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Abstract

In metagenomics, the pool of uncharacterized microbial enzymes presents a challenge for
functional annotation. Among these, carbohydrate-active enzymes (CAZymes) stand out due to
their pivotal roles in various biological processes related to host health and nutrition. Here, we
present CAZyLingua, the first tool that harnesses protein language model embeddings to build a
deep learning framework that facilitates the annotation of CAZymes in metagenomic datasets.
Our benchmarking results showed on average a higher F1 score (reflecting an average of
precision and recall) on the annotated genomes of Bacteroides thetaiotaomicron, Eggerthella
lenta and Ruminococcus gnavus compared to the traditional sequence homology-based method
in dbCAN2. We applied our tool to a paired mother/infant longitudinal dataset and revealed
unannotated CAZymes linked to microbial development during infancy. When applied to
metagenomic datasets derived from patients affected by fibrosis-prone diseases such as
Crohn’s disease and IgG4-related disease, CAZyLingua uncovered CAZymes associated with
disease and healthy states. In each of these metagenomic catalogs, CAZyLingua discovered
new annotations that were previously overlooked by traditional sequence homology tools.
Overall, the deep learning model CAZyLingua can be applied in combination with existing tools
to unravel intricate CAZyme evolutionary profiles and patterns, contributing to a more

comprehensive understanding of microbial metabolic dynamics.
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Introduction

Rapid advancements in sequencing technologies have led to an abundance of genomic data,
outpacing the capacity to annotate and decipher the functions of these sequences’. A significant
challenge arises in contextualizing the vast number of unknown functions present in microbes??
and, as a consequence, a substantial fraction of microbial proteins remains unannotated*®. The
Unified Human Gastrointestinal Protein (UHGP) catalog alone holds greater than 170 million
protein sequences of which 40% lack any functional annotation®. Elucidating the function of
these sequences has the potential to provide insights into microbial metabolic behaviors and

niches within a particular ecosystem, including the dynamics of microbial-host interactions’°.

In microbial genomics, accurate annotations of the biological functions of enzymes is critical, as
these molecules have important roles in catalyzing essential biochemical reactions with high
specificity and efficiency'™"*. Carbohydrate-active enzymes (CAZymes) play fundamental roles
in various biological processes, including cell structure, signaling, energy storage, and nutrient

1517 Metagenomic sequencing and functional ‘omics have shown that CAZymes

processing
support the growth of beneficial microbes in infants by catabolizing human milk oligosaccharides
(HMOs)'®1°. CAZymes have also been found to play a role in the microbiomes of patients with

inflammatory diseases like Crohn’s disease (CD)® and IgG4-related disease (IgG4-RD), in

which there is upregulation of glycan-related pathways?'.

Historically, functional annotation tools have relied on hidden Markov models (HMMs)?2 that
are built by aligning many amino acid sequences or using sequence homology tools like BLAST,
which employs a pairwise alignment strategy between query and target sequences®*%. The

current state-of-the-art tool for annotating CAZymes, dbCAN2, similarly relies on sequence
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homology or HMMs?®. While having achieved significant effectiveness in genomic sciences,
these methods are not able to assign a biological role to one-third of all bacterial proteins?’.
Advancements in deep learning have significantly aided the functional annotation of proteins
and comprehension of their diverse functions?®=°. Protein language models (pLMs), such as
those used for structural prediction and other tasks, demonstrate remarkable capabilities in
decoding the intricate amino acid language of proteins, which facilitates their functional
annotation through a distinct approach compared to sequence-based alignment methods®*-3¢-3°,
CAZymes are classified into distinct classes of glycoside hydrolases (GHs), polysaccharide
lyases (PLs), glycosyltransferases (GTs) and carbohydrate esterases (CEs). Within a class, the
enzymes share a conserved fold, mechanism, and catalytic residues'®. With this fine grained

ontology and a set of distinct enzymatic reactions, CAZymes represent an ideal training dataset

for pLMs.

Here, we present CAZyLingua, the first annotation tool to harness pLMs for the accurate
classification of CAZymes. We applied CAZyLingua to gene catalogs derived from human
microbiome metagenomic datasets and identified CAZymes implicated in health and disease
states. Our first gene catalog was constructed from paired mother/infant metagenomes*°
consisting of ~2,000,000 proteins from which we uncovered ~27,000 CAZymes previously
undetected by dbCAN2 or eggNOG. Early persistence of diverse microbial strains in the gut has
been linked with metabolic pathways utilizing CAZymes, including breakdown of HMOs and
dietary polysaccharides and metabolism of mucin in the colon*'. CAZyLingua was then applied
to a metagenomic dataset derived from patients with inflammatory and fibrosis-prone diseases,
including CD and IgG4-RD. We observed that a greater percentage of genes significantly less
abundant in CD were predicted to be CAZymes, while in IgG4-RD, we found an expansion of
hundreds of CEs in particular. We demonstrate that CAZyLingua achieves high model accuracy

compared to standard sequence homology tools and can be used to augment the functional
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91  annotation of CAZymes in metagenomic studies, providing valuable insights into the diversity

92  and functional potential of these microbial enzymes.

93

94  Results

95

96 CAZyLingua Model and Performance

97

98 The CAZyLingua pipeline consists of multiple components (Figure 1a). First, the pLM ProtT5% is

99 used to generate embeddings for a given query of amino acid sequences. Second, a quadratic
100  discriminant analysis (QDA) classifier*?, which takes as an input the ProtT5 embedding, is
101  applied to predict whether the query is a CAZyme or not. Finally, if the query is predicted to be a
102 CAZyme, a multiclass classifier is used to make an annotation in the CAZy database ontology,
103  returning either a family or subfamily. The multiclass classifier was built to return probabilities
104  associated with the given family or subfamily annotation and can return a top kK number of family
105 labels for a given protein sequence.
106
107  We trained CAZyLingua on a subset of the CAZy database'®*? (Figure 1b). CAZymes were
108 selected from every family, spanning GHs, GTs, PLs, and CEs, to create a representative
109 training dataset. To benchmark our method, we followed a procedure similar to dbCANZ2, the
110  current state-of-the-art automated CAZyme annotation tool in the community?. We specifically
111 chose the DIAMOND+CAZy option in dbCAN2 as this was the closest representation to
112  BLASTp sequence homology. We performed a taxonomic split on the original CAZy database
113  sequences and selected 3 bacterial genomes with pre-annotated CAZymes in each genome:
114  Bacteroides thetaiotaomicron, Eggerthella lenta, and Ruminococcus gnavus. We selected these
115  bacteria based on the varying proportions of CAZymes per number of total proteins (B.

