

1 Extracellular domain, hinge, and transmembrane
2 determinants affecting surface CD4 expression of a novel
3 anti-HIV chimeric antigen receptor (CAR) construct

4 Giorgio Zenere^{1,2}, Chengxiang Wu¹, Cecily C. Midkiff¹, Nathan M. Johnson^{1,2}, Christopher P.
5 Grice^{1,3}, William C. Wimley⁴, Amitinder Kaur^{1,5}, and Stephen E. Braun^{1,3}

6

7 ¹Tulane National Primate Research Center, Covington, LA 70433.

8 ²BioMedical Sciences Program, ³Department of Pharmacology, ⁴Department of BioChemistry
9 and Molecular Biology, and ⁵Department of Microbiology and Immunology, Tulane University
10 School of Medicine, New Orleans, LA 70112.

11

12 Running Title: Extracellular Expression of CD4-CARs

13

14 *Correspondence to:

15 Stephen E. Braun, Ph.D.

16 Division of Immunology

17 Tulane National Primate Research Center

18 18703 Three River Road

19 Covington, LA 70433

20 Stephen.Braun@tulane.edu

21

22

23 **Abstract**

24 Chimeric antigen receptor (CAR)-T cells have demonstrated clinical potential, but current
25 receptors still need improvements to be successful against chronic HIV infection. In this study,
26 we address some requirements of CAR motifs for strong surface expression of a novel anti-HIV
27 CAR by evaluating important elements in the extracellular, hinge, and transmembrane (TM)
28 domains. When combining a truncated CD4 extracellular domain and CD8 α hinge/TM, the
29 novel CAR did not express extracellularly but was detectable intracellularly. By shortening the
30 CD8 α hinge, CD4-CAR surface expression was partially recovered and addition of the LYC
31 motif at the end of the CD8 α TM fully recovered both intracellular and extracellular CAR
32 expression. Mutation of LYC to TTA or TTC showed severe abrogation of CAR expression by
33 flow cytometry and confocal microscopy. Additionally, we determined that CD4-CAR surface
34 expression could be maximized by the removal of FQKAS motif at the junction of the
35 extracellular domain and the hinge region. CD4-CAR surface expression also resulted in
36 cytotoxic CAR T cell killing of HIV Env $^+$ target cells. In this study, we identified elements that
37 are crucial for optimal CAR surface expression, highlighting the need for structural analysis
38 studies to establish fundamental guidelines of CAR designs.

39

40

41 **Keywords:** chimeric antigen receptor, CAR-T cell therapy, CAR structure, D1D2, hinge, CD8 α ,
42 transmembrane domain

43

44

45 **Introduction:**

46 Chimeric antigen receptors (CAR) are recombinant fusion proteins designed to mimic T
47 cell receptor signaling and redirect immune functions against desired antigens [1, 2]. CARs have
48 the advantage of bypassing canonical MHC presentation and restrictions on T cell stimulation [3,
49 4]. The structure of a CAR has four major components: an extracellular antigen recognition
50 domain(s), a hinge region, a transmembrane domain to anchor the receptor to the cell surface,
51 and intracellular signaling domains to drive cell activation and confer immune function. T cells
52 derived from patient blood and engineered with CARs have been used to successfully target
53 tumor antigens, as seen by the high reduction in remission rates reported against hematological
54 cancers such as acute lymphoblastic leukemia and non-Hodgkin lymphomas [5-12]. However,
55 despite the progress that has been made in treating hematological malignancies, many challenges
56 remain for successful CAR T cell therapy of solid tumors and chronic HIV infection [13, 14].

57 To improve the efficacy of CAR T cells in these fields, novel CAR structures are being
58 designed and evaluated. These often include the generation of new extracellular domains [15-
59 18], hinge regions taken from different receptors [19], swapping transmembrane domains or
60 intracellular domains [20, 21], and even arming CARs with cytokine receptors or knocking out
61 PD-1 expression [22-24]. In the instance of HIV immunotherapy, anti-HIV CAR T cells were
62 first designed with the full-length whole CD4 extracellular domain linked to an intracellular
63 TCR ζ chain [16, 25-32]. The full-length CD4 extracellular domain was originally chosen
64 because of its inherent advantage of recognizing the primary receptor-binding site on HIV
65 envelope glycoproteins, which must be retained on all clinical HIV-1 variants [33-36]. Since
66 then, researchers have developed a truncated version of CD4 containing only immunoglobulin
67 domain 1 and 2 (D1D2) to improve CAR safety while retaining CD4 binding affinity to HIV

68 envelope glycoprotein [37]. This is achieved because HIV envelope glycoprotein binding to CD4
69 only requires D1D2 whereas the immunoglobulin domains 3 and 4, lacking in the novel CD4
70 CAR extracellular domain, are involved in CD4 oligomerization for stable binding to the MHC
71 class II molecule [38-40]. Therefore, D1D2 CD4 CAR have reduced potential off-target effects
72 compared to whole CD4 CARs. Furthermore, other anti-HIV CARs demonstrated that swapping
73 CD4-CAR transmembrane domain (TM) for CD8 α TM domain decreased CAR homology to the
74 HIV cellular receptor and reduced the susceptibility of CD4- expressing CAR T cell to HIV
75 infection [41].

76 Although some of the latest strategies look promising, one potential reason why anti-HIV
77 CARs have yet to show clinical benefits is because some of the domains incorporated in the new
78 CAR structures have motifs whose biochemical function and structural importance are still
79 poorly understood and can dramatically affect the success of a CAR strategy. In the present
80 study, we first attempted to generate a novel CD4 based CAR that combined the truncated CD4
81 D1D2 extracellular domain with the innovative CD8 α TM to improve the safety and efficiency
82 of anti-HIV CAR. We observed a lack of surface detection by flow cytometry and confocal
83 microscopy but determined that the CAR was synthesized and detectable intracellularly. Through
84 a series of rescue vectors, this study identified specific CAR elements that are crucial for optimal
85 CAR surface expression and maintained cytolytic activity. Our findings illustrate the need for
86 thorough analysis of the CARs structure to help establish fundamental guidelines of CAR
87 designs that will help the field generate effective therapies.

88

89

90 **Results:**

91 Newly designed D.66.α CD4-CAR is not detectable on the cell surface despite being synthesized

92 In an attempt to combine two CAR structural domains within the same chimeric protein,

93 we generated a retroviral vector (D.66.α) using the truncated CD4 extracellular domain

94 containing immunoglobulin domains 1 and 2 (D), based on the GenBank database [42], linked

95 with a 66 amino acid hinge (D.66) and TM domain from CD8α (α) [37, 41] (Figure 1). Our goal

96 was to compare retroviral expression of D.66.α and C.39.28, a full-length CD4 extracellular

97 domain (C) with a 39 amino acid hinge (39) and TM domain from CD28 (28) that has known

98 surface expression and functional capabilities [26, 28, 43]. Retroviral transduction of HEK 293T

99 cells produced various clones with integrated CAR vector (Supplemental Figure 1a). However,

100 CD4 surface expression of the newly generated D.66.α CAR was not detectable by flow

101 cytometry. In contrast, CD4 surface expression was robust with the C.39.28 CAR (Figure 2a). To

102 eliminate the possibility that the vector failed to express because of a possible defect in vector

103 integration or viral particle production, HEK 293T cells were transfected by calcium phosphate

104 method with the same vectors. Similar to the transduction experiment, cells transfected with

105 C.39.28 expressed CD4 CAR on the surface while cells transfected with D.66.α did not (Figure

106 2b). The lack of surface detection in the D.66.α CAR was verified by staining with an anti-Myc

107 antibody (Supplemental Figure 1b and 1c). Furthermore, proviral vector DNA was detectable in

108 individual transduced clones by qPCR; however, these clones did not have detectable CAR

109 surface expression (Supplemental Figure 1a).

110 Since the newly designed D.66.α CAR was integrated in the host genome of transduced

111 cells but was not detected on the surface by either transduction or transfection, we hypothesized

112 that the CAR protein was being synthesized but not express on the cell surface. To demonstrate

113 that CAR was being synthesized, we generated bicistronic vectors to express a second gene
114 encoding a green fluorescence protein (GFP) (Supplemental 1D). GFP was chosen as a reporter
115 gene because its detection via flow cytometry does not require surface expression but only its
116 translation. After transfection with D.66.α-GFP, GFP expression was detected in cells but CAR
117 surface expression was still not detected. In contrast, cells transfected with C.39.28-GFP
118 expressed both CD4 CAR and GFP (Figure 2c and 2d). Since the bicistronic D.66.α-GFP vector
119 included a TPT2a domain to ensure that both proteins were synthesized *en block* [44], these
120 results suggested that the D.66.α CAR was being synthesized but not expressed on the cell
121 surface.

122 D1D2-66H-8 αTM CAR is expressed intracellularly but not on the cell surface

123 Once we established that the D.66.α CAR protein was being synthesized but still lacked
124 surface expression, we set out to determine if we could detect intracellular expression of the
125 CAR with the same antibody that showed robust surface detection of the C.39.28 CAR.
126 Therefore, we adopted our intracellular staining protocol to detect CD4 CARs and observed
127 intracellular expression of the D.66.α CAR in transfected HEK 293T cells (Figure 3a). However,
128 there was significantly less intracellular expression of D.66.α than C.39.28 (Figure 3a and 3b).
129 This difference in intracellular and extracellular expression was also observed when overall data
130 for monocistronic and bicistronic CARs were combined (Figure 3c and 3d). Therefore, these
131 results confirmed that D.66.α lacked surface expression but was detectable intracellularly.

132 Finally, to confirm the CAR expression results observed by flow cytometry, HEK 293T
133 cells transfected with either D.66.α or C.39.28 CAR were evaluated by confocal microscopy
134 using the same anti-CD4 antibody. Confocal microscopy images showed that C-39-28 CD4-CAR
135 (green) was detectable around and beyond the caveolin-stained plasma membrane (red), whereas

136 the D.66.α CD4-CAR stained below the cell membrane (Figure 3e). Consequently, these results
137 complement our findings by flow cytometry.

