

1 **Fatty acid metabolism in neutrophils promotes lung damage and bacterial
2 replication during tuberculosis.**

3

4 Poornima Sankar^a, Ramon Bossardi Ramos^b, Jamie Corro^c, Mohd Saqib^a, Tanvir Noor Nafiz^a,
5 Gunapati Bhargavi^d, Anil K Ojha^c, Yi Cai^e, Selvakumar Subbian^d and Bibhuti B. Mishra^{a,*}

6 ^aDepartment of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA

7 ^bDepartment of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA

8 ^cNew York State Department of Health, Albany, NY, USA

9 ^dPublic Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ,
10 USA

11 ^eGuangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen
12 Biology, Shenzhen University Medical School, Shenzhen, China

13 ^{*}Address of correspondence: Bibhuti B Mishra, PhD (mishrab@amc.edu).

14

15

16 **ABSTRACT**

17 *Mycobacterium tuberculosis* (Mtb) infection triggers a significant influx of neutrophils to
18 the lungs, which is linked to tuberculosis (TB) severity. The mechanism by which Mtb
19 infection induces neutrophilic inflammation remains unclear. Using a clinically relevant
20 and hypervirulent Mtb strain from the W-Beijing family, HN878, we found that genes related
21 to both glycolysis and fatty acid metabolism are upregulated in the lung neutrophils of
22 susceptible mice. Similar effects in gene expression were observed in rabbits, and humans
23 with pulmonary TB compared to healthy controls. Inhibiting glycolysis with 2-deoxy D-
24 glucose (2-DG) exacerbated disease pathology, while fatty acid oxidation (FAO) inhibitor
25 Etomoxir (ETO) improved outcomes by reducing weight loss, immunopathology, and
26 bacterial replication within neutrophils in genetically susceptible mice. Notably, ETO
27 reduced neutrophil production in the bone marrow and their recruitment to the lungs. ETO
28 specifically restrained the recruitment of Ly6G^{low/dim} immature neutrophil population, which
29 is elevated during disease progression and harbors the bulk of bacilli. In a transwell setup,
30 we demonstrated that ETO dose-dependently inhibited neutrophil chemotaxis towards
31 infected macrophages. In summary, our research highlights the crucial role of fatty acid
32 metabolism in regulating neutrophilic inflammation during TB and provides a rationale for
33 targeting immunometabolism of neutrophils for potential TB treatment.

34

35

36

37 **Keywords:** *Mycobacterium tuberculosis*; neutrophils; fatty acid metabolism; inflammation; tissue
38 damage; innate immunity; macrophages; bacterial burden.

39

40 INTRODUCTION

41 Neutrophils, the most abundant white blood cells in the human body, play crucial roles in
42 protective immunity against various pathogens[1,2]. Recent studies, both experimental and
43 clinical, focusing on active pulmonary tuberculosis (TB), have revealed a substantial influx of
44 neutrophils into lung tissues[3-5]. An increase in neutrophil counts and a high neutrophil-to-
45 lymphocyte ratio serve as distinguishing factors between TB patients and healthy individuals who
46 test positive in tuberculin skin tests. Among TB patients, an extensive neutrophilic response
47 signifies the severity of TB and, notably, is associated with damage to the pulmonary
48 architecture[6-8]. In tissue biopsies obtained from pulmonary TB patients, neutrophils are the
49 dominant cell types[9]. Unique transcript signatures of active TB, primarily consisting of blood
50 neutrophil-specific type I IFN-inducible genes, have been discovered[10]. These signatures can
51 accurately identify patients with active disease as distinct from those with latent tuberculosis
52 infection (LTBI). Moreover, cross-species signature specific to neutrophils, capable of
53 distinguishing hosts likely to progress to active disease from those who will contain the infection
54 have been reported [11]. Additionally, the presence of neutrophils and the neutrophil granule
55 protein S100A9 in TB lesions, both in nonhuman primates and humans, is indicative of individuals
56 with latent infections likely to progress to active disease [12,13]. Notably, elevated neutrophil
57 counts in the blood are predictive of increased mortality risk from TB[14]. Collectively, these
58 reports firmly establish neutrophils as key pathological mediators in TB. While the specific role
59 and clinical significance of neutrophils in TB remain a subject of debate, several studies have
60 highlighted a strong connection between the development of TB and the infiltration of tissues by
61 neutrophils.

62 Neutrophils are the primary phagocytes initially recruited from the bloodstream to the lungs during
63 Mtb infection [15]. Individuals in contact with pulmonary TB patients show higher peripheral blood
64 neutrophil counts and a lower likelihood of Mtb infection. *In vitro* studies have demonstrated that
65 neutrophils can significantly inhibit Mtb growth, albeit with variability among donors. They achieve
66 this by causing oxidative damage to the bacteria [16]. Neutrophil-depleted blood exhibits reduced
67 capacity to control Mtb infection *ex vivo* [17]. Overall, these findings also emphasize the
68 importance of neutrophils in the innate antimicrobial immune response against Mtb.

69 Neutrophils in TB have been overlooked recently, in part due to their limited presence in
70 commonly used murine models like C57BL/6 and BALB/c mice, which are relatively resistant to
71 Mtb infection [18]. In a classic low-dose aerosol Mtb infection, neutrophils were only observed in

72 the lungs within the first 14 to 21 days post-infection and were scarcely detected in later stages
73 [4,19]. These lung lesions primarily consisted of macrophages, T- and B-lymphocytes, lacking the
74 necrotic granulomas seen in human patients[20].[21]. Interestingly, neutrophil depletion in these
75 mice did not impact disease outcome. The decline in neutrophil presence in these lesions was
76 attributed to IFN- γ -induced Nos2 expression, which curbs uncontrolled IL-1-mediated neutrophil
77 influx following the onset of adaptive immunity [4]. In contrast, mice deficient in Nos2, IFN- γ , or
78 T/B-lymphocytes succumbed to disease, developing TB lesions enriched in neutrophils and high
79 bacterial burden. Notably, in mouse strains highly susceptible to TB, such as C3HeB/FeJ and I/St
80 mice, neutrophils constituted a significant portion of the cellular infiltrates at the infection site [18].
81 In these strains, neutrophils were associated with necrotic tissue damage and early mortality [22].
82 Depleting neutrophils in Mtb-infected I/St mice improved wasting disease, reduced mycobacterial
83 burden, mitigated pathology, and enhanced survival [5,23].

84 Neutrophil depletion studies in animal models of TB have suggested a pro-bacterial role of these
85 cells during Mtb infection[3,5,24]. Interestingly, neutrophils affect granuloma outcomes in non-
86 human primates, as depleting neutrophils from granulomas with high bacterial burden reduces
87 replication in those granulomas, while depleting neutrophils from granulomas with low load
88 increased the number of bacteria per granuloma [25]. These results suggest that the degree to
89 which neutrophils contribute to pathogenesis varies along a spectrum at the individual granuloma
90 level. Thus, studying the functions of neutrophils at different stages of the disease may provide a
91 deeper understanding of TB pathogenesis.

92

93 In this study, we utilized a replication reporter of the hypervirulent Mtb strain HN878 to establish
94 a murine infection model[26] where we investigated the critical role of neutrophil metabolism in
95 immunity against TB. By targeting glucose metabolism with 2-deoxy D-glucose (2-DG) and fatty
96 acid metabolism with a panel of inhibitors directed at various steps in mitochondrial fatty acid
97 oxidation (FAO), we demonstrate that inhibiting the FAO pathway enhances the host's ability to
98 restrict intracellular bacterial replication. Treatment of infected mice with Etomoxir (ETO),
99 prevented weight loss, immunopathology, and reduced bacterial replication in the lungs of TB
100 susceptible mice. The inhibition of FAO significantly impacted the phagocytic uptake of Mtb by
101 neutrophils, subsequently affecting the pathogen's replication within these phagocytes. Notably,
102 ETO decreased the recruitment of neutrophils to the lungs. In a transwell chemotaxis assay, we
103 demonstrated that ETO dose-dependently inhibited neutrophil migration towards infected
104 macrophages. Overall, our results show that fatty acid metabolism plays a vital role in controlling

105 neutrophilic inflammation and suggest that targeting the way neutrophils use energy could be a
106 potential therapeutic approach against TB.

107

108 **Results**

109

110 **Neutrophils are the major immune cells harboring bacteria during TB disease.**

111 One of the defining features of tuberculosis (TB) is the inflammation that damages tissues, leading
112 to a decline in lung function and a significant increase in mortality associated with the disease[27].
113 However, the cellular basis of the inflammatory environment in TB lung that is associated with
114 disease susceptibility is poorly defined. We have previously reported that unchecked neutrophil
115 influx to the lung is associated with susceptibility to the lineage 4 strain Mtb H37Rv
116 infection[4,5,28]. To determine whether similar inflammatory environments develop during Mtb
117 HN878 infection, a clinically relevant hypervirulent strain belonging to lineage 2 of W-Beijing
118 isolates, we challenged mice with approximately 100 colony-forming units (CFU) of aerosolized
119 Mtb. To investigate the presence of bacteria and bacterial replication dynamics, we employed a
120 dual reporter strain of Mtb, Mtb HN878 smyc'-mCherry: SSB2-GFP. These bacteria consistently
121 express mCherry and possess GFP fused to the single strand binding protein (SSB-2) that
122 congregates at the replication fork forming GFP labeled foci. Consequently, replicating bacteria
123 express both mCherry with GFP foci, allowing them to be distinguished from non-replicating
124 bacteria using fluorescence microscopy [29,30] and flow cytometry. Utilizing this dual reporter
125 strain, we infected C57BL/6 (referred as BL/6) mice that are recognized as relatively resistant to
126 TB compared to C3HeB/FeJ (referred to as C3H), inducible nitric oxide synthase deficient (*iNos*^{-/-})
127 and mice lacking the interleukin-1 receptor (*Il1r1*^{-/-}). At day 29 pi, total and infected neutrophils
128 were analyzed in the single cell preparation of the lungs of these animals (**Fig. 1A**). There was
129 an augmented influx of neutrophils into the lungs of the susceptible mouse strains compared to
130 BL/6. Moreover, number of neutrophils harboring the Mtb bacilli (infected neutrophils) significantly
131 elevated in the lungs of these susceptible animals compared to BL/6 (**Supplementary Fig. 1A,**
132 **B**) suggesting a direct correlation of neutrophils and bacterial growth within these cells with TB
133 susceptibility to Mtb HN878 infection.

134

135 Next, we analyzed the lung environment of C3H mice at different time points post infection for the
136 neutrophil influx, bacterial replication within neutrophils to ascertain that bacterial replication in
137 neutrophils is a marker of susceptibility. Although differences were not initially apparent at the
138 earlier time points (day 14 and 21 post-infection), susceptible C3H mice exhibited increased

139 neutrophil accumulation and the presence of Mtb-infected neutrophils in their lungs at a later time
140 point, specifically on day 29 post-infection, compared to BL/6 (**Supplementary Fig. 1C, D**). This
141 observation was supported by the increasing bacterial burden in the lung and spleen of C3H mice
142 compared to BL/6 (**Fig. 1B**). We subsequently investigated whether the higher bacterial load in
143 C3H mice was due to enhanced bacterial replication. By enumerating the number of SSB2-GFP
144 foci in mCherry^{+ve} Mtb in the 5 μ m lung sections, we identified an increased number of replicating
145 Mtb in the C3H lungs compared to BL/6 (**Fig. 1C**).

146
147 We have previously shown that neutrophils serve as a permissive niche for Mtb in C3H mice
148 [3,5,19,24]. To examine if the increased bacterial growth in the lungs is a consequence of higher
149 intracellular replication, we probed the replication dynamics of Mtb in neutrophils from infected
150 BL/6 and C3HeB mice at different time points post infection. While neutrophils in BL/6 mice harbor
151 fewer replicating Mtb (SSB-GFP+), approximately half of the lung neutrophils from C3H mice
152 hosted replicating bacteria (**Fig. 1D, lower panel**). No significant difference was observed in the
153 number of infected neutrophils with replicating bacteria at day 14 and 21 pi. However, this
154 difference in Mtb replication was more significant at day 29 pi which corresponded with neutrophil
155 accumulation (**Fig. 1E**).

156
157 Recently, bacteria permissive neutrophil population, Ly6G^{low/dim} has been reported in murine
158 models of Mtb H37Rv infection [19,31]. Notably, these immature granulocytes accumulate in the
159 lung as infection progresses and is more abundant in the lung of genetically susceptible mice[19].
160 To examine if Mtb HN878 infection also recruits these neutrophils to the lung, we compared the
161 neutrophils from BL/6 and C3H mice for their Ly6G expression. We observed an elevated number
162 of Ly6G^{low/dim} neutrophils in the C3H lungs at day 29 pi (**Fig. 1F, G**). Notably, there was an increase
163 in the infected Ly6G^{low/dim} neutrophils carrying replicating Mtb in C3H mice compared to BL/6 at day
164 29 pi (**Fig. 1H and I**). These results support previous observations made in *iNos*^{-/-} mice[19] and
165 further indicate that accumulation of Ly6G^{low} immature neutrophils provides a replication
166 conducive cellular niche for Mtb.

167
168 In the rabbit model of pulmonary Mtb infection, the outcome of the infection depends on the
169 specific Mtb strain used [32]. When rabbits are infected with Mtb HN878, they develop a
170 progressive disease characterized by severe inflammation and lung pathology marked by
171 necrotic, caseating granulomas. Some of these granulomas progress to form cavities[33,34]. On
172 the other hand, infection with Mtb CDC1551 results in infection control and the spontaneous

173 establishment of latency after initial limited bacterial growth and disease pathology. It's worth
174 noting that the varying pathological manifestations observed in rabbit lungs infected with these
175 two clinical Mtb isolates closely resemble the spectrum of active TB observed in humans [35,36].
176 Therefore, we reason that the rabbit model serves as a valuable tool for determining the
177 relationship between neutrophil influx and disease progression.

178
179 We evaluated neutrophil influx in the lungs of rabbits infected with Mtb HN878 or CDC1551 at day
180 14 and 29 pi through comparative pathology. Similar to mice, we observed increased necrotic
181 lesions, heightened neutrophil influx and presence of Acid-fast bacilli (AFB) identified by Ziehl-
182 Nielsen staining of the lungs of rabbits infected with Mtb HN878 (**Supplementary Fig. 1E, G**). In
183 contrast, rabbits infected with CDC1551 had more lymphocytes and histiocytes in their lungs
184 (**Supplementary Fig. 1F**), and nearly undetectable AFB in the lung sections (not shown), which
185 is consistent with a more controlled infection induced by this clinical isolate. These findings
186 collectively suggest that Mtb HN878 infection triggers a robust influx of neutrophils, with these
187 cells being the primary infected cells in the lung and support Mtb replication.

188
189 **Expression of metabolism associated genes are increased in neutrophils during TB.**

190 Since neutrophils from different host environments were not only quantitatively different, but they
191 also varied in terms of their ability to harbor replicating Mtb, we sought to determine the
192 transcriptome profile of these cells isolated from BL/6 and C3H mice lung. Neutrophils were
193 extracted from the lungs of BL/6 and C3H mice following Mtb infection, on day 27 pi and
194 conducted bulk mRNA sequencing. Principal Component Analysis (PCA) unveiled significant
195 transcriptomic differences among the lung neutrophils (**Fig. 2A**). Through differential gene
196 expression (DEG) analysis, we identified 452 upregulated and 1003 downregulated genes in
197 C3HeB mouse lung neutrophils when compared to those from BL/6 mice (**Fig. 2B**).

198 Subsequently, we performed gene ontology analysis of these DEGs to delineate the pathways
199 that were up-and downregulated in lung neutrophils. Notably, we observed an upregulation in
200 genes associated with metabolic pathways, including glycolysis, fatty acid transport, uptake, and
201 catabolism in the neutrophils from C3H mice, compared to their resistant BL/6 counterparts (**Fig.**
202 **2C**). Specifically, all genes essential for regulating glycolysis and β -oxidation of fatty acids
203 exhibited increased expression in C3H mouse neutrophils from the infected mice (**Fig. 2D**,
204 **Supplementary Fig. 2A**). We then examined the metabolic gene signature in the previously
205 published genome wide microarray dataset for the Mtb HN878 and CDC1551 infected rabbit

206 lungs. There was an overall increase in the expression of metabolism associated genes in the
207 Mtb HN878 as early as 2 weeks pi compared to CDC1551, linking these gene clusters in
208 inflammatory disease and host susceptibility to TB (**Supplementary Fig. 3B**).

209
210 To check the relevance of these gene signatures in human TB, we analyzed the publicly available
211 databases for transcriptomic signatures in the peripheral blood cells (PBMCs) from a group of 98
212 TB patients and 314 healthy controls participating in a household contact study (GSE94438). This
213 analysis revealed an elevated expression of genes associated with the fatty acid oxidation (FAO)
214 pathway. These genes included CPT1A, ACSL3, SLC25A20, HADHA, HADHB, ACSS2, ETFA,
215 ETFB, VLCAD, ABCD1, and ACAA2 mirroring the patterns observed in mouse lung neutrophils
216 (**Fig. 2E**). Other genes related to fatty acid and glucose metabolism were also altered in PBMCs
217 of TB patients compared to healthy controls (**Supplementary Fig. 3C, D**). Together, these cross-
218 species gene signatures related to glucose and fatty acid metabolism suggest that metabolic
219 programming during Mtb infection could be linked to TB pathogenesis.

220
221 To explore whether there were differences in glucose and fatty acid uptake during Mtb infection,
222 we labeled both Mtb-HN878 (smyc'-mCherry) infected and uninfected naïve bone marrow
223 neutrophils with 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG), a
224 fluorescent glucose analog and BODIPY™ FL C₁₆ (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-
225 Diaza-s-Indacene-3-Hexadecanoic Acid (C16-BODIPY), a fluorescent fatty acid analog.
226 Subsequently, we assessed their uptake by flow cytometry as described previously [29]. Our
227 results revealed that fatty acid uptake increased during Mtb infection while glucose uptake was
228 inhibited (**Supplementary Fig. 3A-C**). Next, we sorted neutrophils from the BM of naïve mice,
229 infected *ex vivo* with Mtb HN878-mCherry at an MOI 3 and compared the glucose and fatty acid
230 uptake efficiency of Mtb infected (Mtb+) and uninfected neutrophils (Mtb-) though all neutrophils
231 have been exposed to Mtb. Although infected and uninfected neutrophils have comparable
232 glucose uptake efficiency, Mtb-infected neutrophils significantly take up more fatty acid than Mtb
233 primed yet uninfected neutrophils (**Supplementary Fig. 3D, E**). These findings indicate that fatty
234 acid metabolism may be preferred over glucose for energy during neutrophil's response to Mtb
235 infection.

