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 2 

Abstract 20 

 21 

In metagenomics, the pool of uncharacterized microbial enzymes presents a challenge for 22 

functional annotation. Among these, carbohydrate-active enzymes (CAZymes) stand out due to 23 

their pivotal roles in various biological processes related to host health and nutrition. Here, we 24 

present CAZyLingua, the first tool that harnesses protein language model embeddings to build a 25 

deep learning framework that facilitates the annotation of CAZymes in metagenomic datasets. 26 

Our benchmarking results showed on average a higher F1 score (reflecting an average of 27 

precision and recall) on the annotated genomes of Bacteroides thetaiotaomicron, Eggerthella 28 

lenta and Ruminococcus gnavus compared to the traditional sequence homology-based method 29 

in dbCAN2. We applied our tool to a paired mother/infant longitudinal dataset and revealed 30 

unannotated CAZymes linked to microbial development during infancy. When applied to 31 

metagenomic datasets derived from patients affected by fibrosis-prone diseases such as 32 

Crohn’s disease and IgG4-related disease, CAZyLingua uncovered CAZymes associated with 33 

disease and healthy states. In each of these metagenomic catalogs, CAZyLingua discovered 34 

new annotations that were previously overlooked by traditional sequence homology tools. 35 

Overall, the deep learning model CAZyLingua can be applied in combination with existing tools 36 

to unravel intricate CAZyme evolutionary profiles and patterns, contributing to a more 37 

comprehensive understanding of microbial metabolic dynamics.  38 
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 39 

Introduction 40 

 41 

Rapid advancements in sequencing technologies have led to an abundance of genomic data, 42 

outpacing the capacity to annotate and decipher the functions of these sequences1. A significant 43 

challenge arises in contextualizing the vast number of unknown functions present in microbes2,3 44 

and, as a consequence, a substantial fraction of microbial proteins remains unannotated4–6. The 45 

Unified Human Gastrointestinal Protein (UHGP) catalog alone holds greater than 170 million 46 

protein sequences of which 40% lack any functional annotation2. Elucidating the function of 47 

these sequences has the potential to provide insights into microbial metabolic behaviors and 48 

niches within a particular ecosystem, including the dynamics of microbial-host interactions7–10. 49 

 50 

In microbial genomics, accurate annotations of the biological functions of enzymes is critical, as 51 

these molecules have important roles in catalyzing essential biochemical reactions with high 52 

specificity and efficiency11–14. Carbohydrate-active enzymes (CAZymes) play fundamental roles 53 

in various biological processes, including cell structure, signaling, energy storage, and nutrient 54 

processing15–17. Metagenomic sequencing and functional ‘omics have shown that CAZymes 55 

support the growth of beneficial microbes in infants by catabolizing human milk oligosaccharides 56 

(HMOs)18,19. CAZymes have also been found to play a role in the microbiomes of patients with 57 

inflammatory diseases like Crohn’s disease (CD)20 and IgG4-related disease (IgG4-RD), in 58 

which there is upregulation of glycan-related pathways21.  59 

 60 

Historically, functional annotation tools have relied on hidden Markov models (HMMs)22,23 that 61 

are built by aligning many amino acid sequences or using sequence homology tools like BLAST, 62 

which employs a pairwise alignment strategy between query and target sequences24,25. The 63 

current state-of-the-art tool for annotating CAZymes, dbCAN2, similarly relies on sequence 64 
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homology or HMMs26. While having achieved significant effectiveness in genomic sciences, 65 

these methods are not able to assign a biological role to one-third of all bacterial proteins27. 66 

Advancements in deep learning have significantly aided the functional annotation of proteins 67 

and comprehension of their diverse functions28–35. Protein language models (pLMs), such as 68 

those used for structural prediction and other tasks, demonstrate remarkable capabilities in 69 

decoding the intricate amino acid language of proteins, which facilitates their functional 70 

annotation through a distinct approach compared to sequence-based alignment methods30,36–39. 71 

CAZymes are classified into distinct classes of glycoside hydrolases (GHs), polysaccharide 72 

lyases (PLs), glycosyltransferases (GTs) and carbohydrate esterases (CEs). Within a class, the 73 

enzymes share a conserved fold, mechanism, and catalytic residues16. With this fine grained 74 

ontology and a set of distinct enzymatic reactions, CAZymes represent an ideal training dataset 75 

for pLMs.  76 

 77 

Here, we present CAZyLingua, the first annotation tool to harness pLMs for the accurate 78 

classification of CAZymes. We applied CAZyLingua to gene catalogs derived from human 79 

microbiome metagenomic datasets and identified CAZymes implicated in health and disease 80 

states. Our first gene catalog was constructed from paired mother/infant metagenomes40 81 

consisting of ~2,000,000 proteins from which we uncovered ~27,000 CAZymes previously 82 

undetected by dbCAN2 or eggNOG. Early persistence of diverse microbial strains in the gut has 83 

been linked with metabolic pathways utilizing CAZymes, including breakdown of HMOs and 84 

dietary polysaccharides and metabolism of mucin in the colon41. CAZyLingua was then applied 85 

to a metagenomic dataset derived from patients with inflammatory and fibrosis-prone diseases, 86 

including CD and IgG4-RD. We observed that a greater percentage of genes significantly less 87 

abundant in CD were predicted to be CAZymes, while in IgG4-RD, we found an expansion of 88 

hundreds of CEs in particular. We demonstrate that CAZyLingua achieves high model accuracy 89 

compared to standard sequence homology tools and can be used to augment the functional 90 
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annotation of CAZymes in metagenomic studies, providing valuable insights into the diversity 91 

and functional potential of these microbial enzymes. 92 

 93 

Results 94 

 95 

CAZyLingua Model and Performance 96 

 97 

The CAZyLingua pipeline consists of multiple components (Figure 1a). First, the pLM ProtT538 is 98 

used to generate embeddings for a given query of amino acid sequences. Second, a quadratic 99 

discriminant analysis (QDA) classifier42, which takes as an input the ProtT5 embedding, is 100 

applied to predict whether the query is a CAZyme or not. Finally, if the query is predicted to be a 101 

