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Abstract 

Numerous methods have been proposed for seizure detection automation, yet the tools to 

harness these methods and apply them in practice are limited. Here we compare four 

interpretable and widely-used machine learning models (decision tree, gaussian naïve bayes, 

passive aggressive classifier, stochastic gradient descent classifier) on an extensive electrographic 

seizure dataset collected from chronically epileptic mice. We find that the gaussian naïve bayes 

model achieved the highest precision and f1 score, while also detecting all seizures in our dataset 

and only requires a small amount of data to train the model and achieve good performance. We 

use this model to create an open-source python application SeizyML that couples model 

performance with manual curation allowing for efficient and accurate detection of electrographic 

seizures. 

 

Author Summary 

Seizure detection based on electrographic recordings is critical for epilepsy diagnosis and 

research. However, the current gold standard for seizure detection is manual curation, which is 
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biased, costly, incredibly laborious, and requires extensive training and expertise, prohibiting 

advances in epilepsy diagnosis and research. Here we demonstrate that fast, simple, and 

interpretable machine learning (ML) models are sufficient to detect all seizures in an extensive 

dataset collected from a well-established mouse model of epilepsy. Importantly, we created an 

open-source python application, SeizyML, that integrates the most precise model tested here 

with human curation of the detected events. This semi-automated approach greatly enhances 

efficiency and precision of seizure detection while also being transparent. We believe that the 

adoption of semi-automated and transparent technologies is indispensable for understanding 

ML model predictions, improving their reliability, and fostering trust between ML models and 

neurodiagnostic professionals. 
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Introduction 

Epilepsy is a devastating neurological disorder characterized by recurrent seizures. 

Detection of seizures by evaluation of the electroencephalogram (EEG) is critical for diagnosis 

and Epilepsy research (Flink et al., 2002). However, manual detection, which is the current 

standard of practice, is laborious, error prone, requires extensive training and expertise, and 

results in large variability (Diachenko et al., 2022). Artificial intelligence (AI) and Machine learning 

(ML) techniques hold great promise in assisting clinical diagnosis and transforming research 

(Rajpurkar et al., 2022; Yu et al., 2018); as can be seen by the prompt FDA approval of AI tools 

(Benjamens et al., 2020).  

A wealth of ML methods have been proposed for automating the task of seizure detection 

(Shoeibi et al., 2021; Siddiqui et al., 2020). Specifically, deep learning techniques automate 

feature extraction and perform remarkably well in seizure detection among other tasks (Cho & 

Jang, 2020; Rajpurkar et al., 2022; Shankar et al., 2022; Shoeibi et al., 2021; Yuan et al., 2019). 

However, deep learning techniques are not easily interpretable (Rudin, 2019). This is an 

important issue as many clinicians and scientists may be reluctant to employ these 

methodologies due to lack of trust (Pinto et al., 2022; Rudin, 2019); as the characterization of 

parameters that constitute a seizure is not clear. Furthermore, deep learning models often 

require a large amount of training data to reach a good performance and can be prohibitive to 

train due to expensive computational resources (Rajpurkar et al., 2022; Yu et al., 2018). Finally, 

these existing approaches make it difficult to extract the electrographic features which may be 

informative regarding seizure generation and progression.  
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Here we have employed widely-used and interpretable machine learning models from 

the scikit-learn python library (Pedregosa et al., 2011) and tested their performance on detecting 

seizures from a well-established mouse model of epilepsy. We found that these interpretable 

models with combined simple feature extraction were sufficient to detect all seizures in our 

dataset. To make these pipelines accessible to the scientific community we created an open-

source python application (SeizyML) to couple high model sensitivity with manual verification of 

the detected seizures. This semi-automated approach significantly reduces time required for 

seizure detection while providing high sensitivity and accuracy. 
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Methods 