116  thetaiotaomicron: 7.6%, E. lenta: 1.1%, and R. gnavus: 3.0%) as well as biological relevance: E.
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117  lenta is very prevalent and found in the gut microbiomes of 80% of humans**, R. gnavus is

118  linked to patients with CD and produces a proinflammatory carbohydrate*®, and B.

119  thetaiotaomicron is one of the most prevalent members of the gut microbiota and dedicates a
120 large portion of its genome to the processing and utilization of carbohydrates*®. We obtained
121  these exact protein sequences from the CAZy sequence database to use as the reference set
122  for dbCAN2 DIAMOND+CAZy.

123

124  We ran the protein sequences through dbCAN2 and CAZyLingua and evaluated the binary

125 classification task of detecting whether the protein is a CAZyme or not. We combined the results
126  and stratified them into three sets based on whether the protein was predicted by dbCAN2 only,
127  CAZyLingua only, or both. The precision was calculated as the number of true positives in each
128  set divided by the number of predictions made in each set, and recall was calculated as the true
129  positives in each set divided by the total number of CAZymes in each genome (Figure 2a).

130 CAZyLingua alone performed better than dbCAN2 in each measure, but the best benchmarks
131  were in the set of proteins predicted by both tools. We then calculated the F1 score as the

132  harmonic mean of the precision and recall and demonstrated that CAZyLingua outperformed
133  dbCANZ2 on each test genome, notably by almost 10% for E. lenta (Figure 2b). We examined
134  the predictions by CAZyLingua based on CAZy classes and observed that CAZyLingua was
135 able to label all CE and GT classes in the test genomes (Figure 2c). We evaluated the

136  precision/recall and ROC curves for CAZyLingua and dbCANZ2, comparing the output of the
137  decision function from the QDA and the e-value from dbCAN2. Our results showed that

138 CAZyLingua can detect up to 92% of the CAZymes while maintaining a precision of over 80%,
139  while dbCAN2 can detect approximately 82% of the CAZymes at the same precision threshold.
140 CAZyLingua has a higher true positive rate compared to dbCAN2 for this current benchmark
141 (Figure 2d).

142
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143  For the CAZyme family classification step, we trained over the entire dataset more than 100
144  epochs, using RayTune*’ to select different random hyperparameter settings and the best of 20
145  different training models. The models were all trained with a cross-entropy loss, and RayTune
146  was optimized to store the model on a metric to minimize loss*®. The best performing model
147  (lowest loss value) was saved, with the corresponding hyperparameter configuration for any
148  CAZyme family inference. The CAZyme classifier is a four-layer, feedforward neural network
149  (with two hidden layers) with an input of 1024 dimensions (fixed size from ProtT5 embeddings)
150 projected to 256 dimensions then to 512 dimensions to a final classification output layer of 574
151 corresponding to all the unique CAZyme families and subfamilies in our training dataset. We
152  used a hyperbolic tangent (Tanh) as the non-linearity between the different layers. After training,
153  the weights between the first and second layers do not correspond to any interpretable features
154  in the embedding itself (Extended Data Figure 1). When checking a micro-averaged

155 classification accuracy of all the families in the test genomes, CAZyLingua predicted 99.6% of
156 the families accurately, while dbCAN2 predicted 98.2% accurately.

157

158  CAZyLingua Identifies Horizontally-Transferred Genes as CAZymes

159

160  We further tested if CAZyLingua would be able to uncover CAZymes in a gene catalog of

161 microbiome samples from mother-infant pairs collected from late pregnancy to one year of

162  age. We predicted CAZymes using CAZyLingua, alongside eggNOG and dbCAN2, on the
163  entirety of the gene catalog, which contained 2,327,970 genes. CAZyLingua predicted 81,498
164 CAZymes, while dbCAN2 and eggNOG predicted 77,614 and 38,862 CAZymes, respectively.
165  We stratified the dataset by number of genes per sample, then by sample month, and split the
166  observations by mother and infant. We calculated the fold change between each method and
167  CAZyLingua based on the genes per sample per month to determine how many more CAZymes

168  were predicted by CAZyLingua. CAZyLingua predicted at least 2-fold more new genes in
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169 maternal and infant metagenomes compared to eggNOG and on average 1.2-fold more new
170  genes than dbCAN2 (Figure 3a). When examining the predictions made by CAZyLingua, we
171 observed 27,133 unique CAZyme predictions that were not made by dbCAN2. We distinguished
172  each unique CAZyme by CAZyme class within each sample over each sample month. We

173  observed that our model predicted many more GTs across all the samples in every month

174  (Figure 3b).

175

176  We next focused on a subset of the metagenomic data to specifically look at genes that were
177  found to be horizontally transferred between a mother/infant pair. A previous study performed a
178  sequence homology (BLASTn) analysis on DNA sequences between maternal and infant

179  metagenomes and identified 977 genes with 100% nucleotide identity that were harbored by
180  both maternal and infant species*’, a portion of which were predicted to function in carbohydrate
181 metabolism. Of the 977 genes, 12 were predicted as CAZymes by our model and either not

182  predicted or predicted as an unknown family within a CAZyme class by dbCAN2.