138 Extracellular CD4 domain is not involved in inhibiting new CAR surface expression

139 Once it was confirmed that the new D.66.α CD4-CAR was synthesized and detectable
140 intracellularly but without stable cell surface expression (Figure 3), we investigated the structural
141 reasons behind the lack of CAR surface expression. Compared to C.39.28, which strongly
142 expressed extracellularly and intracellularly, the D.66.α CAR had three major modifications; (i)
143 the full-length CD4 extracellular domain was truncated to immunoglobulin domains 1 and 2, (ii)
144 the length of the hinge, and (iii) TM domains were changed to CD8α hinge and TM domain
145 respectively. As a result, D.66.α had a longer hinge (66 amino acids compared to the 39 amino
146 acids present in the CD28 hinge). In addition, there were several other modifications that were
147 added (including a Myc tag), but those were shown to have no impact on recovery of CAR
148 surface expression (Supplemental Figure 2a and 2b).

149 To determine if the defect causing the lack of CAR surface expression was found in the
150 truncated extracellular domain, we compared the D1D2 sequence [42] with other D1D2
151 sequences used in other CD4-CARs and soluble CD4 inhibitors (1-183 aa) [37, 45]. Our CAR
152 terminated at the end of immunoglobulin domain 1 and 2 [42], while other D1D2 CAR domains
153 (D*) incorporated the first 5 amino acids (FQKAS) of domain 3 [37] (Figure 1). Nevertheless,
154 addition of the FQKAS motif to our non-expressing D.66.α CAR (D*.66.α) did not recover
155 surface expression (Supplemental Figure 2c and 2d). In fact, there were no differences in
156 extracellular or intracellular expression between D.66.α CARs with or without FQKAS added to
157 the end of the D1D2 (Supplemental Figure 2c).

158 To further understand if the extracellular domain was inhibiting CAR surface expression,
159 the entire hinge and CD8 α transmembrane domain of the D*.66. α CAR was replaced with a
160 shorter CD28 hinge and a CD28 TM (D*.39.28; Figure 1). Results showed that when the CD28
161 hinge and TM domain were included, the D*.39.28 recovered CAR surface expression compared
162 to D*.66. α ($p=0.01$) (Supplemental Figure 2c) suggesting that the D1D2 CAR with a shorter
163 hinge (39 base pair of CD28 instead of 66 bp of CD8 α) and CD28TM recovered CAR surface
164 expression compared to its predecessor ($p=0.01$) (Supplemental Figure 2c). Additionally, overall
165 CD4 expression with the D*.39.28 CAR was still reduced compared to C.39.28. These results
166 were confirmed by confocal microscopy, where expression of the D*.39.28 (green) is visible on
167 and around the plasma membrane of cells (red) while expression of the D*.66. α CAR is only
168 visible within the cell membrane (Supplemental Figure 2d). These data highlighted that the
169 major issue preventing CAR surface expression was found in the hinge and transmembrane
170 domain region and not in the truncated CD4 extracellular domain.

171 Hinge length partially affects CAR surface expression

172 To test if the hinge length was responsible for the lack of CAR surface expression, we
173 shortened the hinge of the non-surface expressing D*.66. α CAR from 66 amino acids (aa) to 45
174 aa (D*.45. α Figure 1), as previously published [41]. Interestingly, shortening of the CD8 α hinge
175 from 66 to 45 aa resulted in partial recovery of CAR surface expression while maintaining the
176 same level of intracellular detection (Figure 4a). Although surface CD4 detection of D*.45. α
177 CAR was robustly increased compared to D*.66. α , it was deemed partial because it was still
178 significantly lower than D*.39.28 CAR (Figure 4a and Supplemental Figure 2c). These results
179 suggested that a longer hinge length contributes to the inhibition of CAR surface expression.

180 Both the presence of the LYC motif at the end of CD8 α TM and shortened hinge are responsible
181 for recovering CAR surface expression

182 Since shortening of the hinge only partially, but distinctively, recovered CAR surface
183 expression, we hypothesized that there must be a second defect, likely found in the CD8 α
184 transmembrane domain (TM), that prevents robust CAR surface detection. Proteomics analysis
185 of the CD8 α TM sequence in the D*.45. α CAR, compared to the CD8 α TM sequence found in
186 other published CARs [41], revealed a difference at the end of the TM; specifically, it included
187 LYC, the first 3 amino acids of the CD8 α intracellular domain in the CD8 α TM reference
188 sequence used in our CARs [46]. Addition of the missing LYC motif at the end of CD8 α TM
189 (D*.45. α ^{LYC}) strongly recovered CAR surface expression to levels similar to D*.39.28 (Figure 4a
190 and Supplemental Figure 2c). Therefore, these results demonstrated that the addition of LYC
191 motif from the beginning of the intracellular domain was crucial for robust CAR surface
192 expression.

193 To determine if the LYC motif alone was sufficient to recover CAR surface expression,
194 the 45 aa hinge on D*.45. α ^{LYC} (which expressed on the surface) was replaced with the 66 aa
195 hinge found on non-surface expressing CARs (Figure 1 and Figure 4a). Transfection with
196 D*.66. α ^{LYC} resulted in significant reduction of CAR surface expression but intracellular
197 expression was comparable to D*.45. α ^{LYC} (Figure 4a). These results demonstrated the
198 importance of CD8 α hinge length for CAR surface expression and showed that both a shorter
199 CD8 α hinge and the addition of LYC motif at the end of CD8 α TM act synergistically to
200 increase surface CD4-CAR expression.

201 To further understand the importance of the LYC motif, we took the D*.66. α ^{LYC}, which
202 had strong intracellular expression but reduced extracellular expression, and mutated the LYC

203 motif to TTA or TTC in an attempt to contrast the possible biochemical interactions of the
204 residues (Figure 1 and 4b). Interestingly, mutating the LYC motif at the end of CD8 α TM to
205 TTA and TTC abrogated CAR surface expression, but also significantly reduced intracellular
206 CAR expression (Figure 4b). Therefore, these experiments further highlighted the importance of
207 the LYC motif for proper CAR detection. Results were also confirmed by confocal microscopy,
208 where mutating the LYC motif distinctively resulted in a complete loss of CAR surface
209 expression, as CAR expression with the TTA and TTC variants were confined to the intracellular
210 compartment (Figure 4).

211 The extracellular FQKAS motif reduces CAR detection

212 To investigate why the D1D2 CD4-CAR variations that strongly recovered surface
213 expression (mainly D*.39.28 and D*.45. α ^{LYC}) were still not as efficiently and broadly expressed
214 as the full-length extracellular domain CD4 construct C.39.28, we removed the FQKAS domain
215 from D*.45. α ^{LYC} to produce a D.45. α ^{LYC} CAR (Figure 5). Interestingly, removal of the FQKAS
216 domain at the end of the extracellular domain 2 recovered the same level of efficient CAR
217 expression as C.39.28 in transfected HEK 293T cells (Figures 5 and 6). Therefore, our results
218 suggest that the presence of FQKAS reduced overall CAR expression, both extracellularly and
219 intracellularly.

220 Recovered CAR expression enhances cytotoxic CAR T cell activity

221 Once we recovered surface expression of D.45. α to level similar to C.39.28, we set out to
222 determine that the CAR had similar functional abilities as well. Since cytotoxic killing is one of
223 the main read out of CAR T cell ability, we compared cytotoxic ability of D.45. α to C.39.28
224 CAR T by co-incubating cells with HIV+RFP+ U1 target cells (Figure 7). While untransduced T
225 cells demonstrated limited killing ability at various E:T ratios, D.45. α CAR T cell exhibited

226 similar levels of target killing as C.39.28 CAR T cells (Figure 7). Therefore, our data
227 demonstrates that the 2 CAR vectors with similar surface expression also maintained CTL
228 activity, the primary CAR T cell functional activity.
229

230 **Discussion:**

231 Overall, our study started by evaluating a novel CD4-CAR design that lacked surface
232 expression but showed intracellular expression, as determined by intracellular and extracellular
233 CAR staining, GFP expression, and confocal microscopy. To understand why the newly
234 designed D.66.α CAR did not express CD4 on the cell surface, our study took a systematic
235 approach to determine the CAR domain(s) affecting surface detection. In doing so, we
236 investigated both the biochemical and spatial requirements of various receptors motifs; an aspect
237 of CAR biology that is still generally poorly understood by the field. Our various CAR
238 modifications identified the CD8α hinge and TM region as the main determinants in CAR
239 expression. Shortening of the hinge from 66 to 45 amino acids partially recovered CAR surface
240 expression, with addition of the LYC motif at the end of the CD8α TM recovering both
241 intracellular and extracellular CD4 expression. In experiments where LYC from the CD8α TM
242 domain was deleted or mutated to TTA or TTC, both extracellular and intracellular CAR
243 expression were severely reduced by flow cytometry and confocal microscopy. Taken together,
244 our results showed that both a shorter hinge and the LYC motif were necessary to have strong
245 CD8αTM CAR surface expression. Furthermore, we determined that CD4-CAR surface
246 expression is maximized by removing the motif FQKAS from the end of the truncated CD4
247 D1D2 extracellular domain. Finally, we determined through our cytotoxic assay that new CAR
248 vector resulted in CAR T cell killing activity.

249 The new vectors were designed to reduce the homology of the extracellular CD4 domain
250 while maintaining binding affinity to HIV envelope gp120. The natural CD4 extracellular
251 domain is composed of 4 immunoglobulin (Ig) domains with the N-terminal domain 1 (D1)
252 binding to HIV-1 envelope and soluble D1D2 protein inhibiting viral replication [47]. We

253 eliminated 189 aa from the CD4 (D3D4) and linked the D1D2 Ig domains with a 66- or 45-
254 amino acid extracellular hinge and TM domain from the CD8 α receptor. The 66-aa CD8 α hinge
255 includes sequences up to the conserved cysteine necessary for the CD8 α Ig loop, whereas the 45-
256 aa hinge excludes components of the CD8 Ig domain [46]. We also included 5 aa from D3
257 (FQKAS) in some vectors as others have previously reported [37]. Since the hinge length and/or
258 sequence may also play a role in processing and stability, presentation of the binding domain,
259 and functional activity, we compared efficacy of the various CAR configurations. Additionally,
260 as others have shown [41], we found that CD4-CARs with CD8 α TM domain reduced the
261 susceptibility of CD4-expressing CAR T cell to HIV infection (supplemental data).