EEG/LFP Dataset 

The data used here for training, validation, and testing of the models were obtained from      

recordings collected in our previous study (Basu et al., 2022). Briefly, adult mice were injected 

with kainic acid in the ventral hippocampus (vHPC) and were then implanted with a stainless-

steel wire in the vHPC and a stainless-steel screw fixed above frontal cortex (FC). Data were 

sampled at 4000 samples per second. The data were split into training (11 mice, 4224 hours), and 

testing (15 mice, 5511 hours) datasets. Subsequently data were divided in 5 second windows and 

downsampled to 100 Hz with an antialiasing filter, as this has been shown to achieve excellent 

performance (Cho & Jang, 2020; Jang & Cho, 2019). Data were also high pass filtered at 2 Hz to 

remove baseline drift and extreme outliers (>25 standard deviations) and were replaced with the 

median of each 5 second window. Then 9 features were extracted for each channel 

(autocorrelation, line length, root mean square, mean absolute deviation, variance, standard 

deviation, power (2-40Hz), energy, envelope amplitude) and 3 features were extracted for cross 

channel metrics (cross-correlation, covariance, absolute covariance) (Table 1) that resulted in a 

total of 21 features (9 for each channel + 3 cross channel). The features were converted into z-

scores to equalize their contribution to the machine learning models. 

Feature Selection 

In order to remove redundant information and select the most meaningful features we first 

removed highly correlated features with Pearson coefficient r >0.99, which resulted in 12 

features that constituted the first feature-set (Table 2, Column 1). We then selected the 4 and 8 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.25.563903doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.25.563903
http://creativecommons.org/licenses/by/4.0/


6 
 

best ranking features from ANOVA comparison with target variable (Table 2, Column 2&3) and 

from mutual information (Table 2, Column 4&5), resulting in a total of 5 feature-sets (Table 2). 

Feature Contributions 

Feature contributions to model predictions were obtained as follows: 

1. For the DT model, we retrieved feature importance from the trained DT models (Sklearn 

DecisionTreeClassifier), where feature importance was calculated as the Gini importance.  

2. For the SGD model, we calculated feature weight as the absolute weights for each feature 

from the trained SGD model (Sklearn SGDClassifier). 

3. For the GNB model, we calculated feature separation score based on extracted 

parameters of each class from the trained GNB model (Sklearn GaussianNB): 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �
𝜇𝜇1 − 𝜇𝜇2
𝜎𝜎1 + 𝜎𝜎2

� 

Where μ is the mean and σ is the standard deviation for each class. 

*Feature contributions were normalized to have a sum of 1 for each model metric. 
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Table 1. Features. Where n is the length of the signal (n=500 samples, 5 seconds), i is the index, 
DFT is the Discrete Fourier Transform (from SciPy’s fft), fs is the sampling rate (fs=100 Hz), μ is the 
mean, t is the time lag (t=0), and w is the window (w=30 samples, 0.3 seconds). 
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Table 2: Feature selection. Columns represent feature-sets. Cells that contain 1 in a blue 
background indicate that the feature was selected. Columns 1-5) Highly correlated features were 
removed. Columns 2-3) Best four and eight ranked features selected by ANOVA. Columns 4-5) 
four and eight ranked features selected by mutual information. 
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Model Selection and Training 

We selected four models for seizure detection, gaussian naïve bayes (GNB), decision tree (DT), 

stochastic gradient descent classifier (SGD) and passive aggressive classifier (PAC) from the scikit-

learn (Sklearn) toolbox (Pedregosa et al., 2011). We selected models based on interpretability 

and their ability to train on large datasets. The SGD model was used with log/hinge loss to 

implement logistic regression/support vector machine models, respectively. This was done as 

logistic regression and support vector machine models could not train effectively on large 

datasets. The PAC model was selected as another implementation of a support vector machine 

model (hinge loss) with a different optimization algorithm (Crammer et al., 2006). The k-nearest 

neighbors model was not used as it was too slow and therefore not useful in practice during 

model predictions. The models were then tuned by performing grid-search using the balanced 

accuracy as the fit metric to optimize their hyperparameters. Hyperparameter search was 

performed using 4-fold cross validation (75% training subset, 25% validation subset) of the 

training dataset (11 mice, 4224 hours). Sklearn’s StratifiedKfold method was used to ensure that 

the class distributions were similar in training and validation datasets. The tuning was performed 

for each model, for every feature-set, and the resulting best hyperparameters were selected 

(Table 3). Each model/feature-set combination from Table 3 was then trained 5 times using 