CAZyme, a multiclass classifier is used to make an annotation in the CAZy database ontology, 102 

returning either a family or subfamily. The multiclass classifier was built to return probabilities 103 

associated with the given family or subfamily annotation and can return a top k number of family 104 

labels for a given protein sequence. 105 

 106 

We trained CAZyLingua on a subset of the CAZy database16,43 (Figure 1b). CAZymes were 107 

selected from every family, spanning GHs, GTs, PLs, and CEs, to create a representative 108 

training dataset. To benchmark our method, we followed a procedure similar to dbCAN2, the 109 

current state-of-the-art automated CAZyme annotation tool in the community26. We specifically 110 

chose the DIAMOND+CAZy option in dbCAN2 as this was the closest representation to 111 

BLASTp sequence homology. We performed a taxonomic split on the original CAZy database 112 

sequences and selected 3 bacterial genomes with pre-annotated CAZymes in each genome: 113 

Bacteroides thetaiotaomicron, Eggerthella lenta, and Ruminococcus gnavus. We selected these 114 

bacteria based on the varying proportions of CAZymes per number of total proteins (B. 115 

thetaiotaomicron: 7.6%, E. lenta: 1.1%, and R. gnavus: 3.0%) as well as biological relevance: E. 116 
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lenta is very prevalent and found in the gut microbiomes of 80% of humans44, R. gnavus is 117 

linked to patients with CD and produces a proinflammatory carbohydrate45, and B. 118 

thetaiotaomicron is one of the most prevalent members of the gut microbiota and dedicates a 119 

large portion of its genome to the processing and utilization of carbohydrates46. We obtained 120 

these exact protein sequences from the CAZy sequence database to use as the reference set 121 

for dbCAN2 DIAMOND+CAZy.  122 

 123 

We ran the protein sequences through dbCAN2 and CAZyLingua and evaluated the binary 124 

classification task of detecting whether the protein is a CAZyme or not. We combined the results 125 

and stratified them into three sets based on whether the protein was predicted by dbCAN2 only, 126 

CAZyLingua only, or both. The precision was calculated as the number of true positives in each 127 

set divided by the number of predictions made in each set, and recall was calculated as the true 128 

positives in each set divided by the total number of CAZymes in each genome (Figure 2a). 129 

CAZyLingua alone performed better than dbCAN2 in each measure, but the best benchmarks 130 

were in the set of proteins predicted by both tools. We then calculated the F1 score as the 131 

harmonic mean of the precision and recall and demonstrated that CAZyLingua outperformed 132 

dbCAN2 on each test genome, notably by almost 10% for E. lenta (Figure 2b). We examined 133 

the predictions by CAZyLingua based on CAZy classes and observed that CAZyLingua was 134 

able to label all CE and GT classes in the test genomes (Figure 2c). We evaluated the 135 

precision/recall and ROC curves for CAZyLingua and dbCAN2, comparing the output of the 136 

decision function from the QDA and the e-value from dbCAN2. Our results showed that 137 

CAZyLingua can detect up to 92% of the CAZymes while maintaining a precision of over 80%, 138 

while dbCAN2 can detect approximately 82% of the CAZymes at the same precision threshold. 139 

CAZyLingua has a higher true positive rate compared to dbCAN2 for this current benchmark 140 

(Figure 2d).  141 

 142 
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For the CAZyme family classification step, we trained over the entire dataset more than 100 143 

epochs, using RayTune47 to select different random hyperparameter settings and the best of 20 144 

different training models. The models were all trained with a cross-entropy loss, and RayTune 145 

was optimized to store the model on a metric to minimize loss48. The best performing model 146 

(lowest loss value) was saved, with the corresponding hyperparameter configuration for any 147 

CAZyme family inference. The CAZyme classifier is a four-layer, feedforward neural network 148 

(with two hidden layers) with an input of 1024 dimensions (fixed size from ProtT5 embeddings) 149 

projected to 256 dimensions then to 512 dimensions to a final classification output layer of 574 150 

corresponding to all the unique CAZyme families and subfamilies in our training dataset. We 151 

used a hyperbolic tangent (Tanh) as the non-linearity between the different layers. After training, 152 

the weights between the first and second layers do not correspond to any interpretable features 153 

in the embedding itself (Extended Data Figure 1). When checking a micro-averaged 154 

classification accuracy of all the families in the test genomes, CAZyLingua predicted 99.6% of 155 

the families accurately, while dbCAN2 predicted 98.2% accurately. 156 

 157 

CAZyLingua Identifies Horizontally-Transferred Genes as CAZymes 158 

 159 

We further tested if CAZyLingua would be able to uncover CAZymes in a gene catalog of 160 

microbiome samples from mother-infant pairs collected from late pregnancy to one year of 161 

age40. We predicted CAZymes using CAZyLingua, alongside eggNOG and dbCAN2, on the 162 

entirety of the gene catalog, which contained 2,327,970 genes. CAZyLingua predicted 81,498 163 

CAZymes, while dbCAN2 and eggNOG predicted 77,614 and 38,862 CAZymes, respectively. 164 

We stratified the dataset by number of genes per sample, then by sample month, and split the 165 

observations by mother and infant. We calculated the fold change between each method and 166 

CAZyLingua based on the genes per sample per month to determine how many more CAZymes 167 

were predicted by CAZyLingua. CAZyLingua predicted at least 2-fold more new genes in 168 
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maternal and infant metagenomes compared to eggNOG and on average 1.2-fold more new 169 

genes than dbCAN2 (Figure 3a). When examining the predictions made by CAZyLingua, we 170 

observed 27,133 unique CAZyme predictions that were not made by dbCAN2. We distinguished 171 

each unique CAZyme by CAZyme class within each sample over each sample month. We 172 

observed that our model predicted many more GTs across all the samples in every month 173 