183

184  In order to understand the structural contributions of language models to the general predictions
185  given from ProtT5 and ultimately our pLM classifier, we searched for nearest neighbors between
186  our 12 horizontally-transferred gene embeddings in the CAZy database embeddings using

187  Euclidean distance. After identifying nearest neighbor pairs and extracting the corresponding
188  protein sequences, we computed structural predictions for those proteins using ColabFold*®. We
189  used FoldSeek® to perform a structural alignment between the structures of the predicted

190  protein from CAZyLingua and the nearest protein embedding neighbor in the CAZy database.
191

192  CAZyLingua predicted four GHs, including three belonging to the families 88, 10, and 63, that
193  had a high structural homology to their nearest neighbor in the CAZy database (all with a TM

194  score > 0.50, which indicates a same fold between two proteins®'). In contrast, when evaluating
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195 sequence homology (BLASTp) between the amino acid sequences of the three proteins and the
196  nearest neighbor in the CAZy database, we found that between both sets of sequences the
197  sequence identity was lower than 35%, and for GH88 and GH63 the coverage was less than
198  30% (Figure 3c). Given these metrics, this suggests that CAZyLingua is able to predict

199 CAZymes incorporating structural homology, despite the lack of any amino acid sequence

200  homology.

201

202  The fourth GH predicted was given the annotation of GH43 18 when evaluating the ProtT5
203 nearest neighbor, while CAZyLingua classified it as a GH33 (Figure 4a). We sought to explain if
204 the classification of a GH33 was based on specific features of the unknown CAZyme. We first
205 evaluated the neighborhood of genes around the unknown CAZyme to establish if it exists in a
206 functional polysaccharide utilization locus (PUL). We found several canonical PUL features,
207 including several regulatory elements related to carbohydrate metabolism: a hybrid two-

208 component system (HTCS), TonB-dependent receptor (SusC homolog), and contiguous

209  substrate-binding lipoprotein (SusD homolog) (Figure 4b). In addition to this unknown enzyme
210  mapping to a PUL, we established the presence of a lipoprotein signal peptide in the enzyme
211 through SignalP®?. We then explored the link between several functional sites in the GH33 and
212  the corresponding embedding generated by ProtT5. To do so, we created a sliding window of
213 10 amino acids and created more distant substitutions of the original sequence within that

214  window based on the BLOSUMG62 distance. Substituting areas near the signal peptide

215  corresponded to the greatest losses in the CAZyLingua predictive value of a GH33. The first 20
216  amino acids that correspond to a signal peptide were used in a homology search, and in all
217  BLAST metrics, the signal peptide showed stronger homology to GH33: a combined percent
218 identity and coverage of 64.2% for GH33 and 55.0% for GH43_18, providing stronger evidence
219  for its classification as a GH33 (Figure 4b).

220
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221  To determine if there was any structural homology between our unknown CAZyme and the

222  GH33 family, we used ColabFold* to fold our protein and ran a structural search with 3D crystal
223  structures found in the PDB25 database using DALI®3. Our unknown protein had several

224  matches, with two in the top five matches being GH33-like enzymes, namely a neuraminidase
225  and a sialidase. After structurally aligning®' our unknown structure with the neuraminidase and
226 the sialidase crystal structures, we observed that the predicted GH33 shared significant

227  structural homology (TM score > 0.5) with both. The sequence homology (BLASTp) between
228 the amino acid sequences pairwise with the unknown protein revealed sequence identities

229  <36% and coverages <31% (Figure 4c).

230

231  Analysis of Enriched CAZymes in Inflammatory Disease Metagenomic Gene Catalogs

232

233  We next focused our attention on applying CAZyLingua to two metagenomic datasets derived
234  from patients with inflammatory and fibrosis-prone diseases: one from 68 CD patients and 34
235  control subjects % and another from 58 IgG4-RD patients and 165 healthy controls®'. Both of
236 these disease states have unique microbial signatures potentially underlying pathologic

237  mechanisms.

238

239 To investigate disease-associated genes that may be unannotated CAZymes, we first used a
240 linear model against the CD gene catalog®®>*® (Methods) and identified 3,499 genes that were
241  significantly more abundant (two-sided t-test, p < 1x10?, log fold change > 2) and 30,125 genes
242  that were significantly less abundant (two-sided t-test, p < 1x10, log fold change < -2) in CD.
243  Among these, CAZyLingua predicted 30 more abundant genes and 569 less abundant genes to
244  be CAZymes (Figure 5a, Supplementary Table 1). Given the ~10-fold difference between more
245  abundant genes in controls versus CD, we observe many more glycan-related pathways

246  associated with health compared to CD.

10
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247

248  Following the same analysis procedure, we built a linear model for a differential gene

249  abundance analysis for IgG4-RD metagenomes. We stratified genes based on the same

250 criteria. Compared with the CD dataset, we noticed a higher proportion of genes were

251  significantly more abundant in IgG4-RD compared to a healthy state. We observed 9,225 genes
252  that were significantly more abundant compared to 7,284 genes that were significantly less

253 abundant in IgG4-RD. CAZyLingua predicted 65 more abundant and 87 significantly less

254  abundant CAZymes in IgG4-RD (Figure 5b, Supplementary Table 2).

255

256  We then broadened our focus to all the CAZymes in the IgG4-RD dataset, irrespective of their
257  significance to disease from the linear model. CAZyLingua predicted 437 CAZymes that

258 dbCANZ2 did not. Specifically in IgG4-RD, there was a higher number of CEs that only

259  CAZyLingua predicted. CE sequences comprise only 4% of all the sequences in the CAZy

260 database; the low representation of certain sequence examples can pose a challenge for

261  sequence homology tools, which may explain the lower number of hits identified by dbCAN2. In
262  our set of genes predicted by CAZyLingua only, we observed that ~34% were CEs. Families of
263  CEs that were particularly represented included CE1, CE3, CE4, and CE12 (Figure 5c). All of
264 these families share SGNH (Ser-Gly-Asn-His) hydrolase activity, which is a conserved structural
265 feature of the enzymes in these families, suggesting that these enzymes may have low

266  sequence homology but higher structural homology within each class® .