StratifiedKfold (5 folds, 80% training subset) and evaluated on the testing dataset (15 mice, 5511 

hours). 
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Feature Set
- alpha eta0 loss penalty tol
1 0.01 0.01 log_loss l1 0.0001
2 0.01 0.01 hinge 0.001
3 0.01 0.01 hinge l2 0.0001
4 0.01 0.001 log_loss l2 0.001
5 0.01 0.01 log_loss l1 0.001
- ccp_alpha max_depth min_samples_leaf - -
1 0 10 1000
2 0 10 1000
3 0 10 1000
4 0 10 1000
5 0 10 1000
- var_smoothing - - - -
1 0.001
2 0.001
3 0.001
4 0.001
5 0.001
- C - - - -
1 1
2 0.1
3 100
4 10
5 100

SG
D

DT
G

N
B

PA
C

Hyperparameters

Grid Search Hyperparameters
SG

D
DT

G
N

B
PA

C

i) var_smoohting = 10-2,10-3,10-4,10-5,10-6,10-7,10-8.

 i) C = .1, 1, 10, 100; ii) class_weight = balanced.

i) alpha = 0.000001, 0.0001, 0.001, 0.0, ii) max_iter = 1000; iii) learning_rate = adaptive; iv) penalty 
= l2, l1, None; v) early_stopping = False; vi) eta0 = 0.001, 0.01; vii) tol = 1x10-3, 1x10-4; viii) loss = 

log_loss, hinge, viiii) validation_fraction=0.2.

i) ccp_alpha: [0, 0.01,], ii) max_depth: [5, 10], iii) min_samples_leaf: [100, 1000, 10000], iv) 
max_features: [None], v) class_weight: ['balanced'].

Table 3: Hyperparameter optimization. Top) Hyperparameter space used to perform grid search. Bottom) 
Hyperparameters that resulted in best balanced accuracy scores were selected for each model and 
feature-set. Note that only hyperparameters with more than one value from the top are displayed on the 
bottom table. 
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Model Metrics 

1. True Positive (TP): Segments that were correctly predicted as seizures. 

2. True Negative (TN): Segments that were correctly predicted as non-seizures. 

3. False Positive (FP): Segments that were predicted as seizures but are non-seizures. 

4. False Negative (FN): Segments that were predicted as non-seizures but are seizures. 

 

5. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 : Proportion of identified positives. 

6. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 : Proportion of predicted positives that were actually positive. 

7. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 : Proportion of identified negatives. 

8. 𝐹𝐹1 =  2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  

9. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
2

  

10.  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (%) = 𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

11. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

 

*Detected segments were defined as seizures if there were at least two consecutive 5 segments. 
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Statistical Tests 

To compare the metric across models a one-way ANOVA was used with pairwise Tukey’s HSD 

multiple comparisons using the python toolbox statsmodels. All bar and line plots represent the 

mean and error-bars, or shaded regions represent the SEM. A p-value <0.05 was considered 

statistically significant. 

 

Code 

The open-source seizure detection app, seizyML, can be found on GitHub at 

https://github.com/neurosimata/seizy_ml. All other code will be made available upon 

reasonable request. 
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Results 

An examination of even a few seizures in a well-established and reproducible model 

allows us to appreciate the variability and diversity of these events (Figure 1a). This variability 

becomes even more apparent when looking at extracted features (See methods – feature 

selection) across multiple seizures (Figure 1b). Even though the extracted features robustly 

increase during seizure events, their variability during seizure events is greatly enhanced when 

compared to the periods before and after seizure events (Figure 1b). Due to the inherent 

variability in seizure events, we trained machine learning models using these extracted features 

and examined their seizure detection performance.  