(Figure 3b).  174 

 175 

We next focused on a subset of the metagenomic data to specifically look at genes that were 176 

found to be horizontally transferred between a mother/infant pair. A previous study performed a 177 

sequence homology (BLASTn) analysis on DNA sequences between maternal and infant 178 

metagenomes and identified 977 genes with 100% nucleotide identity that were harbored by 179 

both maternal and infant species40, a portion of which were predicted to function in carbohydrate 180 

metabolism. Of the 977 genes, 12 were predicted as CAZymes by our model and either not 181 

predicted or predicted as an unknown family within a CAZyme class by dbCAN2.  182 

 183 

In order to understand the structural contributions of language models to the general predictions 184 

given from ProtT5 and ultimately our pLM classifier, we searched for nearest neighbors between 185 

our 12 horizontally-transferred gene embeddings in the CAZy database embeddings using 186 

Euclidean distance. After identifying nearest neighbor pairs and extracting the corresponding 187 

protein sequences, we computed structural predictions for those proteins using ColabFold49. We 188 

used FoldSeek50 to perform a structural alignment between the structures of the predicted 189 

protein from CAZyLingua and the nearest protein embedding neighbor in the CAZy database.  190 

 191 

CAZyLingua predicted four GHs, including three belonging to the families 88, 10, and 63, that 192 

had a high structural homology to their nearest neighbor in the CAZy database (all with a TM 193 

score > 0.50, which indicates a same fold between two proteins51). In contrast, when evaluating 194 
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sequence homology (BLASTp) between the amino acid sequences of the three proteins and the 195 

nearest neighbor in the CAZy database, we found that between both sets of sequences the 196 

sequence identity was lower than 35%, and for GH88 and GH63 the coverage was less than 197 

30% (Figure 3c). Given these metrics, this suggests that CAZyLingua is able to predict 198 

CAZymes incorporating structural homology, despite the lack of any amino acid sequence 199 

homology.  200 

 201 

The fourth GH predicted was given the annotation of GH43_18 when evaluating the ProtT5 202 

nearest neighbor, while CAZyLingua classified it as a GH33 (Figure 4a). We sought to explain if 203 

the classification of a GH33 was based on specific features of the unknown CAZyme. We first 204 

evaluated the neighborhood of genes around the unknown CAZyme to establish if it exists in a 205 

functional polysaccharide utilization locus (PUL). We found several canonical PUL features, 206 

including several regulatory elements related to carbohydrate metabolism: a hybrid two-207 

component system (HTCS), TonB-dependent receptor (SusC homolog), and contiguous 208 

substrate-binding lipoprotein (SusD homolog) (Figure 4b). In addition to this unknown enzyme 209 

mapping to a PUL, we established the presence of a lipoprotein signal peptide in the enzyme 210 

through SignalP52. We then explored the link between several functional sites in the GH33 and 211 

the corresponding embedding generated by ProtT5. To do so, we created a sliding window of 212 

10 amino acids and created more distant substitutions of the original sequence within that 213 

window based on the BLOSUM62 distance. Substituting areas near the signal peptide 214 

corresponded to the greatest losses in the CAZyLingua predictive value of a GH33. The first 20 215 

amino acids that correspond to a signal peptide were used in a homology search, and in all 216 

BLAST metrics, the signal peptide showed stronger homology to GH33: a combined percent 217 

identity and coverage of 64.2% for GH33 and 55.0% for GH43_18, providing stronger evidence 218 

for its classification as a GH33 (Figure 4b).  219 

 220 
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To determine if there was any structural homology between our unknown CAZyme and the 221 

GH33 family, we used ColabFold49 to fold our protein and ran a structural search with 3D crystal 222 

structures found in the PDB25 database using DALI53. Our unknown protein had several 223 

matches, with two in the top five matches being GH33-like enzymes, namely a neuraminidase 224 

and a sialidase. After structurally aligning51 our unknown structure with the neuraminidase and 225 

the sialidase crystal structures, we observed that the predicted GH33 shared significant 226 

structural homology (TM score > 0.5) with both. The sequence homology (BLASTp) between 227 

the amino acid sequences pairwise with the unknown protein revealed sequence identities 228 

<36% and coverages <31% (Figure 4c).  229 

 230 

Analysis of Enriched CAZymes in Inflammatory Disease Metagenomic Gene Catalogs  231 

 232 

We next focused our attention on applying CAZyLingua to two metagenomic datasets derived 233 

from patients with inflammatory and fibrosis-prone diseases: one from 68 CD patients and 34 234 

control subjects 54 and another from 58 IgG4-RD patients and 165 healthy controls21. Both of 235 

these disease states have unique microbial signatures potentially underlying pathologic 236 

mechanisms. 237 

 238 

To investigate disease-associated genes that may be unannotated CAZymes, we first used a 239 

linear model against the CD gene catalog55,56 (Methods) and identified 3,499 genes that were 240 

significantly more abundant (two-sided t-test, p < 1x10-2, log fold change > 2) and 30,125 genes 241 

that were significantly less abundant (two-sided t-test, p < 1x10-2, log fold change < -2) in CD. 242 

Among these, CAZyLingua predicted 30 more abundant genes and 569 less abundant genes to 243 

be CAZymes (Figure 5a, Supplementary Table 1). Given the ~10-fold difference between more 244 

abundant genes in controls versus CD, we observe many more glycan-related pathways 245 

associated with health compared to CD.  246 
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 247 

Following the same analysis procedure, we built a linear model for a differential gene 248 

abundance analysis for IgG4-RD metagenomes. We stratified genes based on the same 249 

criteria. Compared with the CD dataset, we noticed a higher proportion of genes were 250 

significantly more abundant in IgG4-RD compared to a healthy state. We observed 9,225 genes 251 

that were significantly more abundant compared to 7,284 genes that were significantly less 252 

abundant in IgG4-RD. CAZyLingua predicted 65 more abundant and 87 significantly less 253 

abundant CAZymes in IgG4-RD (Figure 5b, Supplementary Table 2).  254 

 255 

We then broadened our focus to all the CAZymes in the IgG4-RD dataset, irrespective of their 256 

significance to disease from the linear model. CAZyLingua predicted 437 CAZymes that 257 

dbCAN2 did not. Specifically in IgG4-RD, there was a higher number of CEs that only 258 

