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Abstract30

High-density microelectrode arrays (MEAs) have opened new possibilities for systems neu-31

roscience in human and non-human animals, but brain tissue motion relative to the array poses32

a challenge for downstream analyses, particularly in human recordings. We introduce DREDge33

(Decentralized Registration of Electrophysiology Data), a robust algorithm which is well suited for34

the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to35

estimating motion from spikes in the action potential (AP) frequency band, DREDge enables au-36

tomated tracking of motion at high temporal resolution in the local field potential (LFP) frequency37

band. In human intraoperative recordings, which often feature fast (period <1s) motion, DREDge38

correction in the LFP band enabled reliable recovery of evoked potentials, and significantly re-39

duced single-unit spike shape variability and spike sorting error. Applying DREDge to recordings40
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made during deep probe insertions in nonhuman primates demonstrated the possibility of track-41

ing probe motion of centimeters across several brain regions while simultaneously mapping single42

unit electrophysiological features. DREDge reliably delivered improved motion correction in acute43

mouse recordings, especially in those made with an recent ultra-high density probe. We also im-44

plemented a procedure for applying DREDge to recordings made across tens of days in chronic45

implantations in mice, reliably yielding stable motion tracking despite changes in neural activity46

across experimental sessions. Together, these advances enable automated, scalable registra-47

tion of electrophysiological data across multiple species, probe types, and drift cases, providing a48

stable foundation for downstream scientific analyses of these rich datasets.49

1 Introduction50

High-density microelectrode arrays (MEAs), and in particular Neuropixels probes, have enabled si-51

multaneous high quality recording from large populations (hundreds) of neurons with high resolution,52

both temporally (20-30kHz) and spatially (channels spaced by tens of microns or less)1;2;3;4;5;6. Since53

their introduction and ongoing development, high density MEAs have opened new possibilities for54

the study of neuronal populations via spiking activity and local field potentials, within and across55

brain regions. They have enabled testing a variety of novel hypotheses across species, includ-56

ing those related to electrophysiological7 and functional8 properties of cell types, neural correlates57

of consciousness9, population dynamics10, motor planning11, episodic memory12, visual decision58

making13, and skin patterning in dreaming octopi14. Further, Neuropixels probes have recently been59

employed for high-quality intraoperative recordings in humans15;16, both awake and under general60

anaesthesia while undergoing surgical interventions for their clinical care, enabling us to directly61

answer fundamental questions about human brain physiology with possible clinical implications.62

However, several biological and physical sources of noise and variability can reduce the neural63

recording effectiveness of these probes17. In particular, in vivo recordings can be impacted by the64

motion of the brain relative to the recording probe, especially in recordings from human participants65

where brain motion effects may appear due to the heart rate, breathing, speaking, or movement66

of the patients15 and can be an order of magnitude larger than the brain movement observed in67

non-human animals such as mice. Such motion causes voltage measurements to drift across the68

recording electrodes, which can confound downstream tasks such as spike sorting and behavioral69
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decoding. In the action potential (AP) frequency band (frequencies above ⇡ 300Hz), the motion of70

a single well-isolated neuron relative to the probe can result in undersampling or false splits in its71

spiking activity if not properly motion corrected18;19;6;20; similarly, motion can make it difficult to iden-72

tify and isolate events in the local field potential (LFP) frequency band (frequencies below ⇡300Hz),73

leading previous studies to resort to manual or semi-automated tracking in some cases15;16. Fur-74

ther, these motion artifacts can lead to errors in downstream applications, reducing the power and75

accuracy of a given study’s scientific analyses and precluding full analysis of task-related activities76

that correlate with motion.77

Estimating the motion of a sensor such as a high-density MEA from its data falls into the category78

of registration problems familiar from other domains, including biomedical image alignment21;22;23;24
79

and video stabilization25;26 among many other methods in a large and active field of research. In the80

context of extracellular neurophysiology recordings, registration methods need to be robust to both81

substantial measurement noise and the oscillations of the local field potentials and able to scale up82

to recordings on hundreds of channels with temporal resolution in the tens of kilohertz. Further, they83

must be flexible enough to model deformations of the brain tissue relative to the probe which change84

over time while also varying along the depth of the probe, as parts of the tissue may move differently;85

such spatially nonuniform motion estimation problems are referred to as “nonrigid” registration tasks,86

in contrast to rigid motions which do not vary along the probe depth.87

Current methods rely on the motion tracking algorithm of Kilosort 2.5 (KS)6;27, which estimates drift88

from spiking activity in the action potential band using a template-based approach similar to that of89

the NormCoRRe (Non-Rigid Motion Correction) algorithm developed for calcium imaging data28;26.90

These methods first break the recording into independent spatial blocks (i.e., groups of channels)91

to account for nonrigidity and estimate motion within each block by computing a global template,92

which is a spatial summary of the neuronal activity computed by suitably aggregating statistics of93

individual spikes from across the recording into spatial bins. Next, these methods cross-correlate94

this global template with time-binned neuronal activity to estimate the displacement in each time95

bin relative to the template, leading to an estimated motion trace which can then be used to update96

the template in an iterative scheme. Although this method is effective in some real and simulated97

data6;29, its application is limited to datasets which can be aligned to such a global template, which98

excludes oscillating local field potentials and spiking data which is highly nonstationary or features99

drift which is large relative to the length of the probe or the spatial extent of the blocks used to100
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account for nonrigidity. Further, KS’ motion estimate is limited in its temporal resolution by the noise101

characteristics of spiking data, leading to the development of algorithms to assist manual tracing at102

higher temporal resolution like MTracer16, which in addition to relying on manual annotations is also103

limited in its application to rigid drift (i.e., motion which does not vary along the depth of the probe).104

In this work, we introduce DREDge (Decentralized Registration of Electrophysiology Data). In con-105

trast to previous global template-based methods, DREDge starts from the decentralized framework106

of Varol et al. 30; Windolf et al. 31, which infers motion by modeling local relationships in the data,107

allowing for motion estimation from either time-binned spiking data or filtered local field potential108

recordings. This approach estimates the relative displacements of pairs of time bins via cross-109

correlation28, and models these local relationships as arising from a latent motion trace, which can110

then be inferred through optimization. DREDge extends this framework by posing a model which111

combines information from local displacements and correlations between pairs of time bins with a112

spatiotemporal smoothing prior, leading to a unified method which is able to produce stable motion113

estimates from both spikes and local field potentials. DREDge further extends this method through114

computational and algorithmic improvements which enable scaling to both longer and more rapidly115

sampled data, in particular by implementing an online algorithm that enables the inference of motion116

at hundreds of hertz from the local field potential band (Fig. 1). DREDge’s motion estimation runs in117

a small fraction of real time in the action potential band after spike detection and localization, and at118

around a quarter of real time when estimating nonrigid motion at high temporal resolution (⇠250Hz)119

from local field potentials (Supp. Fig. 1).120

We applied DREDge to in vivo datasets from a variety of species and MEA types, including human121

Neuropixels recordings15;16, recordings in mice from the International Brain Lab’s large-scale re-122

producible electrophysiology experiment32, non-human primate recordings during probe insertion33,123

and mouse recordings using the experimental ultra high-density Neuropixels probe34, among others.124

Through these experiments, we demonstrate the usage and utility of DREDge along with some of125

the novel downstream analyses that it enables. These include extending motion tracking to smaller126

and denser probes, leveraging local field potential-based motion estimation to improve local field po-127

tential event tracking and spike sorting in human datasets, tracking electrophysiological properties of128

cells across tens of millimeters of brain tissue during a deep probe insertion in rhesus macaque, and129

enabling stable motion correction in chronic recordings with sessions separated by days or weeks.130

We also include detailed comparisons to current methods (i.e., Kilosort), introducing DREDge as a131
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leading algorithm for this task.132

133
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Figure 1: DREDge is a robust online motion drift estimating algorithm for electrophysiology
recordings in both action potential (AP) and local field potential (LFP) bands. a Motion of the
brain tissue relative to the probe causes signals to drift from channel to channel during extracellular
recordings with high density multi-electrode arrays. This drift is visible in both the low-frequency
local field potential (LFP; top right) band and the high-frequency action potential (AP; bottom right,
green highlighting for visual emphasis) band. b The processing pipeline of DREDge motion esti-
mation and analysis. Electrophysiology recordings are first preprocessed into spike rasters (here,
extracted from a recording in mouse32; see see Section 4.1) or filtered LFP (here, from a human
intraoperative recording15; see Section 4.2), which reveal changing structure along the long axis of
the probe over time. DREDge takes in these preprocessed features and returns the drift estimate.
The estimated drift is then used for drift correction that supports further analyses such as spike sort-
ing, LFP event detection, and electrophysiological feature mapping. c Schematic of DREDge. Time
bins of preprocessed data are cross-correlated with other time bins to generate a T ⇥ T matrix D
of estimated optimal displacements along with the corresponding maximum cross-correlation matrix
C. The displacement matrix D is filtered using a correlation cutoff, and the remaining terms are com-
bined with a spatiotemporal smoothing prior in a bottom-up or decentralized fashion to determine
drift estimates P̂ for each time bin (see Methods).

2 Results134

A decentralized framework for motion estimation. DREDge is designed to estimate motion from135

both the action potential (AP) and local field potential (LFP) bands of extracellular recordings after136

suitably preprocessing them to reveal useful spatial features (Fig. 1.a and Methods). To prepro-137

cess the AP band for input into DREDge, unsorted spike events detected by existing pipelines (for138

example,19;27;35) are spatially localized relative to the probe using a model which predicts their lo-139

cations from their waveforms, such as the point-source model of Boussard et al. 36 or alternative140

methods6;37;19;38;39. These spike positions are then combined with firing rate and amplitude infor-141

mation and binned in space and time to form a two-dimensional spike raster. LFP signals require142

less preprocessing, including spatial filtering and temporal downsampling to the target resolution for143

registration, along with standard filtering and artifact removal steps (Section 4.2).144

After preprocessing reveals spatially localized features in the recording, our goal is to detect cor-145

related spatial displacements of these features over time and then to use these displacements146

to estimate the underlying and possibly nonrigid relative motion of the probe and the brain tissue147

(Fig. 1.b). To that end, we began from the core operation of the decentralized framework of Varol148

et al. 30, which computes the offsets which maximize the cross-correlation between pairs of time bins149

of the preprocessed signal. In the decentralized framework, the motion is estimated in a bottom-up150

fashion from these pairwise estimates, rather than in a top-down or centralized fashion from a global151
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template as in Kilosort’s algorithm. DREDge extends this framework, first by combining these esti-152

mates of the relative displacements between pairs of time bins with their corresponding correlations,153

which are used to increase the influence of pairs of time bins which contain more similar features.154

Displacement estimates between pairs of time bins are also excluded when the time bins lack sig-155

nificant signal (e.g., have very few spikes) or when the interval between time bins is large (to avoid156

the computational burden of cross-correlating all pairs of time bins). These observations are then157

placed into a Bayesian model with a spatiotemporal smoothing prior, leading to a robust and general158