267

268 The increase in annotations by CAZyLingua for these specific CE families may be due to the
269 unique structural features of the families that otherwise would be hard to annotate by traditional
270  sequence homology methods. Given the distinct set of CAZyme families that CAZyLingua was
271 able to predict, we sought to determine the extent of overlap between CAZyLingua predictions

272  and the set of CAZymes that dbCAN2 annotated. To learn about the binary classification of

11
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273  CAZyme/non-CAZyme given by the QDA predictions and the results from dbCAN2, we varied
274  the QDA decision boundary. We calculated the percentage of CAZymes that CAZyLingua

275 labeled as CAZyme that dbCAN2 also predicted against the percentage of the entire IgG4-RD
276  gene set that CAZyLingua labeled as CAZyme. Our QDA model was benchmarked where ~5%
277  of the dataset was labeled CAZyme by CAZyLingua and that represents ~60% of all the genes
278  that dbCAN2 also predicted as CAZyme. At ~30% of the dataset being labeled as CAZyme by
279  CAZyLingua, we captured ~80% of all the dbCAN2-predicted CAZymes. As we relaxed our
280 decision boundary and increased the number of genes in the dataset CAZyLingua labeled as
281  CAZyme, we observed a relatively linear relationship between the genes labeled as CAZyme by
282  both dbCAN2 and CAZyLingua (Figure 5d). This linear relationship describes a relative

283  discordance between the annotations from the two different tools. The divergence of

284  annotations generated by CAZyLingua compared to dbCAN2 can add to existing CAZyme

285 annotations in the analysis of large metagenomics studies.

286

287 Discussion

288

289  In this study, we introduced CAZyLingua, a novel approach that leverages pLMs to enhance the
290 identification and functional annotation of CAZymes in metagenomic datasets. Our method

291  mitigates the ongoing challenge of assigning functions to the vast array of unannotated

292  microbial enzymes within these datasets, shedding light on their potential roles in various

293  Dbiological processes. The use of pLMs has emerged as a powerful tool for unraveling protein

294  functions in microbial genomics?®-°

, and our results further emphasize their efficacy in this
295  context. When compared with traditional sequence homology, CAZyLingua improved the F1
296  score of classifying a protein as a CAZyme by 6.1% for each of the benchmarked test genomes

297  with gold standard annotations.

298

12
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299 CAZyLingua's efficacy is evident in its successful identification of previously undiscovered

300 CAZymes within a longitudinal microbiome dataset of mother-infant pairs. We detected over
301 27,000 unique putative CAZymes that were missed by dbCAN2. Furthermore, our identification
302  of horizontally-transferred CAZymes between mothers and infants highlights the ability of

303 CAZyLingua to uncover potentially crucial enzymatic functions that traditional sequence

304  homology methods might overlook. When investigating GHs that were missed by dbCAN2, we
305 noticed that these GH structures shared low sequence homology (sequence identity < 40%) to
306 the most homologous protein in the embedding latent space. Our analysis of structural

307  similarities between CAZyLingua-predicted enzymes and GH structures highlights the potential
308 of CAZyLingua to predict enzyme functions based on structural conservation (TM score > 0.5),
309 thereby offering insights into their catalytic roles. We note that these findings are based on

310  structural predictions from ColabFold, not crystal structures or experimentally validated

311 enzymes. One advantage to our choice of ColabFold as a structural prediction tool is that the
312  process of generating a prediction is heavily dependent on a multiple sequence alignment

313  (MSA) between an unknown sequence and a large reference of sequences. The goal of using
314  ColabFold over popular pLM- based structural prediction tools (e.g., ESM-fold, OmegaFold) was
315  for there to be less of a bias between predictions based on embeddings in a process similar to
316  CAZyLingua and how ProtT5 may be trained versus a standard MSA.

317

318  We focus on an example of a horizontally-transferred GH33 that was not predicted by dbCAN2,
319  eggNOG, or a nearest neighbors search using ProtT5 in the CAZy database. Upon using

320 ColabFold to fold this GH33, we performed a sensitive structural search using DALI®® against
321 experimentally-characterized crystal structures (PDB25) and found the top hits to include other
322  GH33 enzymes (a sialidase/neuraminidase), with significant structural homology (TM score >
323 0.5, Z score > 2). A recent study examining the early colonization of microbes in a murine

324  model® highlights an example of vertical transmission of a GH33 sialidase (NanH) between
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325 dams and pups. The NanH gene is triggered by sialylated host glycans and aids in the early
326  colonization of Bacteroides fragilis. The putative GH33 discovered by CAZyLingua that was
327 transmitted between a maternal Alistipes finegoldii strain and an infant Alistipes putredinis strain
328  might exhibit similar properties as NanH and could be part of a mechanism to aid in the

329  establishment of Alistipes putredinis in the infant gut. Again, sequence homology between our
330 putative GH33 and NanH was low (33.93% identity, 26% coverage) despite a similar predicted
331 function, indicating that existing sequence homology methods might have overlooked the

332  putative GH33 as a functional homolog. This highlights the strengths of pLMs as alternative
333  tools to augment functional protein homology discovery.

