

Host tracheal and intestinal microbiomes inhibit *Coccidioides* growth *in vitro*

2 Susana Tejeda-Garibay^{1,4}, Lihong Zhao^{3,6}, Nicholas R. Hum⁴, Maria Pimentel², Anh L. Diep¹,
3 Beheshta Amiri⁴, Suzanne S. Sindi^{3,6}, Dina R. Weilhammer⁴, Gabriela G. Loots^{4,5}, Katrina K. Hoyer
4 1,2,4,6*

5 ¹*Quantitative and Systems Biology, Graduate Program, University of California Merced,*
6 *CA, ²Department of Molecular and Cell Biology, School of Natural Sciences, University of California*
7 *Merced, CA, ³Department of Applied Mathematics, University of California, Merced,*
8 *CA, ⁴Biosciences and Biotechnology Division, Lawrence Livermore National Laboratories,*
9 *Livermore CA, ⁵University of California Davis Health, Department of Orthopaedic Surgery,*
10 *Lawrence J. Ellison Musculo-skeletal Research Center, 2700 Stockton Blvd, Sacramento, CA 95817,*
11 *CA, ⁶Health Sciences Research Institute, University of California Merced, Merced, CA*

12

13 Keywords: *Coccidioides*, lung microbiota, antibiotics

14 Corresponding author: khoyer2@ucmerced.edu

15

16

17

18

19

20

21

22

23 **Abstract**

24 Coccidioidomycosis, also known as Valley fever, is a disease caused by the fungal pathogen
25 *Coccidioides*. Unfortunately, patients are often misdiagnosed with bacterial pneumonia leading
26 to inappropriate antibiotic treatment. Soil bacteria *B. subtilis*-like species exhibits antagonistic
27 properties against *Coccidioides* *in vitro*; however, the antagonistic capabilities of host microbiota
28 against *Coccidioides* are unexplored. We sought to examine the potential of the tracheal and
29 intestinal microbiomes to inhibit the growth of *Coccidioides* *in vitro*. We hypothesized that an
30 uninterrupted lawn of microbiota obtained from antibiotic-free mice would inhibit the growth of
31 *Coccidioides* while partial *in vitro* depletion through antibiotic disk diffusion assays would allow
32 a niche for fungal growth. We observed that the microbiota grown on 2xGYE (GYE) and CNA w/
33 5% sheep's blood agar (5%SB-CNA) inhibited the growth of *Coccidioides*, but that grown on
34 chocolate agar does not. Partial depletion of the microbiota through antibiotic disk diffusion
35 revealed that microbiota depletion leads to diminished inhibition and comparable growth of
36 *Coccidioides* growth to controls. To characterize the bacteria grown and narrow down potential
37 candidates contributing to the inhibition of *Coccidioides*, 16s rRNA sequencing of tracheal and
38 intestinal agar cultures and murine lung extracts was performed. The identity of host bacteria
39 that may be responsible for this inhibition was revealed. The results of this study demonstrate
40 the potential of the host microbiota to inhibit the growth of *Coccidioides* *in vitro* and suggest that
41 an altered microbiome through antibiotic treatment could negatively impact effective fungal
42 clearance and allow a niche for fungal growth *in vivo*.

43

44 **Importance**

45 Coccidioidomycosis is caused by a fungal pathogen that invades host lungs, causing respiratory
46 distress. In 2019, 20,003 cases of Valley fever were reported to the CDC. However, this number
47 likely vastly underrepresents the true number of Valley fever cases as many go undetected due
48 to poor testing strategies and lack of diagnostic models. Valley fever is also often misdiagnosed
49 as bacterial pneumonia, resulting in 60-80% of patients being treated with antibiotics prior to
50 accurate diagnosis. Misdiagnosis contributes to a growing problem of antibiotic resistance and
51 antibiotic induced microbiome dysbiosis, and the implications on disease outcome are currently
52 unknown. 5%-10% of symptomatic Valley fever patients develop disseminated and/or chronic
53 disease. Valley fever causes a significant financial burden and reduced quality of life. Little is
54 known regarding what factors contribute to the development of chronic infection and treatments
55 for disease are limited.

56

57 **Introduction**

58 *Coccidioides immitis* and *Coccidioides posadasii* are soil fungi responsible for the disease
59 coccidioidomycosis, also known as Valley fever. *Coccidioides* is endemic to hot, dry regions such
60 as the Southwestern United States, Central America, and South America^{1, 2}. The fungus grows in

61 the soil as mycelia prior to disarticulating into the infectious arthroconidia spores. Upon
62 aerosolization, spores are inhaled into the lungs where they become endosporulating spherules
63 causing respiratory distress. 60% of Valley fever cases remain asymptomatic while 40%
64 experience flu-like symptoms that mostly resolve on their own, and of these, 5-10% of infections
65 result in chronic disease¹. The biological factors contributing to acute or chronic
66 coccidioidomycosis have yet to be fully elucidated. In addition, the disease is often misdiagnosed
67 as bacterial pneumonia, resulting in 60-80% of these misdiagnosed patients being treated with
68 several rounds of antibiotics prior to accurate diagnosis³. This is due to poor testing strategies
69 and contributes to a growing problem not only of antibiotic resistance, but also antibiotic induced
70 microbiome dysbiosis that contributes to several chronic disorders such as inflammatory bowel
71 disease, rheumatoid arthritis, asthma, and type 2 diabetes, to name a few⁴⁻⁷. Antibiotic induced
72 dysbiosis correlates to a prevalence of pathogenic bacteria^{8, 9}. The use of antibiotics significantly
73 shifts the lung microbiota repertoire resulting in less diversity and a higher abundance of resistant
74 bacteria than in untreated lungs¹⁰. Increased susceptibility and colonization with *Salmonella*,
75 *Shigella flexneri*, and *Clostridium difficile* in germ-free mice is associated with antibiotic
76 treatment¹¹⁻¹⁴. It is unknown if this shift in commensals correlates to a reduced ability to clear
77 *Coccidioides* infection in coccidioidomycosis.

78
79 The microbiome utilizes multiple mechanisms of inhibition to protect against invading pathogens.
80 Direct competition for host nutrients can inhibit pathogen colonization.¹⁵ However, to overcome
81 competition, pathogens often use nutrients that are not preferred by resident gut bacteria. Host
82 microbiome may also produce factors to protect their host niche from other bacteria, viruses,
83 and fungi. These indirect mechanisms of protection involve promoting factors that enhance the
84 intestinal epithelial barrier or promote innate and adaptive immunity to inhibit pathogen
85 colonization^{15, 16}. A soil *Bacillus subtilis*-like species displays antifungal activity against
86 *Coccidioides* growth, with a clear zone of inhibition between fungi and bacteria when grown *in*
87 *vitro*¹⁷. Whether host commensal bacteria can also inhibit *Coccidioides* by direct or indirect
88 mechanisms is unknown. Furthermore, it is unknown how antibiotic treatment resulting from
89 misdiagnosis further affects the interrelationship between the host lung microbiome and the
90 invading fungal pathogen.

91
92 The 2007 Human Microbiome Project did not initially include the lungs as a site of investigation
93 as it was long thought to be sterile¹⁸. Culture-dependent techniques posed a challenge in lung
94 microbiome collection as microbial abundance is low compared to other sites of the body and
95 only 1% of all bacteria are culturable in the laboratory^{18, 19}. 16s rRNA sequencing methods used
96 to identify microbial communities in a healthy lung identified *Firmicutes*, *Bacteroidetes*,
97 *Proteobacteria*, *Fusobacteria*, and *Actinobacteria* as the most prevalent families^{18, 20}. At the
98 operational taxonomic unit level, *Prevotella*, *Veillonella*, and *Streptococcus* are routinely
99 identified as prevalent residents of the lung²⁰. The lung is part of the lower respiratory system
100 along with the trachea and primary bronchi. The upper respiratory tract consists of the nose,

101 mouth, sinuses, pharynx, and larynx. Among healthy individuals, the microbiome of the upper
102 and lower respiratory tracts are indistinguishable²¹. Recent studies of COVID-19 and respiratory
103 syncytial virus (RSV) infections have explored differences between intestinal and respiratory
104 microbiomes due to antibiotic treatment²²⁻²⁵. Until recently, most infection microbiome studies
105 have focused on the influence of intestinal dysbiosis on infection²⁶. It is unknown if the upper
106 and lower respiratory tract or the intestinal microbiome change with infection of *Coccidioides*
107 and influence *Coccidioides* growth. For the purposes of this study, we investigated the impact of
108 cultured tracheal microbiota which we considered to be representative of the lung microbiota,
109 on *Coccidioides* growth *in vitro*.

110

111 **Material and methods**

112 Mice

113 Six- to ten-week-old C57BL/6 male and female mice (JAX #000664, The Jackson Laboratories,
114 Bar Harbor, ME, USA) were purchased or bred for experiments. Mice were housed and bred at
115 the University of California Merced specific-pathogen free animal facility in compliance with the
116 Department of Animal Research Services and approved by the Institutional Animal Care and Use
117 Committee (protocol AUP21-0004). Mice from multiple dams were used for experiments.

118 Agar plates

119 2x glucose yeast extract (GYE) agar plates were made in accordance to the following recipe: 2%
120 w/v glucose (Fisher Scientific), 1% w/v yeast extract (Fisher Scientific), 1.5% bacteriological agar
121 (VWR) in diH₂O. GYE was autoclaved at 121°C for 1hr, poured into 100x15 mm² petri dishes
122 (Fisher Scientific) and stored at 4°C. Columbia colistin and nalidixic acid (CNA) agar with 5%
123 sheep blood (5%SB-CNA) and chocolate agar medium agar plates were purchased from Fisher
124 Scientific.

125 Arthroconidia harvest

126 NR-166 avirulent *Coccidioides posadasii* (Δ cts2 / Δ ard1/ Δ cts3) derived from *C. posadasii* strain
127 C735 was used for all experiments (BEI Resources, Manassas, VA, USA)²⁷. Fungal glycerol stock
128 was inoculated into liquid GYE media and cultured for 3-7 days at 30°C, 150 rpm in a shaking
129 incubator. Liquid culture was streaked onto GYE agar plates and grown for 4-6 weeks to reach
130 confluence and appropriate desiccation. To harvest arthroconidia, fungi were scraped off the
131 plate using cell scrapers into a conical tube in PBS. Collection was vortexed for 1 min prior to
132 filtering through a 40 µm mesh filter to dislodge any arthroconidia withheld in the segmented

133 mycelia encasing. Fungus was vortexed again for 1 min and washed twice with PBS (centrifuged
134 at 12,000xg for 8 mins then 20 mins at room temperature (RT) with the break off. Fungal pellet
135 was resuspended in PBS. Viability was assessed by plating 10-fold serial dilutions and colony
136 counting 3-4 days post-plating. Arthroconidia suspension was stored at 4°C for up to 3 months.
137 Complete protocol can be found in Mead et al.²⁸

138 Tracheal and intestinal microbiota growth

139 The trachea and small intestine were harvested under sterile conditions by opening the chest
140 cavity, cutting the trachea at the top of the bronchiole branching and base of the larynx. The
141 trachea was cut in half, inverted onto a respective agar plate, and spread. 3-4 cm of the small
142 intestine closest to the stomach was harvested, cleaned of fecal material and major mucus
143 contents, cut in half, and spread onto a respective agar plate. Plates were incubated for 48 hrs
144 at 30-37°C. If 80% confluency was reached from direct plating, plates were used for spike in
145 inhibition assays. For the trachea, if ~80% confluency was not obtained from direct plating, then
146 tracheal microbiota was harvested from the plate into 2mL of PBS; serial dilutions were
147 performed and plated for 48 hrs. The serial dilution from each trachea that yielded ~80%
148 confluency were used for spike in inhibition assays.

149 50/50 Inhibition assay

150 Small intestine was harvested as described above and spread across half the GYE plate. Blank
151 and PBS spread plates were used as controls. Simultaneously, 50 arthroconidia were spread
152 across the other half of the GYE plate. Plates were incubated at 30-35°C for 11 days.

153 Spike-in inhibition assay

154 Trachea and small intestine were harvested and spread across the entire agar plate. Blank and
155 PBS spread plates were used as controls. Plates were incubated for 48 hrs at 30-37°C prior to
156 spiking in 50 arthroconidia on the edge of the plate. Plates were incubated for an additional 11
157 days at 30-35°C.

158 Disk diffusion spike in inhibition assay

159 Trachea and small intestine were harvested and spread across GYE agar plates. Blank and PBS
160 spread plates were used as controls. 100 µl of a broad-spectrum antibiotic cocktail (ampicillin,
161 rifampicin, streptomycin, and neomycin; 50 µg/mL each) or PBS control were placed onto a 2

162 cm diameter Whatman paper circle disk and placed in the center of the host microbiota spread
163 for 48 hrs at 30-35°C. After 48 hrs the disk was removed and 50 arthroconidia were spiked onto
164 the center of the plate. Plates were incubated for an additional 11 days at 30-35°C.

