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Abstract

High-density microelectrode arrays (MEAs) have opened new possibilities for systems neu-
roscience in human and non-human animals, but brain tissue motion relative to the array poses
a challenge for downstream analyses, particularly in human recordings. We introduce DREDge
(Decentralized Registration of Electrophysiology Data), a robust algorithm which is well suited for
the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to
estimating motion from spikes in the action potential (AP) frequency band, DREDge enables au-
tomated tracking of motion at high temporal resolution in the local field potential (LFP) frequency
band. In human intraoperative recordings, which often feature fast (period <1s) motion, DREDge
correction in the LFP band enabled reliable recovery of evoked potentials, and significantly re-

duced single-unit spike shape variability and spike sorting error. Applying DREDge to recordings
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made during deep probe insertions in nonhuman primates demonstrated the possibility of track-
ing probe motion of centimeters across several brain regions while simultaneously mapping single
unit electrophysiological features. DREDge reliably delivered improved motion correction in acute
mouse recordings, especially in those made with an recent ultra-high density probe. We also im-
plemented a procedure for applying DREDge to recordings made across tens of days in chronic
implantations in mice, reliably yielding stable motion tracking despite changes in neural activity
across experimental sessions. Together, these advances enable automated, scalable registra-
tion of electrophysiological data across multiple species, probe types, and drift cases, providing a

stable foundation for downstream scientific analyses of these rich datasets.

1 Introduction

High-density microelectrode arrays (MEAS), and in particular Neuropixels probes, have enabled si-
multaneous high quality recording from large populations (hundreds) of neurons with high resolution,
both temporally (20-30kHz) and spatially (channels spaced by tens of microns or less) '*=*%>:°. Since
their introduction and ongoing development, high density MEAs have opened new possibilities for
the study of neuronal populations via spiking activity and local field potentials, within and across
brain regions. They have enabled testing a variety of novel hypotheses across species, includ-
ing those related to electrophysiological” and functional® properties of cell types, neural correlates
of consciousness”, population dynamics'”, motor planning'', episodic memory '“, visual decision
making '~, and skin patterning in dreaming octopi '“. Further, Neuropixels probes have recently been
employed for high-quality intraoperative recordings in humans '>'°; both awake and under general

anaesthesia while undergoing surgical interventions for their clinical care, enabling us to directly

answer fundamental questions about human brain physiology with possible clinical implications.

However, several biological and physical sources of noise and variability can reduce the neural
recording effectiveness of these probes'’. In particular, in vivo recordings can be impacted by the
motion of the brain relative to the recording probe, especially in recordings from human participants
where brain motion effects may appear due to the heart rate, breathing, speaking, or movement
of the patients'® and can be an order of magnitude larger than the brain movement observed in
non-human animals such as mice. Such motion causes voltage measurements to drift across the

recording electrodes, which can confound downstream tasks such as spike sorting and behavioral
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decoding. In the action potential (AP) frequency band (frequencies above ~ 300Hz), the motion of
a single well-isolated neuron relative to the probe can result in undersampling or false splits in its
spiking activity if not properly motion corrected '*>'*>*"; similarly, motion can make it difficult to iden-
tify and isolate events in the local field potential (LFP) frequency band (frequencies below ~300Hz),
leading previous studies to resort to manual or semi-automated tracking in some cases '>'°. Fur-
ther, these motion artifacts can lead to errors in downstream applications, reducing the power and
accuracy of a given study’s scientific analyses and precluding full analysis of task-related activities

that correlate with motion.

Estimating the motion of a sensor such as a high-density MEA from its data falls into the category
of registration problems familiar from other domains, including biomedical image alignment

and video stabilization=>=° among many other methods in a large and active field of research. In the
context of extracellular neurophysiology recordings, registration methods need to be robust to both
substantial measurement noise and the oscillations of the local field potentials and able to scale up
to recordings on hundreds of channels with temporal resolution in the tens of kilohertz. Further, they
must be flexible enough to model deformations of the brain tissue relative to the probe which change
over time while also varying along the depth of the probe, as parts of the tissue may move differently;
such spatially nonuniform motion estimation problems are referred to as “nonrigid” registration tasks,

in contrast to rigid motions which do not vary along the probe depth.

Current methods rely on the motion tracking algorithm of Kilosort 2.5 (KS)®<’, which estimates drift
from spiking activity in the action potential band using a template-based approach similar to that of
the NormCoRRe (Non-Rigid Motion Correction) algorithm developed for calcium imaging data

These methods first break the recording into independent spatial blocks (i.e., groups of channels)
to account for nonrigidity and estimate motion within each block by computing a global template,
which is a spatial summary of the neuronal activity computed by suitably aggregating statistics of
individual spikes from across the recording into spatial bins. Next, these methods cross-correlate
this global template with time-binned neuronal activity to estimate the displacement in each time
bin relative to the template, leading to an estimated motion trace which can then be used to update
the template in an iterative scheme. Although this method is effective in some real and simulated
data®~", its application is limited to datasets which can be aligned to such a global template, which
excludes oscillating local field potentials and spiking data which is highly nonstationary or features

drift which is large relative to the length of the probe or the spatial extent of the blocks used to
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account for nonrigidity. Further, KS’ motion estimate is limited in its temporal resolution by the noise
characteristics of spiking data, leading to the development of algorithms to assist manual tracing at
higher temporal resolution like MTracer '°, which in addition to relying on manual annotations is also

limited in its application to rigid drift (i.e., motion which does not vary along the depth of the probe).

In this work, we introduce DREDge (Decentralized Registration of Electrophysiology Data). In con-
trast to previous global template-based methods, DREDge starts from the decentralized framework
of Varol et al.””; Windolf et al.”", which infers motion by modeling local relationships in the data,
allowing for motion estimation from either time-binned spiking data or filtered local field potential
recordings. This approach estimates the relative displacements of pairs of time bins via cross-
correlation=®, and models these local relationships as arising from a latent motion trace, which can
then be inferred through optimization. DREDge extends this framework by posing a model which
combines information from local displacements and correlations between pairs of time bins with a
spatiotemporal smoothing prior, leading to a unified method which is able to produce stable motion
estimates from both spikes and local field potentials. DREDge further extends this method through
computational and algorithmic improvements which enable scaling to both longer and more rapidly
sampled data, in particular by implementing an online algorithm that enables the inference of motion
at hundreds of hertz from the local field potential band (Fig. 1). DREDge’s motion estimation runs in
a small fraction of real time in the action potential band after spike detection and localization, and at
around a quarter of real time when estimating nonrigid motion at high temporal resolution (~250Hz)

from local field potentials (Supp. Fig. 1).

We applied DREDge to in vivo datasets from a variety of species and MEA types, including human
Neuropixels recordings '*>'°, recordings in mice from the International Brain Lab’s large-scale re-
producible electrophysiology experiment~-, non-human primate recordings during probe insertion-,
and mouse recordings using the experimental ultra high-density Neuropixels probe “*“, among others.
Through these experiments, we demonstrate the usage and utility of DREDge along with some of
the novel downstream analyses that it enables. These include extending motion tracking to smaller
and denser probes, leveraging local field potential-based motion estimation to improve local field po-
tential event tracking and spike sorting in human datasets, tracking electrophysiological properties of
cells across tens of millimeters of brain tissue during a deep probe insertion in rhesus macaque, and
enabling stable motion correction in chronic recordings with sessions separated by days or weeks.

We also include detailed comparisons to current methods (i.e., Kilosort), introducing DREDge as a
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Figure 1: DREDge is a robust online motion drift estimating algorithm for electrophysiology
recordings in both action potential (AP) and local field potential (LFP) bands. a Motion of the
brain tissue relative to the probe causes signals to drift from channel to channel during extracellular
recordings with high density multi-electrode arrays. This drift is visible in both the low-frequency
local field potential (LFP; top right) band and the high-frequency action potential (AP; bottom right,
green highlighting for visual emphasis) band. b The processing pipeline of DREDge motion esti-
mation and analysis. Electrophysiology recordings are first preprocessed into spike rasters (here,
extracted from a recording in mouse“~; see see Section 4.1) or filtered LFP (here, from a human
intraoperative recording '7; see Section 4.2), which reveal changing structure along the long axis of
the probe over time. DREDge takes in these preprocessed features and returns the drift estimate.
The estimated drift is then used for drift correction that supports further analyses such as spike sort-
ing, LFP event detection, and electrophysiological feature mapping. ¢ Schematic of DREDge. Time
bins of preprocessed data are cross-correlated with other time bins to generate a T x T matrix D
of estimated optimal displacements along with the corresponding maximum cross-correlation matrix
C. The displacement matrix D is filtered using a correlation cutoff, and the remaining terms are com-
bined with a spatiotemporal smoothing prior in a bottom-up or decentralized fashion to determine
drift estimates P for each time bin (see Methods).

2 Results

A decentralized framework for motion estimation. DREDge is designed to estimate motion from
both the action potential (AP) and local field potential (LFP) bands of extracellular recordings after
suitably preprocessing them to reveal useful spatial features (Fig. 1.a and Methods). To prepro-
cess the AP band for input into DREDge, unsorted spike events detected by existing pipelines (for
example, ' ="*?) are spatially localized relative to the probe using a model which predicts their lo-
cations from their waveforms, such as the point-source model of Boussard et al.*® or alternative
methods™">'7°%°", These spike positions are then combined with firing rate and amplitude infor-
mation and binned in space and time to form a two-dimensional spike raster. LFP signals require
less preprocessing, including spatial filtering and temporal downsampling to the target resolution for

registration, along with standard filtering and artifact removal steps (Section 4.2).

After preprocessing reveals spatially localized features in the recording, our goal is to detect cor-
related spatial displacements of these features over time and then to use these displacements
to estimate the underlying and possibly nonrigid relative motion of the probe and the brain tissue
(Fig. 1.b). To that end, we began from the core operation of the decentralized framework of Varol
et al. ', which computes the offsets which maximize the cross-correlation between pairs of time bins
of the preprocessed signal. In the decentralized framework, the motion is estimated in a bottom-up

fashion from these pairwise estimates, rather than in a top-down or centralized fashion from a global


https://doi.org/10.1101/2023.10.24.563768
http://creativecommons.org/licenses/by-nc-nd/4.0/

