

1 **Title: Increased tau expression in the *APOE4* blood-brain barrier model is associated
2 with reduced anti-tau therapeutic antibody delivery *in vitro*.**

3

4 Joanna M. Wasielewska^{1,2}, Rinie Bajracharya^{3,‡}, Rebecca L. Johnston⁴, Juliana C.S.
5 Chaves^{1,9}, Alice Pébay^{5,6}, Lotta E. Oikari¹, Jürgen Götz³, Rebecca M. Nisbet^{7,‡,*} & Anthony R.
6 White^{1,8,9,10,‡,*}

7

8 ¹ Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute,
9 Brisbane, QLD, Australia

10 ² Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia

11 ³ Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The
12 University of Queensland, Brisbane, QLD, Australia

13 ⁴ Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD,
14 Australia

15 ⁵ Department of Anatomy and Physiology, The University of Melbourne; Parkville, VIC,
16 Australia

17 ⁶ Department of Surgery, Royal Melbourne Hospital, The University of Melbourne; Parkville,
18 VIC, Australia

19 ⁷ The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia

20 ⁸ School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia

21 ⁹ School of Biomedical Sciences, Faculty of Health, Queensland University of Technology,
22 QLD, Australia

23 ¹⁰ A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland

24 [#] Now located at Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and
25 Disease Research, The University of Queensland, St. Lucia, QLD, Australia

26

27 * Correspondence: tony.white@qimrberghofer.edu.au, rebecca.nisbet@florey.edu.au

28 [‡] These authors contributed equally

29

30 **Abstract**

31 Tau protein is a critical driver of neurodegeneration and an important drug target in Alzheimer's
32 disease (AD). Tau-specific immunotherapy has emerged as a promising treatment strategy
33 for AD, however the therapeutic efficacy of anti-tau antibodies may be limited by their
34 insufficient delivery across the blood-brain barrier (BBB). The apolipoprotein E4 allele
35 (*APOE4*) is the strongest genetic risk factor for sporadic AD and is known to influence tau-
36 mediated neurodegeneration. Interestingly, both tau and *APOE4* have been implicated in the
37 cerebrovascular pathology observed in AD. Yet, the crosstalk between *APOE4* and tau at the

38 level of the BBB and its consequences for anti-tau immunotherapeutics delivery, remain poorly
39 understood. Here, we utilised *APOE3*- and *APOE4*-carrying human iPSC-derived induced
40 brain endothelial-like cells (iBECs) as a sporadic AD BBB model, determined the levels of
41 endogenous tau in iBECs, and explored the transport of two novel monoclonal anti-tau
42 antibodies, RNF5 and RN2N, across the *in vitro* barrier. Our results demonstrate that *MAPT*
43 gene transcription, tau protein levels and tau phosphorylation are increased in iBECs in an
44 *APOE4*-related manner and are associated with reduced iBEC monolayer integrity and
45 increased permeability to biologically inert fluorescent tracers. Additionally, elevated levels of
46 intracellular tau in *APOE4* cells were accompanied by the reduced passive permeability of
47 therapeutic anti-tau antibodies through the *APOE4* iBEC monolayer, which could be improved
48 by the application of focused ultrasound and microbubble drug-delivery technology. Together,
49 our study illustrates a new role for *APOE4* and tau in human iBECs with potential implications
50 for BBB dysfunction and anti-tau therapeutic antibody delivery.

51

52 **Keywords:** Alzheimer's disease, blood-brain barrier (BBB), tau, therapeutic antibody, drug
53 delivery, focused ultrasound (FUS)

54

55 **Abbreviations:** AD: Alzheimer's disease; *APOE*: apolipoprotein E; BBB: blood-brain barrier;
56 BEC: brain endothelial cell; CSF: cerebrospinal fluid; CNS: central nervous system; ELISA:
57 enzyme-linked immunosorbent assay; FUS: focused ultrasound; hiPSC: human induced
58 pluripotent stem cell; iBEC: induced brain endothelial-like cell; IgG: Immunoglobulin G; *MAPT*:
59 microtubule-associated protein tau gene; MB: microbubble; *PSEN1*: presenilin-1; p-tau:
60 phosphorylated tau; qPCR: quantitative polymerase chain reaction; TEER: trans-endothelial
61 electrical resistance;

62 **INTRODUCTION**

63

64 Alzheimer's disease (AD) is a tauopathy characterised by the abnormal phosphorylation and
65 accumulation of tau protein in the brain¹. Currently, several anti-tau immunotherapies are
66 being explored in clinical trials targeting AD²⁻⁴. Their clinical effectiveness, however, may be
67 limited by the restrictive nature of the blood-brain barrier (BBB), which only allows an
68 estimated 0.1% of therapeutic antibodies to reach the brain parenchyma⁵⁻⁷. Cerebrovascular
69 brain endothelial cells (BECs) are the major cellular constituent of the BBB and are the first
70 brain cells that peripherally administered immunotherapies encounter. Yet, little is known
71 about their interaction with tau-specific therapeutics.

72

73 The BBB is altered in AD^{8,9}, with a potential contribution of tau to cerebrovascular
74 dysfunction¹⁰⁻¹⁴. Correspondingly, tau oligomers were found to accumulate in the cerebral
75 microvasculature of AD patients and amyloid-depositing Tg2576 transgenic mice in close
76 association with BECs¹⁵. Furthermore, microvascular abnormalities including spiralling
77 morphologies and altered vessel diameter and density were identified in mouse models of
78 tauopathy¹⁶. Similarly, tau-dependent cerebrovascular remodelling has been found at early
79 Braak stages in human brain samples¹⁷. Tau was found to impact neurovascular coupling prior
80 to the development of mature tau pathology and cognitive impairment in tau transgenic
81 rTg4510 and PS19 mice¹⁸. In addition, strong relationships were reported between vascular
82 tau and cognitive dysfunction in AD patients and with aging^{19,20}. Studies in rTg4510 mice have
83 revealed an association of perivascular tau with hippocampal BBB dysfunction, the latter's
84 integrity being recovered when tau levels were reduced, thereby establishing a causal link
85 between BBB impairment and brain tau²¹. Recently, a study demonstrated that extracellularly
86 transmitted tau oligomers of neuronal origin are internalised and accumulate in BECs
87 contributing to the development of AD-like cerebrovascular dysfunction in mouse models of
88 tauopathy¹⁴. Together, these studies suggest that pathogenic tau mediates BBB impairment
89 possibly leading to complex drug-BBB interactions in AD. However, the role of endogenous
90 tau within BECs has not yet been explored within that context.

91

92 The apolipoprotein E4 allele (*APOE4*) is the strongest genetic risk factor for sporadic AD,
93 markedly accelerating tau pathology in brain parenchymal cells²²⁻²⁵. *APOE4* is also associated
94 with increased BBB leakage and dysfunction²⁶⁻³⁰ and increased deposition of amyloid in
95 cerebral vessel walls in the human brain and animal models³¹⁻³³, as well as *in vitro* BBB
96 systems³⁴; however, its effect on tau accumulation at the BBB is incompletely understood.
97 Additionally, while BBB dysfunction in AD is well established and generally (and possibly
98 incorrectly) perceived as increased leakiness^{8,9,29,35,36}, interestingly, increased brain uptake of

99 peripherally administered therapeutics has not been reported³⁶⁻³⁸. Finally, the influence of the
100 patients' genetic profiles including the *APOE* genotype on the efficacy of tau immunotherapy
101 delivery at the BBB is currently unknown.

102

103 Here, we identify increased levels of endogenous tau and tau phosphorylation in human
104 *APOE4*-carrying induced BEC-like cells (iBECs) and assess their impact on anti-tau
105 therapeutic antibody delivery *in vitro*. We show that the passive permeability of the novel anti-
106 tau therapeutic antibodies RNF5 and RN2N is reduced at the barrier formed by *APOE4* cells
107 as compared to *APOE3* controls, while this can be partially reversed by applying focused
108 ultrasound and microbubble (FUS^{MB}) drug-delivery technology³⁹. Furthermore, we
109 demonstrate the presence of the investigated anti-tau antibodies in the *APOE4* iBEC
110 monolayer, suggesting that the potential interaction of the antibodies with endogenous tau in
111 BECs may be limiting antibody permeability at the BBB. While these findings should be
112 complemented by further investigation *in vivo*, our study highlights a critical step towards
113 demonstrating a role for the cross-talk of *APOE4* and tau at the BBB; thereby providing new
114 insights that may be relevant for the effective design and delivery of tau-specific
115 immunotherapeutics for the treatment of AD and other tauopathies.

116

117 RESULTS

118

119 ***APOE4* iBECs demonstrate increased levels of MAPT, tau and p-tau expression 120 compared to *APOE3* iBECs**

121

122 To explore the effects of endogenous tau in BECs in an *APOE* context we utilised *in vitro* BBB
123 models based on *APOE3*- and *APOE4*-carrying human induced pluripotent stem cell (hiPSC)-
124 derived iBECs ($N = 3$ lines per each *APOE* genotype, including one isogenic pair for which
125 *APOE E4/E4* was converted to *iAPOE E3/E3* using CRISPR-Cas9⁴⁰, **Table S1**), a system
126 previously established in our laboratory⁴¹. We differentiated *APOE3* and *APOE4* hiPSCs into
127 iBECs as validated by the expression of the BBB markers claudin-5 and zonula occludens-1
128 (ZO-1), and a characteristic cobblestone-like morphology (**Figure 1A**). *APOE3* and *APOE4*
129 expression was validated at the mRNA level using quantitative PCR (qPCR) (**Figure S1A**).
130

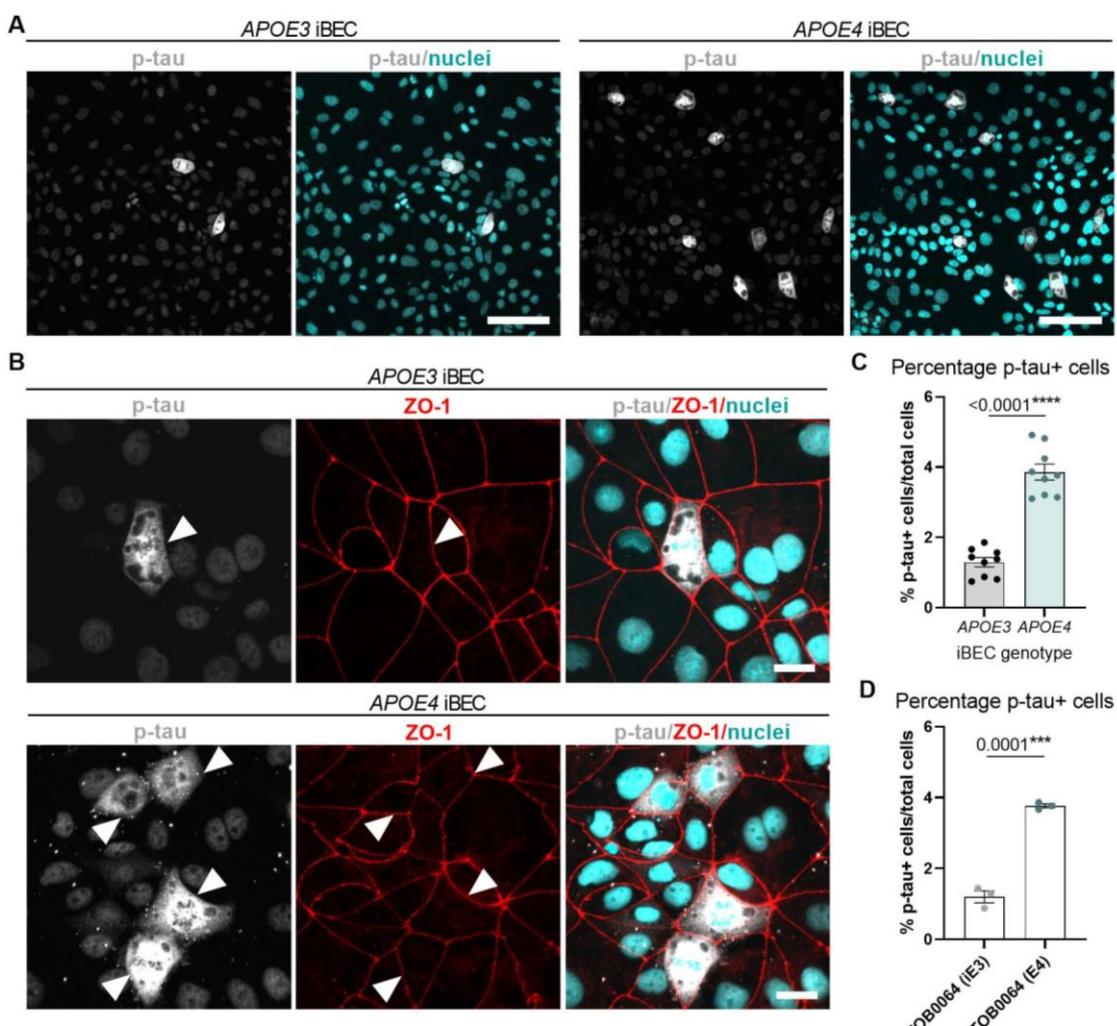

131

132 We then investigated tau expression in iBECs carrying *APOE3* and *APOE4* isoforms and
133 found increased ($p < 0.05$) transcription of the microtubule-associated protein tau (*MAPT*) gene,
134 which encodes tau, in *APOE4* cells compared to *APOE3* (**Figure 1B**). Of note, *MAPT*
135 transcription did not differ between the parental *APOE4* line (TOB0064) and its isogenic-
corrected *iAPOE3* control line (iT0B0064) (**Figure S1B**). Next, to determine tau protein