334

335  We then extended the utility of CAZyLingua to metagenomic datasets from patients with CD and
336 1gG4-RD. Both diseases share pathological features of fibrotic lesions despite having distinct
337  clinical presentations. Patients with CD have been shown to have lower microbial diversity and
338 carbohydrate utilization pathways in their gut microbiota®'~®3. Unique microbial signatures have
339  been strongly associated with IgG4-RD, and those signatures included genes linked to

340 carbohydrate metabolism?'. Our initial analysis focused on genes that were upregulated in

341  1gG4-RD, where we found a distinct set of CAZymes using CAZyLingua. Investigating the

342  taxonomy of those genes, we found several from Streptococcus species that are typically found
343 in the oral cavity. In the previous study?', many Clostridium and typically oral Streptococcus
344  species were overabundant in the disease phenotype while Alistipes and Bacteroides species
345  were depleted. Six of the top 20 (30%) putative CAZymes predicted by CAZyLingua mapped to
346  Streptococcus mutans, and we observed that many genes from this microbe were upregulated
347 in disease. We observed enrichment of CEs within this species and postulated that there may
348 be several CAZymes that help Streptococcus mutans adapt to an ecological niche in the

349  gastrointestinal tract of patients with IgG4-RD.

350
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351  CEs themselves were sparsely populated in our training dataset for CAZyLingua and similarly in
352 the CAZy database of sequences. Due to the imbalance of this class of enzymes, we postulate
353 that sequence homology may fail to annotate these enzymes. During our training procedure, we
354  use a weighted cross entropy loss, where the weights are proportional to the number of training
355  examples for a given CAZyme family or subfamily. By allowing a more stringent penalty on

356 incorrectly annotating a rare family, we are able to predict more rare families like CEs through
357  CAZyLingua.

358

359  The implications of our findings extend beyond the specific datasets analyzed in this study.

360 CAZyLingua's demonstrated ability to accurately predict CAZymes has broader implications for
361 deciphering the functional potential of microbial communities. A similar procedure of fine-tuning
362 pLM embeddings can be broadly applied to other enzyme classes and protein domains to aid in
363 functional annotation. As an ever-growing number of metagenomic datasets become available,
364  the incorporation of deep learning tools like CAZyLingua into existing methods offers a

365  promising avenue for comprehensive and accurate functional annotation.

366

367 Methods

368

369  CAZyme training dataset curation

370

371 The CAZy database found at http://www.cazy.org/IMG/cazy data/cazy data.zip is cataloged by

372 the dbCAN tool maintainers and a fasta file is available at

373  https://beb.unl.edu/dbCAN2/download/. We downloaded the CAZy database as of August 06,

374 2022 containing 2,428,817 sequences as it was the latest version that was available for when
375  we began training the model. We chose to focus on the four main classes CAZymes: 173

376  families and 177 subfamilies in glycoside hydrolases (GHs), 115 families in
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377  glycosyltransferases (GTs), 20 families in carbohydrate esterases (CEs), and 42 families and 60
378  subfamilies in polysaccharide lyases (PLs). We removed everything that did not belong to one
379  of these families and any sequences that were larger than 5000 amino acids in length to prevent
380 GPU out of memory errors when generating embeddings. The entire number of remaining

381  sequences was 2,413,796: 1,221,013 in GH, 1,027,247 in GT, 122,413 in CE, and 43,123 in PL.
382

383  Using the CD-HIT software tool®*, we clustered our CAZy database at 60% sequence identity.
384  CD-HIT returns a representative sequence for a given cluster. The clusters were created such
385 that, in the resulting database (nr.CAZy.60.fasta), no two sequences had a sequence similarity
386  greater than 60%. The resulting database preserved all of the original families and subfamilies
387  while reducing the redundancy in the database. The database in nr.CAZy.60.fasta contained
388 232,736 sequences, of which 92,385 sequences were in GH, 125,240 in GT, 10,177 in CE, and
389 4,934 in PL.

390

391  Following the curation of the CAZy sequences, we used ProtT5 to generate embeddings for
392  each of these sequences using a V100 GPU. We stored the embeddings in h5 files, following
393 the hierarchical data format (HDF). This embedding database served as the training dataset for
394  both of the classifiers in CAZyLingua.

395

396  Quadratic discriminant analysis training and testing

397

398 To build the CAZyme/non-CAZyme binary classification step in the CAZyLingua pipeline we
399 modeled the embeddings from the CAZy training dataset as our positive case (CAZyme) and
400 used a combination of data from protein families database Pfam and the Kyoto Encyclopedia of
401  Genes and Genomes (KEGG) to construct our negative examples (non-CAZyme). We started

402  with the 1,296,280 Pfam seeds as a dataset from which to construct negative examples. Pfam
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403 seeds serve as the basis for hidden Markov model (HMM) profiles and are highly curated to
404  span a diversity of domains®®. This dataset has been previously described as building the HMMs
405 that contribute to greater than 75% of all the functional annotations of Uniprot sequences in
406  Pfam?®. We additionally supplemented the negative examples with 3,435 enzymes from KEGG
407  that were non-CAZymes using the KEGG Enzyme database®.

408

409 In order to create a set of negatives on which to train, we used the ultra-sensitive parameter of
410 DIAMOND® in the BLASTp setting between the Pfam seeds against the CAZy database and
411  then the KEGG enzymes against the CAZy database. We removed any Pfam seeds or KEGG
412  enzymes that were listed as hits from the DIAMOND output. The remaining 56,244 Pfam seeds
413  and 3,429 KEGG non-CAZyme enzymes were combined to create a non-CAZyme dataset. We
414  sampled 5,000 CAZymes from nr.CAZy.60.fasta spanning all families and subfamilies in each
415  class as our positive example.

416

417  We built our model using scikit-learn*?, importing the function QuadraticDiscriminantAnalysis
418  with the store_covariance parameter selected as true. We used the library skops to pickle and
419  save the state of our trained model. For a given set of embeddings, the QDA classifier will label
420 them as CAZyme or non-CAZyme and store the results of the CAZy embeddings in an h5 file.
421

422  To model our QDA, we model the distribution of each embedding whether it is a CAZyme or not
423 a CAZyme. These form our two classes c: CAZyme and non-CAZyme.