152

154

155

156

157

158

159

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.24.563768; this version posted October 29, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

template as in Kilosort’s algorithm. DREDge extends this framework, first by combining these esti-
mates of the relative displacements between pairs of time bins with their corresponding correlations,
which are used to increase the influence of pairs of time bins which contain more similar features.
Displacement estimates between pairs of time bins are also excluded when the time bins lack sig-
nificant signal (e.g., have very few spikes) or when the interval between time bins is large (to avoid
the computational burden of cross-correlating all pairs of time bins). These observations are then
placed into a Bayesian model with a spatiotemporal smoothing prior, leading to a robust and general

framework which is able to estimate motion from both spikes and LFP (Fig. 1.c and Methods).
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Figure 2: Correcting for motion in human spiking data. a In a recording ' in the rostral middle
frontal gyrus (also the dorsolateral prefrontal cortex, shown in this participant in the brain reconstruc-
tion on the left), the neural signal before (middle) and after applying interpolation (right) to correct
for the motion in the local field potential (LFP) and action potential (AP) bands based on DREDge’s
motion tracking in the LFP band. Brain regions in figure on the left: rostral middle frontal gyrus, blue;
caudal middle frontal gyrus, cyan; superior frontal gyrus, purple. Arrow indicates location of the
Neuropixels probe. b DREDge’s LFP-based tracking accurately tracks motion which can be inde-
pendently identified from spiking information alone. Fast breathing- and heartbeat-induced motion
present in a human intraoperative recording is visible in spike and LFP rasters (i,ii). DREDge’s lower
temporal resolution spike-based tracking finds and corrects the slow motion trend (i, blue; iii), while
the LFP-based estimate (i and ii, green; v) tracks the fast oscillations. Sub-second correction on top
of AP-based tracking based on clustering and splines matches well with the LFP-based method (i
and ii, orange; iv; see Section 4.8). ¢ Recovering units in noisy spiking data by motion estimation
from the local field potential (LFP) band: although the large and rapid motion in this recording leads
to a spike raster from which DREDge cannot extract a signal (i), using DREDge’s LFP-based non-
rigid motion estimation to correct the positions of spikes reveals well-isolated single unit waveforms
(iv) in groups of spikes collected by isolating clusters in plots of spike depths vs. time and amplitude
(it and iii). d A subset of spike detections and sorted units (with different single unit clusters color
coded as dots) across channels before (top) and after (bottom) registration with a DREDge motion
estimate (black line). Note the emergence of aligned spikes on the bottom panel. e Progressive
decrease in inter-spike interval violation probability with increasing interpolation rate (0.5 - 250 Hz),
as compared to unregistered data (U) and data interpolated using the motion-correction interpolated
method based on a randomly permuted or “scrambled” DREDge motion estimate (S). Bar represents
mean. f Representative unregistered (top) and 250 Hz-interpolated (bottom) unit (red dot on panel
D), revealing a well-stereotyped multi-channel waveform after interpolation. Scale bar 1 ms. g Aver-
age spatial distribution of spike clusters when non-interpolated (left) and 250 Hz-interpolated (right);
motion-correction interpolation concentrates spike power around a central channel. h Full probe
spatial distribution of spikes in non-interpolated condition (top) and 250 Hz-interpolated clusters
(middle). (Bottom) Comparison of 250 Hz interpolated spike assignments to unregistered clusters,
showing over-splitting and cross-contamination of unregistered clusters.
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Figure 3: Correcting for motion in human local field potential data. a Top: Spontaneous LFP
before and after motion-corrected interpolation and following Zapline-plus low-frequency peak re-
moval. Bottom: Average power spectral curves before (left) and after (right) motion correction, aver-
aged across channels. b In a recording in the superior frontal gyrus (also the dorsomedial prefrontal
cortex), average visually evoked potentials can be observed in the LFP in a colormap to black versus
white squares presented on a screen in front of the patient before and after motion-corrected inter-
polation and Zapline-plus application. Brain regions in figure on the left: rostral middle frontal gyrus,
blue; caudal middle frontal gyrus, cyan; superior frontal gyrus, purple. Arrow indicates location of
the Neuropixels probe. ¢ In the same recording in the superior frontal gyrus (also the dorsomedial
prefrontal cortex), average visually evoked potentials across all channels can be observed in the
LFP in a colormap before and after motion-corrected interpolation and Zapline-plus application. d
Average log power spectral curves per channel (with the power represented as a color scale) be-
fore (left) and after (right) motion correction. Green brackets indicate ranges of channels with more
power in the low and mid-frequencies across channel depths which are not evident before motion
correction. Arrowhead indicates channels with lower power in the high frequencies in superficial
channels. e Voltage variance across trials (first averaged across channels) before and after mo-
tion correction for the black and white visual stimuli. f Left: Relative variance averaged across 10
seconds of baseline activity per participant (different color dot lines and asterisks are different par-
ticipants). Asterisks, p < 0.00001; pairwise Wilcoxon rank sum tests per participant. Right: Relative
variance averaged across channels during baseline activity per participant (averaged across time,
different color dot lines and asterisks are different participants). Asterisks, p < 0.00001; pairwise
Wilcoxon rank sum tests per participant. g Common median LFP (across channels) of detected in-
terictal epileptiform discharges (1IDs) before and after motion-correction interpolation, recorded in a
patient with intractable epilepsy during an open craniotomy to remove epileptogenic tissue. h Spon-
taneous LFP per channel shown as a colormap and with a zoomed-in voltage trace of the same
data for a detected IID before and after motion-corrected interpolation, showing that the IID survives
the processing. The voltage and timing scale in ¢ applies to the voltage traces here. The voltage
colorbar in ¢ applies to heatmaps here. Lower-indexed channels are deeper in the tissue.

DREDge rescues spike sorting and LFP features in human intraoperative patient brain ac-
tivity. A major motivation for this work was the significant motion observed while recording human
brain activity using Neuropixels probes (Figs. 2 and 3; Supplementary Video 1). As reported by
two separate groups '>'°, the brain movements during open craniotomy and deep brain stimula-
tion surgeries are substantial, ranging up to millimeters (Fig. 2.a; Supplementary Video 1). Pre-
vious approaches to combat and correct for this motion signal primarily involved manual tracking
in the local field potential '® or action potential bands'® or semi-automated tracking'® (MTracer,
https://github.com/yaxigeigei/MTracer). In a collection of both openly shared deidentified data
sets and newly collected data sets, we demonstrate the capability of DREDge to automatically track
this movement within the neural signal both in the LFP band and the spiking activity or AP band
(Fig. 2.a, right panel). In a subset of cases (N = 3), we compared DREDge’s LFP-based tracking to
manual tracking using LFP signals (Supp. Fig. 2;'”). We found a high correlation between manual
tracking and DREDge motion tracking (Pt01, r = 0.98; Pt02, r = 0.99; Pt03, r = 0.85; Pearson’s r;
p < 0.000001 for all three instances, Supp. Fig. 2). Further, we found that the peaks in the power
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spectra for the manual and DREDge-tracked motion were in agreement. Finally, in an attempt to
validate whether this movement tracked using neural signals corresponds to actual movement, we
performed motion tracking of pixels in a video of the brain movement in an open craniotomy and
found that the video-tracked movement and its spectral peaks were very similar to those of both the

manual and DREDge motion tracked traces (N = 1; Supp. Fig. 2).

To further validate this cross-band registration procedure, we examined another human recording

with fast drift. In this dataset, DREDge’s AP-based motion estimation was able to capture the slow
trend of the true motion, but not the faster motion due to heartbeats and other sub-second brain
motions. Since this recording featured prominent and well-isolated spiking activity traces from prob-
able single units, it was possible to estimate the trajectories of these point clouds in order to refine
the motion estimate at higher temporal resolution. To do so, we used a rough clustering to isolate
each of these units’ traces, and used the spike positions within these clusters to fit a spline (Fig. 2.b,
Supp. Fig. 3; see also Section 4.8). This sub-second AP-based motion correction procedure was
able to track the fast (< 1Hz period) heartbeat-induced motion visible in the modeled spike positions
and LFP raster (Fig. 2.b, i and ii), leading to an apparent improvement of its registered spike raster
(iv) over that of DREDge’s AP-based estimate (iii). Next, we applied DREDge’s LFP-based motion
tracking to the same recording. We found that the motion traces estimated using the sub-second cor-
rection method and DREDge-LFP overlapped strongly (Fig. 2.b, i and ii) and that the LFP-registered
spike raster (v) was visually aligned with the sub-second corrected raster (iv). This agreement rein-
forced the utility of applying LFP-based motion estimates to realign spike data while also validating

the alternative spline-based method for estimating sub-second rigid motion from clustered spikes.

DREDge’s ability to track motion from both the AP and LFP bands allows users to choose the best
signal source in each application. For instance, in some human recordings featuring large natural
heartbeat- and breathing-induced motion which is fast relative to the timescale at which AP motion
tracking is stable, which is typically around 1Hz due to the sparsity of spiking activity, motion tracking
in the AP band can be unreliable or impossible, corresponding visually to a lack of structure in the
spike raster plot (Fig. 2.c, i). However, we found that motion tracking in the spatiotemporally smooth
LFP band was consistently reliable in such datasets, even when performing nonrigid registration at
high temporal resolution (250Hz). In Fig. 2.c, we focused on a human Neuropixels 1 recording made
with a long two-column channel configuration '®, featuring thousands of microns of drift across the

entire recording made up of fast motion oscillations of approximately 500um around a long-term drift
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which extended over approximately 1mm. LFP-based nonrigid motion estimation visually appeared
to track fast moving features present not only in the LFP band but also in scatter plots of spike
positions (Fig. 2.c, i, detail plots). When visualizing the positions of spikes after correction using the
nonrigid LFP-based motion estimate in scatter plots versus time (Fig. 2.c, ii) and spike amplitude
(Fig. 2.c, iii), isolated clusters of these spike positions became apparent. Waveforms extracted
from the detected events leading to the spikes visualized in these scatter plots had well-stereotyped
shapes Fig. 2.c, iv), indicating that the LFP-based motion estimate was able to stabilize the positions
of single units, validating the utility of cross-band registration in the estimation of extensive and fast
drift in a dataset which would be challenging or impossible to process based on AP data alone.

(Similar results are illustrated in Supp. Fig. 4.)

On the other hand, cases exist where the LFP band does not feature structures which can be used in
motion tracking, or in which other signals dominate, making LFP-based motion tracking impossible.
For instance, in recordings from ketamine/xylazine-anaesthetized rat™” (Supp. Fig. 5), the LFP band
is dominated by slow-wave activity across the array that confounds DREDge’s LFP-based motion
tracking, leading to an artifactually oscillating motion estimate which did not align with the very
stable spike raster plot. However, when we applied spike-based motion tracking to these recordings,
the estimated motion trace was very stable, in agreement with the apparent lack of drift in the spike
rasters. The flexibility of the DREDge algorithm made it possible to switch between these modalities

as required by each application.

As above, we found that in multiple other recordings (N > 20 in human cortex) the brain motion
could be observed in both the changing voltages across the channels in the LFP and the identifi-
able single-unit waveforms moving up and down the channels in the recording (Fig. 2.d) '°, and that
tracking the motion in the LFP band using DREDge and then interpolating the voltage values in both
the AP and LFP bands was able to compensate for this motion (Fig. 2.d, bottom panel). We hy-
pothesized that this motion correction procedure would lead to marked improvements in the quality
of single units isolated by spike sorters. Indeed, not only did this correction stabilize the location of
detected spike waveforms, but the subsequent sorted single unit clusters were better isolated with
decreased inter-spike-interval (ISI) violations (Fig. 2.e), more concentrated waveforms across chan-
nels per individual cluster (Fig. 2.f-g), and reduced oversplitting and contamination across clusters
(Fig. 2.h). We found that the spatial spread of the voltages was concentrated in a smaller range with

significantly higher amplitudes represented in a smaller spatial range following motion corrected in-
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terpolation compared to the raw data set (Supp. Fig. 6, two-sided two sample t-test at each distance
from center, Bonferroni corrected with threshold p < 0.05). Importantly, the sorted clusters improved
(had fewer ISl violations) as we increased the temporal resolution of LFP-based DREDge motion
tracking from 1Hz to 250 Hz. To further demonstrate improved spike sorting results, we examined
the relationship between sorted clusters before and after correcting for the tracked motion (Fig. 2.h).
The number of sorted clusters (or single units) decreased from more than 500 to around 50. Visual-
izing the overlap between unregistered and registered units revealed that the unregistered clusters
tended to comprise spikes from several of the registered clusters, indicating oversplitting relative to

the improved clustering after registration.

LFP-based motion estimation and the following interpolation step can also be applied to correct for
motion artifacts in the LFP band itself, leading to cleaner and more stable LFP signals (Fig. 3.a).
However, even after this step, there was still a clearly visible heartbeat artifact in the signal, which
is commonly observed in electrophysiological recordings (see, e.g., Tal and Abeles®') and which
manifested as large low-frequency peaks in the power spectrum. To remove this artifact from the
traces after motion-correction interpolation, we applied Zapline-plus*~“°, a generalized line-noise
removal method which uses spectral and spatial filtering to effectively remove specified, narrow-
band oscillatory components from the signals (see also Supp. Fig. 7). We targeted the low-frequency
peaks in the signal, and in particular those which matched the spectral peaks in the DREDge motion
trace. This additional step resulted in smoothed LFP signals similar to those which we observe
in microscale laminar sampling of human cortical layers using other types of electrodes (Ulbert
etal.”"; Csercsa et al.”?; Fig. 3.a). Further, when we examined the power spectra across channels,

we found peaks before motion correction which disappeared after motion correction (Fig. 3.a).