136 expression in iBECs we utilised two anti-tau monoclonal antibodies, RNF5 and RN2N,
137 previously developed and extensively characterised by us^{42–45}. RNF5 is an IgG2b pan-tau
138 monoclonal antibody specific to all six human tau isoforms⁴², whereas RN2N IgG2a is specific
139 for the human 2N isoform of tau⁴⁴. These antibodies detected expression of tau in both *APOE3*
140 and *APOE4* iBECs by immunofluorescence analysis (**Figure 1C,D; Figure S2,S3**), with
141 *APOE4* iBEC presenting higher tau levels than *APOE3* cells recognised by both RNF5
142 ($p<0.05$) and RN2N ($p<0.01$, **Figure 1E**). To determine whether the observed effect was
143 driven by the *APOE4* allele, we directly compared tau protein expression between the parental
144 TOB0064 (*APOE4*) and isogenic-corrected iTOB0064 (*iAPOE3*) lines and found an increased
145 signal intensity of RNF5 ($p<0.05$) and RN2N ($p<0.05$) in TOB0064 (*APOE4*) compared to
146 iTOB0064 (*iAPOE3*) iBECs (**Figure 1F**). When comparing within iBECs of the same *APOE*
147 genotype, no significant difference was found in the signal intensity corresponding to tau
148 recognised by RNF5 antibody when compared to RN2N (**Figure 1G**) and no signal was found
149 in secondary antibody-only controls for RNF5 and RN2N (**Figure S4**).

150

151 Given the role of *APOE4* in aberrant tau phosphorylation⁴⁶, we next assessed tau
152 phosphorylation of epitope Ser396 (p-tau), known to be strongly implicated in AD-related tau
153 pathology⁴⁷. We found p-tau in selected cells in our model (**Figure 2A**) and confirmed their
154 brain endothelial phenotype using co-expression of the BEC marker ZO-1 (**Figure 2B**).
155 Quantification of p-tau revealed an increased ($p<0.0001$) number of iBECs expressing p-tau
156 in monolayers formed by *APOE4*-carrying cells compared to *APOE3* iBECs (**Figure 2C**,
157 **Figure S5**). Similarly, we found an increased ($p<0.001$) number of p-tau positive cells in
158 TOB0064 (*APOE4*) iBEC monolayers compared to isogenic corrected iTOB0064 (*iAPOE3*)
159 cells (**Figure 2D**), confirming that the observed effect is associated with the *APOE4* allele.



160
161 **Figure 1. Higher tau expression in APOE4 compared to APOE3 iBECs. (A)**
162 Representative immunofluorescence images of claudin-5 (magenta) and ZO-1 (red) with
163 Hoechst nuclear counterstaining (cyan) in APOE3 and APOE4 iBECs. Scale bar = 100 μ m.
164 (B) Relative mRNA expression of MAPT in APOE3 and APOE4 iBECs. Results presented as
165 $\Delta\Delta CT \times 10^6$. $N = 3$ biological replicates and a minimum of $n = 6$ independent replicates per
166 line. (C-D) Representative high-magnification immunofluorescence images of β -tubulin (grey)
167 and tau detected by anti-pan tau RNF5 antibody (magenta) (C) and anti-2N tau RN2N antibody
168 (magenta) (D) in APOE3 and APOE4 iBEC. Nuclei (cyan) stained with Hoechst. Scale bar =
169 20 μ m. (E) Fluorescence signal intensity (AU) of RNF5 and RN2N in APOE3 and E4 iBEC,
170 normalised to total cell number. $N = 3$ biological replicates and a minimum of $n = 5$ independent
171 replicates per line. (F) Fluorescence signal intensity (AU) of RNF5 and RN2N in iTOB0064
172 (iAPOE3) and TOB0064 (APOE4) iBECs, normalised to the total cell number. $N = 1$ biological
173 replicate (isogenic pair) and minimum of $n = 5$ independent replicates per line. (G) Comparison
174 of fluorescence signal intensity of tau detected with RNF5 and RN2N antibodies in APOE3 (I)

175 and *APOE4* (J) iBECs, normalised to total cell number. Data analysed with Mann-Whitney *U*
176 test in (B), Student's *t*-test in (E,F and G:*APOE4* iBEC) and Welch's *t*-test in (G:*APOE3*
177 iBECs). Error bars = SEM. **p*<0.05, ***p*<0.01.

178

179

180

181 **Figure 2. Increased Ser396-phosphorylated tau (p-tau) in *APOE4* compared to *APOE3***
182 **iBECs. (A)** Representative immunofluorescence images of p-tau (grey) with Hoechst nuclear
183 counterstaining (cyan) in *APOE3* and *APOE4* iBECs. Scale bar = 100 μ m. **(B)** Representative
184 high-magnification immunofluorescence images of p-tau positive cells (grey) and ZO-1 (red)
185 in *APOE3* and *E4* iBECs. Nuclei (cyan) stained with Hoechst. Scale bar = 20 μ m. **(C)**
186 Quantification of p-tau-positive cells in monolayers formed by *APOE3* and *APOE4* iBECs.
187 Data presented as percent of p-tau-positive cells normalised to total cell number. *N* = 3
188 biological replicates and minimum of *n* = 3 independent replicates per line. **(D)** Quantification
189 of p-tau-positive cells in monolayers formed by *iTOB0064* (*iAPOE3*) and *TOB0064* (*APOE4*)
190 iBEC. *N* = 1 biological replicate (isogenic pair) with *n* = 3 independent replicates per line. Data
191 analysed with Student's *t*-test in (C,D). Error bars = SEM. ****p*<0.001, *****p*<0.0001.

192

193

194

195 **Passive permeability of anti-tau therapeutic antibodies is reduced in APOE4 iBECs**

196

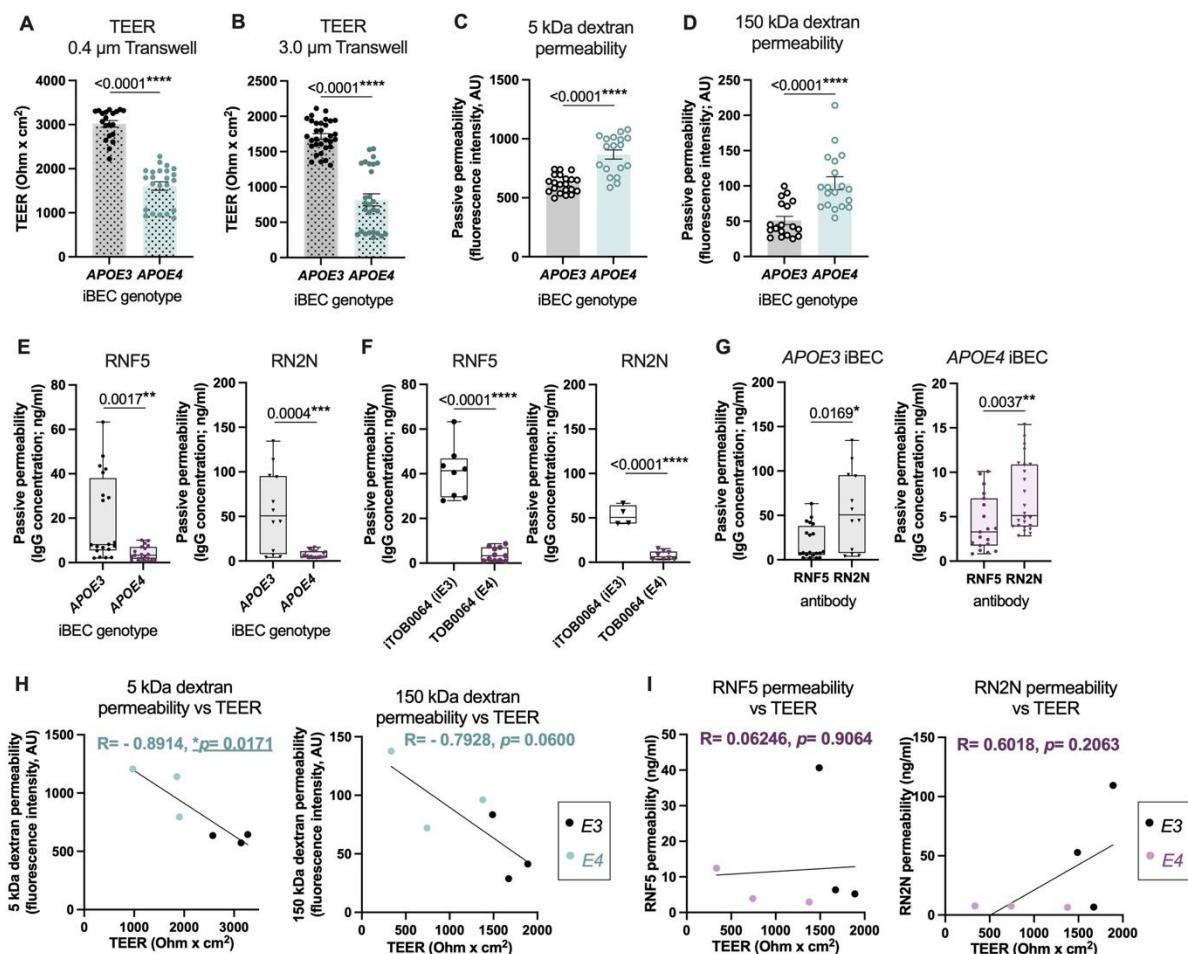
197 Insufficient transport at the BBB is a known hurdle for the development of large-molecule
198 immunotherapeutics⁴⁸. Hence we hypothesised that increased levels of tau in APOE4 iBECs
199 may contribute to limited anti-antibody passage through the BBB. To investigate this, we
200 further utilised the tau-targeting antibodies RNF5 and RN2N shown to achieve therapeutic
201 effects in tau transgenic mouse models⁴²⁻⁴⁴ and screened their permeability *in vitro* in our
202 Transwell-based APOE BBB model⁴¹.