262 Our vector analysis, and the generation of variant CARs, brought to light the requirement
263 for the motif LYC to be included at the end of the CD8 α TM. Early mentions of the LYC motif
264 are found in the first studies that attempted to clone CD8 α , then known as LYT-2 [48-50]. At the
265 time, since it preceded a stretch of 28 basic amino acids, motif LYC was predicted to be part of
266 the transmembrane domain [51]. Some TM prediction programs also calculate that the LYC will
267 be a part of the TM domain (Supplemental Data). Interestingly, this motif is evolutionarily
268 conserved across species such as human and rat [52]. Additionally, the LYC motif is at the end
269 of CD8 α exon 4, which also indicates its evolutionary linkage to the TM domain [46]. However,
270 current crystal structure models predict that the α -helix in the TM precedes LYC and that the
271 LYC motif is part of the CD8 α cytoplasmic domain [46]. It remains clear from our experiments
272 that the LYC motif is required for proper receptor surface expression as CARs that lacked this
273 motif had very significantly reduced surface expression. In addition, mutation of the LYC motif
274 resulted in abrogation of surface and intracellular CAR detection. We chose to mutate LYC to
275 TTA and TTC because we aimed to contrast the function of the amino acid residues in LYC. If

276 leucine is a hydrophobic amino acid; then one of its less, but still polar equivalents, is threonine.
277 Furthermore, mutating tyrosine to threonine would remove the aromatic ring and a potential
278 tyrosine phosphorylation site, which could potentially dominate the interaction. Lastly, cysteine
279 was mutated to alanine because their molecular structures are similar while replacing the
280 functional polar CH₂-SH group with a non-polar CH3. Importantly, the cysteine 206 (C206) in
281 motif LYC of the CD8 α gene is necessary for palmitoylation [46], which is involved in the
282 association of membrane proteins and plays an important role in subcellular trafficking [53].
283 Therefore, in the TTC variant, the cysteine was maintained to determine if its biochemical
284 function was crucial for processing. Since mutating LYC to either TTA or TTC resulted in loss
285 of both extracellular and intracellular CAR expression, it may be that the mutated double
286 threonine affected the proper helix conformation of the upstream transmembrane domain or
287 affected protein trafficking. In support of our data, studies that included only the amino acids LY
288 at the CD8 α TM also showed surface expression of a CAR [19], which indicates this motif is
289 important for surface expression. In our experiments, CARs lacking or with a mutated LYC
290 motif had reduced extracellular and intracellular expression, suggesting that its role with CD8 α
291 TM is more complex than surface stability. We would predict that modification of the LYC
292 domain on the inside of the TM domain would affect cell membrane localization for most
293 surface antigens, independent of the target, and including scFv-based CAR vectors to tumor
294 antigens.

295 Aside from the CD8 α transmembrane domain, our findings on the length requirements of
296 CD8 α hinge for proper CAR expression aligns with that of other studies [19, 54]. The
297 importance of CD8 α hinge for receptor surface expression has also been highlighted by other
298 groups; the Williams laboratory synthesized a construct encoding the Ig-like domain of rat CD8 α

299 without the CD8 α hinge and showed the construct did not express in transfected CHO cells [52].
300 In our study, CARs with the complete 66 aa CD8 α hinge up to the conserved cysteine in the Ig
301 domain (even with the motif LYC present) showed reduced cell surface expression compared to
302 CARs with a shorter 45 aa hinge. In its natural conformation, CD8 α has a hinge of 48 aa [52]
303 with 10 aa in the last β strand and 19 aa in the complimentary determining region 3 loop.
304 Therefore, the longer 66 aa encompassed part of the IgG-like extracellular structural domain of
305 CD8 α , which could have affected CAR surface expression due to misfolding. It is important to
306 note that other hinge domains found on anti-HIV CARs are shorter (CD4 hinge (23 aa), CD28
307 hinge (39 aa), 50 aa [19]) than the natural CD4 receptor, which has a total of 396 aa, or 189 aa in
308 D3D4 linking D1D2 to the TM region. While hinge length may play a role in CAR function, we
309 would also predict hinge domains that incorporate part of the functional domain (ie, an Ig
310 domain) would be less stable and less efficient in surface expression than without it. In a
311 different CAR construct, expression on the cell surface was detected with a 49 aa CD8 α hinge
312 [19]. Based on the observation that changes in the TM affected CAR surface expression levels
313 but did not affect CAR mRNA level or total amount of CAR protein, Fujiwara et al. concluded
314 that CD8 α hinge affected the transport efficiency of CAR proteins to the cell membrane and that
315 TM regulated the membrane surface stability of CAR [19]. Although both of our studies
316 observed hinge lengths and TM-associate motifs affecting CAR surface expression, our study
317 goes a step further by detecting CAR intracellularly, which allowed us to observe that increasing
318 CD8 α hinge length resulted in loss of CAR surface expression but not intracellular expression
319 (Figure 4). Instead, mutation or deletions of motifs affecting the CD8 α TM caused loss of both
320 surface and intracellular expression (Figure 4). While more experiments would be necessary to
321 define the mechanisms that affect CAR surface expression, our data suggest that hinge length

322 restriction may affect surface expression stability whereas the transmembrane domain affects
323 protein folding, transport efficiency, or protein degradation.

324 It is thought that the efficient protein transport through the secretory pathway depends in
325 part on protein folding into a stable structure [55]; and that membrane transport of a CAR is
326 speculated to depend on the folding of its extracellular domain [56]. FQKAS is a motif of 5 aa
327 found at position 204-208 of CD4, which coincides with the beginning of domain 3 but is not
328 part of domain 2 [42, 57]. Therefore, it is possible that the reason we detected less surface
329 expression in functional CARs containing the FQKAS motif at the end of immunoglobulin
330 domain 2 is because its presence negatively affects protein folding (Figure 5 and 6). In addition,
331 as removing FQKAS recovered full expression of the rescued D.45.α^{LYC}, it is conceivable that
332 removal of FQKAS from D*.39.28 would have helped recovered expression levels similar to
333 those achieved with the CD8α TM CAR. This finding is of considerable impact for any CAR
334 generated to have only immunoglobulin domain D1 and D2 of CD4 as extracellular domain,
335 especially since the original published CAR sequence included an FQKAS motif [37], which
336 could lower the surface expression of CARs. Even though FQKAS is present in CARs using the
337 full-length CD4 extracellular domain, its presence as a separate entity removed from the rest of a
338 stable structure or a completed domain could affect protein folding and result in lower surface
339 CAR expression.

340 In either case, expression of CD4 CAR on T cells demonstrated functional activity and
341 were able to kill HIV Env⁺ cells. These *in vitro* assays demonstrate function, but do not
342 necessarily replicate conditions *in vivo*. Other factors, such as the configuration of the
343 intracellular signaling domains, could influence the *in vivo* functional activity such as
344 proliferation or memory cell differentiation. Thus, it may be very difficult to distinguish *in vitro*

345 functional activity of the different various CAR constructs and configurations, or to predict based
346 on the *in vitro* assays which CAR construct will prove efficacious.

347 At its core, this study underlines the importance of understanding the biochemical
348 structures of various receptor domains as they are evaluated for CAR expression and their
349 subsequent effect on CAR functional activity. Here, like in many CAR structures, the D.66.α
350 CAR was based on the CD4 and CD8 reference sequences; however, these CARs may not
351 account for the possible downstream repercussion of domains and adjacent motifs with various
352 functions as these structures may affect processing and surface expression of different CAR
353 constructs.

354 In conclusion, by evaluating the mechanisms by which a novel CAR lacked surface
355 expression, this study identified CAR elements in the CD4 extracellular domain, the hinge
356 length, and the CD8α TM region that affect CAR surface expression. These findings not only
357 showcase the importance of understanding how CAR domains and motifs interact within the
358 structure of a receptor, but they also highlight the cellular biochemical machinery that effectively
359 guides successful CAR expression and CAR T cell strategy. Understanding the principles
360 dominating the expression of natural receptors are necessary to generate effective therapies.
361 Thus, these results contribute to these fundamental guidelines for CAR designs to improve
362 current CAR strategies.

363

364

365 **Material and Methods:**

366 Vector preparations

367 Vector backbone was shared across all CAR variants used in this study. Briefly, multiple
368 modifications were done to a Moloney Murine Leukemia Virus (MoMLV)-derived vector
369 system including Simian Virus 40 ori/T antigen-mediated episomal replication in packaging
370 cells, replacement of the MoMLV 5' U3 promoter with a series of stronger composite promoters,
371 and addition of an extra polyadenylation signal downstream of the 3' long terminal repeat [58].
372 Variant inserts were synthesized according to the provided amino acid sequences (Supplemental
373 Figure) and cloned by GeneArt (Regensburg, Germany).

374

375 Virus production and transduction

376 HEK 293T cells were grown in DMEM (Gibco Life Technologies, Grand Island, NY)
377 supplemented with 10% fetal calf serum (Gibco Life Technologies), 1% Penn Strep (Gibco Life
378 Technologies), 2 mM GlutaMax (Gibco Life Technologies), and 25 mM HEPES buffer (Gibco
379 Life Technologies). To generate retroviral particles, HEK 293T cells (1×10^7 cells) were plated in
380 D10 media and co-transfected after 18 hours with expression vectors encoding 2 μ g VSV
381 glycoprotein, 4 μ g MLV Gag/Pol, 4 μ g of Rev, and 26 μ g the pSRC transfer vectors using
382 calcium phosphate co-precipitation according to manufacturer's recommendations (Thermofisher
383 Scientific, Waltham, MA). Supernatant was collected from transfected HEK 293T after 48 hours,
384 filtered through 0.45 μ m nylon syringe filters, and stored at -80°C.

385 For transduction, a single cell suspension of HEK 293T cells (0.5×10^6) were resuspended
386 2 mL of viral particle supernatant for E:T of 2:1 with 8 μ g/mL of Polybrene (Millipore Sigma,
387 Burlington, MA), maintained in at 37°C for 4 hours, and mixed every 20 minutes. Afterwards,

388 cells were plated in a 6-well plate with viral particle supernatant. Media was changed to D10
389 after 48 hours and cells were cultured for at least another 72 hours before functional assays.