236
237 **Fatty acid metabolism of neutrophils regulates uptake and replication of Mtb.**
238 Genes associated with metabolic pathways are significantly upregulated in susceptible C3H
239 mouse neutrophils when compared to their resistant BL/6 counterparts. To investigate the impact

240 of inhibiting the two primary energy generation pathways, glycolysis, and fatty acid metabolism,
241 on the response of neutrophils to Mtb, we treated *ex-vivo* cultures of sorted naïve bone marrow
242 neutrophils with two inhibitors: 2 deoxy D-glucose (2-DG), a glucose analog blocking glycolysis
243 and Etomoxir (ETO), an inhibitor of fatty acid oxidation (FAO) through its irreversible inhibitory
244 effects on the carnitine palmitoyl-transferase 1a (CPT1a)-mediated β-oxidation. Concurrently, we
245 infected them with Mtb HN878, replication reporter strain (**Fig 3A**).

246 To evaluate the effect of glycolysis and fatty acid metabolism inhibition on phagocytic uptake of
247 bacteria, we measured the mean fluorescence intensity (MFI) of the total (mCherry) and
248 replicating bacilli (SSB2-GFP foci) at 4 hours pi in neutrophils treated with 2-DG or ETO.
249 Remarkably, blocking these metabolic pathways inhibited bacterial uptake by neutrophils (**Fig 3B**,
250 **C**). However, after 18 hours pi, there was a dose-dependent decline in the MFI of mCherry and
251 mCherry+GFP+ bailli in both 2-DG- and ETO-treated neutrophils compared to vehicle treated
252 cells (**Fig 3D-G**). These results suggest that glucose and fatty acid metabolic pathways are
253 activated during Mtb infection and targeting them may be a viable strategy to control infection.

254 To address the possibility that the observed effect was due to the inhibition of the desired
255 metabolic pathways, not a result of direct toxicity to bacteria, we exposed Mtb to 5mM 2-DG or
256 800 µM ETO in 7H9 broth cultures for 18 hours and then plated the bacteria to enumerate the
257 Colony-Forming Units (CFU). This experiment revealed that 2-DG is indeed toxic to bacteria in
258 culture, suggesting that the reduced bacterial uptake and replication in neutrophils could be
259 attributed to the chemical toxicity directly on the bacteria, though contribution of host glucose
260 metabolism in these processes could not be ruled out. However, no toxicity of ETO on Mtb was
261 apparent in this setting (**Supplementary Fig. 4A**).

262 To further investigate the impact of modulating fatty acid metabolism on neutrophil's response to
263 Mtb, we targeted the fatty acid metabolic pathways using chemical inhibitors and assessed both
264 uptake and replication of Mtb after 4h and 18hr pi. Mitochondrial pyruvate transport and amino
265 acid metabolism were targeted using UK5099 and R162, respectively. To rule out any off-target
266 effects of ETO other than fatty acid metabolism, we utilized another CPT1a inhibitor, Oxfenicine,
267 to assess if its effects mirrored those of ETO. We also examined if adding fatty acids could reverse
268 the effects of ETO. In this regard, we supplemented ETO-treatment with octanoic acid, a medium-
269 chain fatty acid (**Fig. 3H**). Oxfenicine exhibited similar effects to ETO, and the addition of octanoic
270 acid alongside ETO reversed its effects. However, treatment of infected neutrophils with UK5099
271 or R162 did not impact bacterial uptake or replication in neutrophils, suggesting a specific effect

272 related to fatty acid oxidation for generating energy (**Fig. 3J-I; Supplementary Fig. 4C, D**).
273 Importantly, none of these inhibitors caused any significant changes in neutrophil viability
274 compared to untreated controls (**Supplementary Fig. 4B**).

275 Previous studies have suggested a role of fatty acid metabolism in the macrophage antibacterial
276 response[37,38]. Blocking fatty acid metabolism enhances the ability of macrophages to eliminate
277 the laboratory strain H37Rv. To investigate whether ETO had similar effects on macrophages
278 during Mtb HN878 infection, we infected bone marrow-derived macrophages (BMDMs) with the
279 replication reporter of Mtb HN878 and treated them with increasing concentrations of ETO. While
280 we observed a significant decrease in the mean fluorescence intensity (MFI) of mCherry and GFP
281 at 4 hours post-infection, we did not detect any significant differences after 3 days post-infection
282 (pi) (**Supplementary Fig. 4 E-H**). Together, these results support the conclusion that fatty acid
283 oxidation regulates the phagocytic uptake in neutrophils and macrophages while promoting the
284 intracellular replication of Mtb within neutrophils.

285

286 **Inhibition of fatty acid oxidation ameliorated TB disease by reducing neutrophil infiltration.**

287 Our *in-vitro* experiments have clearly demonstrated a metabolism-induced effect during Mtb
288 infection of neutrophils. Consequently, we sought to investigate whether suppressing glycolysis
289 or fatty acid metabolism in the immunocompetent C3H mice, known for their neutrophil-driven
290 susceptibility to TB (**Fig. 1**), could improve disease outcomes. We infected mice with the Mtb
291 HN878 replication reporter strain and treated them with 250mg/kg of 2-DG or 20mg/kg ETO every
292 alternate day starting at day 21 to day 28 pi. Subsequently, we analyzed these mice at day 29 pi
293 (as depicted in the schematics of **Fig. 4A**). ETO treatment, reduced weight loss (**Fig. 4B**),
294 bacterial burden in the lungs by ~ 10-fold, as indicated by CFU counts (**Fig. 4C**), and improved
295 lung pathology, characterized by reduced necrotic lesions (**Fig. 4D**) compared to control mice that
296 showed wasting, necrotic lung inflammation, and higher bacterial growth, hallmark features of TB
297 disease. While there was a marginal improvement in weight loss and decline in bacterial load, the
298 area of necrotic lung inflammation worsened in 2-DG treated cohorts suggesting that global
299 inhibition of glycolysis may affect the hosts disease tolerance mechanisms (**Fig. 4B-D**). Next, we
300 employed confocal microscopy to image lung sections from untreated controls, 2DG-treated, and
301 ETO-treated mice, with DAPI counterstaining to examine the presence of mCherry^{+ve} bacilli and
302 evaluate their replication status by quantifying the SSB2-GFP foci across the mCherry^{+ve} rods.
303 We quantified the number of bacteria in different fields of view and plotted the percentage of
304 bacteria with SSB2 Foci (**Fig. 4E**). These image analyses provided additional evidence that ETO-

305 treated mice controlled bacterial replication more effectively than vehicle treated control animals
306 or those treated with 2-DG. Notably, the reduction in bacterial burden and replication in the ETO
307 treated lungs was associated with a significant decrease in the number of total (**Fig. 4E**,
308 **Supplementary Fig. 5A**) and infected neutrophils compared to control mice and those treated
309 with 2-DG (**Fig. 4F**). ETO treatment further reduced the neutrophils harboring replicating bacteria
310 compared to vehicle treated animals (**Fig. 4G, Supplementary Fig 5B**). These results further
311 suggest that inhibiting FAO restrain the Mtb-induced neutrophil influx and consequently bacterial
312 replication within these myeloid cells.

313

314 We then analyzed the counts of Ly6G^{hi} and Ly6G^{lo/dim} neutrophil populations in the treated mice,
315 as the latter immature neutrophil populations accumulate in the lung with disease progression
316 and have been linked to TB susceptibility (see **Fig. 1E-G**). Specifically, mice treated with ETO
317 displayed a reduction in the accumulation of Ly6G^{lo/dim} neutrophils (**Fig. 4H**). Additionally, a lower
318 number of infected Ly6G^{lo/dim} neutrophils harboring replicating bacteria were observed in the lungs
319 of ETO-treated mice. In contrast, the infiltration of the mature Ly6G^{hi} cells remained unaffected
320 by ETO treatment, and the bacterial replication within these cells did not show a significant
321 difference between the treated and untreated mice (as shown in **Fig. 4I, J**). Furthermore, ETO
322 treatment led to a decrease in the infiltration of monocytes, macrophages, eosinophils, and
323 plasmacytoid dendritic cells into the lung (**Supplementary Fig. 5C**). Moreover, there was an
324 increased proportion of protective CD4+ and CD8+ T-lymphocytes in ETO-treated mice (**Fig. 4L**
325 **and Supplementary Fig. 5D**), suggesting that the FAO blockade enhanced protective immunity
326 against TB.

327

328 To investigate the effect of ETO treatment on the inflammatory lung environment of C3H mice,
329 we examined 32 different cytokines, chemokines, and growth factors in the lung homogenates.
330 These factors have been associated with the regulation of inflammation, particularly in the context
331 of neutrophil-mediated pathological responses. Consistent with a reduction in lung inflammation,
332 the mice treated with ETO exhibited decreased levels of several pro-inflammatory cytokines,
333 including IL-1 α , IL-1 β , and TNF. Moreover, chemokines such as MIP-1 α , MIP-1 β , and MIP-2,
334 known to be involved in monocyte and neutrophil trafficking, were reduced. Additionally, growth
335 factor cytokines G-CSF and GM-CSF, which provide survival signals for neutrophils, were
336 significantly diminished compared to those treated with 2-DG or the vehicle-treated controls (**Fig.**
337 **4M-P; Supplementary Fig. 6**). Conversely, we observed elevated levels of the protective
338 cytokine IFN- γ in the lung homogenates of the ETO-treated group, suggesting the creation of a

339 protective host environment through the inhibition of fatty acid metabolism (**Fig. 4Q**;
340 **Supplementary Fig. 6**). Overall, these findings suggest that fatty acid metabolism promotes
341 heightened neutrophil recruitment to Mtb-infected lungs and increased bacterial replication in TB
342 lesions, particularly within neutrophils, thereby contributing to an increased susceptibility to TB.
343

344 **Fatty acid metabolism is crucial for neutrophil production and migration.**

345 Previous studies have demonstrated that inhibiting fatty acid metabolism in neutrophils through
346 CPT1a mediates an impact on neutrophil chemotaxis [39]. To investigate whether the inhibition
347 of CPT1a by ETO in neutrophils affects their migration in response to infected macrophages, we
348 conducted a transwell chemotaxis assay. Neutrophils, along with varying concentrations of ETO,
349 were introduced into the upper chamber, and their migration across a collagen coated semi-
350 permeable membrane in response to Mtb-infected macrophages was assessed after an 18-hour
351 incubation period. Post-migration analysis revealed a dose-dependent effect of ETO on neutrophil
352 migration in response to Mtb-infected macrophages (**Fig. 5A**). Thus, it appears that fatty acid
353 metabolism plays a crucial role in the chemotaxis of neutrophils in response to Mtb infection.
354

355 Considering the impact of fatty acid metabolism on neutrophil migration, we inquired whether the
356 reduced neutrophil influx into the lungs of ETO-treated animals resulted from diminished
357 recruitment or due to decreased synthesis of these cells in the bone marrow. We repeated the
358 ETO treatment experiment as shown in **Fig. 4** in a separate cohort. The control cohorts received
359 phosphate buffer saline (PBS) as vehicle. We assessed the number of neutrophils in the bone
360 marrow compartment of mice treated with ETO by flow cytometry and observed an overall
361 reduction in the percentage and total number of neutrophils compared to vehicle-treated controls
362 (**Fig. 5B, C**). Concurrently, there was an increase in the number of CD3e+ T-lymphocytes in the
363 bone marrow of ETO-treated mice compared to the control cohort (**Fig. 5D**). However, CD19+ B-
364 lymphocytes were not altered by ETO treatment. Collectively, these results demonstrate that fatty
365 acid metabolism may be critical for neutrophil production in the bone marrow and their recruitment
366 to the site of infection (see the model in **Fig. 5E**).
367

368 **DISCUSSION**

369
370 Despite recent advances in the field of immunometabolism, our understanding of neutrophil
371 metabolism remains incomplete. Previous studies have indicated that neutrophils primarily rely
372 on glucose as their primary carbon source for metabolic processes [40]. However, emerging

373 evidence suggests that neutrophils also utilize a variety of other nutrients, including amino acids,
374 carbohydrates, proteins, and lipids, to generate energy [41,42]. Neutrophils frequently encounter
375 immunological environments with limited nutrient availability, necessitating their ability to adapt
376 and employ diverse metabolic pathways to meet the demands of the immune response. For
377 instance, immature neutrophils exhibit a greater dependence on oxidative phosphorylation
378 (OXPHOS) and fatty acid oxidation (FAO) due to their higher mitochondrial content compared to
379 mature neutrophils. In contrast to mature neutrophils, immature neutrophils generate energy by
380 degrading lipid droplets through a process known as lipophagy, subsequently channeling the
381 resulting fatty acids into the tricarboxylic acid (TCA) cycle and OXPHOS [41]. Our findings
382 emphasize the crucial role of fatty acid metabolism in the recruitment of Ly6Glow/dim immature
383 neutrophils to the lungs. However, it is worth noting that inhibiting glucose uptake by 2-DG also
384 affected the recruitment of these cells, suggesting that both fatty acid and glucose metabolic
385 pathways may be necessary for energetics, although the former pathways are preferred.
386 Conversely, FAO blockade did not influence the infiltration of mature Ly6G^{hi} neutrophils,
387 consistent with previous reports in cancer models[43]. Furthermore, the glycolysis inhibitor had
388 no impact on these cells, suggesting that mature neutrophils may utilize alternative energy
389 sources for their effector functions, at least in our *in vivo* model.

390
391 Recent studies have shed light on the connection between Mtb pathogenesis and host
392 metabolism [44]. Among the primary cellular niches for Mtb, macrophages play a crucial role.
393 Within the lungs, alveolar macrophages (AMs) and interstitial macrophages (IMs) represent the
394 major populations of infected macrophages, each exhibiting distinct metabolic profiles. AMs,
395 which primarily rely on fatty acid oxidation (FAO), create a permissive environment for Mtb
396 replication. In contrast, glycolytically active IMs limit infection[29]. Mtb enhances its reliance on
397 mitochondrial oxidative metabolism, particularly exogenous fatty acids, and induces the formation
398 of lipid-droplet-filled "foamy" macrophages [28]. These foamy macrophages are often found in the
399 inner layers of TB granulomas. Bacilli can be found in close proximity to intracellular lipid droplets,
400 which are believed to serve as a source of nutrients in the form of cholesterol esters and fatty
401 acids, creating a hospitable niche for the bacterium. Near these foamy macrophages, neutrophils
402 reside in the granulomatous lesions and are exposed to the lipid-rich caseum [5,45]. Neutrophils
403 could also serve as a source of these lipids in TB lesions. However, the metabolic status of
404 neutrophils in TB lesions has not been previously investigated. In this study, we employed
405 chemical inhibitors of mitochondrial β -oxidation of fatty acids, such as ETO, which inhibits FAO
406 by targeting CPT1. CPT1 is essential for the entry of long-chain fatty acids into the mitochondrial

407 matrix. ETO not only reduced bacterial uptake but also significantly decreased the number of
408 replicating bacteria intracellularly. The coupling of fatty acid oxidation and phagocytosis, as well
409 as the mechanisms by which neutrophils control bacterial replication, remain open questions. As
410 observed in macrophages, one potential antimicrobial factor could be mitochondrial ROS (mROS)
411 generated due to impaired electron flow in the electron transport system. mROS may recruit
412 NADPH oxidase complexes to neutrophil phagosomes to restrict bacterial replication as has been
413 reported to be a pivotal antimicrobial mechanism of macrophages [37,46]. Moreover, ROS
414 production has been linked to limiting immunopathology due to TB in murine models by regulating
415 proinflammatory IL-1 β production and neutrophil influx mediated by this cytokine [47]. These
416 potential mechanisms warrant further investigation in future studies.

417

418 One crucial discovery from our study was the influence of inhibiting FAO on neutrophil
419 chemotaxis. Neutrophil accumulation in the lungs has been associated with tissue damage and
420 exacerbated disease. Therefore, modulating the recruitment of neutrophils to the lungs using ETO
421 could serve as a potential therapeutic strategy for improving host antimicrobial functions.
422 Trimetazidine is an FDA approved drug used for treating cardiovascular complications e.g.,
423 angina exhibits nanomolar inhibitory effects on the mitochondrial metabolism. TMZ targets the
424 long-chain 3-ketoacyl-CoA thiolase activity of the hydroxyacyl-coenzyme A (CoA) dehydrogenase
425 trifunctional multienzyme complex subunit beta (HADHB) that catalyzes the final step of β -
426 oxidation of fatty acids. Such host-directed therapies (HDTs) would ideally complement the use
427 of direct antimicrobial agents, potentially shortening treatment regimens. While the *in vivo* impact
428 of FAO inhibition by ETO was impressive in reducing *Mtb* replication in tissues, especially within
429 neutrophils, it's worth noting that at the drug concentrations administered in mice, it also affected
430 several other cell types. The ramifications of impairing FAO in various cell types, particularly those
431 belonging to the myeloid and lymphoid lineages, represent an area for future investigation as it
432 will unravel new mechanisms of pathogenesis. Previous studies have indicated off-target effects
433 of ETO at concentrations exceeding 10 μ M, which were attributed to the disruption of acetyl CoA
434 homeostasis. Concentrations surpassing 200 μ M have been demonstrated to impair IL-4
435 production from macrophages, thereby affecting M2-polarization of these cells [48]. However, in
436 our study, we did not observe any significant alteration in IL-4 and IL-13 cytokines in the lungs of
437 mice treated with ETO (**Supplementary Fig. 6**). Nonetheless, we could not dismiss the possibility
438 of other potential off-target effects. Therefore, future investigations employing genetic models are
439 necessary to establish the role of FAO in neutrophil's bioenergetics in regulating TB pathogenesis.