424

425  We model the prior probability of a class , Ply=c) by the empirical proportion of training

R1024

426  samples in that class. The conditional probability of a protein’s embedding x € given its
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427  classc, P(% | ¥ = ¢)is modeled by a multivariate Gaussian distribution with probability density

428  function:

429
1 1 t -1

430 }%x|yzc):(%ﬂWﬂEAUfmp<_§(x_+%)ZC(x_ug>

431

432  The parameters /e and 2 for each class c are the maximum likelihood estimators given the

433  training samples in that class. If the training samples are (i, yi),i=1,..., N the maximum

434 likelihood estimators are given by

435
L

fle = ﬁc ; Ly
436 i
437

. R

Y = N1 Z_;(xz — i) (i — i)
438 P
439

440  where Nc is the number of samples class c.
441
442  Predictions for a protein with embedding =" are made by assigning the class ¢* which maximizes

443  the posterior probability, given by Bayes’ rule:

444
. Pz*|y=c)Ply=c
Ply=cls) = PO 1= 9Pl=0
445 (@)
446

447  where only the numerator depends on c. A decision surface is created for the QDA based on the

448  two classes, CAZyme and non-CAZyme*.
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449

450 In constructing ROC curves, the decision function that we used is the logarithm of the posterior
451  probability.

452

453  Feed forward neural network architecture

454

455  The final stage in the CAZyLingua model is the multiclass classification for a given CAZyme
456 family based on the embeddings selected as CAZyme from the QDA. The feedforward neural
457  network architecture has three overall layers with two hidden layers. The fixed size input of 1024
458  dimensions from ProtT5 embeddings are projected to 256 dimensions then to 512 dimensions
459  to a final classification output layer of 574, which reflects the number of CAZyme families and
460  subfamilies. We implemented this model using Pytorch Lightning® to create a classifier that
461 included all of the training, validation, and testing steps.

462

463  The model used a Cross Entropy Loss from PyTorch*® with the weights parameter set to

464  balance the number of sequences from the different families and subfamilies. In order to prevent
465  over training on highly represented families, the loss function penalty for a given family was
466 calculated as the inverse of the number of sequences per family. This ensures that if the model
467 s incorrectly labeling a family with very few training examples there will be a stronger penalty in
468 comparison to incorrectly labeling a family with a higher proportion of the training examples.
469

470  Hyperparameter optimization and neural network training

471

472  The multiclass classification neural network in the CAZyLingua pipeline was trained using

473  RayTune*’, a hyperparameter tuning library. The hyperparameters that were tested were the

474  size of layer 1, the size of layer 2, the batch size, and the learning rate. In order to find the
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optimal hyperparameters to select the most accurately trained model, 20 models were tested in
parallel with random sampled hyperparameters selected by RayTune (Supplementary Table 3).
Each model was trained over 100 epochs using the Async Successive Halving (ASHA)®
scheduler that terminates a model (early stopping) optimized to minimize the training loss.
Metrics for the validation accuracy were collected after each epoch, and the testing accuracy

was collected after the model was fully trained. Each training model was visualized using

TensorBoard™ (Extended Data Figure 2).

Hyperparameter Sampling Method Sampled Values

Layer 1 Size Random Choice (256, 512, 768)

Layer 2 Size Random Choice (512, 1024, 1536)

Batch Size Random Choice (127, 256, 512)

Learning Rate Log Uniform Sample [1e-4 — 1e-2]

Supplementary Table 3. Hyperparameter Tuning. Training epochs over time to pick the
model with the best classification accuracy. Using RayTune, we performed a random grid
search of different hyperparameter values and tested 20 models in parallel. We picked the

model with the best accuracy and used that as the model for all further inference.

Benchmarking of CAZyme/non-CAZyme QDA classifier

To benchmark the QDA classifier, we used different metrics to quantify the performance of

CAZyLingua to dbCAN2. For the F1 score, we followed a standard formula:
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493

F1 Score = 2 x =2 X preC.IS‘lon
494 recall 4+ precision
495

496  where we define recall and precision as follows:

497
Procisi True Positives
recision =
498 True Positives + False Positives
True Positives
Recall = — .
499 True Positives + False Negatives
500

501  The precision-recall and ROC curves were plotted using sklearn*? using the

502  precision_recall_curve and roc_curve using the e-values from dbCAN2 and the scores from the
503 decision function of the QDA from CAZyLingua as the target scores.

504

505 We designed two metrics to benchmark the differences between CAZyLingua’s predictions,
506 dbCANZ2'’s predictions, and the predictions shared by both methods.

507

508 True CAZymes per Genome € {B.Theta CAZymes , E.Lenta CAZymes , R.Gnavus CAZymes}
509 CAZyLingua Only = {CAZyLingua Predictions}\{dbCAN2 Predictions}

510 dbCAN2 Only = {dbCAN2 Predictions} \ { CAZyLingua Predictions}

511 Both Predictions = {CAZyLingua Predictions} N {dbCAN2 Predictions}

512

513  With each of these different sets, we calculated the metric to find the proportion of true

514  CAZymes to all predictions in each genome predicted by each method:

515

Method} N {True CAZ S G
Proportion of true CAZymes in genome detected in method = {Method} 1 {True ymes per Genome}
516 |True CAZymes per Genome|
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517
518 Each method was also benchmarked to find the proportion of annotated CAZymes that were

519  correctly labeled as being CAZymes in each method:

520

521 Proportion of predictions in method that are correct = {Method} 1 {Tru;l(;:?}i}(;jnes per Genome}
522

523  where

524

525 Method € {CAZyLingua Only, dbCAN2 Only, Both Predictions}

526

527  Gene catalog construction

528

529  The metagenomes for each disease type (IgG4-related disease?' and Crohn’s disease®) and
530 for the mother/infant cohort*® were assembled into their respective gene catalogs following the
531 same procedure. A quality control check was performed using Trim Galore!”' to remove

532  sequencing adapters and kneadData to remove human reads and trim low quality reads (--
533  trimmomatic-options "HEADCROP:15 SLIDINGWINDOW:1:20 MINLEN:50") to keep reads that
534  were minimum 50 bp long. All the quality controlled reads were assembled using MEGAHIT"2.

