figures
420 3C, S5I). However, to understand whether the PyShell functions as a selective barrier,
421 detailed investigations are required to probe the PyShell's permeability to small
422 molecules, in particular CO₂, O₂ and the sugar metabolites RuBP and 3PGA (Figure 5,
423 permeability questions).

424 In summary, the *m1* and *m2* PyShell deletion mutants exhibit such a strong
425 inhibition of carbon fixation efficiency and growth (Figure 4B-D) because they may
426 have defects in all three essential features of pyrenoid CCMs: Rubisco aggregation at
427 one location of the chloroplast, a CO₂ source at the center of the Rubisco aggregate,
428 and a barrier to prevent CO₂ leakage. Our physiological measurements (Figures 4D,
429 S6C-D) show that the PyShell-deficient mutants require ~10 mM DIC to saturate their
430 photosynthesis, which is roughly 5-fold higher than the concentration of DIC in the
431 ocean. Thus, the PyShell is likely essential to maintain efficient carbon fixation of
432 diatoms in the wild.

433 Our bioinformatic analysis indicates that PyShell orthologs are widespread
434 mainly in diatoms and haptophytes (Figure S1C). Although these two clades are not
435 closely related phylogenetically, both have a plastid of red algal origin. Orthologs are
436 also found some non-diatom stramenopiles, including pelagophytes and
437 dictyochophytes, as well as several species of alveolata. It is plausible that the PyShell
438 originated from the photosynthetic ancestor of haptophytes and the SAR supergroup
439 (stramenopiles, alveolates, Rhizaria), and thereafter evolved independently in each
440 clade. To understand the global prevalence of the PyShell, we queried the Ocean Gene
441 Atlas (Villar et al., 2018) and found that PyShell transcripts are broadly detected in
442 marine environments around the world (Figure S1D), with almost all these sequences
443 belonging to stramenopiles and haptophytes. These abundant taxa produce immense
444 biomass through the photosynthetic uptake of CO₂, which provides an energy source
445 for much of the life in the ocean. The PyShell therefore plays a major role in the CCM
446 of environmentally-relevant marine algae, which account for roughly half of carbon
447 fixation in the ocean, and by extension, one quarter of the carbon fixation on our planet.
448 To forecast the future of the global carbon cycle, it will be important to understand how

449 well PyShell-mediated carbon fixation can adapt to rapidly accelerating climate change.

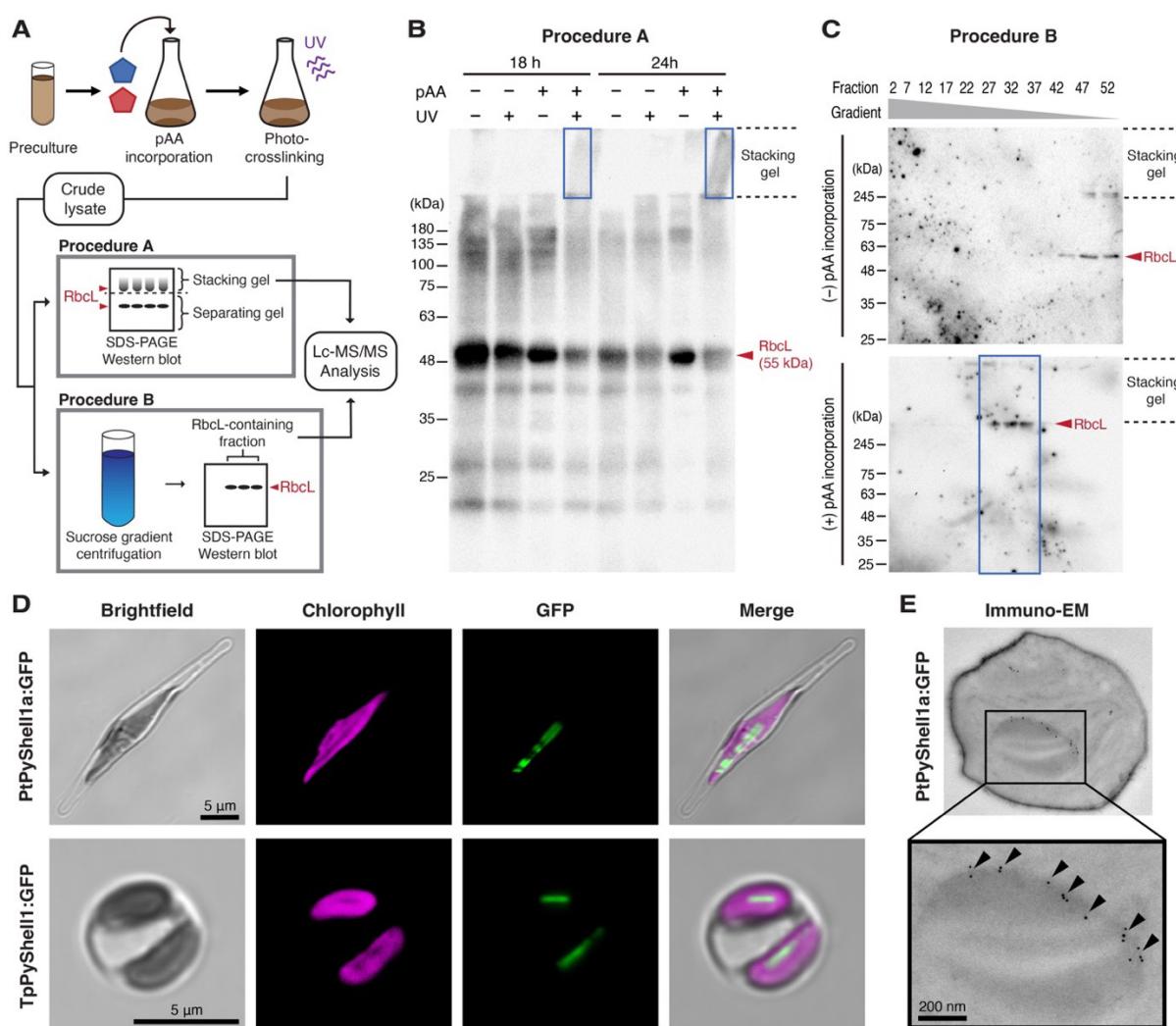
450 Major efforts are underway to engineer cyanobacterial carboxysomes and algal
451 pyrenoids into plants to increase their carbon-fixation capacity (Hennacy and Jonikas,
452 2020; Borden and Savage, 2021). It is estimated that introducing such a CCM could
453 increase yield by up to 60%, while reducing water and fertilizer requirements (McGrath
454 and Long, 2014). Recent progress has been made in assembling components of the
455 *C. reinhardtii* pyrenoid inside *Arabidopsis thaliana*, including the EPYC1 linker, which
456 causes Rubisco to condense to form a pyrenoid-like matrix within these plant
457 chloroplasts (Atkinson et al., 2020). Our discovery and characterization of the diatom
458 PyShell expands the molecular toolbox with a lattice-forming protein that may be able
459 to encapsulate these Rubisco condensates, providing a boundary between the artificial
460 pyrenoid and the surrounding chloroplast. These engineering efforts hold potential for
461 designing crops that grow faster, consume less resources, and are more resistant to
462 environmental stress, helping feed the world's growing population in regions of the
463 planet that climate change is rapidly making less arable. Improving biological carbon
464 capture may even one day help mitigate climate change itself, removing more CO₂
465 from the atmosphere to slow the course of global warming.

466

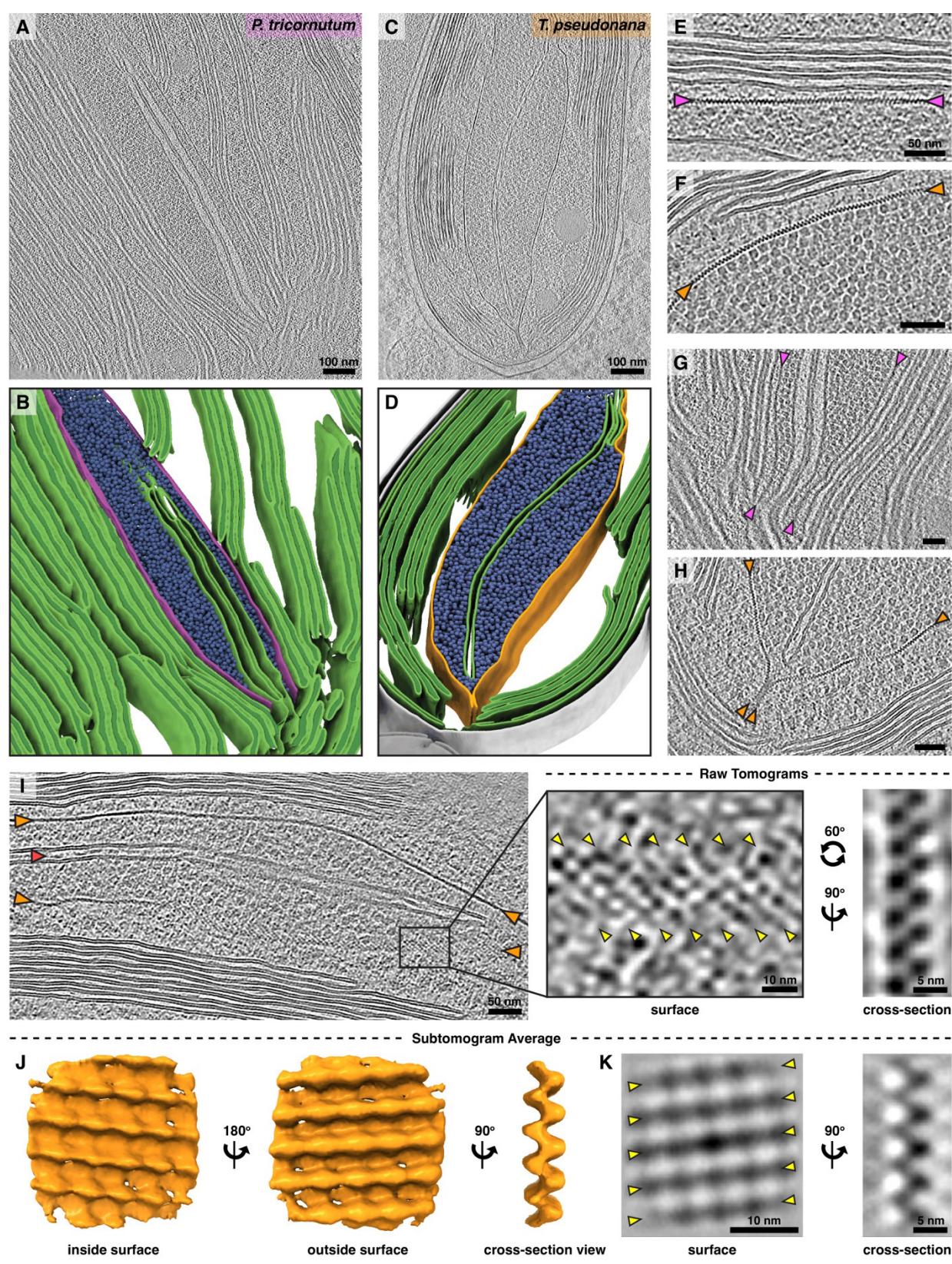
467 **Limitations of the Study**

468 Our study describes the PyShell in two model diatom species and demonstrates
469 how this Rubisco-encasing protein barrier is essential for pyrenoid architecture and
470 function in *T. pseudonana*. However, our data has some limitations that raise new
471 questions requiring future in-depth investigation:

472 1) PyShell structure: The N-terminal 68 residues in TpPyShell1 are mostly
473 disordered and were not resolved in our *in vitro* SPA structure. When mapping the
474 unrolled SPA model into our *in situ* STA density (Figure 3F), we noted extra density
475 beyond each monomer's single α -helix. STA would require sub-nm resolution to
476 distinguish whether this extra density is constituted by the PyShell lattice, itself, or
477 rather comes from an interacting protein. This ambitious goal faces the challenges of
478 resolving small proteins *in situ* (Russo et al., 2022), as well as potential heterogeneity
479 of the PyShell within the cell. Mutagenesis studies of this α -helix may also help
480 elucidate whether it mediates specific interactions. The biggest mystery from our SPA
481 data is that the inside and outside surfaces of the TpPyShell1 lattice are structurally
482 interchangeable (Figure 3F). Thus, additional studies are required to understand

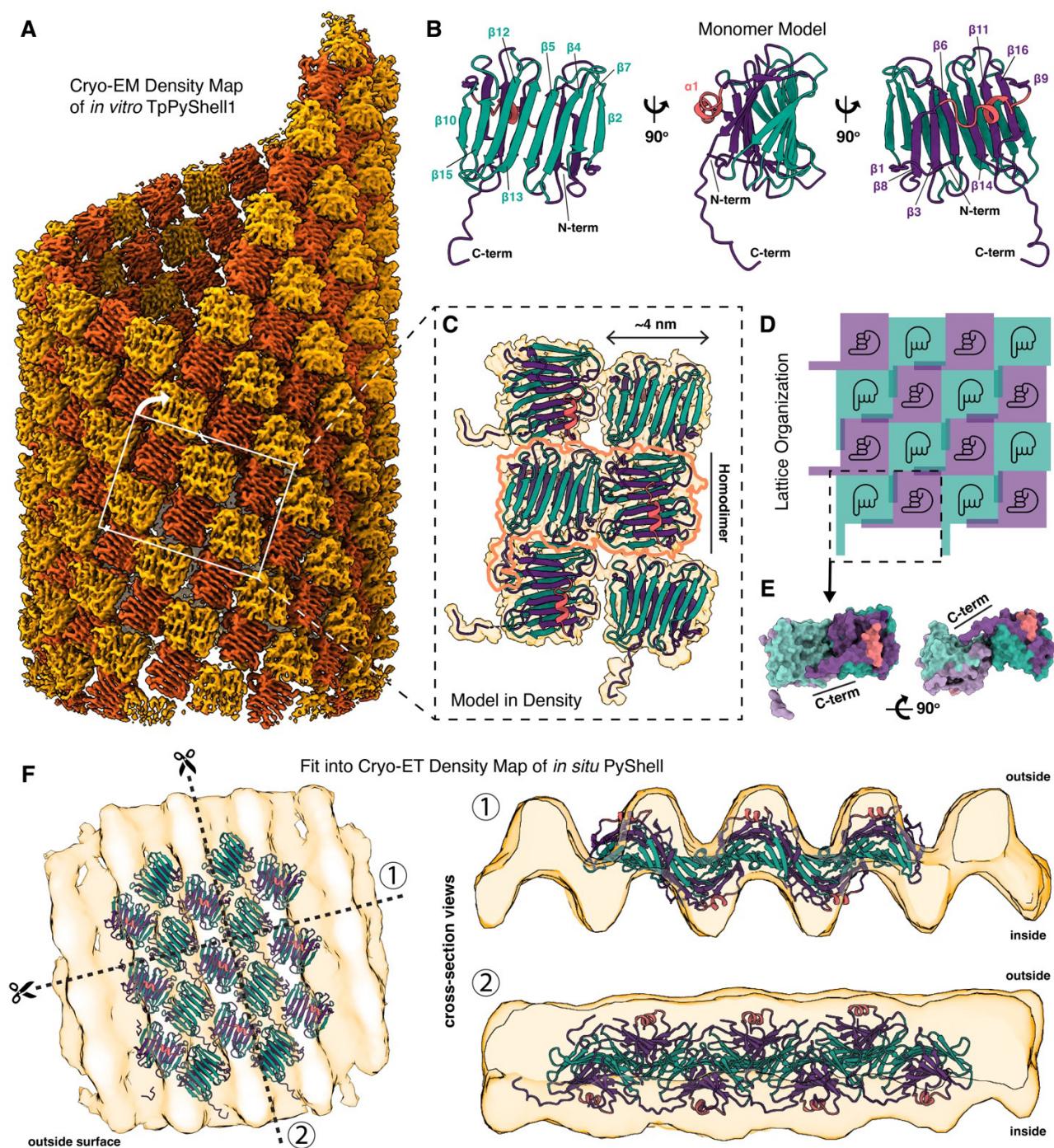

483 whether the two surfaces of the PyShell are distinct *in vivo*. For example, in the
484 pyrenoid, Rubisco is only bound to the PyShell's inner surface, but we cannot say from
485 our data whether this is driven by asymmetry of the PyShell surfaces or rather is a
486 consequence of pyrenoid biogenesis events.