This LFP-based motion correction was critical for identifying visual stimulus-induced evoked poten-
tials in recordings in the dorsomedial prefrontal cortex (dmPFC, also the superiorfrontal gyrus). We
presented a series of black and white squares to an awake participant undergoing DBS surgery
and examined the LFP response in the dmPFC (Fig. 3.b; Supp. Fig. 8). As observed in other
data sets“”, the motion-corrected dmPFC LFP showed significantly different depth-specific average
evoked potential responses to the visual stimuli on the per-channel level which differentiated be-
tween the black and white squares (N = 1; p < 0.01, Wilcoxon rank-sum test per time point, false
discovery rate-corrected for multiple comparisons), whereas motion contamination had few to no

image-onset induced differences between black and white square trials (n > 48 trials per condition
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(Fig. 3 and Supp. Fig. 8). Motion-correcting the LFP across channels further revealed depth-specific
responses to the black versus white square stimuli that remained at the same depth throughout
the averaged trial. Before motion correction, this voltage signal was highly variable vertically along
the depth of the electrode (Fig. 3.c). As further validation that the motion correction could rescue
physiologically relevant neural data which varies along the depth of the electrode in the cortex, we
compared the power spectra across channels, averaged across trials. Before motion correction, we
could not differentiate power spectral representations along the depth of the electrode. However, af-
ter motion correction, we found increased power in two different ranges of channels (green brackets

in Fig. 3.d) and decreased high frequency power in the superficial layers (arrowhead; Fig. 3.d).

Even if the underlying neural response was present in the original LFP signal, the motion introduced
not only large vertical movements but also significantly higher motion-induced voltage across trials
with visual presentations (averaged across channels at 0.25 sec after image onset; N = 1; p <
0.000001, Kruskal-Wallis Test; Fig. 3.e). Taking baseline data without any stimuli across a total of
6 participants, we also found that motion correction along with Zapline-plus correction significantly
decreased voltage variance on the per-participant level across time and across channels (N = 6;

p < 0.000001, pairwise Wilcoxon rank-sum test per participant; Fig. 3.f).

To test whether these correction and interpolation steps either could rescue, or, alternately, remove
neurally-induced LFP signals from contamination by motion and heartbeat artifacts, we next exam-
ined epileptiform interictal discharges (lIDs) before and after these preprocessing steps in Neuropix-
els recordings (Fig. 3; Supp. Fig. 9). We examined IID activity detected using automatic approaches
and validated by an epileptologist (SSC) across the electrode depth in an open craniotomy case
for the resection of anterior temporal lobe tissue in the treatment of epilepsy (N = 1; Fig. 3.9 and
Supp. Fig. 9; Paulk et al. *). As the IIDs were large enough, we could detect them using the median
of the LFP signal across channels both before and after motion-correction interpolation (Fig. 3.h).
Importantly, in the raw traces as well as the |ID-triggered average, we observed |ID waveforms in
the raw data which were not eliminated either after the motion-correction interpolation step or after
Zapline-plus (Supp. Fig. 9). We found that the IIDs were larger on the probe contacts deeper in the
tissue in this recording, which corresponded to the lower channel numbers in the figure, as has been
observed in other cases of laminar recordings in the human cortex (N = 1, Pt03; Fig. 3 and Supp.
Fig. 9; Fabo et al.”"). These results indicate that these processing steps can still result in an LFP

signal that retains underlying neurophysiological signatures in the data set.
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As DREDge’s motion tracking could be susceptible to signals which are widespread across the
recording channels”®, we next wanted to test whether general anesthesia-induced burst suppression
activity could pose difficulties for DREDge, and whether the burst suppression signal could survive
the interpolation step for motion correction of raw data (see Methods)“*'>. On the contrary, following
this motion-correction interpolation, the LFP still showed burst suppression voltage signatures which
could be detected using automatic tools (Supp. Fig. 10; Westover et al.””; Salami et al.””). Indeed,
we could detect bursts in the common median voltage traces at similar timings before and after
motion-correction interpolation, with correlations between burst detections before and after motion-
correction interpolation above 0.9 (Pt01, r = 0.93, p < 0.00001; Pt03, r = 0.95, p < 0.00001). Along
with differentiating visual responses, the voltage variance, the power spectral differences, and 11D
detections, these results confirm that the processing steps to correct for the motion artifact detected
by DREDge still allowed us to capture multi-channel dynamics related to neural processes which

include differentiating sensory responses.
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Figure 4: Monitoring long range drift during a deep probe insertion. a (i) The planned NP1.0-
NHP probe insertion trajectory in the monkey brain (motor cortex to the internal globus pallidus). (ii)
Spike raster before registration. (iii) Spike raster after registration, with DREDge estimated motion
trace (scale bars: 3840um vertical, 5min horizontal). b Localizations of detected spikes before (left)
and after (right) drift correction according to the DREDge motion estimate. ¢ Template waveforms
for three example units estimated from time-binned (15s bins) spikes, clustered using location fea-
tures stabilized using DREDge motion correction. Template waveforms are extracted on channel
neighborhoods around the unit’s max amplitude channel in each time bin, and colored by time (color
scale in a.i). The templates remain stable as the probe is inserted through its entire length. d Visual
description of the three features extracted from spikes’ maximum amplitude channels and visualized
in f. e Examples of traveling spike. The multiplicative inverses of the spike velocities below and
above the channel with maximum peak-to-peak amplitude were shown as features in f. f Binned
averaged spike features show consistent transitions across various depths, particularly near the pu-
tative striatal borders.

Tracking long-range drift during probe insertion in non-human primates. A key advantage of
the decentralized motion estimation framework is its ability to tolerate large nonstationarities in its
input data, so that it does not require the same population of neurons to be present throughout an
entire recording session. We thus hypothesized that DREDge would be able to track long-range drift
surpassing the length of the probe, which would enable users to map the neural population recorded
around the probe as it advances into the brain, in a manner similar to the previous tetrode study of
Mechler et al.”’. To test this hypothesis, we implemented DREDge on long insertion datasets (N = 2,
Fig. 4 and Supp. Fig. 11) recorded from rhesus macaque using Neuropixels 1.0-NHP probes--. The
probe was inserted from the motor cortex targeting globus pallidus internus (GPi) in the basal ganglia
using a commercial drive system (Fig. 4.a), with a target insertion depth of over 20 millimeters at a
rate of 10um/s (approximately 26 mm total estimated from drive motion, with an insertion speed of

10um/s; recordings were cropped temporally to due to recording quality for input to DREDge).

The large movement of the probe relative to the neuronal sources present during insertion was
clearly visible in raster plots of spike depth positions over time (Fig. 4.a; Supp. Fig. 11.a). While
KS’ template-based drift tracking failed in this case (Supp. Fig. 12), which we hypothesized was due
to the difficulty of modeling several probe lengths’ of neuronal populations with a single template,

DREDge was able to track motion across centimeters (Fig. 4.a).

To validate the motion estimate, we began by visualizing individual spikes’ vertical and horizontal lo-
cations in the plane of the probe, estimated using the point-source model of Boussard et al. *° before
and after motion correction (Fig. 4.b). While single unit clusters were completely obscured by the
motion of the probe before motion correction (left), which is to be expected since each unit moved

across the entire probe during the insertion, spike positions resolved into well-isolated clusters after
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registration (right). After manually isolating three clusters of spikes in the registered feature space,
we separated their spike trains into 15-second temporal bins and computed average waveforms of
the spikes in each bin. Plotting these waveforms on time-varying local channel neighborhoods ex-
tracted around their maximum amplitude channels revealed stable waveform shapes corresponding

to single units as they traveled the length of the probe (Fig. 4.c).

In many experimental scenarios, the ability to accurately pinpoint the probe’s location within the tar-
get region’s anatomy is highly desirable. Experimenters identify the anatomical location of the probe
during experiments by combining depth information from a drive system with observed changes in
firing patterns along the insertion. However, this method can be subjective and prone to errors in
depth estimates due to, e.g., tissue dimpling and deformation during insertion. Taking an alternative
automated approach, we combined DREDge’s motion estimate with extracellular waveform features
to determine the anatomical location of the probe. Waveform features were found to correlate with
differences in cell type in previous studies ', so that collections of such features may also be infor-
mative in determining the brain region, thanks to the natural variability in cell type frequency across

brain regions.

To correlate DREDge’s motion estimate with the approximately known anatomical trajectory of the
probe in the NHP brain, which proceeded from motor cortex through white matter and striatum and
finally to the internal globus pallidus (Fig. 4.d, right; Supp. Fig. 13), we collected waveform fea-
tures from spikes observed across the insertion trajectory and studied their variation in relation to
the motion-corrected spike depth. These features included the peak height, peak-to-peak dura-
tion, peak-to-trough ratio, spatial spread, and travel velocities of each spike (Fig. 4.d,e), and were
computed after denoising each spike using the neural net denoiser of Lee et al.”~; more informa-
tion on feature computation is included in Methods. Visualizing averages of these features as a
function of motion-corrected spike depth revealed consistent variations which roughly aligned to ex-
pected anatomical boundaries along the insertion trajectory (Fig. 4.f). This experiment served both
to validate DREDge’s long range motion tracking and to demonstrate the feasibility of simultaneous

anatomical localization and electrophysiological feature mapping during probe insertion.
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Figure 5: State of the art registration in acute mouse Neuropixels recordings. a Motion estima-
tion from spikes detected in imposed motion datasets from Neuropixels 1, 2 (i, ii) and Ultra probes
(iii)>>*. DREDge’s motion traces (left column, blue) and motion-corrected spike rasters (middle col-
umn) match the quality of Kilosort’s (left column, red; right column) on NP1 and NP2 data (i, ii).
Unlike Kilosort (KS), DREDge also performs well when applied to the short and dense layout of the
NP Ultra probe (iii). b In n = 47 datasets from the International Brain Lab’s repeated site experi-
ment~~, DREDge reliably outperforms KS on nonrigid spike-based registration according to a simple
metric of registration quality (see Section 4.9). We computed this stability metric on unregistered,
KS-registered, and DREDge-registered spike positions; here, the vertical position of a dot in the
scatter shows the metric value after DREDge’s correction, and the horizontal position shows either
the unregistered metric value (gray) or the value after KS’ correction (orange). ¢,d In n = 12 Neu-
ropixels Ultra recordings with both natural and imposed zig-zag motion, DREDge reliably performs
well relative to no correction and KS, leading to improvements in two metrics of stability. In ¢, we
apply the metric study described in b to these NP Ultra datasets; colors and axes have the same
meanings. In d, we plot the number of implausibly large jumps (motion estimation time bins with
> 10um/s drift; see also Section 4.9) which appear in DREDge’s and KS’ motion estimates; note
that these large jumps are much more frequent in the KS output. Further visualizations of DREDge’s
improvements in these NP Ultra recordings appear in Supp. Figs. 15 and 16.