440

441 Unlike FAO inhibition, the inhibition of glycolysis by 2-DG had a moderate effect on bacterial
442 replication but exhibited a significant exacerbation in tissue pathology (**Fig.4D**). 2-DG, an inhibitor
443 of glucose uptake, completely inhibits glycolysis and affects the linked pentose phosphate
444 pathway (PPP) and the TCA cycle, which utilizes pyruvate, an end-product of glycolysis, as a
445 substrate. Therefore, the observed increase in necrotic foci in the lung could be a result of the
446 toxicity caused by the global inhibition of glycolysis in cell types that play a protective role during
447 TB immunity. Indeed, a recent report has highlighted the protective role of glycolysis in myeloid
448 cells for TB control[49]. These authors demonstrated that myeloid cell-specific deletion of lactate
449 dehydrogenase subunit A enhances susceptibility to TB. Hence, the seemingly toxic effect of 2-
450 DG treatment *in vivo* could be a consequence of the loss of these protective effects. Therefore,
451 an experimental approach that selectively targets glycolysis in neutrophils would provide new
452 insights into the role of glucose metabolism in their functions *in vivo* during TB.

453 In summary, our work highlights the role of mitochondrial fatty acid metabolism in the response
454 of neutrophils to *Mtb* infection. We discovered that neutrophils prefer fatty acids over glucose
455 during infection, and the fatty acid oxidation pathway is particularly used by immature neutrophils
456 for recruitment to the site of infection. This suggests that targeting the way neutrophils use energy
457 could be a potential approach for TB treatment.

458

459 **Materials and Methods:**

460 **Mice**

461

462 C57BL/6 (Strain #:000664), C3HeB/FeJ (Strain #:000658), IL1R1^{-/-} (Strain #:003245), iNos^{-/-}
463 (Strain #:002596) mice were purchased from The Jackson Laboratory. 6–8-week-old mice were
464 used in this study. They were bred and maintained under Specific Pathogen Free conditions at
465 Albany Medical College. All mouse studies were conducted in accordance with protocols
466 approved by the AMC Institutional Animal Care and Use Committee (IACUC) (Animal Care User
467 Protocol Number ACUP-21-04003). Care was taken to minimize pain and suffering in *Mtb*-infected
468 mice.

469

470 **Bacterial strains**

471

472 Hypervirulent *Mycobacterium tuberculosis* (Mtb) HN878 were used throughout this study. Mtb
473 HN878 strains transformed with fluorescence reporters smyc' mCherry: SSB2 GFP or only smyc':
474 mCherry maintained under Hygromycin B resistance. Bacteria were cultured in Middlebrook 7H9
475 media with OADC supplement, 0.05% Tween 20 and 0.5% v/v Glycerol and 50 µg/ml Hygromycin
476 B in a shaking incubator at 37 °C for 5-7 days up to log phase for bacterial infections. Strains were
477 maintained in 20% Glycerol in -80°C.

478

479 **Mouse infections**

480

481 Single cell suspension of Mtb HN878 strains was prepared in Phosphate Buffer Saline containing
482 0.05% Tween 80 (PBST). Clumps were dissociated by passing through 18 Gauge and 25 Gauge
483 needles and ~100CFU bacteria were used for infection through aerosol route using a Glas-Col
484 inhalation exposure system, Terre Haute, IN. Infection was assessed by Colony Forming Unit
485 (CFU) enumeration in serially diluted lung and spleen homogenates from infected mice at day 29
486 dpi by plating on 7H10 Agar plates containing 0.5% v/v Glycerol and OADC enrichment. Colony
487 counting was done in plates incubated at 37°C after 3 weeks.

488

489 ***In-vivo* treatment of animals with 2DG and Etomoxir**

490

491 C3HeB/FeJ mice infected with Mtb HN878 were treated with 2-deoxy glucose (2DG) (250mg/kg)
492 (Cat#111980250- Thermo Fisher) or Etomoxir (20mg/kg) (Cat# 11969- Cayman Chemical) via
493 intraperitoneal route or oral gavage. Percentage weight loss was calculated throughout the
494 course. Mice were euthanized at Day 29 pi and assessed for CFU count, histopathology,
495 cytokines, and immune cells.

496

497 **Neutrophil isolation and *in-vitro* infection**

498

499 Bones from naïve C57 BL/6 mice were flushed with complete DMEM media (DMEM with Sodium
500 Pyruvate, Sodium Bicarbonate, HEPES and 10% FBS). Extracted bone marrows were washed,
501 passed through 18 Gauge needles and then 70µM cell strainers to make single cell suspensions.
502 Red blood cells were lysed by ACK lysis. From these cells, neutrophils were isolated by negative
503 sorting by magnetic selection using the Mojosort neutrophil isolation kit according to the
504 suggested protocol (Cat# 480058- BioLegend). Purity was checked by flow cytometry using
505 CD11b and Ly6G surface staining. Purified neutrophils were counted and cultured in complete

506 DMEM at 37 °C with 5% CO₂. For *in-vitro* infection, Mtb single cell suspension was prepared as
507 above in complete DMEM and added onto neutrophils at the specified Multiplicity of Infection
508 (MOI). 4 hours pi, cells were washed with fresh culture media to remove extracellular bacteria
509 and they were analyzed by flow cytometry at 18 hours pi.

510

511 **Bone Marrow derived Macrophage generation and *in-vitro* infection.**

512

513 Naïve C57BL/6 mouse bones were flushed to isolate bone marrow cells. Single cell suspension
514 of bone marrow cells was made as described above. Following ACK lysis, these cells were
515 cultured for 3-5 days DMEM media containing L929 conditioning media, Sodium Pyruvate,
516 Sodium Bicarbonate, HEPES and 10% FBS. When the bone marrow cells have differentiated into
517 macrophages, the media was changed to complete DMEM and infected at an MOI of 3 with Mtb
518 HN878 dual reporter. Cells were either stained after 4hr or washed to remove extracellular
519 bacteria and stained 3 days pi.

520

521 **Flow Cytometry**

522

523 Lung tissues were harvested from infected mice at stated time points and collected in cold PBS.
524 These tissues were chopped and digested at 37 °C in a Collagenase Type IV (150U/ml) (Cat
525 17104019- Gibco) and DNase I (60U/ml) (Cat# 10104159001 Roche- Sigma Aldrich) cocktail.
526 Post digestion, the suspension was passed through 70µm cell strainers and ACK lysed to get
527 single cell suspensions that were used for further staining. All subsequent steps were done in
528 cells resuspended in FACS Buffer (PBS+0.5% BSA). Fc-Block CD16/32 (Cat# 156604-
529 BioLegend) was used to restrict non-specific antibody binding. Surface staining was done with
530 directly conjugated antibodies at 4°C in the dark for 30 minutes. The cells were then fixed with
531 Fixation Buffer (Cat# 420801- Bio legend) according to manufacturer's instructions and analyzed
532 on BD Symphony flow cytometer. All analyses were done in FlowJo v10. Dead cells were
533 excluded with eFluor 780 conjugated fixable viability dye (Cat# 65-0864-14 eBioscience) staining
534 and further gating to analyze various populations was done.

535

536 **Immunofluorescence microscopy**

537

538 Lung tissues from infected mice were fixed in 10% Buffer Formalin and were transferred
539 sequentially to PBS, 15% Sucrose in PBS and 30% Sucrose in PBS and OCT embedded. These

540 blocks were cut at 5 μ m thickness and mounted on glass slides for further staining. For replicating
541 bacteria visualization in lung sections, sections were washed for 5 minutes, twice with PBS-0.5%
542 v/v Tween 20 (wash buffer) and once with PBS. The sections were then mounted with Prolong
543 Gold Antifade reagent containing DAPI. All slides were imaged on the Series 200 Dragonfly
544 confocal microscope (Oxford Instruments). The images were deconvoluted using Auto Quant
545 (Media Cybernetics) and analyzed on ImageJ. For quantification, SSB2 foci, as seen by GFP
546 staining were enumerated and the percentage of mCherry^{+ve} bacteria with SSB2-GFP foci is
547 represented.

548

549 **Histopathology**

550

551 Formalin fixed infected lung tissues were paraffin embedded. 5 μ m thick sections were cut and
552 counterstained with hematoxylin and eosin (H&E) to analyze pathophysiology. H&E staining was
553 performed at the histopathology core at Albany Medical College and were obtained on the
554 NanoZoomer 2.0 RS Hamamatsu slide scanner and analyzed on Image J.

555

556 ***In-vitro* treatment of neutrophils**

557

558 To test *in-vitro* uptake of fatty acids or glucose, 4 hours prior to harvesting infected neutrophils,
559 25 μ M C16 BODIPY (Cat# D3821- Invitrogen) or 15 μ M 2NBDG (Cat# N13195- Invitrogen) was
560 added directly onto the cells. Cells were then stained and processed for flow cytometry.
561 Neutrophils were either untreated or treated throughout the course of infection with 0.5mM
562 2Deoxy-Glucose (2DG) (Cat#111980250- Thermo Fisher), 5mM 2DG, 200 μ M Etomoxir (Cat#
563 11969- Cayman Chemical), 800 μ M Etomoxir, 5mM Oxfenicine (Cat# 33698- Cayman Chemical),
564 50 μ M UK5099 (Cat# 16980- Cayman chemical), 50 μ M R162 (Cat# 30922- Cayman Chemical),
565 100 μ M Octanoic Acid (Cat# C2875- Sigma Aldrich) alone or 800 μ M Etomoxir with 100 μ M
566 Octanoic Acid. Cells were processed as above for flow cytometry.

567

568 **Transwell chemotaxis assay**

569

570 24 well transwell plates with 5 μ m pore size were used for this assay. The semipermeable
571 membrane layer was coated with 30 μ g/ml collagen in 60% ethanol for at least 4 hours prior to
572 the assay. These trans wells were calibrated with HBSS+ (with Ca⁺² and Mg⁺²) by washing them
573 twice with HBSS+ and leaving the coated plates in the 24 well plate with 1ml HBSS+ at 37 °C for

574 1-2 hours. The lower chamber had THP-1 cells (5×10^5 cells/well) in complete DMEM, uninfected
575 or infected with Mtb HN878 at MOI-1, 24 hours prior to the assay. 10^6 sorted neutrophils either
576 pretreated for an hour with different concentrations of Etomoxir (50 μ M, 200 μ M, 800 μ M) or
577 untreated in 20 μ l HBSS+, with or without Etomoxir were added to the top chamber and allowed
578 to migrate for 18 hours. Post migration, the top chambers were discarded. Migrated neutrophils
579 along with trypsinized THP-1 cells were collected, stained, and processed for flow cytometry.

580

581 **Cytokine analysis**

582

583 Mouse lung homogenates were prepared in PBS at Day 29 pi, and total protein concentrations
584 were measured by Pierce BCA protein assay kit according to manufacturer's instructions. Total
585 protein concentrations were normalized in all samples and sent to Eve Technologies for
586 quantification using the Luminex xMAP technology for multiplexed quantification of 32 Mouse
587 cytokines, chemokines, and growth factors. The multiplexing analysis was performed using the
588 Luminex™ 200 system (Luminex, Austin, TX, USA) by Eve Technologies Corp. (Calgary, Alberta).
589 Thirty-two markers were simultaneously measured in the samples using Eve Technologies'
590 Mouse Cytokine 32-Plex Discovery Assay® (Millipore Sigma, Burlington, Massachusetts, USA)
591 according to the manufacturer's protocol. The 32-plex consisted of Eotaxin, G-CSF, GM-CSF,
592 IFN γ , IL-1 α , IL-1 β , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12(p40), IL-12(p70), IL-13, IL-15,
593 IL-17, IP-10, KC, LIF, LIX, MCP-1, M-CSF, MIG, MIP-1 α , MIP-1 β , MIP-2, RANTES, TNF α , and
594 VEGF. Assay sensitivities of these markers range from 0.3 – 30.6 pg/mL for the 32-plex.
595 Individual analyte sensitivity values are available in the Millipore Sigma MILLIPLEX® MAP
596 protocol.

597

598 **Human patients whole blood transcriptome study**

599

600 To identify blood biomarkers that might predict TB disease, blood samples from patients
601 diagnosed with TB were collected every 6 months, up to 18 months. People who went on to
602 develop TB disease were considered as TB cases and others who don't were considered controls
603 (Healthy). The high throughput sequencing data was analyzed on Illumina HiSeq 2000 platform
604 and deposited under GEO GPL11154. Out of 412 subjects, 98 went on to develop TB and 314
605 remained healthy. The sequencing dataset has been deposited in GEO under series GSE94438.

606

607 **Rabbit model of Mtb Infection, Histopathology, AFB staining and Transcriptome analysis**

608

609 **1. Mtb infection:** New Zealand White rabbits (specific pathogen-free) of about 2.5 kg (Envigo,
610 USA) were infected with aerosolized Mtb HN878 or Mtb CDC1551 strains using the “nose-only”
611 exposure system (CH Technologies Inc., NJ, USA) to implant ~3.2-3.5 log₁₀ CFU in the lungs
612 (T=0) as previously described[33,50]. At defined time points, rabbits (n=4-6 per time point) were
613 euthanized, and lungs were used for histopathologic examination and RNA isolation. All animal
614 procedures were conducted according to the protocols approved by the Rutgers University
615 IACUC.

616 **2. Rabbit lung histology**

617 Portions of rabbit lungs were randomly cut and fixed in 10% neutral formalin, followed by paraffin-
618 embedding. The formalin-fixed and paraffin-embedded tissue blocks were cut into 5-micron
619 sections and used for staining with hematoxylin & eosin (H&E) or acid-fast staining by Ziehl-
620 Nielsen method (for Mtb). Stained lung sections were analyzed microscopically using Nikon
621 Microphot-FX system with NIS-elements F3.0 software (Nikon Instruments, NY).

622 **3. RNA isolation from rabbit lungs**

623 After the autopsy, random portions of rabbit lungs with or without Mtb infection were immediately
624 treated with TRI Reagent (Molecular Research Center, Cincinnati, OH) and total RNA was
625 isolated, as described previously[34]. RNA was purified using RNeasy kit (Qiagen, CA, USA) and
626 the quality and quantity were measured with Agilent 2100 Bioanalyzer (Agilent Technologies, CA,
627 USA).

628 **4. Genome wide transcriptome analysis of Mtb-infected rabbit lungs**

629 Total RNA from rabbit lungs with or without Mtb infection was subjected to genome wide
630 transcriptome profiling using 4X44k rabbit whole genome microarrays (Agilent Technologies,
631 Santa Clara, CA), as described[51]. Briefly, arrays were hybridized with a mixture of Cy3 or Cy5
632 labeled cDNA, generated using uninfected or Mtb-infected rabbit lung RNA at each time point.
633 The arrays were washed, scanned and data extracted. Background-corrected, normalized data
634 were analyzed by One way ANOVA using Partek Genomics Suite Ver 6.8 (Partek Inc., St. Louis,
635 MO); an unadjusted p value < 0.05 was used to select significantly differentially expressed genes
636 (SDEG). The list of SDEG was uploaded into Ingenuity Pathway Analysis portal (IPA; Qiagen,
637 CA) as described previously[34], to identify gene networks and pathways impacted by the SDEGs.
638 The microarray data is deposited to Gene Expression Omnibus (accession numbers GSE33094
639 and GSE39219).

640

641 **RNA Library Preparation and Sequencing**

642
643 Single cell suspensions from *Mtb* infected mouse lungs were prepared as described above.
644 Mouse neutrophils were sorted by positive selection using anti- Ly6G-APC for 30 minutes at 4°C
645 in the dark followed by secondary staining with anti-APC nanobeads following the APC nanobead
646 kit protocol (Cat# 480090-Bio Legend). Purity was assessed using an anti-mouse GR1 antibody.
647 These Ly6G+ cells were used for RNA isolation. Sorted Ly6G+ cells were stored at -80°C in RLT
648 Plus Buffer (Cat# 1053393-Qiagen). Total RNA isolation was done using RNeasy Plus Mini Kit
649 (Cat# 74134- Qiagen) following the manufacturer's instructions. RNA samples were quantified
650 using Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and RNA integrity
651 was checked with 4200 TapeStation (Agilent Technologies, Palo Alto, CA, USA). rRNA depletion
652 sequencing library was prepared by using QIAGEN FastSelect rRNA HMR Kit (Qiagen, Hilden,
653 Germany). RNA sequencing library preparation uses NEBNext Ultra II RNA Library Preparation
654 Kit for Illumina by following the manufacturer's recommendations (NEB, Ipswich, MA, USA).
655 Briefly, enriched RNAs are fragmented for 15 minutes at 94 °C. First strand and second strand
656 cDNA are subsequently synthesized. cDNA fragments are end repaired and adenylated at 3'ends,
657 and universal adapters are ligated to cDNA fragments, followed by index addition and library
658 enrichment with limited cycle PCR. Sequencing libraries were validated using the Agilent
659 Tapestation 4200 (Agilent Technologies, Palo Alto, CA, USA), and quantified using Qubit 2.0
660 Fluorometer (ThermoFisher Scientific, Waltham, MA, USA) as well as by quantitative PCR (KAPA
661 Biosystems, Wilmington, MA, USA). The sequencing libraries were multiplexed and clustered on
662 one flowcell lane. After clustering, the flowcell was loaded on the Illumina HiSeq instrument
663 according to manufacturer's instructions. The samples were sequenced using a 2x150 Pair-End
664 (PE) configuration. Raw sequence data (.bcl files) generated from Illumina HiSeq was converted
665 into fastq files and de-multiplexed using Illumina bcl2fastq program version 2.20. One mismatch
666 was allowed for index sequence identification.

667
668 **RNA Sequencing Data Analysis**
669
670 After demultiplexing, sequence data was checked for overall quality and yield. Then, raw
671 sequence reads were trimmed to remove possible adapter sequences and nucleotides with poor
672 quality using Trimmomatic v.0.36. The reads were then mapped to the *Mus musculus* reference
673 genome available on ENSEMBL using Rsubread v1.5.3. Gene counts were quantified by Entrez
674 Gene IDs using featureCounts and Rsubread's built-in annotation. Gene symbols were provided

675 by NCBI gene annotation. Genes with count-per-million above 0.5 in at least 3 samples were kept
676 in the analysis. Differential expression analysis was performed using limma-voom.