framework which is able to estimate motion from both spikes and LFP (Fig. 1.c and Methods).159
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Figure 2: Correcting for motion in human spiking data. a In a recording15 in the rostral middle
frontal gyrus (also the dorsolateral prefrontal cortex, shown in this participant in the brain reconstruc-
tion on the left), the neural signal before (middle) and after applying interpolation (right) to correct
for the motion in the local field potential (LFP) and action potential (AP) bands based on DREDge’s
motion tracking in the LFP band. Brain regions in figure on the left: rostral middle frontal gyrus, blue;
caudal middle frontal gyrus, cyan; superior frontal gyrus, purple. Arrow indicates location of the
Neuropixels probe. b DREDge’s LFP-based tracking accurately tracks motion which can be inde-
pendently identified from spiking information alone. Fast breathing- and heartbeat-induced motion
present in a human intraoperative recording is visible in spike and LFP rasters (i,ii). DREDge’s lower
temporal resolution spike-based tracking finds and corrects the slow motion trend (i, blue; iii), while
the LFP-based estimate (i and ii, green; v) tracks the fast oscillations. Sub-second correction on top
of AP-based tracking based on clustering and splines matches well with the LFP-based method (i
and ii, orange; iv; see Section 4.8). c Recovering units in noisy spiking data by motion estimation
from the local field potential (LFP) band: although the large and rapid motion in this recording leads
to a spike raster from which DREDge cannot extract a signal (i), using DREDge’s LFP-based non-
rigid motion estimation to correct the positions of spikes reveals well-isolated single unit waveforms
(iv) in groups of spikes collected by isolating clusters in plots of spike depths vs. time and amplitude
(ii and iii). d A subset of spike detections and sorted units (with different single unit clusters color
coded as dots) across channels before (top) and after (bottom) registration with a DREDge motion
estimate (black line). Note the emergence of aligned spikes on the bottom panel. e Progressive
decrease in inter-spike interval violation probability with increasing interpolation rate (0.5 - 250 Hz),
as compared to unregistered data (U) and data interpolated using the motion-correction interpolated
method based on a randomly permuted or “scrambled” DREDge motion estimate (S). Bar represents
mean. f Representative unregistered (top) and 250 Hz-interpolated (bottom) unit (red dot on panel
D), revealing a well-stereotyped multi-channel waveform after interpolation. Scale bar 1 ms. g Aver-
age spatial distribution of spike clusters when non-interpolated (left) and 250 Hz-interpolated (right);
motion-correction interpolation concentrates spike power around a central channel. h Full probe
spatial distribution of spikes in non-interpolated condition (top) and 250 Hz-interpolated clusters
(middle). (Bottom) Comparison of 250 Hz interpolated spike assignments to unregistered clusters,
showing over-splitting and cross-contamination of unregistered clusters.
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Figure 3: Correcting for motion in human local field potential data. a Top: Spontaneous LFP
before and after motion-corrected interpolation and following Zapline-plus low-frequency peak re-
moval. Bottom: Average power spectral curves before (left) and after (right) motion correction, aver-
aged across channels. b In a recording in the superior frontal gyrus (also the dorsomedial prefrontal
cortex), average visually evoked potentials can be observed in the LFP in a colormap to black versus
white squares presented on a screen in front of the patient before and after motion-corrected inter-
polation and Zapline-plus application. Brain regions in figure on the left: rostral middle frontal gyrus,
blue; caudal middle frontal gyrus, cyan; superior frontal gyrus, purple. Arrow indicates location of
the Neuropixels probe. c In the same recording in the superior frontal gyrus (also the dorsomedial
prefrontal cortex), average visually evoked potentials across all channels can be observed in the
LFP in a colormap before and after motion-corrected interpolation and Zapline-plus application. d
Average log power spectral curves per channel (with the power represented as a color scale) be-
fore (left) and after (right) motion correction. Green brackets indicate ranges of channels with more
power in the low and mid-frequencies across channel depths which are not evident before motion
correction. Arrowhead indicates channels with lower power in the high frequencies in superficial
channels. e Voltage variance across trials (first averaged across channels) before and after mo-
tion correction for the black and white visual stimuli. f Left: Relative variance averaged across 10
seconds of baseline activity per participant (different color dot lines and asterisks are different par-
ticipants). Asterisks, p < 0.00001; pairwise Wilcoxon rank sum tests per participant. Right: Relative
variance averaged across channels during baseline activity per participant (averaged across time,
different color dot lines and asterisks are different participants). Asterisks, p < 0.00001; pairwise
Wilcoxon rank sum tests per participant. g Common median LFP (across channels) of detected in-
terictal epileptiform discharges (IIDs) before and after motion-correction interpolation, recorded in a
patient with intractable epilepsy during an open craniotomy to remove epileptogenic tissue. h Spon-
taneous LFP per channel shown as a colormap and with a zoomed-in voltage trace of the same
data for a detected IID before and after motion-corrected interpolation, showing that the IID survives
the processing. The voltage and timing scale in c applies to the voltage traces here. The voltage
colorbar in c applies to heatmaps here. Lower-indexed channels are deeper in the tissue.

DREDge rescues spike sorting and LFP features in human intraoperative patient brain ac-162

tivity. A major motivation for this work was the significant motion observed while recording human163

brain activity using Neuropixels probes (Figs. 2 and 3; Supplementary Video 1). As reported by164

two separate groups15;16, the brain movements during open craniotomy and deep brain stimula-165

tion surgeries are substantial, ranging up to millimeters (Fig. 2.a; Supplementary Video 1). Pre-166

vious approaches to combat and correct for this motion signal primarily involved manual tracking167

in the local field potential15 or action potential bands16 or semi-automated tracking16 (MTracer,168

https://github.com/yaxigeigei/MTracer). In a collection of both openly shared deidentified data169

sets and newly collected data sets, we demonstrate the capability of DREDge to automatically track170

this movement within the neural signal both in the LFP band and the spiking activity or AP band171

(Fig. 2.a, right panel). In a subset of cases (N = 3), we compared DREDge’s LFP-based tracking to172

manual tracking using LFP signals (Supp. Fig. 2;15). We found a high correlation between manual173

tracking and DREDge motion tracking (Pt01, r = 0.98; Pt02, r = 0.99; Pt03, r = 0.85; Pearson’s r ;174

p < 0.000001 for all three instances, Supp. Fig. 2). Further, we found that the peaks in the power175
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spectra for the manual and DREDge-tracked motion were in agreement. Finally, in an attempt to176

validate whether this movement tracked using neural signals corresponds to actual movement, we177

performed motion tracking of pixels in a video of the brain movement in an open craniotomy and178

found that the video-tracked movement and its spectral peaks were very similar to those of both the179

manual and DREDge motion tracked traces (N = 1; Supp. Fig. 2).180

To further validate this cross-band registration procedure, we examined another human recording15
181

with fast drift. In this dataset, DREDge’s AP-based motion estimation was able to capture the slow182

trend of the true motion, but not the faster motion due to heartbeats and other sub-second brain183

motions. Since this recording featured prominent and well-isolated spiking activity traces from prob-184

able single units, it was possible to estimate the trajectories of these point clouds in order to refine185

the motion estimate at higher temporal resolution. To do so, we used a rough clustering to isolate186

each of these units’ traces, and used the spike positions within these clusters to fit a spline (Fig. 2.b,187

Supp. Fig. 3; see also Section 4.8). This sub-second AP-based motion correction procedure was188

able to track the fast (< 1Hz period) heartbeat-induced motion visible in the modeled spike positions189

and LFP raster (Fig. 2.b, i and ii), leading to an apparent improvement of its registered spike raster190

(iv) over that of DREDge’s AP-based estimate (iii). Next, we applied DREDge’s LFP-based motion191

tracking to the same recording. We found that the motion traces estimated using the sub-second cor-192

rection method and DREDge-LFP overlapped strongly (Fig. 2.b, i and ii) and that the LFP-registered193

spike raster (v) was visually aligned with the sub-second corrected raster (iv). This agreement rein-194

forced the utility of applying LFP-based motion estimates to realign spike data while also validating195

the alternative spline-based method for estimating sub-second rigid motion from clustered spikes.196

DREDge’s ability to track motion from both the AP and LFP bands allows users to choose the best197

signal source in each application. For instance, in some human recordings featuring large natural198

heartbeat- and breathing-induced motion which is fast relative to the timescale at which AP motion199

tracking is stable, which is typically around 1Hz due to the sparsity of spiking activity, motion tracking200

in the AP band can be unreliable or impossible, corresponding visually to a lack of structure in the201

spike raster plot (Fig. 2.c, i). However, we found that motion tracking in the spatiotemporally smooth202

LFP band was consistently reliable in such datasets, even when performing nonrigid registration at203

high temporal resolution (250Hz). In Fig. 2.c, we focused on a human Neuropixels 1 recording made204

with a long two-column channel configuration16, featuring thousands of microns of drift across the205

entire recording made up of fast motion oscillations of approximately 500µm around a long-term drift206
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which extended over approximately 1mm. LFP-based nonrigid motion estimation visually appeared207

to track fast moving features present not only in the LFP band but also in scatter plots of spike208

positions (Fig. 2.c, i, detail plots). When visualizing the positions of spikes after correction using the209

nonrigid LFP-based motion estimate in scatter plots versus time (Fig. 2.c, ii) and spike amplitude210

(Fig. 2.c, iii), isolated clusters of these spike positions became apparent. Waveforms extracted211

from the detected events leading to the spikes visualized in these scatter plots had well-stereotyped212

shapes Fig. 2.c, iv), indicating that the LFP-based motion estimate was able to stabilize the positions213

of single units, validating the utility of cross-band registration in the estimation of extensive and fast214

drift in a dataset which would be challenging or impossible to process based on AP data alone.215

(Similar results are illustrated in Supp. Fig. 4.)216

On the other hand, cases exist where the LFP band does not feature structures which can be used in217

motion tracking, or in which other signals dominate, making LFP-based motion tracking impossible.218

For instance, in recordings from ketamine/xylazine-anaesthetized rat40 (Supp. Fig. 5), the LFP band219

is dominated by slow-wave activity across the array that confounds DREDge’s LFP-based motion220

tracking, leading to an artifactually oscillating motion estimate which did not align with the very221

stable spike raster plot. However, when we applied spike-based motion tracking to these recordings,222

the estimated motion trace was very stable, in agreement with the apparent lack of drift in the spike223

rasters. The flexibility of the DREDge algorithm made it possible to switch between these modalities224

as required by each application.225

As above, we found that in multiple other recordings (N > 20 in human cortex) the brain motion226

could be observed in both the changing voltages across the channels in the LFP and the identifi-227

able single-unit waveforms moving up and down the channels in the recording (Fig. 2.d)15, and that228

tracking the motion in the LFP band using DREDge and then interpolating the voltage values in both229

the AP and LFP bands was able to compensate for this motion (Fig. 2.d, bottom panel). We hy-230

pothesized that this motion correction procedure would lead to marked improvements in the quality231

of single units isolated by spike sorters. Indeed, not only did this correction stabilize the location of232

detected spike waveforms, but the subsequent sorted single unit clusters were better isolated with233

decreased inter-spike-interval (ISI) violations (Fig. 2.e), more concentrated waveforms across chan-234

nels per individual cluster (Fig. 2.f-g), and reduced oversplitting and contamination across clusters235

(Fig. 2.h). We found that the spatial spread of the voltages was concentrated in a smaller range with236

significantly higher amplitudes represented in a smaller spatial range following motion corrected in-237
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terpolation compared to the raw data set (Supp. Fig. 6, two-sided two sample t-test at each distance238

from center, Bonferroni corrected with threshold p < 0.05). Importantly, the sorted clusters improved239

(had fewer ISI violations) as we increased the temporal resolution of LFP-based DREDge motion240

tracking from 1Hz to 250 Hz. To further demonstrate improved spike sorting results, we examined241

the relationship between sorted clusters before and after correcting for the tracked motion (Fig. 2.h).242

The number of sorted clusters (or single units) decreased from more than 500 to around 50. Visual-243

izing the overlap between unregistered and registered units revealed that the unregistered clusters244

tended to comprise spikes from several of the registered clusters, indicating oversplitting relative to245

the improved clustering after registration.246

LFP-based motion estimation and the following interpolation step can also be applied to correct for247

motion artifacts in the LFP band itself, leading to cleaner and more stable LFP signals (Fig. 3.a).248

However, even after this step, there was still a clearly visible heartbeat artifact in the signal, which249

is commonly observed in electrophysiological recordings (see, e.g., Tal and Abeles 41) and which250

manifested as large low-frequency peaks in the power spectrum. To remove this artifact from the251

traces after motion-correction interpolation, we applied Zapline-plus42;43, a generalized line-noise252

removal method which uses spectral and spatial filtering to effectively remove specified, narrow-253

band oscillatory components from the signals (see also Supp. Fig. 7). We targeted the low-frequency254

peaks in the signal, and in particular those which matched the spectral peaks in the DREDge motion255

trace. This additional step resulted in smoothed LFP signals similar to those which we observe256

in microscale laminar sampling of human cortical layers using other types of electrodes (Ulbert257

et al. 44; Csercsa et al. 45; Fig. 3.a). Further, when we examined the power spectra across channels,258

we found peaks before motion correction which disappeared after motion correction (Fig. 3.a).259

This LFP-based motion correction was critical for identifying visual stimulus-induced evoked poten-260

tials in recordings in the dorsomedial prefrontal cortex (dmPFC, also the superiorfrontal gyrus). We261

presented a series of black and white squares to an awake participant undergoing DBS surgery262

and examined the LFP response in the dmPFC (Fig. 3.b; Supp. Fig. 8). As observed in other263

data sets46, the motion-corrected dmPFC LFP showed significantly different depth-specific average264

evoked potential responses to the visual stimuli on the per-channel level which differentiated be-265

tween the black and white squares (N = 1; p < 0.01, Wilcoxon rank-sum test per time point, false266

discovery rate-corrected for multiple comparisons), whereas motion contamination had few to no267

image-onset induced differences between black and white square trials (n > 48 trials per condition268