CAZyLingua predicted. CE sequences comprise only 4% of all the sequences in the CAZy 259 

database; the low representation of certain sequence examples can pose a challenge for 260 

sequence homology tools, which may explain the lower number of hits identified by dbCAN2. In 261 

our set of genes predicted by CAZyLingua only, we observed that ~34% were CEs. Families of 262 

CEs that were particularly represented included CE1, CE3, CE4, and CE12 (Figure 5c). All of 263 

these families share SGNH (Ser-Gly-Asn-His) hydrolase activity, which is a conserved structural 264 

feature of the enzymes in these families, suggesting that these enzymes may have low 265 

sequence homology but higher structural homology within each class57–59.  266 

 267 

The increase in annotations by CAZyLingua for these specific CE families may be due to the 268 

unique structural features of the families that otherwise would be hard to annotate by traditional 269 

sequence homology methods. Given the distinct set of CAZyme families that CAZyLingua was 270 

able to predict, we sought to determine the extent of overlap between CAZyLingua predictions 271 

and the set of CAZymes that dbCAN2 annotated. To learn about the binary classification of 272 
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CAZyme/non-CAZyme given by the QDA predictions and the results from dbCAN2, we varied 273 

the QDA decision boundary. We calculated the percentage of CAZymes that CAZyLingua 274 

labeled as CAZyme that dbCAN2 also predicted against the percentage of the entire IgG4-RD 275 

gene set that CAZyLingua labeled as CAZyme. Our QDA model was benchmarked where ~5% 276 

of the dataset was labeled CAZyme by CAZyLingua and that represents ~60% of all the genes 277 

that dbCAN2 also predicted as CAZyme. At ~30% of the dataset being labeled as CAZyme by 278 

CAZyLingua, we captured ~80% of all the dbCAN2-predicted CAZymes. As we relaxed our 279 

decision boundary and increased the number of genes in the dataset CAZyLingua labeled as 280 

CAZyme, we observed a relatively linear relationship between the genes labeled as CAZyme by 281 

both dbCAN2 and CAZyLingua (Figure 5d). This linear relationship describes a relative 282 

discordance between the annotations from the two different tools. The divergence of 283 

annotations generated by CAZyLingua compared to dbCAN2 can add to existing CAZyme 284 

annotations in the analysis of large metagenomics studies. 285 

 286 

Discussion 287 

 288 

In this study, we introduced CAZyLingua, a novel approach that leverages pLMs to enhance the 289 

identification and functional annotation of CAZymes in metagenomic datasets. Our method 290 

mitigates the ongoing challenge of assigning functions to the vast array of unannotated 291 

microbial enzymes within these datasets, shedding light on their potential roles in various 292 

biological processes. The use of pLMs has emerged as a powerful tool for unraveling protein 293 

functions in microbial genomics28–30, and our results further emphasize their efficacy in this 294 

context. When compared with traditional sequence homology, CAZyLingua improved the F1 295 

score of classifying a protein as a CAZyme by 6.1% for each of the benchmarked test genomes 296 

with gold standard annotations.  297 

 298 
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CAZyLingua's efficacy is evident in its successful identification of previously undiscovered 299 

CAZymes within a longitudinal microbiome dataset of mother-infant pairs. We detected over 300 

27,000 unique putative CAZymes that were missed by dbCAN2. Furthermore, our identification 301 

of horizontally-transferred CAZymes between mothers and infants highlights the ability of 302 

CAZyLingua to uncover potentially crucial enzymatic functions that traditional sequence 303 

homology methods might overlook. When investigating GHs that were missed by dbCAN2, we 304 

noticed that these GH structures shared low sequence homology (sequence identity < 40%) to 305 

the most homologous protein in the embedding latent space. Our analysis of structural 306 

similarities between CAZyLingua-predicted enzymes and GH structures highlights the potential 307 

of CAZyLingua to predict enzyme functions based on structural conservation (TM score > 0.5), 308 

thereby offering insights into their catalytic roles. We note that these findings are based on 309 

structural predictions from ColabFold, not crystal structures or experimentally validated 310 

enzymes. One advantage to our choice of ColabFold as a structural prediction tool is that the 311 

process of generating a prediction is heavily dependent on a multiple sequence alignment 312 

(MSA) between an unknown sequence and a large reference of sequences. The goal of using 313 

ColabFold over popular pLM- based structural prediction tools (e.g., ESM-fold, OmegaFold) was 314 

for there to be less of a bias between predictions based on embeddings in a process similar to 315 

CAZyLingua and how ProtT5 may be trained versus a standard MSA.  316 

 317 

We focus on an example of a horizontally-transferred GH33 that was not predicted by dbCAN2, 318 

eggNOG, or a nearest neighbors search using ProtT5 in the CAZy database. Upon using 319 

ColabFold to fold this GH33, we performed a sensitive structural search using DALI53 against 320 

experimentally-characterized crystal structures (PDB25) and found the top hits to include other 321 

GH33 enzymes (a sialidase/neuraminidase), with significant structural homology (TM score > 322 

0.5, Z score > 2).  A recent study examining the early colonization of microbes in a murine 323 

model60 highlights an example of vertical transmission of a GH33 sialidase (NanH) between 324 
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dams and pups. The NanH gene is triggered by sialylated host glycans and aids in the early 325 

colonization of Bacteroides fragilis. The putative GH33 discovered by CAZyLingua that was 326 

transmitted between a maternal Alistipes finegoldii strain and an infant Alistipes putredinis strain 327 

might exhibit similar properties as NanH and could be part of a mechanism to aid in the 328 

establishment of Alistipes putredinis in the infant gut. Again, sequence homology between our 329 

putative GH33 and NanH was low (33.93% identity, 26% coverage) despite a similar predicted 330 

function, indicating that existing sequence homology methods might have overlooked the 331 

putative GH33 as a functional homolog. This highlights the strengths of pLMs as alternative 332 

tools to augment functional protein homology discovery.  333 

 334 

We then extended the utility of CAZyLingua to metagenomic datasets from patients with CD and 335 

