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Abstract
Growing up in a high poverty neighborhood is associated with elevated risk for academic
challenges and health problems. Here, we take a data-driven approach to exploring how
measures of children’s environments relate to the development of their brain structure and
function in a community sample of children between the ages of 4 and 10 years. We constructed
exposomes including measures of family socioeconomic status, children’s exposure to
adversity, and geocoded measures of neighborhood socioeconomic status, crime, and
environmental toxins. We connected the exposome to two structural measures (cortical
thickness and surface area, n = 170) and two functional measures (participation coefficient and
clustering coefficient, n = 130). We found dense connections within exposome and brain layers
and sparse connections between exposome and brain layers. Lower family income was
associated with thinner visual cortex, consistent with the theory that accelerated development is
detectable in early-developing regions. Greater neighborhood incidence of high blood lead
levels was associated with greater segregation of the default mode network, consistent with
evidence that toxins are deposited into the brain along the midline. Our study demonstrates the
utility of multilayer network analysis to bridge environmental and neural explanatory levels to
better understand the complexity of child development.
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Introduction

Geography shapes socioeconomic opportunity (Massey et al., 2003). Neighborhood
environments differ in income inequality, violence, and pollution, with consequences for
children’s health and learning (Finkelhor et al., 2015; Manduca and Sampson, 2019; Spilsbury
et al., 2006; Wodtke et al., 2022). Theories of how children’s experiences at home and in their
neighborhoods influence their brain development range from specific to global (Rakesh and
Whittle, 2021; Tooley et al., 2021, 2020). Specific theories focus on how individual brain regions
are shaped by types of experiences: repeated experience of negative emotions could
strengthen corticolimbic circuits that support emotion processing or regulation (Gee et al., 2013;
Luby et al., 2017), and repeated experience of unpredictable threats could lead to vigilance and
the strengthening of salience networks (McLaughlin et al., 2014). Global theories suggest that
negative experiences and exposures cause physiological wear and tear (Brody et al., 2014;
McEwen, 1998; Raffington et al., 2023), leading to broad changes in brain development,
including accelerated structural development (Belsky, 2019; Tooley et al., 2021). Less is known
about whether adversity is associated with accelerated functional development. Many studies
have shown a less developmental change in functional brain measures in youth who have been
exposed to adversity (Chahal et al., 2022; Park et al., 2021; Tooley et al., 2020), rather than
earlier development. Specific and global theories have shaped experiments and analyses in the
field, but they are not mutually exclusive, nor do they include all environmental influences. For
example, psychosocial stressors often co-occur with environmental toxins like lead and air
pollution, which also have been linked to structural and functional brain differences (Bahrami et
al., 2022; Marshall et al., 2020; Reuben et al., 2020).

The majority of environmental neuroscience studies have used univariate approaches,
studying individual exposures at a time (Liu et al., 2022). As a result the associations among
multiple exposures, as well as between different exposures and the brain, cannot be identified.
An alternative approach is to consider multiple exposures and to simultaneously model their
relationships as an exposome (Wild, 2005). The exposome, defined as the totality of
environmental exposures across the lifespan, was originally established to address the need for
more comprehensive evaluation of environmental exposures in relation to epidemiological
outcomes (Wild, 2012). Since then, psychiatry studies have investigated the exposome’s role in
relation to psychopathological outcomes using factor analysis, which reduces multiple
exposures to a few factors (e.g., Barzilay et al., 2021; Guloksuz et al., 2018; Moore et al., 2022;
Pries et al., 2022; Sydnor et al., 2023). However, this approach alone might not be able to fully
capture the complexity of relationships between environmental exposures and outcomes of
interest. A complementary method is to model the exposome as a network, whereby specific
environmental exposures can be conceptualized to interact with each other and influence not
only mental health outcomes but also their biological underpinnings such as brain structure and
function. This network approach for the exposome originates from a complex systems
framework that conceptualizes psychopathology as arising from the interaction of individual
symptoms (Borsboom, 2017; Robinaugh et al., 2020).

Once the exposome is constructed, it can be connected to measures of brain
development using a multilayer network approach (Bianconi, 2018). The multilayer network
approach provides a common framework to conceptualize and estimate the associations within
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the exposome, within the brain, and their connections between each other. One common use of
multilayer network analyses is to model the conditional dependencies among variables across
layers such as clinical outcomes and brain networks (Blanken et al., 2021). These statistical
dependencies are often estimated using partial correlations, whereby any connection between
two nodes represents a statistical relationship that remains after controlling for the associations
between those two nodes with all other nodes in the network. This method has been used
previously to characterize relationships among brain measures and cognitive and mental health
outcomes (Bathelt et al., 2022; Hilland et al., 2020; Simpson-Kent et al., 2021).