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.24.563768doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563768
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Fig. 3 and Supp. Fig. 8). Motion-correcting the LFP across channels further revealed depth-specific269

responses to the black versus white square stimuli that remained at the same depth throughout270

the averaged trial. Before motion correction, this voltage signal was highly variable vertically along271

the depth of the electrode (Fig. 3.c). As further validation that the motion correction could rescue272

physiologically relevant neural data which varies along the depth of the electrode in the cortex, we273

compared the power spectra across channels, averaged across trials. Before motion correction, we274

could not differentiate power spectral representations along the depth of the electrode. However, af-275

ter motion correction, we found increased power in two different ranges of channels (green brackets276

in Fig. 3.d) and decreased high frequency power in the superficial layers (arrowhead; Fig. 3.d).277

Even if the underlying neural response was present in the original LFP signal, the motion introduced278

not only large vertical movements but also significantly higher motion-induced voltage across trials279

with visual presentations (averaged across channels at 0.25 sec after image onset; N = 1; p <280

0.000001, Kruskal-Wallis Test; Fig. 3.e). Taking baseline data without any stimuli across a total of281

6 participants, we also found that motion correction along with Zapline-plus correction significantly282

decreased voltage variance on the per-participant level across time and across channels (N = 6;283

p < 0.000001, pairwise Wilcoxon rank-sum test per participant; Fig. 3.f).284

To test whether these correction and interpolation steps either could rescue, or, alternately, remove285

neurally-induced LFP signals from contamination by motion and heartbeat artifacts, we next exam-286

ined epileptiform interictal discharges (IIDs) before and after these preprocessing steps in Neuropix-287

els recordings (Fig. 3; Supp. Fig. 9). We examined IID activity detected using automatic approaches288

and validated by an epileptologist (SSC) across the electrode depth in an open craniotomy case289

for the resection of anterior temporal lobe tissue in the treatment of epilepsy (N = 1; Fig. 3.g and290

Supp. Fig. 9; Paulk et al. 15). As the IIDs were large enough, we could detect them using the median291

of the LFP signal across channels both before and after motion-correction interpolation (Fig. 3.h).292

Importantly, in the raw traces as well as the IID-triggered average, we observed IID waveforms in293

the raw data which were not eliminated either after the motion-correction interpolation step or after294

Zapline-plus (Supp. Fig. 9). We found that the IIDs were larger on the probe contacts deeper in the295

tissue in this recording, which corresponded to the lower channel numbers in the figure, as has been296

observed in other cases of laminar recordings in the human cortex (N = 1, Pt03; Fig. 3 and Supp.297

Fig. 9; Fabo et al. 47). These results indicate that these processing steps can still result in an LFP298

signal that retains underlying neurophysiological signatures in the data set.299
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As DREDge’s motion tracking could be susceptible to signals which are widespread across the300

recording channels48, we next wanted to test whether general anesthesia-induced burst suppression301

activity could pose difficulties for DREDge, and whether the burst suppression signal could survive302

the interpolation step for motion correction of raw data (see Methods)48;15. On the contrary, following303

this motion-correction interpolation, the LFP still showed burst suppression voltage signatures which304

could be detected using automatic tools (Supp. Fig. 10; Westover et al. 49; Salami et al. 50). Indeed,305

we could detect bursts in the common median voltage traces at similar timings before and after306

motion-correction interpolation, with correlations between burst detections before and after motion-307

correction interpolation above 0.9 (Pt01, r = 0.93, p < 0.00001; Pt03, r = 0.95, p < 0.00001). Along308

with differentiating visual responses, the voltage variance, the power spectral differences, and IID309

detections, these results confirm that the processing steps to correct for the motion artifact detected310

by DREDge still allowed us to capture multi-channel dynamics related to neural processes which311

include differentiating sensory responses.312
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Figure 4: Monitoring long range drift during a deep probe insertion. a (i) The planned NP1.0-
NHP probe insertion trajectory in the monkey brain (motor cortex to the internal globus pallidus). (ii)
Spike raster before registration. (iii) Spike raster after registration, with DREDge estimated motion
trace (scale bars: 3840µm vertical, 5min horizontal). b Localizations of detected spikes before (left)
and after (right) drift correction according to the DREDge motion estimate. c Template waveforms
for three example units estimated from time-binned (15s bins) spikes, clustered using location fea-
tures stabilized using DREDge motion correction. Template waveforms are extracted on channel
neighborhoods around the unit’s max amplitude channel in each time bin, and colored by time (color
scale in a.i). The templates remain stable as the probe is inserted through its entire length. d Visual
description of the three features extracted from spikes’ maximum amplitude channels and visualized
in f. e Examples of traveling spike. The multiplicative inverses of the spike velocities below and
above the channel with maximum peak-to-peak amplitude were shown as features in f. f Binned
averaged spike features show consistent transitions across various depths, particularly near the pu-
tative striatal borders.

Tracking long-range drift during probe insertion in non-human primates. A key advantage of314

the decentralized motion estimation framework is its ability to tolerate large nonstationarities in its315

input data, so that it does not require the same population of neurons to be present throughout an316

entire recording session. We thus hypothesized that DREDge would be able to track long-range drift317

surpassing the length of the probe, which would enable users to map the neural population recorded318

around the probe as it advances into the brain, in a manner similar to the previous tetrode study of319

Mechler et al. 37. To test this hypothesis, we implemented DREDge on long insertion datasets (N = 2,320

Fig. 4 and Supp. Fig. 11) recorded from rhesus macaque using Neuropixels 1.0-NHP probes33. The321

probe was inserted from the motor cortex targeting globus pallidus internus (GPi) in the basal ganglia322

using a commercial drive system (Fig. 4.a), with a target insertion depth of over 20 millimeters at a323

rate of 10µm/s (approximately 26 mm total estimated from drive motion, with an insertion speed of324

10µm/s; recordings were cropped temporally to due to recording quality for input to DREDge).325

The large movement of the probe relative to the neuronal sources present during insertion was326

clearly visible in raster plots of spike depth positions over time (Fig. 4.a; Supp. Fig. 11.a). While327

KS’ template-based drift tracking failed in this case (Supp. Fig. 12), which we hypothesized was due328

to the difficulty of modeling several probe lengths’ of neuronal populations with a single template,329

DREDge was able to track motion across centimeters (Fig. 4.a).330

To validate the motion estimate, we began by visualizing individual spikes’ vertical and horizontal lo-331

cations in the plane of the probe, estimated using the point-source model of Boussard et al. 36 before332

and after motion correction (Fig. 4.b). While single unit clusters were completely obscured by the333

motion of the probe before motion correction (left), which is to be expected since each unit moved334

across the entire probe during the insertion, spike positions resolved into well-isolated clusters after335
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registration (right). After manually isolating three clusters of spikes in the registered feature space,336

we separated their spike trains into 15-second temporal bins and computed average waveforms of337

the spikes in each bin. Plotting these waveforms on time-varying local channel neighborhoods ex-338

tracted around their maximum amplitude channels revealed stable waveform shapes corresponding339

to single units as they traveled the length of the probe (Fig. 4.c).340

In many experimental scenarios, the ability to accurately pinpoint the probe’s location within the tar-341

get region’s anatomy is highly desirable. Experimenters identify the anatomical location of the probe342

during experiments by combining depth information from a drive system with observed changes in343

firing patterns along the insertion. However, this method can be subjective and prone to errors in344

depth estimates due to, e.g., tissue dimpling and deformation during insertion. Taking an alternative345

automated approach, we combined DREDge’s motion estimate with extracellular waveform features346

to determine the anatomical location of the probe. Waveform features were found to correlate with347

differences in cell type in previous studies7;51, so that collections of such features may also be infor-348

mative in determining the brain region, thanks to the natural variability in cell type frequency across349

brain regions.350

To correlate DREDge’s motion estimate with the approximately known anatomical trajectory of the351

probe in the NHP brain, which proceeded from motor cortex through white matter and striatum and352

finally to the internal globus pallidus (Fig. 4.d, right; Supp. Fig. 13), we collected waveform fea-353

tures from spikes observed across the insertion trajectory and studied their variation in relation to354

the motion-corrected spike depth. These features included the peak height, peak-to-peak dura-355

tion, peak-to-trough ratio, spatial spread, and travel velocities of each spike (Fig. 4.d,e), and were356

computed after denoising each spike using the neural net denoiser of Lee et al. 52; more informa-357

tion on feature computation is included in Methods. Visualizing averages of these features as a358

function of motion-corrected spike depth revealed consistent variations which roughly aligned to ex-359

pected anatomical boundaries along the insertion trajectory (Fig. 4.f). This experiment served both360

to validate DREDge’s long range motion tracking and to demonstrate the feasibility of simultaneous361

anatomical localization and electrophysiological feature mapping during probe insertion.362
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Figure 5: State of the art registration in acute mouse Neuropixels recordings. a Motion estima-
tion from spikes detected in imposed motion datasets from Neuropixels 1, 2 (i, ii) and Ultra probes
(iii)6;34. DREDge’s motion traces (left column, blue) and motion-corrected spike rasters (middle col-
umn) match the quality of Kilosort’s (left column, red; right column) on NP1 and NP2 data (i, ii).
Unlike Kilosort (KS), DREDge also performs well when applied to the short and dense layout of the
NP Ultra probe (iii). b In n = 47 datasets from the International Brain Lab’s repeated site experi-
ment32, DREDge reliably outperforms KS on nonrigid spike-based registration according to a simple
metric of registration quality (see Section 4.9). We computed this stability metric on unregistered,
KS-registered, and DREDge-registered spike positions; here, the vertical position of a dot in the
scatter shows the metric value after DREDge’s correction, and the horizontal position shows either
the unregistered metric value (gray) or the value after KS’ correction (orange). c,d In n = 12 Neu-
ropixels Ultra recordings with both natural and imposed zig-zag motion, DREDge reliably performs
well relative to no correction and KS, leading to improvements in two metrics of stability. In c, we
apply the metric study described in b to these NP Ultra datasets; colors and axes have the same
meanings. In d, we plot the number of implausibly large jumps (motion estimation time bins with
> 10µm/s drift; see also Section 4.9) which appear in DREDge’s and KS’ motion estimates; note
that these large jumps are much more frequent in the KS output. Further visualizations of DREDge’s
improvements in these NP Ultra recordings appear in Supp. Figs. 15 and 16.

Estimating motion in acute mouse recordings. Thus far, Neuropixels recordings have been made364

most frequently in mice. Since the mouse brain is much smaller than the primate brain, and since365

recordings made in mice may leverage experimental techniques such as head fixing which cannot be366

applied for instance in the human recordings discussed above, these recordings typically feature less367

extensive drift. Thus we were motivated to interrogate the extent to which DREDge could improve368

over Kilosort in mouse recordings. We began by comparing DREDge’s nonrigid spike-based motion369

estimation to that of KS on Neuropixels 1 and 2 datasets in which relatively small (⇠50µm amplitude)370

vertical zig-zag probe was imposed via a micromanipulator (see Methods) where KS had previously371

been shown to perform well6. In these recordings, DREDge recapitulated the performance of KS372

(Fig. 5.a, i and ii). We compared DREDge to KS qualitatively in these datasets both by plotting the373

algorithms’ estimated nonrigid motion traces over a raster plot of spike positions over time (left), and374

by making raster plots of spike “registered positions” over time (i.e., positions offset inversely to the375

estimated motion; right, middle). In both NP1 and NP2, these algorithms’ estimated motion traces376

are similar and appear to qualitatively track the motion visible in the unregistered spike rasters,377

leading to well-stabilized registered raster plots.378

Still, in qualitatively similar recordings with natural drift of a similar magnitude made by the Interna-379

tional Brain Lab, DREDge reliably yielded improvements over KS. KS had already been employed380

by the International Brain Lab (IBL) in its motion estimation and spike sorting pipeline20. To per-381

form a large scale comparison between DREDge and IBL’s application of KS on these datasets, we382

designed a metric of registration quality: taking inspiration from KS’ internal template heuristic, we383
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computed the mean correlation of all time bins of each recording’s spike raster (before or after regis-384

tration by KS or DREDge) with the raster’s temporal mean (see Section 4.9). Computing this metric385

on n = 47 IBL Neuropixels 1 recordings (Fig. 5.b) revealed that DREDge consistently improved the386

stability of the data when compared both to no registration and to KS (metric mean differences 0.04387

and 0.01 respectively; two-sided paired t-test p < 10�8 in both cases). See Supp. Fig. 14 for il-388

lustrative examples. Although these improvements in correlation were modest, since the drift itself389

was modest, in no case did KS score higher on this metric than DREDge, a result which establishes390

DREDge as a state-of-the-art method in the case of acute mouse Neuropixels recordings.391

Further, unlike KS, DREDge was able to track the same imposed zig-zag motion, plus additional392

probe motion, in recordings made with the Neuropixels Ultra (NP Ultra34) probe (Fig. 5.a, iii). This393

probe features a much smaller recording area than those of Neuropixels 1 or 2 (a vertical extent394

of 282µm when recording a dense channel neighborhood near the tip, versus 2880µm for NP2 and395