203

204 We previously demonstrated that Transwell inserts with 0.4 μ m pores, most commonly used
205 in the iPSC-BBB models^{34,49-52}, are suitable to assess small molecule (5 kDa) permeability,
206 while those with pores of 3.0 μ m in diameter provide a more adequate *in vitro* system to study
207 larger (150 kDa) molecule transport⁴¹. As demonstrated by us previously⁴¹ and in this study,
208 when cultured in Transwell inserts containing membrane pores with a diameter of either 0.4
209 μ m or 3.0 μ m, APOE4 iBEC formed monolayers of reduced TEER ($p<0.0001$) compared to
210 APOE3 controls (0.4 μ m Transwells: APOE3 3018 \pm 75.19 Ohm x cm², APOE4 1608 \pm 95.31
211 Ohm x cm²; 3.0 μ m Transwells: APOE3 1716 \pm 39.37 Ohm x cm², APOE4 817.6 \pm 85.42
212 Ohm x cm², mean \pm SEM, **Figure 3A,B**). This corresponded to the TEER values of the BBB
213 previously found *in vivo* (average of 1462 Ohm x cm² in⁵³ and 1870 Ohm x cm² in⁵⁴). We also
214 found increased permeability to biologically inert fluorescent FITC-conjugated 5 kDa and 150
215 kDa tracers in APOE4 iBEC monolayers compared to APOE3 iBEC when cultured in
216 respective 0.4 μ m and 3.0 μ m pore Transwells ($p<0.0001$, **Figure 3C,D**), suggesting the
217 presence of a clinically relevant²⁸ 'leaky BBB' phenotype in APOE4-carrying cells. We then
218 evaluated the passive permeability of the anti-tau antibodies RNF5 and RN2N (~150 kDa in
219 size) in the APOE3 and APOE4 iBEC Transwell model (3.0 μ m pore) where the tested
220 antibody was added to the luminal (top) chamber of a Transwell at 1 μ M and its concentration
221 in the abluminal (bottom) chamber was assessed at 24 h as we previously established⁴¹,
222 utilising an ELISA-based detection of antibodies in the Transwell flow-through. This revealed
223 a striking decrease in passive transport of both RNF5 ($p<0.01$) and RN2N ($p<0.001$) through
224 monolayers formed by APOE4 iBECs compared to APOE3 iBECs (**Figure 3E**). Similarly, a
225 decrease in RNF5 ($p<0.0001$) and RN2N ($p<0.0001$) permeability was observed in TOB0064
226 (APOE4) when compared to its isogenic corrected control iTOB0064 (iAPOE3) iBEC (**Figure**
227 **3F**), despite TOB0064 cells forming a barrier of reduced ($p<0.0001$) integrity as compared to
228 iTOB0064 (**Figure S6**). Together, this suggests a strong link between reduced anti-tau
229 antibody permeability and the APOE4 allele. When comparing within cells of the same APOE
230 genotype, we also observed increased passive permeability of RN2N as opposed to RNF5

231 (RNF5 vs RN2N in *APOE3* iBECs $p<0.05$, in *APOE4* iBECs $p<0.01$, **Figure 3G**), possibly
232 reflecting the selective binding of RN2N to 2N tau, that comprises only a fraction of total tau⁴⁴.
233 This reduced passive leakage was also seen in *APOE4* iBECs for AlexaFluor647 (AF647)-
234 conjugated RNF5 and RN2N by measuring antibody-associated AF647 fluorescence in media
235 collected from the bottom chamber of the Transwell system ($p<0.05$, **Figure S7A**). Intriguingly,
236 we did not observe any differences in the passive permeability of the AF647-conjugated anti-
237 amyloid antibody Aducanumab between *APOE3* and *APOE4* cells, suggesting the observed
238 effect may be specific to tau-targeting antibodies (**Figure S7A**). Observation of similar effects
239 of *APOE4* on RNF5 and RN2N permeability, when assessed with both ELISA (**Figure 3E**) and
240 fluorescence-based methods (**Figure S7A**), also confirmed that the addition of a fluorescent
241 tag to the antibody did not affect its permeability dynamics in iBECs. To further confirm anti-
242 tau antibody permeability and *APOE4* association, we employed our alternative, previously
243 characterised iBEC model comprising familial AD patient-derived iBECs carrying the disease-
244 associated mutation (exon 9 deletion, $\Delta E9$) in the presenilin-1 (*PSEN1*) gene with those cells
245 being simultaneously *APOE3* carriers^{50,55}. Interestingly, the passive permeability of AF647-
246 RN2N and AF647-Aducanumab did not vary between controls (*PSEN1* wildtype, *APOE3*) and
247 familial AD (*PSEN1-ΔE9*, *APOE3*) iBECs suggesting the dependence of tau antibody
248 permeability on the presence of *APOE4* allele, rather than an AD-related phenotype more
249 generally (**Figure S7B**).

250


251 Since the barrier in our *APOE4* model was seemingly ‘more leaky’ (**Figure 3A-D**) while
252 simultaneously not facilitating increased permeability of anti-tau antibodies (**Figure 3E**), we
253 further investigated the correlation between cargo permeability and barrier integrity in *APOE*
254 iBECs. When considering the biologically inert FITC-conjugated dextran tracers, as expected,
255 we observed a negative correlation between iBEC barrier integrity (TEER) and its permeability,
256 with lower barrier integrity correlating with higher permeability to both small molecule (5 kDa)
257 dextran (Pearson’s $R= -0.8914$, $p<0.05$) and larger molecule (150 kDa) dextran (Pearson’s
258 $R= -0.7928$, $p= 0.06$) as assessed in 0.4 μm and 3.0 μm Transwell formats, respectively
259 (**Figure 3H**). This dependence, however, was not replicated for anti-tau antibodies where
260 RNF5 passive permeability largely did not correlate with iBEC TEER (Pearson’s $R= 0.06246$,
261 $p= 0.9064$) while RN2N showed an opposite trend to that observed for dextrans permeability
262 (Pearson’s $R= 0.6018$, $p= 0.2063$, (**Figure 3I**)).

263

264 Given that previously detected tau expression in *APOE* iBECs (**Figure 1C,D**), we next
265 evaluated iBEC monolayers cultured on Transwells in the presence of AF647-conjugated
266 RNF5 and RN2N for 24 h and detected a fluorescence signal in *APOE3* and *APOE4* iBECs,

267 suggesting that the antibody is, at least in part, being trapped in the cytoplasm during passage
268 between the top and bottom chambers of the Transwell system (**Figure 4A,B, Figure S8**). To
269 confirm specificity for tau antibodies and not just large molecules in general, we exposed cells
270 grown on Transwell inserts to 150 kDa FITC-conjugated dextran for 24 h, however, did not
271 detect any robust signal of trapping (**Figure 4C, Figure S8**). Finally, to confirm that the
272 observed effects were due to anti-tau antibodies potentially recognising their target in *APOE4*
273 iBECs rather than IgG generally binding to cells, we compared the passive permeability of
274 RNF5, RN2N and their respective IgG2b and IgG2a controls in *APOE* iBECs. As expected
275 given the moderate levels of total and 2N tau in *APOE3* iBECs as compared to *APOE4* iBEC
276 (**Figure 1E**), the passive permeability of RNF5 and RN2N did not significantly differ from their
277 respective IgG controls in *APOE3* cells (**Figure 4D,E**). However, in *APOE4* iBECs, control
278 IgGs showed significantly increased passive permeability compared to RNF5 ($p<0.0001$) and
279 RN2N ($p<0.0001$, **Figure 4D,E**) pointing to tau-specific interactions of RNF5 and RN2N
280 antibodies in *APOE4* iBECs.
281 Together, these observations suggest that elevated levels of tau in *APOE4*-carrying iBECs
282 may contribute to the reduced permeability of tau-targeting RNF5 and RN2N antibodies in the
283 *in vitro* BBB system.

284

Figure 3. Barrier properties and reduced passive permeability of anti-tau antibodies

RNF5 and RN2N in APOE4 iBECs. (A-B) Trans-endothelial electrical resistance (TEER, shown as $\text{Ohm} \times \text{cm}^2$) of APOE3 and APOE4 iBEC, measured in $\varnothing 0.4 \mu\text{m}$ and $\varnothing 3.0 \mu\text{m}$ pore Transwells. $N = 3$ biological replicates and minimum $n = 6$ independent replicates per line. (C-D) Passive permeability of 5 kDa and 150 kDa FITC-conjugated dextran in APOE3 and APOE4 iBECs. Data presented as a fluorescence intensity (AU) of FITC-conjugated dextran measured in the bottom chamber of the Transwell at 24 h. $N = 3$ biological replicates and minimum $n = 5$ independent replicates per line. (E) Passive permeability RNF5 and RN2N antibodies in APOE3 and APOE4 iBECs. Data presented as an antibody concentration (ng/ml) detected in the bottom chamber of the Transwell at 24 h. $N = 3$ biological replicates and minimum $n = 2$ independent replicates per line. (F) Passive permeability of RNF5 and RN2N in iTOB0064 (iAPOE3) and TOB0064 (APOE4) iBEC. $N = 1$ biological replicate (isogenic pair) and a minimum of $n = 4$ independent replicates per line. (G) Comparison between RNF5 and RN2N passive permeability in APOE3 and APOE4 iBECs. $N = 3$ biological replicates and minimum $n = 2$ independent replicates per line. (H) Correlation between averaged (per line) APOE iBEC barrier integrity (TEER) and averaged (per line) passive permeability of 5 kDa dextran or 150 kDa dextran. $N = 3$ biological replicates. (I) Correlation between averaged (per line) APOE iBEC barrier integrity (TEER, $\varnothing 3.0 \mu\text{m}$ pore Transwells) and averaged (per line) passive permeability RNF5 and RN2N antibodies. $N = 3$ biological replicates. Data analysed with Mann-Whitney U test in (A-E, G) and Student's t -test in (F) and Pearson's correlation in (H-I). Error bars = SEM in bar graphs. Whiskers = min-max in box plots. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.