390

391 Vector integration qPCR

392 Genomic DNA was isolated from transduced HEK 293T cells using the NucleoSpin Tissue
393 Genomic DNA Isolation Kit (Macherey Nagel, Dueren, Germany). For detecting the CAR2
394 sequences, the forward primer (5'-GCAAGCATTACCAGGCCCTAT-3') and reverse primer (5'-
395 GTTCTGGCCCTGCTGGTA-3') had a final concentration of 400 nM, while the Probe (5'
396 6FAM-ATCGCTCCAGAGTGAAGTTCAGCA-BHQ 3') had a final concentration of 200 nM,
397 in 25 µL reaction using Taqman Universal Mastermix (Applied Biosystems, Carlsbad, CA) with
398 100 ng genomic DNA. qPCR was run on ThermoFisher 7900HT with the following cycle
399 conditions: 50°C for 2 min, 95°C for 10 min, and 40 cycles of 15 sec at 95°C followed by 64°C
400 for 1 min. To determine copy number, a standard curve was generated consisting of 10¹ to 10⁶
401 plasmid copies. Each experimental sample, standard, and NTC was evaluated in triplicate.

402

403 Transfection for functional analysis

404 To evaluate expression of the CAR vectors, cells transfected directly with the retroviral
405 expression plasmid by calcium-phosphate co-precipitation according to the manufacturer's
406 protocol (ThermoFisher Scientific). Briefly, HEK 293T cells (0.75 x10⁶) were plated in 6-well
407 plates overnight at 37°C and 5%CO₂. Four hours before transfection, fresh D10 media was
408 exchanged. After 4 hours, the cells were transfected with 10 µg of respective pSCR-CAR
409 plasmid using calcium-phosphate co-precipitation. After 24 hours, an aliquot of cells was taken
410 for confocal microscopy experiments if need be, media was changed, and cells were incubated at

411 37°C with 5% CO₂ in incubator for another 24 hours. Cells processed for flow cytometry 48
412 hours after the initial transfection.

413

414 Flow cytometry

415 CD4 CAR surface expression was monitored with mouse anti-human CD4-PE, clone RPA-T4
416 (Biolegends, San Diego, CA), because its epitope is found within the first two domains of CD4.
417 Cells were also stained with a live/dead discriminator dye using the aqua dead cell stain kit
418 (Thermofisher Scientific). Staining protocol was as follows: 2 x10⁶ cells were washed in PBS
419 and stained with live/dead dye according to manufacturer recommendation at RT in the dark for
420 20 min. For surface staining, cells were then washed with PBS containing 2% fetal bovine serum
421 (FBS) and stained with PE anti-CD4 for 20 min at RT in the dark. Afterwards, cells were washed
422 and fixed with 1% PFA in PBS overnight. For intracellular staining, cells were stained with the
423 live/dead dye, fixed and permeabilized for 20 min with BD Cytofix-Cytoperm and washed
424 according to the manufacturer's protocol (BD Biosciences, San Jose, CA). Next, cells were
425 stained with PE anti-CD4 for another 20 min at RT in the dark. Cells were washed in PBS and
426 fixed with PBS in 1% PFA overnight. Sample acquisition was performed either on a LSR II (BD
427 Biosciences), LSRFortessa (BD Biosciences), or FACSymphony flow cytometer (BD
428 Biosciences). After gating on live, singlet, a dump channel, and the lymphocyte scatter gate,
429 CD4 detection by PE was assessed. Data was analyzed using FlowJo software (FlowJo LLC,
430 Ashland, OR) and graphed with GraphPad Prism 8 software (GraphPad Software, San Diego,
431 CA).

432

433 Confocal Microscopy

434 On day 1 post-transfection, 1×10^5 HEK 293T cells were plated on each respective well of a 4
435 well chamber slide (Thermofisher Scientific) and incubated overnight at 37°C with 5% CO₂. The
436 next morning, cells were washed with warm phosphate buffered saline (PBS) and fixed for 30
437 minutes in 2% paraformaldehyde (PFA) at room temperature. After washing, cells were
438 incubated with 100 mM glycine diluted in PBS +10% normal goat serum (NGS) + 0.02% fish
439 skin gelatin (FSG) + 0.01% triton X100 (TX100) for 20 minutes to block residual PFA. All
440 washes and antibody incubations were done on a rotator platform at room temperature. Cells
441 were washed 3 times in PBS-NGS-FSG-TX100 and incubated for 1 hour with mouse anti-human
442 CD4, clone RPA-T4 (1:100 Invitrogen). Washes were done prior to and following a 1-hour
443 incubation with goat anti-mouse Alexa Fluor 488 (1:1000 Life Technology). Cells were left in
444 wash media overnight at 4°C. The following day, this procedure was repeated using rabbit anti-
445 Caveolin (1:100 Millipore Sigma), and goat anti-rabbit Alexa Fluor 568 (1:1000 Life
446 Technology). Prior to imaging ToPro3 (1:2000 Life Technology), was used to label cellular
447 nuclei. Imaging and image processing was done with a Leica DMi8 (Leica Microsystems,
448 Wetzlar, Germany).

449

450 Retroviral-like particle generation and concentration

451 HEK 293 T cells were transfected by calcium-phosphate method using vectors pSRC-CAR2 and
452 pSRC-D45a with accessory envelope plasmid pCMV-VSV-G and a packaging plasmid pCMV-
453 Gag/Pol as previously described [58]. Vector particles contained in 10 mL conditioned
454 supernatant from the transfected cells were concentrated through a PEG-mediated precipitation
455 method and resuspended in 100 μ L PBMC supplemented with 2% BSA and used to transduce
456 target cells.

457

458 PBMC transduction and expansion

459 Human peripheral blood mononuclear cells (PBMCs) are isolated from blood samples Gulf
460 Coast Regional Blood Bank, Houston, TX) through ficoll-based density gradient centrifugation,
461 and stimulated and expanded with the T Cell Activation/Expansion Kit (Miltenyi Biotec, Cat No.
462 130-091-441) according to the vendor's manual. Three days following the stimulation, 1×10^6
463 cells were transduced with the retroviral vectors by resuspending the cell pellet in 100 μ l
464 expansion medium and 100 μ l concentrated vector. The cell suspension was loaded into
465 Retronectin-coated 24-well plates and incubated at 37°C, 5% CO₂ for 60 minutes. Subsequently,
466 1.0 mL cell expansion medium was added to each well and the plate was then centrifuged at 500
467 xg for 60 minutes at 30°C. After the centrifugation, the transduced PBMC were cultured at 37°C,
468 5% CO₂ in humidified incubator, according to the manufacturer's protocol [58].

469

470 Cytotoxic assay

471 A target HIV envelope positive cell line was stably transduced with a replication-defective
472 lentiviral vector expressing the envelope gene, as well as accessory genes of tat, rev, vpu, and a
473 mRFP reporter gene fused with a puromycin resistant selection marker. Following transduction,
474 the cells were cultured with 2.0 μ g/mL puromycin for one week to select for transduced cells.
475 Cytotoxicity assays were performed in 24 well plate with total cell number of 2.4×10^6 cells per
476 well. For the assay with an effector to target ratio of 1:5, 0.4×10^6 transduced PBMC were mixed
477 with 2.0×10^6 cells of the target cells; for the assay with an effector to target ratio of 1:1, 1.2×10^6
478 transduced PBMC were mixed with 1.2×10^6 cells of the target cells; for the assay with an
479 effector to target ratio of 5:1, 2.0×10^6 transduced PBMC were mixed with 0.4×10^6 cells of the

480 target cells. The cell suspensions were centrifuged at 550 xg for 5 minutes at 4°C, and then
481 resuspended in 1.0 mL T cell expansion medium with 5 µl anti-CD107α-BV785 antibody,
482 inoculated into a 24 well plate and incubated at 37°C cell culture incubator for 24 hours.

483 Following the 24-hour incubation, the cells were resuspended in 50 µl PBS with 2% BSA
484 and stained with 5 µl anti-CD8-FITC, anti-CD4-PCR-Cy5.5, anti-CD3-APC-H7 antibodies and
485 L/D-BV510 for 30 minutes at 4°C, washed and resuspended using PBS, fixed with 1%
486 paraformadehyde in PBS, and analyzed on the Fortessa Flow Cytometer. Analysis of cytotoxicity
487 was done through analyzing ratio of dead cells among the mRFP positive target cell populations.

488

489 **Statistics**

490 *In vitro* CAR expression significance was detected using an unpaired two-sample *t* test
491 comparing 2 groups at a time (CAR vs. CAR extracellular or intracellular). Significant results are
492 reported on each figure (p values: >0.05, * \leq 0.05, ** \leq 0.01, *** \leq 0.0001). Analysis was performed
493 on GraphPad Prism 8 software.

494

495

496 **Acknowledgment**

497 We thank Cariappa Annaiah for his suggestions and mentorship. **Funding:** Research reported in
498 this publication was supported by the National Center for Research Resources and the Office of
499 Research Infrastructure Programs (ORIP) at the NIH through grant P51 OD011104 (TNPRC)
500 and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health
501 under Award Number NIAID AL110158 (SEB), AI145642 (AK and SEB), AI102693 (AK),
502 F30AI150452 (NMJ), and a Pilot Grant from Tulane University School of Medicine (SEB). The
503 content is solely the responsibility of the authors and does not necessarily represent the official
504 views of the supporting agencies.

505

506 **Author contribution**

507 G.Z. and S.E.B. conceived the project, designed experiments, interpreted results, and wrote the
508 manuscript. A.K. designed experiments and reviewed and interpreted results. C.W. generated the
509 D.66.α CAR construct and performed the primary T cell transductions and the cytotoxic assay.
510 C.C.M. and C.P.G. performed confocal/fluorescent microscopy experiments. N.M.J. conducted
511 qPCR experiments and analysis. W.W. interpreted the results.

512

513 **Competing interest**

514 The authors report no conflict of interest that may arise from this research.

515

516

517 **Figure legends**

518 **Figure 1. Schematics representing the CAR vector maps for each of the major constructs**
519 **used in this study.** CD4 extracellular domain is designated as domain 1 and 2 (yellow), and
520 domain 3 and 4 (orange). Black hinge and TM indicate a CD28 origin; red hinge and TM
521 indicate CD8 α origin. Intracellular domains are indicated at the top. Vectors were named based
522 on extracellular configuration, length of hinge, transmembrane domain used, and motifs
523 included.