3840µm for NP1 in their dense layouts), with the same number of recording channels in a much396

denser layout (6 columns of 48 electrodes with 6µm vertical and horizontal spacing). In this case,397

the raster plot of DREDge’s registered spike position revealed stably localized spikes from individual398

neuronal sources in a recording featuring both artificially imposed and other motion which were both399

substantial relative to the size of the recording area (Fig. 5.a, iii).400

When applying DREDge and KS to n = 12 similar NP Ultra datasets, we repeatedly observed such401

improvements (Fig. 5.c,d). Since these datasets featured motion which was much larger relative to402

the recording area than in the IBL datasets, accurate motion estimation will have a larger impact403

on the recording. Indeed, as visualized in the left panel of Fig. 5.c, applying the template corre-404

lation metric analysis used above in the IBL Neuropixels study showed that DREDge led to larger405

improvements than we had observed in the IBL experiment. In the NP Ultra data, DREDge’s mean406

difference relative to no registration was 0.1 and relative to KS was 0.06; these values were both407

significantly different from 0 (two-sided paired t-test p < 0.01 in both cases). To validate the appli-408

cation of this metric as a measure of registration quality in these datasets, we also visualized the409

raw and motion-corrected spiking activity in 7 of these recordings in Supp. Fig. 15. We also plotted410

the frame-by-frame correlation to the template in all 12 recordings in Supp. Fig. 16. Further, we411

observed that DREDge tended to produce motion estimates with fewer physically implausible jump412

artifacts than KS on these datasets. We quantified this observation using a jump-counting metric413

which identified the number of frames in which each method estimated motion larger than a phys-414
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ical threshold of 10 µm/s (Fig. 5.d; see Section 4.9); these recordings should feature jumps of this415

magnitude only very rarely. DREDge’s motion estimate produced fewer such jump artifacts in all416

NP Ultra recordings studied, with 419 fewer jumps in each recording on average, a significant effect417

(paired t-test p < 0.0001).418

We hypothesized that DREDge’s improvement in drift tracking over KS in these cases could relate419

to the NP Ultra probe’s smaller recorded depth relative to the range of drift relative to NP1 and NP2,420

which would lead to less agreement of individual frames with any global template like that which421

KS constructs. To test this hypothesis, we spatially subsetted the recording area in the NP1 and422

NP2 recordings of Fig. 5.a to fit inside the 282µm span of the NP Ultra probe; we found similar423

improvements in DREDge’s tracking relative to KS in this setting (Supp. Fig. 17). Together, these424

experiments increased our confidence in DREDge’s improvement in performance relative to KS in425

NP Ultra data and in general as the amplitude of motion increases relative to the length of the426

recorded area.427
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Figure 6: Tracking drift across weeks in chronic recordings. In a-d, we focused on 13 sessions
from one shank of a chronic NP2.4 implantation (AL032, shank 1 of Steinmetz et al. 6). a Time-
line of recordings and inter-session gaps, spanning 130 days. b Unregistered spike positions from
10-minute snips of each session plotted over time, with session boundaries indicated as vertical
dashed lines; nonrigid DREDge and KS motion estimates appear as blue and red lines, respectively,
centered on their nonrigid window center. Detail zooms highlight DREDge’s relative stability in com-
parison to KS. c Registered spike positions over time (DREDge, left; KS, right), with spike clusters
which were manually isolated in the DREDge-registered spike positions shown in color; these puta-
tive units’ positions under KS’ motion trace are shown on the right. d Waveforms extracted on the
detection channels for spikes in each cluster reveal well-stereotyped shapes, validating the motion
estimate. e Comparisons to KS in two chronic NP2.4 implantations (separated into 4 shanks each)
and two chronic NP1 implantations. DREDge is on par with or better than KS according to a simple
metric of inter-session correlation (left; see Section 4.9; here we show the template correlation’s
mean and standard error over sessions in each recording), and both methods improve on no regis-
tration. Further, according to a simple metric which counts non-physical jump artifacts (Section 4.9),
the DREDge motion estimate is substantially more stable across this collection of chronic datasets
(right); here, each dot shows the number of jumps in a single session, and each dataset contains
many sessions.

Estimating motion in chronic mouse recordings. In chronic implantations, experimenters record429

in multiple sessions separated from each other by days or weeks from a single probe insertion.430

Within each session, chronic recordings can be more stable than acute recordings, especially when431

the probe is mounted directly on the skull rather rather than held in place externally; however, across432

sessions separated by days or weeks, changes arise in the firing pattern of the neuronal population433

as well as in single unit templates, complicating motion correction across sessions.434

Since DREDge’s decentralized framework led to improved robustness to nonstationarities in firing435

patterns relative to KS in acute probe implantations, we hypothesized that DREDge would be well-436

suited to the task of registering recordings made across sessions recorded from individual chronic437

probe implantations. We studied DREDge’s performance on a collection of Neuropixels 1 recordings438

(N = 2, 31 and 57 recording sessions, 1.5 ± 1.3 and 1.5 ± 1.1 days between sessions; see also439

Methods) and four-shank Neuropixels 2 recordings (N = 2, 11 and 13 recording sessions, 13.1±6.0440

and 13.5 ± 11.2 days between selected sessions; see a timeline for one of the implantations in441

Fig. 6.a). The Neuropixels 2 recordings were made up of simultaneous recordings made on four442

shanks (jointly inserted and programmable recording arrays separated by 250µm) with 96 recorded443

channels per shank; we separated the recordings by shank, so that each session yielded four 96-444

channel recordings. We then took a simple and direct approach to chronic registration with both445

DREDge and KS, differing from previously-used KS-based pipelines6. Rather than co-registering446

consecutive pairs of recordings, we simply either combined spike position data collected across447

sessions or concatenated the raw binary data from different sessions and ran DREDge directly;448
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DREDge’s modularity made both workflows straightforward (see Section 4.7 for information about449

running DREDge and KS on these data).450

In Fig. 6.a-d, we studied the drift tracking result in recordings from one shank of a Neuropixels 2451

recording (AL032 shank 16) in detail, applying DREDge and KS to 13 sessions made across 130452

days with inter-session gaps of days or weeks. For an equal comparison, we ran KS on the concate-453

nated binary representation, rather than following the pair-by-pair approach of previous work6. We454

first visualized DREDge’s and KS’ motion estimates over the unregistered spike raster (Fig. 6.b). In455

detail zooms, DREDge’s improvement in stability relative to KS became apparent, along with sub-456

stantial differences in the motion estimation results, especially in the early upper portion of detail457

i.458

Although DREDge offered a clear improvement in stability, it was not clear a priori whether the459

broad trend of motion it detected was more correct accurate than the trend of KS’ motion estimate.460

To check that this visual improvement corresponded to the real motion of the tissue, we isolated461

spikes from 6 putative single units by manually thresholding their amplitudes and motion-corrected462

positions (depth and horizontal position in the probe plane). These clusters are shown over the full463

set DREDge’s registered spike positions in the left panel of Fig. 6.c, and the corresponding plot for464

KS appears on the right, showing that spike positions which were stable under DREDge’s motion465

estimate corresponded to drifting or jumping trajectories under KS. Plots including the horizontal466

spike positions used to select spikes for these clusters appear in Supp. Fig. 18. We found that467

waveforms extracted on the maximum-amplitude channel at times corresponding to each of these468

spikes corresponded to well-stereotyped waveform shapes (Fig. 6.d), suggesting that the spikes did469

come from drifting single units, each of which were present across several sessions of the chronic470

recording; this provided evidence that, in this case, DREDge was tracking the probe trajectory more471

accurately than KS while also improving the stability of the motion estimate.472

To test whether such improvements were repeatable, we computed metrics of DREDge’s perfor-473

mance against Kilosort’s on all 10 datasets. As in the previous section, we began by studying the474

mean template correlation metric (see Section 4.9), which correlates each time bin of the spike raster475

to the spike raster’s temporal mean and then considers the mean of those correlations. For this anal-476

ysis, we visualized the spread of the mean template correlation session by session in Fig. 6.e (left);477

lines indicate the mean over sessions, and confidence bands show standard errors over sessions.478

Since the drift in these recordings is essentially nonexistent except in the first few sessions, this479
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metric is not sensitive enough to differentiate DREDge and KS, including in cases like the one of480

Fig. 6.a-d discussed above where the metric values for DREDge and KS are very close; significant481

improvements in this metric only appear in cases such as AL036, shank 3 (shown in Supp. Fig. 19)482

which feature relatively large amounts of motion. However, visual inspection of other cases (Supp.483

Figs. 19 and 20) show that DREDge more accurately tracks what motion is present at the beginning484

of these recordings. Importantly, DREDge’s motion tracking maintains stability across this set of485

recordings, especially when compared to KS. We quantified stability using the jump-counting metric486

of the previous section (Fig. 6.e, right; see Section 4.9). DREDge’s motion estimate always led to487

fewer jumps, with differences in mean jump count per 10 or 3 minute session segment ranging from488

5 to 167, with an average of 47 more jumps per session segment in KS’ motion trace; DREDge had489

no jumps in 74% of sessions versus KS’ 30%. Taken as a whole, these results introduce DREDge490

as a robust and simple drift-tracking algorithm for chronic MEA recordings.491

3 Discussion492

We have presented DREDge, a robust decentralized registration algorithm for both spiking and local493

field potential extracellular electrophysiology data recorded via dense multi-electrode probes. We494

applied DREDge to recordings made with several different high-density probe types (Neuropixels495

1, 2, NHP, and Ultra; Neuroseeker), in multiple species (mouse, rat, macaque, human), and across496

recording types (AP, LFP, acute, chronic, intraoperative, during electrode insertion), and validated the497

efficacy of LFP- and AP-based motion tracking directly and in comparison to a previous automated498

approach (Kilosort 2.5) as well as manual tracking. The decentralized framework leads to natural ro-499

bustness to changes in the neural populations present in the recording and their firing patterns, which500

enabled novel applications and improvements over current methods. First, in human intraoperative501

recordings which featured challenging high-amplitude and fast drift due to breathing and heartbeats502

along with long-term drift, DREDge’s LFP-based motion tracking enabled automated analyses of503

evoked local field potentials; this LFP-based tracking also enabled high temporal resolution motion504

correction of AP data, leading to improvements in single-unit spike sorting. Next, DREDge was able505

to track motion across many millimeters in recordings made during probe insertion through the rel-506

atively large brain of rhesus macaque, revealing variations in the electrophysiological properties of507

spikes across the depth of the insertion. In acute mouse recordings, DREDge outperformed existing508
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approaches, especially when generalizing to new probe types. Finally, we were able to track motion509

across days and months in chronic recordings in mice.510

DREDge’s code is fully open-source, and its modular implementation makes it easy to integrate into511

existing pipelines. It is already possible to integrate DREDge into current state-of-the-art spike sort-512

ing pipelines, such as Kilosort27, by using its motion estimate to drive motion-correction interpolation513

of the AP band as a preprocessing step via the SpikeInterface framework19. Further, DREDge is514

being integrated into new spike sorting pipelines which use a drift estimate to make their core rou-515

tines drift-aware rather than relying on interpolation to correct for motion before sorting35. DREDge516

could also be integrated into other key steps in single-unit spike sorting, such as waveform-based517

quality metrics53 which are currently confounded by motion. DREDge’s motion estimation in chronic518

recordings could also be combined with existing approaches54 to enable stable tracking of single519

units over days and weeks.520

DREDge’s core algorithm could also be extended to enable new workflows both in extracellular elec-521

trophysiology and in other domains, such as calcium imaging26 or cryogenic electron microscopy,522

where a related approach was already independently developed55. Finally, integrating DREDge as523

part of an online recording system could extend the simultaneous probe localization and electro-524

physiological feature mapping of our macaque insertion experiment to help experimenters target525

specific anatomy during recording on the fly, or even to increase the spatial precision of targeting for526

deep brain stimulation applications.527

Acknowledgements528

We would like to thank Yangling Chou, Daniel Soper, Aaron Tripp, Fausto Minidio, Alex Zhang,529

Alexandra O’Donnell, and Michael Okun for their help in data collection. We would like to especially530

thank the patients for their willingness to participate in this research. We thank Matteo Carandini,531

Jennifer Colonell, Olivier Winter, Andrew Zimnik, and the International Brain Lab for helpful discus-532

sions and data coordination. We thank Alessio Buccino, Gaelle Chapuis, Margot Elmaleh, Samuel533

Garcia, Pierre Yger, and also the Simons Collaboration on the Global Brain Spike Sorting Working534

group for many useful discussions. This research was supported by the ECOR and K24-NS088568535

(to SSC) and the Tiny Blue Dot Foundation (to SSC and ACP) and NIH grant U01NS121616 (to536