487 2) PyShell heterogeneity: There are multiple homologous PyShell genes in both
488 *P. tricornutum* and *T. pseudonana* (Figure S1A), with the latter expressing both
489 TpPyShell1 and TpPyShell2 at high levels *in vivo* (Figure S1B). To resolve a high-
490 resolution PyShell structure, we assembled the *in vitro* tube from only TpPyShell1,
491 which also proves that a homogenous solution of this single protein is sufficient to
492 assemble a lattice. It is quite possible that multiple PyShell isoforms hetero-oligomerize
493 to make the PyShell lattice *in situ*. However, cryo-ET lacks the resolution to distinguish
494 this heterogeneity due to the high homology and predicted structural similarity of
495 different PyShell proteins. Complementary approaches combining mutagenesis and
496 fluorescent tagging of each protein will be required to address whether PyShell
497 isoforms co-assemble *in vivo*, whether there is a functional significance to the different
498 isoforms, and whether these isoforms have discrete localizations within the pyrenoid
499 sheath.

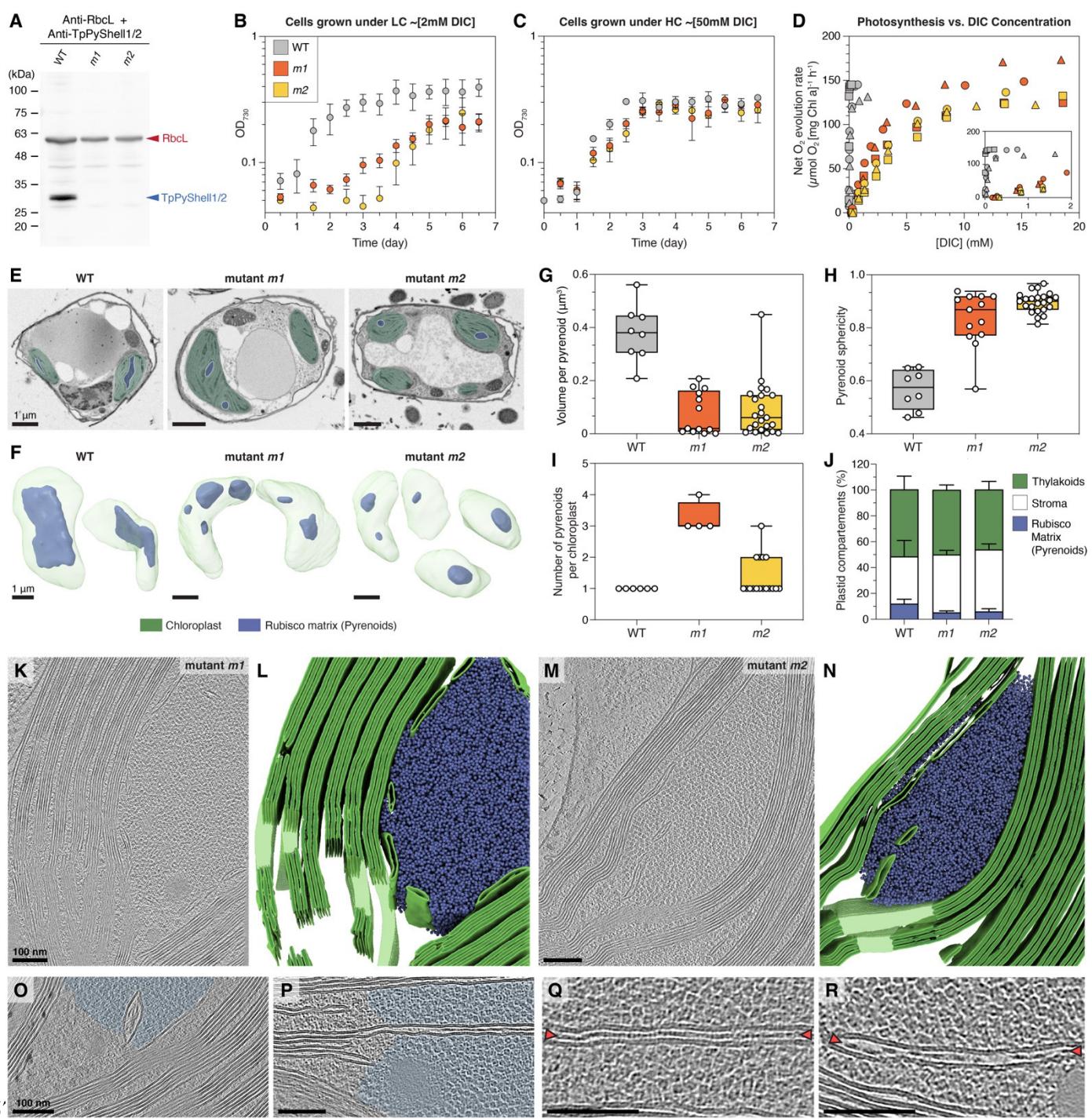

500 3) PyShell permeability: Our *in vitro* SPA structure shows small ~1 nm gaps at
501 the junctions between four monomers in the TpPyShell1 lattice (Figures 3C, S5I). While
502 these gaps are potentially large enough to allow gas and some small metabolites to
503 pass through the PyShell wall, in-depth functional studies would be required to assay
504 PyShell permeability. These studies must take into consideration that the *in vivo*
505 PyShell may be heterogeneous and also bound by interacting proteins.

506 4) Pyrenoid architecture and biogenesis: Our cryo-ET data provides a detailed
507 look at the molecular architecture of steady-state pyrenoids in *P. tricornutum* and *T.*
508 *pseudonana*, but it lacks insights into how this architecture is established. With the
509 Rubisco matrix apparently completely encapsulated (except the thylakoid entry points
510 in *P. tricornutum*), how does the pyrenoid grow during the cell cycle to incorporate new
511 Rubisco and PyShell components? In both species, we find dense particles within the
512 lumen of pyrenoid-traversing thylakoids (Figures 2I; 4Q-R; S3B,F). This is the location
513 thought to be occupied by a carbonic anhydrase, but we cannot assign an identity to
514 these luminal particles from cryo-ET alone. It also remains unanswered why these
515 thylakoids acquire the luminal particles but fail to properly traverse the Rubisco matrix
516 the Δ TpPyShell1/2 mutants.

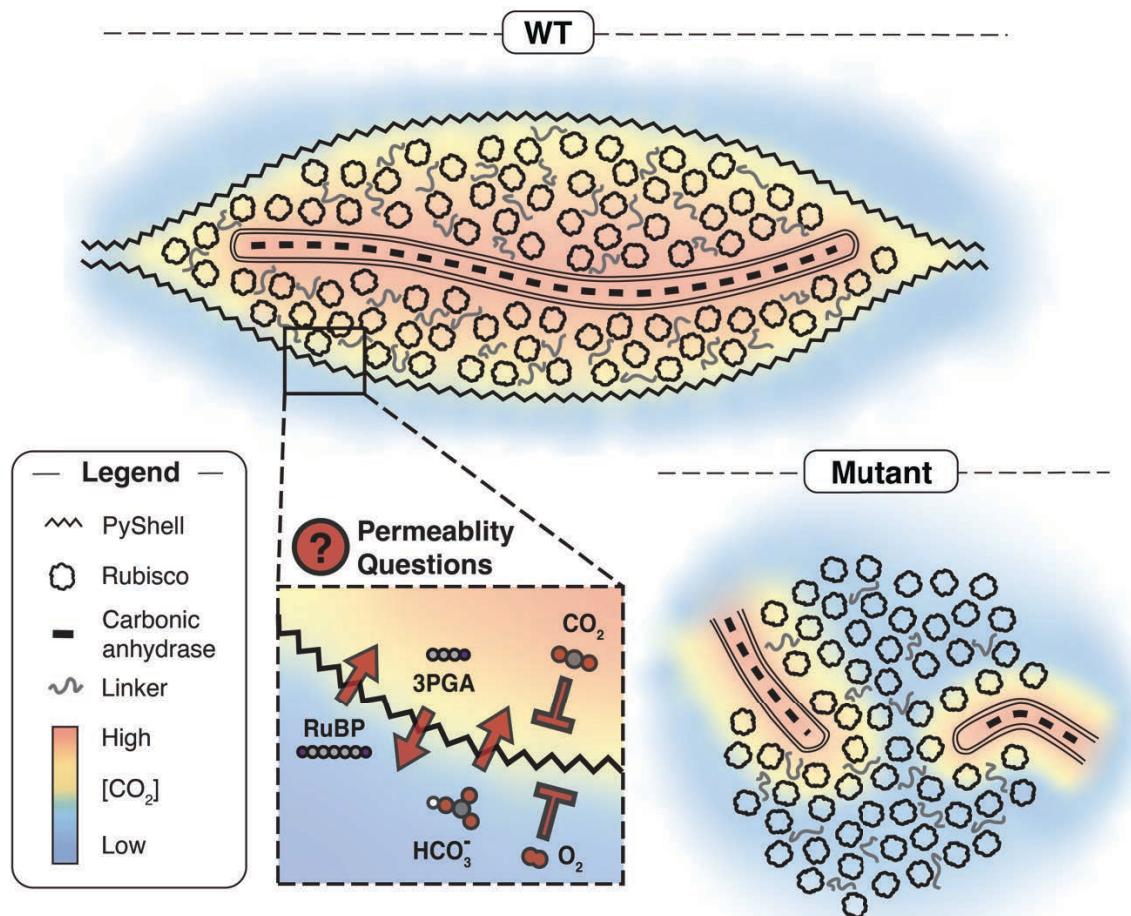
517 5) PyShell prevalence and architectural diversity: Our bioinformatic analysis
518 indicates that PyShell homologues are commonly found throughout diatoms and
519 haptophytes, and they may also be present in other algal clades ([Figure S1C](#)).
520 However, this analysis is biased towards sequenced species, so some clades may be
521 underrepresented. Even in our cryo-ET comparison between two diatom species, we
522 noted substantial differences in PyShell architecture, in particular at the pyrenoid ends
523 ([Figures 2A-D, G-H; S3A,E](#)). Capturing the variations in PyShell architecture across
524 evolution will require extensive cryo-ET of diverse algae, including in non-model
525 species sampled directly from the environment (Mocaer et al., 2023).



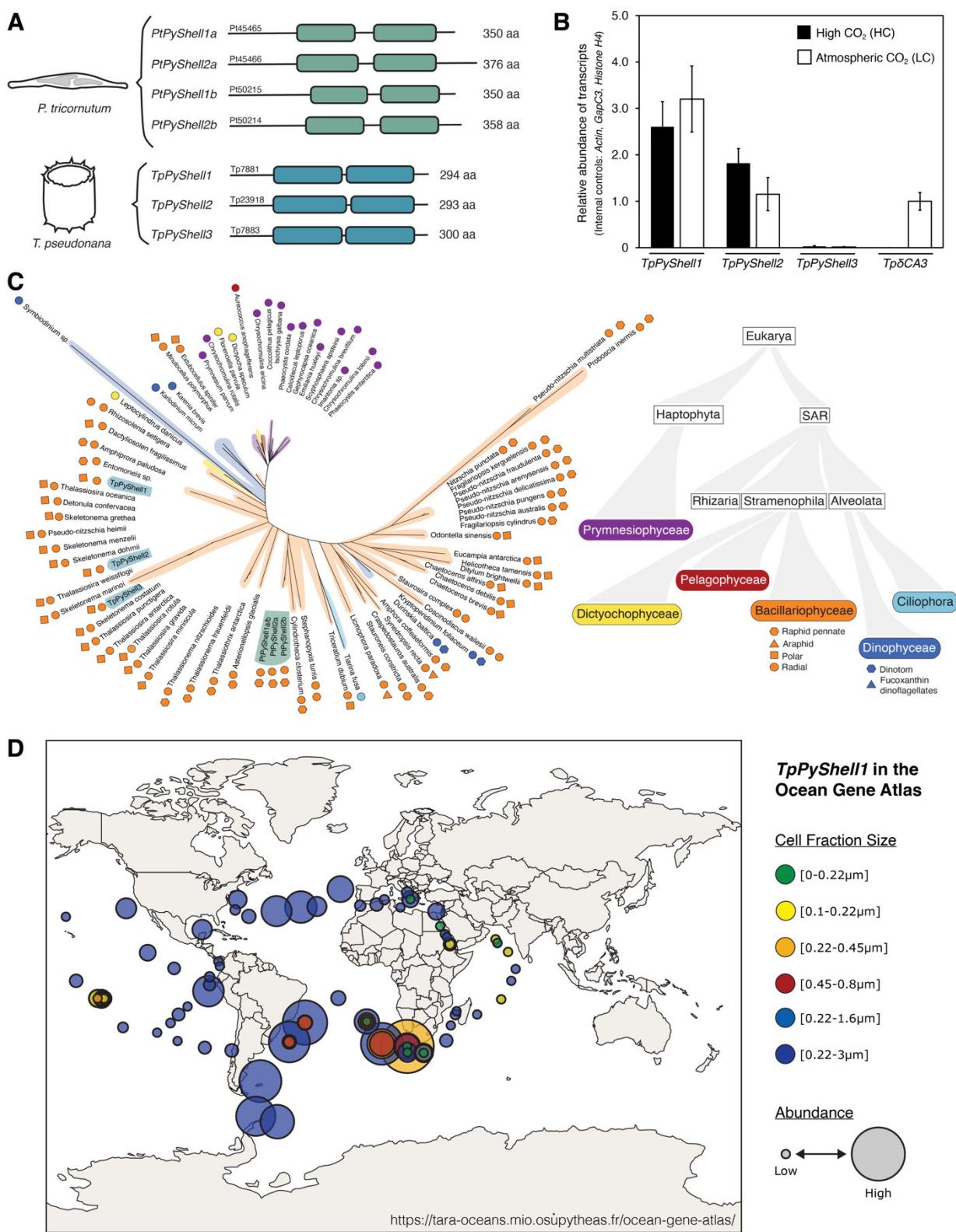
527 **Figure 1. Identification of pyrenoid shell (PyShell) proteins in diatoms. (A)**
528 Proteomics-based workflow for detecting pyrenoid proteins in *P. tricornutum*. Cells
529 were cultured with (+) or without (-) photo-reactive amino acids (pAA), photo-
530 crosslinked *in vivo* with UV irradiation, and then disrupted by sonication. The crude
531 extracts were subjected to either (B) SDS-PAGE (Procedure A) or (C) 22–55% (w/v)
532 sucrose density gradient (Procedure B). Gel shift of the crosslinked Rubisco was
533 detected by immunoblotting against the Rubisco large subunit (RbcL). Rubisco-
534 containing gels or collected fractions (indicated by blue boxes in B and C) were
535 digested by trypsin and analyzed by LC-MS/MS (for list of candidate Rubisco
536 interactors, see [Tables S1, S2](#)). (D) Confocal images of PtPyShell1a:GFP in *P.*
537 *tricornutum* (top row) and TpPyShell1:GFP in *T. pseudonana* (bottom row). See [Fig.](#)
538 [S2](#) for additional examples. (E) Immunogold-labeling TEM image of a *P. tricornutum*
539 PtPyshell1a:GFP transformant probed with an anti-GFP antibody. Gold particles are
540 indicated by black arrowheads. Scale bars: 5 μ m in D; 200 nm in E.


Figure 2. In situ cryo-ET reveals the native architecture of the PyShell inside diatom cells. Magenta labels and arrowheads: *P. tricornutum*. Orange labels and arrowheads: *T. pseudonana*. (A,C) 2D overview slices through tomograms and (B,D) corresponding 3D segmentations (green: thylakoids, blue: Rubisco complexes,

546 magenta or orange: PyShell). **(E-F)** Close-up views of native PyShells (marked by
547 arrowheads) in both diatom species. **(G-H)** Comparison of pyrenoid ends. In *P.*
548 *tricornutum*, there is a gap in the PyShell that allows entry of two special thylakoids
549 into the pyrenoid. In *T. pseudonana*, two apposing sheets of the Pyshell bind each
550 other to seal the pyrenoid matrix. **(I)** Molecular details of the PyShell in raw tomograms.
551 Left: overview revealing a stripe pattern when the PyShell twists to show its surface
552 view (red arrowhead: particles inside the lumen of traversing thylakoid). Center: zoom
553 in on the surface view, with the major stripes of the PyShell lattice marked with yellow
554 arrowheads. Right: zoom in on a cross-section view, showing an apparent lattice of
555 dimers. **(J-K)** Subtomogram average (STA) of the PyShell from *T. pseudonana*, shown
556 in 3D isosurface view (J), as well as 2D slices (K) showing the surface view (yellow
557 arrowheads: major stripes of lattice) and cross-section view. Scale bars: 100 nm in A-
558 B; 50 nm in E-H and I, left; 10 nm in I, right and K, left; 5 nm in I, right and K, right. See
559 [Fig. S3](#) for additional cryo-ET images from both species.