165 Inhibition measurements

166 Pictures of agar plates were taken on day 4, 7, and 11 and the area of *Coccidioides* growth was
167 measured using ImageJ software (Wayne Rasband and contributors, Version 1.53k). The scale
168 was set to 8.5 cm for every agar plate prior to tracing the area of *Coccidioides* colony growth.
169 Area was determined based on these measurements and recorded.

170 Whole organ harvest for 16s rRNA sequencing

171 Replicates were included from different dams and equal number of female and male mice were
172 used for 16s rRNA sequencing experiments. Right lung lobes were harvested from male and
173 female mice from several different dams and stored for bacterial extraction at -80°C.

174 Bacterial DNA extraction

175 Tracheal and intestinal growth on agar plates were harvested using 1 mL of PBS via cell
176 scraping, centrifuged for 10 mins at 7500 rpm. Microbial pellet was resuspended in 180 µl of
177 enzymatic lysis buffer (20 mM TrisCl, pH8, 2 mM sodium EDTA, 1.2% TritonX-100, and 20 mg/ml
178 lysozyme added immediately before use). Harvested right lung lobes were cut into small pieces
179 and microbial content of all plated and whole organ samples were isolated using the DNeasy
180 Blood and Tissue Kit (Qiagen) following manufacturer's protocols for extraction of bacterial
181 content. DNA concentration was determined using NanoDrop.

182 16s rRNA sequencing

183 16s rRNA sequencing was utilized to identify the bacterial abundance and composition of
184 microbiota derived from right lung lobes and trachea and small intestine grown on different
185 agar types. DNA extracts of bacterial samples were prepared according to the Illumina 16s
186 Metagenomic Sequencing Library Preparation protocol. The Illumina protocol targeted variable
187 3 (V3) and V4 regions of the 16s ribosomal RNA gene for sequencing. PCR amplification of the
188 target area was performed using the 2X KAPA HiFi Hot Start Ready Mix (070988935001, Roche).
189 Reverse and forward amplicon PCR primers recommended by Illumina were used (16s Amplicon
190 PCR Forward Primer= TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG;

191 16s Amplicon PCR Reverse Primer=

192 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC). After PCR

193 amplification, the V3 and V4 amplicon were purified using AMPure XP beads (A63881, Beckman

194 Coulter). To attach dual indexes and Illumina sequencing adapters, additional PCR amplification

195 was conducted using the Nextera XT Index Kit (15032350, Illumina). The final library was

196 purified once again using AMPure XP beads. Libraries were sequenced using Illumina MiSeq

197 sequencer (Illumina).

198 16S rRNA analysis

199 All analyses were performed using R version 4.1.3 with DADA2 version 1.22.0. Sequence reads

200 were first pre-processed to trim off the primer sequence and truncated at 245 bp length for

201 forward reads and at 179 bp length for reverse reads, to facilitate the technical quality drop at

202 the beginning of the forward reads and at the end of both forward and reverse reads, then

203 processed through DADA2 pipeline to identify amplicon sequence variants (ASVs) with chimeras

204 being removed. These ASVs were classified to the genus level using the Ribosomal Database

205 Project naive Bayesian classifier in combination with the SILVA reference database version

206 138.1 with minBoot=50 (the minimum bootstrap confidence for assigning a taxonomic level).

207

208 Singletons were removed for all downstream analyses. We also removed ASVs with a phylum of

209 NA and ASVs with ambiguous phylum annotation. Low-yield samples were not included in the

210 downstream analysis (10-12 ng/µL or 6 ng/µL for whole organ lung samples). A total of 332

211 ASVs were identified in 25 samples, with 19 plated organ samples, 2 negative control samples

212 (pooled blank 5%SB-CNA, chocolate, and GYE plate samples), 3 whole organ samples, and 1

213 positive control sample (ATCC 10 strain control). The smallest number of reads per sample is

214 24434 (the R lung lobes whole organ sample with ID 32). We further removed two plated

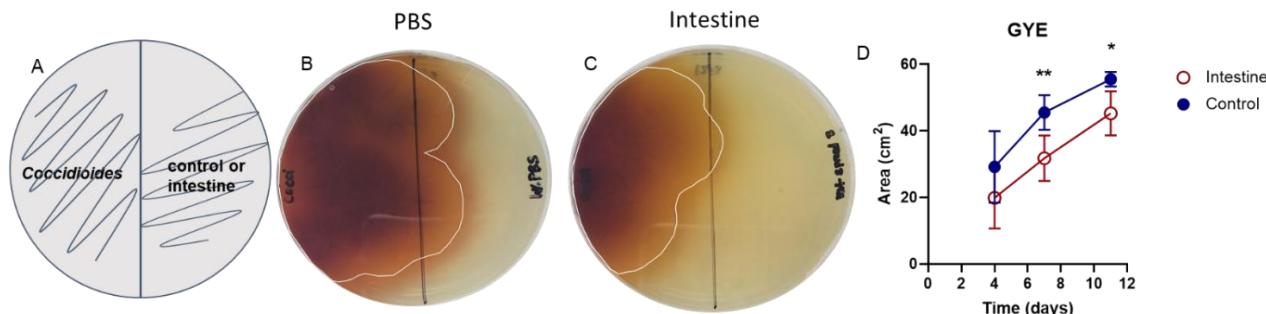
215 trachea samples (IDs 5 and 20) as both their absolute abundance and relative abundance

216 composition were significantly different from other samples in the same group (trachea

217 samples plated on GYE plates for sample ID 5 and trachea samples plated on chocolate plates

218 for sample ID 20). 31 ASVs were identified in those 2 negative control samples, and these ASVs

219 were removed from trachea and intestine plated samples as well as the whole organ right lung
220 lobe samples.

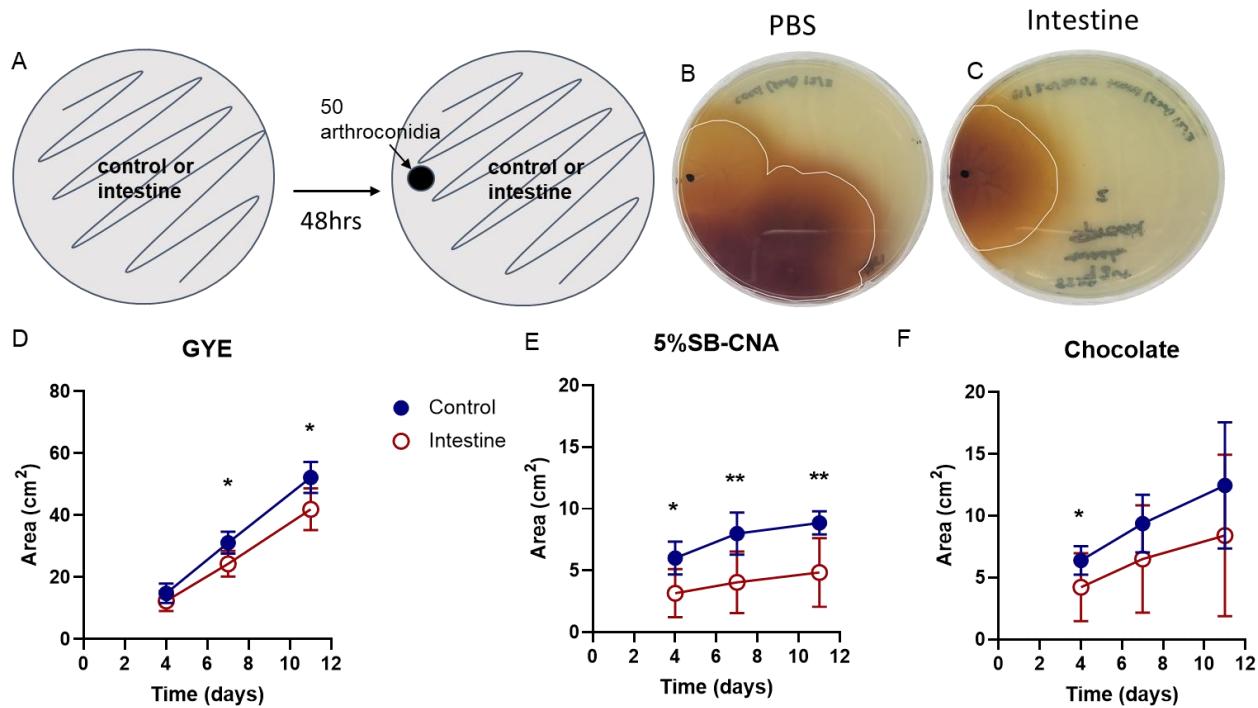

221 **Statistics**

222 Preliminary inhibition experiments were used to perform power calculations in G* Power; T-
223 test, Means: Difference between two independent means (two groups), A priori: compute
224 required sample size, two tails, power= 0.90, $\alpha= 0.05$, to define replicate requirements.

225

226 Two-way ANOVA statistical analysis was performed for the 50/50 inhibition assay, the intestine
227 spike in inhibition assay on 5%SB-CNA and chocolate agar, and the trachea spike in inhibition
228 assays on 5%SB-CNA and GYE agar data with Šídák corrections for multiple comparisons and a
229 95% confidence interval. Mixed effect analysis was performed for intestine spike in inhibition
230 assays on GYE with Šídák corrections for multiple comparisons and a 95% confidence interval.
231 Unpaired parametric t-test with Welch's correction and a 95% confidence interval was
232 performed on Day 7 disk diffusion assay.

233 **Results**

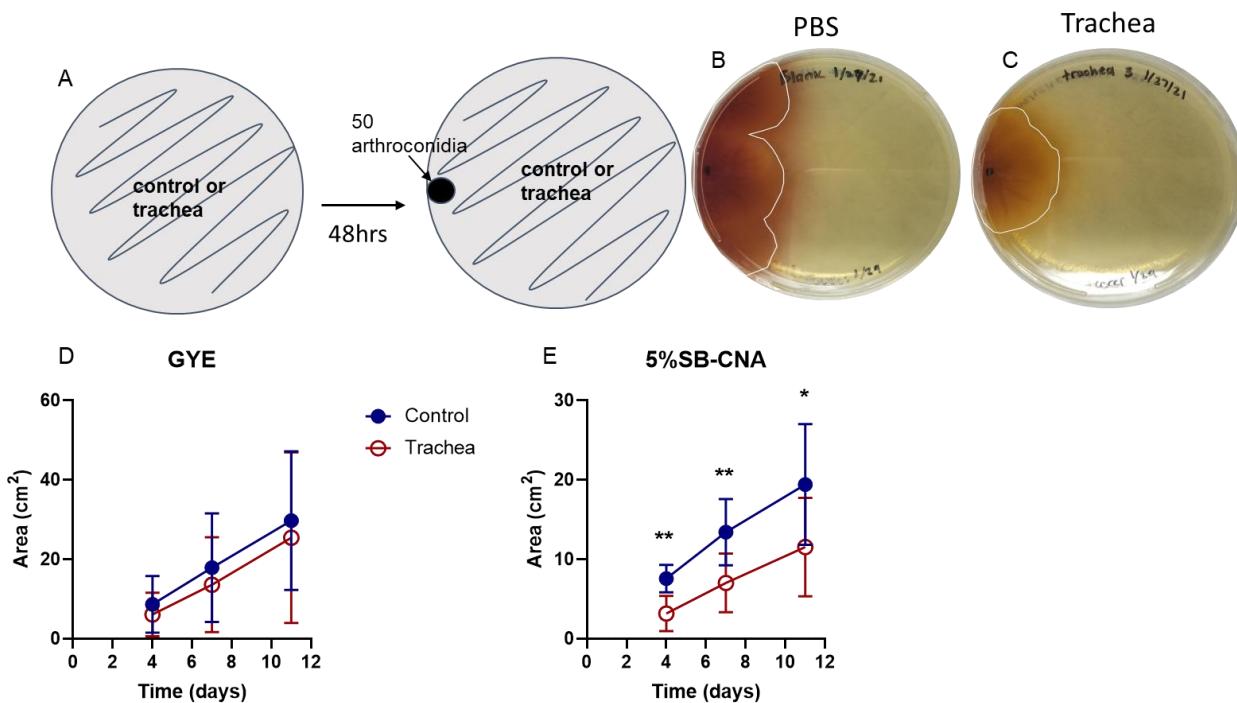


234

Figure 1: Intestinal mouse microbiota inhibits *Coccidioides* growth when in direct competition with *Coccidioides* on GYE agar in vitro. A) Experimental set up: 50 *Coccidioides posadasii* Δ cts2/ Δ ard1/ Δ cts3 arthroconidia were spread on half of a GYE agar plate and intestinal microbiota or PBS/Blank control was spread simultaneously on the other half of the plate. *Coccidioides* growth area was measured at day 4, 7, and 11. B) *Coccidioides* growth against controls (PBS/Blank) or C) in direct competition with intestinal microbiota. D) Area of *Coccidioides* growth at measured time points. Circles represent mean and errors the standard deviation; blue, closed circle=control, red, open circle=intestine; n=5-7. Performed mixed model statistical analysis; *p<0.05, **p<0.005, *** p<0.0005.