ZMW). This research was also supported by the Howard Hughes Medical Institute at Stanford Uni-537

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.24.563768doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563768
http://creativecommons.org/licenses/by-nc-nd/4.0/


versity (to EMT). EMT is supported by the Grossman center and the Brain and Behavior Research538

Foundation. CW, JB, EV, and LP are funded by Simons Foundation 344 543023, NSF Neuronex539

Award DBI-1707398 and the Gatsby Charitable Foundation. EV is also supported by K99MH128772.540

The rat brain in vivo data has been recorded within the Hungarian Brain Research Program Grant541

(NAP2022-I-2/2022). DM is also supported by the OTKA Hungarian postdoctoral grant (PD143582).542

The views and conclusions contained in this document are those of the authors and do not represent543

the official policies, either expressed or implied, of the funding sources. The funders had no role in544

the study design, data collection, analysis, decision to publish, or preparation of the manuscript.545

References546

[1] Urs Frey, Jan Sedivy, Flavio Heer, Rene Pedron, Marco Ballini, Jan Mueller, Douglas Bakkum,547

Sadik Hafizovic, Francesca D Faraci, Frauke Greve, Kay-Uwe Kirstein, and Andreas Hierle-548

mann. Switch-Matrix-Based High-Density microelectrode array in CMOS technology. IEEE J.549

Solid-State Circuits, 45(2):467–482, February 2010.550

[2] Bogdan C Raducanu, Refet F Yazicioglu, Carolina M Lopez, Marco Ballini, Jan Putzeys, Shi-551

wei Wang, Alexandru Andrei, Veronique Rochus, Marleen Welkenhuysen, Nick van Helleputte,552

Silke Musa, Robert Puers, Fabian Kloosterman, Chris van Hoof, Richárd Fiáth, István Ulbert,553
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nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Asso-700

ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/701

f12f2b34a0c3174269c19e21c07dee68-Paper.pdf.702

[39] Alessio P Buccino, Michael Kordovan, Torbjørn V Ness, Benjamin Merkt, Philipp D Häfliger,703
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László Papp, György Karmos, Eric Halgren, and István Ulbert. Laminar analysis of slow wave726

activity in humans. Brain, 133(9):2814–2829, jul 2010. doi: 10.1093/brain/awq169. URL https:727

//doi.org/10.1093%2Fbrain%2Fawq169.728

[46] Patrick Baudena, Eric Halgren, Gary Heit, and Jeffrey M. Clarke. Intracerebral potentials to rare729

target and distractor auditory and visual stimuli. III. frontal cortex. Electroencephalography and730

Clinical Neurophysiology, 94(4):251–264, April 1995. doi: 10.1016/0013-4694(95)98476-o. URL731

https://doi.org/10.1016/0013-4694(95)98476-o.732

[47] Daniel Fabo, Virag Bokodi, Johanna-Petra Szabó, Emilia Tóth, Pariya Salami, Corey J. Keller,733
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4 Methods862

4.1 Preprocessing of action potential band data.863

For input into DREDge, raw electrophysiology data in the action potential band (300-6000Hz) passes864

through several steps, starting with quality control and filtering, then spike event detection and lo-865

calization, and finally a rasterization step which leads to a binned spatiotemporal representation of866

spiking activity. These steps can be thought of as modular components that can be chosen accord-867

ing to user preference so that DREDge’s motion estimation step itself becomes another module in a868

bigger electrophysiology pipeline.869

In the experiments conducted for this work, the initial filtering, detection, and localization steps were870

chosen to suit each data source. For the International Brain Lab (IBL) mouse recordings32, the IBL’s871

electrophysiology preprocessing pipeline20, including highpass filtering, analog-to-digital converter872

(ADC) offset correction, dead and noisy channel detection, and spatial highpass filtering, was repro-873

duced using modular components available in the SpikeInterface framework19. Spike detections and874

localizations for input into DREDge were computed using the corresponding module from35, which875

relies on the point source model of Boussard et al. 36 to localize the spike events relative to the876

probe. Kilosort-based motion estimates were collected from IBL’s own runs of pyKilosort, a Python877

port of Kilosort 2.56, and these motion estimates, in turn, used pyKilosort’s detected and localized878

spike events using raw data preprocessed as for DREDge20.879

Once a collection of spike times, amplitudes, and localization features has been collected, DREDge880

processes these into a rasterized representation. Given spatial and temporal bin sizes hd, ht (typ-881

ically 1 micron and 1 second, respectively) leading to D bins along the length of the probe and T882

bins across time, all spikes landing in each spatiotemporal bin are collected. These are reduced883

into a D ⇥ T matrix, referred to here as the spike raster, by summing log(1 + x)-transformed spike884

amplitudes landing in each bin and transforming again with log(1 + x), followed by spatiotemporal885

smoothing (Gaussian filtering at 1µm and 1s scale). Here, the logarithmic transforms stabilize the886

representation to the heavy skewness present in the distributions of amplitudes and firing rates ob-887

served in natural data; similar transformations are performed by Kilosort 2.5 in its preprocessing888

before motion estimation. When constructing spike rasters for visualization (or for computing the889

template correlation metric of Section 4.9 and Figs. 5 and 6), the log transformations are not ap-890
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plied, since they lead to less interpretable units. Instead, the raster consists of the mean amplitudes891

of all spikes landing in each time and depth bin, filling in empty cells with zeros.892

Kilosort 2.5 uses a similar preprocessing, constructing an image of suitably log transformed spike893

counts binned by their log transformed amplitudes and depths for each time bin, leading to a three-894

dimensional structure, in contrast to our two-dimensional raster; Kilosort’s full preprocessing is dis-895

cussed in detail in the supplementary materials of Steinmetz et al. 6. A two-dimensional raster896

decreases the computational burden of pairwise cross-correlation and allows our method to share897

logic between the spike domain and LFPs, which are naturally easier to represent as images rather898

than three-dimensional structures.899

4.2 Preprocessing of local field potential band data.900

In the local field potential (LFP) band, DREDge is able to operate directly on preprocessed electro-901

physiology traces, rather than on discrete events detected in this band. Relying on discrete events in902

the LFP band would be unreliable, since these are typically very sparse, and since fast motion can903

induce power in similar frequency bands as potential events of interest, confounding their detection904

in the presence of drift.905

For input into DREDge, human LFP recordings15 were preprocessed according to the IBL’s elec-906

trophysiology preprocessing pipeline for LFP data20, including bandpass filtering, ADC offset cor-907

rection, dead and noisy channel detection, and common referencing, and then downsampled to the908

target sampling rate for motion estimation (typically 250Hz; the effect of varying this rate was studied909

in Fig. 2.d-h). These steps were followed by a second spatial derivative along the probe’s vertical910

axis applied separately in each column, following averaging channels at the same depth. These911

latter steps sharpen the signal and represent it as a time-varying function over the depth domain,912

like the D ⇥ T spike raster in the AP band pipeline above, replacing the temporal bin size according913

to the preprocessed recording’s sampling frequency and the spatial bin size according to the vertical914

inter-channel spacing. This pipeline was implemented by means of open-source modules available915

in the SpikeInterface library19, allowing end users to substitute it with their own preprocessing.916
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4.3 Displacement and correlation matrices.917

Both the AP and LFP preprocessing pipelines above result in a time-varying signal represented over918

the long axis of the probe, which can be captured in a D⇥T matrix R, whose D rows represent depth919

bins and whose T columns represent time bins. Given such input, and in the case where a rigid920

displacement (i.e., a displacement that does not vary across depth) is being estimated, DREDge921

starts by calculating normalized cross-correlation28 vectors for each pair of time bins R:t and R:t 0 ,922

1  t , t 0  T . From each pair, the lag of the maximal cross-correlation and the maximal correlation923

value itself are used to populate T ⇥ T matrices D and C, so that Dtt 0 is an estimate of the relative924

displacement between time bins t and t 0 and Ctt 0 is the correlation of these time bins at this offset.925

To extend to the nonrigid case, DREDge begins by dividing the depth domain into B user-configurable926

soft blocks with Gaussian profiles. For instance, B ⇡ 10 evenly spaced Gaussian windows with927

bandwidth (standard deviation) of 500µm are well suited when estimating the nonrigid motions typi-928

cally present in the IBL Neuropixels data of Fig. 5.b. Then, the normalized cross-correlations above929

are estimated for each of the B windows, substituting the formulas used to compute covariances and930

variances in the normalized cross-correlation with their weighted versions, where the soft windows931

are used as weights which decrease the contribution of depth bins far away from their centers to932

their displacement estimates. The results are then gathered as above into B ⇥ T ⇥ T arrays D and933

C, so that D(b)
tt 0 and C(b)

tt 0 give the displacement and correlation between times t , t 0 in the bth window,934

b = 1, ... , B.935

4.4 Robust decentralized registration.936

In the decentralized framework, the centralization problem (Varol et al. 30, equation 1) poses motion937

estimation as an optimization problem that models the estimated displacements between pairs of938

times as arising from differences of a true, unknown motion trace P across the corresponding time939

interval. In its basic form, the centralization problem is the minimization problem940

arg min
P

BX

b=1

��D(b) � (Pb1>
T � 1T P>

b )
��2

2 , (1)941

which seeks to find a motion trace Pb 2 RT for each nonrigid block b = 1, ... , B such that the942

pairwise differences of entries of Pb, Pbt � Pbt 0 , closely reconstruct the entries D(b)
tt 0 of the block’s943
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T ⇥ T displacement matrix D(b). In this way, P gathers the “decentralized” displacement estimates944

of D into a central motion estimate. When D(b) is antisymmetric (naturally, the displacement D(b)
tt 0945

between times t and t 0 is the opposite of that between t 0 and t), the minimum of this basic version of946

the problem is attained by the row means of the displacement matrix,947

Pbt =
1
T

X

j

D(b)
tj , (2)948

(see Section 7.1), but posing the problem in this decentralized framework enables several key mod-949

eling extensions.950

Real-world data has several features which must be modeled in order to robustly estimate motion951

in both the AP and LFP bands. Multiple separate factors may make it impossible to estimate the952

relative displacement between two time bins by cross-correlation: these include nonstationarities in953

neural firing patterns, oscillations in the LFP band, changes in the neural population being recorded954

due to probe motion, and portions of recording with low signal. We implement three strategies to955

down-weight or exclude such pairs of time bins when estimating P. First, such effects often manifest956

in relatively low maximal correlations C(b)
tt 0 , which can be accounted for during inference by ignor-957

ing pairs of time bins whose maximal correlation fails to exceed a threshold parameter ✓C and by958

weighting the rest of the terms by the corresponding correlations. Next, spatiotemporal regions of959

the recording with low activity can lead to spurious displacement and correlation estimates; it is960

beneficial to prevent such regions from affecting the rest of the motion estimate, which is achieved961

below via the spatiotemporal weights matrices V(b). Finally, nonstationarities in firing patterns or LFP962

oscillations (possibly due to probe motion) can occur over long time periods. However, it is possi-963

ble that time bins across these periods can have superficial similarities, leading to high correlations964

and spurious displacement estimates. The time horizon parameter ✓T below sets a limit on the time965

difference across which pairs of time bins are considered. Finally, the above measures can lead to966

spatiotemporal regions in which the motion estimate P is poorly determined. For instance, in noisy967

portions of a recording it is possible that all observations have been excluded due to low maximal968

correlations, leading to an ill-defined estimate of the motion in that region. In such cases, DREDge969

leverages a spatiotemporal smoothing term to make use of the information from neighboring tempo-970

ral and spatial bins.971

These spatiotemporal censoring, weighting, and smoothing operations are most simply introduced972
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into the decentralized framework by restating it as a Bayesian inverse problem. To that end, we973

construct a probabilistic model which directly extends the centralization problem and in which P is974

considered a latent parameter to be inferred based on the observations D. To introduce the model,975

we start with the spatiotemporal smoothing prior. We let R(P) denote the negative log-prior, which976

penalizes large spatial and temporal derivatives:977

R(P) =
X

b

X

t

⇥
�T(�tPbt )2 + �S(�b�tPbt )2⇤ (3)978

Here, �t and �b denote discrete temporal and spatial derivatives (i.e., �tPbt = Pb(t+1)�Pbt when 1 <979

t < T ); �T,�S � 0 control the relative importance of these terms and are set to 1 in all experiments980

above.981

With this prior in place, we then model the observed displacements D as arising from the latent982

motion trace P with normally distributed errors:983

D(b)
tt 0 | P s N(Pbt � Pbt 0 , ⌧ 2

btt 0). (4)984

Here, we model the observed displacements D(b)
tt 0 as conditionally independent given the latent dis-985

placement P. The variance ⌧ 2
btt 0 controls the weight of each observation and is given by986