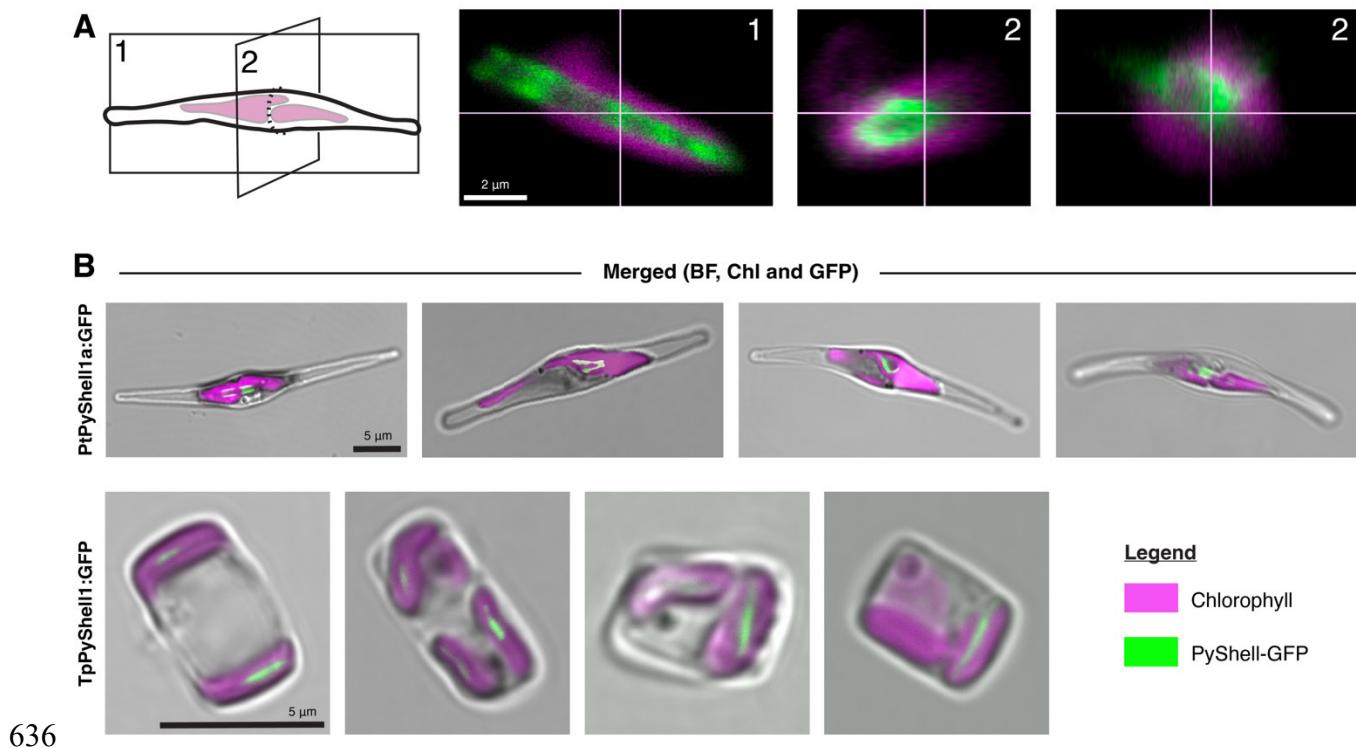

560
561 **Figure 3. High-resolution *in vitro* structure of the *T. pseudonana* PyShell lattice.**
562 (A) Cryo-EM density map obtained by single particle analysis (SPA) and helical
563 reconstruction of TpPyShell1, which assembles into a tube of *in vitro*. Global resolution:
564 3.0 Å (see Fig. S5E-F). (B) Cartoon model of the TpPyShell1 monomer. The two β-
565 sheets (each composed of eight β-strands) and the adjacent α-helix are indicated in
566 teal, purple, and pink, respectively. (C) Models of six TpPyShell1 monomers fit into the
567 cryo-EM density map from A (yellow). The minimal building block of the tube's lattice is
568 a homodimer of TpPyShell1 proteins (outlined in orange), which are flipped and rotated

569 90 degrees relative to each other. **(D)** Schematic representation of this lattice
570 arrangement, with hands indicating the flipping and rotation of monomers. The pinky
571 finger represents the C-terminal domain (C-term). **(E)** Surface model representation of
572 a homodimer unit from the lattice. The C-term extends and contacts a pocket in the
573 adjacent monomer (also see [Fig. S5J](#)). **(F)** Fit of the unrolled SPA model (cartoon
574 representation) into the *in situ* STA density from [Fig. 2J](#) (yellow). The surface view on
575 the left is annotated with the cut directions corresponding to the two perpendicular
576 cross-section views on the right (1 and 2).


578 **Figure 4. Phenotypes of *T. pseudonana* PyShell-deficient mutants.** Mutants *m1*
579 and *m2* (Δ TpPyShell1/2) have slightly different gene truncations (see Fig. S5A-C). (A)
580 Western blot of crude cell extract (5 μ g each) with anti-PyShell1/2 antibody, confirming
581 the absence of TpPyShell1 and 2 proteins in the mutants (B-C) Growth of WT cells
582 (grey), *m1* (orange), and *m2* (yellow) in air-level CO₂ (LC; 0.04%; equivalent to ~2 mM
583 DIC) and high CO₂ (HC; 1%; equivalent to ~50 mM DIC) conditions, under continuous
584 light (40 μ mol photons m^{-2} s^{-1}). Points: mean, error bars: standard deviation ($n = 3$,
585 biological replicates). (D) Dependence of photosynthetic activity (measured by O₂

586 evolution under 900 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ constant actinic light) on DIC concentration
587 (set by supplementing with bicarbonate) in WT cells (grey), *m1* (orange), and *m2*
588 (yellow). Cells preconditioned in LC conditions. Data from three independent
589 experiments are shown with different symbols. **(E-F)** FIB-SEM imaging of WT, *m1*, and
590 *m2* cells, shown as (E) 2D slices through the raw tomographic data and (F) 3D
591 segmentations of the chloroplast (green) and pyrenoid Rubisco matrix (blue) volumes.
592 **(G-J)** Morphometric quantification of pyrenoids (Rubisco matrix regions) from FIB-SEM
593 data: (G) volume per pyrenoid, (H) pyrenoid sphericity, (I) number of pyrenoids per cell,
594 (J) percent chloroplast volume occupied by pyrenoid, thylakoids, and stroma. Box plots
595 in G-I show median (center line), 75%-25% percentiles (box borders), and max-min
596 values (whiskers). Error bars in J are standard deviation. N chloroplasts: 8 WT; 4 *m1*;
597 17 *m2*. **(K-R)** Cryo-ET of *m1* and *m2* cells. Overviews (K,M: tomographic slices, L,N:
598 3D segmentations) show higher sphericity of the Rubisco matrix and failure of
599 specialized thylakoids to properly traverse the matrix. (O-P) Closeup tomographic
600 slices showing the defined border of the Rubisco matrix (light blue) in the PyShell
601 mutants. (Q-R) Closeup tomographic slices showing luminal particles (red arrowheads)
602 inside the mislocalized specialized thylakoids. Scale bars: 1 μm in E-F, 100 nm in K-R.
603 See [Fig. S6](#) for additional cryo-ET images of the mutants.

604


605 **Figure 5. Proposed model of PyShell function and open questions.** In wild-type
606 cells (WT), the PyShell encloses the Rubisco matrix, enforcing an elongated pyrenoid
607 shape. One or two specialized thylakoids traverse the long axis of the pyrenoid.
608 Carbonic anhydrase inside the lumen of these thylakoids generates CO_2 , which
609 diffuses through the thylakoid membranes and permeates the Rubisco matrix, enabling
610 efficient carbon fixation. It remains to be determined how bicarbonate (HCO_3^-) reaches
611 the luminal carbonic anhydrase, and how sugar substrates (Ribulose 1,5-
612 bisphosphate; RuBP) and products (3-Phosphoglyceric acid; 3PGA) transit between
613 the stroma and the PyShell-enveloped Rubisco matrix. We speculate that the PyShell
614 may also serve as a gas diffusion barrier, keeping O_2 out of the pyrenoid while
615 maintaining the high local concentration of CO_2 . In the PyShell-deficient mutants (Fig.
616 4), the Rubisco matrix remains aggregated by a linker protein but forms a more
617 spherical shape. The specialized thylakoids fail to bisect the matrix, delocalizing the
618 source of CO_2 from the pyrenoid center. If the PyShell functions as an O_2/CO_2 diffusion
619 barrier, its absence would further inhibit Rubisco activity. This defective CCM underlies
620 the mutants' high- CO_2 requiring phenotype.

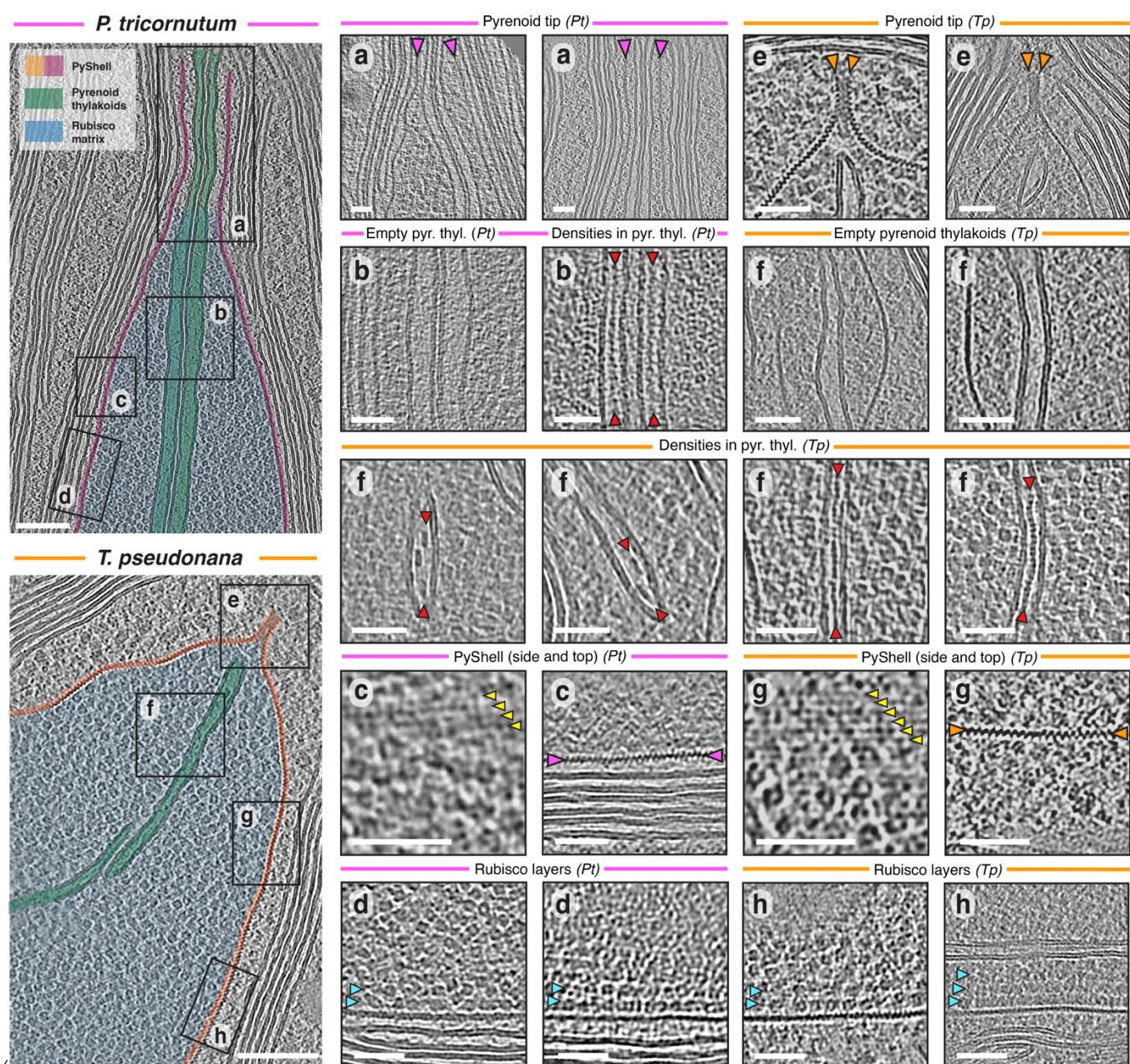
621

622 **Figure S1. PyShell genes, expression, and phylogeny. (A)** Domain architecture of
623 the PyShell genes in *P. tricornutum* and *T. pseudonana*. The conserved CR1 and CR2
624 domains are indicated with colored bars. **(B)** Expression of the three PyShell genes
625 identified in *T. pseudonana* under both normal atmosphere (LC, 0.04% CO₂) and high

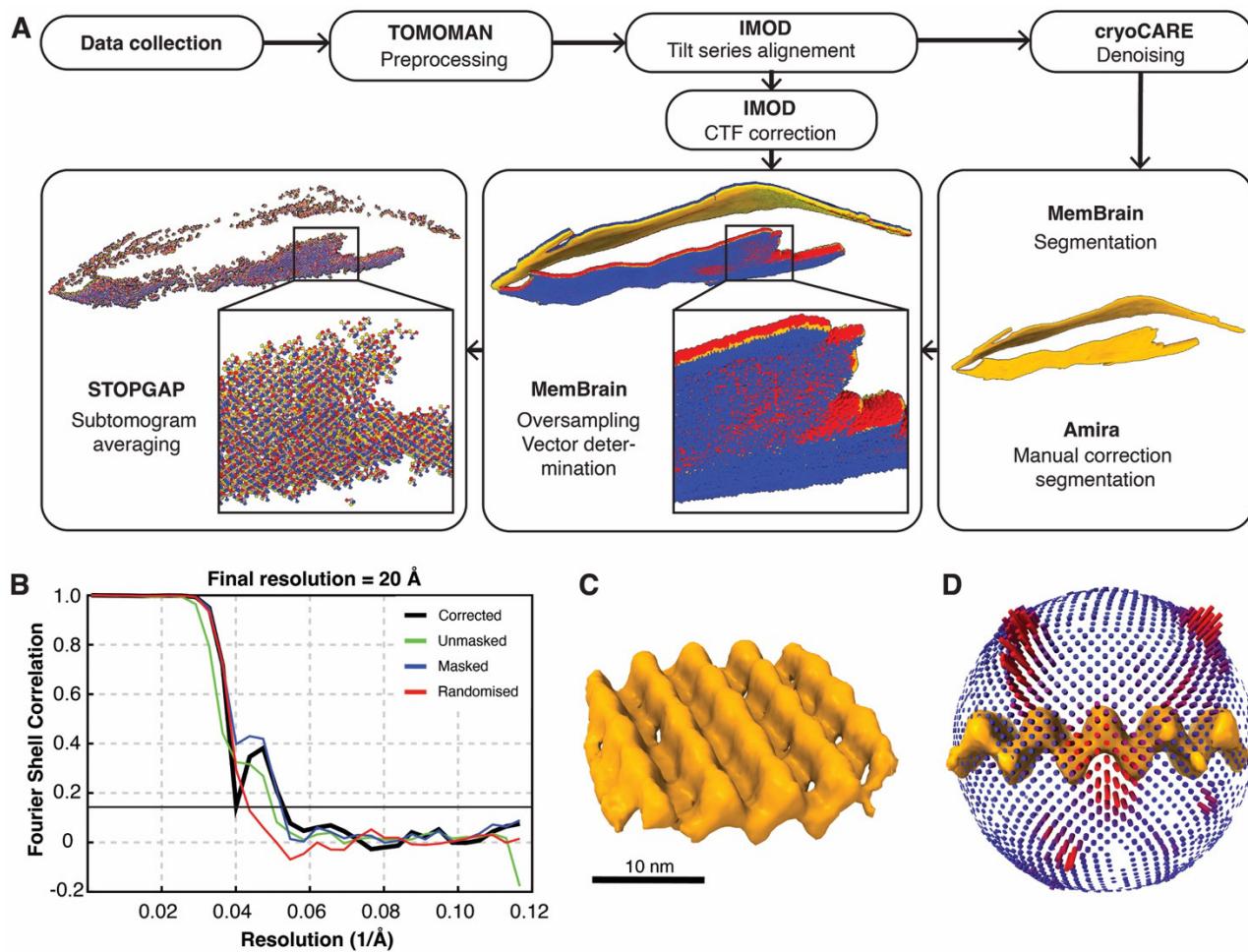
626 CO₂ (HC, 1%), compared to the expression of the CCM-induced carbonic anhydrase
627 δCA3. **(C)** Maximum likelihood unrooted gene tree of TpPyshell1 (left), constructed
628 with IQ-TREE, and an algal phylogenetic tree (right). The color in the phylogenetic tree
629 indicates the clade to which each species in the gene tree belongs. Shapes and colors
630 in the gene tree correspond to clades in the phylogenetic tree. The PyShell genes of
631 *T. pseudonana* and *P. tricornutum* described in this study (TpPyshell1, 2, 3;
632 PtPyShell1a/1b, 2a/2b) are highlighted in blue and teal, respectively. **(D)** Global
633 distribution of TpPyShell1 homologous transcripts in fractions from *Tara Oceans*
634 sampling (de Vargas et al., 2015), identified by searching the Ocean Gene Atlas v2.0
635 (Vernette et al., 2022).