235 Bacteria in the soil can exhibit an antagonistic effect on the growth of *Coccidioides* in vitro¹⁷. To
236 determine if host microbiota has the potential to inhibit *Coccidioides* growth, we placed
237 *Coccidioides* and host microbiota in direct competition *in vitro*. We began inhibition assay

238 experiments with small intestine microbiota because the intestine has a dense bacterial
239 population that grows well in vitro. This method allowed us to survey a broad and unbiased
240 range of culturable host microbiota. By plating small intestinal microbiota and *Coccidioides*
241 simultaneously on their respective halves of the agar plate, we provided an equal opportunity
242 for the fungus and microbiota to compete for nutrients and space (Figure 1A-C). *Coccidioides*
243 growth area was measured at days 4, 7, and 11 post-spread on control plates and compared to
244 microbiota experimental plates. Although day 4 was not statistically significant, inhibition of
245 fungal growth was observed by day 4 in the presence of the small intestine microbiota (Figure
246 1D). On day 7 and 11, *Coccidioides* growth area was significantly decreased when *Coccidioides*
247 was placed in direct competition with the small intestine microbiota compared to controls.
248 *Coccidioides* growth area averaged 45.5 cm² on day 7 and 55.5 cm² on day 11 in control plates
249 whereas *Coccidioides* area averaged 31.8 cm² on day 7 and 45.3 cm² on day 11 against intestine
250 microbiota. Thus, the small intestine microbiota has an antagonistic effect, inhibiting
251 *Coccidioides* growth by 31.8%, 30.2%, 18.4% at day 4, day 7, and day 11, respectively.



252

Figure 2: An established intestinal microbiota inhibits *Coccidioides* growth. A) Experimental set up: 50 *Coccidioides* arthroconidia were spiked onto a growing lawn of intestinal microbiota or control plate and the area of *Coccidioides* growth was measured at day 4, 7, and 11. B) *Coccidioides* spiked onto controls. C) *Coccidioides* spiked on a ~80% confluently established lawn of intestinal microbiota. D-F) *Coccidioides* growth area at measured time points. Circles represent mean and errors the standard deviation; blue, closed circle=control, red, open circle=intestine on D) GYE, E) 5%SB-CNA, and F) and chocolate agar plates; n=7-17. Performed mixed model statistical analysis; *p<0.05, ** p<0.005, *** p<0.0005.

253 While the direct inhibition assay served to assess the inhibitory potential of the host
254 microbiota, we next sought to mimic the *in vivo* scenario in which the host microbiota is
255 established prior to a *Coccidioides* infection. To achieve this, we allowed the small intestine
256 microbiota growth to establish over 48 hours prior to spiking in *Coccidioides* to mimic an
257 infection. GYE is the optimal growth media for *Coccidioides* whereas, 5%SB-CNA and chocolate
258 agar media favor different bacterial communities and are used in clinical settings for
259 diagnosis²⁹. Thus, we used these media types to favor the growth of *Coccidioides* or host
260 microbiota, respectively, to observe inhibitory potential in the presence of different nutrient
261 sources. Small intestinal microbiota grown on GYE and 5%SB-CNA agar inhibited the growth of
262 *Coccidioides*, which was depicted visually and numerically by decreased area of fungal growth
263 on small intestinal microbiota plates compared to controls (Figure 2; Table 1). On GYE,
264 *Coccidioides* grew to 31.2 cm² on day 7 and 52.2 cm² on day 11 in the controls as opposed to

265 24.3 cm² on day 7 and 42 cm² on day 11 when spiked onto an established lawn of small
266 intestine microbiota (Figure 2D). On 5%SB-CNA, *Coccidioides* grew to 8 cm² on day 7 and 8.9
267 cm² on day 11 in controls as opposed to 4 cm² on day 7 and 4.8 cm² on day 11 when spiked onto
268 the established lawn of small intestine microbiota (Figure 2E). The small intestine microbiota
269 selected for growth by chocolate agar media did not significantly inhibit fungal growth (Figure
270 2F). As expected, *Coccidioides* did not grow as well on 5%SB-CNA or chocolate agar compared
271 to GYE; however, *Coccidioides* growth continued throughout the experiments.

272

Figure 3: Tracheal mouse microbiota inhibits *Coccidioides* growth in vitro. A) Experimental set up: 50 *Coccidioides* arthroconidia were spiked onto a growing lawn of tracheal microbiota or control plate and the area of *Coccidioides* growth was measured at day 4, 7, and 11; B) *Coccidioides* spiked onto controls (1XPBS or blank); C) *Coccidioides* spiked onto a ~80% confluent and established lawn of tracheal microbiota; D-E) Area of *Coccidioides* growth at measured time points. Circles represent mean and errors the standard deviation; blue, closed circle=control, red, open circle=trachea on GYE D) and 5%SB-CNA E) agar plates; n=7-15. Performed mixed model statistical analysis; *p<0.05, ** p<0.005, *** p<0.0005.

273 Since an established lawn of small intestine microbiota inhibited *Coccidioides* growth, we next
274 assessed the inhibitory potential of host microbiota cultured from a more relevant organ for
275 *Coccidioides* infection. Although the lung is the primary site of *Coccidioides* infection, lung
276 microbiota is notoriously difficult to culture^{30,31}. Thus, we used the trachea as it is a part of the
277 lower respiratory system and is indistinguishable from the upper respiratory system in healthy

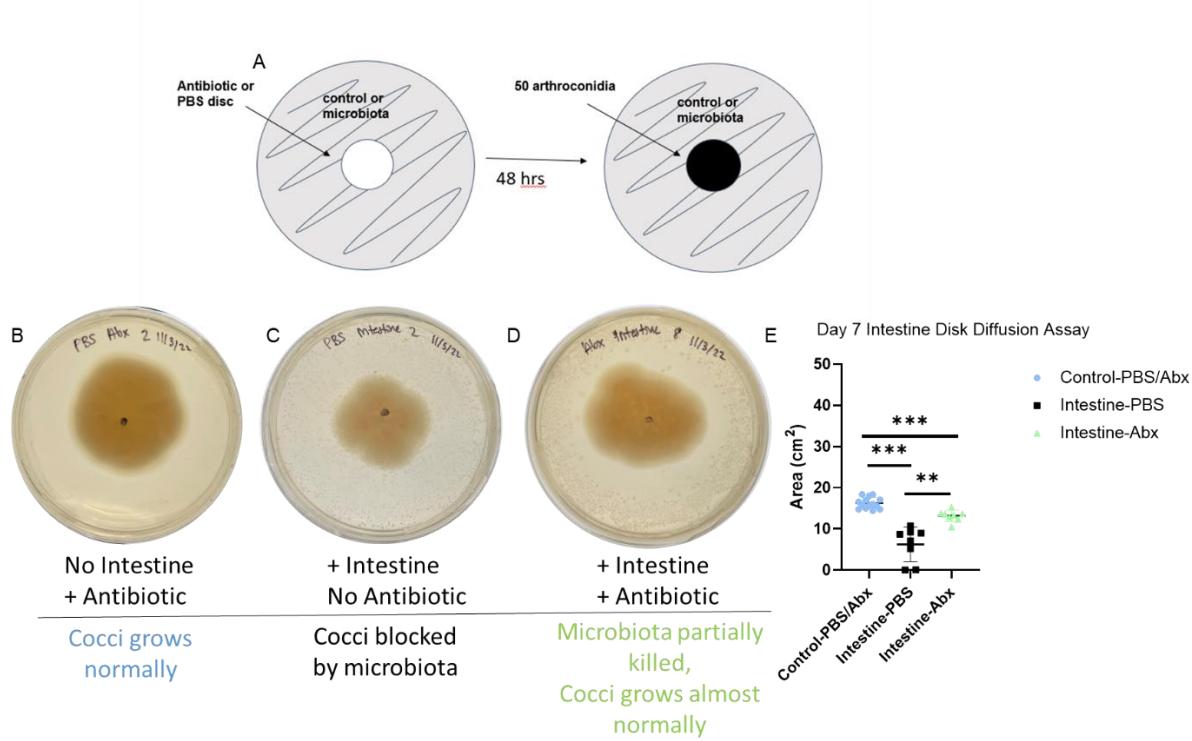
278 individuals²¹. Tracheal microbiota can also be cultured directly by trachea spread onto agar
279 plates. GYE or 5%SB-CNA agar plates were used to favor *Coccidioides* or host microbiota,
280 respectively. Tracheal microbiota did not grow to confluence on chocolate agar plates; thus
281 these plates were not used. Tracheal microbiota cultured on 5%SB-CNA agar media displayed
282 inhibitory potential on *Coccidioides* growth (Figure 3, Table 2). This inhibition was depicted
283 visually and numerically by the decreased fungal growth area on plates with tracheal
284 microbiota compared to controls. On GYE, *Coccidioides* growth showed differences in several
285 individual experiments (Figure 3B,C), but was not statistically significant when the data was
286 pooled (Figure 3D) perhaps due to inconsistent growth or low density of the inhibitory species.
287 On 5%SB-CNA, *Coccidioides* grew to 7.7 cm² on day 4 and 14 cm² on day 7 in the controls as
288 opposed to 3 cm² on day 4 and 7.4 cm² on day 7 when spiked onto an established lawn of
289 tracheal microbiota (Figure 3E, Table 2). Thus, *Coccidioides* growth was inhibited to some
290 extent by tracheal microbiota grown on both types of media.

291

292 **Table 1: Intestinal spike in % inhibition**

	Day 4				Day 7				Day 11			
	Control (cm ²)	Experimental (cm ²)	%Inhibition	p-value	Control (cm ²)	Experimental (cm ²)	%Inhibition	p-value	Control (cm ²)	Experimental (cm ²)	%Inhibition	p-value
GYE	14.84	12.38	16.6%	0.3888	31.18	24.3	21.9%	0.0103	52.2	42.0	19.6%	0.0387
5%SB- CNA	6.0	3.2	47.5%	0.00114	8.0	4.0	49.5%	0.0065	8.9	4.8	45.4%	0.0066
Chocolate	6.4	4.2	34.1%	0.0217	9.37	6.5	30.6%	0.0810	12.5	8.5	32%	0.1759

293


294 **Table 2: Tracheal spike in % inhibition**

	Day 4				Day 7				Day 11			
	Control (cm ²)	Experimental (cm ²)	%Inhibition	p-value	Control (cm ²)	Experimental (cm ²)	%Inhibition	p-value	Control (cm ²)	Experimental (cm ²)	%Inhibition	p-value
GYE	8.0	6.1	24.1%	0.7734	17.9	13.6	24.1%	0.8540	29.7	25.4	14.5%	0.9539
5%SB- CNA	7.7	3.0	61.3%	0.0012	14.0	7.4	47.2%	0.0051	20.1	12.0	40.3%	0.0472