285

286

287

288

289

290

291

292

293

294

295

296

297

298

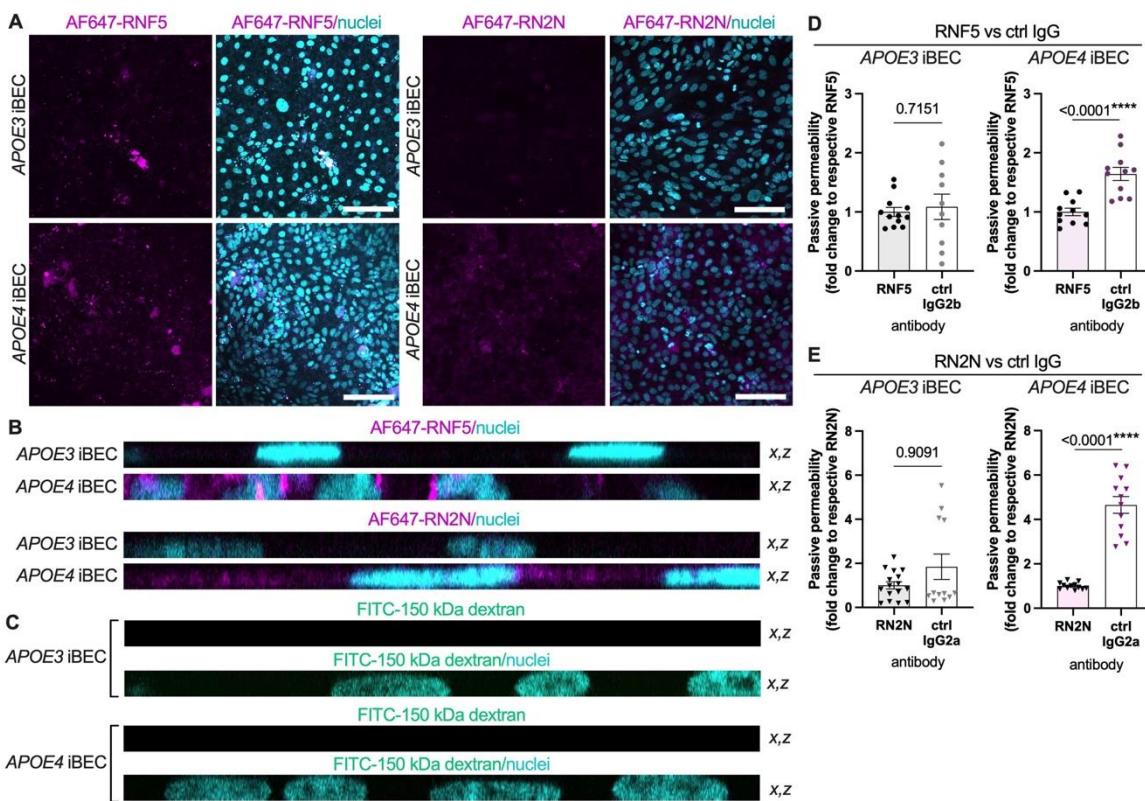
299

300

301

302

303


304

305

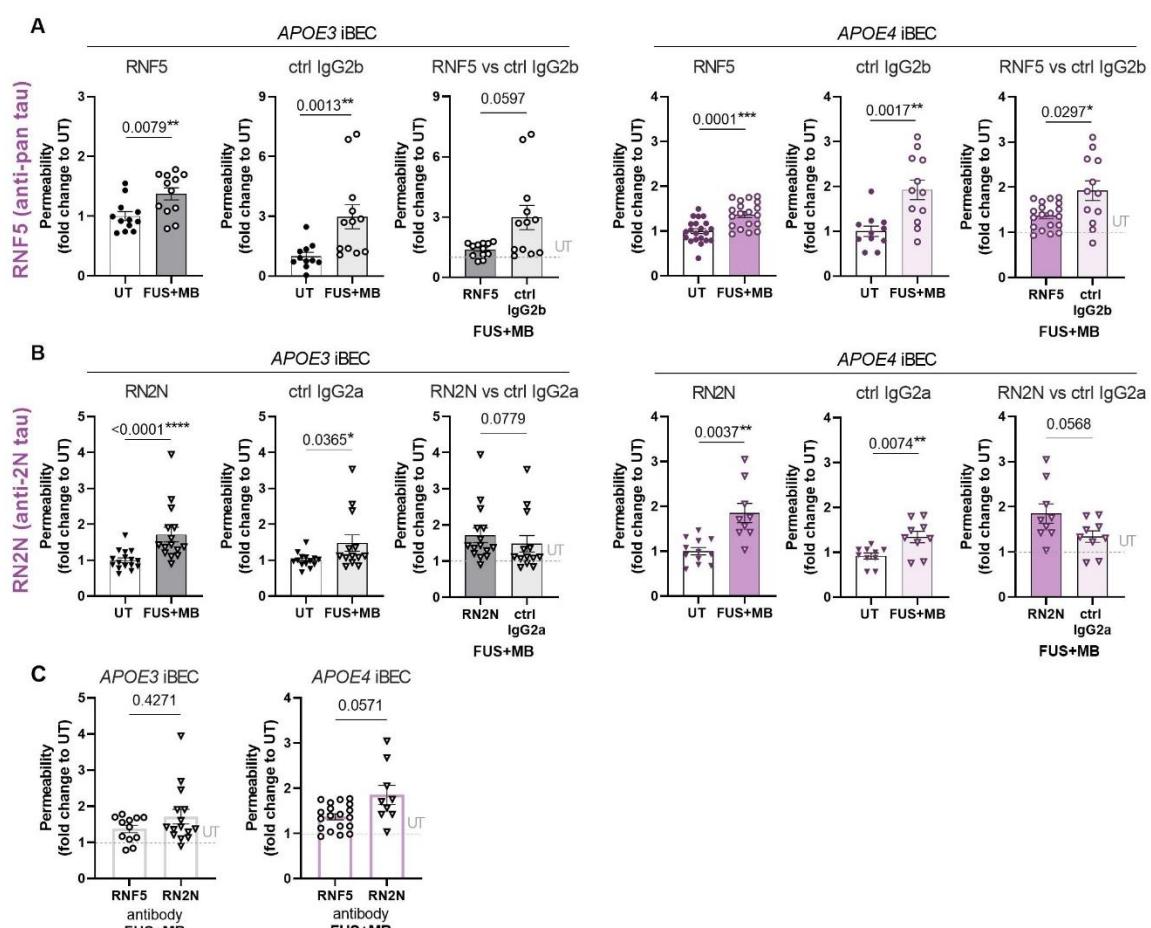
306

307

308

309
310 **Figure 4. Presence of RNF5 and RN2N in APOE iBEC monolayers and their reduced**
311 **permeability compared to isotype controls in APOE4 cells. (A)** Detection of AF647-RNF5
312 and AF647-RN2N signal (magenta) in APOE3 and APOE4 iBEC monolayers cultured on
313 Transwells, at 24 h post-treatment with the respective antibody. Nuclei counterstained with
314 Hoechst (cyan). Scale bar = 100 μ m. **(B-C)** Orthogonal (x,z) views of APOE iBEC monolayers
315 exposed to AF647-RNF5 (magenta), AF647-RN2N (magenta) and FITC-conjugated 150 kDa
316 dextran (green) for 24 h. Nuclei counterstained with Hoechst (cyan). **(D-E)** Comparison of
317 passive permeability of RNF5 and RN2N to respective IgG controls in APOE3 and APOE4
318 iBECs. Data presented as fold changes in control IgG concentration (ng/ml) detected in the
319 bottom chamber of the Transwell at 24 h, normalised to respective anti-tau antibodies within
320 each line. $N = 3$ biological replicates and minimum $n = 2$ independent replicates per line. Data
321 in (D) were analysed with Welch's *t*-test (APOE3) and Student's *t*-test (APOE4). Data in (E)
322 were analysed with Mann-Whitney *U* test (APOE3) and Welch's *t*-test (APOE4). Error bars =
323 SEM. **** $p < 0.0001$.

324


325

326 **Active delivery with FUS^{MB} enhances the permeability of tau immunotherapeutics**
327 **across APOE4 iBECs**

328

329 Having observed reduced passive permeability of anti-tau antibodies in APOE4 cells, we
330 hypothesised that active delivery methods may be required to facilitate the delivery of tau-
331 targeting immunotherapeutics in APOE4 iBECs. Focused ultrasound and microbubble
332 (FUS^{MB}) technology is an emerging method successfully utilised to enhance large molecule

333 drug delivery in preclinical AD studies performed by us and others^{42,44,45,56–58} and proven safe
334 and clinically effective in temporary BBB opening in AD patients^{57,59–62}. We have previously
335 established an ultrasound-mediated antibody delivery *in vitro* platform where we demonstrated
336 that FITC-conjugated 150 kDa dextran, AF647-RNF5 and AF647-Aducanumab permeability
337 can be increased in a sporadic AD BBB model by the application of FUS^{+MB} at optimised
338 parameters⁴¹. Here we reproduced FUS^{+MB}-enhanced RNF5 antibody delivery in our model⁴¹
339 and further trialled the utility of FUS^{+MB} to deliver RN2N and control IgGs in *APOE3* and
340 *APOE4* iBEC. Using ELISA-based antibody detection, we found FUS^{+MB} treatment improved
341 the passage of RNF5 antibody in both *APOE3* ($p<0.01$) and *APOE4* ($p<0.001$) iBECs (**Figure 5A**). Similarly, FUS^{+MB} improved delivery of RNF5's control IgG2b ($p<0.01$). However, the
343 delivery efficiency was higher ($p<0.05$) for control IgG compared to RNF5 in *APOE4* cells while
344 showing similar delivery efficiency in *APOE3* cells (**Figure 5A**) suggesting interactions of
345 RNF5 with iBECs could affect its delivery with FUS^{+MB} in *APOE4* cells. FUS^{+MB} also effectively
346 improved the permeability of RN2N (*APOE3* iBECs: $p<0.0001$, *APOE4* iBECs: $p<0.01$) and its
347 corresponding control IgG2a (*APOE3* iBEC: $p<0.05$, *APOE4* iBEC: $p<0.01$), while reaching
348 similar delivery efficiency when comparing both tau-specific and control IgG antibodies
349 formats (**Figure 5B**). Finally, we detected no difference in the delivery efficiency of RN2N
350 compared to RNF5 in *APOE* iBECs following FUS^{+MB} (**Figure 5C**).
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

Figure 5. Focused ultrasound and microbubble (FUS+MB) technology aid in tau-immunotherapy delivery in APOE iBEC. (A) FUS+MB mediated delivery of RNF5 and its corresponding control IgG in APOE3 and APOE4 iBEC. (B) FUS+MB mediated delivery of RN2N and its corresponding control IgG in APOE3 and APOE4 iBEC. (C) Comparison of FUS+MB-mediated delivery efficiency of RNF5 and RN2N between APOE3 and APOE4 iBEC. Data presented as fold changes in anti-tau antibody or control IgG concentration (ng/ml) detected in the bottom chamber of the FUS+MB-exposed Transwell at 24 h, normalised to respective untreated (UT) control within each line. In (A-C): $N = 3$ biological replicates and minimum $n = 2$ independent replicates per line. Data analysed with Student's *t*-test, Welch's *t*-test or Mann-Whitney *U* test as appropriate, error bars = SEM. * $p < 0.05$. ** $p < 0.01$, *** $p < 0.001$.

367

368

369

370

371

372

373

DISCUSSION

367

368

369

370

371

372

373

Tau-specific immunotherapy is emerging as a promising treatment approach for AD in preclinical studies^{44,63-68} with various early-stage clinical trials currently ongoing^{2,69}. However, previous studies have revealed that achieving a sufficient antibody concentration in the brain is challenging^{70,71}. Therefore, to improve the delivery of tau immunotherapeutics into the patient's CNS, it is crucial to understand how the BBB cells interact with the drug and elucidate molecular and cellular mechanisms that limit therapeutic antibody passage through the BBB.

374
375 Here our goal was to investigate the interactions of anti-tau therapeutic antibodies with human
376 BECs *in vitro* and identify cell-type-specific effects that could influence BBB permeability of
377 tau-targeting immunotherapeutics in AD. By utilising our hiPSC-derived sporadic AD BBB
378 model⁴¹ and two tau-specific monoclonal antibodies, RNF5 and RN2N⁴²⁻⁴⁵, we found
379 increased endogenous tau expression and Ser396 phosphorylation to be associated with the
380 *APOE4* allele in iBEC, suggesting that as for other brain cell-types^{22-25,72,73}, *APOE4* may
381 exacerbate tau-related changes in BECs. This tau expression in *APOE4* iBECs was further
382 associated with decreased passive permeability of the anti-tau therapeutic antibodies RNF5
383 and RN2N across the BBB *in vitro*. We also identified an accumulation of tau antibodies within
384 the *APOE4* iBEC monolayer, together pointing to cell-type-specific molecular interactions
385 within BECs that could limit tau immunotherapeutics delivery across the BBB, hence
386 minimizing their target engagement within the brain parenchyma. We also found that barrier
387 integrity as measured by TEER is a read-out for the permeability rate of biologically inert
388 fluorescent dextran tracers, while the same observation was not made for anti-tau antibodies.
389 This may suggest that for certain therapeutics the molecular interactions with the BBB cells
390 need to be considered in addition to actual barrier integrity, potentially explaining the lack of
391 widespread drug leakage through the BBB despite the barrier's breakdown in AD^{37,38}. With
392 further investigation required, our data may also provide indirect evidence for dextran tracers
393 to permeate through the iBEC monolayer by the paracellular route while antibodies, at least
394 in part, enter via the transcellular pathway, as has been previously proposed for the IgG
395 transport at brain barriers⁷⁴. Moreover, we found the limited permeability of RN2N and RNF5
396 in *APOE4* iBECs could be partially overcome by applying FUS^{MB}³⁹, suggesting passive
397 immunotherapy on its own may not be the most effective avenue to tau-targeted drug delivery
398 and instead, the development of active-delivery technologies may be needed to realise the
399 clinical potential of tau immunotherapies in *APOE4* individuals.
400 With more studies required to fully decipher the molecular interactions between tau and
401 *APOE4* at the BBB, here we postulate that the *APOE4* allele may influence the expression
402 and phosphorylation of tau in BECs, which may contribute to pathological changes at the BBB
403 and affect anti-tau therapeutic antibody delivery in sporadic AD.
404
405 A few independent lines of evidence suggests BEC involvement in *APOE4*- or tau-related BBB
406 dysfunction^{14-16,26,75-78}. However, with both proteins being expressed in multiple brain cell
407 types, it remains challenging to dissect their cell-type-specific contributions to BBB
408 pathophysiology in AD. By utilising human *APOE3* and *APOE4* iBEC models to investigate
409 tau expression in a single cell type system, we identified an increase in tau protein levels and
410 its phosphorylation in *APOE4* iBECs to be associated with *in vitro* BBB dysfunction. Although

411 direct causality is yet to be determined, this may suggest the potential involvement of
412 endogenous tau within BECs in the cerebrovascular dyshomeostasis observed in *APOE4*
413 carriers²⁸. Interestingly, *APOE4* hiPSCs utilised in our study were generated from
414 presymptomatic *APOE4* donors⁴⁰, indicating that tau-related changes in BECs could occur
415 early and precede the cognitive decline in *APOE4*-bearing individuals, corroborating
416 previously reported early BBB dysfunction in cognitively normal *APOE4* carriers²⁸. This further
417 suggests our model may be suitable for studying BBB impairment prevention strategies for
418 sporadic AD.

419

420 Although the molecular mechanism of *APOE4* and tau interaction was not investigated in this
421 model, an interactome map of S396 and S404 p-tau in the human AD brain identified *APOE*
422 as one of the proteins directly mediating pathological actions of p-tau in neuronal neurofibrillary
423 tangles, suggesting an intimate molecular crosstalk between *APOE* and tau in AD⁴⁷.
424 Interestingly, in our study, we identified increased transcription of tau-encoding *MAPT* gene in
425 *APOE4* iBECs, while this effect was not found when comparing parental TOB0064 (*APOE4*)
426 and isogenic corrected iTOB0064 (*iAPOE3*) lines. Simultaneously, tau protein expression and
427 phosphorylation were consistently increased in TOB0064 (*APOE4*) cells compared to
428 iTOB0064 (*iAPOE3*), suggesting that *APOE4* may have a more discernible effect on tau
429 protein expression than *MAPT* gene transcription in iBECs. Alternatively, increased levels of
430 intracellular tau in *APOE4* iBECs may in part result from impaired tau clearance or ineffective
431 protein degradation pathways in these cells, with the exact mechanism remaining to be
432 elucidated.