677

678 Reads were mapped to *Mus musculus* genome available on ENSEMBL using the STAR aligner
679 v.2.5.2b). BAM files were generated as a result of this step. Unique gene hit counts were
680 calculated by using feature Counts from the Subread package v.1.5.2. Only unique reads that fell
681 within exon regions were counted. After extraction of gene hit counts, the gene hit counts table
682 was used for downstream differential expression analysis. Using DESeq2, a comparison of gene
683 expression between the groups of samples was performed. The Wald test was used to generate
684 P values and Log2 fold changes. Genes with adjusted P values < 0.05 and absolute log2 fold
685 changes >1 were called as differentially expressed genes for each comparison. Gene ontology
686 analysis was performed on the statistically significant set of genes by implementing the software
687 GeneSCF. The goa_ *Mus musculus* GO list was used to cluster the set of genes based on their
688 biological process and determine their statistical significance. A PCA analysis was performed
689 using the "plotPCA" function within the DESeq2 R package. The plot shows the samples in a 2D
690 plane spanned by their first two principal components. The top 500 genes, selected by highest
691 row variance, were used to generate the plot. The bulk HUVEC RNA-seq data obtained in this
692 publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through
693 GEO Series accession number GSE244230.

694

695 **Statistics**

696

697 Statistical differences among the indicated groups were analyzed by unpaired two tailed
698 Student's *t*-test or one way Analysis of Variance (ANOVA) using Tukey's multiple comparison
699 tests. All statistical analyses were done using Graph Pad Prism 9 software. A p value of <0.05
700 was considered significant. The *n* numbers and other significant values are indicated in the
701 figures and figure legends (*: p<0.05; **: p<0.01; ***: p<0.001).

702

703 **Supplementary Materials**

704

705 **Supplementary Figure 1:** Neutrophils accumulate in mouse lungs with increasing susceptibility
706 to TB.

707 **Supplementary Figure 2:** Transcriptome analysis shows an increased expression signature of
708 Glycolysis and Fatty acid oxidation pathway genes.

709 **Supplementary Figure 3:** Glucose and fatty acid utilization by neutrophils during *Mtb* infection.
710 **Supplementary Figure 4:** Cytotoxicity of Fatty acid metabolism inhibitors and effect on
711 macrophage antimycobacterial functions.
712 **Supplementary Figure 5:** Suppression of Fatty acid metabolism *in-vivo* reduced inflammatory
713 cell influx into diseased mouse lungs.
714 **Supplementary Figure 6:** Suppression of Fatty acid metabolism *in-vivo* reduced inflammatory
715 cytokine production in diseased mouse lungs.
716 **Supplementary Table 1:** RAW data used to generate the figures of this manuscript.

717

718 **Acknowledgement**

719 We are grateful to the assistance of Christina Peterson and Rebecca Pirri of Pathology and
720 Laboratory Medicine core of Albany Medical College for their help with histopathology and
721 scanning lung tissues. We thank Dr Douglas Cohn, Cindy Vanvorst, Angel Medina-Ramos of
722 Animal Research Facility and Dr. Amit Singh of the BSL3 Management of Albany Medical College
723 for their unwavering support with animal husbandry and care of laboratory animals used in this
724 study.

725

726 **Funding**

727 This study is supported by funding from National Heart, Lung, and Blood Institute (HL166257)
728 and National Institutes of Allergy and Infectious Diseases (AI148239-01A1) of National Institutes
729 of Health to BBM.

730

731 **Author contributions**

732 Conceptualization and design: BBM and PS. Experiments: PS, BBM, MS, TN. Data analysis and
733 interpretation: BBM, PS, TN. Bioinformatics analysis: RB. Reporter strain generation: AKO.
734 Imaging and data analysis: PS, JC. Human data analysis: YC. Manuscript writing: PS and BBM
735 with input from all co-authors. BBM oversaw the entire study and acquired funding.

736

737 **Competing interests**

738 The authors declare no competing interests.

739

740 **Data and Materials availability**

741 The RNA-seq datasets of mouse neutrophils have been deposited in the NCBI Gene Expression
742 Omnibus database with the accession number GSE244230. Publicly available dataset used in

743 this study to analyze expression of human genes includes GSE94438. RAW dataset used to
744 generate the figures of this manuscript is also included as a supplementary file.

745

746

747 REFERENCES

748

- 749 1. Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. *J Leukoc Biol.* 2020;108: 377–396. doi:10.1002/JLB.4MIR0220-574RR
- 750 2. Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. *J Exp Med.* 2013;210: 1283–1299. doi:10.1084/jem.20122220
- 751 3. Nandi B, Behar SM. Regulation of neutrophils by interferon- γ limits lung inflammation
752 during tuberculosis infection. *J Exp Med.* 2011;208: 2251–2262.
753 doi:10.1084/jem.20110919
- 754 4. Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, et al.
755 Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3
756 inflammasome-dependent processing of IL-1 β . *Nat Immunol.* Nature Publishing Group;
757 2013;14: 52–60. doi:10.1038/ni.2474
- 758 5. Mishra BB, Lovewell RR, Olive AJ, Zhang G, Wang W, Eugenin E, et al. Nitric oxide
759 prevents a pathogen-permissive granulocytic inflammation during tuberculosis. *Nat
Microbiol.* Nature Publishing Group; 2017;2: 17072–11. doi:10.1038/nmicrobiol.2017.72
- 760 6. Cedrés S, Torrejon D, Martínez A, Martínez P, Navarro A, Zamora E, et al. Neutrophil to
761 lymphocyte ratio (NLR) as an indicator of poor prognosis in stage IV non-small cell lung
762 cancer. *Clin Transl Oncol.* Springer Milan; 2012;14: 864–869. doi:10.1007/s12094-012-0872-5
- 763 7. Chua W, Charles KA, Baracos VE, Clarke SJ. Neutrophil/lymphocyte ratio predicts
764 chemotherapy outcomes in patients with advanced colorectal cancer. *Br J Cancer.*
765 Nature Publishing Group; 2011;104: 1288–1295. doi:10.1038/bjc.2011.100
- 766 8. Miyahara R, Piyaworawong S, Naranbhai V, Prachamat P, Kriengwatanapong P,
767 Tsuchiya N, et al. Predicting the risk of pulmonary tuberculosis based on the neutrophil-
768 to-lymphocyte ratio at TB screening in HIV-infected individuals. *BMC Infect Dis.* BioMed
769 Central; 2019;19: 667–9. doi:10.1186/s12879-019-4292-9
- 770 9. Eum SY, Kong J-H, Hong M-S, Lee Y-J, Kim JH, Hwang S-H, et al. Neutrophils are the
771 predominant infected phagocytic cells in the airways of patients with active pulmonary
772 TB. *Chest.* 2010;137: 122–128. doi:10.1378/chest.09-0903
- 773 10. Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, et al. An interferon-
774 inducible neutrophil-driven blood transcriptional signature in human tuberculosis. *Nature.*
775 Nature Publishing Group; 2010;466: 973–977. doi:10.1038/nature09247

780 11. Ahmed M, Thirunavukkarasu S, Rosa BA, Thomas KA, Das S, Rangel-Moreno J, et al.
781 Immune correlates of tuberculosis disease and risk translate across species. *Sci Transl
782 Med.* American Association for the Advancement of Science; 2020;12.
783 doi:10.1126/scitranslmed.aay0233

784 12. Gopal R, Monin L, Torres D, Slight S, Mehra S, McKenna KC, et al. S100A8/A9 proteins
785 mediate neutrophilic inflammation and lung pathology during tuberculosis. *Am J Respir
786 Crit Care Med.* American Thoracic Society; 2013;188: 1137–1146.
787 doi:10.1164/rccm.201304-0803OC

788 13. Scott NR, Swanson RV, Al-Hammadi N, Domingo-Gonzalez R, Rangel-Moreno J, Kriel
789 BA, et al. S100A8/A9 regulates CD11b expression and neutrophil recruitment during
790 chronic tuberculosis. *J Clin Invest.* American Society for Clinical Investigation; 2020;130:
791 3098–3112. doi:10.1172/JCI130546

792 14. Lowe DM, Bandara AK, Packe GE, Barker RD, Wilkinson RJ, Griffiths CJ, et al.
793 Neutrophilia independently predicts death in tuberculosis. *Eur Respir J.* European
794 Respiratory Society; 2013;42: 1752–1757. doi:10.1183/09031936.00140913

795 15. Blomgran R, Ernst JD. Lung neutrophils facilitate activation of naive antigen-specific
796 CD4+ T cells during *Mycobacterium tuberculosis* infection. *J Immunol.* 2011;186: 7110–
797 7119. doi:10.4049/jimmunol.1100001

798 16. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, et al.
799 Neutrophil-mediated innate immune resistance to mycobacteria. *J Clin Invest.* American
800 Society for Clinical Investigation; 2007;117: 1988–1994. doi:10.1172/JCI31097

801 17. Gaffney E, Murphy D, Walsh A, Connolly S, Basdeo SA, Keane J, et al. Defining the role
802 of neutrophils in the lung during infection: Implications for tuberculosis disease. *Front
803 Immunol.* Frontiers; 2022;13: 984293. doi:10.3389/fimmu.2022.984293

804 18. Eruslanov EB, Lyadova IV, Kondratieva TK, Majorov KB, Scheglov IV, Orlova MO, et al.
805 Neutrophil responses to *Mycobacterium tuberculosis* infection in genetically susceptible
806 and resistant mice. *Infect Immun.* American Society for Microbiology; 2005;73: 1744–
807 1753. doi:10.1128/IAI.73.3.1744-1753.2005

808 19. Lovewell RR, Baer CE, Mishra BB, Smith CM, Sassetti CM. Granulocytes act as a niche
809 for *Mycobacterium tuberculosis* growth. *Mucosal Immunol.* Nature Publishing Group;
810 2021;14: 229–241. doi:10.1038/s41385-020-0300-z

811 20. Apt A, Kramnik I. Man and mouse TB: contradictions and solutions. *Tuberculosis (Edinb).*
812 2009;89: 195–198. doi:10.1016/j.tube.2009.02.002

813 21. Apt AS. Are mouse models of human mycobacterial diseases relevant? Genetics says:
814 'yes!'. *Immunology.* John Wiley & Sons, Ltd; 2011;134: 109–115. doi:10.1111/j.1365-
815 2567.2011.03472.x

816 22. Niazi MKK, Dhulekar N, Schmidt D, Major S, Cooper R, Abeijon C, et al. Lung necrosis
817 and neutrophils reflect common pathways of susceptibility to *Mycobacterium tuberculosis*
818 in genetically diverse, immune-competent mice. *Dis Model Mech.* 2015;8: 1141–1153.
819 doi:10.1242/dmm.020867

820 23. Yeremeev V, Linge I, Kondratieva T, Apt A. Neutrophils exacerbate tuberculosis infection
821 in genetically susceptible mice. *Tuberculosis (Edinb)*. 2015;95: 447–451.
822 doi:10.1016/j.tube.2015.03.007

823 24. Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A, Debnath J, et al. Unique role for
824 ATG5 in neutrophil-mediated immunopathology during *M. tuberculosis* infection. *Nature*.
825 Nature Publishing Group; 2015;528: 565–569. doi:10.1038/nature16451

826 25. Hult C, Mattila JT, Gideon HP, Linderman JJ, Kirschner DE. Neutrophil Dynamics Affect
827 *Mycobacterium tuberculosis* Granuloma Outcomes and Dissemination. *Front Immunol.*
828 *Frontiers*; 2021;12: 712457. doi:10.3389/fimmu.2021.712457

829 26. Almeida FM, Ventura TLB, Amaral EP, Ribeiro SCM, Calixto SD, Manhães MR, et al.
830 Hypervirulent *Mycobacterium tuberculosis* strain triggers necrotic lung pathology
831 associated with enhanced recruitment of neutrophils in resistant C57BL/6 mice. *PLoS*
832 ONE. Public Library of Science; 2017;12: e0173715. doi:10.1371/journal.pone.0173715

833 27. Pai M. Tuberculosis: the story after the Primer. *Nat Rev Dis Primers*. Nature Publishing
834 Group; 2020;6: 29–2. doi:10.1038/s41572-020-0161-5

835 28. Lovewell RR, Sassetti CM, VanderVen BC. Chewing the fat: lipid metabolism and
836 homeostasis during *M. tuberculosis* infection. *Curr Opin Microbiol.* 2016;29: 30–36.
837 doi:10.1016/j.mib.2015.10.002

838 29. Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of *Mycobacterium tuberculosis*
839 in vivo segregates with host macrophage metabolism and ontogeny. *J Exp Med.*
840 2018;215: 1135–1152. doi:10.1084/jem.20172020

841 30. Pisu D, Huang L, Grenier JK, Russell DG. Dual RNA-Seq of *Mtb*-Infected Macrophages
842 In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. *Cell Rep.* 2020;30:
843 335–350.e4. doi:10.1016/j.celrep.2019.12.033

844 31. Tsiganov EN, Verbina EM, Radaeva TV, Sosunov VV, Kosmiadi GA, Nikitina IY, et al. Gr-
845 1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers
846 of lethal tuberculosis infection in mice. *J Immunol.* 2014;192: 4718–4727.
847 doi:10.4049/jimmunol.1301365

848 32. Manabe YC, Kesavan AK, Lopez-Molina J, Hatem CL, Brooks M, Fujiwara R, et al. The
849 aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory
850 syndrome. *Tuberculosis (Edinb)*. 2008;88: 187–196. doi:10.1016/j.tube.2007.10.006

851 33. Subbian S, Tsenova L, Yang G, O'Brien P, Parsons S, Peixoto B, et al. Chronic
852 pulmonary cavitary tuberculosis in rabbits: a failed host immune response. *Open Biol.*
853 The Royal Society; 2011;1: 110016. doi:10.1098/rsob.110016

854 34. Subbian S, Bandyopadhyay N, Tsenova L, O'Brien P, Khetani V, Kushner NL, et al. Early
855 innate immunity determines outcome of *Mycobacterium tuberculosis* pulmonary infection
856 in rabbits. *Cell Commun Signal.* BioMed Central; 2013;11: 60–17. doi:10.1186/1478-
857 811X-11-60

858 35. Subbian S, Tsenova L, O'Brien P, Yang G, Kushner NL, Parsons S, et al. Spontaneous
859 latency in a rabbit model of pulmonary tuberculosis. *Am J Pathol*. 2012;181: 1711–1724.
860 doi:10.1016/j.ajpath.2012.07.019

861 36. Subbian S, Tsenova L, Kim M-J, Wainwright HC, Visser A, Bandyopadhyay N, et al.
862 Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary
863 Tuberculosis: A Pilot Study. *PLoS ONE*. Public Library of Science; 2015;10: e0132249.
864 doi:10.1371/journal.pone.0132249

865 37. Chandra P, He L, Zimmerman M, Yang G, Köster S, Ouimet M, et al. Inhibition of Fatty
866 Acid Oxidation Promotes Macrophage Control of *Mycobacterium tuberculosis*. *mBio*.
867 American Society for Microbiology 1752 N St., N.W., Washington, DC; 2020;11.
868 doi:10.1128/mBio.01139-20

869 38. Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by *Mycobacterium*
870 tuberculosis. *Nat Rev Microbiol*. Nature Publishing Group; 2022;20: 750–766.
871 doi:10.1038/s41579-022-00763-4

872 39. Pham L, Komalavilas P, Eddie AM, Thayer TE, Greenwood DL, Liu KH, et al. Neutrophil
873 trafficking to the site of infection requires Cpt1a-dependent fatty acid β -oxidation.
874 *Commun Biol*. Nature Publishing Group; 2022;5: 1366–13. doi:10.1038/s42003-022-
875 04339-z

876 40. Morrison T, Watts ER, Sadiku P, Walmsley SR. The emerging role for metabolism in
877 fueling neutrophilic inflammation. *Immunol Rev*. John Wiley & Sons, Ltd; 2023;314: 427–
878 441. doi:10.1111/imr.13157

879 41. Toller-Kawahisa JE, O'Neill LAJ. How neutrophil metabolism affects bacterial killing.
880 *Open Biol*. The Royal Society; 2022;12: 220248. doi:10.1098/rsob.220248

881 42. Rane D, Patil T, More V, Patra SS, Bodhale N, Dandapat J, et al. Neutrophils: Interplay
882 between host defense, cellular metabolism and intracellular infection. *Cytokine*.
883 2018;112: 44–51. doi:10.1016/j.cyto.2018.07.009

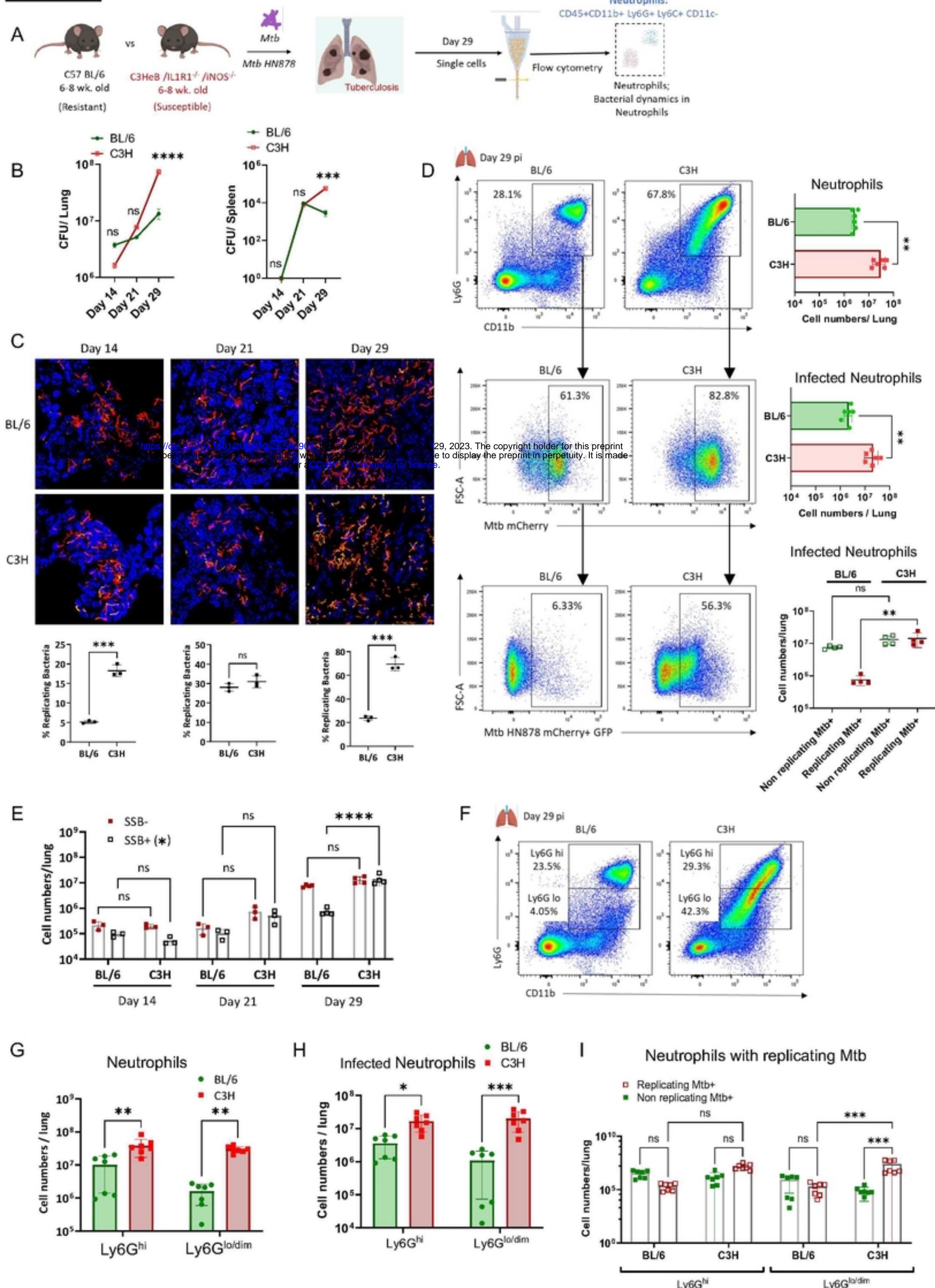
884 43. Rice CM, Davies LC, Subleski JJ, Maio N, Gonzalez-Cotto M, Andrews C, et al. Tumour-
885 elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations
886 and maintain immune suppression. *Nat Commun*. Nature Publishing Group; 2018;9:
887 5099–13. doi:10.1038/s41467-018-07505-2