IgG4-RD. Both diseases share pathological features of fibrotic lesions despite having distinct 336 

clinical presentations. Patients with CD have been shown to have lower microbial diversity and 337 

carbohydrate utilization pathways in their gut microbiota61–63. Unique microbial signatures have 338 

been strongly associated with IgG4-RD, and those signatures included genes linked to 339 

carbohydrate metabolism21. Our initial analysis focused on genes that were upregulated in 340 

IgG4-RD, where we found a distinct set of CAZymes using CAZyLingua. Investigating the 341 

taxonomy of those genes, we found several from Streptococcus species that are typically found 342 

in the oral cavity. In the previous study21, many Clostridium and typically oral Streptococcus 343 

species were overabundant in the disease phenotype while Alistipes and Bacteroides species 344 

were depleted. Six of the top 20 (30%) putative CAZymes predicted by CAZyLingua mapped to 345 

Streptococcus mutans, and we observed that many genes from this microbe were upregulated 346 

in disease. We observed enrichment of CEs within this species and postulated that there may 347 

be several CAZymes that help Streptococcus mutans adapt to an ecological niche in the 348 

gastrointestinal tract of patients with IgG4-RD.  349 

 350 
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CEs themselves were sparsely populated in our training dataset for CAZyLingua and similarly in 351 

the CAZy database of sequences. Due to the imbalance of this class of enzymes, we postulate 352 

that sequence homology may fail to annotate these enzymes. During our training procedure, we 353 

use a weighted cross entropy loss, where the weights are proportional to the number of training 354 

examples for a given CAZyme family or subfamily. By allowing a more stringent penalty on 355 

incorrectly annotating a rare family, we are able to predict more rare families like CEs through 356 

CAZyLingua.  357 

 358 

The implications of our findings extend beyond the specific datasets analyzed in this study. 359 

CAZyLingua's demonstrated ability to accurately predict CAZymes has broader implications for 360 

deciphering the functional potential of microbial communities. A similar procedure of fine-tuning 361 

pLM embeddings can be broadly applied to other enzyme classes and protein domains to aid in 362 

functional annotation. As an ever-growing number of metagenomic datasets become available, 363 

the incorporation of deep learning tools like CAZyLingua into existing methods offers a 364 

promising avenue for comprehensive and accurate functional annotation. 365 

 366 

Methods 367 

 368 

CAZyme training dataset curation 369 

 370 

The CAZy database found at http://www.cazy.org/IMG/cazy_data/cazy_data.zip is cataloged by 371 

the dbCAN tool maintainers and a fasta file is available at 372 

https://bcb.unl.edu/dbCAN2/download/. We downloaded the CAZy database as of August 06, 373 

2022 containing 2,428,817 sequences as it was the latest version that was available for when 374 

we began training the model. We chose to focus on the four main classes CAZymes: 173 375 

families and 177 subfamilies in glycoside hydrolases (GHs), 115 families in  376 
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glycosyltransferases (GTs), 20 families in carbohydrate esterases (CEs), and 42 families and 60 377 

subfamilies in polysaccharide lyases (PLs). We removed everything that did not belong to one 378 

of these families and any sequences that were larger than 5000 amino acids in length to prevent 379 

GPU out of memory errors when generating embeddings. The entire number of remaining 380 

sequences was 2,413,796: 1,221,013 in GH, 1,027,247 in GT, 122,413 in CE, and 43,123 in PL.  381 

 382 

Using the CD-HIT software tool64, we clustered our CAZy database at 60% sequence identity. 383 

CD-HIT returns a representative sequence for a given cluster. The clusters were created such 384 

that, in the resulting database (nr.CAZy.60.fasta), no two sequences had a sequence similarity 385 

greater than 60%. The resulting database preserved all of the original families and subfamilies 386 

while reducing the redundancy in the database. The database in nr.CAZy.60.fasta contained 387 

232,736 sequences, of which 92,385 sequences were in GH, 125,240 in GT, 10,177 in CE, and 388 

4,934 in PL.  389 

 390 

Following the curation of the CAZy sequences, we used ProtT538 to generate embeddings for 391 

each of these sequences using a V100 GPU. We stored the embeddings in h5 files, following 392 

the hierarchical data format (HDF). This embedding database served as the training dataset for 393 

both of the classifiers in CAZyLingua.  394 

 395 

Quadratic discriminant analysis training and testing 396 

 397 

To build the CAZyme/non-CAZyme binary classification step in the CAZyLingua pipeline we 398 

modeled the embeddings from the CAZy training dataset as our positive case (CAZyme) and 399 

used a combination of data from protein families database Pfam and the Kyoto Encyclopedia of 400 

Genes and Genomes (KEGG) to construct our negative examples (non-CAZyme). We started 401 

with the 1,296,280 Pfam seeds as a dataset from which to construct negative examples. Pfam 402 
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seeds serve as the basis for hidden Markov model (HMM) profiles and are highly curated to 403 

span a diversity of domains65. This dataset has been previously described as building the HMMs 404 

that contribute to greater than 75% of all the functional annotations of Uniprot sequences in 405 

Pfam28. We additionally supplemented the negative examples with 3,435 enzymes from KEGG 406 

that were non-CAZymes using the KEGG Enzyme database66.  407 

 408 

In order to create a set of negatives on which to train, we used the ultra-sensitive parameter of 409 