433

434 Increased levels of endogenous tau in *APOE4* iBECs identified herein were also associated
435 with limited passive permeability of tau-specific therapeutic antibodies at the *in vitro* barrier.
436 Intriguingly, this effect was solely observed for tau-targeting antibodies as we did not detect
437 any differences in the passive permeability of the anti-amyloid antibody Aducanumab
438 (Aduhelm^{56,79}) between *APOE3* and *APOE4* iBECs. Notably, our model did not incorporate
439 vessel-associated amyloid^{80,81}, and therefore may not fully represent an AD-like BBB
440 environment. However, another study utilising *APOE3* and *APOE4* iBECs previously detected
441 *APOE4*-dependent increased production of amyloid- β 40 and 42 species by iBECs⁸², hence it
442 cannot be excluded that endogenous amyloid- β is present and physiologically influences
443 antibody permeability in our model system. The limited permeability of tau antibodies through
444 the *in vitro* BBB was also strongly associated with the *APOE4* genotype as experiments
445 conducted with our familial AD patient-derived model^{50,55} comprising iBECs carrying the
446 *PSEN1- Δ E9* mutation and simultaneously the *APOE3* alleles, did not reveal any significant
447 differences in passive permeability of anti-tau antibody or Aducanumab compared to

448 respective control cells. While in addition to tau expression, other mechanisms such as altered
449 vesicular transport^{8,83,84} or transporters expression⁸⁴ may contribute to observed effects in
450 *APOE4* cells, our observations highlight that careful assessment of AD patient's genetic profile
451 may be critical for the successful delivery of immunotherapies at the level of their brain
452 barriers, especially in *APOE4* carriers who comprise over half of the AD patient population⁸⁵.
453

454 Our results suggest that increased intracellular accumulation of tau in *APOE4* BEC and
455 consequent molecular interaction with tau-specific immunotherapeutics within BECs may
456 represent one of the mechanisms by which the passive delivery of anti-tau antibodies at BBB
457 is compromised. Thus active tau immunotherapeutic delivery methods such as FUS^{+MB}^{57,59–62}
458 may be required to enhance the transport of tau immunotherapeutics at otherwise 'leaky' BBB
459 of *APOE4*-carrying patients. Here, similar to our previous *in vivo*^{42,44,45} and *in vitro*⁴¹ studies,
460 we successfully enhanced therapeutic tau antibody transport in the sporadic AD BBB model,
461 further validating the utility of FUS^{+MB} technology in antibody delivery in AD. We found lower
462 delivery efficiency of RNF5 compared to its non-tau binding IgG isotype control in *APOE4*
463 iBECs, suggesting certain anti-tau antibodies may need additional modifications such as
464 encapsulation in nanoparticle, liposomes or exosomes⁴⁸ to effectively permeate through BBB
465 in *APOE4* carriers. This asks for the careful design of novel tau-targeting immunotherapeutics
466 factoring in the antibody's therapeutic effects in the brain parenchyma as well as its molecular
467 interactions with BEC that could significantly limit its BBB permeability.
468

469 With our model recapitulating aspects of the clinical BBB phenotype observed in both *APOE4*
470 carriers²⁸ as well as tauopathies^{12,15,16,86}, and drug permeability dynamics assessed in hiPSC-
471 derived iBEC platforms correlating with that of human BBB^{87,88}, we expect our results to be of
472 high translational relevance, and upon validation in the *in vivo* systems, prove important for
473 tau immunotherapy delivery in *APOE4* human carriers. Yet, further studies are needed to
474 comprehensively understand the association and causality among *APOE* genotype, tau, BBB
475 function and the permeability of tau-targeting therapeutics in AD, potentially via novel *in vitro*
476 and *in vivo* models. Currently, tau overexpression is driven by neuron-specific promoters in
477 the majority of transgenic mouse models^{16,18,21,42,44,45}. Ideally, developing novel mouse models
478 expressing tau under BEC-specific promoters, such as Tie2⁸⁹, would shed light on the
479 contribution of tau to neurovascular unit pathology and further expand understanding of the
480 role of non-neuronal tau in AD. Similarly, novel hiPSC lines carrying disease-associated *MAPT*
481 mutations^{90–92}, *APOE4* knockout/knockin sequences, or those expressing tau aggregation
482 biosensors⁹³ could be utilised to develop more complex, multicellular³⁴ hiPSC-derived *in vitro*
483 BBB models and aid in in-depth characterisation of tau effects on the BEC phenotype and
484 function. Additionally, given the known inter-cell line variability of hiPSCs^{40,41,94}, future studies

485 incorporating larger patient cell cohorts and validation in human brain samples would be
486 needed to confirm the results presented here. The former paired with drug screening of
487 multiple formats of anti-tau therapeutic antibodies could effectively inform drug formulation
488 design in tau immunotherapy and lead to the identification of the most promising drug
489 candidates. Furthermore, exploring avenues to reduce tau levels in BECs could aid in
490 regulating some of the early BBB pathology seen in *APOE4* carriers. Since constitutive tau
491 expression is required for adequate cell function, *APOE4* rather than tau could be a potential
492 therapeutic target in BECs, with its expression altered via immunotherapy⁹⁵, cell type-specific
493 AAV-CRISPR-mediated gene therapy⁹⁶ or ligand-conjugated anti-sense oligonucleotides
494 (ASOs)^{97,98}. With BECs being the only brain cells directly and easily accessible to peripherally
495 administered therapeutics, developing such strategies may prove useful in diminishing the
496 detrimental effects of *APOE4* and tau on the BBB, and ultimately, cognition^{8,9,28}.

497

498 Together, by uncovering the link between the *APOE4* and increased intracellular accumulation
499 and abnormal phosphorylation of tau, and consequently decreased anti-tau therapeutics
500 delivery in patient-derived iBEC, our study expands the understanding of the role of tau at the
501 BBB in AD and paves the way for more effective design of therapeutics targeting tau-
502 associated neurodegeneration.

503 **MATERIALS AND METHODS**

504

505 **Human iPSC culture and differentiation towards induced brain endothelial-like cells**
506 **(iBECs)**

507

508 Previously published and characterised *APOE3*- and *APOE4*-carrying hiPSC lines ($N = 3$
509 *APOE3* lines including one isogenic corrected line converted from *APOE4* to *iAPOE3*, and N
510 = 3 *APOE4* lines) were used to generate induced brain endothelial-like cells (iBECs), as
511 previously described by us⁴¹ (**Table S1**). Selected experiments also involved our familial AD
512 model, based on hiPSCs carrying *PSEN1-ΔE9* mutation ($N = 2$ lines) and their corresponding
513 isogenic-corrected and healthy donor controls ($N = 3$ lines), previously developed and
514 characterised by us^{50,55} (**Table S1**). hiPSCs were cultured on human recombinant vitronectin
515 in StemFlex™ media (Life Technologies) and differentiation was initiated by plating
516 singularised hiPSCs on human embryonic stem cells (hESC)-qualified Matrigel (Corning)
517 coating in StemFlex™ media supplemented with 10 μM Rho-associated kinase inhibitor
518 (iROCK)^{41,50}. hiPSC were then spontaneously co-differentiated in unconditioned media
519 consisting of DMEM/F12+GlutaMAX (Life Technologies), 20% KnockOUT serum replacement
520 (Life Technologies), 1 x non-essential amino acids (Life Technologies) and 0.1 mM β-
521 mercaptoethanol (Sigma)^{41,49,50}. Following six days in unconditioned media, culture media was
522 replaced with endothelial cell media (EC; Life Technologies) supplemented with 2% B27 (Life
523 Technologies), 20 ng/ml basic fibroblast growth factor (FGFb; Peprotech) and 10 μM retinoic
524 acid (RA)^{41,49,50}. After two days, cells were purified on collagen IV from human placenta
525 (Sigma) and human plasma fibronectin (Life Technologies) coated plastic culture plates or Ø
526 0.4 μm or Ø 3.0 μm pore Transwell inserts (Corning) as we described previously^{41,55}. The
527 Transwell insert pore diameters of 0.4 μm and 3.0 μm were previously established to be
528 suitable for assessing *in vitro* permeability of small (5 kDa dextran) and large (150 kDa
529 dextran, antibody) molecules, respectively⁴¹. Following approximately 24 h, cell media was
530 replaced with EC+B27 and cells were allowed to mature for one additional day before
531 performing the assays. iBECs were cultured under normoxia (37°C, 5% CO₂) conditions in
532 EC+B27 for the duration of performed assays^{41,49,50}.

533

534 **iBECs phenotype and barrier integrity characterisation**

535

536 Generated iBECs were characterised for expression of BEC-specific markers ZO-1 and
537 claudin-5 by immunofluorescence as we previously described⁴¹. Briefly, cells were fixed with
538 4% paraformaldehyde (PFA) for 15 min at room temperature (RT), permeabilised with 0.3%

539 Triton X-100 for 10 min and blocked for 1 h at RT with 2% bovine serum albumin (BSA,
540 Sigma)/2% normal goat serum (GS, Chemicon) in PBS and incubated with primary antibodies
541 for claudin-5 and ZO-1 (**Table S2**) diluted at 1:100 in a blocking solution overnight at 4°C. The
542 next day, cells were washed with PBS and incubated with secondary antibodies (AlexaFluor-
543 488 or AlexaFluor-647; **Table S2**) diluted at 1:250 in a blocking solution for 1 h at RT in the
544 dark. Cells were washed with PBS and Hoechst (1:5000) counterstain was performed. The
545 coverslips with cells were mounted with Dako Mounting Medium (Agilent). Images were
546 obtained at 20x magnification using a Zeiss LSM-780 confocal microscope.

547

548 iBEC barrier integrity was assessed by measuring transendothelial electrical resistance
549 (TEER) across iBEC monolayer using the EVOM3 Volt/Ohmmeter (World Precision
550 Instruments) in 24-well, 6.5 mm Transwell with 0.4 µm pore or 3.0 µm pore membrane insert
551 (Corning) as we previously described⁴¹. TEER was then measured in three areas per
552 Transwell and the resistance of the blank (no-cells) Transwell was subtracted before
553 averaging. The resulting value was multiplied by the surface area of the Transwell membrane
554 (0.33 cm²) for calculation of the final TEER values (Ohm x cm²).

555

556 **Tau and p-tau immunofluorescence analysis**

557

558 For immunofluorescence-based quantification of tau expression and tau phosphorylation in
559 iBEC, cells were cultured on collagen IV and fibronectin-coated plastic coverslips under
560 normal conditions, fixed with 4% PFA for 15 min at RT, and immunostaining for the particular
561 marker was performed as described above.

562

563 For tau assessment, monoclonal tau-specific antibodies RNF5 (anti-pan tau) and RN2N (anti-
564 2N tau) were generated in-house as previously described⁴²⁻⁴⁴ and utilised as primary
565 antibodies at optimised 0.05 mg/ml concentration. Additional samples were co-stained with
566 commercially sourced anti-β-tubulin antibody (1:100) (**Table S2**). Anti-Ser396-phosphorylated
567 tau primary antibody was commercially sourced and used at 1:100 (**Table S2**). Antibody
568 specificity was confirmed by performing secondary antibody-only controls.

569

570 Following immunostaining, the coverslips with cells were mounted and imaged by the
571 investigator blinded to the cell genotype, at 20x magnification with Zeiss LSM-780 confocal
572 microscope. Images were taken at 3-5 randomly selected areas per coverslip. For experiments
573 involving RNF5 and RN2N signal intensity assessment, all imaging settings were kept
574 consistent during image acquisition. For RNF5 and RN2N immunofluorescence quantification,
575 signal intensity (mean grey value, AU) was measured in acquired images using ImageJ

576 2.9.0/1.53t software. For p-tau immunofluorescence quantification, p-tau-positive cells were
577 manually counted in acquired images, blinded to cell genotype. Total cell number was
578 quantified in the images based on nuclear Hoechst staining with the ImageJ 2.9.0/1.53t
579 software and on average 196.66 ± 10.62 (mean \pm SEM) cells were found in each image. RNF5
580 and RN2N signal intensity as well as p-tau positive cell number were normalised to total cell
581 count. Measurements of both signal intensity and p-tau-positive cell quantification in each
582 image were averaged per coverslip. Selected markers were additionally imaged at 63x and
583 100x magnification. Signal intensity was uniformly increased in images using ZEN Black
584 Software (Zeiss) for presentation purposes.