295

296

297

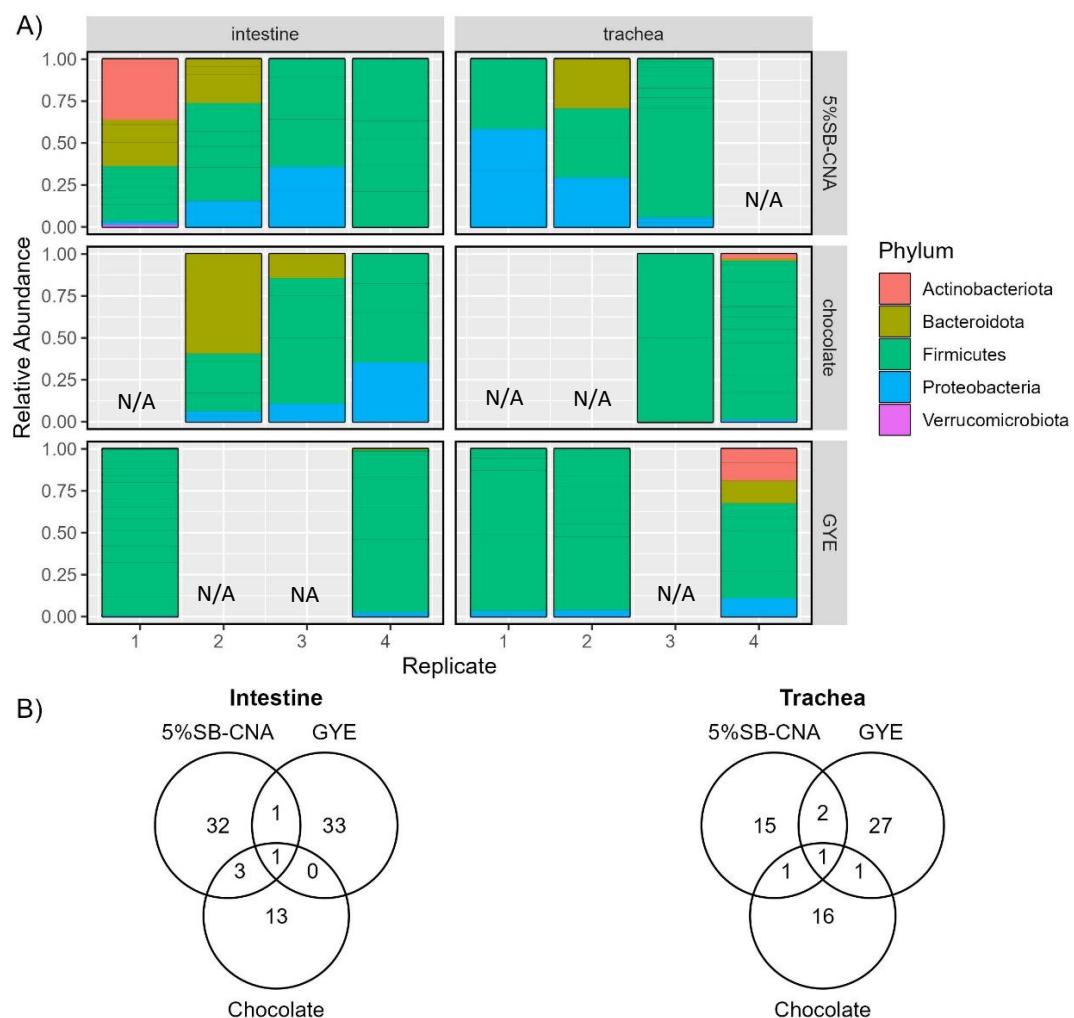
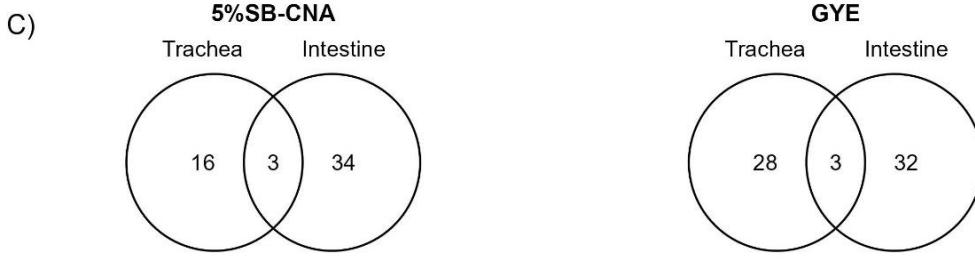

298

Figure 4: Antibiotic depletion of intestinal microbiota by antibiotic disk diffusion allows a niche for *Coccidioides* colonization and growth in vitro. A) Experimental set up: microbiota or control were spread, and an antibiotic or PBS control disk was placed in the center of the plate for 48 hrs. Disks were removed at 48 hrs and *Coccidioides* was spiked onto a growing microbiota lawn or control. *Coccidioides* growth area was measured at day 4,7, and 11; B) Representative pictures of *Coccidioides* spiked onto controls; or C) onto a growing microbiota lawn treated with PBS disk; or D) onto a growing microbiota lawn treated with an antibiotic cocktail (ampicillin, rifampicin, streptomycin, and neomycin; 50ug/mL each) disk; E) Area of *Coccidioides* growth at day 7. Errors present the standard deviation; blue, circles=control, black, squares= intestine spread with PBS disk, green, triangle=intestine spread with antibiotic disk) on GYE agar. n= 6-11. Performed mixed model statistical analysis; *p<0.05, **p<0.005, ***p<0.0005.


299 The Kirby-Bauer disk diffusion susceptibility test is typically used to determine the susceptibility
300 of bacteria to an antimicrobial compound. Susceptibility is measured by the presence or
301 absence of microbial growth around the disks. We used the disk diffusion assay to clear a zone
302 of plated intestinal microbial growth using a cocktail of broad-spectrum antibiotics (ampicillin,
303 rifampicin, streptomycin, and neomycin; 50ug/mL each), mimicking antibiotic treatment *in vivo*.
304 PBS disks did not disrupt the surrounding bacterial growth and were used as a control. Fungal
305 growth was not disrupted on control plates treated with disks soaked in PBS or antibiotics
306 (Figure 4B). The area of growth between the two controls were not statistically significant, thus
307 these data were pooled. When comparing *Coccidioides* growth on PBS versus antibiotic-treated

308 host microbiota plates, we observe that the area of growth was larger on antibiotic disk-treated
309 plates than on plates treated with a PBS disk (Figure 4C, D). Day 7 growth had the most
310 pronounced differences with the area of *Coccidioides* growth being 6.25 cm² on the host
311 microbiota with the PBS disk versus 13.19 cm² on the host microbiota with the antibiotic disks
312 (Figure 4E). Thus, the elimination of the intestinal microbiota with the use of the antibiotic
313 cocktail created a niche for *Coccidioides* growth. *Coccidioides* growth was inhibited when the
314 microbiota was present, further confirming the potential of the microbiota to have an inhibitory
315 effect on *Coccidioides*.

316

317

318

Figure 5: Bacterial composition and the relationships among tracheal and intestinal agar plates. A) Relative abundance of ASVs at the phylum-level in plated organ samples by plate type (row) and organ (column). B) Venn diagram depicting the number of shared and unique ASVs among three plates (5%SB-CNA, GYE, and chocolate) for the plated intestine samples (left) and trachea plated samples (right), respectively. C) Venn diagram showing the number of shared and unique ASVs between trachea and intestine for the samples plated on GYE plates (left) and 5%SB-CNA plates (right), respectively. Note: N/A= missing replicates removed due to low/poor DNA.

324

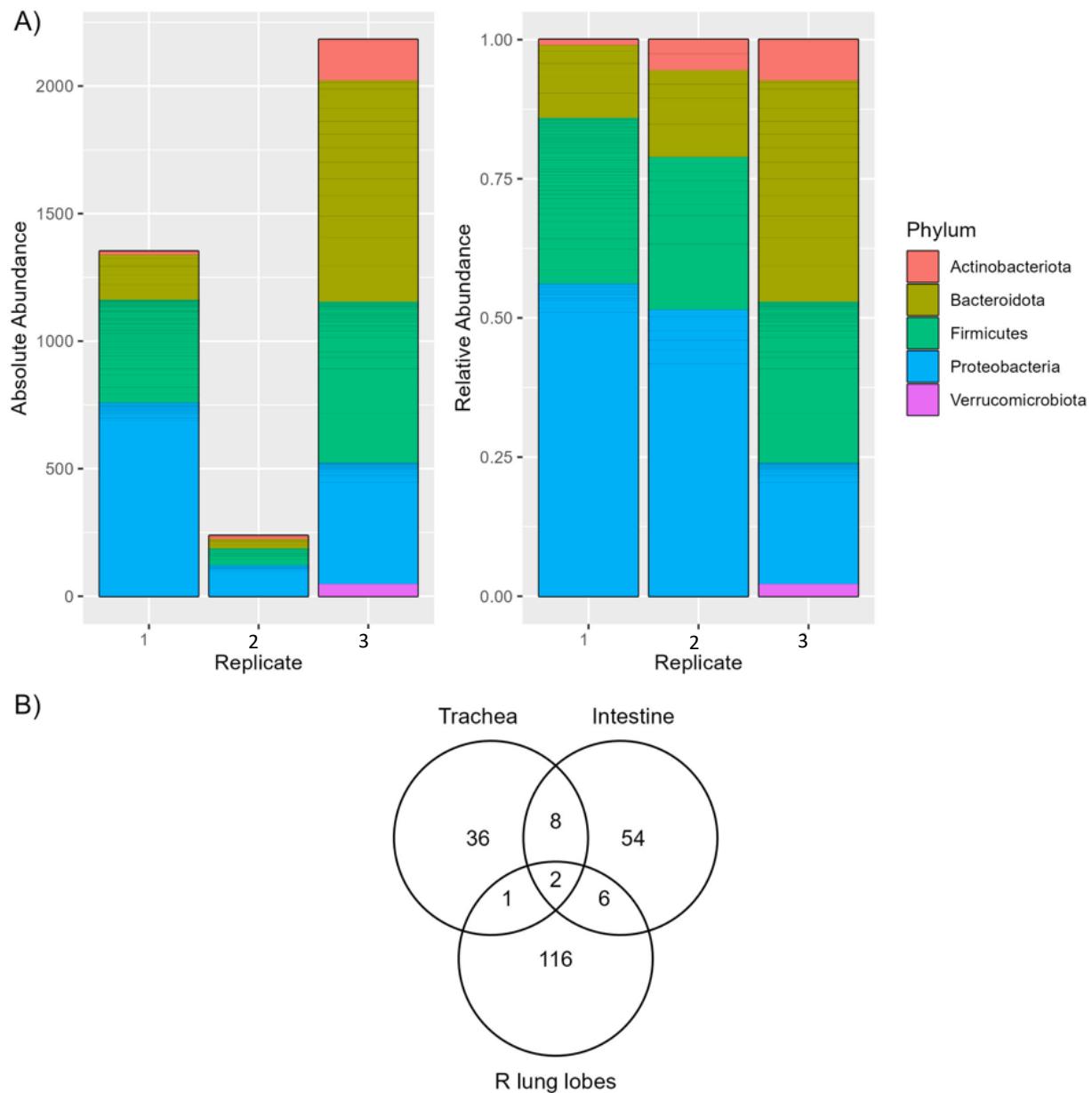

Organ	Plate	Phylum	Family	Genus
Intestine	$B \cap G \cap C^c$	Firmicutes	<i>Lactobacillaceae</i>	NA
Trachea	$B \cap G \cap C^c$	Firmicutes	<i>Staphylococcaceae</i>	<i>Staphylococcus</i>
		Firmicutes	<i>Staphylococcaceae</i>	<i>Staphylococcus</i>

Table 3: ASVs identified in the intestine or trachea samples when grown on 5%SB-CNA and GYE plates but not on chocolate agar. Note: B=5%SB-CNA, G= GYE, C= chocolate, c= excluding, \cap =shared, NA= could not be identified

Plate	Phylum	Family	Genus
GYE	Firmicutes	<i>Lactobacillaceae</i>	<i>Lactobacillus</i>
	Firmicutes	<i>Lactobacillaceae</i>	<i>Lactobacillus</i>
	Firmicutes	<i>Lactobacillaceae</i>	<i>Lactobacillus</i>
5%SB-CNA	Proteobacteria	<i>Mitochondria</i>	NA
	Firmicutes	<i>Lactobacillaceae</i>	NA
	Firmicutes	<i>Staphylococcaceae</i>	<i>Staphylococcus</i>

Table 4: Information of ASVs present in both the trachea and intestine samples plated on GYE and 5%SB-CNA plates, respectively. Note: NA= could not be identified

330 To identify the bacteria responsible for inhibition of *Coccidioides*, 16s rRNA sequencing of
331 tracheal and intestinal growth on GYE, 5%SB-CNA, and chocolate plates was performed. The
332 absolute abundance of ASVs at the phylum level varied between replicates of each organ on
333 each agar type (Supplemental Figure 1). However, relative abundance ratios of ASVs at the
334 phylum level were fairly consistent among organ and agar type (Figure 5A). At the phylum level,
335 the plated tracheal and intestinal growths were both primarily dominated by Firmicutes on all
336 agar types and secondarily by Bacteroidota on 5%SB-CNA and chocolate agars (Figure 5A). On
337 GYE, Proteobacteria was found on all trachea and intestinal replicates (Figure 5A). At the family
338 level, plated tracheal growths were primarily dominated by *Staphylococcaceae* on all agar
339 types, while plated intestinal growths were primarily dominated by *Lactobacillaceae* on GYE
340 agar and *Staphylococcaceae* on chocolate agar (Supplemental Figure 2). 5%SB-CNA plates were
341 dominated by different families among replicates (Supplemental Figure 2). Although the
342 trachea and intestine are rather distinct in their environmental conditions and composition,
343 bacterial composition was similar at the phylum level. This similarity diminished at the lower
344 taxonomic levels, highlighting unique ASVs among the three agar plates (Figure 5B), although
345 common ASVs did remain at the genus level. Bacteria from the *Staphylococcus* genus were
346 shared between tracheal growths on GYE and 5%SB-CNA agar types that culture bacteria with
347 inhibitory potential against *Coccidioides* in spike-in assays (Figure 5B, Table 3). One ASV from
348 the family *Lactobacillaceae* was uniquely shared by the two agar types of interest, 5%SB-CNA
349 and GYE (Figure 5B, Table 3). Since both the plated tracheal and intestinal growth showed
350 inhibitory potential, we next sought to identify shared ASVs between the trachea and intestine
351 samples plated on GYE plates and 5%SB-CNA plates, respectively (Figure 5C). Tracheal and
352 intestinal growths on GYE shared 3 ASVs, as did growths on 5%SB-CNA (Figure 5C). On GYE
353 plates, all three ASVs were of the *Lactobacillus* genus, while the 5%SB-CNA plates included ASVs
354 from *Mitochondria*, *Lactobacillaceae*, and *Staphylococcaceae* families (Table 4). Comparing
355 bacterial growth on agar types with inhibition of *Coccidioides* allowed further characterization
356 of bacteria with inhibitory potential for future study.