535  Each contig had all of the open readings frames predicted using Prodigal”

, and we keep both
536  gene and protein sequences. A non-redundant gene catalog was built with a sequence identity
537  threshold of 95% using CD-HIT®*. To construct a count matrix, each read was mapped using a
538  Burrows-Wheeler Aligner with at least 95% sequence identity for the length of the read. For
539  determining the taxonomy of each contig, MMseqs2’* was used with NCBI RefSeq as the

540 taxonomic annotation database.

541
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The IgG4-RD non-redundant (90% sequence identity) gene catalog consisted of 2,237,319
genes from 58 IgG4-RD samples and 165 healthy control samples?®'. The CD non-redundant
(90% sequence identity) gene catalog consisted of 5,929,528 genes from 68 CD samples and
34 non-IBD control samples®. The mother/infant non-redundant (95% sequence identity) gene
catalog consisted of 2,327,970 genes, with 74 infants, 137 mothers, and 70 mother-infant pairs.
Infants were sampled each month between birth (0 months) and 12 months (and additionally at
0.5 months), and mothers were sampled at gestational week 27 (approximately 3 months prior
to the birth of the child) and at 3, 6, 9, and 12 months after the birth*’. Each of these gene
catalogs were constructed in each respective prior study and directly utilized in the analysis

presented in this paper.

Analysis of mother/infant gene catalog

The entire mother/infant gene catalog was run through dbCAN2 (diamond blastp -d
${CAZy_reference} -q ${query_file} -o ${output_str}.matches.tsv -e 1e-102 -k 1 -p 2 -f 6) and
eggNOG on default parameters. Additionally, embeddings were generated for the entire
mother/infant dataset using ProtT5, with CAZyLingua running inference on the entire gene

catalog.

We took the 977 horizontally-transferred gene subset and collected all of the dbCAN2 and
CAZyLingua results. We took the 12 genes that only CAZyLingua predicted and performed a
structural prediction on each of the protein sequences. We performed a Euclidean distance
search between those 12 embeddings and the nr.CAZy.60.fasta database to find the closest
embedding and subsequently the CAZyme family. We then used ColabFold*® to fold each of the
12 proteins and their nearest neighbor to generate PDBs for each horizontally-transferred gene

and neighbor pair. A structural alignment was computed on each of these pairs using
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568  Foldseek®, which returns the overlapped structures and a TM score for each pair. To compute
569 sequence homology metrics, we selected the “Align two or more sequences" option in the
570 BLASTDp suite on the NCBI website

571 (https://blast.ncbi.nim.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE TYPE=BlastSearch&LINK

572 LOC=blasthome).

573

574  The putative GH33 and each of the GH33 and GH43_13 in nr.CAZy.60.fasta were ordinated
575  through tSNE (sklearn TSNE package)*’ and plotted using matplotlib’. A structural prediction of
576  the putative GH33 was produced from ColabFold*® and the amino acid residue substitution

577  analysis was done using custom scripts. To search against known, experimentally-characterized
578  structures, the DALI option to pairwise search against PDB25°® was used. To structurally align a
579  pairwise hit from putative GH33 to a structure from PDB25, we used US-align®' to generate

580  aligned structures and a TM score.

581

582  Disease metagenomic differential abundance analysis

583

584 In each disease gene catalog, linear modeling was used to regress different disease covariates
585 onto each gene in the catalog to find differentially abundant genes (features). An abundance
586 filter was applied to the entire count matrix to remove any genes with <10% prevalence across
587 samples. A zero-inflation was applied to any zeros in the count matrix, where the zero value
588  would be replaced by the minimum non-zero value in the given feature and divided by 2. The
589 fold change was calculated by dividing the mean of the disease group by the control group, and
590 taking the log: of the value. Each value is log. transformed and a z-score is calculated for every
591  value in a given feature using the scipy’® library. A linear model, from the statsmodels® library,
592 is then applied to each feature. For IgG4-RD, the metadata covariates modeled were: age, on

593 treatment, rituximab, prednisone, other treatments, sex, and cohort. In CD the variables
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594  modeled were: age, on antibiotics, mesalamine, and steroids. A significance threshold was

595 established for all of the analyses: we followed a multiple testing adjustment, and p-values were
596 corrected using Benjamini-Hochberg correction, with a false discovery rate (FDR)-corrected p
597  value (g-value) of 0.25. The volcano plots were labeled based on four conditional arguments for

598 the CD and IgG4-RD metagenomic catalogs. For CD, the criteria for the displayed labels were:

599 1. logFC > 2 and p-value < 1x10®
600 2. logFC < -2 and p-value < 1x10?
601 3. logFC >3 and p-value < 1x102°
602 4. logFC < -4.5 and p-value < 1x107
603

604  For IgG4-RD, the criteria for the displayed labels were:

605 1. logFC > 2 and p-value < 1x10°®
606 2. logFC < -2 and p-value < 1x1073°
607 3. logFC >3 and p-value < 1x102°
608 4. logFC < -3.5 and p-value < 1x107
609
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616  Figure Legends

617

618 Figure 1. CAZyLingua: a deep learning model used for the classification of proteins as

619 CAZymes. a) The workflow of CAZyLingua starts with raw embeddings from ProtT5 followed by
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620 the use of those embeddings as input through two classifiers to distinguish 1) whether the

621 embedding was a CAZyme and if so, 2) to which CAZyme family it belongs to. b) The training
622  strategy for CAZyLingua began with a 60% sequence identity clustering to remove redundancy
623 from the CAZy database in order to train on distinct CAZymes. The Cross Entropy loss function
624  was applied for training and the loss function that was used included a weighted balancing

625  function to proportionally sample the number of representative sequences per CAZyme

626 class/family/subfamily in the database. This strategy was employed so as not to oversample on
627  highly represented families.