585

586 **Dextran permeability assay**

587

588 To assess the passive permeability of iBEC monolayers to biologically inert fluorescent
589 tracers, cells were cultured in 0.4 μm or 3.0 μm pored Transwell inserts and fluorescein
590 isothiocyanate (FITC)-conjugated dextran molecules of 3–5 kDa or 150 kDa (Sigma) were
591 added at 0.5 mg/ml to the top chamber of the Transwell inserts as we previously described⁴¹.
592 Following 24 h incubation with dextran, cell culture media from the bottom chamber of the
593 Transwell system was collected (three technical replicates per Transwell) for
594 spectrofluorometric analysis at 490 nm excitation/520 nm emission using a fluorescent plate
595 reader (Biotek Synergy H4 or Biotek Synergy Neo2).

596

597 **Passive and FUS^{+MB}-enhanced permeability of anti-tau antibodies**

598

599 Monoclonal tau-specific antibodies RNF5, and RN2N, and anti-amyloid Aducanumab
600 analogue were generated in-house as previously described^{42–44,56}. Respective isotype control
601 IgGs (IgG2b and IgG2a) were sourced from Invitrogen. For antibody permeability studies
602 iBECs were cultured in Transwell inserts with 3.0 μm pores and exposed to selected antibody
603 at 1 μM for 24 h as previously described by us⁴¹. For selected experiments, tested antibodies
604 were conjugated with AlexaFluor-647 using Protein Labelling Kit (Invitrogen) following
605 manufacturer's instructions.

606

607 For FUS^{+MB}-mediated antibody delivery studies, cells were exposed to 10 μl of phospholipid-
608 shelled microbubbles with octafluoropropane gas core prepared in-house as described in⁹⁹,
609 together with the investigated antibodies, immediately before FUS treatment⁴¹. FUS was then
610 applied at clinically relevant settings of 286 kHz center frequency, 0.3 MPa peak rarefactional

611 pressure, 50 cycles/burst, burst period 20 ms, and a 120 s sonication time as we previously
612 described^{41,50}.

613 Cell culture media were collected from the bottom chamber of a Transwell system for antibody
614 concentration assessment 24 h post antibody- or antibody and FUS^{+MB}-treatment (for passive
615 permeability and FUS^{+MB} assisted delivery assessment, respectively). For AlexaFluor-647
616 conjugated antibodies, the fluorescence of antibodies was measured at 633 nm excitation/665
617 nm emission using a plate reader (Biotek Synergy H4 or Biotek Synergy Neo2) in technical
618 triplicate as we previously described⁴¹. For unconjugated antibodies, antibody concentration
619 (ng/ml) in collected media was determined with Total Mouse IgG enzyme-linked immunoassay
620 (ELISA, Invitrogen) and extrapolated from generated standard curves, following manufacturer
621 instructions. For FUS^{+MB} studies, fold change in detected antibody concentration was
622 calculated relative to its untreated (UT) control for each line at 24 h.

623

624 **RNF5, RN2N and 150 kDa dextran visualisation in APOE iBEC monolayers**

625

626 To investigate RNF5 and RN2N localisation in APOE iBECs, cells were cultured in Transwell
627 inserts with 3.0 μ m pores and selected antibody conjugated to AlexaFluor647 was added at 1
628 μ M to the top chamber of a Transwell insert for 24 h as previously described by us⁴¹. Following
629 this time, the antibody was removed and cells were washed with PBS and fixed on Transwell
630 membranes with 4% PFA for 15 min at RT. Next, cells were permeabilised with 0.3% Triton
631 X-100 for 10 min and blocked for 1 h at RT with 2% BSA/2% GS in PBS. To enhance the
632 signal, cells were then incubated with anti-mouse AlexaFluor647 secondary antibody (**Table**
633 **S2**) diluted at 1:250 in a blocking solution for 1 h at RT in the dark. Cells were washed with
634 PBS and Hoechst (1:5000) counterstain was performed. For dextran visualisation, iBEC were
635 cultured in Transwell inserts and exposed to 0.5 mg/ml of FITC-conjugated 150 kDa dextran
636 (Sigma) added to the top part of a Transwell. Following 24 h, dextran solution was removed
637 and cells washed with PBS and fixed with 4% PFA for 15 min at RT. Cells were then washed
638 with PBS, permeabilised with 0.3% Triton X-100 for 10 min and Hoechst (1:5000) counterstain
639 was performed. The membranes with cells were then gently cut out of the Transwell frame
640 with a surgical scalpel blade and mounted with Dako Mounting Medium (Agilent). Images were
641 obtained at 20x and 63x magnification using a Zeiss LSM-780 confocal microscope. Signal
642 intensity was uniformly increased in images using ZEN Black Software (Zeiss) for presentation
643 purposes.

644

645 **RNA extraction, cDNA synthesis and quantitative real-time PCR (qPCR)**

646

647 For *APOE* iBEC RNA collection, cells were rinsed with PBS and lysed in TRIzolTM reagent
648 (ThermoFisher Scientific) as we previously described^{41,50}. Total RNA was extracted using the
649 Direct-zol RNA Miniprep Kit (Zymo Research) according to the manufacturer's instructions.
650 Isolated RNA quality and quantity were measured using NanoDropTM Spectrophotometer. For
651 quantitative real time polymerase chain reaction (qPCR) studies, 150 ng of total RNA was
652 converted to complementary DNA (cDNA) using SensiFASTTM cDNA synthesis kit following
653 manufacturer instructions (Bioline) and qPCR performed using SensiFASTTM SYBR[®] Lo-ROX
654 Kit following manufacturer instructions (Bioline). The qPCR reaction was performed in
655 triplicate for each sample on QuantStudioTM 5 Real-Time PCR system with SensiFASTTM
656 SYBR[®] Lo-ROX kit-compatible cycling conditions: 2 min at 95°C followed by 40 cycles of 5 s
657 at 95°C and 30 s at 60°C. Ct values were normalised to Ct values of 18S endogenous control
658 (ΔCt values). Housekeeping gene expression of 18S was found to be consistent across cell
659 lines. The $\Delta\Delta Ct$ values were calculated as $2^{(-\Delta Ct)}$ and presented as $\Delta\Delta Ct$ multiplied by 10^6 .
660 Technical triplicates were averaged per sample for statistical analysis. Utilised primer
661 sequences are presented in **Table S3**.

662

663 **Statistical analysis**

664

665 Statistical analysis was performed using GraphPad Prism version 9.4.0. Data were tested for
666 normal distribution with Shapiro–Wilk test. For a two-group comparison with normal
667 distribution, F test of equality of variances was performed and data was analysed with
668 unpaired Student's t -test (two-tailed; data with equal variances) or unpaired Welch's t -test
669 (two-tailed; data with unequal variances). Mann-Whitney U test (two-tailed) was used for non-
670 normally distributed data. When comparisons between three or more groups were analysed,
671 one-way ANOVA followed by post-hoc tests was used. $p < 0.05$ was considered statistically
672 significant. Z-scores were calculated and values with Z-scores above or below two standard
673 deviations (SD) of the mean were identified as outliers and excluded from analysis. Results
674 are shown as mean \pm SEM. The number of biological (N , hiPSC or iBEC lines) and
675 independent (n) replicates used for each experiment are specified in figure legends. The
676 number of technical replicates included in each assay is stated in the respective materials and
677 methods sections.

678

679

680 **Acknowledgements:** We thank QIMR Berghofer MRI Histology Facility and Microscopy
681 Facility for their assistance. We thank Dr Satomi Okano and QIMR Berghofer MRI Statistics
682 department for their advice on data analysis. We acknowledge Dr Carla Cuní-López for the

683 provision of *MAPT* and *APOE* primers and Dr Gerhard Leinenga for the provision of the
684 unlabelled Aducanumab analogue.

685

686 **Funding:** This work was supported by: National Health and Medical Research Council
687 (NHMRC) Project grant APP1125796 (ARW), NHMRC Senior Research Fellowship (1118452)
688 (ARW) and NHMRC Ideas grant APP2000968 (RMN). JMW was a recipient of The University
689 of Queensland PhD scholarship and QIMR Berghofer Medical Research Institute Top-Up
690 Scholarship.

691

692 **Competing Interest:** The authors have declared that no competing interest exists.

693

694 **Author contribution statement:** **J.M.W.:** conceptualisation, methodology, investigation,
695 formal analysis, visualisation, writing - original draft, writing - review & editing; **R.B.:**
696 methodology, resources; **R.L.J.:** formal analysis, writing - review & editing; **J.C.S.C.:**
697 methodology; **A.P.:** resources; **L.E.O.:** methodology; **J.G.:** methodology, resources, writing -
698 review & editing; **R.M.N.:** conceptualisation, methodology, resources, data curation,
699 supervision, writing - review & editing; **A.R.W.:** supervision, writing - review & editing, project
700 administration, funding acquisition. All authors reviewed and approved the final version of the
701 manuscript.

702

703 **SUPPLEMENTARY MATERIAL:**

704

705 **SUPPLEMENTAL FIGURES:**

706 **Supplementary Figure S1.** *APOE3*, *APOE4* and *MAPT* expression in *APOE* iBECs.

707 **Supplementary Figure S2.** Expression of tau detected with RNF5 antibody in *APOE* iBECs.

708 **Supplementary Figure S3.** Expression of tau detected with RN2N antibody in *APOE* iBECs.

709 **Supplementary Figure S4.** Secondary-only antibody control for RNF5 and RN2N.

710 **Supplementary Figure S5.** Expression of phosphorylated tau (Ser396) in *APOE* iBECs.

711 **Supplementary Figure S6.** Comparison of barrier integrity between iTOB0064 and TOB0064
712 iBECs.

713 **Supplementary Figure S7.** Passive permeability of anti-tau antibodies RNF5 and RN2N and
714 anti-amyloid antibody Aducanumab in sporadic and familial AD iBECs.

715 **Supplementary Figure S8.** Visualisation of RNF5, RN2N and 150 kDa dextran within iBEC
716 monolayer following 24 h.

717

718 **SUPPLEMENTAL TABLES:**

719 **Supplementary Table S1.** hiPSC lines utilised in the study.

720 **Supplementary Table S2.** Commercially sourced antibodies used in the study.

721 **Supplementary Table S3.** Primer sequences used in the study.

722 **REFERENCES**

- 723 1. Götz J, Halliday G, Nisbet RM. Molecular Pathogenesis of the Tauopathies. *Annu Rev Pathol*. 2019;14:239-261. doi:10.1146/annurev-pathmechdis-012418-012936
- 725 2. Ji C, Sigurdsson EM. Current Status of Clinical Trials on Tau Immunotherapies. *Drugs*. 2021;81(10):1135-1152. doi:10.1007/s40265-021-01546-6
- 727 3. Novak P, Kontsekova E, Zilka N, Novak M. Ten Years of Tau-Targeted Immunotherapy: 728 The Path Walked and the Roads Ahead. *Front Neurosci* 2018;12:798. doi: 729 10.3389/fnins.2018.00798
- 730 4. Jadhav S, Avila J, Schöll M, et al. A walk through tau therapeutic strategies. *Acta 731 Neuropathol Commun*. 2019;7(1):22. doi:10.1186/s40478-019-0664-z
- 732 5. Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: Lessons learned, current 733 status and future considerations. *Neuropharmacology*. 2020;175:108104. 734 doi:10.1016/j.neuropharm.2020.108104
- 735 6. St-Amour I, Paré I, Alata W, et al. Brain bioavailability of human intravenous 736 immunoglobulin and its transport through the murine blood-brain barrier. *J Cereb Blood 737 Flow Metab*. 2013;33(12):1983-1992. doi:10.1038/jcbfm.2013.160
- 738 7. Syvänen S, Hultqvist G, Gustavsson T, et al. Efficient clearance of A β protofibrils in A β PP- 739 transgenic mice treated with a brain-penetrating bifunctional antibody. *Alzheimers Res 740 Ther*. 2018;10(1):49. doi:10.1186/s13195-018-0377-8
- 741 8. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer's 742 disease and other neurodegenerative disorders. *Nat Rev Neurol*. 2018;14(3):133-150. 743 doi:10.1038/nrneurol.2017.188
- 744 9. Barisano G, Montagne A, Kisler K, Schneider JA, Wardlaw JM, Zlokovic BV. Blood-brain 745 barrier link to human cognitive impairment and Alzheimer's disease. *Nat Cardiovasc Res*. 746 2022;1(2):108-115. doi:10.1038/s44161-021-00014-4
- 747 10. Bryant AG, Manhard MK, Salat DH, et al. Heterogeneity of Tau Deposition and 748 Microvascular Involvement in MCI and AD. *Curr Alzheimer Res*. 18(9):711-720. doi: 749 10.2174/156720501866621126113904
- 750 11. Michalicova A, Majerova P, Kovac A. Tau Protein and Its Role in Blood-Brain Barrier 751 Dysfunction. *Front Mol Neurosci*. 2020;0. doi:10.3389/fnmol.2020.570045
- 752 12. Moon Y, Jeon HJ, Han SH, et al. Blood-brain barrier breakdown is linked to tau pathology 753 and neuronal injury in a differential manner according to amyloid deposition. *J Cereb 754 Blood Flow Metab*. 2023;271678X231180035. doi:10.1177/0271678X231180035
- 755 13. Majerova P, Michalicova A, Cente M, et al. Trafficking of immune cells across the blood- 756 brain barrier is modulated by neurofibrillary pathology in tauopathies. *PLoS One*. 757 2019;14(5):e0217216. doi:10.1371/journal.pone.0217216
- 758 14. Hussong SA, Banh AQ, Van Skike CE, et al. Soluble pathogenic tau enters brain vascular 759 endothelial cells and drives cellular senescence and brain microvascular dysfunction in 760 a mouse model of tauopathy. *Nat Commun*. 2023;14(1):2367. doi:10.1038/s41467-023- 761 37840-y