In this study, we asked how children’s experiences in their homes and in their
neighborhoods related to their brain structure and function. We recruited families from diverse
areas of the Philadelphia, Pennsylvania region who varied along multiple dimensions including
exposure to neighborhood violence, lead and pollution, and income inequality. Children between
the ages of 4 and 10 years participated in structural and resting-state functional MRI, and their
parents reported on family education, income, and adverse childhood experiences (ACEs). We
geocoded neighborhood-level factors from family addresses. We constructed an exposome to
relate children’s experiences and exposures and connected it to structural and functional brain
phenotypes. For brain structure, we focused on cortical thickness and cortical surface area.
Cortical thickness declines during development and cortical surface area first expands and then
contracts (Bethlehem et al., 2022; Rutherford et al., 2022). For brain function, we used
resting-state functional connectivity to model the cortex as a network (Bassett et al., 2018), and
focused on two metrics of cortical network architecture that have been shown to change with
development: the clustering coefficient, a measure of network segregation, and the participation
coefficient, a measure of network integration (Guimerà and Amaral, 2005; Rubinov and Sporns,
2010). During development, cortical network architecture is refined, with increases in the
clustering coefficient reflecting denser local connectivity between nearby nodes, and decreases
in the participation coefficient reflecting fewer diverse connections between distant nodes
(Cohen and D’Esposito, 2016; Fair et al., 2009, 2007; Marek et al., 2015; Tooley et al., 2022a,
2022b, 2020) To allow for comparability across measures, and to avoid overloading the models,
we used a seven-system division of cortex into systems based on functional connectivity (Yeo et
al., 2011). Our data-driven exploratory approach allows us to both interrogate existing theories
of how children’s experiences shape their brains and to generate new insights into previously
undescribed relationships.

Methods

Participants

This study was approved by the Institutional Review Board (IRB) at the University of
Pennsylvania. Parents provided informed consent. Children below 8 years old provided verbal
consent and children 8 years old and older provided written assent.

Children between the ages of 4 and 10 were recruited from Philadelphia, Pennsylvania
and its surrounding areas through advertisements on public transportation and social media,
outreach programs, partnerships with local schools, and community family events. Participants
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were screened prior to participation and were excluded if they had a diagnosis of a psychiatric,
neurological, or learning disorder, were born more than six weeks premature, were adopted, or
had any contraindications for MRI scanning. A total of 212 participants participated in scanning
at their first session. When including all timepoints, 217 participants participated in scanning. Of
these 217 participants, 211 scanned at their first session, 43 at their second session 4-42
months later (mean: 13.6, median: 12 months), and 8 at their third session (9-21 months after
second).For structural analyses, participants were excluded if they had low-quality images or
poor quality surface reconstructions (n = 42; see Structural MRI preprocessing). 170
participants were included in the structural analyses (only data from the first time point were
included). For functional analyses, which rely on resting-state data that are more difficult to
collect in young children, we considered all possible time points and included the time point with
the lowest framewise displacement (n = 217 participants, 262 scan sessions). Participants were
excluded if they did not complete a resting state scan (n = 32 participants, 34 scan sessions),
fell asleep during the scan (n = 11 participants, 14 scan sessions), had poor quality structural
data for registration during preprocessing (n = 8 participants, 8 scan sessions), or had high
in-scanner head motion (n = 26 participants, 31 sessions) or insufficient scan data from
resting-state functional images (n = 10 participants, 12 sessions; see Resting-state functional
MRI preprocessing for criteria). From the 163 sessions available for the 130 participants
remaining, we picked the earliest available session, resulting in the final functional imaging
dataset included 120 scans from the first time point, 9 at the second time point, and 1 at the
third time point. Statistical comparison of the included and excluded subjects for both samples is
available in Supplemental Tables 1 and 2 for the structural and functional samples,
respectively.