Estimating motion in acute mouse recordings. Thus far, Neuropixels recordings have been made
most frequently in mice. Since the mouse brain is much smaller than the primate brain, and since
recordings made in mice may leverage experimental techniques such as head fixing which cannot be
applied for instance in the human recordings discussed above, these recordings typically feature less
extensive drift. Thus we were motivated to interrogate the extent to which DREDge could improve
over Kilosort in mouse recordings. We began by comparing DREDge’s nonrigid spike-based motion
estimation to that of KS on Neuropixels 1 and 2 datasets in which relatively small (~50um amplitude)
vertical zig-zag probe was imposed via a micromanipulator (see Methods) where KS had previously
been shown to perform well®. In these recordings, DREDge recapitulated the performance of KS
(Fig. 5.a, i and ii). We compared DREDge to KS qualitatively in these datasets both by plotting the
algorithms’ estimated nonrigid motion traces over a raster plot of spike positions over time (left), and
by making raster plots of spike “registered positions” over time (i.e., positions offset inversely to the
estimated motion; right, middle). In both NP1 and NP2, these algorithms’ estimated motion traces
are similar and appear to qualitatively track the motion visible in the unregistered spike rasters,

leading to well-stabilized registered raster plots.

Still, in qualitatively similar recordings with natural drift of a similar magnitude made by the Interna-
tional Brain Lab, DREDge reliably yielded improvements over KS. KS had already been employed
by the International Brain Lab (IBL) in its motion estimation and spike sorting pipeline=". To per-
form a large scale comparison between DREDge and IBLs application of KS on these datasets, we

designed a metric of registration quality: taking inspiration from KS’ internal template heuristic, we
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computed the mean correlation of all time bins of each recording’s spike raster (before or after regis-
tration by KS or DREDge) with the raster’s temporal mean (see Section 4.9). Computing this metric
on n = 47 IBL Neuropixels 1 recordings (Fig. 5.b) revealed that DREDge consistently improved the
stability of the data when compared both to no registration and to KS (metric mean differences 0.04
and 0.01 respectively; two-sided paired t-test p < 1078 in both cases). See Supp. Fig. 14 for il-
lustrative examples. Although these improvements in correlation were modest, since the drift itself
was modest, in no case did KS score higher on this metric than DREDge, a result which establishes

DREDge as a state-of-the-art method in the case of acute mouse Neuropixels recordings.

Further, unlike KS, DREDge was able to track the same imposed zig-zag motion, plus additional
probe motion, in recordings made with the Neuropixels Ultra (NP Ultra*") probe (Fig. 5.a, iii). This
probe features a much smaller recording area than those of Neuropixels 1 or 2 (a vertical extent
of 282um when recording a dense channel neighborhood near the tip, versus 2880um for NP2 and
3840um for NP1 in their dense layouts), with the same number of recording channels in a much
denser layout (6 columns of 48 electrodes with 6um vertical and horizontal spacing). In this case,
the raster plot of DREDge’s registered spike position revealed stably localized spikes from individual
neuronal sources in a recording featuring both artificially imposed and other motion which were both

substantial relative to the size of the recording area (Fig. 5.a, iii).

When applying DREDge and KS to n = 12 similar NP Ultra datasets, we repeatedly observed such
improvements (Fig. 5.c,d). Since these datasets featured motion which was much larger relative to
the recording area than in the IBL datasets, accurate motion estimation will have a larger impact
on the recording. Indeed, as visualized in the left panel of Fig. 5.c, applying the template corre-
lation metric analysis used above in the IBL Neuropixels study showed that DREDge led to larger
improvements than we had observed in the IBL experiment. In the NP Ultra data, DREDge’s mean
difference relative to no registration was 0.1 and relative to KS was 0.06; these values were both
significantly different from 0 (two-sided paired t-test p < 0.01 in both cases). To validate the appli-
cation of this metric as a measure of registration quality in these datasets, we also visualized the
raw and motion-corrected spiking activity in 7 of these recordings in Supp. Fig. 15. We also plotted
the frame-by-frame correlation to the template in all 12 recordings in Supp. Fig. 16. Further, we
observed that DREDge tended to produce motion estimates with fewer physically implausible jump
artifacts than KS on these datasets. We quantified this observation using a jump-counting metric

which identified the number of frames in which each method estimated motion larger than a phys-
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ical threshold of 10 um/s (Fig. 5.d; see Section 4.9); these recordings should feature jumps of this
magnitude only very rarely. DREDge’s motion estimate produced fewer such jump artifacts in all
NP Ultra recordings studied, with 419 fewer jumps in each recording on average, a significant effect

(paired t-test p < 0.0001).

We hypothesized that DREDge’s improvement in drift tracking over KS in these cases could relate
to the NP Ultra probe’s smaller recorded depth relative to the range of drift relative to NP1 and NP2,
which would lead to less agreement of individual frames with any global template like that which
KS constructs. To test this hypothesis, we spatially subsetted the recording area in the NP1 and
NP2 recordings of Fig. 5.a to fit inside the 282um span of the NP Ultra probe; we found similar
improvements in DREDge’s tracking relative to KS in this setting (Supp. Fig. 17). Together, these
experiments increased our confidence in DREDge’s improvement in performance relative to KS in
NP Ultra data and in general as the amplitude of motion increases relative to the length of the

recorded area.
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Figure 6: Tracking drift across weeks in chronic recordings. In a-d, we focused on 13 sessions
from one shank of a chronic NP2.4 implantation (AL032, shank 1 of Steinmetz et al.”). a Time-
line of recordings and inter-session gaps, spanning 130 days. b Unregistered spike positions from
10-minute snips of each session plotted over time, with session boundaries indicated as vertical
dashed lines; nonrigid DREDge and KS motion estimates appear as blue and red lines, respectively,
centered on their nonrigid window center. Detail zooms highlight DREDge’s relative stability in com-
parison to KS. ¢ Registered spike positions over time (DREDge, left; KS, right), with spike clusters
which were manually isolated in the DREDge-registered spike positions shown in color; these puta-
tive units’ positions under KS’ motion trace are shown on the right. d Waveforms extracted on the
detection channels for spikes in each cluster reveal well-stereotyped shapes, validating the motion
estimate. e Comparisons to KS in two chronic NP2.4 implantations (separated into 4 shanks each)
and two chronic NP1 implantations. DREDge is on par with or better than KS according to a simple
metric of inter-session correlation (left; see Section 4.9; here we show the template correlation’s
mean and standard error over sessions in each recording), and both methods improve on no regis-
tration. Further, according to a simple metric which counts non-physical jump artifacts (Section 4.9),
the DREDge motion estimate is substantially more stable across this collection of chronic datasets
(right); here, each dot shows the number of jumps in a single session, and each dataset contains
many sessions.

Estimating motion in chronic mouse recordings. In chronic implantations, experimenters record
in multiple sessions separated from each other by days or weeks from a single probe insertion.
Within each session, chronic recordings can be more stable than acute recordings, especially when
the probe is mounted directly on the skull rather rather than held in place externally; however, across
sessions separated by days or weeks, changes arise in the firing pattern of the neuronal population

as well as in single unit templates, complicating motion correction across sessions.

Since DREDge’s decentralized framework led to improved robustness to nonstationarities in firing
patterns relative to KS in acute probe implantations, we hypothesized that DREDge would be well-
suited to the task of registering recordings made across sessions recorded from individual chronic
probe implantations. We studied DREDge’s performance on a collection of Neuropixels 1 recordings
(N = 2, 31 and 57 recording sessions, 1.5+ 1.3 and 1.5 4+ 1.1 days between sessions; see also
Methods) and four-shank Neuropixels 2 recordings (N = 2, 11 and 13 recording sessions, 13.1 +6.0
and 13.5 + 11.2 days between selected sessions; see a timeline for one of the implantations in
Fig. 6.a). The Neuropixels 2 recordings were made up of simultaneous recordings made on four
shanks (jointly inserted and programmable recording arrays separated by 250um) with 96 recorded
channels per shank; we separated the recordings by shank, so that each session yielded four 96-
channel recordings. We then took a simple and direct approach to chronic registration with both
DREDge and KS, differing from previously-used KS-based pipelines®. Rather than co-registering
consecutive pairs of recordings, we simply either combined spike position data collected across

sessions or concatenated the raw binary data from different sessions and ran DREDge directly;
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DREDge’s modularity made both workflows straightforward (see Section 4.7 for information about

running DREDge and KS on these data).

In Fig. 6.a-d, we studied the drift tracking result in recordings from one shank of a Neuropixels 2
recording (ALO32 shank 1°) in detail, applying DREDge and KS to 13 sessions made across 130
days with inter-session gaps of days or weeks. For an equal comparison, we ran KS on the concate-
nated binary representation, rather than following the pair-by-pair approach of previous work®. We
first visualized DREDge’s and KS’ motion estimates over the unregistered spike raster (Fig. 6.b). In
detail zooms, DREDge’s improvement in stability relative to KS became apparent, along with sub-
stantial differences in the motion estimation results, especially in the early upper portion of detalil

Although DREDge offered a clear improvement in stability, it was not clear a priori whether the
broad trend of motion it detected was more correct accurate than the trend of KS’ motion estimate.
To check that this visual improvement corresponded to the real motion of the tissue, we isolated
spikes from 6 putative single units by manually thresholding their amplitudes and motion-corrected
positions (depth and horizontal position in the probe plane). These clusters are shown over the full
set DREDge’s registered spike positions in the left panel of Fig. 6.c, and the corresponding plot for
KS appears on the right, showing that spike positions which were stable under DREDge’s motion
estimate corresponded to drifting or jumping trajectories under KS. Plots including the horizontal
spike positions used to select spikes for these clusters appear in Supp. Fig. 18. We found that
waveforms extracted on the maximum-amplitude channel at times corresponding to each of these
spikes corresponded to well-stereotyped waveform shapes (Fig. 6.d), suggesting that the spikes did
come from drifting single units, each of which were present across several sessions of the chronic
recording; this provided evidence that, in this case, DREDge was tracking the probe trajectory more

accurately than KS while also improving the stability of the motion estimate.

To test whether such improvements were repeatable, we computed metrics of DREDge’s perfor-
mance against Kilosort’s on all 10 datasets. As in the previous section, we began by studying the
mean template correlation metric (see Section 4.9), which correlates each time bin of the spike raster
to the spike raster’s temporal mean and then considers the mean of those correlations. For this anal-
ysis, we visualized the spread of the mean template correlation session by session in Fig. 6.e (left);
lines indicate the mean over sessions, and confidence bands show standard errors over sessions.

Since the drift in these recordings is essentially nonexistent except in the first few sessions, this
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metric is not sensitive enough to differentiate DREDge and KS, including in cases like the one of
Fig. 6.a-d discussed above where the metric values for DREDge and KS are very close; significant
improvements in this metric only appear in cases such as AL036, shank 3 (shown in Supp. Fig. 19)
which feature relatively large amounts of motion. However, visual inspection of other cases (Supp.
Figs. 19 and 20) show that DREDge more accurately tracks what motion is present at the beginning
of these recordings. Importantly, DREDge’s motion tracking maintains stability across this set of
recordings, especially when compared to KS. We quantified stability using the jump-counting metric
of the previous section (Fig. 6.e, right; see Section 4.9). DREDge’s motion estimate always led to
fewer jumps, with differences in mean jump count per 10 or 3 minute session segment ranging from
5to 167, with an average of 47 more jumps per session segment in KS’ motion trace; DREDge had
no jumps in 74% of sessions versus KS’ 30%. Taken as a whole, these results introduce DREDge

as a robust and simple drift-tracking algorithm for chronic MEA recordings.