762 15. Castillo-Carranza DL, Nilson AN, Van Skike CE, et al. Cerebral Microvascular
763 Accumulation of Tau Oligomers in Alzheimer's Disease and Related Tauopathies. *Aging*
764 *Dis.* 2017;8(3):257-266. doi:10.14336/AD.2017.0112

765 16. Bennett RE, Robbins AB, Hu M, et al. Tau induces blood vessel abnormalities and
766 angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer's
767 disease. *Proc Natl Acad Sci U S A.* 2018;115(6):E1289-E1298.
768 doi:10.1073/pnas.1710329115

769 17. Merlini M, Wanner D, Nitsch RM. Tau pathology-dependent remodelling of cerebral
770 arteries precedes Alzheimer's disease-related microvascular cerebral amyloid
771 angiopathy. *Acta Neuropathol.* 2016;131(5):737-752. doi:10.1007/s00401-016-1560-2

772 18. Park L, Hochrainer K, Hattori Y, et al. Tau induces PSD95-neuronal NOS uncoupling and
773 neurovascular dysfunction independent of neurodegeneration. *Nat Neurosci.*
774 2020;23(9):1079-1089. doi:10.1038/s41593-020-0686-7

775 19. Albrecht D, Isenberg AL, Stradford J, et al. Associations between Vascular Function and
776 Tau PET Are Associated with Global Cognition and Amyloid. *J Neurosci.*
777 2020;40(44):8573-8586. doi:10.1523/JNEUROSCI.1230-20.2020

778 20. Wennberg AM, Whitwell JL, Tosakulwong N, et al. The influence of tau, amyloid, alpha-
779 synuclein, TDP-43 and vascular pathology in clinically normal elderly individuals.
780 *Neurobiol Aging.* 2019;77:26-36. doi:10.1016/j.neurobiolaging.2019.01.008

781 21. Blair LJ, Frauen HD, Zhang B, et al. Tau depletion prevents progressive blood-brain barrier
782 damage in a mouse model of tauopathy. *Acta Neuropathol Commun.* 2015;3(1):8.
783 doi:10.1186/s40478-015-0186-2

784 22. Shi Y, Yamada K, Liddelow SA, et al. ApoE4 markedly exacerbates tau-mediated
785 neurodegeneration in a mouse model of tauopathy. *Nature.* 2017;549(7673):523-527.
786 doi:10.1038/nature24016

787 23. Wang C, Najm R, Xu Q, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-
788 derived neurons is ameliorated by a small-molecule structure corrector. *Nat Med.*
789 2018;24(5):647-657. doi:10.1038/s41591-018-0004-z

790 24. Koutsodendris N, Blumenfeld J, Agrawal A, et al. Neuronal APOE4 removal protects
791 against tau-mediated gliosis, neurodegeneration and myelin deficits. *Nat Aging.*
792 2023;3(3):275-296. doi:10.1038/s43587-023-00368-3

793 25. Zhao J, Fu Y, Yamazaki Y, et al. APOE4 exacerbates synapse loss and
794 neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. *Nat
795 Commun.* 2020;11(1):5540. doi:10.1038/s41467-020-19264-0

796 26. Jackson RJ, Meltzer JC, Nguyen H, et al. APOE4 derived from astrocytes leads to blood-
797 brain barrier impairment. *Brain.* 2022;145(10):3582-3593. doi:10.1093/brain/awab478

798 27. Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via
799 cyclophilin A. *Nature.* 2012;485(7399):512-516. doi:10.1038/nature11087

800 28. Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood-brain barrier dysfunction
801 predicting cognitive decline. *Nature.* 2020;581(7806):71-76. doi:10.1038/s41586-020-
802 2247-3

803 29. Montagne A, Nikolakopoulou AM, Huuskonen MT, et al. APOE4 accelerates advanced-
804 stage vascular and neurodegenerative disorder in old Alzheimer's mice via cyclophilin A
805 independently of amyloid- β . *Nat Aging*. 2021;1(6):506-520. doi:10.1038/s43587-021-
806 00073-z

807 30. Leaston J, Ferris CF, Kulkarni P, et al. Neurovascular imaging with QUTE-CE MRI in
808 APOE4 rats reveals early vascular abnormalities. *PLoS One*. 2021;16(8):e0256749.
809 doi:10.1371/journal.pone.0256749

810 31. Huynh TPV, Davis AA, Ulrich JD, Holtzman DM. Apolipoprotein E and Alzheimer's
811 disease: the influence of apolipoprotein E on amyloid- β and other amyloidogenic
812 proteins. *J Lipid Res*. 2017;58(5):824-836. doi:10.1194/jlr.R075481

813 32. Shinohara M, Murray M, Frank R, et al. Impact of sex and APOE4 on cerebral amyloid
814 angiopathy in Alzheimer's disease. *Acta Neuropathol*. 2016;132(2):225-234.
815 doi:10.1007/s00401-016-1580-y

816 33. McCorkindale AN, Mundell HD, Guennewig B, Sutherland GT. Vascular Dysfunction Is
817 Central to Alzheimer's Disease Pathogenesis in APOE e4 Carriers. *Int J Mol Sci*.
818 2022;23(13):7106. doi:10.3390/ijms23137106

819 34. Blanchard JW, Bula M, Davila-Velderrain J, et al. Reconstruction of the human blood-brain
820 barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. *Nat Med*.
821 2020;26(6):952-963. doi:10.1038/s41591-020-0886-4

822 35. Halliday MR, Rege SV, Ma Q, et al. Accelerated pericyte degeneration and blood-brain
823 barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. *J Cereb Blood
824 Flow Metab*. 2016;36(1):216-227. doi:10.1038/jcbfm.2015.44

825 36. Bien-Ly N, Boswell CA, Jeet S, et al. Lack of Widespread BBB Disruption in Alzheimer's
826 Disease Models: Focus on Therapeutic Antibodies. *Neuron*. 2015;88(2):289-297.
827 doi:10.1016/j.neuron.2015.09.036

828 37. Cheng Z, Zhang J, Liu H, Li Y, Zhao Y, Yang E. Central nervous system penetration for
829 small molecule therapeutic agents does not increase in multiple sclerosis- and
830 Alzheimer's disease-related animal models despite reported blood-brain barrier
831 disruption. *Drug Metab Dispos*. 2010;38(8):1355-1361. doi:10.1124/dmd.110.033324

832 38. Gustafsson S, Lindström V, Ingelsson M, Hammarlund-Udenaes M, Syvänen S. Intact
833 blood-brain barrier transport of small molecular drugs in animal models of amyloid beta
834 and alpha-synuclein pathology. *Neuropharmacology*. 2018;128:482-491.
835 doi:10.1016/j.neuropharm.2017.08.002

836 39. Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-
837 term improvement and monitoring of brain function. *Neuron*. 2023;111(8):1174-1190.
838 doi:10.1016/j.neuron.2023.02.018

839 40. Hernández D, Rooney LA, Daniszewski M, et al. Culture Variabilities of Human iPSC-
840 Derived Cerebral Organoids Are a Major Issue for the Modelling of Phenotypes Observed
841 in Alzheimer's Disease. *Stem Cell Rev Rep*. 2021. doi:10.1007/s12015-021-10147-5

842 41. Wasieleska JM, Chaves JCS, Johnston RL, et al. A sporadic Alzheimer's blood-brain
843 barrier model for developing ultrasound-mediated delivery of Aducanumab and anti-Tau
844 antibodies. *Theranostics*. 2022;12(16):6826-6847. doi:10.7150/thno.72685

845 42. Bajracharya R, Cruz E, Götz J, Nisbet RM. Ultrasound-mediated delivery of novel tau-
846 specific monoclonal antibody enhances brain uptake but not therapeutic efficacy. *J
847 Control Release*. 2022;349:634-648. doi:10.1016/j.jconrel.2022.07.026

848 43. Bajracharya R, Brici D, Bodea LG, Janowicz PW, Götz J, Nisbet RM. Tau antibody isotype
849 induces differential effects following passive immunisation of tau transgenic mice. *Acta
850 Neuropathol Commun*. 2021;9(1):42. doi:10.1186/s40478-021-01147-0

851 44. Nisbet RM, Van Der Jeugd A, Leinenga G, Evans HT, Janowicz PW, Götz J. Combined
852 effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic
853 mouse model. *Brain*. 2017;140(5):1220-1230. doi:10.1093/brain/awx052

854 45. Janowicz PW, Leinenga G, Götz J, Nisbet RM. Ultrasound-mediated blood-brain barrier
855 opening enhances delivery of therapeutically relevant formats of a tau-specific antibody.
856 *Sci Rep*. 2019;9(1):9255-9255. doi:10.1038/s41598-019-45577-2

857 46. Saroja SR, Gorbachev K, TCW J, Goate AM, Pereira AC. Astrocyte-secreted glycan-4
858 drives APOE4-dependent tau hyperphosphorylation. *Proc Natl Acad Sci U S A*.
859 2022;119(34):e2108870119. doi:10.1073/pnas.2108870119

860 47. Drummond E, Pires G, MacMurray C, et al. Phosphorylated tau interactome in the human
861 Alzheimer's disease brain. *Brain*. 2020;143(9):2803-2817. doi:10.1093/brain/awaa223

862 48. Bajracharya R, Caruso AC, Vella LJ, Nisbet RM. Current and Emerging Strategies for
863 Enhancing Antibody Delivery to the Brain. *Pharmaceutics*. 2021;13(12):2014.
864 doi:10.3390/pharmaceutics13122014

865 49. Stebbins MJ, Wilson HK, Canfield SG, Qian T, Palecek SP, Shusta EV. Differentiation and
866 characterization of human pluripotent stem cell-derived brain microvascular endothelial
867 cells. *Methods*. 2016;101:93-102. doi:10.1016/j.ymeth.2015.10.016

868 50. Oikari LE, Pandit R, Stewart R, et al. Altered Brain Endothelial Cell Phenotype from a
869 Familial Alzheimer Mutation and Its Potential Implications for Amyloid Clearance and
870 Drug Delivery. *Stem Cell Reports*. 2020;14(5):924-939.
871 doi:10.1016/j.stemcr.2020.03.011

872 51. Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood-brain barrier endothelial cells
873 from human pluripotent stem cells. *Nat Biotechnol*. 2012;30(8):783-791.
874 doi:10.1038/nbt.2247

875 52. Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced,
876 multicellular human blood-brain barrier model derived from stem cell sources. *Sci Rep*.
877 2014;4(1):4160. doi:10.1038/srep04160

878 53. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in
879 anaesthetized rats: a developmental study. *J Physiol*. 1990;429:47-62.