637 **Figure S2. Additional fluorescence images of the PyShell in *P. tricornutum* and**

638 *T. pseudonana*. (A) 3D confocal images of PtPyShell1a:GFP in *P. tricornutum*.

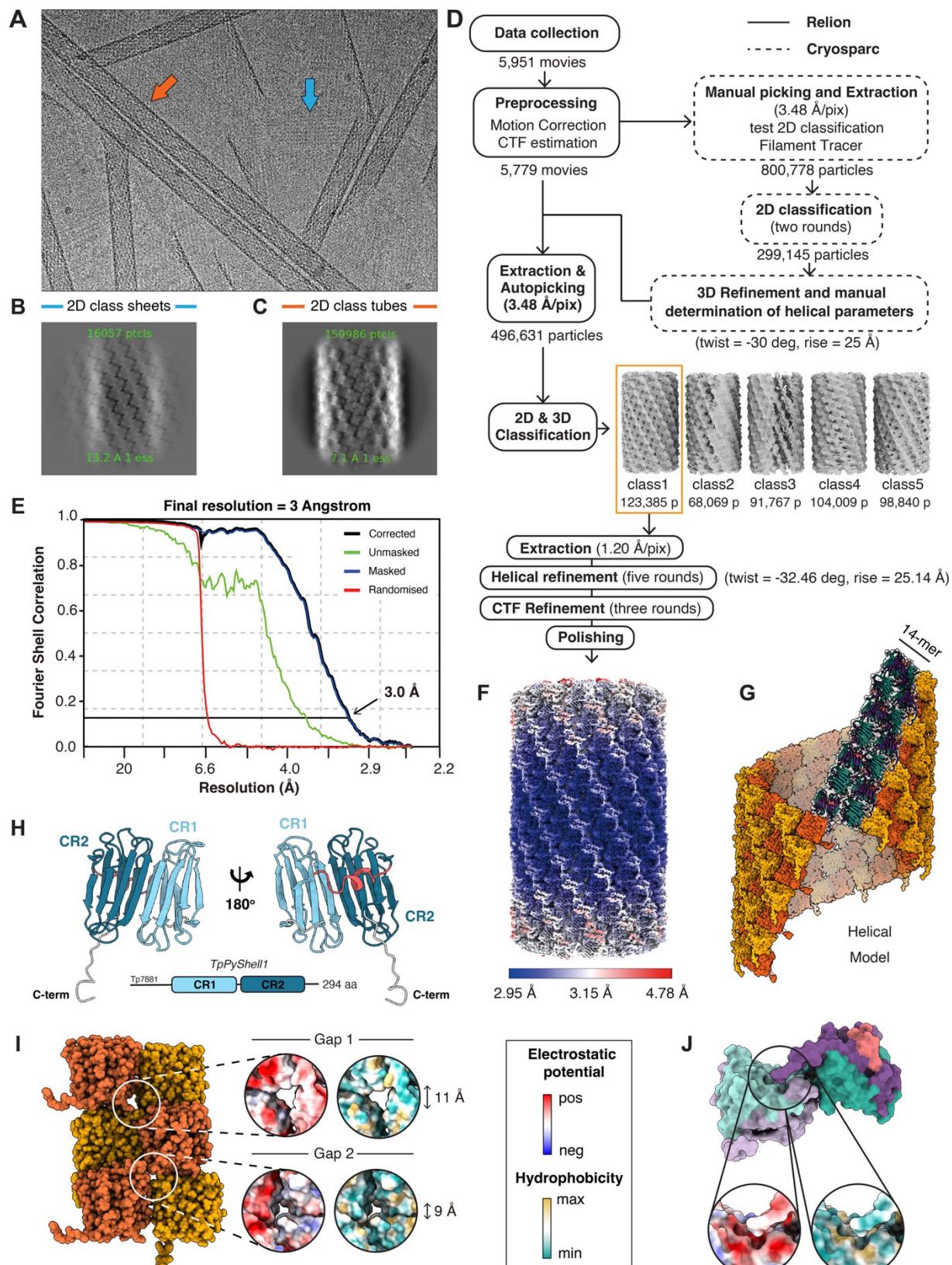

639 Diagram on the left shows the orientations of the virtual slices displayed on the right.

640 (B) Maximum intensity projections of PtPyShell1a:GFP in *P. tricornutum* (top row) and


641 TpPyShell1:GFP in *T. pseudonana* (bottom row). Grey: brightfield (BF), magenta:

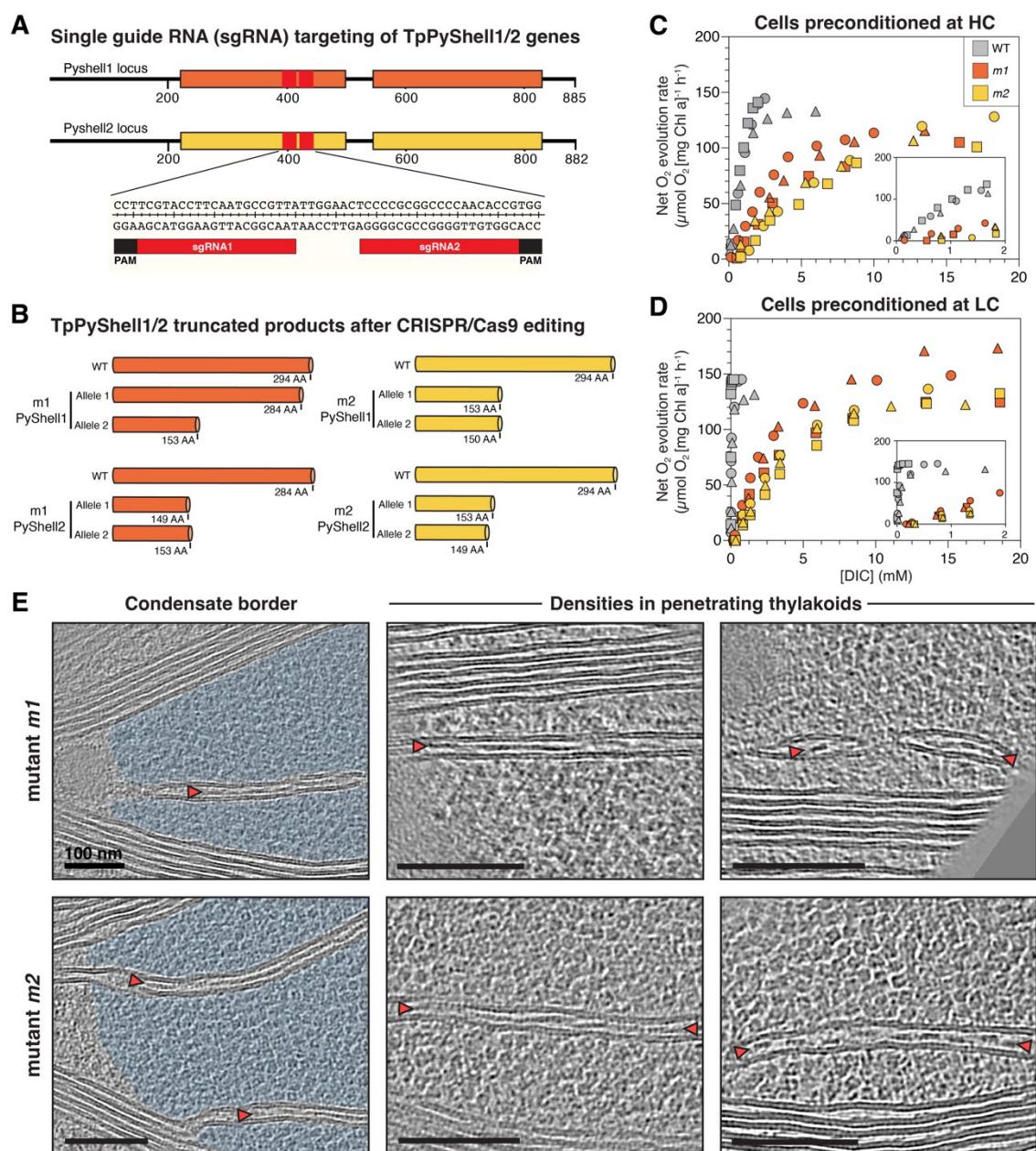
642 chlorophyll autofluorescence (Chl), green: GFP. Scale bars: 2 μm in A, 5 μm in B.

643 Accompanies Fig. 1D.



645 **Figure S3. Additional cryo-ET images of pyrenoids inside native *P. tricornutum***
646 **and *T. pseudonana* cells.** Left panels show pyrenoid overviews of *P. tricornutum*
647 (pink) and *T. pseudonana* (orange), with lettered boxes indicating corresponding
648 pyrenoid regions detailed in panels to the right. For *P. tricornutum* and *T. pseudonana*,
649 respectively: **(A, E)** examples of the pyrenoid ends, which differ between species
650 (PyShell: orange and pink arrowheads); **(B, F)** pyrenoid-traversing thylakoids, which
651 sometimes have dense particles in the lumen (red arrowheads); **(C, G)** PyShell side
652 (surface) and top (cross-section) views. Yellow arrowheads: major stripes of the
653 PyShell lattice; **(D, H)** Ordered layers of Rubisco (blue arrowheads) adjacent to the
654 PyShell. Scale bars: 100nm in overviews, 5 nm in all others. Accompanies [Fig. 2A-I](#).

655


656 **Figure S4. Cryo-ET subtomogram averaging supplement.** (A) Cryo-ET data
657 processing workflow. Determination of initial and final coordinates and vectors
658 (blue/red/yellow arrows) is shown for an example tomogram. Coordinates were initially
659 oversampled along the PyShell segmentation in MemBrain. After subtomogram
660 averaging in STOPGAP, the coordinates converged to the repeat of the PyShell lattice.
661 Only one subvolume per coordinate was retained in the final average. (B) FSC
662 resolution determination of the resulting STA map, using the 0.143 cutoff. (C) Inclined
663 view of the PyShell STA density map. Scale bar: 10 nm. (D) Angular distribution of
664 particles contributing to the STA map. Red: more populated orientations, blue: less
665 populated orientations.

666

667 **Figure S5. Single particle cryo-EM supplement.** (A) Example micrograph. Sheets
 668 and tubes are indicated with blue and orange arrows, respectively. (B) 2D class
 669 average obtained for the TpPyShell1 sheets. (C) 2D class average obtained for the

670 TpPyShell1 tubes. The homodimers of PyShell proteins can be seen in both the sheet
671 and tube assemblies. **(D)** Cryo-EM processing workflow for high-resolution helical
672 reconstruction of the TpPyShell1 tubes, displaying the five classes resulting from 3D
673 classification. **(E)** FSC resolution determination of the resulting SPA map, using the
674 0.143 cutoff. **(F)** The EM density map displayed with local resolution. **(G)** The resulting
675 helical protein model (orange and yellow surface representation) that was built using a
676 14mer repeating unit (purple and teal cartoon representation). **(H)** The internal pseudo-
677 two-fold symmetry the TpPyShell1 monomer, subdividing the β -sheets between the β -
678 5/-6 and β -13/-14 strands. Conserved regions CR1 and CR2 are colored (shades of
679 blue), along with the short α -helix connecting CR1 with CR2 (pink). **(I)** Two potential
680 gaps are present within the TpPyShell1 lattice. Orange and yellow surface
681 representations correspond to the inward and outward facing monomers of the
682 homodimer repeating unit. Circle insets: electrostatic potential and hydrophobicity are
683 displayed on surface representations. **(J)** The C-terminal domain of each PyShell
684 monomer reaches towards a potential pocket on the neighboring PyShell monomer.
685 Above: colors on surface representations correspond to [Fig. 3E](#). One monomer is
686 displayed in lighter colors. Circle insets: Electrostatic potential and hydrophobicity are
687 displayed on surface representations.

688

689 **Figure S6. Generation of Δ TpPyPhell1/2 mutants, O₂ evolution, and additional**
690 **cryo-ET. (A)** Schematic representation of simultaneous CRISPR/Cas9 targeting in
691 both TpPyShell loci. **(B)** Resulting protein products in the mutant strains *m1* and *m2* at
692 both loci. **(C, D)** Dependence of photosynthetic activity (measured by O₂ evolution
693 under 900 μ mol photons m⁻² s⁻¹ constant actinic light) on DIC concentration (set by
694 supplementing with bicarbonate) in WT cells (grey), *m1* (orange), and *m2* (yellow).
695 Different symbols: three independent experiments. Cells were either preconditioned in
696 HC or LC conditions; the WT preconditioned in LC has a more robust O₂ evolution
697 response in low DIC concentrations due to full activation of its CCM (compare inset
698 panels). **(E)** Additional cryo-ET of Rubisco condensates in *m1* and *m2* cells. Light blue:
699 Rubisco matrix; red arrowheads: densities in thylakoid lumen. Scale bars: 100 nm.

Protein name or ID	Annotation ^a	Average coverage (%)	Average score	Gene location ^b
rbcL	RubisCO large subunit	12.6	41.6	Chlp
Phatr2 54926	Acetyl-CoA carboxylase	2.6	20.6	Nuc
Phatr2 45465	No conserved domain (Pyshell1)	16.0	20.4	Nuc
Phatr2 22006	FCP (Lhcf10)	8.0	17.4	Nuc
Phatr2 22395	FCP (Lhcf8)	4.0	10.0	Nuc
Phatr2 54246	HSP70 (1B)	3.0	9.5	Nuc
Phatr2 49287	Predicted dehydrogenase	1.9	7.8	Nuc
Phatr2 22956	FCP (Lhcr2)	5.0	7.6	Nuc
Phatr2 29266	FCP (Lhcf6)	8.8	7.3	Nuc
rbcS	Rubisco small subunit	18.5	7.3	Chlp
Phatr2 24610	Triose phosphate translocator (TPT1)	4.0	5.9	Nuc
psaL	PSI protein subunit XI	9.6	5.9	Chlp
Phatr2 22122	GAPDH (GapC1)	6.1	5.5	Nuc
Phatr2 47395	L-Ascorbate peroxidase	5.0	5.3	Nuc
Phatr2 45679	Leucine rich repeat	2.0	5.2	Nuc
psaD	PSI extrinsic protein (Fd binding site)	15.0	4.0	Chlp
Phatr2 47103	No conserved domain	13.0	3.8	Nuc
Phatr2 54395	Fasciclin domain-containing protein	2.0	3.7	Nuc
Phatr2 49977	Lysine methyltransferases	1.0	3.6	Nuc
Phatr2 51305	Carbonic anhydrase (PtCA1)	6.9	3.2	Nuc
psaB	PSI core subunit	3.3	3.1	Chlp

700 ^a Proteins shown in bold have previously been localized to the *P. tricornutum* pyrenoid.

701 ^b Chlp, encoded in chloroplast genome; Nuc, encoded in nuclear genome

702

703 **Table S1. List of candidate pyrenoid proteins in *P. tricornutum* identified by**
704 **direct analysis of the stacking gel.** These “gel digestion” results correspond to
705 “Procedure A” in [Fig. 1A](#).