524

525 **Figure 2. Novel D1D2 CAR is not expressed on the cell surface but the protein is**
526 **synthesized.** **A.** Representative flow cytometry plots of CD4 CAR expression on the surface of
527 vector-transduced HEK293 T cells. In contrast to the C.39.28 CAR vector, no surface expression
528 was detected on cells transduced with D.66. α . **B.** Representative flow cytometry plots of CD4
529 CAR expression on the surface of HEK293 T cells transfected by calcium-phosphate method. No
530 surface expression was detected on cells transfected with D.66. α . **C.** Representative flow
531 cytometry plots of CD4 CAR expression on the surface of vector-transduced HEK293 T cells (x
532 axis) and GFP expression from the second gene (y axis). Dual CD4 CAR and GFP expression
533 was observed with positive control C.39.28-GFP but not with D.66. α -GFP. **D.** Histogram
534 representing the frequency of transfected HEK 293T cells expressing surface CD4 CAR-GFP.
535 Statistical analysis was performed as unpaired parametric two-sample t test; a significant
536 difference in intracellular detection was observed between groups (** = p \leq 0.01).

537

538 **Figure 3. D1D2 CAR is detected intracellularly but not on cell surface.** **A.** Representative
539 flow cytometry plots of CD4 CAR intracellular expression in transfected HEK293 T cells.

540 Reduced but significant intracellular expression of D.66.α was detected compared to C.39.28
541 vector. **B.** Histogram representing the frequency of transfected HEK 293T cells expressing
542 surface CD4 CAR (red filled triangle) and intracellular CD4 CAR (blue circle) expression.
543 Significant difference in CAR detection was observed between the vectors ($p<0.0001$). No
544 significant difference in surface and intracellular-expressing cells was detected for the positive
545 control C.39.28 ($p= 0.191$). Significant difference between surface and intracellular expression
546 was observed in the D.66.α CAR ($p= 0.0066$). **C&D.** Scatter plot for CD4-CAR expression in
547 transfected HEK 293T cells when monocistronic and bicistronic vectors are grouped. Robust
548 detection of C.39.28 was observed on the surface and intracellularly ($p=0.098$). Significant, but
549 comparatively reduced detection of intracellular D.66.α expression was observed with no surface
550 expression ($p=0.0002$). **E.** Images of CAR-transfected HEK 293T cells taken by confocal
551 microscopy. Blue is TO-PRO-3 representing nuclear stain; green is CD4-CAR; and red is
552 caveolin representing the plasma membrane. C.39.28 CAR staining shows green expression
553 above the red stain and around the cell, suggesting surface expression. D.66.α CAR staining
554 shows green expression surrounded by red, suggesting intracellular expression only.

555
556 **Figure 4. Shortening of the CD8α hinge length and LYC motif are required for D1D2 CAR**
557 **surface expression** **A.** Histogram representing the frequency of transfected HEK 293T cells
558 expressing surface CD4 CAR and intracellular CD4 CAR for the various vectors. Positive CAR
559 detection was observed on the surface of cells transfected with a shorter hinged CAR ($p= 0.01$);
560 however, expression was still reduced compared to control CAR ($p= 0.002$). Intracellularly, there
561 was no change in CAR detection between long and short hinge ($p= 0.227$). Enhance frequency of
562 CAR surface detection was observed on cells transfected with CAR that included the LYC motif

563 (p= 0.05); however, expression was significantly reduced if the construct containing a LYC
564 motif also included a longer CD8 α hinge (p=0.02). **B.** Histogram representing the frequency of
565 HEK 293T transfected with CARs containing the longer CD8 α hinge to eliminate any
566 variability/benefit given by a shorter CD8 α hinge. When LYC motif was mutated to TTA or
567 TTC, total CAR expression was significantly reduced (p= 0.01 and p= 0.03) and more
568 intracellular CAR expression than surface expression (p=0.04). **C.** Images of CAR-transfected
569 HEK 293T cells taken by confocal microscopy. Blue represents TO-PRO-3 nuclear staining;
570 green represents CD4-CAR staining; and red represents caveolin plasma membrane staining.
571 Differences in confocal surface CAR detection were observed, with D*.66. α ^{LYC} expressed on the
572 cell surface but D*.66. α ^{TTA} and D*.66. α ^{TTC} confined intracellularly. Statistical analyses were
573 done using unpaired parametric two-sample t-test.

574

575 **Figure 5. FQKAS motif hinders but does not inhibit CAR surface expression.** Histogram
576 representing the proportion of transfected HEK 293T cells expressing surface CD4 CAR and
577 intracellular CD4 CAR. Positive CAR expression was observed on the surface of all transfected
578 cells, but the frequency was significantly higher in vectors that did not incorporate FQKAS (p= 0.006). Statistical analysis was done using unpaired parametric two-sample t-test.

580

581 **Figure 6. Summary graphic of variant CAR surface expression.** Data analysis was based on
582 the relative surface expression of positive control, whole CD4 CAR. Addition of LYC motif and
583 shortening CD8 α hinge each partially recovered CAR surface expression, which was enhanced
584 when both modifications were combined. Removal of motif FQKAS improved CAR surface
585 expression to maximal levels seen in the positive control.

586 **Figure 7. Cytolytic activity of CAR T cells.** Primary human T cells were transduced with select
587 vectors and incubated for 24 hours with HIV+ target cells at different E:T ratios. Untransduced T
588 cells showed limited cytotoxic abilities whereas T cell transduced with D.45. α ^{Lyc} showed similar
589 killing capacity as the full length CD4 CAR C.39.28

590

591

592 References

- 593 1. Wallstabe, L., et al., *ROR1-CAR T cells are effective against lung and breast cancer in*
594 *advanced microphysiologic 3D tumor models*. *JCI Insight*, 2019. **4**(18).
- 595 2. Zhen, A., et al., *Long-term persistence and function of hematopoietic stem cell-derived*
596 *chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS*. *PLoS Pathog*,
597 2017. **13**(12): p. e1006753.
- 598 3. Benmebarek, M.R., et al., *Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells*.
599 *Int J Mol Sci*, 2019. **20**(6).
- 600 4. Porcellini, S., et al., *CAR T Cells Redirected to CD44v6 Control Tumor Growth in Lung and*
601 *Ovary Adenocarcinoma Bearing Mice*. *Front Immunol*, 2020. **11**: p. 99.
- 602 5. Brudno, J.N., et al., *Safety and feasibility of anti-CD19 CAR T cells with fully human binding*
603 *domains in patients with B-cell lymphoma*. *Nat Med*, 2020. **26**(2): p. 270-280.
- 604 6. Srivastava, S. and S.R. Riddell, *Chimeric Antigen Receptor T Cell Therapy: Challenges to*
605 *Bench-to-Bedside Efficacy*. *J Immunol*, 2018. **200**(2): p. 459-468.
- 606 7. Mohanty, R., et al., *CAR T cell therapy: A new era for cancer treatment (Review)*. *Oncol*
607 *Rep*, 2019. **42**(6): p. 2183-2195.
- 608 8. Abramson, J.S., *Anti-CD19 CAR T-Cell Therapy for B-Cell Non-Hodgkin Lymphoma*.
609 *Transfus Med Rev*, 2020. **34**(1): p. 29-33.
- 610 9. Kallam, A. and J.M. Vose, *Recent Advances in CAR-T Cell Therapy for Non-Hodgkin*
611 *Lymphoma*. *Clin Lymphoma Myeloma Leuk*, 2019. **19**(12): p. 751-757.
- 612 10. Chavez, J.C., C. Bachmeier, and M.A. Kharfan-Dabaja, *CAR T-cell therapy for B-cell*
613 *lymphomas: clinical trial results of available products*. *Ther Adv Hematol*, 2019. **10**: p.
614 2040620719841581.
- 615 11. Brudno, J.N. and J.N. Kochenderfer, *Recent advances in CAR T-cell toxicity: Mechanisms,*
616 *manifestations and management*. *Blood Rev*, 2019. **34**: p. 45-55.
- 617 12. Liu, E., et al., *Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR*
618 *show long-term persistence and potent antitumor activity*. *Leukemia*, 2018. **32**(2): p. 520-
619 531.
- 620 13. Shah, N.N. and T.J. Fry, *Mechanisms of resistance to CAR T cell therapy*. *Nat Rev Clin*
621 *Oncol*, 2019. **16**(6): p. 372-385.
- 622 14. Zenere, G., et al., *Optimizing intracellular signaling domains for CAR NK cells in HIV*
623 *immunotherapy: a comprehensive review*. *Drug Discov Today*, 2019. **24**(4): p. 983-991.
- 624 15. Ma, S., et al., *Current Progress in CAR-T Cell Therapy for Solid Tumors*. *Int J Biol Sci*,
625 2019. **15**(12): p. 2548-2560.
- 626 16. Scholler, J., et al., *Decade-long safety and function of retroviral-modified chimeric antigen*
627 *receptor T cells*. *Sci Transl Med*, 2012. **4**(132): p. 132ra53.
- 628 17. Abate-Daga, D. and M.L. Davila, *CAR models: next-generation CAR modifications for*
629 *enhanced T-cell function*. *Mol Ther Oncolytics*, 2016. **3**: p. 16014.
- 630 18. Navai, S.A. and N. Ahmed, *Targeting the tumour profile using broad spectrum chimaeric*
631 *antigen receptor T-cells*. *Biochem Soc Trans*, 2016. **44**(2): p. 391-6.
- 632 19. Fujiwara, K., et al., *Structure of the Signal Transduction Domain in Second-Generation CAR*
633 *Regulates the Input Efficiency of CAR Signals*. *Int J Mol Sci*, 2021. **22**(5).
- 634 20. Alabanza, L., et al., *Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human*
635 *Variable Regions Is Affected by Hinge and Transmembrane Domains*. *Mol Ther*, 2017.
636 **25**(11): p. 2452-2465.

637 21. Zhong, X.S., et al., *Chimeric antigen receptors combining 4-1BB and CD28 signaling*
638 *domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor*
639 *eradication*. Mol Ther, 2010. **18**(2): p. 413-20.

640 22. Yeku, O.O., et al., *Armored CAR T cells enhance antitumor efficacy and overcome the tumor*
641 *microenvironment*. Sci Rep, 2017. **7**(1): p. 10541.

642 23. Scarfo, I. and M.V. Maus, *Current approaches to increase CAR T cell potency in solid*
643 *tumors: targeting the tumor microenvironment*. J Immunother Cancer, 2017. **5**: p. 28.

644 24. Heczey, A., et al., *CAR T Cells Administered in Combination with Lymphodepletion and PD-*
645 *I Inhibition to Patients with Neuroblastoma*. Mol Ther, 2017. **25**(9): p. 2214-2224.