Parents were asked to report their child's date of birth, gender, race, and ethnicity.
Parents were provided with four options for gender: female, male, other, or prefer not to answer.
We acknowledge that these response options do not fully reflect the array of gender identities
and conflate sex and gender. Parents provided their child's race out of the following options:
Black, White, Asian, Native Hawaiian or Other Pacific Islander, American Indian or Alaska
Native, and Other. They could indicate more than one race category. Additionally, for ethnicity,
parents were asked if their child was Hispanic or Latinx. Parents reported their total annual
family income in one of 11 income bins (less than $5,000; $5000-$11,999; $12,000-$15,999;
$16,000-$24,999; $25,000-$34,999; $35,000-$49,999; $50,000-$74,999; $75,000-$99,999;
$100,00-$149,999; $150,000-$199,999; and $200,000 or greater). For analytical purposes,
income was re-coded to represent the median of each bin; the maximum possible income in our
sample was $200,000. Demographic information, including these data, is provided in Table 1.

Structural imaging
(n = 170)

Functional imaging
(n = 130)

Age (years, mean [SD] {range}) 6.34 [1.40] {4.05-10.59} 6.64 [1.35] {4.11-10.59}

Sex (n, Female/Male/Other) 89 / 81 / 0 69 / 61 / 0

Race* (%) 50.6 % Black 51.5 % Black
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41.8 % White
11.8 % Asian

1.8% Native Hawaiian or
Other Pacific Islander

1.8% American Indian or
Alaska Native
6.5% Other

42.3 % White
13.8 % Asian

2.3% Native Hawaiian or
Other Pacific Islander

1.5% American Indian or
Alaska Native
3.1% Other

Ethnicity (%) 11.3% Latinx/Hispanic 10.9% Latinx/Hispanic

Family Income (thousands of $, mean [SD]) 80.1 [68.2] 85.7 [68.2]

Parent Education (years, mean [SD]) 14.88 [2.72] 15.09 [2.72]

Adverse Childhood Experiences (ACEs)
(mean, [SD])

0.97 [1.35] 1.02 [1.31]

Neighborhood unemployment, (%, mean
[SD])

34.7 [24.5] 34.3 [23.9]

Percentage of people (25+ years old) with a
Bachelor's degree in the neighborhood (%,
mean [SD])

8.3 [5.4] 8.3 [5.4]

Percentage incidence of high blood levels in
neighborhood (%, mean [SD])

6.3 [3.4] 6.07 [3.4]

Average particulate matter concentration in
neighborhood (μg/m3, mean [SD])

1.30 [0.33] 1.32 [0.33]

Murder Index十 (unitless, mean [SD]) 110.5 [50.8] 108.3 [49.2]

Rape Index十 (unitless, mean [SD]) 94.0 [53.0] 91.5 [52.2]

Robbery Index十 (unitless, mean [SD]) 90.1 [58.2] 88.4 [58.0]

Assault Index十 (unitless, mean [SD]) 113.2 [41.8] 109.3 [45.0]

Larceny Index十 (unitless, mean [SD]) 115.2 [41.8] 111.7 [42.2]

Burglary Index十 (unitless, mean [SD]) 112.1 [50.4] 108.4 [52.2]

Gini Index (unitless, mean [SD]) 0.460 [0.065] 0.458 [0.063]

Table 1. Demographic and geocoded information of participants in both neuroimaging samples. *Survey
form allowed parents to endorse more than one racial identity hence the sum of racial identities is greater
than 100%. For comparison, Philadelphia’s population is 43.6% Black, 44.8% White, 7.8% Asian, 3.9%
Other, and 15.2% Hispanic or Latino (US Census Bureau, 2020). 十Market Profile variables indices
represent deviations from the U.S. average rate of that specific crime - U.S. mean rate of a specific crime
is 100.

Parents completed the 10-item Adverse Childhood Experiences (ACEs) questionnaire
about their children. The ACEs questionnaire is a widely-used assessment of early childhood
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experiences, which measures sexual, physical and emotional abuse, witnessing domestic
violence, physical and emotional neglect, parental separation or divorce, and substance abuse,
mental illness, or incarceration of an adult in the household (Murphy et al., 2016). An ACEs
score is calculated by summing the responses to each of the adversity categories, with a
maximum possible score of 10. See Table 1 for descriptive statistics of the ACEs questionnaire
for our structural and functional neuroimaging samples.