Protein name or ID	Annotation ^a	Average coverage (%)	Average score	Gene location ^b
rbcL	RubisCO large subunit	16.8	71.8	Chlp
Phatr2 51305	Carbonic anhydrase (PtCA1)	21.0	32.9	Nuc
Phatr2 25168	FCP (Lhcf4)	21.0	22.8	Nuc
psaF	PSI subunit (Cyt c ₆ binding site)	12.0	19.9	Chlp
rbcS	Rubisco small subunit	15.1	16.6	Chlp
Phatr2 45465	No conserved domain (Pyshell1)	17.0	11.2	Nuc
psbV	Cytochrome c ₅₅₀ (PSII Mn-cluster)	18.2	10.8	Chlp
Phatr2 22122	GAPDH (GapC1)	7.0	9.8	Nuc
Phatr2 13877	FCP 47485	17.7	8.8	Nuc
Phatr2 20331	PsbO	6.6	8.7	Nuc
atpA	ATP synthase CF1 alpha subunit	6.0	8.3	Chlp
Phatr2 34919	No conserved domain	0.0	8.0	Nuc
psbD	D2 protein	5.6	7.7	Chlp
Phatr2 14386	FCP (Lhcr14)	14.6	6.8	Nuc
psaC	PSI extrinsic protein (Fd binding site)	42.0	6.6	Chlp
Phatr2 22956	FCP (Lhcr2)	8.0	6.4	Nuc
Phatr2 26293	PSII 12 kDa extrinsic protein (PsbU)	10.0	6.3	Nuc
atpB	FoF1 ATPase beta-subunit	8.4	5.5	Chlp
psaD	PSI extrinsic protein (Fd binding site)	21.3	5.5	Chlp
Phatr2 22395	FCP (Lhcf8)	11.8	5.4	Nuc
Phatr2 51230	FCP (Lhcf11)	8.4	4.8	Nuc
Phatr2 44488	DNA polymerase III, delta subunit	3.0	4.7	Nuc
Phatr2 49287	Predicted dehydrogenase	1.5	4.7	Nuc
Phatr2 25893	FCP (Lhcf14)	7.3	4.4	Nuc
psbC	CP43 (Core antenna of PSII)	3.2	4.1	Chlp
Phatr2 30648	FCP (Lhcf11)	14.0	4.1	Nuc
Phatr2 44056	Cytochrome c ₅₅₃ (PetJ)	14.0	4.0	Nuc
psaL	Photosystem I protein subunit XI	13.6	4.0	Chlp
psbA	D1 protein	3.0	3.7	Chlp
Phatr2 54926	Acetyl-CoA carboxylase	1.3	3.7	Nuc
psbB	CP47 (Core antenna of PSII)	9.0	3.6	Chlp
Phatr2 20657	FoF1 ATP synthase, gamma subunit	4.0	3.6	Nuc
Phatr2 46917	No conserved domain	6.0	3.5	Nuc
psbE	Cytochrome b ₅₅₉	23.7	3.5	Chlp
ycf41	Hypothetical chloroplast reading frame 41	13.0	3.3	Chlp
Phatr2 42663	No conserved domain	1.3	3.2	Nuc

^a Proteins shown in bold have previously been localized to the *P. tricornutum* pyrenoid.

^b Chlp, encoded in chloroplast genome; Nuc, encoded in nuclear genome

706

707

708

709 **Table S2. List of candidate pyrenoid proteins in *P. tricornutum* identified in**
710 **Rubisco-enriched fractions obtained by sucrose density gradient**
711 **centrifugation.** These “solution digestion” results correspond to “Procedure B” in
712 **Fig. 1A.**

Pre-conditioning	Strains	P_{\max}	$K_{0.5}$	$[\text{DIC}]_{\text{comp}}$	APC
Air-level CO ₂ (LC)	WT	142 ± 13	0.046 ± 0.019	0.014 ± 0.011	2800 ± 1000
	<i>m1</i>	151 ± 26	2.4 ± 0.5	0.28 ± 0.08	50 ± 10
	<i>m2</i>	137 ± 12	3.3 ± 0.6	0.35 ± 0.03	33 ± 5
High CO ₂ (HC)	WT	157 ± 19	0.82 ± 0.06	0.07 ± 0.04	130 ± 20
	<i>m1</i>	119 ± 3	3.0 ± 0.8	0.37 ± 0.16	36 ± 6
	<i>m2</i>	123 ± 15	5.0 ± 0.8	0.58 ± 0.20	29 ± 7

713

714 **Table S3. Photosynthetic parameters in *T. pseudonana* wild-type cells and**
715 **PyShell mutants.** P_{\max} , maximum net photosynthetic O₂ evolution rate (μmol mg⁻¹
716 chlorophyll a h⁻¹); $K_{0.5}$, [DIC] (mM) giving a half of P_{\max} ; $[\text{DIC}]_{\text{comp}}$, [DIC] (mM) giving no
717 net O₂ evolution; and APC, apparent photosynthetic conductance (μmol mg⁻¹
718 chlorophyll a h⁻¹ mM⁻¹ [DIC]). Data are shown as the mean ± the standard deviation
719 ($n = 3$, biological replicates).

720

721

722

723

724

725

Name	Sequence (5'-3')
PtPyShell1:GFP_F	AATTTGTCTGCCGTTCGAATGAACATCTACGGCAAACCTTCTGG
PtPyShell1:GFP_R	GCTCCTCGCCCTTGCTCACCCATGAACGGTCCATGAACC
TpPyShell1:GFP_F	ACAAAGGAACCAACAATGAAGTTCTCCGCTGCC
TpPyShell1:GFP_R	GCTCACCATGATTATAAACGCACGGCCAATCA
TpPyShell2:GFP_F	ACAAAGGAACCAACAATGAAATTCTTGCCGCC
TpPyShell2:GFP_R	GCTCACCATGATTATGAAAGAACGTCCGATCATG

726

727 **Table S4. Primers used for expression of GFP fusion proteins in *P. tricornutum***
728 **and *T. pseudonana*.** Corresponds to the section “Expression of GFP fusion proteins
729 in *P. tricornutum* and *T. pseudonana*” in the Materials and Methods

Data collection and processing	
Magnification	81,000
Voltage (kV)	300
Electron exposure (e ⁻ /Å ²)	50
Defocus range (mm)	-0.5 to -1.7
Pixel size (Å)	0.87
Symmetry imposed	C1
Initial particle images (no.)	800,778
Final particle images (no.)	120,120
Helical parameters	
Rise (Å)	68.23
Twist (°)	14.71
Map resolution (Å)	3.00
FSC threshold	0.143
Map resolution range (Å)	2.95-4.61
Map sharpening <i>B</i> factor (Å ²)	-65.24
Refinement	
Initial model used	-
Model resolution estimation (Å)	
d model	3.1
d FSC model (0/0.143/0.5)	2.2/2.7/3.4
Model composition	
Non-hydrogen atoms	3263
Protein residues	433
Ligands	0
R.m.s deviations	
Bond lengths (Å)	0.004
Bond angles (°)	0.605
Validation	
MolProbity score	2.67
Clashscore	7.44
Poor rotamers (%)	8.7
Ramachandran plot	
Favored (%)	90.07
Allowed (%)	9.93
Disallowed (%)	0

730

731 **Table S5. Cryo- EM data collection, refinement and validation statistics.**

732 **Materials and methods**

733

734 **Cultures**

735 The marine diatoms *P. tricornutum* Bohlin (UTEX642) and *T. pseudonana* (Hustedt)
736 Hasle et Heimdal (CCMP 1335) were axenically and photoautotrophically cultured in
737 artificial seawater medium with the addition of half-strength Guillard's 'F' solution
738 (Guillard and Ryther, 1962; Guillard, 1975) supplemented with 10 nM sodium selenite
739 under continuous light (20°C, 40 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$, fluorescent lamp). The cultures
740 were aerated with ambient air (0.04% CO₂) or 1% CO₂ gas for LC or HC conditions,
741 respectively. For the culture of *T. pseudonana*, the concentration of NaCl was lowered
742 to 270 mM in the medium.

743

744 ***In vivo* cross-linking with photo-reactive amino acids**

745 *P. tricornutum* cells grown in LC were harvested at logarithmic growth phase and
746 resuspended in fresh medium at a concentration of OD₇₃₀ = 1.0–1.2, in the presence
747 of 1 mM L-photo-leucine and 2 mM L-photo-methionine (Thermo Fisher Scientific,
748 Waltham, MA, USA). Incorporation of these photo-reactive amino acids (pAA) was
749 performed under illumination with blue (455 nm) and red (635 nm) LED light (50 μmol
750 photons $\text{m}^{-2} \text{ s}^{-1}$) for 6–24 hours. Subsequently, the cell cultures were irradiated with
751 UV light (365 nm) for 30–45 min to perform *in vivo* photo-cross-linking. Cells were
752 harvested and resuspended in 25 mM Tris-HCl (pH 7.0), then disrupted by sonication.
753 Insoluble debris was removed by centrifugation, and the resulting supernatant was
754 either subjected to SDS-PAGE (for "gel digestion, procedure A") or centrifuged on a
755 25–55% (w/v) linear sucrose gradient in 25 mM Tris-HCl (pH 7.0) at 210,000 $\times g$ for 4
756 h at 4°C (for "solution digestion, procedure B"). Aliquots (200 μL) of each fraction were
757 collected, and the protein concentrations were determined with a protein assay kit (Bio-
758 Rad, Hercules, CA, USA) using bovine serum albumin as a standard.

759

760 **Western blotting**

761 Proteins extracted as described above were electrophoretically separated by SDS-
762 PAGE, transferred to PVDF membrane, and blocked with 1% (w/v) skim milk dissolved
763 in phosphate-buffered saline (PBS) containing 0.05% (v/v) Tween 20. For detection of
764 RbcL, a rabbit anti-RbcL antiserum generated against *P. tricornutum* RbcL partial
765 peptide (Japan Bio Serum, Hiroshima, Japan) was used as the primary antibody

766 (diluted 1:1000). Goat anti-rabbit IgG conjugated with horseradish peroxidase was
767 used as the secondary antibody (diluted 1:10000). Immunoreactive signals were
768 detected by an enhanced chemiluminescence reagent (ImmunoStar Zeta, Wako,
769 Osaka, Japan) with a high sensitivity CCD imaging system (Luminograph I, ATTO,
770 Tokyo, Japan).

771 For the confirmation of the deletions of TpPyShell1 and 2 in *m1* and *m2*, we
772 disrupted the *T. pseudonana* WT and mutants grown under HC by sonication in 50 mM
773 HEPES (pH 7.5) with a protease inhibitor cocktail (nacalai, Kyoto, Japan) to obtain the
774 crude extracts. Each 5 µg of protein were loaded and analyzed by immunoblotting as
775 mentioned above. A rabbit anti-TpPyShell1 and 2 antiserum (Japan Bio Serum)
776 targeting the conserved peptide sequence “GTARDLAEIWDNSS” was used as the
777 primary antibody. The anti-RbcL antibody was also used as a loading control.
778

779 **Identification of proteins by LC-MS/MS**

780 Proteins either in acrylamide gel (“Procedure A”) or solution (“Procedure B”) were
781 subjected to reduction, alkylation, and digested by trypsin before injection into the LC-
782 MS/MS. For gel samples, gel blocks (ca. 1 mm³) were dehydrated in 100 µL acetonitrile
783 for 10 min at room temperature. After the removal of acetonitrile, the gel block was
784 dried in an evaporator and incubated in 25 mM NH₄HCO₃ containing 10 mM
785 dithiothreitol for 1 h at 56°C. The gel block was washed in 100 µL of 25 mM NH₄HCO₃
786 and incubated with 55 mM iodoacetamide for 45 min at room temperature. After
787 washing twice with 100 µL of 25 mM of NH₄HCO₃, the gel block was dehydrated in
788 acetonitrile. The dried gel blocks were soaked in 50 mM NH₄HCO₃ containing 10 ng
789 µL⁻¹ trypsin at 37°C for 16–20 h. Digested peptides were extracted with 50% (v/v)
790 acetonitrile containing 5% (v/v) formic acid, concentrated by an evaporator, and
791 dissolved in 1% (v/v) formic acid. The solutions were desalted by ZipTip C18 (Merck
792 Millipore). For solution samples, disulfide bonds were reduced in 50 mM Tris-HCl (pH
793 8.5) containing 10 mM dithiothreitol at 37°C for 1.5 h, and subsequently alkylated with
794 50 mM iodoacetamide for 30 min at room temperature. Proteins were digested with 2
795 ng µL⁻¹ trypsin in 50 mM NH₄HCO₃ for 16–20 h at 37°C, and then the reaction was
796 stopped by addition of 0.18% (v/v) formic acid. Peptide samples were concentrated in
797 an evaporator, dissolved in 0.1% (v/v) formic acid, and then desalted by ZipTip C18
798 (Merck Millipore, Burlington, MA, USA). The digested samples were injected into
799 EASY-nLC 1000 connected to LTQ Orbitrap XL (Thermo Fisher Scientific). Data of LC-

800 MS/MS were analyzed by the software Proteome Discoverer 1.4 (Thermo Fisher
801 Scientific) with the open genome data resource for *P. tricornutum* from JGI (Phatr2).

802

803 **Genome editing of *TpPyShell1/2***

804 A pair of single guide RNA (sgRNA) sequences were constructed to target both
805 *TpPyShell1* and *TpPyShell2* using ZiFiT Targeter (<http://zifit.partners.org/ZiFiT/>)
806 (Sander et al., 2010), followed by Cas-Designer ([http://www.rgenome.net/cas-
807 designer/](http://www.rgenome.net/cas-designer/)), which considers specificity and microhomology-mediated joining (Park et
808 al., 2015). The nucleotides 5'-TAACGGCATTGAAGGTACGA-3' (396–415 in
809 *TpPyShell1* and 423–442 in *TpPyShell2*) and 5'-TCCCCGCGGCCAACACCG-3'
810 (393–412 in *TpPyShell1* and 420–439 in *TpPyShell2*) were chosen (Figure S6A). For
811 appropriate RNA transcription, an additional G was inserted at the 5' end of the DNA
812 sequence encoding each sgRNA (Sander and Joung, 2014). The dual sgRNA vector
813 targeting *TpPyShell1/2* was generated and introduced together with Cas9 (D10A)
814 nickase vector into the *T. pseudonana* cells by particle bombardment according to the
815 previous work (Nawaly et al., 2020). The mutant strains were screened on agar
816 medium supplemented with 100 µg/mL nourseothricin (Jena Bioscience) under HC
817 conditions. To ensure monoclonal strains, each colony was restreaked four times, each
818 time picking a single colony from the streak. Mutations were verified by TIDE analysis
819 and direct sequencing (Figure S6B).

820

821 **qRT-PCR of PyShell Transcripts**

822 Transcript levels of *TpPyShell1*, *TpPyShell2*, *TpPyShell3*, and *TpδCA3* (Tp233) were
823 quantified by qRT-PCR. *TpδCA3* was used as a control low-CO₂ inducible gene. The
824 internal controls were *Actin* (Tp25772), *GapC3* (Tp28241), and *Histone H4* (Tp3184),
825 which were confirmed to be unresponsive to different CO₂ concentrations in *T.*
826 *pseudonana* (Matsui et al., 2018). Transcript levels were calculated with the 2^{−ΔΔCt}
827 method against each internal control separately (Livak and Schmittgen, 2001). Then,
828 the average values of ΔΔCt were calculated for each replicate.

829

830 **Expression of GFP fusion proteins in *P. tricornutum* and *T. pseudonana***

831 Correct full-length coding sequences for PyShell orthologues in *P. tricornutum* and *T.*
832 *pseudonana* (*PtPyShell1*, *TpPyShell1*, and *TpPyShell2*) were determined by RACE
833 using a SMARTer RACE 5'/3' kit (TaKaRa). Sequences were amplified by PCR and

834 cloned into pPha-T1 or pTha-NR vectors containing a fragment of enhanced GFP by
835 a seamless ligation cloning extract method (Motohashi, 2015). The resulting plasmids
836 were introduced into each WT cell using particle bombardment (PDS-1000/He, BioRad,
837 Tokyo, Japan), and transformants expressing GFP were screened by fluorescence
838 microscopy (Tachibana et al., 2011). Primers used are listed in [Table S4](#).