646 25. Yang, O.O., et al., *Lysis of HIV-1-infected cells and inhibition of viral replication by*
647 *universal receptor T cells*. Proc Natl Acad Sci U S A, 1997. **94**(21): p. 11478-83.

648 26. Sahu, G.K., et al., *Anti-HIV designer T cells progressively eradicate a latently infected cell*
649 *line by sequentially inducing HIV reactivation then killing the newly gp120-positive cells*.
650 *Virology*, 2013. **446**(1-2): p. 268-75.

651 27. Walker, R.E., et al., *Long-term in vivo survival of receptor-modified syngeneic T cells in*
652 *patients with human immunodeficiency virus infection*. Blood, 2000. **96**(2):: p. 467-74.

653 28. Mitsuyasu, R.T., et al., *Prolonged survival and tissue trafficking following adoptive transfer*
654 *of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human*
655 *immunodeficiency virus-infected subjects*. Blood, 2000. **96**(3): p. 785-93.

656 29. Deeks, S.G., et al., *A phase II randomized study of HIV-specific T-cell gene therapy in*
657 *subjects with undetectable plasma viremia on combination antiretroviral therapy*. Mol Ther, 2002. **5**(6): p. 788-97.

658 30. Finney, H. and e. al, *Chimeric receptors providing both primary and costimulatory signaling*
659 *in T cells from a single gene product*. J Immunol, 1998. **161**(6):: p. 2791-7.

660 31. Kawalekar, O.U., et al., *Distinct Signaling of Coreceptors Regulates Specific Metabolism*
661 *Pathways and Impacts Memory Development in CAR T Cells*. Immunity, 2016. **44**(2): p. 380-
662 90.

663 32. Campana, D., H. Schwarz, and C. Imai, *4-1BB chimeric antigen receptors*. Cancer J, 2014.
664 **20**(2): p. 134-40.

665 33. Kwong, P.D., et al., *Structure of an HIV gp120 envelope glycoprotein in complex with the*
666 *CD4 receptor and a neutralizing human antibody*. Nature, 1998. **393**(6686): p. 648-59.

667 34. Traunecker, A., W. Luke, and K. Karjalainen, *Soluble CD4 molecules neutralize human*
668 *immunodeficiency virus type 1*. Nature, 1988. **331**(6151): p. 84-6.

669 35. Ryu, S.E., et al., *Crystal structure of an HIV-binding recombinant fragment of human CD4*.
670 *Nature*, 1990. **348**(6300): p. 419-26.

671 36. Sharma, D., et al., *Protein minimization of the gp120 binding region of human CD4*.
672 *Biochemistry*, 2005. **44**(49): p. 16192-202.

673 37. Liu, L., et al., *Novel CD4-Based Bispecific Chimeric Antigen Receptor Designed for*
674 *Enhanced Anti-HIV Potency and Absence of HIV Entry Receptor Activity*. J Virol, 2015.
675 **89**(13): p. 6685-94.

676 38. Sakihama, T., A. Smolyar, and E.L. Reinherz, *Oligomerization of CD4 is required for stable*
677 *binding to class II major histocompatibility complex proteins but not for interaction with*
678 *human immunodeficiency virus gp120*. Proc Natl Acad Sci U S A, 1995. **92**(14): p. 6444-8.

679 39. Moebius, U., et al., *Delineation of an extended surface contact area on human CD4 involved*
680 *in class II major histocompatibility complex binding*. Proc Natl Acad Sci U S A, 1993.
681 **90**(17): p. 8259-63.

683 40. Cerutti, N., et al., *Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with*
684 *HIV glycoprotein 120 (gp120), which impairs thioredoxin-driven CD4 dimerization.* J Biol
685 *Chem*, 2014. **289**(15): p. 10455-10465.

686 41. Leibman, R.S., et al., *Supraphysiologic control over HIV-1 replication mediated by CD8 T*
687 *cells expressing a re-engineered CD4-based chimeric antigen receptor.* PLoS Pathog, 2017.
688 **13**(10): p. e1006613.

689 42. *CD4 molecule [human].* <https://www.ncbi.nlm.nih.gov/gene/920>. National Center for
690 Biotechnology Information, National Library of Medicine. 10-Oct-2023.

691 43. Maclean, A., et al., *A Novel Real-Time CTL Assay to Measure Designer T Cell Function*
692 *Against HIV Env+ Cells.* J Med Primatology, 2014. **43**(5): p. 341-8.

693 44. Liu, Z., et al., *Systematic comparison of 2A peptides for cloning multi-genes in a*
694 *polycistronic vector.* Sci Rep, 2017. **7**(1): p. 2193.

695 45. Lagenaur, L.A., et al., *sCD4-17b bifunctional protein: extremely broad and potent*
696 *neutralization of HIV-1 Env pseudotyped viruses from genetically diverse primary isolates.*
697 *Retrovirology*, 2010. **7**: p. 11.

698 46. *CD8 subunit alpha [human].* <https://www.ncbi.nlm.nih.gov/gene/925>. National Center for
699 Biotechnology Information, National Library of Medicine. 15-Oct-2023.

700 47. Lu, L., et al., *A bivalent recombinant protein inactivates HIV-1 by targeting the gp41*
701 *prehairpin fusion intermediate induced by CD4 D1D2 domains.* *Retrovirology*, 2012. **9**: p.
702 104.

703 48. Blobel, G., et al., *Translocation of proteins across membranes: the signal hypothesis and*
704 *beyond.* Symp Soc Exp Biol, 1979. **33**: p. 9-36.

705 49. Walker, I.D., et al., *Ly antigens associated with T cell recognition and effector function.*
706 *Immunol Rev*, 1984. **82**: p. 47-77.

707 50. Luescher, B., et al., *The mouse Lyt-2/3 antigen complex--I. Mode of association of the*
708 *subunits with the membrane.* Mol Immunol, 1984. **21**(4): p. 329-36.

709 51. Zamoyska, R., et al., *Two Lyt-2 polypeptides arise from a single gene by alternative splicing*
710 *patterns of mRNA.* Cell, 1985. **43**(1): p. 153-63.

711 52. Classon, B.J., et al., *The hinge region of the CD8 alpha chain: structure, antigenicity, and*
712 *utility in expression of immunoglobulin superfamily domains.* Int Immunol, 1992. **4**(2): p.
713 215-25.

714 53. Pang, D.J., A.C. Hayday, and M.J. Bijlmakers, *CD8 Raft localization is induced by its*
715 *assembly into CD8alpha beta heterodimers, Not CD8alpha alpha homodimers.* J Biol Chem,
716 2007. **282**(18): p. 13884-94.

717 54. Guedan, S., et al., *Engineering and Design of Chimeric Antigen Receptors.* Mol Ther
718 *Methods Clin Dev*, 2019. **12**: p. 145-156.

719 55. Lippincott-Schwartz, J., T.H. Roberts, and K. Hirschberg, *Secretory protein trafficking and*
720 *organelle dynamics in living cells.* Annu Rev Cell Dev Biol, 2000. **16**: p. 557-89.

721 56. Krug, C., et al., *Stability and activity of MCSP-specific chimeric antigen receptors (CARs)*
722 *depend on the scFv antigen-binding domain and the protein backbone.* Cancer Immunol
723 *Immunother*, 2015. **64**(12): p. 1623-35.

724 57. Lange, G., et al., *Crystal structure of an extracellular fragment of the rat CD4 receptor*
725 *containing domains 3 and 4.* Structure, 1994. **2**(6): p. 469-81.

726 58. Wu, C. and Y. Lu, *High-titre retroviral vector system for efficient gene delivery into human*
727 *and mouse cells of haematopoietic and lymphocytic lineages.* J Gen Virol, 2010. **91**(Pt 8): p.
728 1909-1918.