888 44. Qualls JE, Murray PJ. Immunometabolism within the tuberculosis granuloma: amino
889 acids, hypoxia, and cellular respiration. *Semin Immunopathol*. Springer Berlin Heidelberg;
890 2016;38: 139–152. doi:10.1007/s00281-015-0534-0

891 45. Pagán AJ, Ramakrishnan L. Immunity and Immunopathology in the Tuberculous
892 Granuloma. *Cold Spring Harb Perspect Med*. Cold Spring Harbor Laboratory Press;
893 2014;5: a018499. doi:10.1101/csdperspect.a018499

894 46. Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH
895 Oxidase Activation and Bacterial Resistance. *Front Cell Infect Microbiol*. *Frontiers*;
896 2017;7: 373. doi:10.3389/fcimb.2017.00373

897 47. Olive AJ, Smith CM, Kiritsy MC, Sassetti CM. The Phagocyte Oxidase Controls
898 Tolerance to *Mycobacterium tuberculosis* Infection. *J Immunol.* 2018;201: 1705–1716.
899 doi:10.4049/jimmunol.1800202


900 48. Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, Desousa BR, et al.
901 Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis. *Cell Metab.*
902 2018;28: 490–503.e7. doi:10.1016/j.cmet.2018.06.001

903 49. Pacl HT, Chinta KC, Reddy VP, Nadeem S, Sevalkar RR, Nargan K, et al. NAD(H)
904 homeostasis underlies host protection mediated by glycolytic myeloid cells in
905 tuberculosis. *Nat Commun.* Nature Publishing Group; 2023;14: 5472–18.
906 doi:10.1038/s41467-023-40545-x

907 50. Subbian S, O'Brien P, Kushner NL, Yang G, Tsenova L, Peixoto B, et al. Molecular
908 immunologic correlates of spontaneous latency in a rabbit model of pulmonary
909 tuberculosis. *Cell Commun Signal.* BioMed Central; 2013;11: 16–16. doi:10.1186/1478-
910 811X-11-16

911 51. Subbian S, Tsenova L, O'Brien P, Yang G, Koo M-S, Peixoto B, et al.
912 Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated
913 clearance of *Mycobacterium tuberculosis* in rabbit lungs. *PLoS Pathog.* Public Library of
914 Science; 2011;7: e1002262. doi:10.1371/journal.ppat.1002262.

FIGURE 1:

Figure 1: Neutrophils are the major immune subset harboring replicating bacteria during TB disease. (A) Experimental Outline: Six to eight-week-old mice are infected with approximately 100 CFU (colony-forming units) of *Mtb* HN878 replication reporter (S-myc'-mCherry:SSB2-GFP) via aerosol. Neutrophils (CD45+ CD11b+ Ly6G+ Ly6C+ CD11c-) were analyzed by flow cytometry on day 29 post-infection (pi).

(B) CFU Count: Evaluation of CFU count in lung and spleen homogenates from infected BL/6 and C3H mice at day 14, 21, and 29 pi.

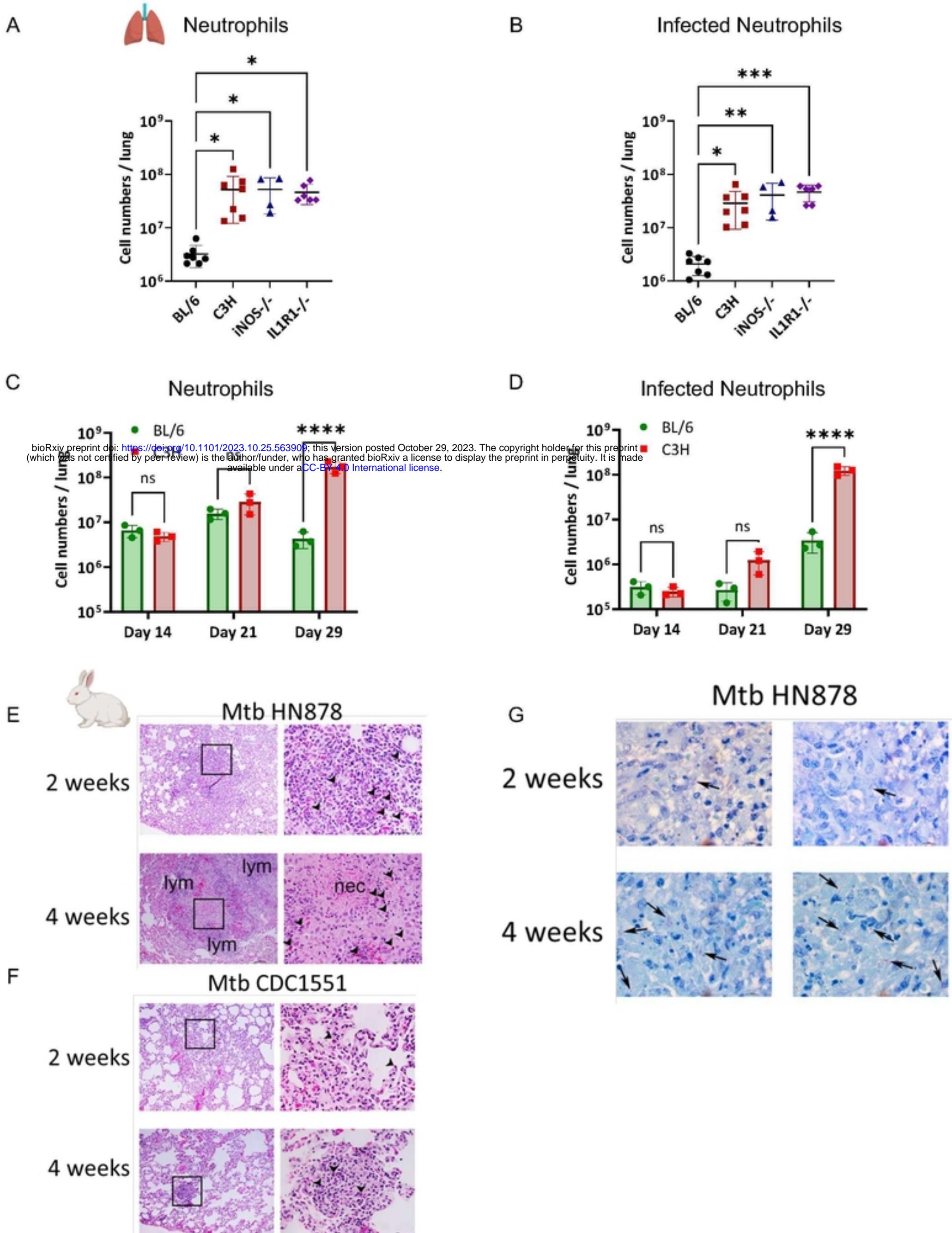
(C) Representative Confocal Images: Displaying lung sections from infected BL/6 and C3H mice exhibiting replicating bacteria depicted by GFP foci on mCherry+ bacilli. Additionally, quantification of SSB2-GFP Foci was conducted at indicated time points post-infection.

(D) Neutrophil Analysis: - Top Panel: Representative flow cytometry plots and quantification of the number of infiltrated neutrophils in BL/6 and C3H mouse lungs at day 29 pi. - Middle Panel:

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.25.563909>; this version posted October 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Representative flow cytometry plots and enumeration of infected neutrophils in BL/6 and C3H mouse lungs at day 29 pi. - Bottom Panel: Representative flow cytometry plots and count of infected neutrophils with replicating bacteria in BL/6 and C3H mouse lungs at day 29 pi.

(E) Number of infected lung neutrophils containing replicating bacteria at day 14, 21, and 29 pi.


(F) Representative Flow cytometric plots and (G) absolute count of Ly6G^{hi} and Ly6G^{lo/dim} neutrophils in the BL/6 and C3H mouse lungs at day 29 pi.

(H) Enumeration of infected Ly6G^{hi} and Ly6G^{lo/dim} neutrophils in BL/6 and C3H mouse lungs at day 29 pi.

(I) Count of neutrophils harboring replicating and non-replicating bacteria in Ly6G^{hi} and Ly6G^{lo/dim} neutrophils from BL/6 and C3H lungs at day 29 pi.

N=3-6 mice/group- pooled from 2-3 experiments; Error bars = Mean \pm SD. **(B, E and I)** 2-way ANOVA; **(C, D)** Unpaired t-test; **(G, H)** Ordinary one-way ANOVA. Statistical significance was calculated by One-way/two-way ANOVA with Tukey's multiple comparison tests. *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.

SUPPLEMENTARY FIGURE 1:

Supplementary Figure 1: Neutrophils accumulate in mouse lungs with increasing susceptibility to TB. 6-8-week-old mice were infected with *Mtb* HN878 mCherry SSB2-GFP and evaluated at day 29 post-infection (pi), unless indicated otherwise.

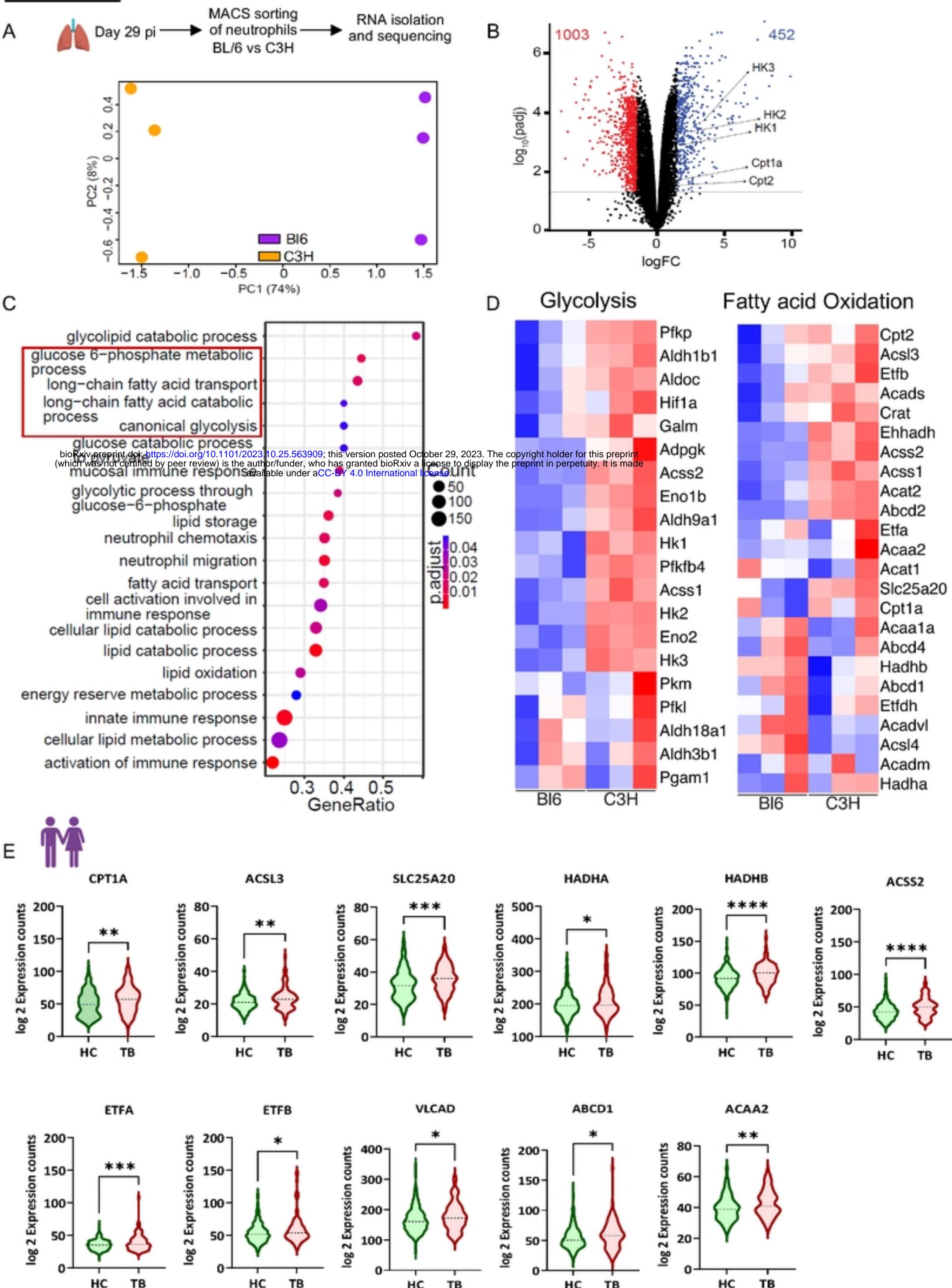
(A) Total numbers of live neutrophils in BL/6, C3H, *iNos*^{-/-}, and *IL1R1*^{-/-} mouse lungs at Day 29 pi.

(B) Total number of infected neutrophils in the lungs of BL/6, C3H, *iNos*^{-/-}, and *IL1R1*^{-/-} mice at day 29 pi.

(C) Number of live neutrophils in the lungs of infected BL/6 and C3H mice at day 14, 21, and 29 pi.

(D) Number of live infected neutrophils at day 14, 21, and 29 pi.

(E) (H) Immunohistochemistry evaluation of rabbit lungs infected with *Mtb* HN878 at 2 weeks and 4 weeks pi.


(I) Assessment of rabbit lungs infected with *Mtb* CDC1551 at 2 weeks and 4 weeks pi. Square boxes on the left panels of (H) and (I) indicate the magnified area shown on the right. Arrows in the right panels indicate neutrophils, necrosis, and lymphocytes.

(F) Acid-Fast Staining of *Mtb* HN878 from infected rabbit lungs at 2 weeks and 4 weeks pi.

N=3-6 mice/group- pooled from 2-3 experiments; Error bars= mean \pm SD. (A, B) Ordinary one-way ANOVA; (C-E) 2-way ANOVA; Statistical significance was calculated by One-way/two-way ANOVA with Tukey's multiple comparison tests. *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.25.563909>; this version posted October 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

FIGURE 2:

- HC- Healthy Controls
- TB- Tuberculosis

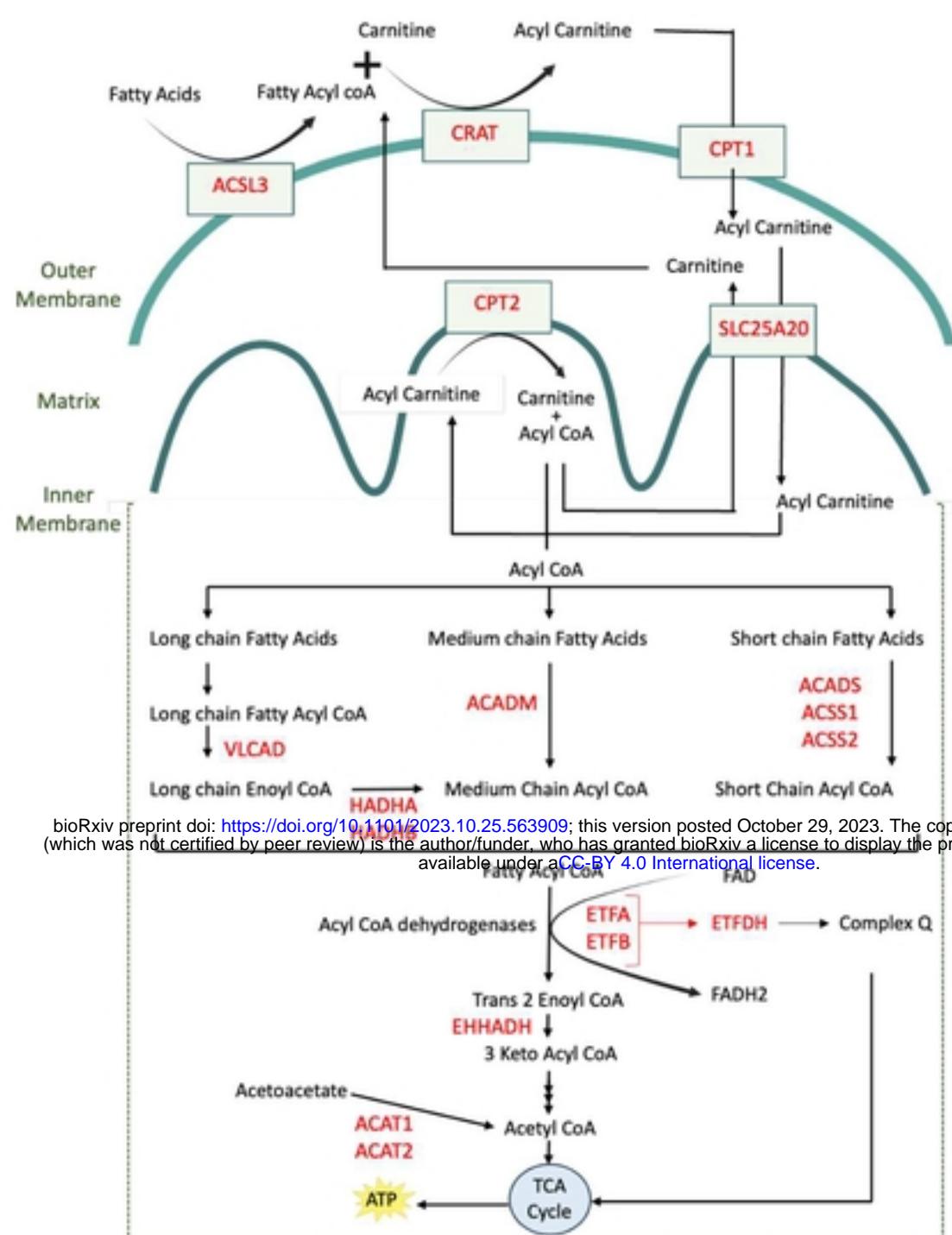
Figure 2: Metabolism associated genes are upregulated in neutrophils from susceptible mice.