839

840 **Confocal fluorescence microscopy**

841 To observe subcellular localizations of GFP fusion proteins, we used confocal laser
842 microscopes A1 (Nikon, Tokyo, Japan) or SP8 (Leica, Wetzlar, Germany). When
843 imaging with the A1, chlorophyll autofluorescence was detected at 662–737 nm after
844 excitation with a 638 nm laser, and GFP fluorescence was monitored at 500–550 nm
845 following excitation at 488 nm. When imaging with the SP8, chlorophyll was excited by
846 a 552 nm laser and detected at 600–750 nm. GFP was excited by a 488 nm laser and
847 detected at 500–520 nm.

848

849 **Immunoelectron microscopy**

850 The strain of *P. tricornutum* that expressing PtPyShell1 tagged with GFP was fixed by
851 as previously described (Kikutani et al., 2016) with small modifications in the
852 polymerization step; the samples immersed in resin were polymerized at –30°C for 5
853 days under UV light. Thin sections cut with Leica EM UC7 were mounted on nickel slot
854 grids, followed by an edging step with 1% (w/v) sodium periodate. After the blocking
855 step, the sections were reacted with polyclonal anti-GFP antibody (AnaSpec, Fremont,
856 CA, US) diluted 1:500 in 3% (w/v) BSA in PBS at 25°C overnight. After rinsing with
857 PBS, they were incubated for 60 min at room temperature with a goat anti-rabbit IgG
858 conjugated to 10-nm colloidal gold particles (1:50 diluted in PBS; BBI Solutions,
859 Crumlin, UK). The thin sections were stained with Ti blue (Nissrin EM, Aichi, Japan),
860 following washing with distilled water. The sections were observed with a JEM-1011
861 electron microscope (JEOL, Tokyo, Japan).

862

863 **Purification of recombinant TpPyShell1 protein**

864 The expression plasmid for TpPyShell with an N-terminal His6-tag on pET28a was
865 transformed into *Escherichia coli* strain BL21(DE3). Cells were cultured at 37°C in 6 L
866 of LB medium containing 100 µg/mL Kanamycin. When the OD600 reached 0.5, an
867 IPTG solution was added to a final concentration of 0.1 mM for induction of TpPyShell

868 expression, and the culture was incubated overnight at 37°C. Cells were harvested by
869 two rounds of centrifugation (6,000 rpm, 10 min, 4°C, JLA-9.1000 rotor; Beckman),
870 resuspended in Buffer A containing 50 mM Tris-HCl pH8.0, 0.3 M NaCl, 1 mM EDTA
871 and 1 mM DTT, and then frozen for storage at -80°C or used immediately for cell
872 disruption. Frozen cells were resuspended in 200 mL of freshly prepared pre-cooled
873 Buffer A with 0.25 mM PMSF and disrupted by sonication. After cell debris and
874 undisrupted cells were removed by centrifugation (45,000 rpm, 30 min, 4°C, 70Ti rotor;
875 Beckman), supernatant was applied to an open column with Ni-IMAC resin (BIO-RAD).
876 The column was washed with wash buffer (50 mM Tris-HCl pH8.0, 0.3 M NaCl, 10 mM
877 Imidazole, 1 mM EDTA, 1 mM DTT), and then TpPyShell protein was eluted from the
878 column using elution buffer (50 mM Tris-HCl pH8.0, 0.3 M NaCl, 300 mM Imidazole, 1
879 mM EDTA and 1 mM DTT). TEV protease equivalent to 3% of the TpPyShell
880 concentration was added to the fractionated solution. His-tagged TpPyShell together
881 with TEV protease was dialyzed overnight at 4°C in SnakeSkin dialysis tube (Thermo
882 Scientific) against dialysis buffer (50 mM Tris-HCl pH8.0, 0.3 M NaCl, 1 mM EDTA and
883 1 mM DTT). The dialyzed solution was applied to an open column with Ni-IMAC resin
884 equilibrated by the dialysis buffer, and the His-tag free TpPyShell was eluted. Collected
885 TpPyShell was applied to Superdex75 16/60 equilibrated with the dialysis buffer, and
886 the fraction containing TpPyShell was collected. The fraction containing TpPyShell was
887 further concentrated by centrifugation (4000 g, 15 min, 4°C, SX4400 rotor; Beckman)
888 with Amicon Ultra (M.W.4000) to reach a TpPyShell concentration of 2.0 mg/mL.
889

890 **Cryo-EM grid prep and data acquisition**

891 3.0 µL of TpPyShell solution was applied to a glow-discharged Quantifoil holey carbon
892 grid (R1.2/1.3, Cu, 200 mech), blotted for 3.5 sec at 4°C and plunge-frozen into liquid
893 ethane using a Vitrobot Mark IV (Thermo Fisher Scientific). The grid was inserted into
894 a Titan Krios (Thermo Fisher Scientific) operating at an acceleration voltage of 300 kV
895 and equipped with a Cs corrector (CEOS, GmbH). Images were recorded with a K3
896 direct electron detector (Gatan) in CDS mode with an energy filter at a slit width of 20
897 eV. Data were automatically collected using SerialEM software (Mastronarde, 2005) at
898 a physical pixel size of 0.87 Å, with 52 frames at a dose of 0.96 e/Å per frame, an
899 exposure time of 2.63 sec per movie, and defocus ranging from -0.5 to -1.7 µm. A total
900 of 5,951 movies were collected.
901

902 **Cryo-EM image processing and model building**

903 The movie frames were subjected to beam-induced motion correction using
904 MotionCorr2.1 (Zheng et al., 2017), and the contrast transfer function (CTF) was
905 evaluated using Gctf (Zhang, 2016). Motion correction and CTF estimation were
906 processed using RELION 3.1 (Zivanov et al., 2018). The motion corrected micrographs
907 were imported into cryoSPARC ver.4.0.2 (Punjani et al., 2017), and approximately 500
908 particles were manually selected from 10 micrographs to perform two-dimensional (2D)
909 classification. Using a good 2D class average image as a template, a total of 800,778
910 particle images were automatically picked from all micrographs in a filament tracer job
911 and were extracted with a box size of 150 pixels with 4x binning. After two rounds of
912 2D classification, 299,145 particles were selected and extracted with a box size of 600
913 pixels. The re-extracted particles were subjected to refinement without helical
914 parameters. Even after refinement, symmetry search for the helical parameters were
915 not convincing. Therefore, preliminarily modelled structures were manually fitted into
916 an EM density map to estimate two helical parameters, and the helical parameters
917 were determined to be rise of 25 Å and twist of -30 degrees. Based on these helical
918 parameters, 496,631 particle images were automatically picked from all micrographs
919 and were extracted with a box size of 170 pixels with 4x binning using RELION 3.1.
920 After 2D classification, selected particles were classified into 5 classes by 3D
921 classification, as shown in [Figure S5B](#). A total of 123,385 particles were re-extracted
922 at a pixel size of 1.20 Å and subjected to five rounds of helical refinement, three rounds
923 of CTF refinement, and Bayesian polishing. The final 3D refinement and post-
924 processing yielded a map with global resolution of 3.0 Å, according Fourier shell
925 correlation (FSC) with the 0.143 criterion ([Figure S5E](#)). The final refined values of
926 helical rise and twist were 25.14 Å and -32.46 degrees, respectively. Local resolution
927 was estimated using RELION 3.1 ([Figure S5F](#)). The processing workflow is outlined in
928 [Figure S5B](#).

929 The model of TpPyShell1 from Trp96 to Met316 (excluding the chloroplast
930 targeting sequence) ([Figures 3B, S5G](#)) was built starting from the predicted AlphaFold2
931 model (Jumper et al., 2021). After manually fitting this predicted model into the EM
932 density map using UCSF Chimera (Pettersen et al., 2004), each domain was manually
933 remodeled and refined iteratively using COOT (Emsley et al., 2010), Phenix
934 (Liebschner et al., 2019), and the Servalcat pipeline in REFMAC5 (Yamashita et al.,
935 2021). All figures were prepared using UCSF ChimeraX (Goddard et al., 2018). The

936 statics of the 3D reconstruction and model refinement are summarized in **Table S5**.

937

938 **Cryo-ET sample prep and data acquisition**

939 *Thalasirossira pseudonana* and *Phaeodactylum tricornutum* were grown in artificial
940 sea water at 18°C and 40 μmol photons m^{-2} s^{-1} light without shaking. For the
941 *Thalasirossira pseudonana* *m1* and *m2* mutants ($\Delta\text{TpPyShell1/2}$), 5 mM NaCO₃ was
942 supplemented in the medium. Cells were sedimented at $800 \times g$ for 5 min prior to
943 vitrification, 4 μL of cell suspension was applied on 200-mesh R 1/4 SiO₂-film covered
944 gold grids or 200-mesh R2/1 carbon-film covered copper grids (Quantifoil Micro Tools)
945 (for *P. tricornutum* and *T. pseudonana* cells, respectively) and plunge frozen using a
946 Vitrobot Mark IV (Thermo Fisher Scientific). EM grids were clipped into Autogrid
947 supports (Thermo Fisher Scientific) and loaded into Aquilos 1 or 2 FIB-SEM
948 instruments (Thermo Fisher Scientific), where they were thinned with a Gallium ion
949 beam as previously described (Schaffer et al., 2017). The resulting EM grids with thin
950 lamellae were transferred to a transmission electron microscope for tomographic
951 imaging.

952 For *P. tricornutum*, cryo-ET data was acquired on a 300 kV Titan Krios G2
953 microscope (Thermo Fisher Scientific), equipped with a post-column energy filter
954 (Quantum, Gatan) and a direct detector camera (K2 summit, Gatan) ("M1"), as well as
955 on a 300 kV Titan Krios G3i microscope (Thermo Fisher Scientific) equipped with a
956 BioQuantum post-column energy filter (Gatan) and a K3 direct electron detector
957 (Gatan) ("M2"). For *T. pseudonana*, data was acquired on microscope M2, as well as
958 on a 300 kV Titan Krios G4i microscope (Thermo Fisher Scientific), equipped with a
959 post-column energy filter (Selectris X, Thermo Fisher Scientific) and a direct electron
960 detector (Falcon 4, Thermo Fisher Scientific) ("M3").

961 For microscopes M1 and M2, tilt-series were obtained using SerialEM 3.8
962 software (Mastronarde et al, 2005). In all cases, tilt-series were acquired using a dose-
963 symmetric tilt scheme (Hagen et al, 2017), with 2° steps totaling 60 tilts per series.
964 Each image was recorded in counting mode with ten frames per second. The target
965 defocus of individual tilt-series ranged from -2 to -5 μm . Total dose per tilt series was
966 approximately 120 e⁻/Å². Image pixel sizes for microscopes M1 and M2 were 3.52 and
967 2.143 Å, respectively. For microscope M3, tilt-series were obtained using the
968 Tomography 5.11 software (Thermo Fisher Scientific), using the same acquisition
969 scheme as above, except for the use of multi-shot acquisition. Data was acquired in

970 EER mode with a calibrated image pixel size of 2.93 Å.

971

972 **Cryo-ET data analysis**

973 TOMOMAN Matlab scripts (<https://github.com/williamnwan/TOMOMAN/>;
974 <https://doi.org/10.5281/zenodo.4110737>) (version 0.6.9) were used to preprocess the
975 tomographic tilt series data. Raw frames were aligned using MotionCor2 (version
976 1.5.0) (Zheng et al., 2017), then tilt-series were dose-weighted (Grant and Grigorieff,
977 2015) followed by manual removal of bad tilts. The resulting tilt-series (binned 4 times,
978 pixel sizes: 14.08 Å for M1, 8.57 Å for M2, 11.6 Å for M3) were aligned in IMOD (version
979 4.11) (Mastronarde and Held, 2017) using patch tracking and were reconstructed by
980 weighted back projection. Cryo-CARE (version 0.2.1) (Buchholz et al., 2018) was
981 applied on reconstructed tomogram pairs from odd and even raw frames to enhance
982 contrast and remove noise. Snapshots of denoised tomograms were captured using
983 the IMOD 3dmod viewer. Denoised tomograms were used as input for automatic
984 segmentation using MemBrain-Seg (<https://github.com/teamtomo/membrain-seg/>).
985 The resulting segmentations were manually curated in Amira (version 2021.2).

986

987 **Subtomogram averaging of *T. pseudonana* PyShell**

988 For subtomogram averaging, only data from microscope M2 was used. Segmented
989 surfaces corresponding to the PyShell were used as input to determine initial normal
990 vectors in MemBrain's point and normal sampling module (Lamm et al., 2022). Vectors
991 were sampled densely on the surface with a spacing of 1.5 voxels at bin4 (8.572 Å/px).
992 The resulting positions were used as initial coordinates to extract subvolumes (box size
993 of 32 pixels) from bin4 tomograms corrected for the contrast transfer function (CTF)
994 using phase flipping in IMOD. Starting from the normal vectors determined in
995 MemBrain, multiple rounds of subtomogram alignment, averaging and classification
996 were carried out in STOPGAP software (<https://github.com/williamnwan/STOPGAP/>;
997 <https://doi.org/10.5281/zenodo.3973664>). False positives and poorly aligning particles
998 were removed by classification steps. A second round of extraction, alignment and
999 classification was performed at bin2 (4.286 Å/px), starting with the coordinates from
1000 the previous round of averaging in bin4. During particle alignment a maximum
1001 resolution of 16 Å was allowed to prevent overfitting.

1002 To compare the *in vitro* TpPyShell1 SPA model and the *in situ* PyShell STA
1003 density map (Figure 3F), the SPA density map was unrolled from a tube to a flat sheet

1004 using the unroll command in ChimeraX (Goddard et al., 2018). SPA models of
1005 individual monomers were fitted in the unrolled density to form a flat model of the *in*
1006 *vitro* lattice. This model was then subsequently fitted in the *in situ* STA density map
1007 using rigid fitting in ChimeraX.

1008

1009 **Photosynthesis measurements**

1010 *T. pseudonana* WT, *m1*, and *m2* cells were cultured under LC and HC with 40 μmol
1011 photons $\text{m}^{-2} \text{s}^{-1}$ light, harvested at the logarithmic growth phase, and resuspended in
1012 freshly prepared DIC-free F/2 artificial water. Chlorophyll a concentration of the
1013 samples was determined in 100% (v/v) methanol (Jeffrey and Haxo, 1968), and the
1014 cell samples were applied to an oxygen electrode (Hansatech, King's Lynn, U.K.) at 10
1015 μg chlorophyll a mL^{-1} in the DIC-free artificial sea water (pH 8.1). Simultaneous
1016 measurement of net O_2 evolution rate with total DIC concentration in the sample
1017 mixture was achieved by an oxygen electrode and a gas-chromatography flame
1018 ionization detector (GC-8A, Shimadzu, Kyoto, Japan) during stepwise addition of
1019 NaHCO_3 , as previously reported (Kikutani et al., 2016). Measurements used constant
1020 actinic light of 900 μmol photons $\text{m}^{-2} \text{s}^{-1}$. The photosynthetic parameters were
1021 calculated from the plot of O_2 evolution rate against DIC concentration by curve fitting
1022 with the non-linear least squares method: P_{\max} , maximum net O_2 evolution rate; $K_{0.5}$,
1023 DIC concentration giving a half of P_{\max} ; $[\text{DIC}]_{\text{comp}}$, $[\text{DIC}]$ giving no net O_2 evolution; and
1024 APC, apparent photosynthetic conductance.

1025

1026 **FIB-SEM data acquisition and analysis**

1027 Sample preparation was performed as in (Uwizeye et al., 2021). FIB-SEM tomography
1028 was performed with a Zeiss CrossBeam 550 microscope, equipped with Fibics Atlas
1029 3D software for tomography. The voxel size was 16x16x16 nm for the WT, 6x6x6 nm
1030 for the *m1* mutant, and 8x8x8 nm for the *m2* mutant. The whole volumes were imaged
1031 with an average of 300 frames for WT and 1000 frames for the mutants. Single cells
1032 were isolated by cropping in 3D using the open software Fiji (Schindelin et al., 2012).
1033 Image misalignment was corrected using the "StackReg" plugin in Fiji. We used 3D
1034 Slicer for segmentation and 3D reconstruction, and Meshlab to reduce noise and
1035 enhance contours of reconstructed objects. The quantitative measurements of
1036 chloroplasts and pyrenoids organelles (volume, diameter, sphericity) was implemented
1037 in python using libraries including trimesh, stl and scikit-image.