3 Discussion

We have presented DREDge, a robust decentralized registration algorithm for both spiking and local
field potential extracellular electrophysiology data recorded via dense multi-electrode probes. We
applied DREDge to recordings made with several different high-density probe types (Neuropixels
1, 2, NHP, and Ultra; Neuroseeker), in multiple species (mouse, rat, macaque, human), and across
recording types (AP, LFP, acute, chronic, intraoperative, during electrode insertion), and validated the
efficacy of LFP- and AP-based motion tracking directly and in comparison to a previous automated
approach (Kilosort 2.5) as well as manual tracking. The decentralized framework leads to natural ro-
bustness to changes in the neural populations present in the recording and their firing patterns, which
enabled novel applications and improvements over current methods. First, in human intraoperative
recordings which featured challenging high-amplitude and fast drift due to breathing and heartbeats
along with long-term drift, DREDge’s LFP-based motion tracking enabled automated analyses of
evoked local field potentials; this LFP-based tracking also enabled high temporal resolution motion
correction of AP data, leading to improvements in single-unit spike sorting. Next, DREDge was able
to track motion across many millimeters in recordings made during probe insertion through the rel-
atively large brain of rhesus macaque, revealing variations in the electrophysiological properties of

spikes across the depth of the insertion. In acute mouse recordings, DREDge outperformed existing
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approaches, especially when generalizing to new probe types. Finally, we were able to track motion

across days and months in chronic recordings in mice.

DREDge’s code is fully open-source, and its modular implementation makes it easy to integrate into
existing pipelines. It is already possible to integrate DREDge into current state-of-the-art spike sort-
ing pipelines, such as Kilosort~’, by using its motion estimate to drive motion-correction interpolation
of the AP band as a preprocessing step via the Spikelnterface framework'”. Further, DREDge is
being integrated into new spike sorting pipelines which use a drift estimate to make their core rou-
tines drift-aware rather than relying on interpolation to correct for motion before sorting”>. DREDge
could also be integrated into other key steps in single-unit spike sorting, such as waveform-based
quality metrics”* which are currently confounded by motion. DREDge’s motion estimation in chronic
recordings could also be combined with existing approaches” to enable stable tracking of single

units over days and weeks.

DREDge’s core algorithm could also be extended to enable new workflows both in extracellular elec-
trophysiology and in other domains, such as calcium imaging=" or cryogenic electron microscopy,
where a related approach was already independently developed~”. Finally, integrating DREDge as
part of an online recording system could extend the simultaneous probe localization and electro-
physiological feature mapping of our macaque insertion experiment to help experimenters target
specific anatomy during recording on the fly, or even to increase the spatial precision of targeting for

deep brain stimulation applications.
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4.1 Preprocessing of action potential band data.

For input into DREDge, raw electrophysiology data in the action potential band (300-6000Hz) passes
through several steps, starting with quality control and filtering, then spike event detection and lo-
calization, and finally a rasterization step which leads to a binned spatiotemporal representation of
spiking activity. These steps can be thought of as modular components that can be chosen accord-
ing to user preference so that DREDge’s motion estimation step itself becomes another module in a

bigger electrophysiology pipeline.

In the experiments conducted for this work, the initial filtering, detection, and localization steps were
chosen to suit each data source. For the International Brain Lab (IBL) mouse recordings =, the IBLs
electrophysiology preprocessing pipeline~”, including highpass filtering, analog-to-digital converter
(ADC) offset correction, dead and noisy channel detection, and spatial highpass filtering, was repro-
duced using modular components available in the Spikelnterface framework '”. Spike detections and
localizations for input into DREDge were computed using the corresponding module from~°, which
relies on the point source model of Boussard et al.”® to localize the spike events relative to the
probe. Kilosort-based motion estimates were collected from IBLs own runs of pyKilosort, a Python
port of Kilosort 2.5°, and these motion estimates, in turn, used pyKilosort’s detected and localized

spike events using raw data preprocessed as for DREDge

Once a collection of spike times, amplitudes, and localization features has been collected, DREDge
processes these into a rasterized representation. Given spatial and temporal bin sizes hg, h; (typ-
ically 1 micron and 1 second, respectively) leading to D bins along the length of the probe and T
bins across time, all spikes landing in each spatiotemporal bin are collected. These are reduced
into a D x T matrix, referred to here as the spike raster, by summing log(1 + x)-transformed spike
amplitudes landing in each bin and transforming again with log(1 + x), followed by spatiotemporal
smoothing (Gaussian filtering at 1um and 1s scale). Here, the logarithmic transforms stabilize the
representation to the heavy skewness present in the distributions of amplitudes and firing rates ob-
served in natural data; similar transformations are performed by Kilosort 2.5 in its preprocessing
before motion estimation. When constructing spike rasters for visualization (or for computing the

template correlation metric of Section 4.9 and Figs. 5 and 6), the log transformations are not ap-
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plied, since they lead to less interpretable units. Instead, the raster consists of the mean amplitudes

of all spikes landing in each time and depth bin, filling in empty cells with zeros.

Kilosort 2.5 uses a similar preprocessing, constructing an image of suitably log transformed spike
counts binned by their log transformed amplitudes and depths for each time bin, leading to a three-
dimensional structure, in contrast to our two-dimensional raster; Kilosort’s full preprocessing is dis-
cussed in detail in the supplementary materials of Steinmetz et al.”. A two-dimensional raster
decreases the computational burden of pairwise cross-correlation and allows our method to share
logic between the spike domain and LFPs, which are naturally easier to represent as images rather

than three-dimensional structures.

4.2 Preprocessing of local field potential band data.

In the local field potential (LFP) band, DREDge is able to operate directly on preprocessed electro-
physiology traces, rather than on discrete events detected in this band. Relying on discrete events in
the LFP band would be unreliable, since these are typically very sparse, and since fast motion can
induce power in similar frequency bands as potential events of interest, confounding their detection

in the presence of drift.

For input into DREDge, human LFP recordings '° were preprocessed according to the IBLs elec-
trophysiology preprocessing pipeline for LFP data=", including bandpass filtering, ADC offset cor-
rection, dead and noisy channel detection, and common referencing, and then downsampled to the
target sampling rate for motion estimation (typically 250Hz; the effect of varying this rate was studied
in Fig. 2.d-h). These steps were followed by a second spatial derivative along the probe’s vertical
axis applied separately in each column, following averaging channels at the same depth. These
latter steps sharpen the signal and represent it as a time-varying function over the depth domain,
like the D x T spike raster in the AP band pipeline above, replacing the temporal bin size according
to the preprocessed recording’s sampling frequency and the spatial bin size according to the vertical
inter-channel spacing. This pipeline was implemented by means of open-source modules available

in the Spikelnterface library "7, allowing end users to substitute it with their own preprocessing.
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4.3 Displacement and correlation matrices.

Both the AP and LFP preprocessing pipelines above result in a time-varying signal represented over
the long axis of the probe, which can be captured in a D x T matrix R, whose D rows represent depth
bins and whose T columns represent time bins. Given such input, and in the case where a rigid
displacement (i.e., a displacement that does not vary across depth) is being estimated, DREDge
starts by calculating normalized cross-correlation=® vectors for each pair of time bins R.; and R,
1 < t,t' < T. From each pair, the lag of the maximal cross-correlation and the maximal correlation
value itself are used to populate T x T matrices D and C, so that Dy is an estimate of the relative

displacement between time bins t and ' and Cy is the correlation of these time bins at this offset.

To extend to the nonrigid case, DREDge begins by dividing the depth domain into B user-configurable
soft blocks with Gaussian profiles. For instance, B ~ 10 evenly spaced Gaussian windows with
bandwidth (standard deviation) of 500um are well suited when estimating the nonrigid motions typi-
cally present in the IBL Neuropixels data of Fig. 5.b. Then, the normalized cross-correlations above
are estimated for each of the B windows, substituting the formulas used to compute covariances and
variances in the normalized cross-correlation with their weighted versions, where the soft windows
are used as weights which decrease the contribution of depth bins far away from their centers to
their displacement estimates. The results are then gathered as above into B x T x T arrays D and
C, so that D{}) and C!? give the displacement and correlation between times t, ' in the bth window,

b=1,..,B.

4.4 Robust decentralized registration.

In the decentralized framework, the centralization problem (Varol et al.*", equation 1) poses motion
estimation as an optimization problem that models the estimated displacements between pairs of
times as arising from differences of a true, unknown motion trace P across the corresponding time

interval. In its basic form, the centralization problem is the minimization problem
5 2
argmin > " ||[D® — (P,17 — 17Py)|[;, (1)
P b

which seeks to find a motion trace P, € R’ for each nonrigid block b = 1,..., B such that the

pairwise differences of entries of Py, Py — Py, Closely reconstruct the entries DY) of the block’s
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T x T displacement matrix D). In this way, P gathers the “decentralized” displacement estimates
of D into a central motion estimate. When D® is antisymmetric (naturally, the displacement D¢
between times t and t' is the opposite of that between t' and t), the minimum of this basic version of

the problem is attained by the row means of the displacement matrix,
1
P = 3> Dy, (@
J

(see Section 7.1), but posing the problem in this decentralized framework enables several key mod-

eling extensions.

Real-world data has several features which must be modeled in order to robustly estimate motion
in both the AP and LFP bands. Multiple separate factors may make it impossible to estimate the
relative displacement between two time bins by cross-correlation: these include nonstationarities in
neural firing patterns, oscillations in the LFP band, changes in the neural population being recorded
due to probe motion, and portions of recording with low signal. We implement three strategies to
down-weight or exclude such pairs of time bins when estimating P. First, such effects often manifest
in relatively low maximal correlations C(,ﬁ), which can be accounted for during inference by ignor-
ing pairs of time bins whose maximal correlation fails to exceed a threshold parameter 6 and by
weighting the rest of the terms by the corresponding correlations. Next, spatiotemporal regions of
the recording with low activity can lead to spurious displacement and correlation estimates; it is
beneficial to prevent such regions from affecting the rest of the motion estimate, which is achieved
below via the spatiotemporal weights matrices V.. Finally, nonstationarities in firing patterns or LFP
oscillations (possibly due to probe motion) can occur over long time periods. However, it is possi-
ble that time bins across these periods can have superficial similarities, leading to high correlations
and spurious displacement estimates. The time horizon parameter 6 below sets a limit on the time
difference across which pairs of time bins are considered. Finally, the above measures can lead to
spatiotemporal regions in which the motion estimate P is poorly determined. For instance, in noisy
portions of a recording it is possible that all observations have been excluded due to low maximal
correlations, leading to an ill-defined estimate of the motion in that region. In such cases, DREDge
leverages a spatiotemporal smoothing term to make use of the information from neighboring tempo-

ral and spatial bins.

These spatiotemporal censoring, weighting, and smoothing operations are most simply introduced
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into the decentralized framework by restating it as a Bayesian inverse problem. To that end, we
construct a probabilistic model which directly extends the centralization problem and in which P is
considered a latent parameter to be inferred based on the observations D. To introduce the model,
we start with the spatiotemporal smoothing prior. We let R(P) denote the negative log-prior, which

penalizes large spatial and temporal derivatives:
R(P) =) > [M(APH)? + As(DpAPy)] (3)
b t

Here, A; and A, denote discrete temporal and spatial derivatives (i.e., APyt = Ppri1) — Por When 1 <
t < T); At, As > 0 control the relative importance of these terms and are set to 1 in all experiments

above.

With this prior in place, we then model the observed displacements D as arising from the latent

motion trace P with normally distributed errors:
Dgf) | P~ N(Ppt — Py, Tgtt’)' (4)

Here, we model the observed displacements Dﬁﬁ) as conditionally independent given the latent dis-

placement P. The variance 72, controls the weight of each observation and is given by

1 1 1 1
2
L PP + . (5)
ot ]llf—f'ISGT/ht [ 7 (Vbt Vbt’) ]lC(b)>6)CC(fS)]
ﬁ/_

Here, Vy; is chosen to be either 0 or infinity depending on whether there is enough spiking activity
in the bth window at time t, measured by computing the inner product of R with the bth window at
that time and determining whether this value crosses a threshold parameter 6y. When |t — t'| > 6t
or C!¥ < g, or in the case that Vi or Vs are 0, it is possible that 72, becomes infinite, which is
equivalent to ignoring the observation D{f. This observation model’s log likelihood is then a weighted

version of equation (1).