⌧ 2
btt 0 =

1
1|t�t 0|✓T/ht

"
1t 6=t 0

✓
1

Vbt
+

1
Vbt 0

◆
+

1
1C(b)

tt0 �✓C
C(b)

tt 0

#
. (5)987

Here, Vbt is chosen to be either 0 or infinity depending on whether there is enough spiking activity988

in the bth window at time t , measured by computing the inner product of R with the bth window at989

that time and determining whether this value crosses a threshold parameter ✓V. When |t � t 0| > ✓T990

or C(b)
tt 0 < ✓C, or in the case that Vbt or Vbt 0 are 0, it is possible that ⌧ 2

btt 0 becomes infinite, which is991

equivalent to ignoring the observation D(b)
tt 0 . This observation model’s log likelihood is then a weighted992

version of equation (1).993

In this framework, the centralization problem becomes the problem of maximum a posteriori infer-994

ence of P:995

P̂ = arg max
P

log p(D | P) � R(P), (6)996

where p(D | P) and R(P) are the likelihood and negative log-prior above. The likelihood term p(D | P)997

factorizes over the B nonrigid windows, so that without the prior these B problems could be solved998
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independently. However, the spatial smoothing of the prior links neighboring spatial windows, so999

that the B problems must be solved simultaneously. Fortunately, since R(P) only links neighboring1000

nonrigid blocks, the Hessian matrix of the objective in equation (6) has block-tridiagonal structure1001

when viewed as a B ⇥ B matrix of T ⇥ T blocks. Then, the inference problem as a whole reduces1002

to a block-tridiagonal linear solve, which we carry out using a block version of the usual tridiagonal1003

algorithm (Thomas’ algorithm). The time complexity of this operation scales linearly in the number1004

of windows B and linearly in T , since the time horizon parameter ✓T above ensures that the blocks1005

in the Hessian matrix are banded matrices with bandwidth less than ✓T
56; the dependence on the1006

time horizon scales with ✓2
T.1007

4.5 Online motion tracking1008

When estimating motion in the LFP band at, for instance, 250Hz, T grows very rapidly, so that just a1009

minute of recording would have T = 15000. Even with the linear complexity in T noted above, This1010

rapid growth in the problem size leads to slow results when running the batch algorithm above in the1011

LFP band. We mitigated these effects by choosing to estimate drift chunk by chunk in an ‘online’1012

fashion in these cases. In this online method, the preprocessed data R is processed in C chunks1013

R(c), c = 1, ... , C of size at most D ⇥ T0. T0 = 2500 is our default and suggested choice for LFP1014

applications, corresponding to 10s chunks of 250Hz-sampled preprocessed LFP data.1015

We initialize the algorithm by using the batch algorithm of the previous section to find the (possibly1016

nonrigid) displacement estimate P(1) in the first block. Then, given the previous chunk’s displacement1017

estimate P(c), we can find the current chunk’s displacement estimate P(c+1) by solving a version of1018

equation (6) where we condition on the previous chunk’s estimate P(c):1019

P̂(c+1) = arg maxP(c+1) log p(D | [P(c); P(c+1)]) + log p([P(c); P(c+1)]). (7)1020

Here, [·; ·] is the operation which concatenates along the time axis (columns). Proceeding through1021

the recording chunk by chunk, we can recover the full displacement estimate by concatenating those1022

in each chunk. Since the sizes of the chunks’ sub-problems are bounded, this method will scale1023

linearly in the total length of the recording.1024
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4.6 Motion correction after DREDge.1025

After estimating motion using DREDge, downstream applications will need to use this estimate to1026

correct for motion artifacts in their data before further processing. In the LFP band, motion correction1027

is carried out by interpolating the recording to infer its values at new, time-varying electrode positions1028

chosen to move inversely to the motion estimate. Since LFP signals tend to be smooth in space,1029

interpolation should not lead to much aliasing; however, features in spatial frequency bands which1030

exceed the Nyquist rate corresponding to the probe’s electrode spacing may lead to distortion. Links1031

to the Python and MATLAB code used to carry out this interpolation are below in Section 6.1032

In the AP band, a similar interpolation can be carried out using the SpikeInterface framework19.1033

Alternatively, motion correction can be applied directly to the estimated positions of spikes extracted1034

from uncorrected data35. In the motion-corrected or registered spike rasters which appear in many of1035

the figures above and below, the corrected depth position of a spike at time t and depth z is computed1036

by subtracting the estimated displacement at time t and depth z from z, where this displacement1037

is estimated by bilinear interpolation between the displacement estimates at neighboring time and1038

nonrigid depth bin centers.1039

4.7 Tracking drift in chronic recordings1040

When tracking drift in chronic recordings with DREDge, we followed two approaches. The first and1041

simplest approach was to directly concatenate the raw data binary files and input them directly into1042

the preprocessing and motion estimation pipelines described above; this approach was used for the1043

chronic NP1 data. We also followed this approach in all cases when registering chronic recordings1044

with Kilosort 2.5. For the chronic NP2 data, we ran preprocessing and extracted spike locations1045

separately in each session. For input into DREDge, we then combined the detected spikes across1046

sessions by offsetting the spike times in each session by the sum of the previous sessions’ durations.1047

These combined spike events were then used to create the spike raster used for motion estimation1048

with DREDge. These two approaches should yield similar results, and they were chosen in each1049

case for methodological convenience. Apart from this difference, motion estimation with DREDge1050

and KS were conducted in the same manner as the other analyses of this paper.1051
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4.8 Tracking fast motion from spikes using clustering and splines1052

In cases where LFP signals are not available or where they do not contain features which are useful1053

for motion tracking but spike data is plentiful, it may be necessary to correct for motion which is too1054

fast to be modeled by DREDge’s or KS’ spike-based motion tracking, whose temporal resolution1055

is limited to bins of length on the order of one or more seconds. In Fig. 2.b and Supp. Fig. 3, we1056

introduced a method which uses spike data to correct for fast motion after initial coarse registration1057

with DREDge. To do so, we used HDBSCAN57 to cluster high amplitude spikes by their registered1058

location and amplitude features. Next, we obtained a time-series of spikes’ centered positions by1059

subtracting the cluster’s mean registered depth from all spikes’ registered depths and then combining1060

all of the spikes together into one point cloud. We then removed outliers (points more than 5 standard1061

deviations from the mean in each cluster) and fit a smoothing spline to model the moving position of1062

this point cloud as a function of time at sub-second temporal resolution. The number of knots of the1063

fitted splines is equal to 2.5 times the number of seconds. These steps are detailed in Supp. Fig. 3.1064

Note that this approach did not lead to improved registration accuracy in all cases; it is most useful in1065

cases where there is rigid sub-second motion as well as sufficient density of high-amplitude spikes1066

to allow for good spline estimates of the sub-second motion. In these cases (as in Supp. Fig. 3), this1067

approach can significantly reduce within-cluster spike variability.1068

4.9 Spike registration quality metrics1069

To directly and quantitatively compare motion correction results before downstream processing such1070

as spike sorting, we introduced two simple metrics. First, we developed a metric for registration qual-1071

ity of spiking data inspired by the template heuristic internally used by Kilosort’s motion estimation1072

algorithm, which we referred to as the template correlation. To compute this metric for a given set1073

of registered or unregistered spike locations, we first transform these into the two-dimensional spike1074

raster described above in Section 4.1: spikes are binned into spatiotemporal time bins (1s and 1µm),1075

and the mean amplitude of spikes in the bin is assigned to the corresponding position in the spike1076

raster, leading to a D ⇥ T matrix with rows corresponding to the D depth bins and columns cor-1077

responding to the T time bins. Spatiotemporal bins which lie outside the extent of the probe after1078

motion correction are masked. Next, we take the (masked) mean over time of this raster, leading to1079

a template vector with D entries. Since areas outside the probe are ignored in this mean, it will not1080
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be contaminated by low- or no-activity bins. Finally, we compute Pearson’s r between each frame1081

of the raster and this template, again ignoring masked spatiotemporal bins to avoid computing cor-1082

relations of the template with empty space. This leads to T correlation values which can be used1083

as a frame-wise measure of registration quality, as in Supp. Figs. 16, 19 and 20. Alternatively, the1084

mean of these correlations can be presented for as a summary of registration quality for an entire1085

recording, as shown in Fig. 5.b,c and Fig. 6.e.1086

In Fig. 6.e and Supp. Figs. 19 and 20, we also show a simple measure of the stability of motion1087

estimation, which we refer to as the jump count. This metric directly captures the number of likely1088

non-physical jumps in the estimated motion trace, by counting the number of registration time bins1089

in which the motion estimate’s velocity exceeds 10µm/s relative to the previous bin.1090

Extracellular waveform feature extraction. In the analysis of Fig. 4, waveform features were1091

computed from unsorted spikes detected by the initial detection step of Boussard et al. 35. We used1092

the neural net described by Lee et al. 52 to denoise the detected waveforms on multiple electrodes.1093

For single-channel features, we used the extracellular waveforms from the channels with the highest1094

peak-to-peak (PTP) amplitude. Multi-channel waveforms were then extracted on the 40 channels1095

closest to this maximum amplitude channel.1096

For single-channel waveforms, we computed three features: peak amplitude, peak-to-peak dura-1097

tion, and peak-to-trough ratio. Peak amplitude was the maximum point of the absolute waveform.1098

Peak-to-trough duration was defined as the time difference between the maximum point and the min-1099

imum point of the waveform. The peak-to-trough ratio was defined as the logarithm of the absolute1100

amplitude of the maximum point divided by the absolute amplitude of the minimum point.1101

For multi-channel waveforms, we computed three features: spatial spread of the spike across the1102

probe, and the inverse of propagation velocity above and below the channel with maximum am-1103

plitude. The spatial spreads of the multi-channel waveforms were quantified using an amplitude-1104

weighted sum of distances to the channel with maximum amplitude. If ai denotes the PTP amplitude1105

on channel i and di denotes the distance of this channel to the maximum amplitude channel, the1106

spatial spread of each spike was computed as:1107

P
i aidiP

i ai
. (8)1108

The inverse velocities were defined the same way as7 with the addition of a zero intercept constraints1109
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in the linear regression.1110

Brain anatomy estimation and alignment in the non-human primate recording. In the brain1111

anatomy estimation of Fig. 4, since the resolution of MRI is poor for deep structures, the region1112

boundaries for the monkey recording were identified by an expert from listening to the change in firing1113

pattern during recording. The depth of the region boundaries corresponds to the actual recorded1114

drive motion.1115

Due to the difficulty of penetrating the dura, the estimate of anatomical depth at the start of inser-1116

tion is uncertain, so that the relative offset of DREDge’s motion estimate and the insertion drive’s1117

measured distance is not known a priori. To align the anatomy with the computed feature map, we1118

looked to match our observed electrophysiological features with the expert’s annotations in an easily1119

identifiable landmark, namely the boundary between the white matter and the striatum. ‘Positive1120

spiking’ units whose spikes contain large positive amplitudes before hyperpolarization are usually1121

associated with dendrites and axons58;59. Thus, the white matter can be characterized by a high1122

rate of such positive-going spikes, which is distinct from the striatum. We thus matched DREDge’s1123

tracked depth with the drive motion and region boundaries by aligning the transition from positive to1124

negative spikes to the boundary between the white matter and striatum. We used this offset as a1125

reference to align the rest of the regions.1126

Setting parameters for DREDge and Kilosort. Due to the considerable variation in the types of1127

drift observed across probe types, species, and importantly the methods used for probe mounting1128

and implantation, it can be necessary to adjust the parameters of motion estimation algorithms (both1129

DREDge and Kilosort 2.5). DREDge’s default parameters, discussed below, were determined in the1130

large-scale International Brain Lab experiment whose results are shown in Fig. 5.b, and should apply1131

well to recordings which are similar: i.e., stable Neuropixels recordings which feature mildly nonrigid1132

motion on the order of 100µm. These recordings were made in head-fixed mice with an externally1133

mounted probe, and thus feature some slight motion of the brain relative to the head; recordings1134

made in different configurations, such as the human data of Fig. 2, where head-fixing and other brain1135

stabilization methods cannot be used, or the chronic Neuropixels data of Fig. 6, where the probe1136

is head-mounted, can present other drift scenarios that may require parameter adjustments. In this1137

paper, we set parameters uniformly in all comparisons to Kilosort, in the sense that for each such1138

experiment (i.e., set of recordings; for instance, the IBL experiment of Fig. 5.a, or the Neuropixels1139

Ultra experiment of Fig. 5.a,c,d and Supp. Fig. 15), we used a fixed set of parameters for both1140
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DREDge and Kilosort across all datasets in each experiment; we did, however, tune the parameters1141

of both DREDge and Kilosort for each experiment. In this section and Supp. Table 1, we present and1142

discuss the set of parameters used for both DREDge and Kilosort in the experiments of this paper,1143

and offer some suggestions about how DREDge’s parameters might generally be adjusted.1144