To achieve this, we split the data into training (11 mice, 4224 hours), and testing (15 mice, 

5511 hours) datasets. We then selected 5 feature-sets (Table 1) by removing redundant features 

and quantifying their relevance (Table2, See methods – feature selection). After feature 

selection, we chose four models (Figure 2A) for seizure detection: decision tree (DT), gaussian 

naïve bayes (GNB), passive aggressive classifier (PAC), and stochastic gradient descent classifier 

(SGD) based on model interpretability and ability to efficiently train on our dataset (See methods 

– model selection). Each model was tuned (Table 3, hyperparameter selection) and then trained 

5 times for each feature-set (Table 2) to account for model variability and to obtain a better 

estimate of their performance. 
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Figure 1: Example seizures and extracted features from the training dataset. A) Example 
seizure and non-seizure traces from ventral hippocampus (vHPC) LFP. Each row represents 
one seizure that was obtained from a different recording (n = 3 recordings, 2 animals), B) Dot 
plot of all extracted features before, during and after seizure from training dataset. Dotted 
horizontal lines indicate Z-scores of +/- 3. 
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We first performed a comparison of the 4 models across all feature combinations (Figure 

2A-B). We observed that the PAC model had substantially lower F1 score (Figure 2B) – a combined 

measure of model precision and sensitivity (See methods – model metrics) and high false 

detection rate compared to the other 3 models independent of the feature combination (Figure 

2C). All the PAC trained models had lower precision and specificity across all models (Figure 2D). 

Therefore, the PAC model was not considered for further analysis. For each of the three 

remaining models, the feature combination that resulted in the highest balanced accuracy was 

selected for further examination. Specifically, feature combinations 4, 5, 4 were chosen for DT, 

GNB, and SGD, respectively (Figure 2E). 
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Figure 2: Comparison of ML models across feature-sets. A) Schematic of ML models compared, B) F1 
score, C) False detection rate: Number of incorrectly detected seizures per hour, D) Scatterplot of 
precision vs specificity; dotted line indicates the separation of PAC with the rest of the models, E) 
Selection of feature-set from Table 2 based on balanced accuracy; Numbers on top of bars indicate 
the selected feature-set per model. 
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Next, we compared the DT, GNB, and SGD models across several metrics (Figure 3A). 

Overall, the DT model had the lowest number of false negatives – incorrectly classified seizure 

segments as non-seizures (Figure 3B; DT = 147.87 ± 12.40 x103, GNB = 52.87 ± 0.16 x103, SGD = 

65.69 ± 0.81 x103) resulting in the highest recall (Figure 3C; DT = 0.84 ± 0.002, GNB = 0.77 ± 0.000, 

SGD = 0.78 ± 0.001) among the three models. However, it also had the highest number of false 

positives – incorrectly classified non-seizure segments as seizures (Figure 3D; DT = 1.00 ± 0.013 

x103, GNB = 1.46 ± 0.001 x103, SGD = 1.38 ± 0.003 x103) resulting in the lowest precision (Figure 

3E; DT = 0.03 ± 0.003, GNB = 0.08 ± 0.000, SGD = 0.07 ± 0.001). These results indicate that the DT 

model was the most sensitive and the least precise among the three models. On the other hand, 

the GNB model was the most precise (Figure 3E) and had the highest F1 score (Figure 3F; DT = 

0.07 ± 0.005, GNB = 0.15 ± 0.000, SGD = 0.13 ± 0.001). The SGD model had an intermediate 

performance overall with a lower F1 score than the GNB model (Figure 3F). Even though the DT 

model has the highest recall, it had a similar if not slightly worse performance at seizure detection 

(See methods – model metrics) than GNB and SGD models which detected all seizures in the test 

dataset (Figure 3G; DT = 99.80 ± 0.033 %, GNB = 100.00 ± 0.000 %, 100.00 ± 0.000). These results 

demonstrate that simple and interpretable machine learning models can be very efficient for 