In this framework, the centralization problem becomes the problem of maximum a posteriori infer-
ence of P:

A

P =arg max logp(D | P) — R(P), (6)

where p(D | P) and R(P) are the likelihood and negative log-prior above. The likelihood term p(D | P)

factorizes over the B nonrigid windows, so that without the prior these B problems could be solved
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independently. However, the spatial smoothing of the prior links neighboring spatial windows, so
that the B problems must be solved simultaneously. Fortunately, since R(P) only links neighboring
nonrigid blocks, the Hessian matrix of the objective in equation (6) has block-tridiagonal structure
when viewed as a B x B matrix of T x T blocks. Then, the inference problem as a whole reduces
to a block-tridiagonal linear solve, which we carry out using a block version of the usual tridiagonal
algorithm (Thomas’ algorithm). The time complexity of this operation scales linearly in the number
of windows B and linearly in T, since the time horizon parameter 6 above ensures that the blocks
in the Hessian matrix are banded matrices with bandwidth less than 6+ °°; the dependence on the

time horizon scales with 62.

4.5 Online motion tracking

When estimating motion in the LFP band at, for instance, 250Hz, T grows very rapidly, so that just a
minute of recording would have T = 15000. Even with the linear complexity in T noted above, This
rapid growth in the problem size leads to slow results when running the batch algorithm above in the
LFP band. We mitigated these effects by choosing to estimate drift chunk by chunk in an ‘online’
fashion in these cases. In this online method, the preprocessed data R is processed in C chunks
R©, ¢ =1,...,C of size at most D x Ty. Ty = 2500 is our default and suggested choice for LFP

applications, corresponding to 10s chunks of 250Hz-sampled preprocessed LFP data.

We initialize the algorithm by using the batch algorithm of the previous section to find the (possibly
nonrigid) displacement estimate P(") in the first block. Then, given the previous chunk’s displacement
estimate P©, we can find the current chunk’s displacement estimate P°*") by solving a version of

equation (6) where we condition on the previous chunk’s estimate P(©:

P+) = argmaxgic., log p(D | [P'; P{1]) + log p([P'?); P*1))). (7)

Here, [-; -] is the operation which concatenates along the time axis (columns). Proceeding through
the recording chunk by chunk, we can recover the full displacement estimate by concatenating those
in each chunk. Since the sizes of the chunks’ sub-problems are bounded, this method will scale

linearly in the total length of the recording.
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4.6 Motion correction after DREDge.

After estimating motion using DREDge, downstream applications will need to use this estimate to
correct for motion artifacts in their data before further processing. In the LFP band, motion correction
is carried out by interpolating the recording to infer its values at new, time-varying electrode positions
chosen to move inversely to the motion estimate. Since LFP signals tend to be smooth in space,
interpolation should not lead to much aliasing; however, features in spatial frequency bands which
exceed the Nyquist rate corresponding to the probe’s electrode spacing may lead to distortion. Links

to the Python and MATLAB code used to carry out this interpolation are below in Section 6.

In the AP band, a similar interpolation can be carried out using the Spikelnterface framework

Alternatively, motion correction can be applied directly to the estimated positions of spikes extracted
from uncorrected data”. In the motion-corrected or registered spike rasters which appear in many of
the figures above and below, the corrected depth position of a spike at time t and depth z is computed
by subtracting the estimated displacement at time t and depth z from z, where this displacement
is estimated by bilinear interpolation between the displacement estimates at neighboring time and

nonrigid depth bin centers.

4.7 Tracking drift in chronic recordings

When tracking drift in chronic recordings with DREDge, we followed two approaches. The first and
simplest approach was to directly concatenate the raw data binary files and input them directly into
the preprocessing and motion estimation pipelines described above; this approach was used for the
chronic NP1 data. We also followed this approach in all cases when registering chronic recordings
with Kilosort 2.5. For the chronic NP2 data, we ran preprocessing and extracted spike locations
separately in each session. For input into DREDge, we then combined the detected spikes across
sessions by offsetting the spike times in each session by the sum of the previous sessions’ durations.
These combined spike events were then used to create the spike raster used for motion estimation
with DREDge. These two approaches should yield similar results, and they were chosen in each
case for methodological convenience. Apart from this difference, motion estimation with DREDge

and KS were conducted in the same manner as the other analyses of this paper.
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4.8 Tracking fast motion from spikes using clustering and splines

In cases where LFP signals are not available or where they do not contain features which are useful
for motion tracking but spike data is plentiful, it may be necessary to correct for motion which is too
fast to be modeled by DREDge’s or KS’ spike-based motion tracking, whose temporal resolution
is limited to bins of length on the order of one or more seconds. In Fig. 2.b and Supp. Fig. 3, we
introduced a method which uses spike data to correct for fast motion after initial coarse registration
with DREDge. To do so, we used HDBSCAN"’ to cluster high amplitude spikes by their registered
location and amplitude features. Next, we obtained a time-series of spikes’ centered positions by
subtracting the cluster’s mean registered depth from all spikes’ registered depths and then combining
all of the spikes together into one point cloud. We then removed outliers (points more than 5 standard
deviations from the mean in each cluster) and fit a smoothing spline to model the moving position of
this point cloud as a function of time at sub-second temporal resolution. The number of knots of the
fitted splines is equal to 2.5 times the number of seconds. These steps are detailed in Supp. Fig. 3.
Note that this approach did not lead to improved registration accuracy in all cases; it is most useful in
cases where there is rigid sub-second motion as well as sufficient density of high-amplitude spikes
to allow for good spline estimates of the sub-second motion. In these cases (as in Supp. Fig. 3), this

approach can significantly reduce within-cluster spike variability.

4.9 Spike registration quality metrics

To directly and quantitatively compare motion correction results before downstream processing such
as spike sorting, we introduced two simple metrics. First, we developed a metric for registration qual-
ity of spiking data inspired by the template heuristic internally used by Kilosort’s motion estimation
algorithm, which we referred to as the template correlation. To compute this metric for a given set
of registered or unregistered spike locations, we first transform these into the two-dimensional spike
raster described above in Section 4.1: spikes are binned into spatiotemporal time bins (1s and 1um),
and the mean amplitude of spikes in the bin is assigned to the corresponding position in the spike
raster, leading to a D x T matrix with rows corresponding to the D depth bins and columns cor-
responding to the T time bins. Spatiotemporal bins which lie outside the extent of the probe after
motion correction are masked. Next, we take the (masked) mean over time of this raster, leading to

a template vector with D entries. Since areas outside the probe are ignored in this mean, it will not
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be contaminated by low- or no-activity bins. Finally, we compute Pearson’s r between each frame
of the raster and this template, again ignoring masked spatiotemporal bins to avoid computing cor-
relations of the template with empty space. This leads to T correlation values which can be used
as a frame-wise measure of registration quality, as in Supp. Figs. 16, 19 and 20. Alternatively, the
mean of these correlations can be presented for as a summary of registration quality for an entire

recording, as shown in Fig. 5.b,c and Fig. 6.e.

In Fig. 6.e and Supp. Figs. 19 and 20, we also show a simple measure of the stability of motion
estimation, which we refer to as the jump count. This metric directly captures the number of likely
non-physical jumps in the estimated motion trace, by counting the number of registration time bins

in which the motion estimate’s velocity exceeds 10um/s relative to the previous bin.

Extracellular waveform feature extraction. In the analysis of Fig. 4, waveform features were
computed from unsorted spikes detected by the initial detection step of Boussard et al.*>. We used
the neural net described by Lee et al. >~ to denoise the detected waveforms on multiple electrodes.
For single-channel features, we used the extracellular waveforms from the channels with the highest
peak-to-peak (PTP) amplitude. Multi-channel waveforms were then extracted on the 40 channels

closest to this maximum amplitude channel.

For single-channel waveforms, we computed three features: peak amplitude, peak-to-peak dura-
tion, and peak-to-trough ratio. Peak amplitude was the maximum point of the absolute waveform.
Peak-to-trough duration was defined as the time difference between the maximum point and the min-
imum point of the waveform. The peak-to-trough ratio was defined as the logarithm of the absolute

amplitude of the maximum point divided by the absolute amplitude of the minimum point.

For multi-channel waveforms, we computed three features: spatial spread of the spike across the
probe, and the inverse of propagation velocity above and below the channel with maximum am-
plitude. The spatial spreads of the multi-channel waveforms were quantified using an amplitude-
weighted sum of distances to the channel with maximum amplitude. If a; denotes the PTP amplitude
on channel i and d; denotes the distance of this channel to the maximum amplitude channel, the

spatial spread of each spike was computed as:

> aid;
dia

(8)

The inverse velocities were defined the same way as’ with the addition of a zero intercept constraints
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in the linear regression.

Brain anatomy estimation and alignment in the non-human primate recording. In the brain
anatomy estimation of Fig. 4, since the resolution of MRI is poor for deep structures, the region
boundaries for the monkey recording were identified by an expert from listening to the change in firing
pattern during recording. The depth of the region boundaries corresponds to the actual recorded

drive motion.

Due to the difficulty of penetrating the dura, the estimate of anatomical depth at the start of inser-
tion is uncertain, so that the relative offset of DREDge’s motion estimate and the insertion drive’s
measured distance is not known a priori. To align the anatomy with the computed feature map, we
looked to match our observed electrophysiological features with the expert’s annotations in an easily
identifiable landmark, namely the boundary between the white matter and the striatum. ‘Positive
spiking’ units whose spikes contain large positive amplitudes before hyperpolarization are usually
associated with dendrites and axons™>”. Thus, the white matter can be characterized by a high
rate of such positive-going spikes, which is distinct from the striatum. We thus matched DREDge’s
tracked depth with the drive motion and region boundaries by aligning the transition from positive to
negative spikes to the boundary between the white matter and striatum. We used this offset as a

reference to align the rest of the regions.

Setting parameters for DREDge and Kilosort. Due to the considerable variation in the types of
drift observed across probe types, species, and importantly the methods used for probe mounting
and implantation, it can be necessary to adjust the parameters of motion estimation algorithms (both
DREDge and Kilosort 2.5). DREDge’s default parameters, discussed below, were determined in the
large-scale International Brain Lab experiment whose results are shown in Fig. 5.b, and should apply
well to recordings which are similar: i.e., stable Neuropixels recordings which feature mildly nonrigid
motion on the order of 100um. These recordings were made in head-fixed mice with an externally
mounted probe, and thus feature some slight motion of the brain relative to the head; recordings
made in different configurations, such as the human data of Fig. 2, where head-fixing and other brain
stabilization methods cannot be used, or the chronic Neuropixels data of Fig. 6, where the probe
is head-mounted, can present other drift scenarios that may require parameter adjustments. In this
paper, we set parameters uniformly in all comparisons to Kilosort, in the sense that for each such
experiment (i.e., set of recordings; for instance, the IBL experiment of Fig. 5.a, or the Neuropixels

Ultra experiment of Fig. 5.a,c,d and Supp. Fig. 15), we used a fixed set of parameters for both
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DREDge and Kilosort across all datasets in each experiment; we did, however, tune the parameters
of both DREDge and Kilosort for each experiment. In this section and Supp. Table 1, we present and
discuss the set of parameters used for both DREDge and Kilosort in the experiments of this paper,

and offer some suggestions about how DREDge’s parameters might generally be adjusted.