DIAMOND67 in the BLASTp setting between the Pfam seeds against the CAZy database and 410 

then the KEGG enzymes against the CAZy database. We removed any Pfam seeds or KEGG 411 

enzymes that were listed as hits from the DIAMOND output. The remaining 56,244 Pfam seeds 412 

and 3,429 KEGG non-CAZyme enzymes were combined to create a non-CAZyme dataset. We 413 

sampled 5,000 CAZymes from nr.CAZy.60.fasta spanning all families and subfamilies in each 414 

class as our positive example.  415 

 416 

We built our model using scikit-learn42, importing the function QuadraticDiscriminantAnalysis 417 

with the store_covariance parameter selected as true. We used the library skops to pickle and 418 

save the state of our trained model. For a given set of embeddings, the QDA classifier will label 419 

them as CAZyme or non-CAZyme and store the results of the CAZy embeddings in an h5 file. 420 

 421 

To model our QDA, we model the distribution of each embedding whether it is a CAZyme or not 422 

a CAZyme. These form our two classes 𝑐: CAZyme and non-CAZyme.  423 

 424 

We model the prior probability of a class ,  by the empirical proportion of training 425 

samples in that class. The conditional probability of a protein’s embedding  given its 426 
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class ,  is modeled by a multivariate Gaussian distribution with probability density 427 

function: 428 

 429 

 430 

 431 

The parameters  and  for each class  are the maximum likelihood estimators given the 432 

training samples in that class. If the training samples are , the maximum 433 

likelihood estimators are given by  434 

 435 

 436 

 437 

 438 

 439 

where  is the number of samples class .  440 

 441 

Predictions for a protein with embedding  are made by assigning the class  which maximizes 442 

the posterior probability, given by Bayes’ rule: 443 

 444 

 445 

 446 

where only the numerator depends on . A decision surface is created for the QDA based on the 447 

two classes, CAZyme and non-CAZyme42. 448 
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 449 

In constructing ROC curves, the decision function that we used is the logarithm of the posterior 450 

probability. 451 

 452 

Feed forward neural network architecture  453 

 454 

The final stage in the CAZyLingua model is the multiclass classification for a given CAZyme 455 

family based on the embeddings selected as CAZyme from the QDA. The feedforward neural 456 

network architecture has three overall layers with two hidden layers. The fixed size input of 1024 457 

dimensions from ProtT5 embeddings are projected to 256 dimensions then to 512 dimensions 458 

to a final classification output layer of 574, which reflects the number of CAZyme families and 459 

subfamilies. We implemented this model using Pytorch Lightning68 to create a classifier that 460 

included all of the training, validation, and testing steps.  461 

 462 

The model used a Cross Entropy Loss from PyTorch48 with the weights parameter set to 463 

balance the number of sequences from the different families and subfamilies. In order to prevent 464 

over training on highly represented families, the loss function penalty for a given family was 465 

calculated as the inverse of the number of sequences per family. This ensures that if the model 466 

is incorrectly labeling a family with very few training examples there will be a stronger penalty in 467 

comparison to incorrectly labeling a family with a higher proportion of the training examples.  468 

 469 

Hyperparameter optimization and neural network training 470 

 471 

The multiclass classification neural network in the CAZyLingua pipeline was trained using 472 

RayTune47, a hyperparameter tuning library. The hyperparameters that were tested were the 473 

size of layer 1, the size of layer 2, the batch size, and the learning rate. In order to find the 474 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.563620doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563620
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

optimal hyperparameters to select the most accurately trained model, 20 models were tested in 475 

parallel with random sampled hyperparameters selected by RayTune (Supplementary Table 3). 476 

Each model was trained over 100 epochs using the Async Successive Halving (ASHA)69 477 

scheduler that terminates a model (early stopping) optimized to minimize the training loss. 478 

Metrics for the validation accuracy were collected after each epoch, and the testing accuracy 479 

was collected after the model was fully trained. Each training model was visualized using 480 

TensorBoard70 (Extended Data Figure 2). 481 

 482 

Hyperparameter Sampling Method Sampled Values 

Layer 1 Size Random Choice (256, 512, 768) 

Layer 2 Size Random Choice (512, 1024, 1536) 

Batch Size Random Choice (127, 256, 512) 

Learning Rate Log Uniform Sample [1e-4 – 1e-2] 

 483 

Supplementary Table 3. Hyperparameter Tuning. Training epochs over time to pick the 484 

model with the best classification accuracy. Using RayTune, we performed a random grid 485 

search of different hyperparameter values and tested 20 models in parallel. We picked the 486 

model with the best accuracy and used that as the model for all further inference. 487 

 488 

Benchmarking of CAZyme/non-CAZyme QDA classifier  489 

 490 

To benchmark the QDA classifier, we used different metrics to quantify the performance of 491 

CAZyLingua to dbCAN2. For the F1 score, we followed a standard formula: 492 
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 493 

 494 

 495 

where we define recall and precision as follows: 496 

 497 

 498 

 499 

 500 

The precision-recall and ROC curves were plotted using sklearn42 using the 501 

precision_recall_curve and roc_curve using the e-values from dbCAN2 and the scores from the 502 

decision function of the QDA from CAZyLingua as the target scores.  503 

 504 

We designed two metrics to benchmark the differences between CAZyLingua’s predictions, 505 

dbCAN2’s predictions, and the predictions shared by both methods. 506 

 507 

 508 

 509 

 510 

 511 

 512 

With each of these different sets, we calculated the metric to find the proportion of true 513 

CAZymes to all predictions in each genome predicted by each method: 514 

 515 

 516 
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 517 

Each method was also benchmarked to find the proportion of annotated CAZymes that were 518 

correctly labeled as being CAZymes in each method: 519 

 520 

 521 

 522 

where  523 

 524 

 525 

 526 

Gene catalog construction 527 

 528 

The metagenomes for each disease type (IgG4-related disease21 and Crohn’s disease54) and 529 

for the mother/infant cohort40 were assembled into their respective gene catalogs following the 530 

same procedure. A quality control check was performed using Trim Galore!71 to remove 531 

sequencing adapters and kneadData to remove human reads and trim low quality reads (--532 

trimmomatic-options "HEADCROP:15 SLIDINGWINDOW:1:20 MINLEN:50") to keep reads that 533 

were minimum 50 bp long. All the quality controlled reads were assembled using MEGAHIT72. 534 