1038

1039 **Phylogenetic analysis**

1040 Homologs of *T. pseudonana* PyShell 1 protein (TpPyShell1) were retrieved from the
1041 National Centre for Biotechnology Information and the Marine Microbial Eukaryote
1042 Transcriptome Sequence Project (MMETSP) (Keeling et al., 2014). The highest
1043 scoring sequences per species were selected (E-value cutoff = 1e-35). Gaps and non-
1044 conserved regions were removed, and the protein sequences were subsequently
1045 aligned using Clustal Omega (Sievers et al., 2011). The alignment was used to
1046 generate a maximum likelihood tree, using IQTREE with standard settings and
1047 visualized with iTOL (Trifinopoulos et al., 2016; Letunic and Bork, 2021). Taxonomic
1048 distribution of the TpPyShell1 protein sequence in the ocean was queried against the
1049 Ocean Gene Atlas v2.0 webserver (<https://tara-oceans.mio.osupytheas.fr>) (Villar et al.,
1050 2018; Vernette et al., 2022).

1051 **Data availability:**

1052 Single particle cryo-EM maps (EMD-37751), cryo-ET subtomogram averages (EMD-
1053 18709), and cellular tomograms (EMD-18710 to EMD-18713) are available in the
1054 Electron Microscopy Data Bank. Atomic models of the PyShell structure are deposited
1055 at the Protein Data Bank (PDB-8WQP). Raw cryo-EM data (EMPIAR-11724) and raw
1056 cryo-ET data (EMPIAR-11747) used to generate the density maps are available on the
1057 Electron Microscopy Public Image Archive. The PyShell nucleotide sequences
1058 reported in this paper have been deposited in DDBJ/EMBL/GenBank under accession
1059 numbers XM_002179781, XM_002185069, OR682719, OR682720, XM_002292359,
1060 XM_002292147, XM_002292148. The proteomics data is available at
1061 ProteomeXchange (PXD041920) and jPOST (JPST001940). Strains and plasmids
1062 generated in this study are available from the corresponding authors upon request.

1063

1064 **Funding:**

1065 This work was supported by the Japan Society for the Promotion of Science (JSPS)
1066 KAKENHI (19H01153 to Y.M.), JST CREST “Cell dynamics” (JPMJCR20E1 to G.K.),
1067 European Research Council (ERC) advanced grant “ChloroMito” (833184 to G.F.),
1068 European project Plankt-ON (101099192 to G.F.), ERC consolidator grant “cryOcean”
1069 (fulfilled by the Swiss State Secretariat for Education, Research and Innovation,
1070 M822.00045 to B.D.E.), an EMBO short-term fellowship (8015) and Royal Society
1071 international exchanges (IESR3183037) to S.F., an Alexander von Humboldt
1072 Foundation fellowship and a non-stipendiary EMBO long-term fellowship to R.D.R, and
1073 a Boehringer Ingelheim Fonds fellowship to L.L.

1074

1075 **Acknowledgements:**

1076 We thank Vandana Tomar Deopa and Kohei Yoneda for helping establish the mutant
1077 strains, as well Nobuko Higashiuchi and Eri Nakayama for technical assistance. We
1078 thank Cécile Giustini for and Haythem Hsine for data analysis and strain maintenance,
1079 Glen Wheeler and Colin Brownlee (Marine Biological Association of the UK) for
1080 supporting the first cryo-ET investigations, and Caitlyn McCafferty for help with
1081 bioinformatic analysis. We thank Rikuya Morimoto, Kanae Fukushima and Taiki
1082 Fukuzawa for their help establishing the preparation of recombinant PyShell protein,
1083 as well as Atsunori Oshima and Yoshinori Fujiyoshi (Naogo University) for TEM
1084 instrumentation access at the beginning of the SPA cryo-EM study. We thank Guy

1085 Schoehn and Christine Moriscot (IBS/ISBG electron microscope facility; Grenoble
1086 Instruct-ERIC center) for access and assistance with FIB/SEM instrumentation. We
1087 thank Sagar Khavnekar, Jürgen Plitzko, and Wolfgang Baumeister (Max Plank Institute
1088 of Biochemistry), as well as Daniel Böhringer, Miroslav Peterek, and Bilal M. Qureshi
1089 (ETH ScopeM facility) for access to FIB and TEM instruments and assistance with
1090 cryo-ET data acquisition. Cryo-ET analysis was performed at the sciSCORE
1091 (<http://scicore.unibas.ch/>) scientific computing center at the University of Basel.

1092

1093 **Author contributions**

1094 Y.M. and B.E. initiated the project; Y.T. and N.M. identified PyShell proteins; H.N. and
1095 T.O. generated the PyShell mutants; H.M. performed qPCR analysis; G.S. and T.O.
1096 performed growth and photosynthesis analyses; N.M. and R.O. analyzed the
1097 localization of GFP-fused PyShell proteins; H.N. and M.D. performed bioinformatic
1098 analyses; A.T. performed immunoelectron microscopy; R.T. expressed and purified
1099 recombinant TpPyShell1 protein; C.G. confirmed the tube structure of TpPyShell1; A.K.
1100 prepared cryo-EM grids, acquired data and calculated the SPA density map; G.K.
1101 performed modeling and refinement; S.F. and W.W. acquired cryo-ET data; M.D., L.L.,
1102 and R.R. analyzed cryo-ET data and performed subtomogram averaging; S.F. and B.G.
1103 performed sample preparation for FIB-SEM imaging; P.-H.J. acquired FIB-SEM
1104 tomograms; S.F. and C.U. performed FIB-SEM tomogram segmentation and analysis;
1105 G.S., M.D., S.F., G.K., G.F., B.E., and Y.M. wrote the manuscript with support from all
1106 other authors.

1107

1108 **Declaration of Interests**

1109 The authors declare no competing interests.

1110

1111 **Supplementary information** is available for this paper.

1112 Supplemental Tables S1-S5

1113 Supplemental Figures S1-S6

1114 Supplemental Movies 1-2 (to be submitted with revised manuscript)

1115

1116 Correspondence and requests for materials should be addressed to G.K., B.E., and
1117 Y.M.

1118 **References**

1119 Allen, A.E., Moustafa, A., Montsant, A., Eckert, A., Kroth, P.G., and Bowler, C. (2011). Evolution and
1120 functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine
1121 diatoms. *Molecular Biology and Evolution*. 29: 367-379.

1122 Atkinson, N., Mao, Y., Chan, K.X., and McCormick, A.J. (2020). Condensation of Rubisco into a proto-
1123 pyrenoid in higher plant chloroplasts. *Nature Communications*. 11: 6303.

1124 Barrett, J., Girr, P., and Mackinder, L.C. (2021). Pyrenoids: CO₂-fixing phase separated liquid organelles.
1125 *Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research*. 1868: 118949.

1126 Bedoshvili, Y.D., Popkova, T.P., and Likhoshway, Y.V. (2009). Chloroplast structure of diatoms of different
1127 classes. *Cell and Tissue Biology*. 3: 297-310.

1128 Borden, J.S., and Savage, D.F. (2021). New discoveries expand possibilities for carboxysome
1129 engineering. *Curr Opin Microbiol*. 61: 58-66.

1130 Borkhsenious, O.N., Mason, C.B., and Moroney, J.V. (1998). The intracellular localization of ribulose-
1131 1,5-bisphosphate Carboxylase/Oxygenase in *chlamydomonas reinhardtii*. *Plant Physiol*. 116:
1132 1585-1591.

1133 Buchholz, T.-O., Jordan, M., Pigino, G., and Jug, F. (2018). Cryo-CARE: Content-Aware Image
1134 Restoration for Cryo-Transmission Electron Microscopy Data. In *arXiv e-prints*, pp.
1135 arXiv:1810.05420.

1136 Cai, F., Menon, B.B., Cannon, G.C., Curry, K.J., Shively, J.M., and Heinhorst, S. (2009). The pentameric
1137 vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO₂
1138 leakage barrier. *PLoS One*. 4: e7521.

1139 Cai, F., Sutter, M., Cameron, J.C., Stanley, D.N., Kinney, J.N., and Kerfeld, C.A. (2013). The structure
1140 of CcmP, a tandem bacterial microcompartment domain protein from the β -carboxysome, forms
1141 a subcompartment within a microcompartment. *J Biol Chem*. 288: 16055-16063.

1142 Cole, J.J., Hararuk, O., and Solomon, C.T. (2021). Chapter 7 - The Carbon Cycle: With a Brief
1143 Introduction to Global Biogeochemistry. In *Fundamentals of Ecosystem Science* (Second
1144 Edition), K.C. Weathers, D.L. Strayer, and G.E. Likens, eds. (Academic Press), pp. 131-160.

1145 de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., Le Bescot,
1146 N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J.-M., Bittner, L., Chaffron,
1147 S., Dunthorn, M., Engelen, S., Flegontova, O., Guidi, L., Horák, A., Jaillon, O., Lima-Mendez,
1148 G., Lukeš, J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F., Zingone, A.,
1149 Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas, S.G., Bork, P., Bowler, C.,
1150 Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S., Raes, J.,
1151 Sieracki, M.E., Speich, S., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P., and
1152 Karsenti, E. (2015). Eukaryotic plankton diversity in the sunlit ocean. *Science*. 348: 1261605.

1153 Dou, Z., Heinhorst, S., Williams, E.B., Murin, C.D., Shively, J.M., and Cannon, G.C. (2008). CO₂ fixation
1154 kinetics of *Halothiobacillus neapolitanus* mutant carboxysomes lacking carbonic anhydrase
1155 suggest the shell acts as a diffusional barrier for CO₂. *J Biol Chem*. 283: 10377-10384.

1156 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. *Acta
1157 Crystallogr D Biol Crystallogr*. 66: 486-501.

1158 Engel, B.D., Schaffer, M., Kuhn Cuellar, L., Villa, E., Plitzko, J.M., and Baumeister, W. (2015). Native
1159 architecture of the *Chlamydomonas* chloroplast revealed by *in situ* cryo-electron tomography.
1160 *Elife*. 4: e04889.

1161 Falkowski, P.G., Barber, R.T., and Smetacek, V. (1998). Biogeochemical controls and feedbacks on
1162 ocean primary production. *Science*. 281: 200-206.

1163 Faulkner, M., Szabó, I., Weetman, S.L., Sicard, F., Huber, R.G., Bond, P.J., Rosta, E., and Liu, L.N.
1164 (2020). Molecular simulations unravel the molecular principles that mediate selective
1165 permeability of carboxysome shell protein. *Sci Rep.* 10: 17501.

1166 Fei, C., Wilson, A.T., Mangan, N.M., Wingreen, N.S., and Jonikas, M.C. (2022). Modelling the pyrenoid-
1167 based CO₂-concentrating mechanism provides insights into its operating principles and a
1168 roadmap for its engineering into crops. *Nat Plants.* 8: 583-595.

1169 Flori, S., Jouneau, P.-H., Bailleul, B., Gallet, B., Estrozi, L.F., Moriscot, C., Bastien, O., Eicke, S., Schober,
1170 A., Bártulos, C.R., Maréchal, E., Kroth, P.G., Petroutsos, D., Zeeman, S., Breyton, C., Schoehn,
1171 G., Falconet, D., and Finazzi, G. (2017). Plastid thylakoid architecture optimizes photosynthesis
1172 in diatoms. *Nature Communications.* 8: 15885.

1173 Freeman Rosenzweig, E.S., Xu, B., Kuhn Cuellar, L., Martinez-Sanchez, A., Schaffer, M., Strauss, M.,
1174 Cartwright, H.N., Ronceray, P., Plitzko, J.M., Forster, F., Wingreen, N.S., Engel, B.D., Mackinder,
1175 L.C.M., and Jonikas, M.C. (2017). The eukaryotic CO₂-concentrating organelle is liquid-like and
1176 exhibits dynamic reorganization. *Cell.* 171: 148-162.e119.

1177 Funke, R.P., Kovar, J.L., and Weeks, D.P. (1997). Intracellular carbonic anhydrase is essential to
1178 photosynthesis in *Chlamydomonas reinhardtii* at atmospheric levels of CO₂. Demonstration via
1179 genomic complementation of the high-CO₂-requiring mutant ca-1. *Plant Physiol.* 114: 237-244.

1180 Giordano, M., Beardall, J., and Raven, J.A. (2005). CO₂ concentrating mechanisms in algae:
1181 mechanisms, environmental modulation, and evolution. *Annu Rev Plant Biol.* 56: 99-131.

1182 Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., and Ferrin, T.E.
1183 (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. *Protein*
1184 *science* : a publication of the Protein Society. 27: 14-25.

1185 Grant, T., and Grigorieff, N. (2015). Measuring the optimal exposure for single particle cryo-EM using a
1186 2.6 Å reconstruction of rotavirus VP6. *eLife.* 4: e06980.

1187 Griffiths, D.J. (1970). The Pyrenoid. *The Botanical Review.* 36: 29-58.

1188 Gruber, A., Vugrinec, S., Hempel, F., Gould, S.B., Maier, U.-G., and Kroth, P.G. (2007). Protein targeting
1189 into complex diatom plastids: functional characterisation of a specific targeting motif. *Plant*
1190 *Molecular Biology.* 64: 519-530.

1191 Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In *Culture of marine*
1192 *invertebrate animals*, W.L. Smith, and M.H. Chanley, eds. (Boston, MA: Springer US), pp. 29-
1193 60.

1194 Guillard, R.R.L., and Ryther, J.H. (1962). Studies of marine planktonic diatoms: I. *Cyclotella nana*
1195 hustedt, and *Detonula confervacea* (cleve) gran. *Canadian Journal of Microbiology.* 8: 229-239.

1196 Hanson, D.T., Franklin, L.A., Samuelsson, G., and Badger, M.R. (2003). The *Chlamydomonas reinhardtii*
1197 cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO₂ supply to
1198 rubisco and not photosystem II function in vivo. *Plant Physiol.* 132: 2267-2275.

1199 He, S., Chou, H.-T., Matthies, D., Wunder, T., Meyer, M.T., Atkinson, N., Martinez-Sanchez, A., Jeffrey,
1200 P.D., Port, S.A., Patena, W., He, G., Chen, V.K., Hughson, F.M., McCormick, A.J., Mueller-Cajar,
1201 O., Engel, B.D., Yu, Z., and Jonikas, M.C. (2020). The structural basis of Rubisco phase
1202 separation in the pyrenoid. *Nature Plants.* 6: 1480-1490.

1203 Hennacy, J.H., and Jonikas, M.C. (2020). Prospects for Engineering Biophysical CO₂ Concentrating
1204 Mechanisms into Land Plants to Enhance Yields. *Annu Rev Plant Biol.* 71: 461-485.

1205 Huang, J., Jiang, Q., Yang, M., Dykes, G.F., Weetman, S.L., Xin, W., He, H.L., and Liu, L.N. (2022).
1206 Probing the Internal pH and Permeability of a Carboxysome Shell. *Biomacromolecules.* 23:
1207 4339-4348.

1208 Hylton, R.K., and Swulius, M.T. (2021). Challenges and triumphs in cryo-electron tomography. *iScience*.
1209 24: 102959.

1210 Jeffrey, S., and Haxo, F. (1968). Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae)
1211 from corals and clams. *The Biological Bulletin*. 135: 149-165.

1212 Jenks, A., and Gibbs, S.P. (2000). Immunolocalization and distribution of form II Rubisco in the pyrenoid
1213 and chloroplast stroma of *Amphidinium carterae* and form I Rubisco in the symbiont-derived
1214 plastids of *peridinium foliaceum* (Dinophyceae). *Journal of Phycology*. 36: 127-138.

1215 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates,
1216 R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A.,
1217 Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy,
1218 E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D.,
1219 Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021). Highly accurate
1220 protein structure prediction with AlphaFold. *Nature*. 596: 583-589.

1221 Karlsson, J., Clarke, A.K., Chen, Z.Y., Huggins, S.Y., Park, Y.I., Husic, H.D., Moroney, J.V., and
1222 Samuelsson, G. (1998). A novel alpha-type carbonic anhydrase associated with the thylakoid
1223 membrane in *Chlamydomonas reinhardtii* is required for growth at ambient CO₂. *Embo j*. 17:
1224 1208-1216.