The most often adjusted parameters in DREDge are those which control the nonrigid windows.
These windows have Gaussian profiles and divide the recording into a series of soft blocks, and
they are parameterized by the distance between window centers (win_step_um, in um) and the width
of the windows (win_scale um, in um, which controls the standard deviations or bandwidths of the
Gaussian bumps). In cases where the motion is known to be rigid (i.e., not to vary along the depth
of the probe), the windowing can be turned off by setting the parameter rigid=True. Otherwise,
these parameters may be tuned to match the amount of nonrigidity (i.e., the amount of variation in
the motion along the depth of the probe) in the recording: more nonrigid motion will require more
(i.e., more closely spaced or equivalently smaller win_step_um) windows. More nonrigidity may also
require smaller window bandwidths (win_scale_um), since windows which are larger than the scale
at which the motion varies as a function of depth may cover a varying motion profile. There is a
tradeoff here, since setting win_scale um to a small number will reduce the number of spikes or the
amount of LFP signal falling into each window, which can reduce the stability and accuracy of the
motion estimate in that window. Finally, the margin between the window centers and the edge of the
probe is controlled by win margin_um, in um. To gain intuition about how to set these parameters and
those discussed below, we encourage users to visualize the spike raster of Section 4.1; DREDge
bundles functions for making these plots, which are in general very informative visualizations that
can help users build intuition about not just the amount of drift in their recordings, but also the
recordings’ quantity and amplitude of spikes and possible artifacts. Another parameter which can
be helpful to adjust in some cases is the maximal offset used when computing cross-correlations
(max_disp_um, in pm). This parameter limits the maximum spatial lag out to which cross-correlations
are computed, and can be thought of as a “search radius” when comparing pairs of time bins.
DREDge automatically sets this parameter to a quarter of the nonrigid spatial window size, but users
can adjust this based on their own understanding of the amount of drift which is possible between
time bins separated by less than the time horizon (6 above); such an understanding can be gained
roughly by looking at spike raster visualizations. The time horizon itself was set to the fixed value
of 1000s in all experiments here, except for the NHP insertion experiment of Fig. 4 where it was set

to 100s; this setting allowed us to use our prior knowledge that the neuronal population was turning
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over rapidly during the insertion, avoiding spurious matches.

For completeness, we will briefly discuss other DREDge parameters of note which were not changed
throughout this work. First, in all spike-based experiments shown here, the spatial and temporal
bin sizes for spike raster computation in DREDge were set to 1um and 1s, so that DREDge’s spike-
based motion estimation always produced motion estimates with 1s temporal resolution; these basic
parameters were chosen using simulation experiments (not shown). Second, the correlation thresh-
old (¢ above) was set to 0.1 in AP applications and 0.8 in LFP applications. Finally, the chunk size
for online LFP registration was set to 10 seconds (or 2500 samples at 250Hz); since this chunk size

is small, the time horizon parameter is not relevant in the LFP application.

Kilosort’s motion estimation algorithm was discussed in detail in the supplementary material of Stein-
metz et al.”; here we elaborate the discussion of certain parameters which were part of our tun-
ing, based in part on our reading of Kilosort 2.5’s Matlab code (available at https://github.com/
MouseLand/Kilosort/tree/v2.5/). Kilosort 2.5 exposes one parameter to control the registration,
nBlocks, which controls the number of nonrigid blocks (rectangular windows rather than Gaussian
profiles); the number of blocks used is 2-nBlocks—1 (see line 58 of align_block2.m). When construct-
ing its three-dimensional spike histogram, Kilosort uses a spatial bin size of 5um and a temporal bin
size controlled by the algorithm’s global batch size (expressed in samples), which leads to approx-
imately 2.18s temporal bins in data sampled at 30kHz, although this will vary with the sampling
rate; we did not find improvements in some exploratory experiments when tuning the spatial bin
size and did not attempt to adjust the temporal bin size. The most important parameters which we
adjusted in our experiments were Kilosort 2.5’s two search radius parameters (like our max disp um
above), which are not exposed programmatically. The first of these, which we refer to as nBinsRegl
and is in units of spatial bins, sets the maximal search radius of template cross-correlations dur-
ing an initial rigid registration pass, before the recording has been divided into spatial blocks; this
parameter is set to 15 bins (or 75um) by default. The second, nBinsReg2, also in units of spatial
bins, controls the search radius of template cross-correlations performed in the nonrigid pass, af-
ter the recording is divided into blocks, and is set to 5 bins or 25um by default. Although these
defaults are well suited to data with fairly small drift dominated by a rigid component, we found it
essential to adjust them in recordings with larger drift or nonrigid drift whose overall amplitude was
larger than 25um. Our Kilosort 2.5 fork with modifications to expose these parameters is available

at https://github.com/cwindolf/Kilosort/tree/modded-v2.5.
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A table showing the parameters used in each experiment for both DREDge and Kilosort 2.5 appears

in Supp. Table 1.

4.10 Datasets.

Human brain activity in vivo data. Human brain activity was recorded in vivo in the course of
clinically relevant neurosurgical intervention at both Massachusetts General Hospital (MGH) and the
University of California San Francisco (UCSF) with most of the data and methods presented here
included in previous publications '*='°. In brief, in both data sets, all patients voluntarily participated
after informed consent according to guidelines as monitored by the Massachusetts General Brigham
(previously Partners) Institutional Review Board (IRB) Massachusetts General Hospital (MGH), and
the UCSF Institutional Review Board. In all cases, participants were informed that participation in
the experiment would not alter their clinical treatment in any way and that they could withdraw at
any time without jeopardizing their clinical care. Participants were not compensated monetarily for
participating. Recordings in the operating room were acquired with participants who were already
scheduled for a craniotomy for concurrent clinical intraoperative neurophysiological monitoring or
testing for mapping motor, language, and sensory regions and removal of tissue as a result of tumor
or epilepsy or undergo intra-operative neurophysiology as part of their planned deep brain stimulator
(DBS) placement '>'>°%2155< - Participants were either under general anesthesia or under monitored
anesthesia care (awake or asleep) during the recordings according to clinical need (e.g. intraoper-
ative stimulation mapping procedures or DBS surgeries). At MGH, participants also consented to
the video recording of the surgical procedure as long as the video did not indicate the identity of the
patient or staff. This video was used to confirm that the manual tracking could match the movement
of the brain relative to the electrode. We performed tissue-level tracking of the video recordings to

compare to the LFP-tracked motion tracking.

With both MGH and UCSF data collection sites, Neuropixels probes (NP v 1.0-S, IMEC) include an
electrode shank (width: 70um, length: 10 mm, thickness: 100um) of 960 total sites laid out in a
checkerboard pattern with contacts at 18 um site to site distances (16 pm (column), 20 pm (row);~)
with some probes with sharpened tips. The Neuropixels probes (NP v 1.0, version S, IMEC) were
connected to a 3B2 IMEC headstage connected via a multiplexed cable to a PXle acquisition module

card (IMEC), installed into a PXle Chassis (PXle-1071 chassis, National Instruments) '>'°. For the
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Neuropixels 1.0 probes as used in human studies, the linear dynamic range of the Neuropixels

amplifier is 10 mVpp. This range is digitized using a 10 bits Analog to Digital conversion

At both collection sites, the Neuropixels probes were generally attached to a stable frame attached to
the bed or frame around the skull or a stable arm with the probe being lowered to be inserted into the
brain in sterile conditions. As such, this meant that, following exposure of the brain through a cran-
iotomy, the brain tissue could move independently of the stably held Neuropixels probe. At UCSF,
the Neuropixels probe was secured to the metal cap dovetail probe mount (IMEC, Leuven, Belgium).
The probe mount was then attached to either an Elekta microdrive (Elekta, Stockholm, Sweden) or
Narishige (Tokyo) micromanipulator (MM-3 or M-3333). Then, the manipulator/microdrive was either
secured to the Mayfield skull clamp using a 3-joint mounting arm (Noga NF9038CA) and Nano clamp
(Manfrotto 386BC-1, Cassola, Italy) assembly attached to the primary articulating arm and C-clamp
of the Integra Brain Retractor System A2012 (Integra, Princeton, NJ)'°. At MGH, the probe was
either secured using SteriStrips (3M™ Steri-Strip™ Reinforced Adhesive Skin Closures) to a ster-
ile syringe which was held by a 3-axis micromanipulator built for Utah array placement (Blackrock
Neurotech, Salt Lake City, UT) or to cannulae placed in a NeuroFortis Neuro Omega manipula-
tor (AlphaOmega Engineering, Nazareth, Israel) held by the ROSA ONE® Brain (Zimmer Biomet)
arm . At UCSF, probes, headstages, interface cables, Narishige micromanipulators, screwdrivers,
and probe mount with metal cap dovetail were all separately sterilized according to standard pro-
tocols of ethylene oxide sterilization, while the Elekta device was sterilized using Sterrad. At MGH,
the probe was sterilized with Ethylene Oxide (BioSeal) and used with the sterile Medtronic needle
electrodes while the handling of the connections and recording equipment was wrapped in a sterile

plastic bag and sealed using TegaDerm (3M) to keep the field sterile.

Ground and reference connections were kept separate in human brain recordings at both sites

At MGH, recordings were referenced to sterile ground, and recording reference needle electrodes
(Medtronic) connected (via safety connectors separately soldered to the separate ground and refer-
ence leads) were placed in nearby muscle tissue (often scalp) as deemed safe by the neurosurgical
team. At UCSF, two 27G subdermal needle electrodes (Ambu, Columbia, MD) were placed in the
skin were soldered separately to the probe flex-interconnect to serve as ground and reference using

lead-free solder and two strands of twisted 36 AWG copper wire.

Data acquisition was performed using open-source acquisition software to record the neural data

which include SpikeGLX (http://billkarsh.github.io/SpikeGLX/) and OpenEphys (Siegle et al.
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https://open-ephys.org/gui). Since Neuropixels 1 probes enable 384 recording channels to ad-
dress 960 electrodes across the probe shank, two different acquisition maps were used. At MGH,
both one map (short column map) targeting the lower portion of the probe (the most distal channels)
and a second map (‘long column’ map) recording two rows of contacts along the entire length of the
electrode were used in different cases. The data collected at UCSF all included two rows of contacts

along the entire length of the electrode.

For the sake of timing and correlating task activity with the neural activity, TTL triggers via a parallel
port produced either during a task via MATLAB or custom code from a separate computer were
sent to both the National Instruments and IMEC recording systems, via a parallel port system. This
TTL output sent synchronization triggers via the SMA input to the IMEC PXle acquisition module
card to allow for added synchronizing triggers which were also recorded on an additional breakout
analog and digital input/output board (BNC-2110, National Instruments) connected via a PXle board

(PXle-6341 module, National Instruments)

For the simple visual task, stimuli were presented on an LCD computer monitor (58x30 cm, ASUS)
placed in front of the participant and with the use of the Psychophysics toolbox“”. The monitor
distance from the subject was adjusted based on clinical considerations and the patient’s comfort
and was placed 0.25 m away from the participant. The participant was asked to perform 100 trials
of two different tasks, each distinguished by a certain visual stimulus. In the Square Task, each
trial begins with the display of a red fixation cross for 0.5-4 sec on a grey background, before the
appearance of a single black or white square with dimensions 5.5 cm x 5.5 cm (resulting in a visual
display between 5.72° by 5.72° of the visual field) on a grey background, presented for 2-4 seconds
with the duration jittered randomly. Each trial was composed of a fixation cross followed by either
a black or white square and every trial was immediately after one another. The choice of black or
white squares per trial was randomly selected from sequences of black or white designations pulled
from a maximum-length sequence (m-sequence) distribution®”°"-°>*”. The participant was asked to
fixate on the central red cross and count how many black or white squares were shown to improve

engagement.

For a subset of the data (N=3), we used previously analyzed and manually tracked motion from the
LFP to compare to the DREDge motion tracks . Briefly, the steps involve extracting the LFP from the
binary files into local field potential (LFP, {500 Hz filtered data, sampled at 2500 Hz) SpikeGLX using

MATLAB and available preprocessing code. Focusing on non-noisy time ranges, we capture the
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displacement in the movement bands by importing the LFP voltage as an .stl file from MATLAB into
Blender (https://www.blender.org/). Using the surface voltage and the Grease Pencil feature, we
traced the shifting band of negatively deflecting LFP throughout the recording '”. The motion traces
were imported into MATLAB and compared with the LFP signal. This tracked motion information

was upsampled to 2500 Hz to the LFP (interp1, ‘makima’).