Each contig had all of the open readings frames predicted using Prodigal73, and we keep both 535 

gene and protein sequences. A non-redundant gene catalog was built with a sequence identity 536 

threshold of 95% using CD-HIT64. To construct a count matrix, each read was mapped using a 537 

Burrows-Wheeler Aligner with at least 95% sequence identity for the length of the read. For 538 

determining the taxonomy of each contig, MMseqs274 was used with NCBI RefSeq as the 539 

taxonomic annotation database.  540 

 541 
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The IgG4-RD non-redundant (90% sequence identity) gene catalog consisted of 2,237,319 542 

genes from 58 IgG4-RD samples and 165 healthy control samples21. The CD non-redundant 543 

(90% sequence identity) gene catalog consisted of 5,929,528 genes from 68 CD samples and 544 

34 non-IBD control samples54. The mother/infant non-redundant (95% sequence identity) gene 545 

catalog consisted of 2,327,970 genes, with 74 infants, 137 mothers, and 70 mother-infant pairs. 546 

Infants were sampled each month between birth (0 months) and 12 months (and additionally at 547 

0.5 months), and mothers were sampled at gestational week 27 (approximately 3 months prior 548 

to the birth of the child) and at 3, 6, 9, and 12 months after the birth40. Each of these gene 549 

catalogs were constructed in each respective prior study and directly utilized in the analysis 550 

presented in this paper. 551 

 552 

Analysis of mother/infant gene catalog 553 

 554 

The entire mother/infant gene catalog was run through dbCAN2 (diamond blastp -d 555 

${CAZy_reference} -q ${query_file} -o ${output_str}.matches.tsv -e 1e-102 -k 1 -p 2 -f 6) and 556 

eggNOG on default parameters. Additionally, embeddings were generated for the entire 557 

mother/infant dataset using ProtT5, with CAZyLingua running inference on the entire gene 558 

catalog.  559 

 560 

We took the 977 horizontally-transferred gene subset and collected all of the dbCAN2 and 561 

CAZyLingua results. We took the 12 genes that only CAZyLingua predicted and performed a 562 

structural prediction on each of the protein sequences. We performed a Euclidean distance 563 

search between those 12 embeddings and the nr.CAZy.60.fasta database to find the closest 564 

embedding and subsequently the CAZyme family. We then used ColabFold49 to fold each of the 565 

12 proteins and their nearest neighbor to generate PDBs for each horizontally-transferred gene 566 

and neighbor pair. A structural alignment was computed on each of these pairs using 567 
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Foldseek50, which returns the overlapped structures and a TM score for each pair. To compute 568 

sequence homology metrics, we selected the “Align two or more sequences'' option in the 569 

BLASTp suite on the NCBI website 570 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_571 

LOC=blasthome). 572 

 573 

The putative GH33 and each of the GH33 and GH43_13 in nr.CAZy.60.fasta were ordinated 574 

through tSNE (sklearn TSNE package)42 and plotted using matplotlib75. A structural prediction of 575 

the putative GH33 was produced from ColabFold49 and the amino acid residue substitution 576 

analysis was done using custom scripts. To search against known, experimentally-characterized 577 

structures, the DALI option to pairwise search against PDB2553 was used. To structurally align a 578 

pairwise hit from putative GH33 to a structure from PDB25, we used US-align51 to generate 579 

aligned structures and a TM score. 580 

 581 

Disease metagenomic differential abundance analysis 582 

 583 

In each disease gene catalog, linear modeling was used to regress different disease covariates 584 

onto each gene in the catalog to find differentially abundant genes (features). An abundance 585 

filter was applied to the entire count matrix to remove any genes with <10% prevalence across 586 

samples. A zero-inflation was applied to any zeros in the count matrix, where the zero value 587 

would be replaced by the minimum non-zero value in the given feature and divided by 2. The 588 

fold change was calculated by dividing the mean of the disease group by the control group, and 589 

taking the log2 of the value. Each value is log2 transformed and a z-score is calculated for every 590 

value in a given feature using the scipy76 library. A linear model, from the statsmodels55
 library, 591 

is then applied to each feature. For IgG4-RD, the metadata covariates modeled were: age, on 592 

treatment, rituximab, prednisone, other treatments, sex, and cohort. In CD the variables 593 
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modeled were: age, on antibiotics, mesalamine, and steroids. A significance threshold was 594 

established for all of the analyses: we followed a multiple testing adjustment, and p-values were 595 

corrected using Benjamini-Hochberg correction, with a false discovery rate (FDR)-corrected p 596 

value (q-value) of 0.25. The volcano plots were labeled based on four conditional arguments for 597 

the CD and IgG4-RD metagenomic catalogs. For CD, the criteria for the displayed labels were:  598 

1.  logFC > 2 and p-value < 1x10-5  599 

2.  logFC < -2 and p-value < 1x10-8  600 

3.  logFC > 3  and p-value < 1x10-2.5  601 

4.  logFC < -4.5 and p-value < 1x10-3 602 

 603 

For IgG4-RD, the criteria for the displayed labels were:  604 

1.  logFC > 2 and p-value < 1x10-5  605 

2.  logFC < -2 and p-value < 1x10-3.5  606 

3.  logFC > 3  and p-value < 1x10-2.5  607 

4.  logFC < -3.5 and p-value < 1x10-2 608 

 609 

Acknowledgements 610 

 611 

K.T. was supported by the Gates Cambridge Trust and the Rotary Foundation. This work was 612 

funded by the National Institutes of Health (DK043351, DK127171, and HL157717 to R.J.X.) 613 

and Center for Microbiome Informatics and Therapeutics. 614 

 615 

Figure Legends 616 

 617 

Figure 1. CAZyLingua: a deep learning model used for the classification of proteins as 618 