seizure detection but vary in their reliability and prediction accuracy. 
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Figure 3: Comparison of selected ML models. A) Schematic of selected machine learning models 
based on balanced accuracy (Figure 2E). (B-G) Comparison of select models across metrics B) False 
Negatives, C) Recall, D) False Positives, E) Precision, F) F1 score, G) Percentage of seizures detected 
from the testing dataset. 
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Description Figure Stats Test Statistic
fp: ANOVA 3B ANOVA F(2, 12)=51.6529, p<=0.0001
fp: DT vs GNB 3B TukeyHSD p<=0.0001
fp: DT vs SGD 3B TukeyHSD p<=0.0001
fp: GNB vs SGD 3B TukeyHSD p=0.4406
fn: ANOVA 3C ANOVA F(2, 12)=963.2606, p<=0.0001
fn: DT vs GNB 3C TukeyHSD p<=0.0001
fn: DT vs SGD 3C TukeyHSD p<=0.0001
fn: GNB vs SGD 3C TukeyHSD p<=0.0001
recall: ANOVA 3D ANOVA F(2, 12)=963.2606, p<=0.0001
recall: DT vs GNB 3D TukeyHSD p<=0.0001
recall: DT vs SGD 3D TukeyHSD p<=0.0001
recall: GNB vs SGD 3D TukeyHSD p<=0.0001
precision: ANOVA 3E ANOVA F(2, 12)=208.5559, p<=0.0001
precision: DT vs GNB 3E TukeyHSD p<=0.0001
precision: DT vs SGD 3E TukeyHSD p<=0.0001
precision: GNB vs SGD 3E TukeyHSD p=0.0002
f1: ANOVA 3F ANOVA F(2, 12)=186.5655, p<=0.0001
f1: DT vs GNB 3F TukeyHSD p<=0.0001
f1: DT vs SGD 3F TukeyHSD p<=0.0001
f1: GNB vs SGD 3F TukeyHSD p=0.0006
percent_detected: ANOVA 3G ANOVA F(2, 12)=36.0000, p<=0.0001
percent_detected: DT vs GNB 3G TukeyHSD p<=0.0001
percent_detected: DT vs SGD 3G TukeyHSD p<=0.0001
percent_detected: GNB vs SGD 3G TukeyHSD p=1.0000

Supplemental Table 1: Statistical comparison of 3 models across metrics. Non-significant p-values 
(p > 0.05) are highlighted in orange. 
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Even though the DT model had significantly higher recall than the GNB model, the number of 

seizures detected was not superior (DT: 99.80 ± 0.03%, GNB: 100.00 ± 0.00%). Given that the 

recall of all three models was lower than the proportion of seizures detected, we investigated 

how the predicted seizure bins across time compared between the three models and ground 

truth data. When comparing the predicted seizure bins to ground truth data, we observed that 

the models detected the center of the seizure with higher accuracy than seizure boundaries 

(Figure 4A-C). This is not surprising given that the features that were used to train these models 

do not increase as robustly at the designated seizure boundaries (Supplemental Figure 1). This 

observation could explain why the proportion of segments predicted correctly as seizures is lower 

than the proportion of detected seizures. Interestingly, it seems that the increased recall of the 

DT model arises from high detection of seizure offset segments. However, the DT model 

dramatically misclassifies seizure offset as false positives (Figure 4A, D), which likely accounts for 

its decreased precision. This was not specific to the selected feature-set chosen to train the DT 

model or the depth of the tree, as all DT models tested here overestimated seizure offset 

predictions (Supplemental Figure 2). 
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Figure 4: Seizure prediction across time vs ground truth data. (A-C) Number of ground truth vs 
predicted seizure across time bins. A) DT, B) GNB, C) SGD. D) Difference between model predictions 
across the 3 pairs. Dotted line represents the seizure center. 
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Supplemental Figure 1. Feature values change seizure onset. Graphs show how normalized feature 
values increase during time-locked seizure onset across all seizures in the training dataset. Seizure 
onset is marked by black dotted line. 
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Supplemental Figure 2: Seizure prediction across time vs ground truth data. (A-C) Number of 
ground truth vs predicted seizure across features-sets. A) DT, B) GNB, C) SGD. Dotted line represents 
the seizure center. 
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Manual inspection of EEG datasets to create training labels is costly and laborious. To 

examine the dataset size required to achieve good model performance and seizure detection, we 

trained models on increasing size of data portions (Figure 5). The GNB model detected all seizure 

events from just 1% of the training data even though its performance based on F1 score and 

balanced accuracy, seems to stabilize at 10% of the training data (Figure 5A-B). The SGD model 

detected 99.74 % of all seizures at 1% of training data and detected all seizures at 2.5% of the 

training data whereas its F1 score seems to have stabilized around 10% of the training data, 

although consistently below the GNB model (Figure 5A-B). The DT model detected 99.93% of all 

seizures at 1% of training data and detected all seizures at 2.5% of the training data, but its 

detection dropped to 99.84% at 100% of training data size (Figure 5A). This likely resulted from a 