The evoked potentials were averaged relative the image onset (2 seconds before and four seconds
after image presentation). When analyzing spectral domains, we performed wavelet transforms to
calculate the Morelet wavelet coefficient amplitude, the equivalent of power, to examine the ampli-
tude of each frequency band from 0.5 to 200Hz. We subdivided the bands into delta (0-4Hz), theta
(4-8Hz), beta (15-30Hz), gamma (30-55Hz), and high gamma (65-100Hz; Oostenveld et al. '”).

We tested comparisons across conditions with the Kruskal-Wallis test for non-equivalence of mul-
tiple medians to determine statistically separable groups or Wilcoxon rank sum test (two-sided) for

pairwise comparisons between individual medians.

Mouse brain activity in vivo data. Extracellular recordings in mouse were obtained from multiple
sources. For the quantitative comparison in Fig. 5.b, we relied on datasets recorded by laboratories
participating in the International Brain Lab’s reproducible electrophysiology experiment . The ex-
periment recorded from 140 mice across 7 labs, and we processed recordings which passed the raw
data quality control protocols described in that work (Table 1), which included target thresholds on
the number of channels in the target region validated by histology, behavioral criteria, overall single-
unit yield criteria, and limits on recording noise level. These SpikeGLX recordings were loaded via
Spikelnterface and preprocessed according to the IBLs standard preprocessing procedure-”, in-
cluding highpass filtering, demultiplexer phase shift correction, stripe artifact removal via a spatial
highpass filter, and channel-wise standardization. This preprocessing pipeline was implemented via
modules from Spikelnterface on all mouse recordings except for those from IBL, which were prepro-
cessed using IBL's own code available at https://github.com/int-brain-lab/ibl-neuropixel.
These pipelines yielded similar results. These preprocessed recordings were then input into the ini-
tial spike detection, denoising, and localization pipeline of Boussard et al. > to extract point-source
model localization features~° from that pipeline’s denoised and collision-cleaned waveforms. For the
comparison to Kilosort, we used the IBLs own runs of pyKilosort, a Python port of Kilosort 2.5, which

were documented in more detail by IBL et al.=* and which used the same preprocessing pipeline.
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In Fig. 5.a, we included two acute recordings with imposed zig-zag motion from the work of Stein-
metz et al.”, described in more detail there. During these recordings (both included under datasett
in the corresponding link in Data Availability below), one of which was performed using a Neuropixels
1.0 probe and the other with a Neuropixels 2.0 probe, 10 cycles of vertical triangle-wave drift with

50um amplitude and 100s period were imposed via an electronic micromanipulator.

The chronic four-shank Neuropixels 2 recordings used in Fig. 6 and Supp. Fig. 19 were also previ-
ously presented by Steinmetz et al.”. We studied two chronic implantations (AL032 and ALO36) in
detail, selecting 11 recordings separated by 13.146.0 days from AL032 and 13 recordings separated
by 13.5 + 11.2 days from AL036.

The chronic Neuropixels 1 implantations recorded at UCLA were performed in compliance with the
Institutional Animal Care and Use Committee. Two C57BI6/J male mice (10-12 weeks of age) were
used in experiments. Surgeries were performed under isofluorane anaesthesia (3% induced, 1.5-
2% maintained). Headbar implantation and Neuropixels implantation were performed within the
same surgery. First, the dorsal surface of the skull was cleared of skin and periosteum. A thin
layer of cyanoacrylate (VetBond, World Precision Instruments) was applied to the edges of skull
and allowed to dry. The skull was then scored with a scalpel to ensure optimal adhesion. After
ensuring the skull was properly aligned within the stereotax, craniotomy locations were marked by
making a small etch in the skull with a dental drill. A titanium headbar was then affixed to the back
of the skull with a small amount of glue (Zap-a-gap). The headbar and skull were then covered with
Metabond, taking care to avoid covering the marked craniotomy locations. After the Metabond was
dry, the craniotomies for the probes and grounding screw were drilled. Once exposed, the brain was
covered with Dura-Gel (Cambridge Neurotech). The implant was held using a custom plastic holder
and positioned using Neurostar stereotax. After positioning the shanks at the surface of the brain,
avoiding blood vessels, probes were inserted at slow speed (5 um/s). Once the desired depth was
reached, an additional layer of Kwik-Sil was applied over the craniotomy. The probe was then fixed

to the skull with Metabond.

The Neuropixels Ultra data explored in Fig. 5 and Supp. Fig. 15 were reported in Ye et al.”*, and
feature a very dense electrode layout, with 384 sites arranged in a 64 x 6 grid with 6um vertical
and horizontal channel spacing. Here, we focused on recordings with zig-zag motion imposed by a

similar methodology as discussed above; more details are available in the reference.
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Rat brain activity in vivo data. The rat recordings of Supp. Fig. 5 were made with the Neuroseeker
probe, a 128-site high density probe, at 20 kHz with 16 bit resolution and with the rat under ke-
tamine/xylazine anaesthesia’"*"". These recordings are wideband (0.1-7500 Hz), so that LFP and

AP were obtained by lowpass and highpass filtering.

Non-human primate brain activity in vivo data. The methods are described in detail elsewhere~,
but, in brief, the Non-human primate recordings used the Neuropixels 1.0-NHP probe manufactured
in two variants: 1) 45 mm long x 125 um wide x 90 um thick, featuring 4416 electrodes comprising
11.5 banks of 384 channels each; and 2) 25 mm long, 125 um wide, and 60 um thick, featuring
2496 electrodes comprising 6.5 banks of 384 channels with two aligned vertical columns. Probe tips
were sharpened to a 25° angle using the Narishige EG-402 micropipette beveler. Neural recordings
were referenced to either: 1) the large electrical reference point on the tip of the electrode, 2)
an external electrical reference wire placed within the recording chamber, or 3) a stainless steel
guide tube cannula. Electrical signals are digitized and recorded separately for the action potential
(AP) band (10 bits, 30 kHz, 5.7 uV mean input-referred noise) and local field potential (LFP) band
(10 bits, 2.5 kHz). Data collection was performed using SpikeGLX software. Recording sites are

programmatically selectable with some constraints on site selection.

Multiple designs were used to allow for the lowering of the Neuropixels 1.0-NHP probes into the
brain~°. When using a non-penetrating guide tube, the dura was typically penetrated with a tungsten
electrode prior to using a Neuropixels probe to create a small perforation in the dura to ease inser-
tion. When inserting electrodes to deep targets (> 20mm), the alignment between the drive axis
and the probe shank is essential for enabling safe insertion, as misalignment can cause the probe
to break. For this application, we developed several approaches to maintain precise alignment of
the probe and drive axis. The choice of appropriate insertion method depended on the mechanical
constraints introduced by the recording chamber design, the depth of recording targets, the number
of simultaneous probes required, and the choice of penetrating or non-penetrating guide tube. The
interaction of these constraints and a more thorough discussion of insertion approaches is provided
on the Neuropixels users wiki**. Open-source designs for mechanical mounting components for
Neuropixels-1.0-NHP to drives from Narishige, NAN, and other systems are available in a public

repository: https://github.com/etrautmann/Neuropixels-NHP-hardware.

The recording used in Supp. Fig. 3 was made in an anesthetized paralyzed preparation, described

in detail previously '~. We induced anesthesia with an intramuscular injection of ketamine HCI (10
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136 MQ/Kg) and maintained the animal with isoflurane anesthesia during catheterization of saphenous
1387 veins and endotracheal intubation. Throughout the experiment, we maintained anesthesia with an
1388 infusion of 6 and 15 pg/kg/h sufentanil citrate and neuromuscular blockade with 0.1 mg/kg/h ve-
1389 curonium bromide to limit eye movements. We opened a craniotomy and durotomy to insert a
1390 Neuropixels array” or 2-shank 128-channel silicon laminar arrays from the NeuroNex Technology
13er Hub’”. The sites were sealed with agar, and petroleum jelly was routinely applied to prevent the
1392 agar from drying and maintain the cortex’s health. We generated and controlled stimuli with an Ap-
1393 ple Mac Pro computer. We presented stimuli on a CRT monitor (HP1190) running at a resolution
1394 0f 1280 x 960 pixels (64 pixels per degree) and 120 Hz. Most stimuli were binary or ternary noise

1305 patterns presented at a rate of 40 Hz.

= 9 Data availability

137 Human data is available for download at Dryad (https://doi.org/10.5061/dryad.d2547d840) and
13983 DANDI (https://dandiarchive.org/dandiset/000397) from Massachusetts General Hospital '° and

1399 at Dryad (https://doi.org/10.7272/Q6ST7N3B) from the University of California San Francisco

100 International Brain Lab data for the reproducible electrophysiology experiment is publicly avail-
1401 able and can be downloaded by following the instructions at https://int-brain-lab.github.io/

1402 iblenv/notebooks_external/data_release_repro_ephys.html usingthe tag 2022 Q2 _IBL et al Repeate

103 The NP1 and NP2 imposed motion datasets here (dataset1) can be downloaded at Figshare https:
140s //figshare.com/articles/dataset/_Imposed_motion_datasets_from_Steinmetz_et_al_Science_

1405 2021/140244957f11e=26476589.

« 6 Code availability

1407 DREDge is available to run on AP data via the Spikelnterface library, and on both AP and LFP
1408 data by open-source Python code hosted at the GitHub repository https://github.com/evarol/
109 dredge/. DREDge is implemented in Python, and it relies on PyTorch’s convolution routines to

10 implement GPU-accelerated normalized cross-correlations ’*, on SciPy for its bundled linear system
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1411 Solvers and interpolation routines ">, and on Spikelnterface '” for its electrophysiology data readers

112 and preprocessing routines, some of which were implemented as part of this work.

3 Gode for running Kilosort 2.5 with an extended set of adjustable parameters is available at https:

1414 //github.com/cwindolf/Kilosort/tree/modded-v2.5.

115 Gode for the analyses of human data described in this paper has been made available at https://
1416 github.com/Center-For-Neurotechnology/HumanNeuropixelsPipeline (currently without a license),
1417 Which includes links to other useful repositories not maintained by authors of this paper, with the
1418 exceptions of https://github.com/evarol/dredge (available under the MIT license) and https:
1419 //github.com/williamunoz/InterpolationAfterDREDge) (available under the MIT license). Local
1420 field potential motion corrected interpolation required the removal of low-frequency peaks in the sig-
121 nal, a step utilizing Zapline-plus (https://github.com/MariusKlug/zapline-plus). For all the Neu-
1422 ropixels data, open source acquisition software was used to acquire the neural data which include
142 SpikeGLX Release v20201103-phase30 (http://billkarsh.github.io/SpikeGLX/) and OpenE-
12a phys (https://open-ephys.org/gui). Single unit sorting was performed using Kilosort (https:
125 //github.com/MouselLand/Kilosort) as well as Phy2 (https:/github.com/cortex-lab/phy). Custom
1426 Matlab (version R2021a) and Python code in combination with open source code from the Field-
1427 trip toolbox (http://www.fieldtriptoolbox.org/, Oostenveld et al.””) was used for the majority
128 Of the analyses. Some code involving manual alignment is available on GitHub (https://github.
1420 com/Center-For-Neurotechnology/CorticalNeuropixelProcessingPipeline). The burst suppres-
130 Sion ratio (BSR) was computed using an automated method (https://github.com/drasros/bs_
131 detector_icueeg). Psychtoolbox-3 (http://psychtoolbox.org/) with io64 parallel port drivers and

1432 MATLAB functions were used to drive TTL trigger pulses for alignment as well as run the visual task.
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