CAZymes. a) The workflow of CAZyLingua starts with raw embeddings from ProtT5 followed by 619 
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the use of those embeddings as input through two classifiers to distinguish 1) whether the 620 

embedding was a CAZyme and if so, 2) to which CAZyme family it belongs to. b) The training 621 

strategy for CAZyLingua began with a 60% sequence identity clustering to remove redundancy 622 

from the CAZy database in order to train on distinct CAZymes. The Cross Entropy loss function 623 

was applied for training and the loss function that was used included a weighted balancing 624 

function to proportionally sample the number of representative sequences per CAZyme 625 

class/family/subfamily in the database. This strategy was employed so as not to oversample on 626 

highly represented families. 627 

 628 

Figure 2. CAZyLingua performance relative to the BLAST-based CAZyme annotation tool 629 

dbCAN2. CAZyLingua was compared to the dbCAN2 DIAMOND+CAZy annotation tool option 630 

(benchmarked with an e-value < 1x10-102). A similar procedure as dbCAN2 was followed by 631 

picking 3 bacterial strains with manual annotations and varying CAZyme counts per strain. a) 632 

For predictions by CAZyLingua only, dbCAN2 only, and shared between the two methods, the 633 

proportion of correct predictions made by each method (left) and the proportion of true 634 

CAZymes made by each method (right) were calculated. b) F1 scores (harmonic means of 635 

precision and recall) of all CAZyLingua predictions, all dbCAN2 predictions, and all predictions 636 

combined, whether shared between the methods or not. c) Ground truth CAZymes were 637 

stratified by class, and the percentage of accurate predictions per CAZy class from our 638 

Quadratic Discriminant Analysis (QDA) binary classifier was calculated. d) Precision/recall (left) 639 

and ROC (right) curves comparing CAZyLingua to dbCAN2. The output of the decision function 640 

of the boundary that was trained for CAZyLingua and the e-value for dbCAN2 were used for 641 

target scores. 642 

 643 

Figure 3. Application of CAZyLingua to metagenomes in paired mothers and infants. a) 644 

Comparison of CAZyLingua to eggNOG and dbCAN2 on a large metagenomics gene catalog 645 
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from mothers and their infants. Time of the sample is in months relative to childbirth (month 0). 646 

Dotted lines represent no fold change. b) CAZyLingua predicted 27,133 genes that dbCAN2 did 647 

not, shown by CAZy class for all infant and maternal samples at each sample month. Boxplots 648 

in a and b show medians and interquartile ranges (IQRs), with whiskers showing ± 1.5 IQR. c) 649 

Predicted structures of proteins from CAZyLingua (red) and the protein embedding nearest 650 

neighbor (grey) structurally aligned with TM scores, and BLAST metrics for GH88, GH10, and 651 

GH63.  652 

 653 

Figure 4. CAZyLingua distinguishes GH33 CAZyme from nearest neighbors of raw ProtT5 654 

embeddings. a) tSNE of (left) ProtT5 embeddings from the GH33 and GH43_18 families and 655 

the CAZyme predicted by CAZyLingua (GH unknown) and (right) a segment of the last layer of 656 

CAZyLingua. b) GH33 protein residues were mutated in a sliding window of ten residues over 657 

the entire sequence, and ProtT5 embeddings were generated for each sliding window mutation. 658 

Known features are overlaid along sections of the sequence. The probability of the CAZyLingua-659 

predicted classification being a GH33 was calculated for each sliding window mutation (top). 660 

The predicted GH mapped to a PUL containing several regulatory elements consistent with a 661 

CAZyme (bottom left). BLAST metrics on the predicted GH signal peptide compared with GH33 662 

and GH43_18 sequences (bottom right). c) Overlays of the predicted GH protein structure 663 

generated using ColabFold with a sialidase (top) and a neuraminidase (bottom). 664 

 665 

Figure 5. Application of CAZyLingua to CAZymes in metagenomes of patients with 666 

inflammatory and fibrosis-prone diseases. Genes enriched and depleted in the gene 667 

catalogs of patients with a) CD and b) IgG4-RD selected on the fringe of the volcano plot (see 668 

Methods for labeling criteria). c) Predicted CEs in the enriched IgG4-RD gene set, stratified to 669 

analyze only the genes CAZyLingua predicted. d) The proportion of dbCAN2-predicted 670 

CAZymes also predicted by CAZyLingua as the decision function between CAZyme/non-671 
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CAZyme of the QDA classifier in CAZyLingua was varied. The Venn diagram shows the 672 

numbers of CAZymes predicted by CAZyLingua, dbCAN2, and both on our current model 673 

benchmarks of the QDA. 674 

 675 

Extended Data Figure Legends 676 

 677 

Extended Data Figure 1. Embedding weights from first layer to next, no interpretable 678 

chemical features. We extracted the weights (𝑾) from the CAZyLingua multiclass classifier 679 

between the input layer and first hidden layer, which is a matrix of dimension 1024x256. After 680 

applying a transpose to get 𝑾𝑻	we multiplied the two matrices, 𝑾 ∙𝑾𝑻	which produced a 681 

symmetric matrix, 𝑺 of dimensions 1024x1024. After taking the 𝒅𝒊𝒂𝒈(𝑺)	we obtained a vector of 682 

size 1024, which is the size of the original embedding from ProtT5. We plotted the values in the 683 

vector to visualize if there were any features or positions in specific regions of the embedding 684 

that are specific to CAZymes. 685 

 686 

Extended Data Figure 2. Training runs for finding the best model. RayTune ran 20 models 687 

in parallel over each epoch and pruned any models that began to stagnate or have a decline in 688 

training accuracy. The models were evaluated on the metric of minimizing training loss, and the 689 

model with the minimal loss was stored as a checkpoint. There were 100 epochs over which 690 

training occurred, and the metrics were stored and written to a TensorBoard that produced 691 

these visualizations.  692 

 693 
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Figure 3
a Fold change of CAZyme genes
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Figure 4
a Probability of GH33 after substituting amino acids in specific positions
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Figure 5
a
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Extended Data Figure 1
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Extended Data Figure 2
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Using the balanced accuracy score (micro averaging) over correct labels:

Test accuracy: 99.6%
dbCAN: 98.2%
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