DT model optimization to increase precision and reduce false positives (Figure 5C-D), resulting in 

higher number of false negatives (Figure 5E). In addition, the F1 score of the DT model kept 

improving as the training data size increased up to the full dataset. However, the F1 score, and 

false detection rate (Figure 5D, F), were lower than the GNB and SGD models across training data 

sizes. As observed before, the DT model had a much lower number of false negatives in 

comparison to the SGD and GNB models even though it had a reduced seizure detection overall 

(Figure 5A, E). Therefore, the GNB and SGD model perform well even with smaller training data 

sizes and quickly achieve a stable performance. On the other hand, the DT model requires a large 

amount of data to improve its precision at the cost of reduced seizure detection. 
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Figure 5: Model performance as a function of training data size. Performance of ML models across 
key metrics for increasing portions of the training dataset. A) Percent seizures detected, B) F1 score, 
C) Precision, D) False Positives, E) False Negatives, F) False detection rate: Number of incorrectly 
detected seizures per hour. 
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To further understand how these models classified EEG segments we extracted metrics 

which quantified the influence of each feature on model predictions (See methods: feature 

contributions; DT: feature importance, SGD: feature weight, GNB: feature separation score). This 

analysis revealed that in the DT model the line length of the vHPC was by far the most important 

feature with a value of 0.80. The second most important feature was the envelope amplitude of 

the vHPC with only a value of 0.14, while the two other features had negligible importance, each 

scoring less than 0.05 (Figure 6A). In contrast the SGD model had a more balanced weight across 

features, with the line length of the vHPC also having the highest weight score of 0.40. The 

envelope amplitude of the vHPC was a close second, with a feature weight of 0.36, while the other 

two features had a combined score of 0.24 (Figure 6B). Lastly, the GNB model does not have an 

in-built metric for feature importance thus we calculated a feature separation score based on the 

distribution of each feature from the trained GNB models (See methods – feature contributions). 

Our analysis indicated that most features had comparable scores, although the line length of 

vHPC had a marginally higher score (Figure 6C). Thus, the GNB model appears to have a more 

balanced feature contribution for its predictions. Overall, this analysis reveals that the line length 

of vHPC feature is a key contributor to seizure detection in this dataset, whereas feature 

contributions varied across models. Intriguingly, the models with more balanced feature 

contributions also had a superior performance. 
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Figure 6: Feature importance for classification. A) DT: Feature importance, B) SGD: Feature 
weight, C) GNB: Feature separation score. Each feature-set has a cumulative sum of 1. 
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A semi-automated application for seizure detection 

Here we observed that interpretable ML models with simple feature extraction were very 

efficient at detecting seizures in our mice that were injected with kainic acid in the ventral 

hippocampus (Basu et al., 2022). To couple the high model sensitivity with enhanced accuracy 

we created an open-source application for semi-automated seizure detection, SeizyML, that 

combines model predictions with manual curation of the detected seizure events. The outline of 

the pipeline is illustrated in Figure 7. Before the app can be used, the raw LFP/EEG data should 

be downsampled (100 Hz, 5 second windows) and must be converted from their native format 

(depending on recording apparatus) to HDF5. A small training dataset needs to also be prepared 

to train the gaussian naïve bayes model. Then using the command line interface of SeizyML, the 

data are preprocessed, features are extracted, and model predictions are generated. Following 

that a simple GUI allows the user to accept or reject the detected seizures. Lastly, seizure 

properties can be extracted from the detected seizures using the seizyML CLI. Importantly, the 

app can be easily extended to use any machine learning (ML) model, channel number and 

features. Although, care should be taken since some ML models cannot perform well on large 

datasets especially on large number of features (including decision tree models used here).  
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Figure 7: SeizyML pipeline. Green area denotes data preparation steps performed from the user 
before the data are ready for processing by SeizyML. Blue area highlights the main processing steps 
of the SeizyML application. 
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Discussion 