6–8-week-old C57BL/6 (BL/6) and C3HeB/FeJ (C3H) mice were infected with approximately 100 CFU of *Mycobacterium tuberculosis* (Mtb) HN878 replication reporter via aerosol. Neutrophils were isolated from the lung using magnet-associated cell sorting (MACS) at day 27 post-infection (pi) and subjected to mRNA sequencing.

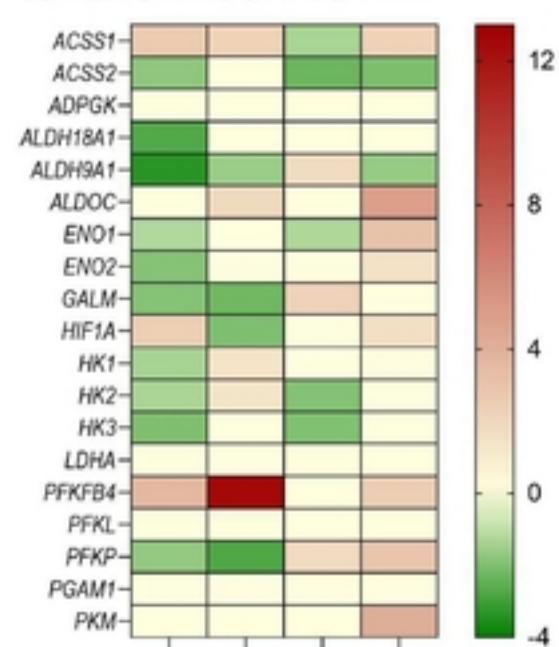
(A) Principal component analysis of the RNA sequencing dataset demonstrates the distinct distribution of gene sets in neutrophils from BL/6 and C3H mice.

(B) The volcano plot illustrates the differential expression of genes in the resistant BL/6 and C3H neutrophils.

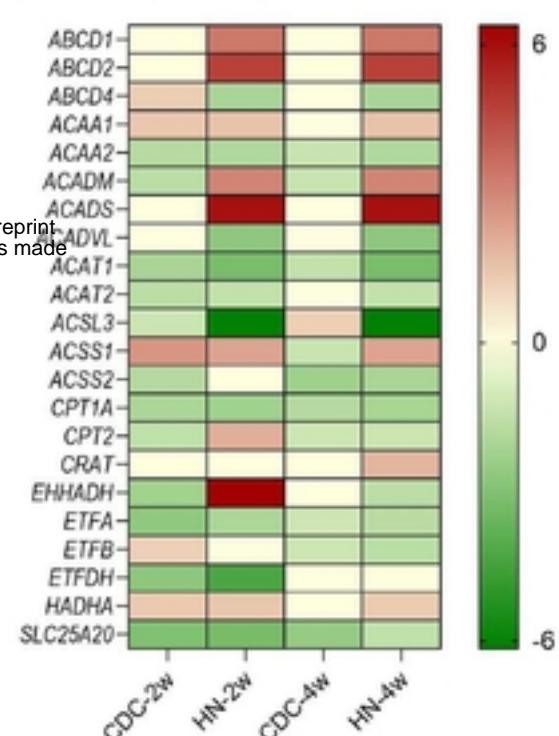
(C) Graphs depict selected pathways derived from the top 50 differentially expressed genes between BL/6 and C3H mouse neutrophils.

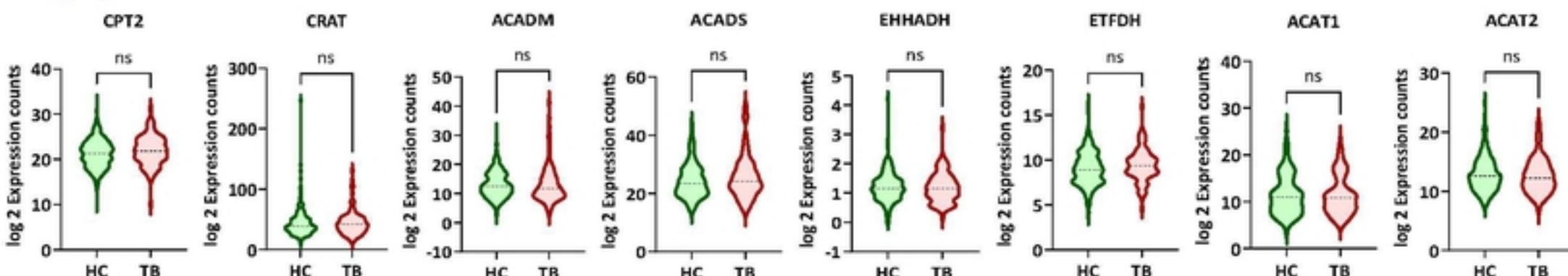

(D) **Heatmaps exhibit selected genes from glycolysis and fatty acid oxidation pathways in BL/6 and C3H mouse neutrophils; with a sample size of $n=3$ mice per group.**

(E) Log2 fold expression counts of genes involved in the Fatty Acid Oxidation pathway were evaluated through high-throughput RNA sequencing in whole blood cells obtained from TB patients and healthy controls participating in a household contact study.

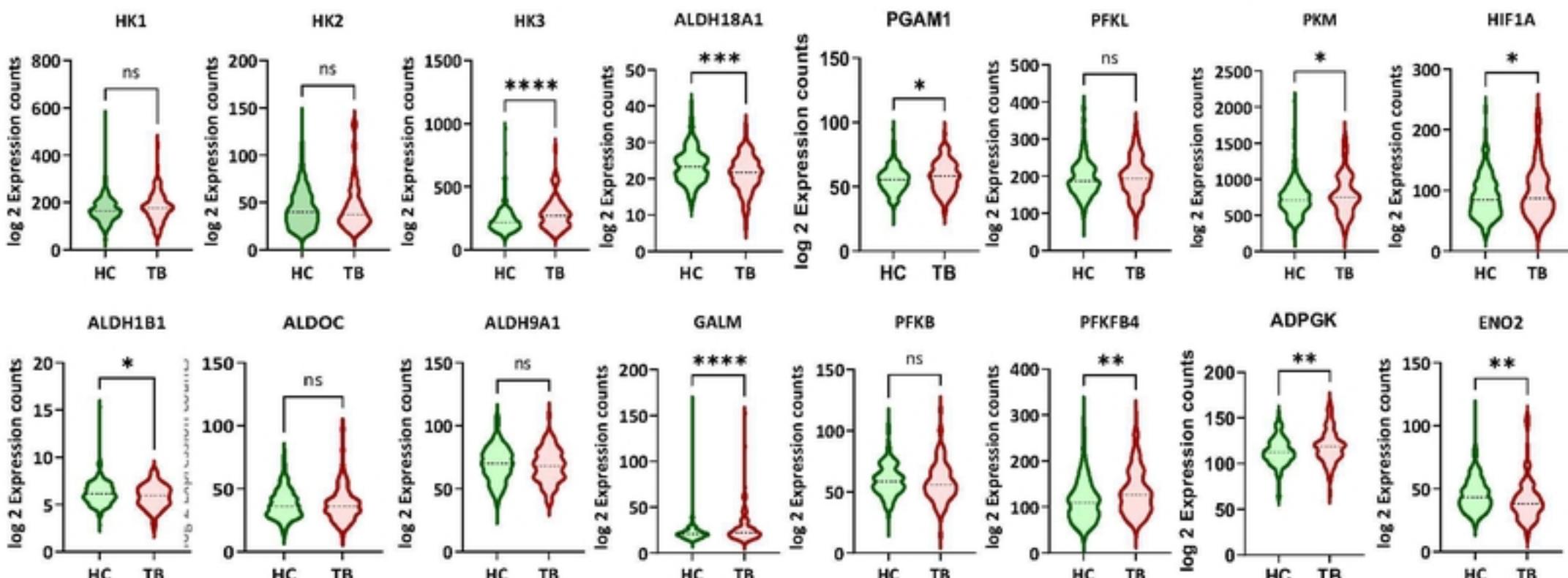

Error bars = Mean \pm SD. Statistical significance was calculated by unpaired t-test. *: $p<0.05$; **: $p<0.01$; ***: $p<0.001$; ****: $p<0.0001$.

SUPPLEMENTARY FIGURE 2:


A Genes involved in β -Oxidation of Fatty Acids in the Mitochondria


B Glycolysis pathway gene expression

B-oxidation pathway gene expression

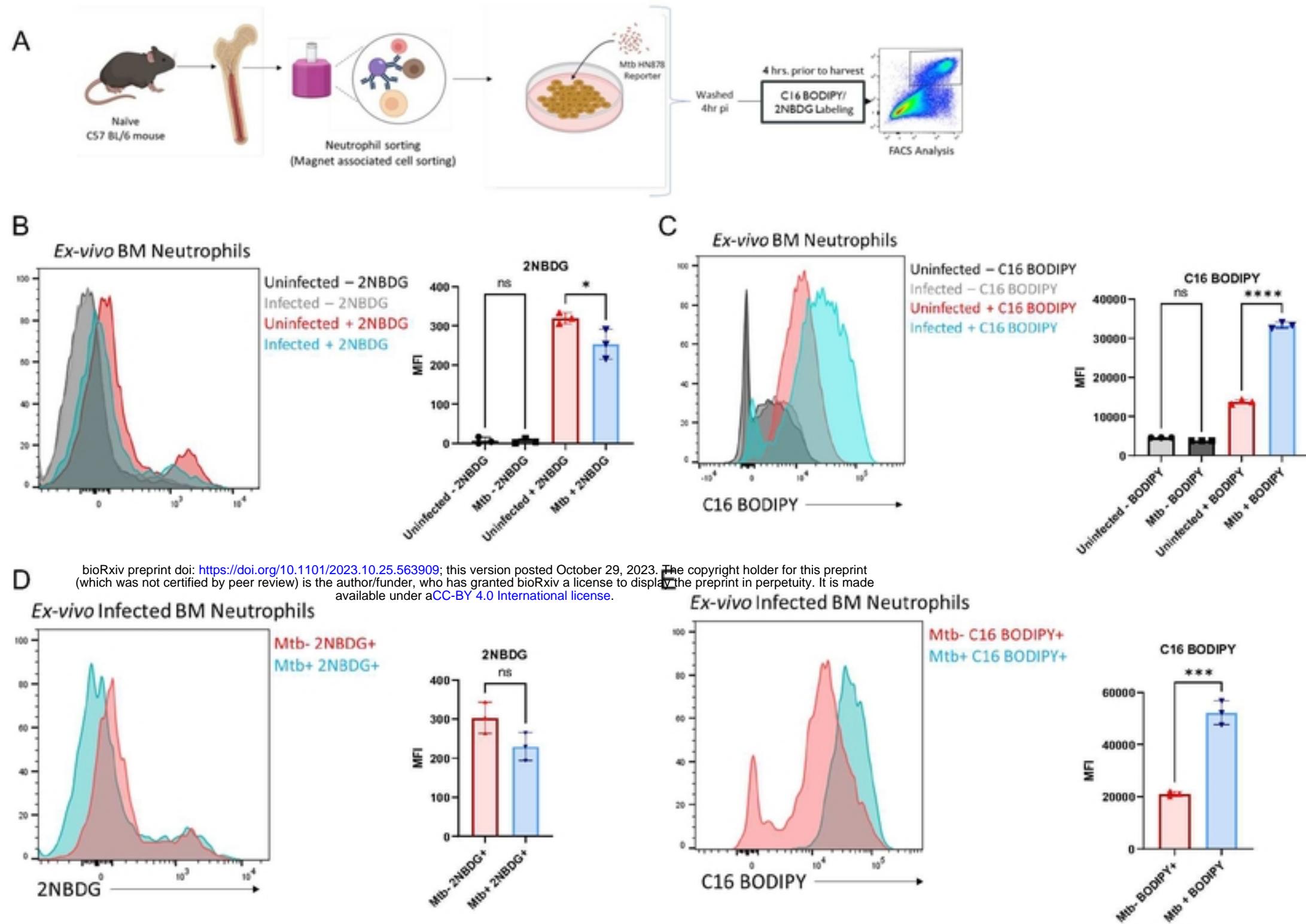


C Fatty acid oxidation pathway genes

- HC- Healthy Controls
- TB- Tuberculosis

D Glycolysis pathway genes

Supplementary Figure 2: Transcriptome analysis shows an increased expression signature of Glycolysis and Fatty acid oxidation pathway genes.


(A) Features schematics highlighting the various genes linked with fatty acid metabolism (highlighted in red) as expressed in murine neutrophils from *Mtb* HN878 infected mice.

(B) Heatmaps were utilized to illustrate the differentially expressed genes related to glycolysis and β -oxidation pathways in the rabbit lungs at 2 weeks and 4 weeks post-infection (pi) with *Mtb* CDC1551 and *Mtb* HN878. The determination of gene expression was accomplished through genome-wide microarray analysis.

(C) Graphs displaying log2 expression counts for specific genes involved in Fatty acid oxidation, while (D) highlights the expression of genes in the glycolysis pathway within the publicly accessible transcriptome dataset GSE94438. This dataset was obtained through RNA sequencing of whole blood cells from a household contact study, involving individuals who developed TB, alongside a control group of healthy individuals. Error bars= mean \pm SD. Statistical significance was calculated by unpaired t-test. *: p<0.05; **: p<0.01; ***: p<0.001.

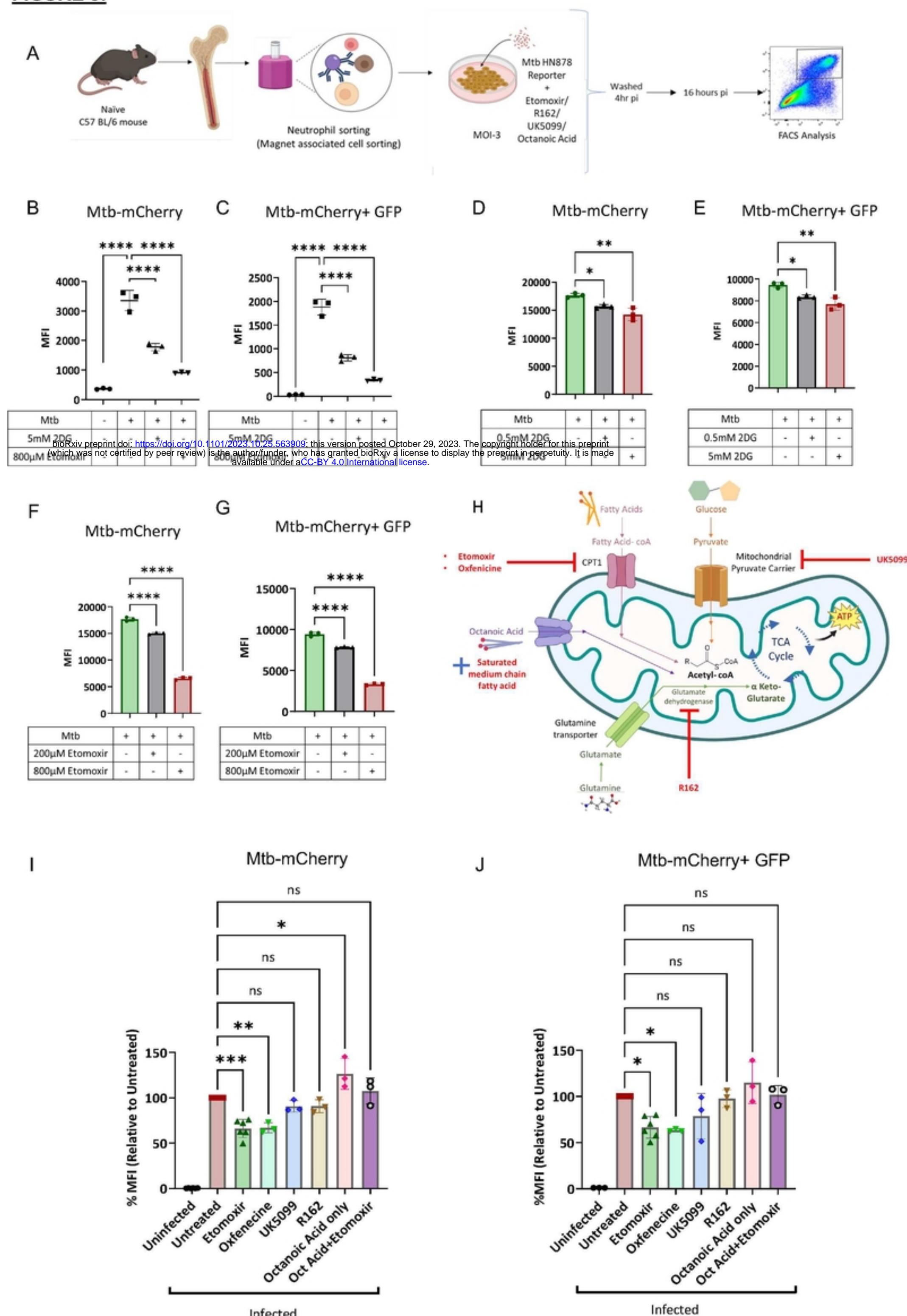
bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.25.563909>; this version posted October 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SUPPLEMENTARY FIGURE 3:

Supplementary Figure 3: Glucose and fatty acid utilization by neutrophils during Mtb infection.