357

358

Figure 6: Bacterial composition of the right lung lobe. A) Phylum-level comparison of ASV absolute abundance (left) and relative abundance (right) in whole organ right lung lobe samples. B) Venn diagram showing the number of shared and unique ASVs between trachea and intestine for the samples on GYE and 5%SB-CNA plates and the whole right lung lobes. Note: R= right

362

363

364

365

Organ	Phylum	Family	Genus	NOTE
$T \cap I \cap L$	Bacteroidota	<i>Muribaculaceae</i>	NA	*
	Actinobacteriota	<i>Bifidobacteriaceae</i>	<i>Bifidobacterium</i>	*
$T \cap I^C \cap L$	Proteobacteria	<i>Alcaligenaceae</i>	<i>Achromobacter</i>	
$T \cap I \cap L^C$	Firmicutes	<i>Lactobacillaceae</i>	<i>Lactobacillus</i>	
	Firmicutes	<i>Lactobacillaceae</i>	<i>Lactobacillus</i>	
	Proteobacteria	<i>Mitochondria</i>	NA	
	Firmicutes	<i>Lactobacillaceae</i>	NA	
	Firmicutes	<i>Staphylococcaceae</i>	<i>Staphylococcus</i>	
	Firmicutes	<i>Lactobacillaceae</i>	<i>Lactobacillus</i>	
	Firmicutes	<i>Lactobacillaceae</i>	NA	*
	Firmicutes	<i>Lactobacillaceae</i>	NA	*

Table 5: Information of ASVs present in the trachea and intestine samples, plated on 5%SB-CNA and GYE plates, and whole organ right lung lobe samples. Note that there are four ASVs shared between intestine samples plated on 5%SB-CNA plates and trachea samples plated on GYE plates that are distinct from the ASVs shown in Table 4, they are denoted with * in this table. Note: T=trachea, I= intestine, L=lung, c= excluding, \cap =shared, NA= could not be identified

366 As the lung microbiota is refractory to *in vitro* culture, mouse lung extracts were sequenced and
 367 compared to cultured intestine and trachea for overlapping bacterial identification. The lung
 368 microbiota was nearly evenly dominated by Proteobacteria, Firmicutes, and Bacteroidota in
 369 order of relative abundance at the phylum level (Figure 6A). Multiple ASVs were shared among
 370 the plated organs and right lung extracts. The trachea, lung, and intestine shared 2 ASVs,
 371 *Muribaculaceae* and *Bifidobacteriaceae* at the family level (Figure 6B). The trachea and lung
 372 shared *Achromobacter* at the genus level which is not present in the intestine. Lastly, the
 373 trachea and intestine predominantly shared bacteria in the *Lactobacillaceae* family which were
 374 not present in the lung (Figure 6B).

375

376 Discussion

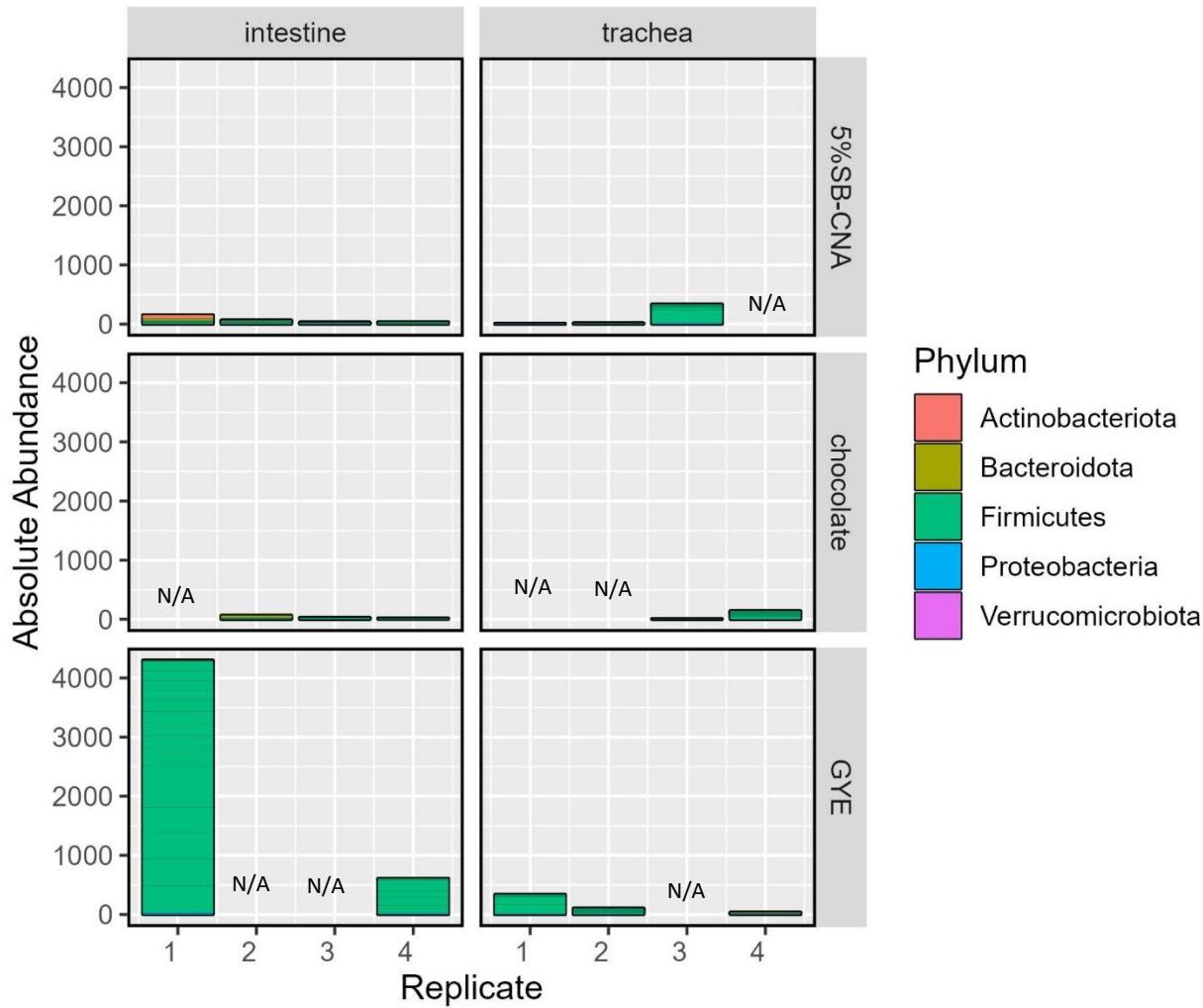
377 The presence of host microbiota derived from either the intestine or trachea inhibits the
 378 growth of *Coccidioides* *in vitro*. The intestinal microbiota inhibits *Coccidioides* growth both

379 when they are placed in direct competition and when the host microbiota is allowed to
380 establish first. Thus, regardless of whether culture conditions provide an equal opportunity for
381 the host microbiota and *Coccidioides* to compete or mimic an in vivo scenario in which we allow
382 the microbiota to establish prior to infecting with *Coccidioides*, *Coccidioides* growth is inhibited.
383 The tracheal microbiome is less dense in bacterial composition than the small intestine, thus
384 not all plates spread with tracheal microbiota reached confluence. Therefore, only spike in
385 inhibition assays were performed and only tracheal growths that reached ~80% confluence
386 were utilized. In these assays, tracheal microbiota also inhibited *Coccidioides* growth. There
387 were differences observed in the level of inhibition based on the type of agar used. Microbiota
388 cultured on 5%SB-CNA agar displayed inhibitory effects, whereas microbiota cultured on
389 chocolate agar did not. The differences demonstrate that it is not simply the presence of
390 microbiota that is responsible for inhibition, but rather the different type of microbes selected
391 for by nutrients in the media type. 5%SB-CNA agar primarily selects for Gram positive bacteria,
392 whereas chocolate agar primarily selects Gram negative bacteria but is relatively nonselective.
393 *B. subtilis*- like species, a Gram positive bacteria species prevalent in the soil, displayed
394 antifungal activity against *Coccidioides* in vitro.¹⁷ The bacteria identified in 5%SB-CNA agar
395 should be considered for antifungal activity.

396
397 Due to misdiagnosis, 60-80% of Valley fever patients are treated with antibiotics³. To determine
398 how perturbing an established microbiome would affect the inhibitory potential of the
399 microbiota on *Coccidioides*, we depleted the microbiota with an antibiotic cocktail in vitro.
400 Depletion of host microbiota through an antibiotic disk allowed a niche for *Coccidioides* growth.
401 Although these are not in vivo studies, the *in vitro* data presented demonstrates the potential
402 consequences of improper antibiotic treatment from misdiagnosing Valley fever patients with
403 bacterial pneumonia and improper antibiotic treatment. Antibiotics may change the course of
404 infection by altering the host microbiota and immune response^{32, 33}. Antibiotic treatment can
405 cause proximal changes in the microbial composition of the intestine that can lead to distal
406 immunological changes in response to pulmonary infections. Antibiotics can also cause distal

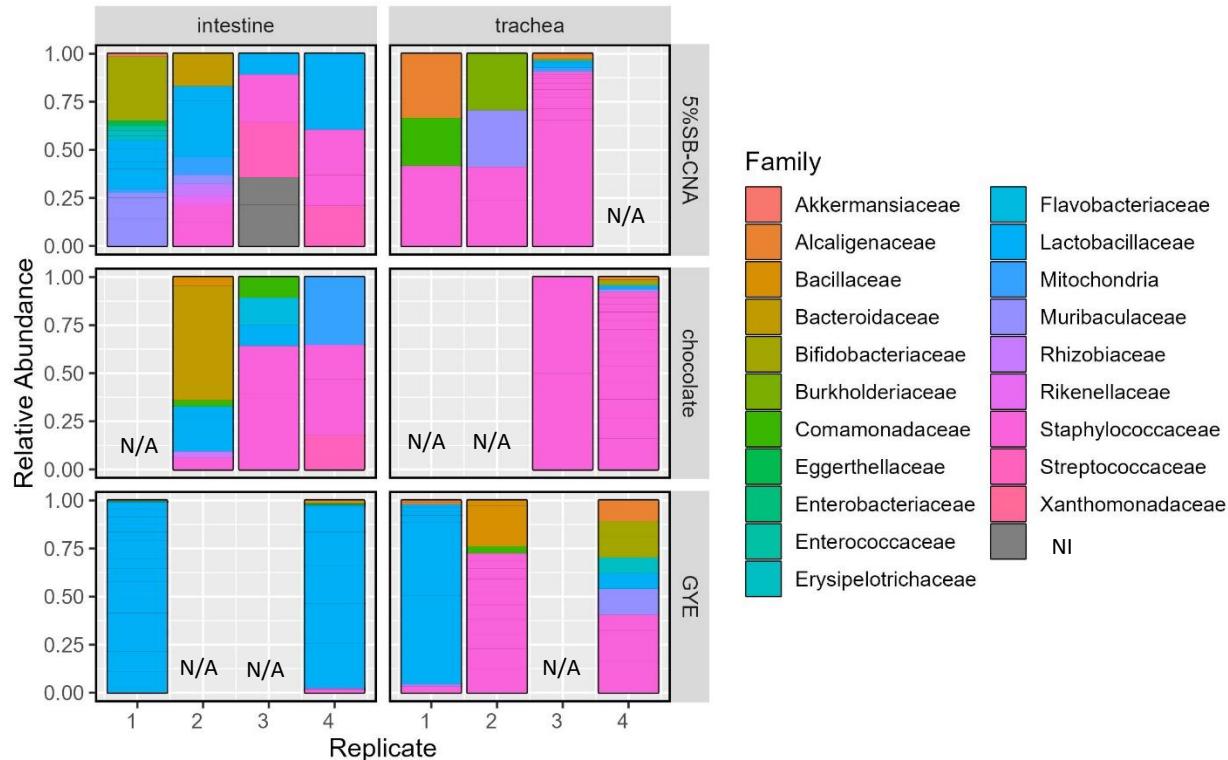
407 changes in the microbial composition of the lung. The *in vitro* data presented here demonstrate
408 a direct influence of respiratory tract microbiota on *Coccidioides* growth.