Here we have compared the performance of four linear models for automated seizure 

detection: gaussian naïve bayes (GNB), decision tree (DT), stochastic gradient descent classifier 

(SGD) and passive aggressive classifier (PAC). Even though most models detected all seizures in 

our test dataset (608 seizures), we found that the GNB model had the best F1 score, had simple 

tuning (only one hyperparameter), needed only a small amount of training data to reach good 

performance and it is highly interpretable. In agreement with previous findings (Logesparan et 

al., 2012), we found that the best predictor for seizure detection was the line length of the 

electrographic activity (vHPC). This was revealed by 1) the feature ranks of the ANOVA/mutual 

information test from the training dataset along with 2) feature importance of the trained 

models. We have further created an open-source python application, SeizyML, for semi-

automated seizure detection using the GNB model. We believe that a semi-automated approach 

that combines fast and sensitive machine learning models with seizure verification from human 

operators is a crucial first step in the automation of seizure detection. Allowing operators to 

review the detected seizures and verify them can enhance their trust of the algorithm and will 

help to understand how to further improve ML algorithms. 

Our model comparisons revealed that the PAC model had the worst performance across 

multiple metrics independent of the feature-set that it was trained on (Figure 2). It’s possible that 

the suboptimal performance of the PAC model arises from the aggressive optimization algorithm 

that misses the global minimum. This is supported by the fact that the SGD classifier with a 

different optimization algorithm, but the same loss function (Table 3) outperformed the PAC 

model (Figure 2). The DT model had the highest recall and lowest precision when compared to 
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DT and SGD models (Figure 3). However, the high recall of the DT model did not translate to 

better seizure prediction (Figure 2). Both the high recall of the model and low precision seems to 

arise from misclassifications of the seizure termination (Figure 4) and the poor performance of 

the model could be attributed to it heavily relying on one feature (Figure 6). The SGD model had 

comparable performance to the GNB model although it had a lower F1 score (Figure 3). 

Additionally, the SGD model has many hyperparameters and took the longest to tune using grid 

search, making it more complicated and time-consuming to train. Nevertheless, it will be 

interesting to see a direct comparison of the performance of SGD and GNB models on other 

extended seizure datasets from well-established but diverse models of epilepsy. 

 

Limitations and Future Directions 

This study aimed at finding simple and interpretable ML models for offline seizure 

detection. Our method using 5 second windows is not able to detect the seizure onset with high 

temporal precision. If detecting seizure onset/offset is of primary interest, our model could be 

combined with additional time-sensitive algorithms such as wavelet transform or Empirical mode 

decomposition approaches (Chen et al., 2017; Molnár et al., 2023). Although, these algorithms 

tend to be computationally expensive so it would be inefficient to be used in isolation. 

Furthermore, here we downsampled the LFP/EEG data to 100Hz and excluded high frequency 

components that could be important for seizure detection (Bragin et al., 2004; Molnár et al., 

2023). In addition, we did not perform an exhaustive search of interpretable ML models due to 

time constraints. However, this approach was sufficient to detect all seizures in this dataset and 

has also resulted in fast and efficient ML pipeline. 
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One crucial consideration is that most automated seizure detection algorithms, including 

the ones here, are often restricted in classifications of non-seizure vs seizure periods. Yet, there 

is a broad range of seizures as categorized by clinical outcomes (such as focal, generalized tonic-

clonic, etc.) (Fisher et al., 2017; McCallan et al., 2023). Detecting these different types of seizures 

is crucial in epilepsy as it can assist in enhanced diagnosis, more targeted therapies, and better 

control of seizures (McCallan et al., 2023). However, supervised approaches can only be as good 

as our definitions of these seizure types. And even though definitions of seizure types are 

improving, they are based exclusively on clinical symptoms (Fisher et al., 2017), and do not take 

into account the pathophysiology of neuronal networks and the mechanism of seizure 

generation. Therefore, improving seizure definitions based on the pathophysiology of neuronal 

networks is of paramount importance. We believe that creation of diverse seizure datasets (from 

multiple brain regions, recording systems, seizure types) with improved seizure definitions 

should be of utmost priority in order to improve epilepsy diagnosis and train better ML models 

for automation of seizure detection. 
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