Figure 1. Zenere *et al*

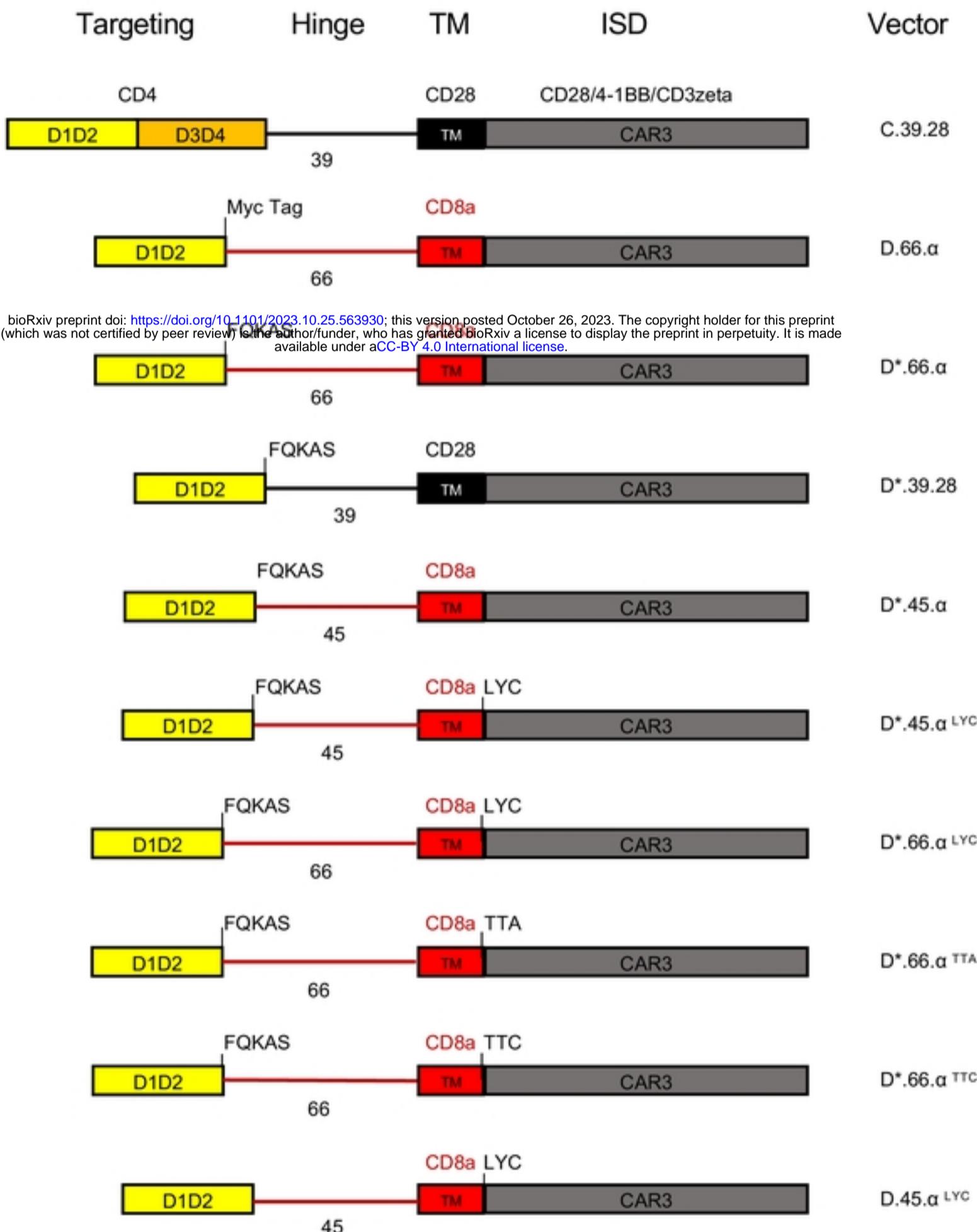


Figure 2. Zenere *et al*

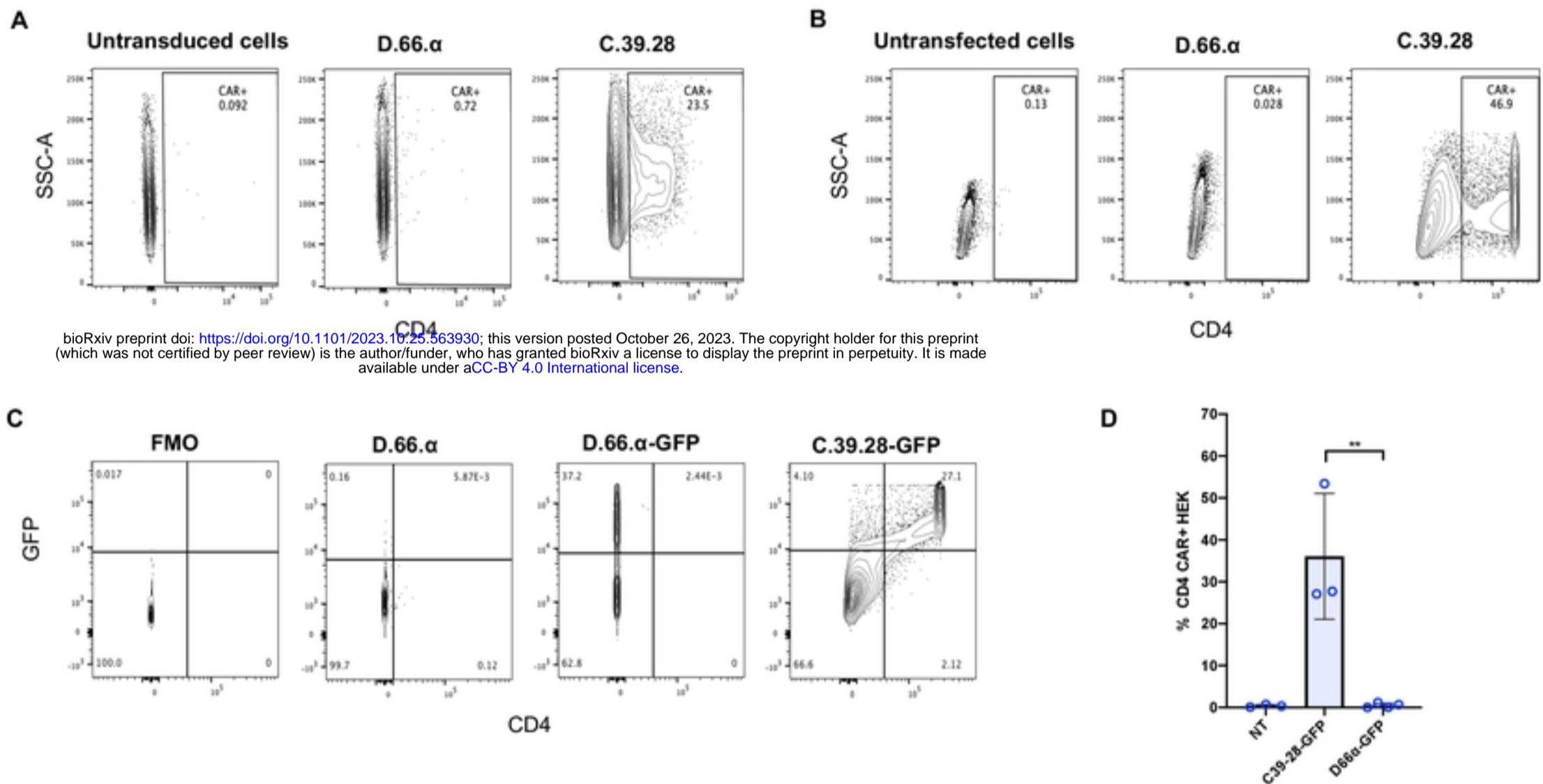


Figure 3. Zenere *et al*

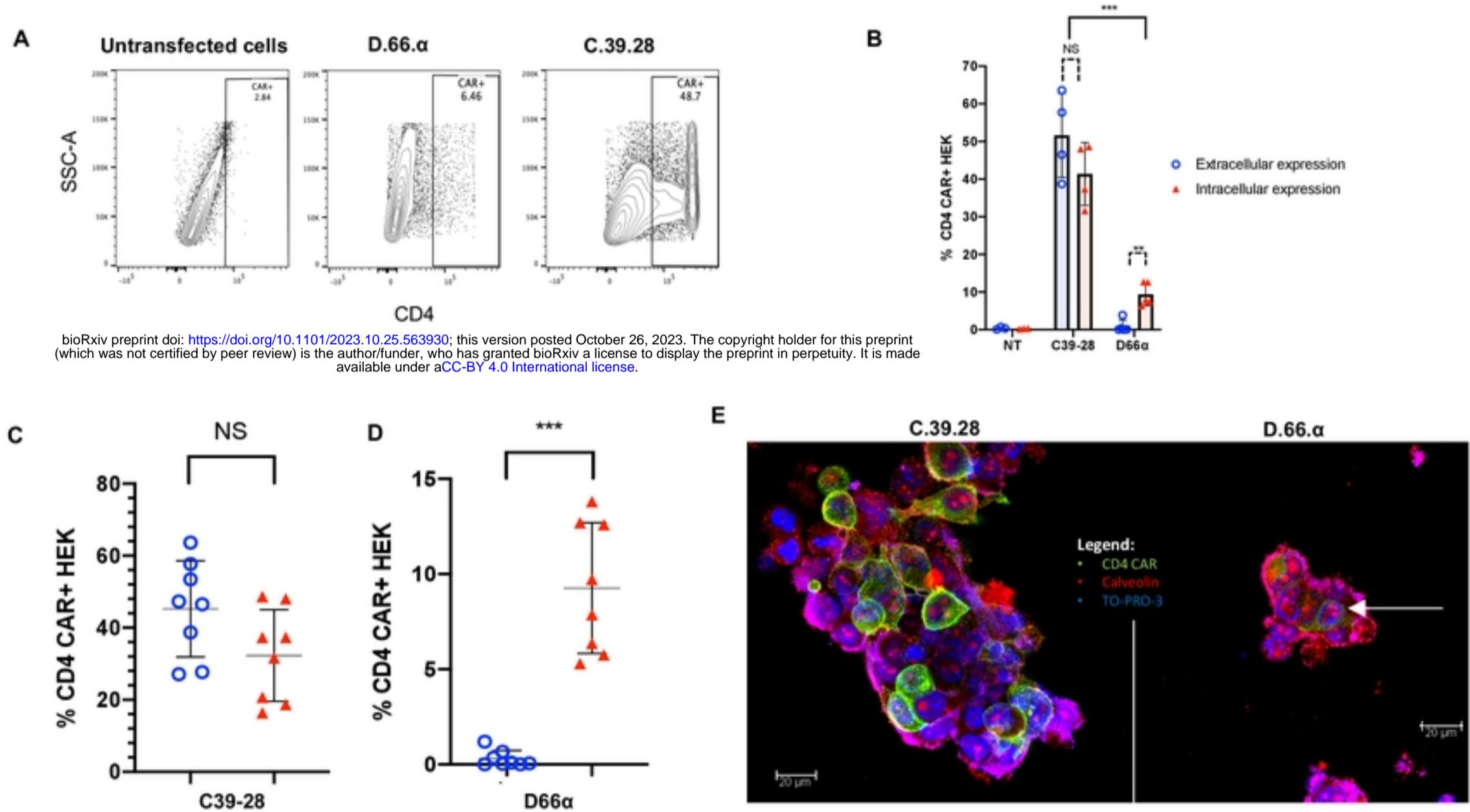