409
410 Although the lungs are the primary site of *Coccidioides* infection, the trachea is also part of the
411 lower respiratory system, and the intestine has proven to have influence on the respiratory
412 infections through the gut-lung axis^{23, 34, 35}. Thus, we sequenced bacterial growth from the
413 trachea and intestine on the three agar types to identify levels of taxonomic order unique to
414 the agar types that enabled growth of bacteria with inhibitory activity in our spike in assays.
415 Cross comparison of the bacteria identified on each agar type and from each organ revealed
416 shared ASVs among 5%SB-CNA and GYE agars, as well as those shared between the trachea and
417 intestine samples plated on GYE and 5%SB-CNA. This allowed us to narrow down the candidates
418 with potential inhibitory potential for future studies. To bring relevance to the pathogenesis of
419 pulmonary *Coccidioides*, the right lung lobes of mice were sequenced for bacterial
420 identification. As opposed to the plated cultures of tracheal and intestinal data, the lung data is
421 from non-cultured whole lobe extracts due to the lung microbiota being notoriously difficult to
422 culture^{30, 31}. To avoid extensive manipulation of the resident microbiota, the whole lung was
423 processed for extraction without culturing. We identified *Muribaculaceae* and
424 *Bifidobacteriaceae* to be shared among all three organs and *Alcaligenaceae* to be shared
425 between the trachea and right lung lobes (upper respiratory system) for future evaluation.


426
427 *Lactobacillus* and *Staphylococcus* were the predominant genus found in our plated sequencing
428 data, likely because of abundance and ease of culturing these microorganisms. Previous work
429 has demonstrated that the oropharyngeal, lung, and gut microbiota of healthy mice are
430 dominated by *Lactobacillus* species³⁶. However, it is possible that microorganisms that are
431 challenging to culture have inhibitory potential on *Coccidioides* growth exist within the host
432 microbiota but are difficult or virtually impossible to culture *in vitro*. Although this is a limitation
433 of our study, *Lactobacillus* species have shown antifungal effects *in vitro* and been used as
434 probiotics in viral and bacterial respiratory infection studies and improved infection
435 outcomes³⁷⁻⁴⁵. Cell-free supernatants of *Lactobacillus plantarum* UM55 and *Lactobacillus*

436 *buchneri* UTAD104 were tested against the fungal contaminant *Penicillium nordicum* and a
437 reduction of radial growth and production of ochratoxin A were observed⁴⁶. Acetic acid, indole
438 lactic acid, and phenyllactic acid were the most effective in inhibiting *P. nordicum* growth and
439 ochratoxin A⁴⁶. *In vivo*, antibiotic induced dysbiosis during upper respiratory tract infection with
440 influenza A virus is restored by *Lactobacillus casei* 431 and *Lactobacillus fermentum* PCC³⁸.
441 *Lactobacillus* strains restored the imbalance in the upper respiratory tract microbiome and re-
442 upregulated pro-inflammatory cytokines³⁸. Mice treated with heat-killed *Lactobacillus gasseri*
443 TMC0356 were protected against influenza virus infection through stimulating protective
444 immune responses³⁹. Few *Staphylococcus* species have been used as probiotics for therapeutic
445 treatment as most are opportunistic pathogens that cause disease. *Staphylococcus aureus*
446 colonizes the nose and *Staphylococcus saprophyticus* colonizes the urinary tract. However,
447 *Staphylococcus epidermidis* (*S. epidermidis*) has shown probiotic potential in multiple human
448 and animal model studies. *S. epidermidis* has ameliorated infection by *Staphylococcus aureus*,
449 *Moraxella catarrhalis*, Group A *Streptococcus*, influenza virus A, *Streptococcus pneumoniae*, and
450 *Klebsiella pneumoniae*⁴⁷⁻⁵². Treating mice with *S. epidermidis* NRS122 and streptomycin reduced
451 colonization by *Staphylococcus aureus* BD02-31 compared to mice that received streptomycin
452 alone⁴⁸. In a mouse model of Influenza A, intranasally pre-colonizing with *S. epidermidis* limited
453 the spread of influenza virus A to the lungs by modulating IFN- γ dependent innate immune
454 mechanisms⁵². Yayurea A and B, small compounds isolated from *Staphylococcus delphini*, are
455 expressed in a *Staphylococcus* species group⁵³. These compounds have inhibitory potential
456 against Gram negative bacteria⁵³. Additionally, bacteriocins proteins produced by *S. epidermidis*
457 inhibited *Micrococcus luteus*, *Corynebacterium pseudodiphtheriticum*, *Dolosigranulum pigrum*,
458 and *Moraxella catarrhalis*, bacterial species frequently found in human nasal microbiomes⁵⁴. *S.*
459 *epidermidis* bacteriocins might also be used against pathogenic bacteria. In addition to *S.*
460 *epidermidis*, *Staphylococcus xylosus* VITURAJ10 also suppressed the growth of pathogenic
461 strains of *Escherichia coli*, *Salmonella enterica*, and *Staphylococcus aureus*⁵⁵. *Staphylococcus*
462 *succinus* AAS2 also displayed antagonistic traits against *Staphylococcus aureus*⁵⁶. These studies
463 with other respiratory infections are evidence for the potential of *Staphylococcus* species to be
464 used as probiotic treatment to improve infection outcomes.

465
466 Sequencing data from the lung as well as tracheal and intestinal plates revealed that
467 *Bifidobacterium* was shared among the three organs (Table 5). Randomized, controlled human
468 clinical trials and mouse models have proven the efficacy of using *Bifidobacterium* as a probiotic
469 during respiratory tract infections, *Klebsiella pneumoniae*, influenza, and rhinovirus infection⁵⁷⁻
470 ⁶³. Oral treatment with commensal probiotic *B. longum* 5(1A) protected mice against *Klebsiella*
471 *pneumoniae* pulmonary infection by activating Toll-like receptor signaling pathways that alter
472 inflammatory immune responses⁵⁸. A randomized controlled study also revealed that *B.*
473 *animalis* subspecies *lactis* BI-04 affects the baseline of innate immunity in the nose⁶⁰.
474 Administering a single probiotic has resulted in amelioration of many pulmonary infections;
475 however, probiotic cocktails have also proven to be effective. Administering *Lactobacillus*
476 *rhamnosus* GG in combination with *B. longum* resulted in improved lung injury following
477 experimental infection⁶⁴. Thus, the bacteria with inhibitory potential against *Coccidioides* could
478 be evaluated as probiotics alone or in combination for therapeutic treatment of
479 coccidioidomycosis. This could provide a supplemental or alternative therapeutic to the existing
480 antifungal therapies; however, further assessment would be necessary prior to
481 implementation.
482
483 Among healthy individuals, the upper and lower respiratory tract appear indistinguishable²¹.
484 However, the microbiota differs between the upper and lower respiratory tract and even within
485 the lung among individuals with asthma, COPD, and cystic fibrosis^{19, 65-67}. Recent studies on
486 humans, macaque and mice revealed that viral and bacterial infections cause shifts in the
487 landscape of lung microbiota^{24, 68-71}. It is unknown whether *Coccidioides* infection causes
488 microbiome shifts, nor how infection plus antibiotic treatment alters the lung microbiome. Our
489 data suggests that an altered microbiome through antibiotic treatment may allow a niche for
490 fungal growth. This is an area of study that requires further investigation in order to advise
491 clinicians on the risks associated with antibiotic treatment during *Coccidioides* infection. Such
492 findings could revolutionize the way infectious diseases are treated by leveraging microbiome
493 interactions and probiotic therapeutics. Existing antifungal therapies for chronic and severe


494 *Coccidioides* have unpleasant and severe side effects; exploring alternative treatments could
495 improve patient outcomes and contribute significantly to our understanding of host-*Coccidioides*
496 interactions.

497

498

Supplemental Figure 1: Phylum-level comparison of ASV absolute abundance in plated organ samples by plate type (row) and organ (column). Note: NA= missing replicates removed due to low/poor DNA.

499

Supplemental Figure 2: Family-level comparison of ASV relative abundance in plated organ samples by plate type (row) and organ (column). Note: NI= could not be identified, N/A= missing replicates removed due to low/poor DNA.

500

501 Acknowledgments

502 The authors would like to thank Stem Cell Instrumentation Foundry- Tissue Culture (SCIF-TC) for
503 tissue culture space, Health Sciences Research Institute for grant submission and management
504 support, Hoyer lab members for experimental troubleshooting and conversations, *Coccidioides*
505 *posadasii*, Δ cts2/ Δ ard1/ Δ cts3, NR-166 obtained from BEI resources, NIAID, NIH and Drs.
506 Hernday and Nobile labs for conversations and shared equipment space. Portions of this work
507 were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
508 National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC522-
509 07NA27344.

510 Funding

511 This research was funded by Ruth L. Kirschstein National Research Service Award (NRSA)
512 Individual Predoctoral Fellowship to Promote Diversity in Health-Related Research (Parent F31-

513 Diversity, F31HL160203 to STG), University of California Office of the President awards (MRP-
514 17-454959 and VFR-19-633952), The American Association of Immunologists Intersect
515 Fellowship Program for Computational Scientists and Immunologists fellowship (funded LZ),
516 ASUCM Academic Affairs Fellowships and Undergraduate Research Symposium (FURS) (funded
517 MP), and internal Lawrence National Livermore Directed Research and Development funds (22-
518 ERD-010 to DW and GL)

519 **References**

- 520 1. Williams SL, Chiller T. Update on the Epidemiology, Diagnosis, and Treatment of
521 Coccidioidomycosis. *J Fungi (Basel)*. 2022;8(7). Epub 20220625. doi: 10.3390/jof8070666.
522 PubMed PMID: 35887423; PMCID: PMC9316141.
- 523 2. Johnson L, Gaab EM, Sanchez J, Bui PQ, Nobile CJ, Hoyer KK, Peterson MW, Ojcius DM.
524 Valley fever: danger lurking in a dust cloud. *Microbes Infect*. 2014;16(8):591-600. Epub
525 20140716. doi: 10.1016/j.micinf.2014.06.011. PubMed PMID: 25038397; PMCID: PMC4250047.
- 526 3. Valley Fever (Coccidioidomycosis) Statistics [Internet]2022 [cited 2/28/2023]. Available
527 from: <https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html>.
- 528 4. Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM,
529 D'Amato M, Bonfiglio F, McDonald D, Gonzalez A, McClure EE, Dunklebarger MF, Knight R,
530 Jansson JK. Dynamics of the human gut microbiome in inflammatory bowel disease. *Nat
531 Microbiol*. 2017;2:17004. Epub 20170213. doi: 10.1038/nmicrobiol.2017.4. PubMed PMID:
532 28191884; PMCID: PMC5319707.
- 533 5. Pan H, Guo R, Ju Y, Wang Q, Zhu J, Xie Y, Zheng Y, Li T, Liu Z, Lu L, Li F, Tong B, Xiao L, Xu
534 X, Leung EL, Li R, Yang H, Wang J, Zhou H, Jia H, Liu L. A single bacterium restores the
535 microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis.
536 *Microbiome*. 2019;7(1):107. Epub 20190717. doi: 10.1186/s40168-019-0719-1. PubMed PMID:
537 31315667; PMCID: PMC6637628.
- 538 6. Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H. The airway
539 microbiome in patients with severe asthma: Associations with disease features and severity. *J
540 Allergy Clin Immunol*. 2015;136(4):874-84. Epub 20150726. doi: 10.1016/j.jaci.2015.05.044.
541 PubMed PMID: 26220531; PMCID: PMC4600429.
- 542 7. Pasini E, Corsetti G, Assanelli D, Testa C, Romano C, Dioguardi FS, Aquilani R. Effects of
543 chronic exercise on gut microbiota and intestinal barrier in human with type 2 diabetes.
544 *Minerva Med*. 2019;110(1):3-11. doi: 10.23736/S0026-4806.18.05589-1. PubMed PMID:
545 30667205.
- 546 8. Huang C, Feng S, Huo F, Liu H. Effects of Four Antibiotics on the Diversity of the
547 Intestinal Microbiota. *Microbiol Spectr*. 2022;10(2):e0190421. Epub 20220321. doi:
548 10.1128/spectrum.01904-21. PubMed PMID: 35311555; PMCID: PMC9045271.
- 549 9. Varga JJ, Zhao CY, Davis JD, Hao Y, Farrell JM, Gurney JR, Voit E, Brown SP. Antibiotics
550 Drive Expansion of Rare Pathogens in a Chronic Infection Microbiome Model. *mSphere*.
551 2022;7(5):e0031822. Epub 20220816. doi: 10.1128/msphere.00318-22. PubMed PMID:
552 35972133; PMCID: PMC9599657.