880 54. Crone C, Olesen SP. Electrical resistance of brain microvascular endothelium. *Brain Res*.
881 1982;241(1):49-55. doi:10.1016/0006-8993(82)91227-6

882 55. Wasielewska JM, Szostak K, McInnes LE, et al. A patient-derived blood-brain barrier
883 model for screening copper bis(thiosemicarbazone) complexes as potential therapeutics
884 in Alzheimer's disease. *biorxiv* [Preprint], 2023:2023.08.20.554047.
885 doi:10.1101/2023.08.20.554047

886 56. Leinenga G, Koh WK, Götz J. A comparative study of the effects of Aducanumab and
887 scanning ultrasound on amyloid plaques and behavior in the APP23 mouse model of
888 Alzheimer disease. *Alzheimers Res Ther.* 2021;13(1):76. doi:10.1186/s13195-021-
889 00809-4

890 57. Wasielewska JM, White AR. Focused Ultrasound-mediated Drug Delivery in Humans - a
891 Path Towards Translation in Neurodegenerative Diseases. *Pharm Res.* 2022;39(3):427-
892 439. doi:10.1007/s11095-022-03185-2

893 58. Bathini P, Sun T, Schenk M, Schilling S, McDannold NJ, Lemere CA. Acute Effects of
894 Focused Ultrasound-Induced Blood-Brain Barrier Opening on Anti-Pyroglu3 Abeta
895 Antibody Delivery and Immune Responses. *Biomolecules.* 2022;12(7):951.
896 doi:10.3390/biom12070951

897 59. Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer's disease
898 using MR-guided focused ultrasound. *Nat Commun.* 2018;9(1):2336.
899 doi:10.1038/s41467-018-04529-6

900 60. Rezai AR, Ranjan M, D'Haese PF, et al. Noninvasive hippocampal blood-brain barrier
901 opening in Alzheimer's disease with focused ultrasound. *Proc Natl Acad Sci U S A.*
902 2020;117(17):9180-9182. doi:10.1073/pnas.2002571117

903 61. D'Haese PF, Ranjan M, Song A, et al. β -Amyloid Plaque Reduction in the Hippocampus
904 After Focused Ultrasound-Induced Blood-Brain Barrier Opening in Alzheimer's Disease.
905 *Front Hum Neurosci.* 2020;14:593672. doi:10.3389/fnhum.2020.593672

906 62. Mehta RI, Carpenter JS, Mehta RI, et al. Blood-Brain Barrier Opening with MRI-guided
907 Focused Ultrasound Elicits Meningeal Venous Permeability in Humans with Early
908 Alzheimer Disease. *Radiology.* 2021;298(3):654-662. doi:10.1148/radiol.2021200643

909 63. Corsetti V, Borreca A, Latina V, et al. Passive immunotherapy for N-truncated tau
910 ameliorates the cognitive deficits in two mouse Alzheimer's disease models. *Brain
911 Commun.* 2020;2(1):fcaa039. doi:10.1093/braincomms/fcaa039

912 64. Weisová P, Cehlár O, Škrabana R, et al. Therapeutic antibody targeting microtubule-
913 binding domain prevents neuronal internalization of extracellular tau via masking neuron
914 surface proteoglycans. *Acta Neuropathol Commun.* 2019;7(1):129-129.
915 doi:10.1186/s40478-019-0770-y

916 65. Castillo-Carranza DL, Sengupta U, Guerrero-Muñoz MJ, et al. Passive Immunization with
917 Tau Oligomer Monoclonal Antibody Reverses Tauopathy Phenotypes without Affecting
918 Hyperphosphorylated Neurofibrillary Tangles. *J Neurosci.* 2014;34(12):4260-4272.
919 doi:10.1523/JNEUROSCI.3192-13.2014

920 66. Kondo A, Shahpasand K, Mannix R, et al. Antibody against early driver of
921 neurodegeneration cis P-tau blocks brain injury and tauopathy. *Nature.*
922 2015;523(7561):431-436. doi:10.1038/nature14658

923 67. Agadjanyan MG, Zagorski K, Petrushina I, et al. Humanized monoclonal antibody
924 armanezumab specific to N-terminus of pathological tau: characterization and
925 therapeutic potency. *Mol Neurodegener.* 2017;12(1):33. doi:10.1186/s13024-017-0172-
926 1

927 68. Dai C ling, Tung YC, Liu F, Gong CX, Iqbal K. Tau passive immunization inhibits not only
928 tau but also A β pathology. *Alz Res Therapy*. 2017;9(1):1. doi:10.1186/s13195-016-0227-
929 5

930 69. Younes K, Sha SJ. The most valuable player or the tombstone: is tau the correct target to
931 treat Alzheimer's disease? *Brain*. 2023;146(6):2211-2213. doi:10.1093/brain/awad151

932 70. Golde T. Open questions for Alzheimer's disease immunotherapy. *Alzheimers Res Ther*.
933 2014;6(1):3-3. doi:10.1186/alzrt233

934 71. Levites Y, Smithson LA, Price RW, et al. Insights into the mechanisms of action of anti-
935 A β antibodies in Alzheimer's disease mouse models. *FASEB J*. 2006;20(14):2576-2578.
936 doi:10.1096/fj.06-6463fje

937 72. Therriault J, Benedet AL, Pascoal TA, et al. Association of Apolipoprotein E ϵ 4 With Medial
938 Temporal Tau Independent of Amyloid- β . *JAMA Neurol*. 2020;77(4):470-479.
939 doi:10.1001/jamaneurol.2019.4421

940 73. Baek MS, Cho H, Lee HS, Lee JH, Ryu YH, Lyoo CH. Effect of APOE ϵ 4 genotype on
941 amyloid- β and tau accumulation in Alzheimer's disease. *Alzheimers Res Ther*.
942 2020;12(1):140. doi:10.1186/s13195-020-00710-6

943 74. Ruano-Salguero JS, Lee KH. Antibody transcytosis across brain endothelial-like cells
944 occurs nonspecifically and independent of FcRn. *Sci Rep*. 2020;10(1):3685.
945 doi:10.1038/s41598-020-60438-z

946 75. Sun N, Akay LA, Murdock MH, et al. Single-nucleus multiregion transcriptomic analysis of
947 brain vasculature in Alzheimer's disease. *Nat Neurosci*. 2023;26(6):970-982.
948 doi:10.1038/s41593-023-01334-3

949 76. Bryant A, Li Z, Jayakumar R, et al. Endothelial Cells are Heterogeneous in Different Brain
950 Regions and are Dramatically Altered in Alzheimer's Disease. *J Neurosci*. 2023.
951 doi:10.1523/JNEUROSCI.0237-23.2023

952 77. Liu CC, Yamazaki Y, Heckman MG, et al. Tau and apolipoprotein E modulate
953 cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in
954 Alzheimer's disease. *Alzheimers Dement*. 2020;16(10):1372-1383.
955 doi:10.1002/alz.12104

956 78. Cain A, Taga M, McCabe C, et al. Multicellular communities are perturbed in the aging
957 human brain and Alzheimer's disease. *Nat Neurosci*. 2023;1-14. doi:10.1038/s41593-
958 023-01356-x

959 79. Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces A β plaques in
960 Alzheimer's disease. *Nature*. 2016;537(7618):50-56. doi:10.1038/nature19323

961 80. Choi SH, Kim YH, Heisch M, et al. A three-dimensional human neural cell culture model
962 of Alzheimer's disease. *Nature*. 2014;515(7526):274-278. doi:10.1038/nature13800

963 81. Keaney J, Walsh DM, O'Malley T, et al. Autoregulated paracellular clearance of amyloid-
964 β across the blood-brain barrier. *Sci Adv*. 2015;1(8):e1500472.
965 doi:10.1126/sciadv.1500472

966 82. Rieker C, Migliavacca E, Vaucher A, et al. Apolipoprotein E4 Expression Causes Gain of
967 Toxic Function in Isogenic Human Induced Pluripotent Stem Cell-Derived Endothelial

968 Cells. *Arterioscler Thromb Vasc Biol.* 2019;39(9):e195-e207.
969 doi:10.1161/ATVBAHA.118.312261

970 83. Pandit R, Koh WK, Sullivan RKP, Palliyaguru T, Parton RG, Götz J. Role for caveolin-
971 mediated transcytosis in facilitating transport of large cargoes into the brain via
972 ultrasound. *J Control Release*. 2020;327:667-675. doi:10.1016/j.jconrel.2020.09.015

973 84. Barisano G, Kisler K, Wilkinson B, et al. A “multi-omics” analysis of blood–brain barrier
974 and synaptic dysfunction in APOE4 mice. *J Exp Med.* 2022;219(11):e20221137.
975 doi:10.1084/jem.20221137

976 85. Ward A, Crean S, Mercaldi CJ, et al. Prevalence of apolipoprotein E4 genotype and
977 homozygotes (APOE e4/e4) among patients diagnosed with Alzheimer’s disease: a
978 systematic review and meta-analysis. *Neuroepidemiology*. 2012;38(1):1-17.
979 doi:10.1159/000334607

980 86. Bryant AG, Hu M, Carlyle BC, et al. Cerebrovascular Senescence Is Associated With Tau
981 Pathology in Alzheimer’s Disease. *Front Neurol.* 2020;11:575953.
982 doi:10.3389/fneur.2020.575953

983 87. Roux GL, Jarray R, Guyot AC, et al. Proof-of-Concept Study of Drug Brain Permeability
984 Between in Vivo Human Brain and an in Vitro iPSCs-Human Blood-Brain Barrier Model.
985 *Sci Rep.* 2019;9:16310. doi:10.1038/s41598-019-52213-6

986 88. Ohshima M, Kamei S, Fushimi H, Mima S, Yamada T, Yamamoto T. Prediction of Drug
987 Permeability Using In Vitro Blood–Brain Barrier Models with Human Induced Pluripotent
988 Stem Cell-Derived Brain Microvascular Endothelial Cells. *Biores Open Access*.
989 2019;8(1):200-209. doi:10.1089/biores.2019.0026

990 89. Kucharcz K, Kristensen K, Johnsen KB, et al. Post-capillary venules are the key locus for
991 transcytosis-mediated brain delivery of therapeutic nanoparticles. *Nat Commun.*
992 2021;12(1):4121. doi:10.1038/s41467-021-24323-1

993 90. Kopach O, Esteras N, Wray S, Abramov AY, Rusakov DA. Genetically engineered MAPT
994 10+16 mutation causes pathophysiological excitability of human iPSC-derived neurons
995 related to 4R tau-induced dementia. *Cell Death Dis.* 2021;12(8):1-12.
996 doi:10.1038/s41419-021-04007-w

997 91. Verheyen A, Diels A, Dijkmans J, et al. Using Human iPSC-Derived Neurons to Model
998 TAU Aggregation. *PLoS One.* 2015;10(12):e0146127.
999 doi:10.1371/journal.pone.0146127

1000 92. Silva MC, Cheng C, Mair W, et al. Human iPSC-Derived Neuronal Model of Tau-A152T
1001 Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability.
1002 *Stem Cell Reports.* 2016;7(3):325-340. doi:10.1016/j.stemcr.2016.08.001

1003 93. Oakley DH, Klickstein N, Commins C, et al. Continuous Monitoring of Tau-Induced
1004 Neurotoxicity in Patient-Derived iPSC-Neurons. *J Neurosci.* 2021;41(19):4335-4348.
1005 doi:10.1523/JNEUROSCI.2590-20.2021

1006 94. Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease:
1007 guidelines to promote reproducibility. *Dis Model Mech.* 2020;13(1):dmm042317.
1008 doi:10.1242/dmm.042317

1009 95. Xiong M, Jiang H, Serrano JR, et al. APOE immunotherapy reduces cerebral amyloid
1010 angiopathy and amyloid plaques while improving cerebrovascular function. *Sci Transl
1011 Med.* 2021;13(581):eabd7522. doi:10.1126/scitranslmed.abd7522

1012 96. Bhardwaj S, Kesari KK, Rachamalla M, et al. CRISPR/Cas9 gene editing: New hope for
1013 Alzheimer's disease therapeutics. *J Adv Res.* 2022;40:207-221.
1014 doi:10.1016/j.jare.2021.07.001

1015 97. Litvinchuk A, Huynh TPV, Shi Y, et al. Apolipoprotein E4 Reduction with Antisense
1016 Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. *Ann Neurol.*
1017 2021;89(5):952-966. doi:10.1002/ana.26043

1018 98. Grabowska-Pyrzewicz W, Want A, Leszek J, Wojda U. Antisense oligonucleotides for
1019 Alzheimer's disease therapy: from the mRNA to miRNA paradigm. *eBioMedicine.*
1020 2021;74:103691. doi:10.1016/j.ebiom.2021.103691

1021 99. Pandit R, Leinenga G, Götz J. Repeated ultrasound treatment of tau transgenic mice
1022 clears neuronal tau by autophagy and improves behavioral functions. *Theranostics.*
1023 2019;9(13):3754-3767. doi:10.7150/thno.34388

1024