Figure 4. Zenere *et al*

Figure 5. Zenere *et al*

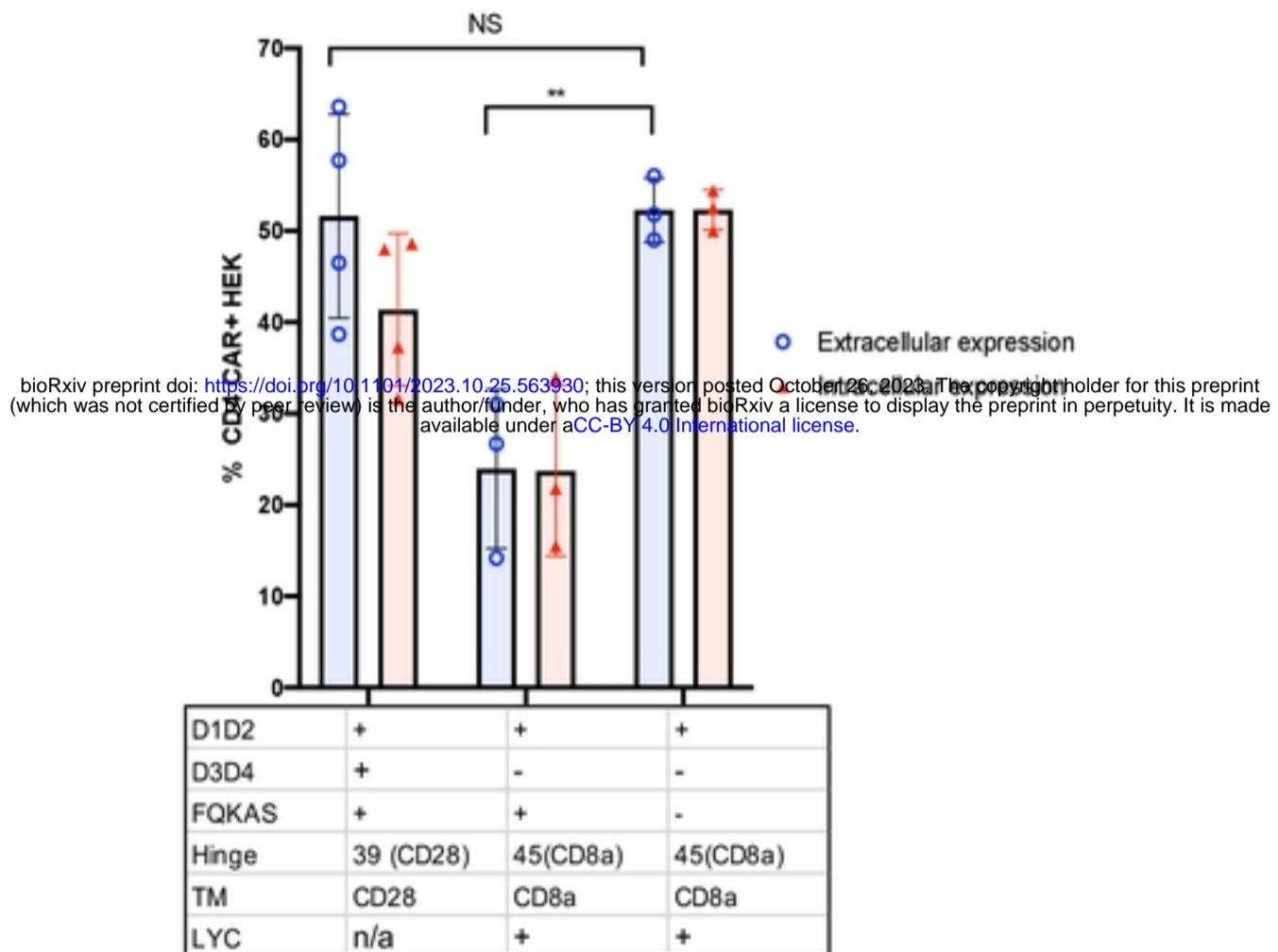


Figure 6. Zenere *et al*

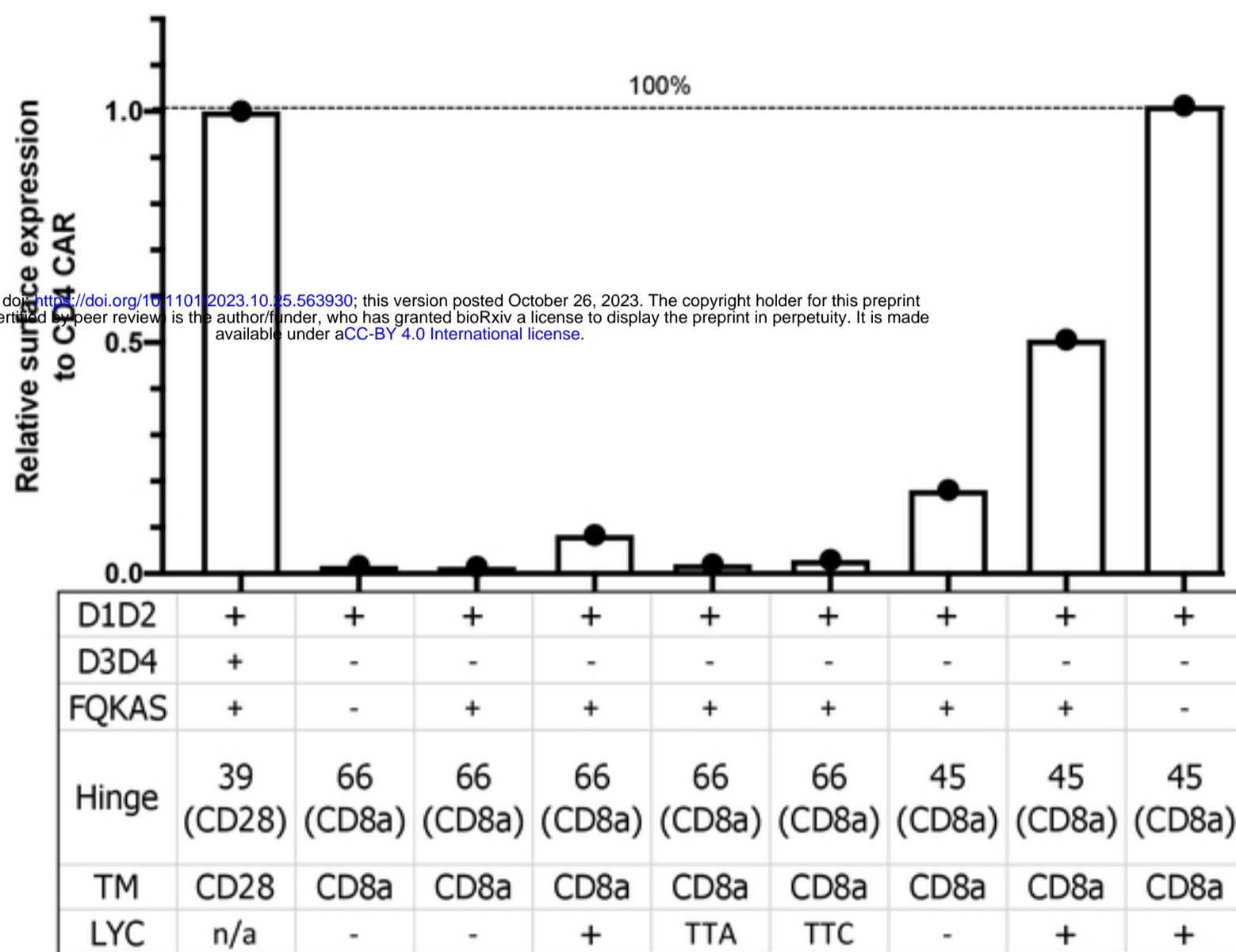
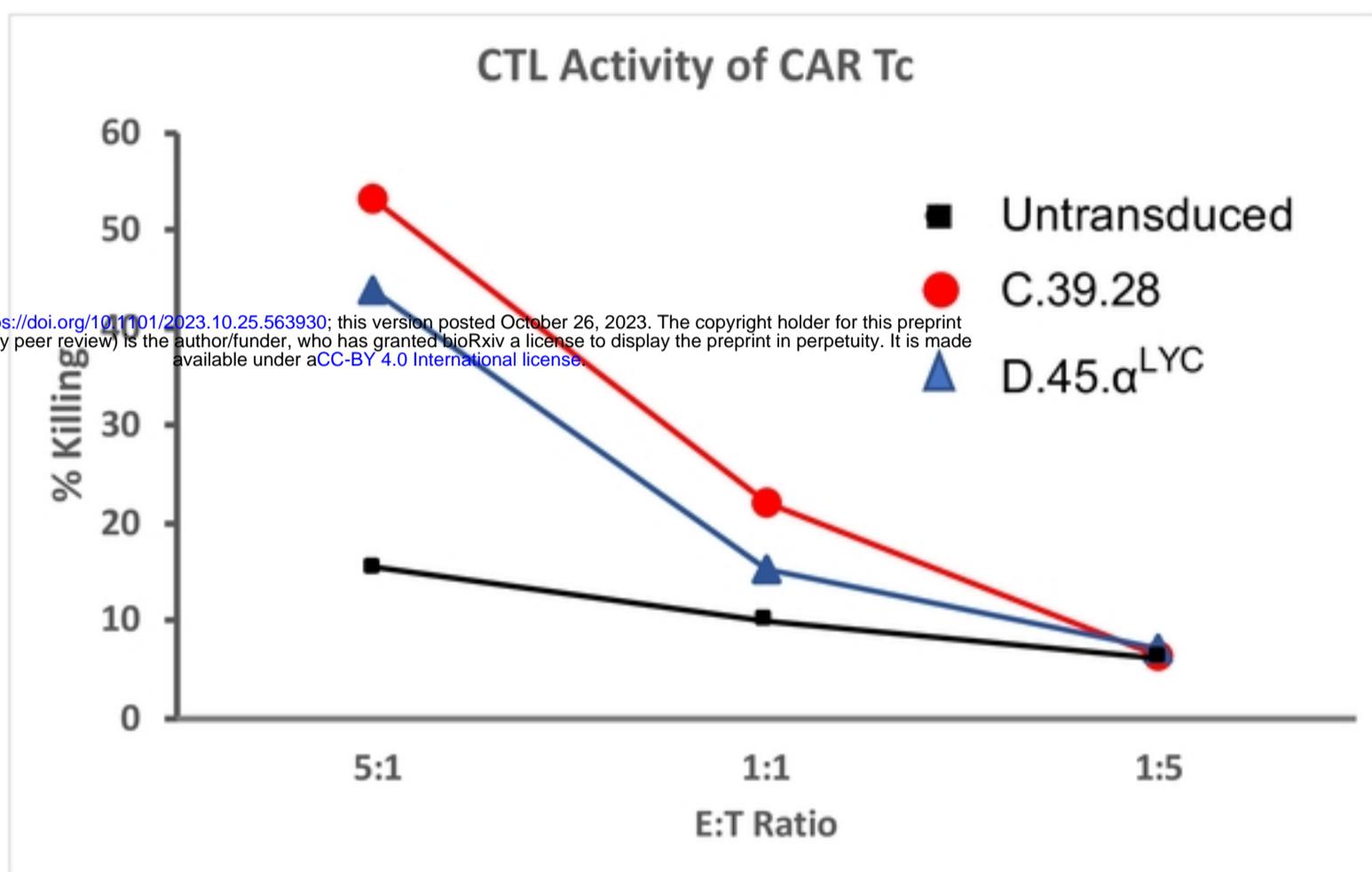



Figure 7. Zenere *et al*