1225 Keeling, P.J., Burki, F., Wilcox, H.M., Allam, B., Allen, E.E., Amaral-Zettler, L.A., Armbrust, E.V., Archibald,
1226 J.M., Bharti, A.K., Bell, C.J., Beszteri, B., Bidle, K.D., Cameron, C.T., Campbell, L., Caron, D.A.,
1227 Cattolico, R.A., Collier, J.L., Coyne, K., Davy, S.K., Deschamps, P., Dyhrman, S.T., Edvardsen,
1228 B., Gates, R.D., Gobler, C.J., Greenwood, S.J., Guida, S.M., Jacobi, J.L., Jakobsen, K.S.,
1229 James, E.R., Jenkins, B., John, U., Johnson, M.D., Juhl, A.R., Kamp, A., Katz, L.A., Kiene, R.,
1230 Kudryavtsev, A., Leander, B.S., Lin, S., Lovejoy, C., Lynn, D., Marchetti, A., McManus, G.,
1231 Nedelcu, A.M., Menden-Deuer, S., Miceli, C., Mock, T., Montresor, M., Moran, M.A., Murray, S.,
1232 Nadathur, G., Nagai, S., Ngam, P.B., Palenik, B., Pawlowski, J., Petroni, G., Piganeau, G.,
1233 Posewitz, M.C., Rengefors, K., Romano, G., Rumpho, M.E., Rynearson, T., Schilling, K.B.,
1234 Schroeder, D.C., Simpson, A.G., Slamovits, C.H., Smith, D.R., Smith, G.J., Smith, S.R., Sosik,
1235 H.M., Stief, P., Theriot, E., Twary, S.N., Umale, P.E., Vaulot, D., Wawrik, B., Wheeler, G.L.,
1236 Wilson, W.H., Xu, Y., Zingone, A., and Worden, A.Z. (2014). The Marine Microbial Eukaryote
1237 Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic
1238 life in the oceans through transcriptome sequencing. *PLoS Biol*. 12: e1001889.

1239 Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., and Matsuda, Y. (2016). Thylakoid
1240 luminal θ -carbonic anhydrase critical for growth and photosynthesis in the marine diatom
1241 *Phaeodactylum tricornutum*. *Proceedings of the National Academy of Sciences*. 113: 9828-9833.

1242 Klein, M.G., Zwart, P., Bagby, S.C., Cai, F., Chisholm, S.W., Heinhorst, S., Cannon, G.C., and Kerfeld,
1243 C.A. (2009). Identification and structural analysis of a novel carboxysome shell protein with
1244 implications for metabolite transport. *J Mol Biol*. 392: 319-333.

1245 Kroth, P.G., and Matsuda, Y. (2022). Carbohydrate metabolism. In *The Molecular Life of Diatoms*
1246 (Springer), pp. 465-492.

1247 Lacoste-Royal, G., and Gibbs, S.P. (1987). Immunocytochemical Localization of Ribulose-1,5-
1248 Bisphosphate Carboxylase in the Pyrenoid and Thylakoid Region of the Chloroplast of
1249 *Chlamydomonas reinhardtii*. *Plant Physiol*. 83: 602-606.

1250 Lamm, L., Righetto, R.D., Wietrzynski, W., Pöge, M., Martinez-Sánchez, A., Peng, T., and Engel, B.D.
1251 (2022). MemBrain: A deep learning-aided pipeline for detection of membrane proteins in Cryo-
1252 electron tomograms. *Comput Methods Programs Biomed*. 224: 106990.

1253 Larsson, A.M., Hasse, D., Valegård, K., and Andersson, I. (2017). Crystal structures of β -carboxysome
1254 shell protein CcmP: ligand binding correlates with the closed or open central pore. *J Exp Bot*.
1255 68: 3857-3867.

1256 Letunic, I., and Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
1257 display and annotation. *Nucleic Acids Research*. 49: W293-W296.

1258 Liebschner, D., Afonine, P.V., Baker, M.L., Bunkóczki, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W.,
1259 Jain, S., McCoy, A.J., Moriarty, N.W., Oeffner, R.D., Poon, B.K., Prisant, M.G., Read, R.J.,
1260 Richardson, J.S., Richardson, D.C., Sammito, M.D., Sobolev, O.V., Stockwell, D.H., Terwilliger,
1261 T.C., Urzhumtsev, A.G., Videau, L.L., Williams, C.J., and Adams, P.D. (2019). Macromolecular
1262 structure determination using X-rays, neutrons and electrons: recent developments in Phenix.
1263 *Acta Crystallogr D Struct Biol*. 75: 861-877.

1264 Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time
1265 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 25: 402-408.

1266 Mackinder, L.C., Meyer, M.T., Mettler-Altmann, T., Chen, V.K., Mitchell, M.C., Caspari, O., Freeman
1267 Rosenzweig, E.S., Pallesen, L., Reeves, G., Itakura, A., Roth, R., Sommer, F., Geimer, S.,
1268 Mühlhaus, T., Schroda, M., Goodenough, U., Stitt, M., Griffiths, H., and Jonikas, M.C. (2016). A
1269 repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle. *Proc Natl
1270 Acad Sci U S A*. 113: 5958-5963.

1271 Mahinthichaichan, P., Morris, D.M., Wang, Y., Jensen, G.J., and Tajkhorshid, E. (2018). Selective
1272 Permeability of Carboxysome Shell Pores to Anionic Molecules. *J Phys Chem B*. 122: 9110-
1273 9118.

1274 Mastronarde, D.N. (2005). Automated electron microscope tomography using robust prediction of
1275 specimen movements. *J Struct Biol*. 152: 36-51.

1276 Mastronarde, D.N., and Held, S.R. (2017). Automated tilt series alignment and tomographic
1277 reconstruction in IMOD. *Journal of Structural Biology*. 197: 102-113.

1278 Matsui, H., Hopkinson, B.M., Nakajima, K., and Matsuda, Y. (2018). Plasma Membrane-Type
1279 Aquaporins from Marine Diatoms Function as CO(2)/NH(3) Channels and Provide
1280 Photoprotection. *Plant Physiol*. 178: 345-357.

1281 McGrath, J.M., and Long, S.P. (2014). Can the cyanobacterial carbon-concentrating mechanism
1282 increase photosynthesis in crop species? A theoretical analysis. *Plant Physiol*. 164: 2247-2261.

1283 Melnicki, M.R., Sutter, M., and Kerfeld, C.A. (2021). Evolutionary relationships among shell proteins of
1284 carboxysomes and metabolosomes. *Curr Opin Microbiol*. 63: 1-9.

1285 Meyer, M.T., Whittaker, C., and Griffiths, H. (2017). The algal pyrenoid: key unanswered questions.
1286 *Journal of Experimental Botany*. 68: 3739-3749.

1287 Mocaer, K., Mizzon, G., Gunkel, M., Halavaty, A., Steyer, A., Oorschot, V., Schorb, M., Le Kieffre, C.,
1288 Yee, D.P., Chevalier, F., Gallet, B., Decelle, J., Schwab, Y., and Ronchi, P. (2023). Targeted
1289 volume correlative light and electron microscopy of an environmental marine microorganism. *J
1290 Cell Sci*. 136.

1291 Morita, E., Kuroiwa, H., Kuroiwa, T., and Nozaki, H. (1997). High localization of ribulose - 1,5 -
1292 bisphosphate carboxulase/oxygenase in the pyrenoids of *Chlamydomonas reinhardtii*
1293 (Chlorophyta), as revealed by cryofixation and immunogold electron microscopy. *Journal of
1294 phycology*. 33: 68-72.

1295 Motohashi, K. (2015). A simple and efficient seamless DNA cloning method using SLiCE from
1296 *Escherichia coli* laboratory strains and its application to SLiP site-directed mutagenesis. *BMC
1297 Biotechnology*. 15: 47.

1298 Nawaly, H., Tanaka, A., Toyoshima, Y., Tsuji, Y., and Matsuda, Y. (2023). Localization and
1299 characterization of carbonic anhydrases in *Thalassiosira pseudonana*. *Photosynth Res*. 156:
1300 217-229.

1301 Nawaly, H., Tsuji, Y., and Matsuda, Y. (2020). Rapid and precise genome editing in a marine diatom,
1302 *Thalassiosira pseudonana* by Cas9 nickase (D10A). *Algal Research*. 47: 101855.

1303 Nonoyama, T., Kazamia, E., Nawaly, H., Gao, X., Tsuji, Y., Matsuda, Y., Bowler, C., Tanaka, T., and G.
1304 Dorrell, R. (2019). Metabolic innovations underpinning the origin and diversification of the
1305 diatom chloroplast. *Biomolecules*. 9: 322.

1306 Oh, Z.G., Ang, W.S.L., Poh, C.W., Lai, S.K., Sze, S.K., Li, H.Y., Bhushan, S., Wunder, T., and Mueller-
1307 Cajar, O. (2023). A linker protein from a red-type pyrenoid phase separates with Rubisco via
1308 oligomerizing sticker motifs. *Proc Natl Acad Sci U S A*. 120: e2304833120.

1309 Ohad, I., Siekevitz, P., and Palade, G.E. (1967). Biogenesis of chloroplast membranes. II. Plastid
1310 differentiation during greening of a dark-grown algal mutant (*Chlamydomonas reinhardtii*). *J Cell
1311 Biol.* 35: 553-584.

1312 Oltrogge, L.M., Chaijaraspong, T., Chen, A.W., Bolin, E.R., Marqusee, S., and Savage, D.F. (2020).
1313 Multivalent interactions between CsoS2 and Rubisco mediate α -carboxysome formation. *Nature
1314 Structural & Molecular Biology*. 27: 281-287.

1315 Park, J., Bae, S., and Kim, J.-S. (2015). Cas-Designer: a web-based tool for choice of CRISPR-Cas9
1316 target sites. *Bioinformatics*. 31: 4014-4016.

1317 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin,
1318 T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. *J
1319 Comput Chem*. 25: 1605-1612.

1320 Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: algorithms for rapid
1321 unsupervised cryo-EM structure determination. *Nat Methods*. 14: 290-296.

1322 Pyszniak, A.M., and Gibbs, S.P. (1992). Immunocytochemical localization of photosystem I and the
1323 fucoxanthin-chlorophyll a/c light-harvesting complex in the diatom *Phaeodactylum tricornutum*.
1324 *Protoplasma*. 166: 208-217.

1325 Ramazanov, Z., Rawat, M., Henk, M.C., Mason, C.B., Matthews, S.W., and Moroney, J.V. (1994). The
1326 induction of the CO₂-concentrating mechanism is correlated with the formation of the starch
1327 sheath around the pyrenoid of *Chlamydomonas reinhardtii*. *Planta*. 195: 210-216.

1328 Raven, J.A. (1997). CO₂-concentrating mechanisms: a direct role for thylakoid lumen acidification?
1329 *Plant, Cell & Environment*. 20: 147-154.

1330 Russo, C.J., Dickerson, J.L., and Naydenova, K. (2022). Cryomicroscopy *in situ*: what is the smallest
1331 molecule that can be directly identified without labels in a cell? *Faraday Discuss*. 240: 277-302.

1332 Sander, J.D., and Joung, J.K. (2014). CRISPR-Cas systems for editing, regulating and targeting
1333 genomes. *Nature Biotechnology*. 32: 347-355.

1334 Sander, J.D., Maeder, M.L., Reynolds, D., Voytas, D.F., Joung, J.K., and Dobbs, D. (2010). ZiFiT (Zinc
1335 Finger Targeter): an updated zinc finger engineering tool. *Nucleic Acids Research*. 38: W462-
1336 W468.

1337 Schaffer, M., Mahamid, J., Engel, B.D., Laugks, T., Baumeister, W., and Plitzko, J.M. (2017). Optimized
1338 cryo-focused ion beam sample preparation aimed at *in situ* structural studies of membrane
1339 proteins. *J Struct Biol*. 197: 73-82.

1340 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden,
1341 C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak,
1342 P., and Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. *Nat
1343 Methods*. 9: 676-682.

1344 Shimakawa, G., Okuyama, A., Harada, H., Nakagaito, S., Toyoshima, Y., Nagata, K., and Matsuda, Y.

1345 (2023). Pyrenoid-core CO₂-evolving machinery is essential for diatom photosynthesis in
1346 elevated CO₂. *Plant Physiology*.

1347 Shively, J.M., Ball, F., Brown, D.H., and Saunders, R.E. (1973). Functional organelles in prokaryotes:
1348 polyhedral inclusions (carboxysomes) of *Thiobacillus neapolitanus*. *Science*. 182: 584-586.

1349 Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert,
1350 M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011). Fast, scalable generation of high-
1351 quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology*.
1352 7: 539.

1353 Smetacek, V. (1999). Diatoms and the ocean carbon cycle. *Protist*. 150: 25-32.

1354 Suchanek, M., Radzikowska, A., and Thiele, C. (2005). Photo-leucine and photo-methionine allow
1355 identification of protein-protein interactions in living cells. *Nat Meth*. 2: 261-268.

1356 Tachibana, M., Allen, A.E., Kikutani, S., Endo, Y., Bowler, C., and Matsuda, Y. (2011). Localization of
1357 putative carbonic anhydrases in two marine diatoms, *Phaeodactylum tricornutum* and
1358 *Thalassiosira pseudonana*. *Photosynthesis Research*. 109: 205-221.

1359 Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., and Minh, B.Q. (2016). W-IQ-TREE: a fast online
1360 phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research*. 44: W232-W235.

1361 Tsuji, Y., Nakajima, K., and Matsuda, Y. (2017). Molecular aspects of the biophysical CO₂-concentrating
1362 mechanism and its regulation in marine diatoms. *Journal of Experimental Botany*. 68: 3763-
1363 3772.

1364 Turk, M., and Baumeister, W. (2020). The promise and the challenges of cryo-electron tomography.
1365 *FEBS Letters*. 594: 3243-3261.

1366 Uwizeye, C., Decelle, J., Jouneau, P.-H., Flori, S., Gallet, B., Keck, J.-B., Bo, D.D., Moriscot, C., Seydoux,
1367 C., Chevalier, F., Schieber, N.L., Templin, R., Allorent, G., Courtois, F., Curien, G., Schwab, Y.,
1368 Schoehn, G., Zeeman, S.C., Falconet, D., and Finazzi, G. (2021). Morphological bases of
1369 phytoplankton energy management and physiological responses unveiled by 3D subcellular
1370 imaging. *Nature Communications*. 12: 1049.

1371 Vernette, C., Lecubin, J., Sánchez, P., Coordinators, T.O., Sunagawa, S., Delmont, T.O., Acinas, S.G.,
1372 Pelletier, E., Hingamp, P., and Lescot, M. (2022). The Ocean Gene Atlas v2.0: online exploration
1373 of the biogeography and phylogeny of plankton genes. *Nucleic Acids Research*. 50: W516-
1374 W526.

1375 Villar, E., Vannier, T., Vernette, C., Lescot, M., Cuenca, M., Alexandre, A., Bachelerie, P., Rosnet, T.,
1376 Pelletier, E., Sunagawa, S., and Hingamp, P. (2018). The Ocean Gene Atlas: exploring the
1377 biogeography of plankton genes online. *Nucleic Acids Research*. 46: W289-W295.

1378 Wan, W., and Briggs, J.A. (2016). Cryo-Electron Tomography and Subtomogram Averaging. *Methods*
1379 *Enzymol*. 579: 329-367.

1380 Wang, H., Yan, X., Aigner, H., Bracher, A., Nguyen, N.D., Hee, W.Y., Long, B.M., Price, G.D., Hartl, F.U.,
1381 and Hayer-Hartl, M. (2019). Rubisco condensate formation by CcmM in β -carboxysome
1382 biogenesis. *Nature*. 566: 131-135.

1383 Wunder, T., Cheng, S.L.H., Lai, S.-K., Li, H.-Y., and Mueller-Cajar, O. (2018). The phase separation
1384 underlying the pyrenoid-based microalgal Rubisco supercharger. *Nature Communications*. 9:
1385 5076.

1386 Yamashita, K., Palmer, C.M., Burnley, T., and Murshudov, G.N. (2021). Cryo-EM single-particle structure
1387 refinement and map calculation using Servalcat. *Acta Crystallogr D Struct Biol*. 77: 1282-1291.

1388 Zang, K., Wang, H., Hartl, F.U., and Hayer-Hartl, M. (2021). Scaffolding protein CcmM directs

1389 multiprotein phase separation in β -carboxysome biogenesis. *Nat Struct Mol Biol.* 28: 909-922.

1390 Zhang, K. (2016). Gctf: Real-time CTF determination and correction. *J Struct Biol.* 193: 1-12.

1391 Zheng, S.Q., Palovcak, E., Armache, J.-P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017). MotionCor2:

1392 anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat Meth.*

1393 14: 331-332.

1394 Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., and Scheres, S.H.

1395 (2018). New tools for automated high-resolution cryo-EM structure determination in RELION-3.

1396 *Elife.* 7.

1397