628

629 Figure 2. CAZyLingua performance relative to the BLAST-based CAZyme annotation tool
630 dbCAN2. CAZyLingua was compared to the dbCAN2 DIAMOND+CAZy annotation tool option
631  (benchmarked with an e-value < 1x107'%). A similar procedure as dbCAN2 was followed by
632  picking 3 bacterial strains with manual annotations and varying CAZyme counts per strain. a)
633  For predictions by CAZyLingua only, dbCAN2 only, and shared between the two methods, the
634  proportion of correct predictions made by each method (left) and the proportion of true

635 CAZymes made by each method (right) were calculated. b) F1 scores (harmonic means of

636  precision and recall) of all CAZyLingua predictions, all dbCAN2 predictions, and all predictions
637  combined, whether shared between the methods or not. ¢) Ground truth CAZymes were

638 stratified by class, and the percentage of accurate predictions per CAZy class from our

639  Quadratic Discriminant Analysis (QDA) binary classifier was calculated. d) Precision/recall (left)
640 and ROC (right) curves comparing CAZyLingua to dbCAN2. The output of the decision function
641  of the boundary that was trained for CAZyLingua and the e-value for dbCAN2 were used for
642  target scores.

643

644  Figure 3. Application of CAZyLingua to metagenomes in paired mothers and infants. a)

645  Comparison of CAZyLingua to eggNOG and dbCAN2 on a large metagenomics gene catalog
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646  from mothers and their infants. Time of the sample is in months relative to childbirth (month 0).
647  Dotted lines represent no fold change. b) CAZyLingua predicted 27,133 genes that dbCAN2 did
648  not, shown by CAZy class for all infant and maternal samples at each sample month. Boxplots
649 in a and b show medians and interquartile ranges (IQRs), with whiskers showing + 1.5 IQR. ¢)
650 Predicted structures of proteins from CAZyLingua (red) and the protein embedding nearest

651 neighbor (grey) structurally aligned with TM scores, and BLAST metrics for GH88, GH10, and
652 GH63.

653

654  Figure 4. CAZyLingua distinguishes GH33 CAZyme from nearest neighbors of raw ProtT5
655 embeddings. a) tSNE of (left) ProtT5 embeddings from the GH33 and GH43_18 families and
656 the CAZyme predicted by CAZyLingua (GH unknown) and (right) a segment of the last layer of
657 CAZyLingua. b) GH33 protein residues were mutated in a sliding window of ten residues over
658 the entire sequence, and ProtT5 embeddings were generated for each sliding window mutation.
659  Known features are overlaid along sections of the sequence. The probability of the CAZyLingua-
660 predicted classification being a GH33 was calculated for each sliding window mutation (top).
661 The predicted GH mapped to a PUL containing several regulatory elements consistent with a
662 CAZyme (bottom left). BLAST metrics on the predicted GH signal peptide compared with GH33
663 and GH43_18 sequences (bottom right). ¢) Overlays of the predicted GH protein structure

664  generated using ColabFold with a sialidase (top) and a neuraminidase (bottom).

665

666  Figure 5. Application of CAZyLingua to CAZymes in metagenomes of patients with

667 inflammatory and fibrosis-prone diseases. Genes enriched and depleted in the gene

668 catalogs of patients with a) CD and b) IgG4-RD selected on the fringe of the volcano plot (see
669  Methods for labeling criteria). ¢) Predicted CEs in the enriched IgG4-RD gene set, stratified to
670 analyze only the genes CAZyLingua predicted. d) The proportion of dbCAN2-predicted

671  CAZymes also predicted by CAZyLingua as the decision function between CAZyme/non-
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672 CAZyme of the QDA classifier in CAZyLingua was varied. The Venn diagram shows the

673  numbers of CAZymes predicted by CAZyLingua, dbCAN2, and both on our current model

674  benchmarks of the QDA.

675

676 Extended Data Figure Legends

677

678 Extended Data Figure 1. Embedding weights from first layer to next, no interpretable
679 chemical features. We extracted the weights (W) from the CAZyLingua multiclass classifier
680  between the input layer and first hidden layer, which is a matrix of dimension 1024x256. After
681  applying a transpose to get WT we multiplied the two matrices, W - WT which produced a

682  symmetric matrix, S of dimensions 1024x1024. After taking the diag(S) we obtained a vector of
683  size 1024, which is the size of the original embedding from ProtT5. We plotted the values in the
684  vector to visualize if there were any features or positions in specific regions of the embedding
685 that are specific to CAZymes.

686

687 Extended Data Figure 2. Training runs for finding the best model. RayTune ran 20 models
688 in parallel over each epoch and pruned any models that began to stagnate or have a decline in
689 training accuracy. The models were evaluated on the metric of minimizing training loss, and the
690 model with the minimal loss was stored as a checkpoint. There were 100 epochs over which
691  training occurred, and the metrics were stored and written to a TensorBoard that produced

692  these visualizations.

693
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Figure 4

a GH33 and GH43_18 embeddings (ProtT5)
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GH33 and GH43_18 embeddings (CAZyLingua)
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Figure 5
a Crohn’s disease gene enrichment b IgG4-related disease gene enrichment
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Extended Data Figure 1 available under aCC-BY-NC-ND 4.0 International license.
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Using the balanced accuracy score (micro averaging) over correct labels:

« Test accuracy: 99.6%
« dbCAN: 98.2%

ray/tune/train_accuracy

Training accuracy (percentile)

@

€

S 3
g g
> &
g g
5

3

<

ray/tune/val_accuracy

0 @
< <
Q Q
<} o
[ [
a a
> >
3 3
o o
5 5
Q Q
8 8
< <

Epoch number (best training run) Epoch number (best training run)


https://doi.org/10.1101/2023.10.23.563620
http://creativecommons.org/licenses/by-nc-nd/4.0/