553 10. LeMessurier KS, Iverson AR, Chang TC, Palipane M, Vogel P, Rosch JW, Samarasinghe AE.
554 Allergic inflammation alters the lung microbiome and hinders synergistic co-infection with
555 H1N1 influenza virus and *Streptococcus pneumoniae* in C57BL/6 mice. *Sci Rep.*
556 2019;9(1):19360. Epub 2019/12/20. doi: 10.1038/s41598-019-55712-8. PubMed PMID:
557 31852944; PMCID: PMC6920369.

558 11. Kamada N, Nunez G. Regulation of the immune system by the resident intestinal
559 bacteria. *Gastroenterology.* 2014;146(6):1477-88. doi: 10.1053/j.gastro.2014.01.060. PubMed
560 PMID: 24503128; PMCID: PMC3995843.

561 12. Bohnhoff M, Drake BL, Miller CP. Effect of streptomycin on susceptibility of intestinal
562 tract to experimental *Salmonella* infection. *Proc Soc Exp Biol Med.* 1954;86(1):132-7. doi:
563 10.3181/00379727-86-21030. PubMed PMID: 13177610.

564 13. Hentges DJ, Freter R. In vivo and in vitro antagonism of intestinal bacteria against
565 *Shigella flexneri*. I. Correlation between various tests. *J Infect Dis.* 1962;110:30-7. doi:
566 10.1093/infdis/110.1.30. PubMed PMID: 13906576.

567 14. Lawley TD, Clare S, Walker AW, Goulding D, Stabler RA, Croucher N, Mastroeni P, Scott
568 P, Raisen C, Mottram L, Fairweather NF, Wren BW, Parkhill J, Dougan G. Antibiotic treatment of
569 *Clostridium difficile* carrier mice triggers a supershedder state, spore-mediated transmission,
570 and severe disease in immunocompromised hosts. *Infect Immun.* 2009;77(9):3661-9. doi:
571 10.1128/IAI.00558-09. PubMed PMID: 19564382; PMCID: PMC2737984.

572 15. Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and
573 inflammatory disease. *Nat Rev Immunol.* 2013;13(5):321-35. doi: 10.1038/nri3430. PubMed
574 PMID: 23618829.

575 16. Tejeda-Garibay S, Hoyer KK. Coccidioidomycosis and Host Microbiome Interactions:
576 What We Know and What We Can Infer from Other Respiratory Infections. *J Fungi (Basel).*
577 2023;9(5). Epub 20230518. doi: 10.3390/jof9050586. PubMed PMID: 37233297; PMCID:
578 PMC10219296.

579 17. Lauer A, Baal JD, Mendes SD, Casimiro KN, Passaglia AK, Valenzuela AH, Guibert G.
580 Valley Fever on the Rise-Searching for Microbial Antagonists to the Fungal Pathogen
581 *Coccidioides immitis*. *Microorganisms.* 2019;7(2). doi: 10.3390/microorganisms7020031.
582 PubMed PMID: 30682831; PMCID: PMC6406340.

583 18. Beck JM, Young VB, Huffnagle GB. The microbiome of the lung. *Transl Res.*
584 2012;160(4):258-66. Epub 20120228. doi: 10.1016/j.trsl.2012.02.005. PubMed PMID:
585 22683412; PMCID: PMC3440512.

586 19. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L,
587 Pachter L, Moffatt MF, Cookson WO. Disordered microbial communities in asthmatic airways.
588 *PLoS One.* 2010;5(1):e8578. Epub 20100105. doi: 10.1371/journal.pone.0008578. PubMed
589 PMID: 20052417; PMCID: PMC2798952.

590 20. Moffatt MF, Cookson WO. The lung microbiome in health and disease. *Clin Med (Lond).*
591 2017;17(6):525-9. doi: 10.7861/clinmedicine.17-6-525. PubMed PMID: 29196353; PMCID:
592 PMC6297685.

593 21. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman
594 RG. Topographical continuity of bacterial populations in the healthy human respiratory tract.
595 *Am J Respir Crit Care Med.* 2011;184(8):957-63. Epub 20110616. doi: 10.1164/rccm.201104-
596 0655OC. PubMed PMID: 21680950; PMCID: PMC3208663.

597 22. Zhu W, Wang J, Zhao N, Zheng R, Wang D, Liu W, Liu B. Oral administration of
598 *Clostridium butyricum* rescues streptomycin-exacerbated respiratory syncytial virus-induced
599 lung inflammation in mice. *Virulence*. 2021;12(1):2133-48. doi:
600 10.1080/21505594.2021.1962137. PubMed PMID: 34384038; PMCID: PMC8366546.

601 23. Dessein R, Bauduin M, Grandjean T, Le Guern R, Figeac M, Beury D, Faure K, Faveeuw C,
602 Guery B, Gosset P, Kipnis E. Antibiotic-related gut dysbiosis induces lung immunodepression
603 and worsens lung infection in mice. *Crit Care*. 2020;24(1):611. Epub 20201015. doi:
604 10.1186/s13054-020-03320-8. PubMed PMID: 33076936; PMCID: PMC7574210.

605 24. Merenstein C, Liang G, Whiteside SA, Cobián-Güemes AG, Merlino MS, Taylor LJ,
606 Glascock A, Bittinger K, Tanes C, Graham-Wooten J, Khatib LA, Fitzgerald AS, Reddy S, Baxter AE,
607 Giles JR, Oldridge DA, Meyer NJ, Wherry EJ, McGinniss JE, Bushman FD, Collman RG. Signatures
608 of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome. *mBio*.
609 2021;12(4):e0177721. Epub 20210817. doi: 10.1128/mBio.01777-21. PubMed PMID: 34399607;
610 PMCID: PMC8406335.

611 25. Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, Hussey GA,
612 Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E,
613 Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A,
614 Cadwell K, Schluter J, Team YIR. Gut microbiome dysbiosis in antibiotic-treated COVID-19
615 patients is associated with microbial translocation and bacteremia. *Nat Commun*.
616 2022;13(1):5926. Epub 20221101. doi: 10.1038/s41467-022-33395-6. PubMed PMID:
617 36319618; PMCID: PMC9626559.

618 26. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM.
619 Emerging pathogenic links between microbiota and the gut-lung axis. *Nat Rev Microbiol*.
620 2017;15(1):55-63. Epub 20161003. doi: 10.1038/nrmicro.2016.142. PubMed PMID: 27694885.

621 27. Xue J, Chen X, Selby D, Hung CY, Yu JJ, Cole GT. A genetically engineered live attenuated
622 vaccine of *Coccidioides posadasii* protects BALB/c mice against coccidioidomycosis. *Infect*
623 *Immun*. 2009;77(8):3196-208. Epub 20090601. doi: 10.1128/IAI.00459-09. PubMed PMID:
624 19487479; PMCID: PMC2715678.

625 28. Mead HL, Van Dyke MCC, Barker BM. Proper Care and Feeding of *Coccidioides*: A
626 Laboratorian's Guide to Cultivating the Dimorphic Stages of *C. immitis* and *C. posadasii*. *Curr*
627 *Protoc Microbiol*. 2020;58(1):e113. doi: 10.1002/cpmc.113. PubMed PMID: 32894648.

628 29. Baughman RP, Thorpe JE, Staneck J, Rashkin M, Frame PT. Use of the protected
629 specimen brush in patients with endotracheal or tracheostomy tubes. *Chest*. 1987;91(2):233-6.
630 doi: 10.1378/chest.91.2.233. PubMed PMID: 3802934.

631 30. Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE, Parkins MD,
632 Rabin HR, Surette MG. Culture enriched molecular profiling of the cystic fibrosis airway
633 microbiome. *PLoS One*. 2011;6(7):e22702. Epub 20110728. doi: 10.1371/journal.pone.0022702.
634 PubMed PMID: 21829484; PMCID: PMC3145661.

635 31. Sung JY, Hwang Y, Shin MH, Park MS, Lee SH, Yong D, Lee K. Utility of Conventional
636 Culture and MALDI-TOF MS for Identification of Microbial Communities in Bronchoalveolar
637 Lavage Fluid in Comparison with the GS Junior Next Generation Sequencing System. *Ann Lab*
638 *Med*. 2018;38(2):110-8. doi: 10.3343/alm.2018.38.2.110. PubMed PMID: 29214754; PMCID:
639 PMC5736669.

640 32. Zhu W, Wang J, Zhao N, Zheng R, Wang D, Liu W, Liu B. Oral administration of
641 *Clostridium butyricum* rescues streptomycin-exacerbated respiratory syncytial virus-induced
642 lung inflammation in mice. *Virulence*. 2021;12(1):2133-48. doi:
643 10.1080/21505594.2021.1962137. PubMed PMID: 34384038; PMCID: PMC8366546.

644 33. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota
645 regulates immune defense against respiratory tract influenza A virus infection. *Proc Natl Acad
646 Sci U S A*. 2011;108(13):5354-9. Epub 20110314. doi: 10.1073/pnas.1019378108. PubMed
647 PMID: 21402903; PMCID: PMC3069176.

648 34. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ, de Boer JD,
649 Hoogendijk AJ, de Beer R, de Vos A, Belzer C, de Vos WM, van der Poll T, Wiersinga WJ. The gut
650 microbiota plays a protective role in the host defence against pneumococcal pneumonia. *Gut*.
651 2016;65(4):575-83. Epub 20151028. doi: 10.1136/gutjnl-2015-309728. PubMed PMID:
652 26511795; PMCID: PMC4819612.

653 35. Yang F, Yang Y, Chen L, Zhang Z, Liu L, Zhang C, Mai Q, Chen Y, Chen Z, Lin T, Guo H, Zhou
654 L, Shen H, Chen X, Zhang G, Liao H, Zeng L, Zeng G. The gut microbiota mediates protective
655 immunity against tuberculosis. *Gut Microbes*. 2022;14(1):2029997. doi:
656 10.1080/19490976.2022.2029997. PubMed PMID: 35343370; PMCID: PMC8966992.

657 36. Chen Q, Liu M, Lin Y, Wang K, Li J, Li P, Yang L, Jia L, Zhang B, Guo H, Song H. Topography
658 of respiratory tract and gut microbiota in mice with influenza A virus infection. *Front Microbiol*.
659 2023;14:1129690. Epub 20230222. doi: 10.3389/fmicb.2023.1129690. PubMed PMID:
660 36910185; PMCID: PMC9992211.

661 37. Du T, Lei A, Zhang N, Zhu C. The Beneficial Role of Probiotic *Lactobacillus* in Respiratory
662 Disease. *Front Immunol*. 2022;13:908010. Epub 20220531. doi: 10.3389/fimmu.2022.908010.
663 PubMed PMID: 35711436; PMCID: PMC9194447.

664 38. Gao F, Fang Z, Lu W. Regulation divergences of *Lactobacillus fermentum* PCC and
665 *Lactobacillus paracasei* 431 on penicillin-induced upper respiratory microbial dysbiosis in
666 BALB/c mice. *Food Funct*. 2021;12(23):11913-25. Epub 20211129. doi: 10.1039/d0fo02981e.
667 PubMed PMID: 34739535.

668 39. Kawase M, He F, Kubota A, Yoda K, Miyazawa K, Hiramatsu M. Heat-killed *Lactobacillus*
669 *gasseri* TMC0356 protects mice against influenza virus infection by stimulating gut and
670 respiratory immune responses. *FEMS Immunol Med Microbiol*. 2012;64(2):280-8. Epub
671 20111205. doi: 10.1111/j.1574-695X.2011.00903.x. PubMed PMID: 22098223.

672 40. Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H, Alvarez S, Villena J.
673 Nasally administered *Lactobacillus rhamnosus* strains differentially modulate respiratory
674 antiviral immune responses and induce protection against respiratory syncytial virus infection.
675 *BMC Immunol*. 2013;14:40. Epub 20130815. doi: 10.1186/1471-2172-14-40. PubMed PMID:
676 23947615; PMCID: PMC3751766.

677 41. Haro C, Medina M. CRL 431 improves endothelial and platelet functionality in a
678 pneumococcal infection model. *Benef Microbes*. 2019;10(5):533-41. Epub 20190409. doi:
679 10.3920/BM2018.0099. PubMed PMID: 30964327.

680 42. Gabryszewski SJ, Bachar O, Dyer KD, Percopo CM, Killoran KE, Domachowske JB,
681 Rosenberg HF. *Lactobacillus*-mediated priming of the respiratory mucosa protects against lethal
682 pneumovirus infection. *J Immunol*. 2011;186(2):1151-61. Epub 20101217. doi:
683 10.4049/jimmunol.1001751. PubMed PMID: 21169550; PMCID: PMC3404433.