The most often adjusted parameters in DREDge are those which control the nonrigid windows.1145

These windows have Gaussian profiles and divide the recording into a series of soft blocks, and1146

they are parameterized by the distance between window centers (win step um, in µm) and the width1147

of the windows (win scale um, in µm, which controls the standard deviations or bandwidths of the1148

Gaussian bumps). In cases where the motion is known to be rigid (i.e., not to vary along the depth1149

of the probe), the windowing can be turned off by setting the parameter rigid=True. Otherwise,1150

these parameters may be tuned to match the amount of nonrigidity (i.e., the amount of variation in1151

the motion along the depth of the probe) in the recording: more nonrigid motion will require more1152

(i.e., more closely spaced or equivalently smaller win step um) windows. More nonrigidity may also1153

require smaller window bandwidths (win scale um), since windows which are larger than the scale1154

at which the motion varies as a function of depth may cover a varying motion profile. There is a1155

tradeoff here, since setting win scale um to a small number will reduce the number of spikes or the1156

amount of LFP signal falling into each window, which can reduce the stability and accuracy of the1157

motion estimate in that window. Finally, the margin between the window centers and the edge of the1158

probe is controlled by win margin um, in µm. To gain intuition about how to set these parameters and1159

those discussed below, we encourage users to visualize the spike raster of Section 4.1; DREDge1160

bundles functions for making these plots, which are in general very informative visualizations that1161

can help users build intuition about not just the amount of drift in their recordings, but also the1162

recordings’ quantity and amplitude of spikes and possible artifacts. Another parameter which can1163

be helpful to adjust in some cases is the maximal offset used when computing cross-correlations1164

(max disp um, in µm). This parameter limits the maximum spatial lag out to which cross-correlations1165

are computed, and can be thought of as a “search radius” when comparing pairs of time bins.1166

DREDge automatically sets this parameter to a quarter of the nonrigid spatial window size, but users1167

can adjust this based on their own understanding of the amount of drift which is possible between1168

time bins separated by less than the time horizon (✓T above); such an understanding can be gained1169

roughly by looking at spike raster visualizations. The time horizon itself was set to the fixed value1170

of 1000s in all experiments here, except for the NHP insertion experiment of Fig. 4 where it was set1171

to 100s; this setting allowed us to use our prior knowledge that the neuronal population was turning1172
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over rapidly during the insertion, avoiding spurious matches.1173

For completeness, we will briefly discuss other DREDge parameters of note which were not changed1174

throughout this work. First, in all spike-based experiments shown here, the spatial and temporal1175

bin sizes for spike raster computation in DREDge were set to 1µm and 1s, so that DREDge’s spike-1176

based motion estimation always produced motion estimates with 1s temporal resolution; these basic1177

parameters were chosen using simulation experiments (not shown). Second, the correlation thresh-1178

old (✓C above) was set to 0.1 in AP applications and 0.8 in LFP applications. Finally, the chunk size1179

for online LFP registration was set to 10 seconds (or 2500 samples at 250Hz); since this chunk size1180

is small, the time horizon parameter is not relevant in the LFP application.1181

Kilosort’s motion estimation algorithm was discussed in detail in the supplementary material of Stein-1182

metz et al. 6; here we elaborate the discussion of certain parameters which were part of our tun-1183

ing, based in part on our reading of Kilosort 2.5’s Matlab code (available at https://github.com/1184

MouseLand/Kilosort/tree/v2.5/). Kilosort 2.5 exposes one parameter to control the registration,1185

nBlocks, which controls the number of nonrigid blocks (rectangular windows rather than Gaussian1186

profiles); the number of blocks used is 2·nBlocks�1 (see line 58 of align block2.m). When construct-1187

ing its three-dimensional spike histogram, Kilosort uses a spatial bin size of 5µm and a temporal bin1188

size controlled by the algorithm’s global batch size (expressed in samples), which leads to approx-1189

imately 2.18s temporal bins in data sampled at 30kHz, although this will vary with the sampling1190

rate; we did not find improvements in some exploratory experiments when tuning the spatial bin1191

size and did not attempt to adjust the temporal bin size. The most important parameters which we1192

adjusted in our experiments were Kilosort 2.5’s two search radius parameters (like our max disp um1193

above), which are not exposed programmatically. The first of these, which we refer to as nBinsReg11194

and is in units of spatial bins, sets the maximal search radius of template cross-correlations dur-1195

ing an initial rigid registration pass, before the recording has been divided into spatial blocks; this1196

parameter is set to 15 bins (or 75µm) by default. The second, nBinsReg2, also in units of spatial1197

bins, controls the search radius of template cross-correlations performed in the nonrigid pass, af-1198

ter the recording is divided into blocks, and is set to 5 bins or 25µm by default. Although these1199

defaults are well suited to data with fairly small drift dominated by a rigid component, we found it1200

essential to adjust them in recordings with larger drift or nonrigid drift whose overall amplitude was1201

larger than 25µm. Our Kilosort 2.5 fork with modifications to expose these parameters is available1202

at https://github.com/cwindolf/Kilosort/tree/modded-v2.5.1203
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A table showing the parameters used in each experiment for both DREDge and Kilosort 2.5 appears1204

in Supp. Table 1.1205

4.10 Datasets.1206

Human brain activity in vivo data. Human brain activity was recorded in vivo in the course of1207

clinically relevant neurosurgical intervention at both Massachusetts General Hospital (MGH) and the1208

University of California San Francisco (UCSF) with most of the data and methods presented here1209

included in previous publications15;16. In brief, in both data sets, all patients voluntarily participated1210

after informed consent according to guidelines as monitored by the Massachusetts General Brigham1211

(previously Partners) Institutional Review Board (IRB) Massachusetts General Hospital (MGH), and1212

the UCSF Institutional Review Board. In all cases, participants were informed that participation in1213

the experiment would not alter their clinical treatment in any way and that they could withdraw at1214

any time without jeopardizing their clinical care. Participants were not compensated monetarily for1215

participating. Recordings in the operating room were acquired with participants who were already1216

scheduled for a craniotomy for concurrent clinical intraoperative neurophysiological monitoring or1217

testing for mapping motor, language, and sensory regions and removal of tissue as a result of tumor1218

or epilepsy or undergo intra-operative neurophysiology as part of their planned deep brain stimulator1219

(DBS) placement15;16;60;61;62. Participants were either under general anesthesia or under monitored1220

anesthesia care (awake or asleep) during the recordings according to clinical need (e.g. intraoper-1221

ative stimulation mapping procedures or DBS surgeries). At MGH, participants also consented to1222

the video recording of the surgical procedure as long as the video did not indicate the identity of the1223

patient or staff. This video was used to confirm that the manual tracking could match the movement1224

of the brain relative to the electrode. We performed tissue-level tracking of the video recordings to1225

compare to the LFP-tracked motion tracking.1226

With both MGH and UCSF data collection sites, Neuropixels probes (NP v 1.0-S, IMEC) include an1227

electrode shank (width: 70µm, length: 10 mm, thickness: 100µm) of 960 total sites laid out in a1228

checkerboard pattern with contacts at 18 µm site to site distances (16 µm (column), 20 µm (row);3)1229

with some probes with sharpened tips. The Neuropixels probes (NP v 1.0, version S, IMEC) were1230

connected to a 3B2 IMEC headstage connected via a multiplexed cable to a PXIe acquisition module1231

card (IMEC), installed into a PXIe Chassis (PXIe-1071 chassis, National Instruments)15;16. For the1232

52

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.24.563768doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563768
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neuropixels 1.0 probes as used in human studies, the linear dynamic range of the Neuropixels1233

amplifier is 10 mVpp. This range is digitized using a 10 bits Analog to Digital conversion63.1234

At both collection sites, the Neuropixels probes were generally attached to a stable frame attached to1235

the bed or frame around the skull or a stable arm with the probe being lowered to be inserted into the1236

brain in sterile conditions. As such, this meant that, following exposure of the brain through a cran-1237

iotomy, the brain tissue could move independently of the stably held Neuropixels probe. At UCSF,1238

the Neuropixels probe was secured to the metal cap dovetail probe mount (IMEC, Leuven, Belgium).1239

The probe mount was then attached to either an Elekta microdrive (Elekta, Stockholm, Sweden) or1240

Narishige (Tokyo) micromanipulator (MM-3 or M-3333). Then, the manipulator/microdrive was either1241

secured to the Mayfield skull clamp using a 3-joint mounting arm (Noga NF9038CA) and Nano clamp1242

(Manfrotto 386BC-1, Cassola, Italy) assembly attached to the primary articulating arm and C-clamp1243

of the Integra Brain Retractor System A2012 (Integra, Princeton, NJ)16. At MGH, the probe was1244

either secured using SteriStrips (3M™ Steri-Strip™ Reinforced Adhesive Skin Closures) to a ster-1245

ile syringe which was held by a 3-axis micromanipulator built for Utah array placement (Blackrock1246

Neurotech, Salt Lake City, UT) or to cannulae placed in a NeuroFortis Neuro Omega manipula-1247

tor (AlphaOmega Engineering, Nazareth, Israel) held by the ROSA ONE® Brain (Zimmer Biomet)1248

arm15. At UCSF, probes, headstages, interface cables, Narishige micromanipulators, screwdrivers,1249

and probe mount with metal cap dovetail were all separately sterilized according to standard pro-1250

tocols of ethylene oxide sterilization, while the Elekta device was sterilized using Sterrad. At MGH,1251

the probe was sterilized with Ethylene Oxide (BioSeal) and used with the sterile Medtronic needle1252

electrodes while the handling of the connections and recording equipment was wrapped in a sterile1253

plastic bag and sealed using TegaDerm (3M) to keep the field sterile.1254

Ground and reference connections were kept separate in human brain recordings at both sites15 16.1255

At MGH, recordings were referenced to sterile ground, and recording reference needle electrodes1256

(Medtronic) connected (via safety connectors separately soldered to the separate ground and refer-1257

ence leads) were placed in nearby muscle tissue (often scalp) as deemed safe by the neurosurgical1258

team. At UCSF, two 27G subdermal needle electrodes (Ambu, Columbia, MD) were placed in the1259

skin were soldered separately to the probe flex-interconnect to serve as ground and reference using1260

lead-free solder and two strands of twisted 36 AWG copper wire.1261

Data acquisition was performed using open-source acquisition software to record the neural data1262

which include SpikeGLX (http://billkarsh.github.io/SpikeGLX/) and OpenEphys (Siegle et al. 64,1263
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https://open-ephys.org/gui). Since Neuropixels 1 probes enable 384 recording channels to ad-1264

dress 960 electrodes across the probe shank, two different acquisition maps were used. At MGH,1265

both one map (short column map) targeting the lower portion of the probe (the most distal channels)1266

and a second map (‘long column’ map) recording two rows of contacts along the entire length of the1267

electrode were used in different cases. The data collected at UCSF all included two rows of contacts1268

along the entire length of the electrode.1269

For the sake of timing and correlating task activity with the neural activity, TTL triggers via a parallel1270

port produced either during a task via MATLAB or custom code from a separate computer were1271

sent to both the National Instruments and IMEC recording systems, via a parallel port system. This1272

TTL output sent synchronization triggers via the SMA input to the IMEC PXIe acquisition module1273

card to allow for added synchronizing triggers which were also recorded on an additional breakout1274

analog and digital input/output board (BNC-2110, National Instruments) connected via a PXIe board1275

(PXIe-6341 module, National Instruments)15.1276

For the simple visual task, stimuli were presented on an LCD computer monitor (58×30 cm, ASUS)1277

placed in front of the participant and with the use of the Psychophysics toolbox65. The monitor1278

distance from the subject was adjusted based on clinical considerations and the patient’s comfort1279

and was placed 0.25 m away from the participant. The participant was asked to perform 100 trials1280

of two different tasks, each distinguished by a certain visual stimulus. In the Square Task, each1281

trial begins with the display of a red fixation cross for 0.5-4 sec on a grey background, before the1282

appearance of a single black or white square with dimensions 5.5 cm × 5.5 cm (resulting in a visual1283

display between 5.72º by 5.72º of the visual field) on a grey background, presented for 2-4 seconds1284

with the duration jittered randomly. Each trial was composed of a fixation cross followed by either1285

a black or white square and every trial was immediately after one another. The choice of black or1286

white squares per trial was randomly selected from sequences of black or white designations pulled1287

from a maximum-length sequence (m-sequence) distribution66;67;68;69. The participant was asked to1288

fixate on the central red cross and count how many black or white squares were shown to improve1289

engagement.1290

For a subset of the data (N=3), we used previously analyzed and manually tracked motion from the1291