(A) Experiment overview: 6–8-week-old naïve BL/6 mouse bone marrow neutrophils were isolated and infected ex-vivo with Mtb HN878 s-myc' mCherry:SSB2-GFP at a multiplicity of infection (MOI) of 3. The cells were washed 4 hours post-infection (pi) to remove extracellular bacteria and then incubated for 18 hours. Four hours before harvest, both infected and uninfected neutrophils were labeled with either C16-BODIPY or 2-NBDG and subsequently analyzed by flow cytometry.

(B) Representative flow cytometry histogram plot and graph illustrate the Mean Fluorescence Intensity (MFI) of 2-NBDG in uninfected versus infected neutrophils.


(C) Representative histogram and graph depict the MFI of C16-BODIPY labeling in uninfected versus infected neutrophils.

(D) Representative flow cytometry histogram and graph display the MFI of 2-NBDG in neutrophils with and without bacteria when neutrophils were challenged with Mtb HN878 ex vivo.

(E) Representative flow cytometry histogram plot and graph demonstrate C16-BODIPY MFI in infected (Mtb+) and uninfected (Mtb-) mouse neutrophils when cells were challenged with Mtb HN878 ex vivo.

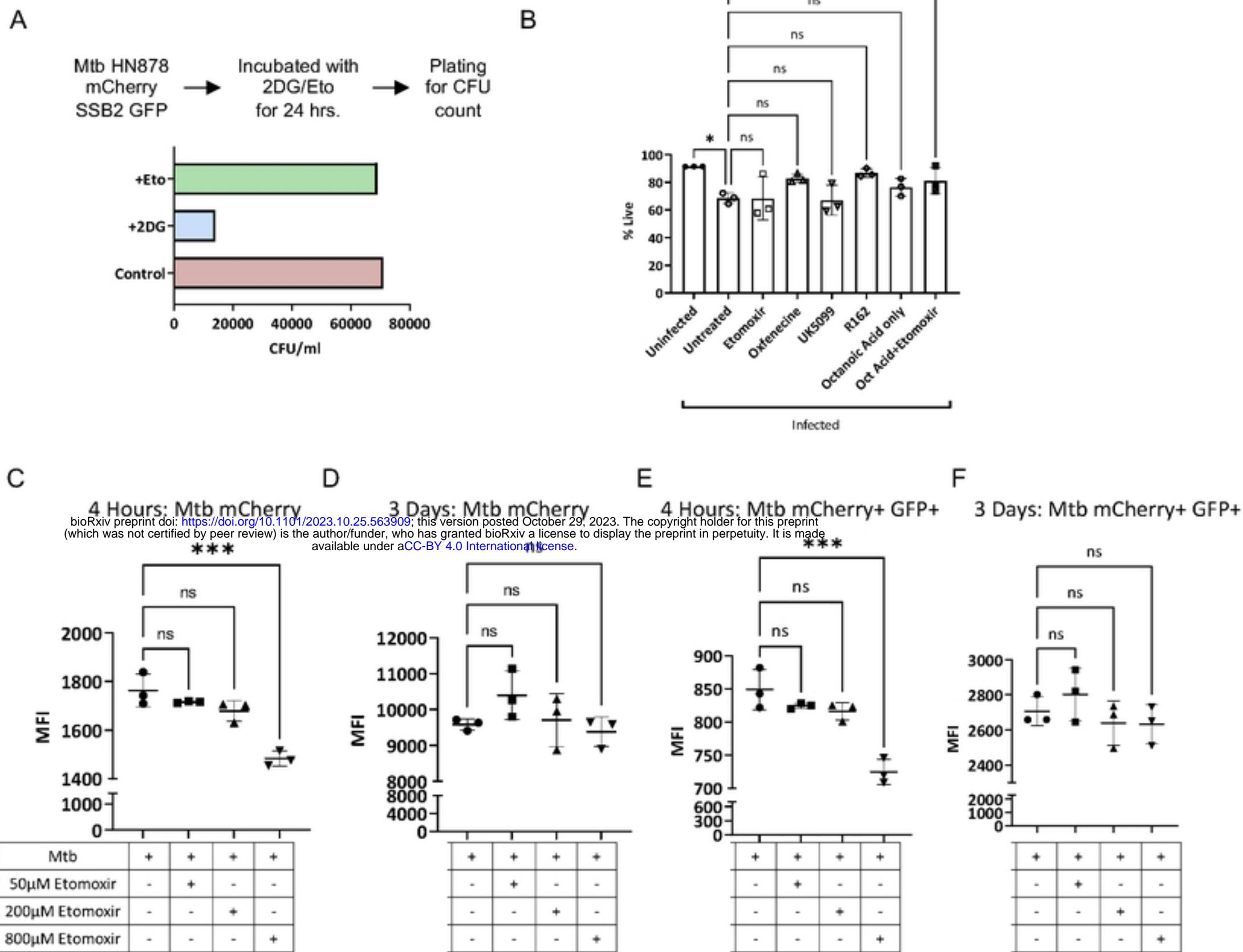
N=3 replicates/group. Error bars= mean \pm SD. (B, C) Ordinary one-way ANOVA; (D, E) Unpaired t-test. Statistical significance was calculated by One-way ANOVA with Tukey's multiple comparison tests *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.

FIGURE 3:

Figure 3: Bacterial uptake and replication by neutrophils are regulated by mitochondrial fatty acid metabolism. (A) Experimental Overview: Neutrophils isolated from the bone marrow of 6–8-week-old naïve BL/6 mice by Magnetic sorting. Subsequently, they were infected with Mtb HN878 replication reporter at MOI-3. After a 4-hour post-infection (pi), cells were washed to remove extracellular bacteria. Bacterial uptake (4hr pi) and survival (18hr pi) were analyzed by flow cytometry with and without indicated concentrations of 2-DG and Etomoxir (see methods).

(B) The Mean Fluorescence Intensity (MFI) of Mtb HN878 mCherry and (C) MFI of Mtb HN878 SSB2-GFP were evaluated using flow cytometry at 4 hours pi.

(D-E) Neutrophils were subjected to treatments with either 0.5mM or 5mM 2DG, followed by an assessment of the MFI of both bacteria (mCherry) and replicating bacteria (GFP) using flow cytometry at 18 hours pi.


(F-G) Another set of neutrophils was treated with either 200 μ M or 800 μ M Etomoxir. The subsequent (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

MFI of Mtb-HN878-mCherry and Mtb-SSB2-GFP was analyzed using flow cytometry at 18 hours pi.

(H) A visual depiction illustrates the mechanism of action of different small molecule inhibitors targeting mitochondrial fatty acid metabolism. Neutrophils were exposed to either Etomoxir, Oxfenicine, UK5099, R162, or Octanoic acid, with some also receiving Octanoic acid combined with Etomoxir. The assessment of the samples after 18 hours pi included (I) MFI of Mtb HN878 mCherry and (J) MFI of Mtb SSB2 GFP. This was compared to untreated controls.

N=3 replicates/group; Error bars= mean \pm SD. (B-J) Ordinary one-way ANOVA. Statistical significance was calculated by One-way ANOVA with Tukey's multiple comparison tests. *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.

SUPPLEMENTARY FIGURE 4:

Supplementary Figure 4: Cytotoxicity of Fatty acid metabolism inhibitors and effect on macrophage antimycobacterial functions. **(A)** Graph showing CFU of Mtb broth treated with either 5mM 2DG or 800 μ M Etomoxir. **(B)** Cell death in neutrophils treated with mitochondrial metabolism inhibitors, including Etomoxir, Oxfenicine, UK5099, R162 or with medium chain fatty acid, Octanoic acid supplement. Bone Marrow Derived Macrophages (BMDM) were made from naïve BL/6 mice and were infected at an MOI-3 with Mtb HN878 replication reporter. Graph showing MFI of Mtb HN878 mCherry at **(C)** 4 hours pi and **(D)** 3 days pi. Graph showing MFI of Mtb HN878 SSB2 GFP at **(E)** 4 hours pi and **(F)** 3 days pi. Compared to untreated controls; n=3 replicates/group, representative of 2 experiments; Error bars= mean \pm SD. Statistical significance was calculated by One-way ANOVA with Tukey's multiple comparison tests *: p<0.05; **: p<0.01; ***: p<0.001, ns-non-significant.

Figure 4: Inhibiting Fatty acid oxidation ameliorates TB Disease *in vivo*.

(A) Experimental Overview: 6–8-week-old C3H mice were infected with approximately 100 CFU Mtb HN878 replication reporter via aerosol. They received treatment with either 250 mg/kg 2-DG or 20 mg/kg Etomoxir between day 21 and day 28 and were subsequently analyzed on day 29 post-infection (pi).

(B) Graph depicting the percentage of weight loss in untreated, 2-DG-treated, and Etomoxir-treated animals from day 19 to Day 29 pi. Statistics were calculated by comparing the respective time points between Untreated Controls and Etomoxir treated C3H mice.

(C) Bacterial burden determined by CFU, in the lungs of untreated control, 2DG-treated, and Etomoxir-treated mice on day 29 pi.

(D) Gross histopathology images of untreated control, 2DG-treated, and Etomoxir-treated mouse lungs, alongside a graph illustrating the quantification of % of necrotic lesion area in these lungs.

(E) bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.25.568008>; this version posted October 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
Representative Confocal Images: Displaying lung sections from infected BL/6 and C3H mice exhibiting replicating bacteria depicted by GFP foci on mCherry+ bacilli. Additionally, quantification of SSB2-GFP foci was conducted in different treated samples.

(F) Live neutrophils analysis.

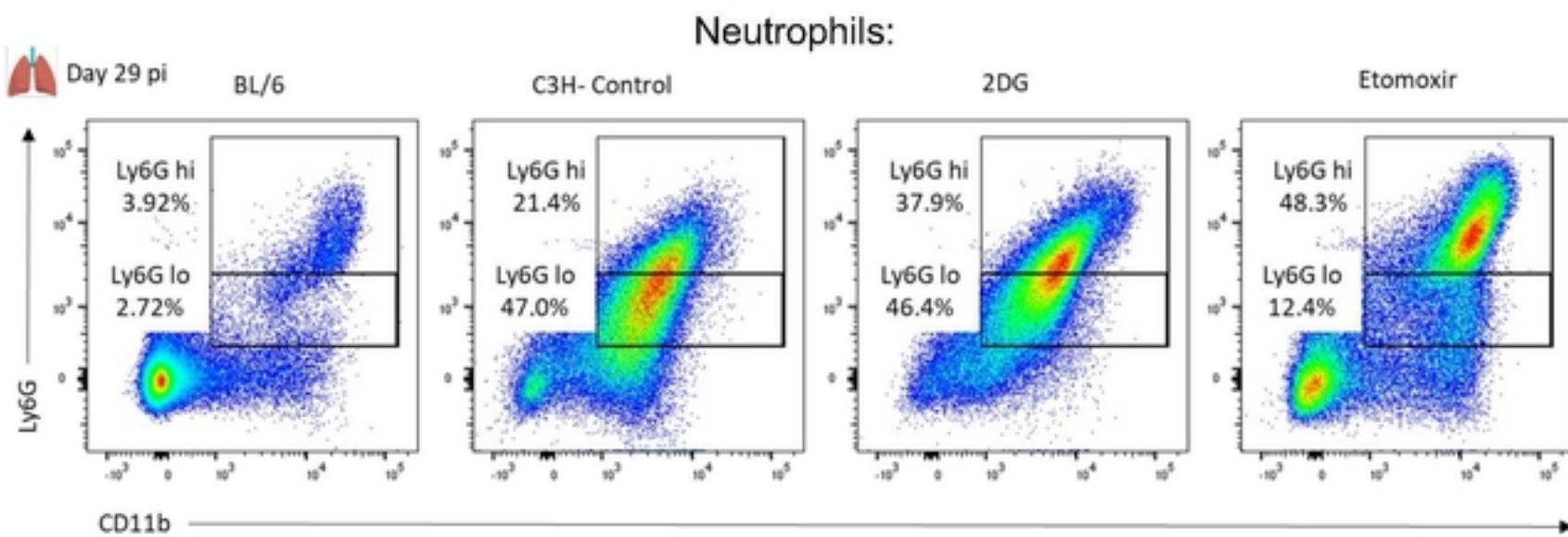
(G) Analysis of live infected neutrophils.

(H) Number of infected neutrophils with replicating and non-replicating bacteria in the lungs of untreated controls, 2DG, and Etomoxir-treated mice at day 29 pi as assessed by flow cytometry.

(I) Total count of live Ly6G^{hi} and Ly6G^{lo/dim} neutrophils.

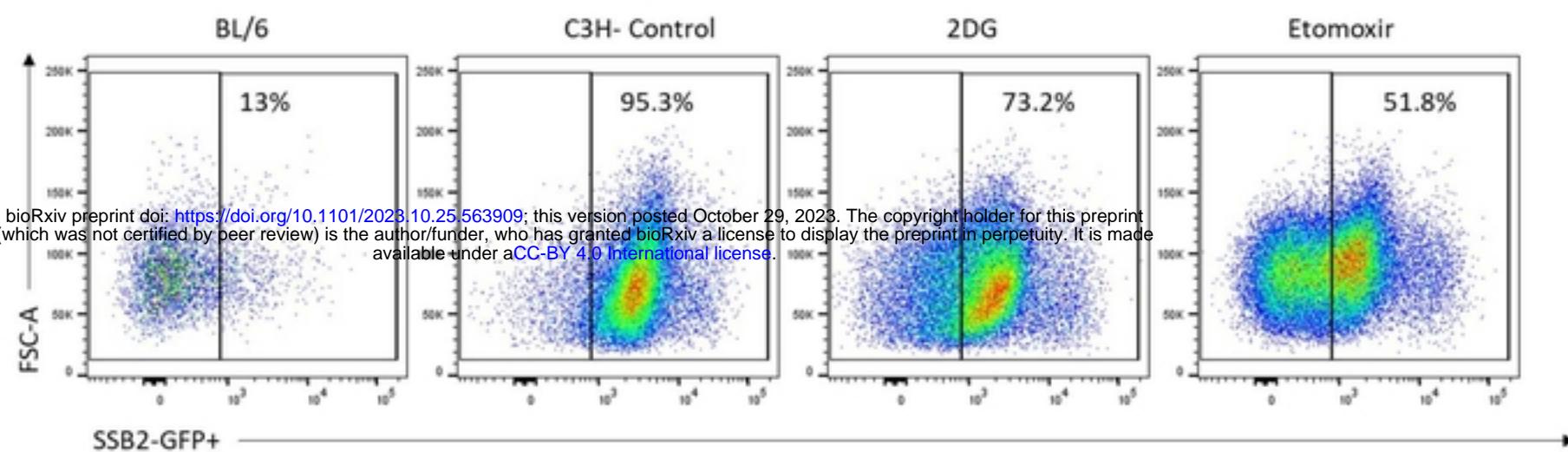
(J) Total count of live infected Ly6G^{hi} and Ly6G^{lo/dim} neutrophils.

(K) Ly6G^{hi} and Ly6G^{lo/dim} neutrophils with replicating and non-replicating bacteria in untreated control, 2DG, and Etomoxir-treated mouse lungs at day 29 pi.

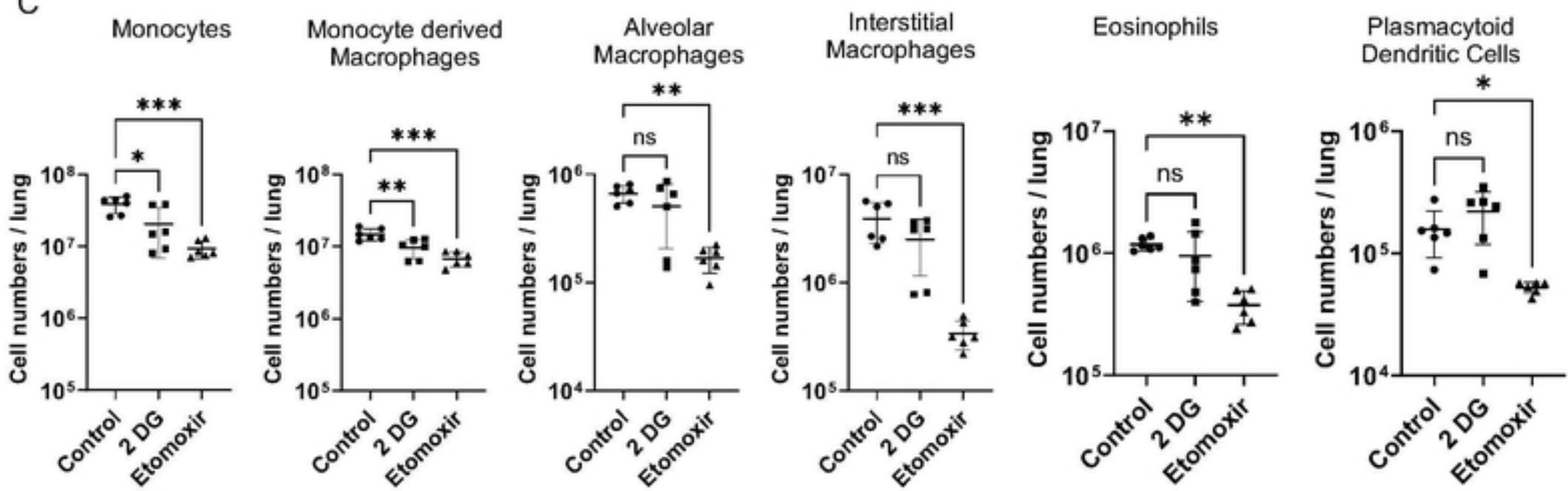

(L) Graphs displaying the percentage of live CD4+ T-cells, CD8+ T-cells, and CD19+ B-cells in the lungs of untreated controls, 2DG, and Etomoxir-treated mice at day 29 pi.

(M) Cytokine analysis from lung homogenates of untreated controls, 2DG, and Etomoxir-treated mice. Graphs displaying the levels of proinflammatory cytokines, including IL-1 α , IL-1 β , TNF- α . (N) Levels of MIP-1 α and MIP-1 β . (O) Levels of IL-6. (P) Levels of colony stimulating growth factors G-CSF and GM-CSF and (Q) Protective cytokine IFN- γ .

N=6 mice/group- representative of 2 experiments; Error bars= mean \pm SD. (B, H-K) Two-way ANOVA; (C, E-G, I-Q) Ordinary One-way ANOVA. * Statistical significance was calculated by One-way ANOVA or two-way ANOVA with Tukey's multiple comparison tests. *: p<0.05; **: p<0.01; ***: p<0.001, ns-non-significant.