684 43. Wang Q, Fang Z, Li L, Wang H, Zhu J, Zhang P, Lee YK, Zhao J, Zhang H, Lu W, Chen W.
685 *Lactobacillus mucosae* exerted different antiviral effects on respiratory syncytial virus infection
686 in mice. *Front Microbiol.* 2022;13:1001313. Epub 20220826. doi: 10.3389/fmicb.2022.1001313.
687 PubMed PMID: 36090099; PMCID: PMC9459143.

688 44. Lee YN, Youn HN, Kwon JH, Lee DH, Park JK, Yuk SS, Erdene-Ochir TO, Kim KT, Lee JB,
689 Park SY, Choi IS, Song CS. Sublingual administration of *Lactobacillus rhamnosus* affects
690 respiratory immune responses and facilitates protection against influenza virus infection in
691 mice. *Antiviral Res.* 2013;98(2):284-90. Epub 20130321. doi: 10.1016/j.antiviral.2013.03.013.
692 PubMed PMID: 23523767.

693 45. Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, Yusoff MSB, Wahid N,
694 Abdullah MFIL, Zakaria N, Ong KL, Park YH, Liang MT. *Lactobacillus plantarum* DR7 improved
695 upper respiratory tract infections via enhancing immune and inflammatory parameters: A
696 randomized, double-blind, placebo-controlled study. *J Dairy Sci.* 2019;102(6):4783-97. Epub
697 20190404. doi: 10.3168/jds.2018-16103. PubMed PMID: 30954261.

698 46. Guimarães A, Venancio A, Abrunhosa L. Antifungal effect of organic acids from lactic
699 acid bacteria on *Penicillium nordicum*. *Food Addit Contam Part A Chem Anal Control Expo Risk*
700 *Assess.* 2018;35(9):1803-18. Epub 20180806. doi: 10.1080/19440049.2018.1500718. PubMed
701 PMID: 30016195.

702 47. Liu Q, Meng H, Lv H, Liu Y, Liu J, Wang H, He L, Qin J, Wang Y, Dai Y, Otto M, Li M.
703 *Staphylococcus epidermidis* Contributes to Healthy Maturation of the Nasal Microbiome by
704 Stimulating Antimicrobial Peptide Production. *Cell Host Microbe.* 2020;27(1):68-78.e5. Epub
705 20191219. doi: 10.1016/j.chom.2019.11.003. PubMed PMID: 31866425.

706 48. Park B, Iwase T, Liu GY. Intranasal application of *S. epidermidis* prevents colonization by
707 methicillin-resistant *Staphylococcus aureus* in mice. *PLoS One.* 2011;6(10):e25880. Epub
708 20111005. doi: 10.1371/journal.pone.0025880. PubMed PMID: 21998712; PMCID:
709 PMC3187813.

710 49. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y.
711 *Staphylococcus epidermidis* Esp inhibits *Staphylococcus aureus* biofilm formation and nasal
712 colonization. *Nature.* 2010;465(7296):346-9. doi: 10.1038/nature09074. PubMed PMID:
713 20485435.

714 50. Brown RL, Sequeira RP, Clarke TB. The microbiota protects against respiratory infection
715 via GM-CSF signaling. *Nat Commun.* 2017;8(1):1512. Epub 20171115. doi: 10.1038/s41467-017-
716 01803-x. PubMed PMID: 29142211; PMCID: PMC5688119.

717 51. Chen HW, Liu PF, Liu YT, Kuo S, Zhang XQ, Schooley RT, Rohde H, Gallo RL, Huang CM.
718 Nasal commensal *Staphylococcus epidermidis* counteracts influenza virus. *Sci Rep.*
719 2016;6:27870. Epub 20160616. doi: 10.1038/srep27870. PubMed PMID: 27306590; PMCID:
720 PMC4910069.

721 52. Kim HJ, Jo A, Jeon YJ, An S, Lee KM, Yoon SS, Choi JY. Nasal commensal *Staphylococcus*
722 *epidermidis* enhances interferon-λ-dependent immunity against influenza virus. *Microbiome.*
723 2019;7(1):80. Epub 20190530. doi: 10.1186/s40168-019-0691-9. PubMed PMID: 31146794;
724 PMCID: PMC6542144.

725 53. Chu YY, Nega M, Wölfle M, Plener L, Grond S, Jung K, Götz F. A new class of quorum
726 quenching molecules from *Staphylococcus* species affects communication and growth of gram-

727 negative bacteria. *PLoS Pathog.* 2013;9(9):e1003654. Epub 20130926. doi:
728 10.1371/journal.ppat.1003654. PubMed PMID: 24098134; PMCID: PMC3784491.

729 54. Janek D, Zipperer A, Kulik A, Krismer B, Peschel A. High Frequency and Diversity of
730 Antimicrobial Activities Produced by Nasal *Staphylococcus* Strains against Bacterial
731 Competitors. *PLoS Pathog.* 2016;12(8):e1005812. Epub 20160804. doi:
732 10.1371/journal.ppat.1005812. PubMed PMID: 27490492; PMCID: PMC4973975.

733 55. Mangrolia U, Osborne WJ. *Staphylococcus xylosus* VITURAJ10: Pyrrolo [1,2 α] pyrazine-
734 1,4-dione, hexahydro-3-(2-methylpropyl) (PPDHMP) producing, potential probiotic strain with
735 antibacterial and anticancer activity. *Microb Pathog.* 2020;147:104259. Epub 20200522. doi:
736 10.1016/j.micpath.2020.104259. PubMed PMID: 32446871.

737 56. Khusro A, Aarti C, Salem AZM, Buendía Rodríguez G, Rivas-Cáceres RR. Antagonistic trait
738 of *Staphylococcus succinus* strain AAS2 against uropathogens and assessment of its in vitro
739 probiotic characteristics. *Microb Pathog.* 2018;118:126-32. Epub 20180314. doi:
740 10.1016/j.micpath.2018.03.022. PubMed PMID: 29550502.

741 57. Li KL, Wang BZ, Li ZP, Li YL, Liang JJ. Alterations of intestinal flora and the effects of
742 probiotics in children with recurrent respiratory tract infection. *World J Pediatr.*
743 2019;15(3):255-61. Epub 20190424. doi: 10.1007/s12519-019-00248-0. PubMed PMID:
744 31020541; PMCID: PMC6597592.

745 58. Vieira AT, Rocha VM, Tavares L, Garcia CC, Teixeira MM, Oliveira SC, Cassali GD, Gamba
746 C, Martins FS, Nicoli JR. Control of *Klebsiella pneumoniae* pulmonary infection and
747 immunomodulation by oral treatment with the commensal probiotic *Bifidobacterium longum*
748 5(1A). *Microbes Infect.* 2016;18(3):180-9. Epub 20151105. doi: 10.1016/j.micinf.2015.10.008.
749 PubMed PMID: 26548605.

750 59. Groeger D, Schiavi E, Grant R, Kurnik-Łucka M, Michalovich D, Williamson R, Beinke S,
751 Kiely B, Akdis CA, Hessel EM, Shanahan F, O' Mahony L. Intranasal *Bifidobacterium longum*
752 protects against viral-induced lung inflammation and injury in a murine model of lethal
753 influenza infection. *EBioMedicine.* 2020;60:102981. Epub 20200911. doi:
754 10.1016/j.ebiom.2020.102981. PubMed PMID: 32927273; PMCID: PMC7495089.

755 60. Turner RB, Woodfolk JA, Borish L, Steinke JW, Patrie JT, Muehling LM, Lahtinen S,
756 Lehtinen MJ. Effect of probiotic on innate inflammatory response and viral shedding in
757 experimental rhinovirus infection - a randomised controlled trial. *Benef Microbes.*
758 2017;8(2):207-15. Epub 20170327. doi: 10.3920/BM2016.0160. PubMed PMID: 28343401;
759 PMCID: PMC5797652.

760 61. Mahooti M, Abdolalipour E, Salehzadeh A, Mohebbi SR, Gorji A, Ghaemi A.
761 Immunomodulatory and prophylactic effects of *Bifidobacterium bifidum* probiotic strain on
762 influenza infection in mice. *World J Microbiol Biotechnol.* 2019;35(6):91. Epub 20190603. doi:
763 10.1007/s11274-019-2667-0. PubMed PMID: 31161259.

764 62. Meng H, Lee Y, Ba Z, Peng J, Lin J, Boyer AS, Fleming JA, Furumoto EJ, Roberts RF, Kris-
765 Etherton PM, Rogers CJ. Consumption of *Bifidobacterium animalis* subsp. *lactis* BB-12 impacts
766 upper respiratory tract infection and the function of NK and T cells in healthy adults. *Mol Nutr
767 Food Res.* 2016;60(5):1161-71. Epub 20160301. doi: 10.1002/mnfr.201500665. PubMed PMID:
768 26821116.

769 63. Mageswary MU, Ang XY, Lee BK, Chung YF, Azhar SNA, Hamid IJA, Bakar HA, Roslan NS,
770 Liu X, Kang X, Dai L, Sreenivasan S, Taib F, Zhang H, Liang MT. Probiotic *Bifidobacterium lactis*

771 Probio-M8 treated and prevented acute RTI, reduced antibiotic use and hospital stay in
772 hospitalized young children: a randomized, double-blind, placebo-controlled study. *Eur J Nutr.*
773 2022;61(3):1679-91. Epub 20211126. doi: 10.1007/s00394-021-02689-8. PubMed PMID:
774 34825264; PMCID: PMC8616720.

775 64. Khailova L, Petrie B, Baird CH, Dominguez Rieg JA, Wischmeyer PE. *Lactobacillus*
776 *rhamnosus* GG and *Bifidobacterium longum* attenuate lung injury and inflammatory response in
777 experimental sepsis. *PLoS One.* 2014;9(5):e97861. Epub 20140515. doi:
778 10.1371/journal.pone.0097861. PubMed PMID: 24830455; PMCID: PMC4022641.

779 65. Huang YJ, Kim E, Cox MJ, Brodie EL, Brown R, Wiener-Kronish JP, Lynch SV. A persistent
780 and diverse airway microbiota present during chronic obstructive pulmonary disease
781 exacerbations. *OMICS.* 2010;14(1):9-59. doi: 10.1089/omi.2009.0100. PubMed PMID:
782 20141328; PMCID: PMC3116451.

783 66. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA,
784 Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ, Huffnagle GB. Analysis of the lung
785 microbiome in the "healthy" smoker and in COPD. *PLoS One.* 2011;6(2):e16384. Epub
786 20110222. doi: 10.1371/journal.pone.0016384. PubMed PMID: 21364979; PMCID:
787 PMC3043049.

788 67. Willner D, Haynes MR, Furlan M, Schmieder R, Lim YW, Rainey PB, Rohwer F, Conrad D.
789 Spatial distribution of microbial communities in the cystic fibrosis lung. *ISME J.* 2012;6(2):471-4.
790 Epub 20110728. doi: 10.1038/ismej.2011.104. PubMed PMID: 21796216; PMCID: PMC3260497.

791 68. Bacci G, Rossi A, Armanini F, Cangioli L, De Fino I, Segata N, Mengoni A, Bragonzi A,
792 Bevivino A. Lung and Gut Microbiota Changes Associated with *Pseudomonas aeruginosa*
793 Infection in Mouse Models of Cystic Fibrosis. *Int J Mol Sci.* 2021;22(22). Epub 20211110. doi:
794 10.3390/ijms22212169. PubMed PMID: 34830048; PMCID: PMC8625166.

795 69. Cadena AM, Ma Y, Ding T, Bryant M, Maiello P, Geber A, Lin PL, Flynn JL, Ghedin E.
796 Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis
797 and alteration of community structure. *Microbiome.* 2018;6(1):180. Epub 20181009. doi:
798 10.1186/s40168-018-0560-y. PubMed PMID: 30301469; PMCID: PMC6178261.

799 70. Collie D, Glendinning L, Govan J, Wright S, Thornton E, Tennant P, Doherty C, McLachlan
800 G. Lung Microbiota Changes Associated with Chronic *Pseudomonas aeruginosa* Lung Infection
801 and the Impact of Intravenous Colistimethate Sodium. *PLoS One.* 2015;10(11):e0142097. Epub
802 20151106. doi: 10.1371/journal.pone.0142097. PubMed PMID: 26544950; PMCID:
803 PMC4636361.

804 71. Zhu M, Liu S, Zhao C, Shi J, Li C, Ling S, Cheng J, Dong W, Xu J. Alterations in the gut
805 microbiota of AIDS patients with pneumocystis pneumonia and correlations with the lung
806 microbiota. *Front Cell Infect Microbiol.* 2022;12:1033427. Epub 20221021. doi:
807 10.3389/fcimb.2022.1033427. PubMed PMID: 36339339; PMCID: PMC9634167.

808