LFP to compare to the DREDge motion tracks15. Briefly, the steps involve extracting the LFP from the1292

binary files into local field potential (LFP, ¡500 Hz filtered data, sampled at 2500 Hz) SpikeGLX using1293

MATLAB and available preprocessing code. Focusing on non-noisy time ranges, we capture the1294
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displacement in the movement bands by importing the LFP voltage as an .stl file from MATLAB into1295

Blender (https://www.blender.org/). Using the surface voltage and the Grease Pencil feature, we1296

traced the shifting band of negatively deflecting LFP throughout the recording15. The motion traces1297

were imported into MATLAB and compared with the LFP signal. This tracked motion information1298

was upsampled to 2500 Hz to the LFP (interp1, ‘makima’).1299

The evoked potentials were averaged relative the image onset (2 seconds before and four seconds1300

after image presentation). When analyzing spectral domains, we performed wavelet transforms to1301

calculate the Morelet wavelet coefficient amplitude, the equivalent of power, to examine the ampli-1302

tude of each frequency band from 0.5 to 200Hz. We subdivided the bands into delta (0-4Hz), theta1303

(4-8Hz), beta (15-30Hz), gamma (30-55Hz), and high gamma (65-100Hz; Oostenveld et al. 70).1304

We tested comparisons across conditions with the Kruskal–Wallis test for non-equivalence of mul-1305

tiple medians to determine statistically separable groups or Wilcoxon rank sum test (two-sided) for1306

pairwise comparisons between individual medians.1307

Mouse brain activity in vivo data. Extracellular recordings in mouse were obtained from multiple1308

sources. For the quantitative comparison in Fig. 5.b, we relied on datasets recorded by laboratories1309

participating in the International Brain Lab’s reproducible electrophysiology experiment32. The ex-1310

periment recorded from 140 mice across 7 labs, and we processed recordings which passed the raw1311

data quality control protocols described in that work (Table 1), which included target thresholds on1312

the number of channels in the target region validated by histology, behavioral criteria, overall single-1313

unit yield criteria, and limits on recording noise level. These SpikeGLX recordings were loaded via1314

SpikeInterface and preprocessed according to the IBL’s standard preprocessing procedure20, in-1315

cluding highpass filtering, demultiplexer phase shift correction, stripe artifact removal via a spatial1316

highpass filter, and channel-wise standardization. This preprocessing pipeline was implemented via1317

modules from SpikeInterface on all mouse recordings except for those from IBL, which were prepro-1318

cessed using IBL’s own code available at https://github.com/int-brain-lab/ibl-neuropixel.1319

These pipelines yielded similar results. These preprocessed recordings were then input into the ini-1320

tial spike detection, denoising, and localization pipeline of Boussard et al. 35 to extract point-source1321

model localization features36 from that pipeline’s denoised and collision-cleaned waveforms. For the1322

comparison to Kilosort, we used the IBL’s own runs of pyKilosort, a Python port of Kilosort 2.5, which1323

were documented in more detail by IBL et al. 20 and which used the same preprocessing pipeline.1324
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In Fig. 5.a, we included two acute recordings with imposed zig-zag motion from the work of Stein-1325

metz et al. 6, described in more detail there. During these recordings (both included under dataset11326

in the corresponding link in Data Availability below), one of which was performed using a Neuropixels1327

1.0 probe and the other with a Neuropixels 2.0 probe, 10 cycles of vertical triangle-wave drift with1328

50µm amplitude and 100s period were imposed via an electronic micromanipulator.1329

The chronic four-shank Neuropixels 2 recordings used in Fig. 6 and Supp. Fig. 19 were also previ-1330

ously presented by Steinmetz et al. 6. We studied two chronic implantations (AL032 and AL036) in1331

detail, selecting 11 recordings separated by 13.1±6.0 days from AL032 and 13 recordings separated1332

by 13.5 ± 11.2 days from AL036.1333

The chronic Neuropixels 1 implantations recorded at UCLA were performed in compliance with the1334

Institutional Animal Care and Use Committee. Two C57Bl6/J male mice (10-12 weeks of age) were1335

used in experiments. Surgeries were performed under isofluorane anaesthesia (3% induced, 1.5-1336

2% maintained). Headbar implantation and Neuropixels implantation were performed within the1337

same surgery. First, the dorsal surface of the skull was cleared of skin and periosteum. A thin1338

layer of cyanoacrylate (VetBond, World Precision Instruments) was applied to the edges of skull1339

and allowed to dry. The skull was then scored with a scalpel to ensure optimal adhesion. After1340

ensuring the skull was properly aligned within the stereotax, craniotomy locations were marked by1341

making a small etch in the skull with a dental drill. A titanium headbar was then affixed to the back1342

of the skull with a small amount of glue (Zap-a-gap). The headbar and skull were then covered with1343

Metabond, taking care to avoid covering the marked craniotomy locations. After the Metabond was1344

dry, the craniotomies for the probes and grounding screw were drilled. Once exposed, the brain was1345

covered with Dura-Gel (Cambridge Neurotech). The implant was held using a custom plastic holder1346

and positioned using Neurostar stereotax. After positioning the shanks at the surface of the brain,1347

avoiding blood vessels, probes were inserted at slow speed (5 µm/s). Once the desired depth was1348

reached, an additional layer of Kwik-Sil was applied over the craniotomy. The probe was then fixed1349

to the skull with Metabond.1350

The Neuropixels Ultra data explored in Fig. 5 and Supp. Fig. 15 were reported in Ye et al. 34, and1351

feature a very dense electrode layout, with 384 sites arranged in a 64 ⇥ 6 grid with 6µm vertical1352

and horizontal channel spacing. Here, we focused on recordings with zig-zag motion imposed by a1353

similar methodology as discussed above; more details are available in the reference.1354
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Rat brain activity in vivo data. The rat recordings of Supp. Fig. 5 were made with the Neuroseeker1355

probe, a 128-site high density probe, at 20 kHz with 16 bit resolution and with the rat under ke-1356

tamine/xylazine anaesthesia71;40. These recordings are wideband (0.1-7500 Hz), so that LFP and1357

AP were obtained by lowpass and highpass filtering.1358

Non-human primate brain activity in vivo data. The methods are described in detail elsewhere33,1359

but, in brief, the Non-human primate recordings used the Neuropixels 1.0-NHP probe manufactured1360

in two variants: 1) 45 mm long x 125 µm wide x 90 µm thick, featuring 4416 electrodes comprising1361

11.5 banks of 384 channels each; and 2) 25 mm long, 125 µm wide, and 60 µm thick, featuring1362

2496 electrodes comprising 6.5 banks of 384 channels with two aligned vertical columns. Probe tips1363

were sharpened to a 25°angle using the Narishige EG-402 micropipette beveler. Neural recordings1364

were referenced to either: 1) the large electrical reference point on the tip of the electrode, 2)1365

an external electrical reference wire placed within the recording chamber, or 3) a stainless steel1366

guide tube cannula. Electrical signals are digitized and recorded separately for the action potential1367

(AP) band (10 bits, 30 kHz, 5.7 µV mean input-referred noise) and local field potential (LFP) band1368

(10 bits, 2.5 kHz). Data collection was performed using SpikeGLX software. Recording sites are1369

programmatically selectable with some constraints on site selection.1370

Multiple designs were used to allow for the lowering of the Neuropixels 1.0-NHP probes into the1371

brain33. When using a non-penetrating guide tube, the dura was typically penetrated with a tungsten1372

electrode prior to using a Neuropixels probe to create a small perforation in the dura to ease inser-1373

tion. When inserting electrodes to deep targets (> 20mm), the alignment between the drive axis1374

and the probe shank is essential for enabling safe insertion, as misalignment can cause the probe1375

to break. For this application, we developed several approaches to maintain precise alignment of1376

the probe and drive axis. The choice of appropriate insertion method depended on the mechanical1377

constraints introduced by the recording chamber design, the depth of recording targets, the number1378

of simultaneous probes required, and the choice of penetrating or non-penetrating guide tube. The1379

interaction of these constraints and a more thorough discussion of insertion approaches is provided1380

on the Neuropixels users wiki33. Open-source designs for mechanical mounting components for1381

Neuropixels-1.0-NHP to drives from Narishige, NAN, and other systems are available in a public1382

repository: https://github.com/etrautmann/Neuropixels-NHP-hardware.1383

The recording used in Supp. Fig. 3 was made in an anesthetized paralyzed preparation, described1384

in detail previously72. We induced anesthesia with an intramuscular injection of ketamine HCI (101385
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mg/kg) and maintained the animal with isoflurane anesthesia during catheterization of saphenous1386

veins and endotracheal intubation. Throughout the experiment, we maintained anesthesia with an1387

infusion of 6 and 15 µg/kg/h sufentanil citrate and neuromuscular blockade with 0.1 mg/kg/h ve-1388

curonium bromide to limit eye movements. We opened a craniotomy and durotomy to insert a1389

Neuropixels array3 or 2-shank 128-channel silicon laminar arrays from the NeuroNex Technology1390

Hub73. The sites were sealed with agar, and petroleum jelly was routinely applied to prevent the1391

agar from drying and maintain the cortex’s health. We generated and controlled stimuli with an Ap-1392

ple Mac Pro computer. We presented stimuli on a CRT monitor (HP1190) running at a resolution1393

of 1280 ⇥ 960 pixels (64 pixels per degree) and 120 Hz. Most stimuli were binary or ternary noise1394

patterns presented at a rate of 40 Hz.1395

5 Data availability1396

Human data is available for download at Dryad (https://doi.org/10.5061/dryad.d2547d840) and1397

DANDI (https://dandiarchive.org/dandiset/000397) from Massachusetts General Hospital15 and1398

at Dryad (https://doi.org/10.7272/Q6ST7N3B) from the University of California San Francisco16.1399

International Brain Lab data for the reproducible electrophysiology experiment is publicly avail-1400

able and can be downloaded by following the instructions at https://int-brain-lab.github.io/1401

iblenv/notebooks_external/data_release_repro_ephys.html using the tag 2022 Q2 IBL et al RepeatedSite.1402

The NP1 and NP2 imposed motion datasets here (dataset1) can be downloaded at Figshare https:1403

//figshare.com/articles/dataset/_Imposed_motion_datasets_from_Steinmetz_et_al_Science_1404

2021/14024495?file=26476589.1405

6 Code availability1406

DREDge is available to run on AP data via the SpikeInterface library, and on both AP and LFP1407

data by open-source Python code hosted at the GitHub repository https://github.com/evarol/1408

dredge/. DREDge is implemented in Python, and it relies on PyTorch’s convolution routines to1409

implement GPU-accelerated normalized cross-correlations74, on SciPy for its bundled linear system1410
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solvers and interpolation routines75, and on SpikeInterface19 for its electrophysiology data readers1411

and preprocessing routines, some of which were implemented as part of this work.1412

Code for running Kilosort 2.5 with an extended set of adjustable parameters is available at https:1413

//github.com/cwindolf/Kilosort/tree/modded-v2.5.1414

Code for the analyses of human data described in this paper has been made available at https://1415

github.com/Center-For-Neurotechnology/HumanNeuropixelsPipeline (currently without a license),1416

which includes links to other useful repositories not maintained by authors of this paper, with the1417

exceptions of https://github.com/evarol/dredge (available under the MIT license) and https:1418

//github.com/williamunoz/InterpolationAfterDREDge) (available under the MIT license). Local1419

field potential motion corrected interpolation required the removal of low-frequency peaks in the sig-1420

nal, a step utilizing Zapline-plus (https://github.com/MariusKlug/zapline-plus). For all the Neu-1421

ropixels data, open source acquisition software was used to acquire the neural data which include1422

SpikeGLX Release v20201103-phase30 (http://billkarsh.github.io/SpikeGLX/) and OpenE-1423

phys (https://open-ephys.org/gui). Single unit sorting was performed using Kilosort (https:1424

//github.com/MouseLand/Kilosort) as well as Phy2 (https://github.com/cortex-lab/phy). Custom1425

Matlab (version R2021a) and Python code in combination with open source code from the Field-1426

trip toolbox (http://www.fieldtriptoolbox.org/, Oostenveld et al. 70) was used for the majority1427

of the analyses. Some code involving manual alignment is available on GitHub (https://github.1428

com/Center-For-Neurotechnology/CorticalNeuropixelProcessingPipeline). The burst suppres-1429

sion ratio (BSR) was computed using an automated method (https://github.com/drasros/bs_1430

detector_icueeg). Psychtoolbox-3 (http://psychtoolbox.org/) with io64 parallel port drivers and1431

MATLAB functions were used to drive TTL trigger pulses for alignment as well as run the visual task.1432
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