SUPPLEMENTARY FIGURE 5:

A



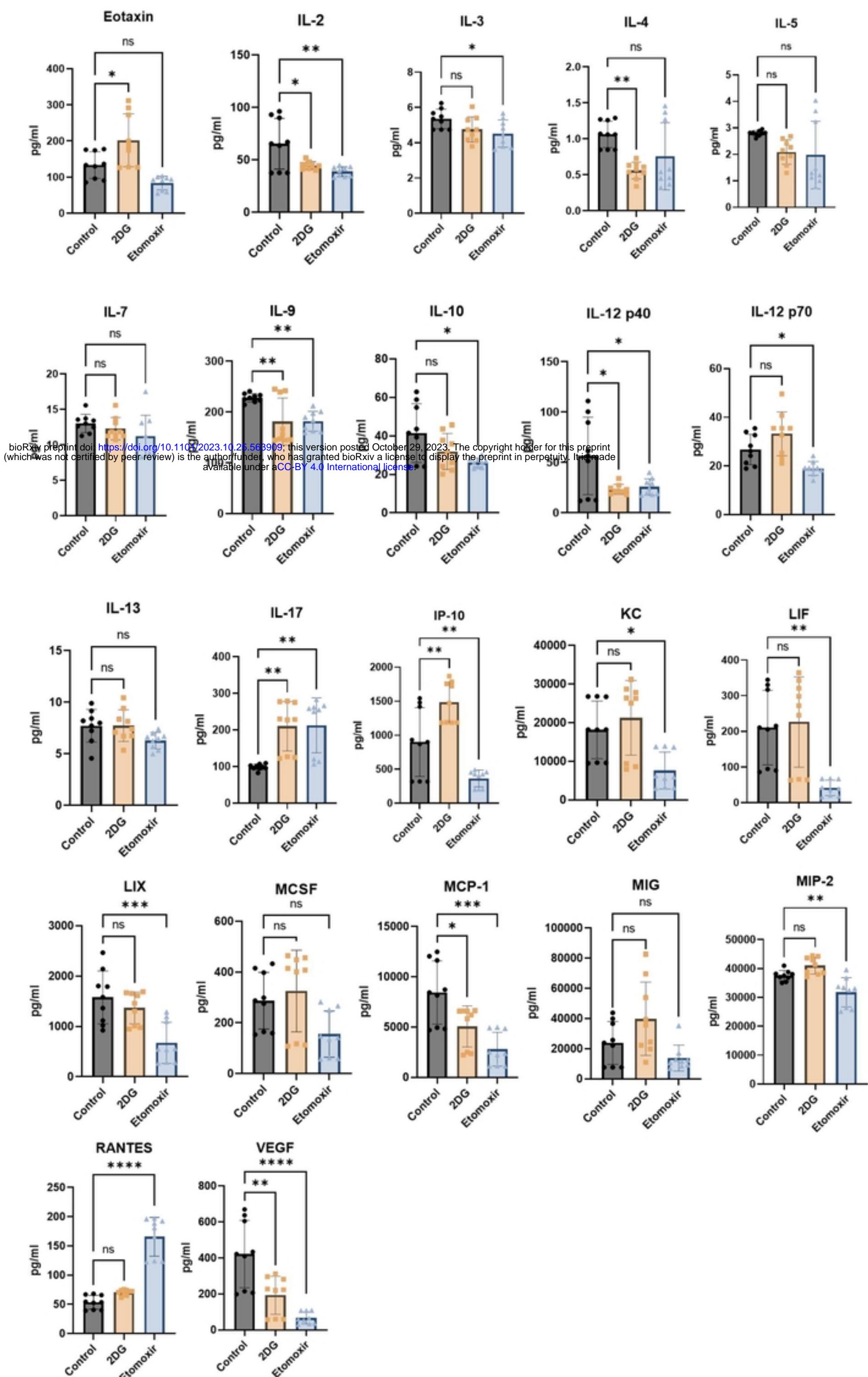
B

Neutrophils with replicating bacteria: (Gated from Infected Neutrophils):

C

Supplementary Figure 5: Suppression of Fatty acid metabolism *in-vivo* reduced inflammatory cell influx into diseased mouse lungs.

(A) Representative flow cytometric plots from BL/6 and C3H untreated controls, 2-DG-treated, and Etomoxir-treated mice at day 29 post-infection (pi) with Mtb HN878 mCherry SSB2 GFP.

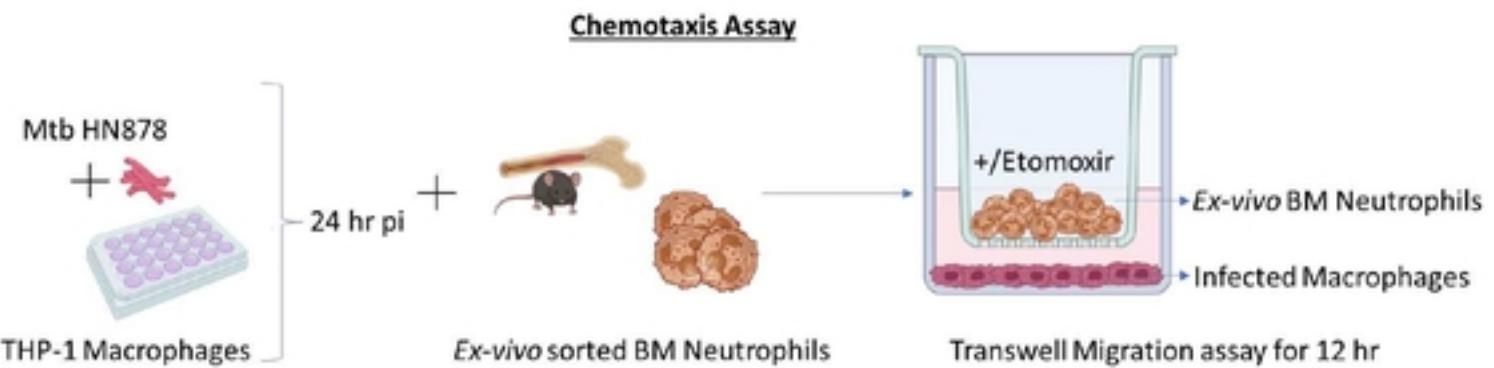

(B) Representative flow cytometry plots displaying replicating bacteria in infected neutrophils from BL/6 and C3H untreated controls, 2DG-treated, and Etomoxir-treated mice at Day 29 pi.

(C) Graphs illustrating the quantities of live cell populations, including Monocytes (CD45+CD11b+ Ly6G- Ly6C+ SiglecF-F480-), Monocyte-derived Macrophages (CD45+CD11b+ Ly6G- Ly6C+ SiglecF- F480+), Alveolar Macrophages (CD45+CD11b+ Ly6G- Ly6C+ SiglecF -F480+), Interstitial Macrophages (CD45+CD11b+ Ly6G- Ly6C+ SiglecF-), Eosinophils (CD45+CD11b+ Ly6G- Ly6C- SiglecF+), and Plasmacytoid Dendritic Cells (CD11b- Ly6G- Ly6C+ Siglec H+), in untreated controls, 2DG-treated, and Etomoxir-treated mice at day 29 pi. Compared to untreated controls.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.25.563909>; this version posted October 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

N=6mice/group- representative of 3 experiments; Error bars= mean \pm SD. Statistical significance was calculated by One-way ANOVA with Tukey's multiple comparison tests. *: p<0.05; **: p<0.01; ***: p<0.001, ns-non-significant.

SUPPLEMENTARY FIGURE 6:


Supplementary Figure 6: Suppression of Fatty acid metabolism *in-vivo* reduced inflammatory cytokine production in diseased mouse lungs. Cytokine analysis was conducted in lung homogenates from mouse lungs treated with 2DG/Etomoxir. The resulting graphs illustrate the cytokine levels of Eotaxin, IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, IP-10, KC, LIF, LIX, MCSF, MCP-1, MIG, MIP-2, RANTES, and VEGF in pg/ml, as compared to the untreated control group.

n=6mice/group- representative of two experiments; Error bars= mean \pm SD. Statistical significance was calculated by One-way ANOVA with Tukey's multiple comparison tests. *: p<0.05; **: p<0.01; ***: p<0.001, ns-non-significant.

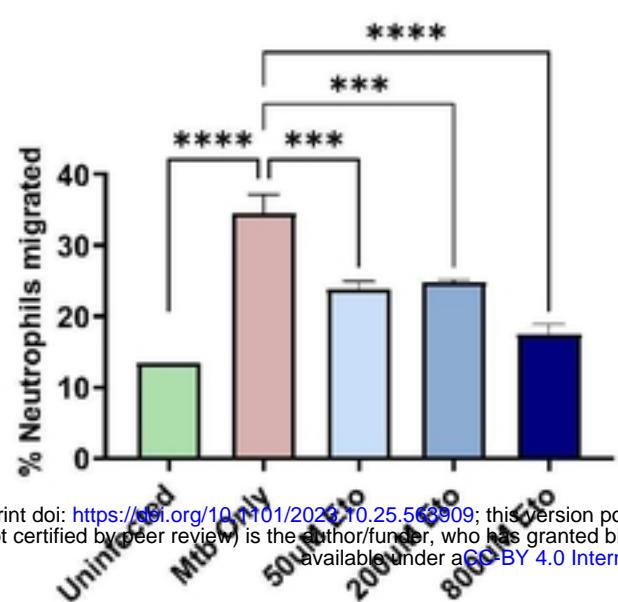
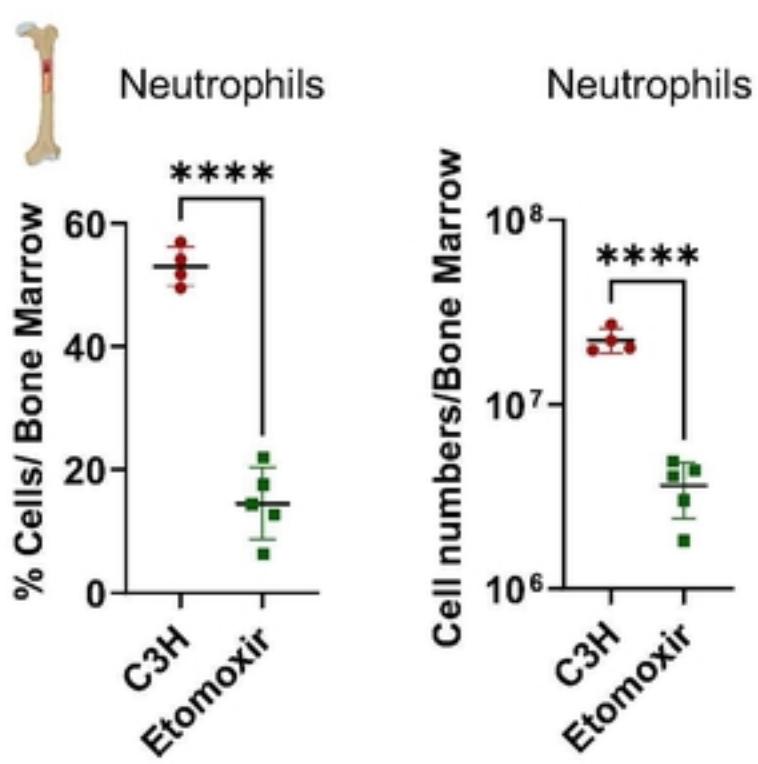
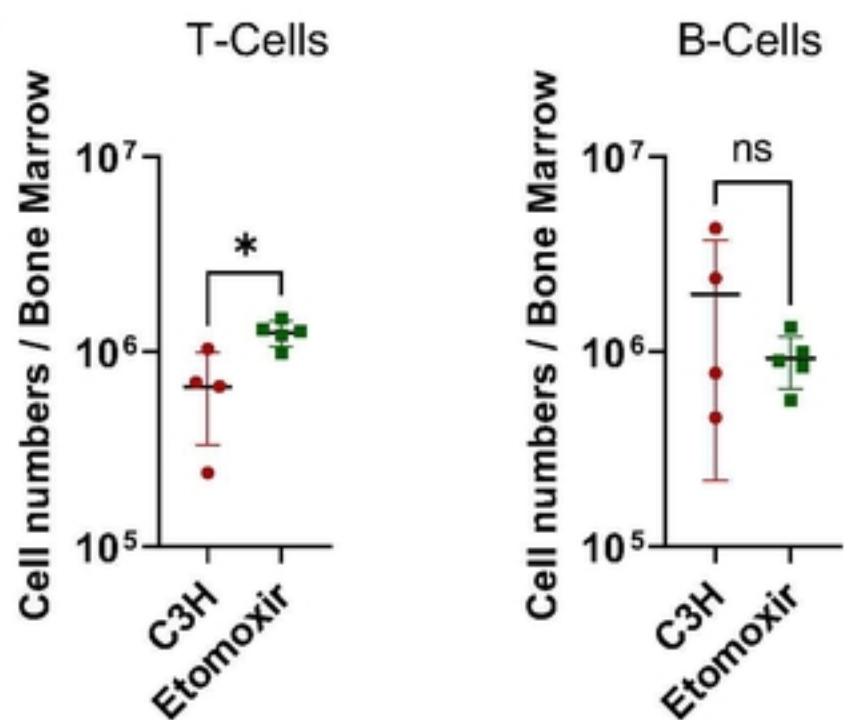

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.25.563909>; this version posted October 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

FIGURE 5:

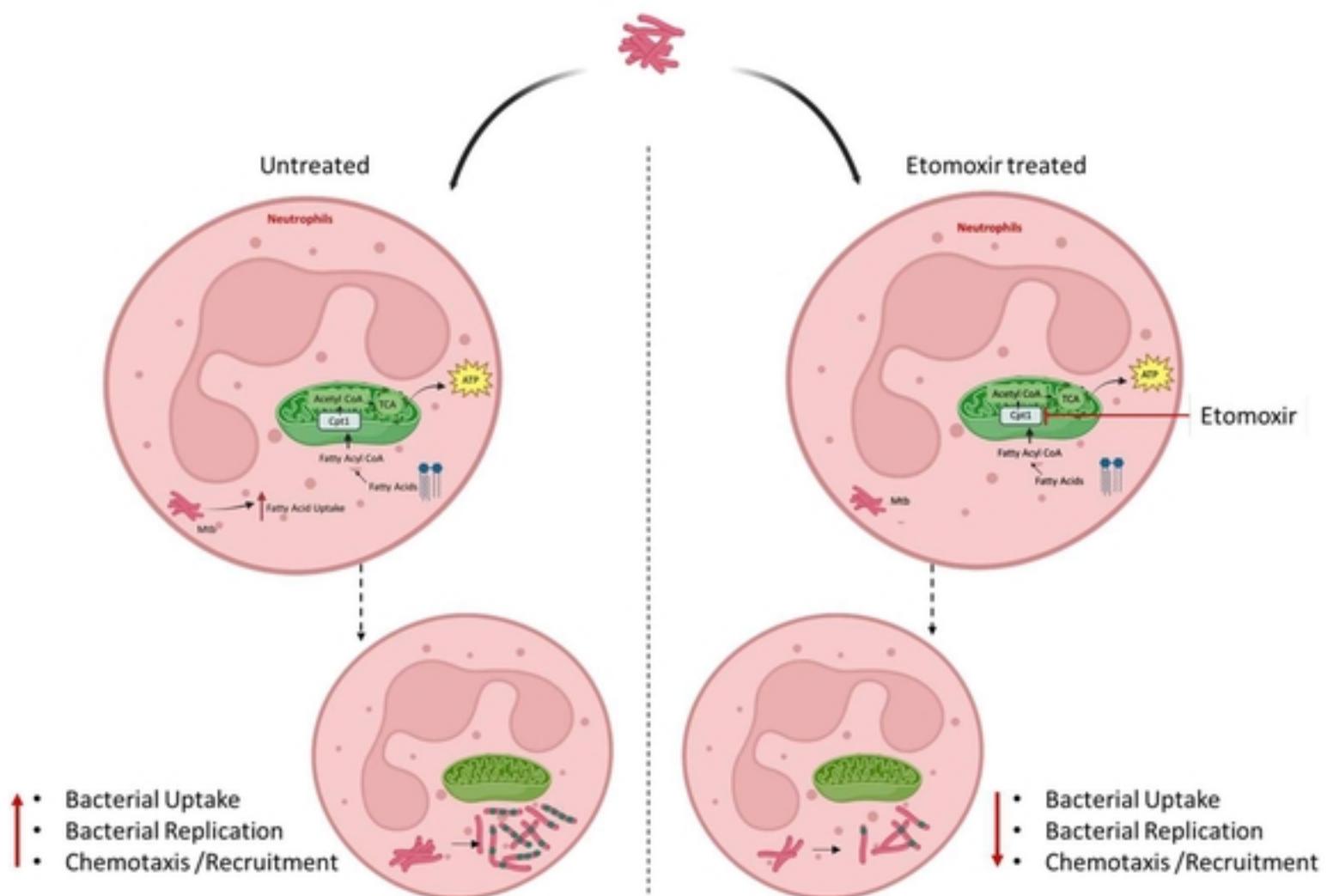
A



B



bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.25.563099>; this version posted October 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


C

D

F

Figure 5: Restriction of fatty acid metabolism *in-vivo* affects bone marrow production of neutrophils.

(A) Schematics showing the overview of the transwell migration assay.

(B) Macrophages were infected with Mtb strain HN878 for 24 hours. Neutrophils were then treated with varying concentrations of Etomoxir and added in a collagen coated transwell chamber. The migration of neutrophils to the bottom chamber in response to the infected macrophages was quantified. A graph was generated to represent the percentage of neutrophil chemotaxis into the bottom chamber, analyzed by the transwell migration assay.

(C) C3H mice were administered 20 mg/kg of Etomoxir, and the bone marrow compartment from the infected mice was analyzed at day 29 post-infection. Graphs showing the percentage and the total number of neutrophils, (D) the total count of T cells (CD11b- CD19- CD3+) and B cells (CD11b- CD3- CD19+) in both untreated control and Etomoxir-treated mice at day 29 post-infection.

(E) A model depicting the effect of fatty acid metabolism blockage on Mtb-neutrophil interactions.

N=4-5 mice/group; Error bars= mean \pm SD. Statistical significance was calculated by One-way ANOVA with Tukey's multiple comparison tests (B); Unpaired t-test (C-E). *: p<0.05; **: p<0.01; ***: p<0.001; ***: p<0.001; ns-non-significant.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.25.563909>; this version posted October 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.