Geocoding

Participant addresses were geocoded on a secure network using an offline ArcGIS
address locator dataset of addresses and coordinates across the US provided by the University
of Pennsylvania Libraries using ArcGIS v10.7 (Esri Inc., 2019). The addresses were
transformed to geospatial coordinates in Pennsylvania and New Jersey. One participant with an
address in Virginia was excluded from geocoding analyses. Address values that could not be
extracted either due to an incorrect street, house number, or post box entries were excluded
from further geocoding steps (n = 21). Address coordinate values were mapped onto Census
Tract (CT) Shapefile fields, taken from the U.S. Census Bureau Census Tract Map for 2019
(U.S. Census Bureau, 2019a), and then the census tract IDs were paired with the respective
subject IDs. All geocoded demographic and environmental variables were extracted at the
census tract level by pairing with the census tract corresponding to the living address of a
participant. Geocoded measures capture information related to neighborhood crime levels,
neighborhood socioeconomic status (SES), and pollution levels. For descriptions of all
geocoded measures, see Supplementary Table 3. See Table 1 for descriptive statistics of
geocoded variables for our structural and functional neuroimaging samples.

Market Profile Data is a census-level aggregate of demographic data, such as crime,
population, employment, and access to businesses and resources (Easy Analytic Software, Inc.,
2020). We used the Market Profile crime indices which are predicted using a regression model
previously trained to predict county-level crime data (Federal Bureau of Investigation crime
data) from county-level demographics. EASI shows that these models are highly accurate at
predicting county-level crime data based on demographic data, in a separate, test set of
counties. These models trained on county-level data are, then, used to predict crime indices at
the tract level using tract-level demographic data. The crime variables are quantified as
deviations from the U.S. average where the U.S. average rate of a specific kind of crime is
represented as 100 and raw deviations in crime rate are weighted by the population in the
census tract. Violent crime categories across these measures are murder, aggravated assault,
rape, and robbery, and non-violent crime categories include larceny and burglary, according to
the Uniform Crime Report of the Federal Bureau of Investigation (Federal Bureau of
Investigation, 2019). We used structural equation modeling to determine whether crime
variables were best included in the network as a single, sum score node or as separate crime
index nodes (see Supplemental Methods for analysis details).

Three neighborhood SES variables were drawn from the American Community Survey
(ACS). We used the ACS 2015-2019 5-year release due to the increased accuracy of the results
when the measures are sampled across a bigger number of entries per census tract (U.S.
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Census Bureau, 2019b). The unemployment measure was calculated by dividing the number of
people unemployed in the labor force divided by the number of people in the labor force above
the age of 16. The education measure was the number of people over 25 with an advanced
degree (Bachelor’s degree or higher) divided by the number of people over the age of 25 in the
census tract. The Gini Index was used to estimate income distribution inequality within the
census tract. The Index is calculated by taking the difference between the actual distribution of
income and the ideal distribution. An index of 0 indicates perfect equality (each person owns an
equal number of resources) and 1 denotes perfect inequality (few people own the majority of the
resources) (“Gini Index,” 2008). In 2021, the United States had a Gini index of 0.494, which can
be compared to the households in the 90th income percentile earning 13.53 times more than
those in the 10th percentile (Semega et al., 2022).

Particulate matter 2.5 (PM2.5) tract-level data were predicted from regression models
trained to predict Environmental Protection Agency (EPA) sensors based on local environmental
measures, such as land use and traffic (Kim et al., 2020; Wang et al., 2020). EPA sensor results
were predicted using area-specific environmental measures and then these trained models
were used to predict tract-level concentration data (Kim et al., 2020; Wang et al., 2020).

Child blood lead level is based on the Philadelphia Department of Public Health lead
surveillance campaign “Lead and Healthy Homes program” (Lead and Safe Homes Program,
2019). Children whose blood lead levels are above 5 µg/mL are classified as having high blood
lead levels. This number is scaled by the number of children tested in a specific census tract.
The data used in this study comes from the 2013-2015 data sample as this is publicly available
on OpenData Philly (City of Philadelphia Department of Public Health, 2017). This measure was
only available for children living in Philadelphia County (n = 95 for structural analyses, n = 76 for
functional analyses).

Neuroimaging data acquisition

Imaging was performed at the Center for Advanced Magnetic Resonance Imaging and
Spectroscopy (CAMRIS) at the University of Pennsylvania. Scans were conducted using a 3
Tesla MRI scanner (MAGNETOM Prisma, Siemens Healthineers, Erlangen, Germany) with the
vendor’s 32-channel head coil. A whole-brain, high-resolution, T1-weighted 3D-encoded
multi-echo structural scan (MEMPRAGE) was collected (acquisition parameters: TR = 2530 ms,
TI = 1330 ms, TEs = 1.69 ms/3.55 ms/5.41 ms/7.27 ms, bandwidth (BW) = 650 Hz/px, 3x
GRAPPA, flip angle = 7°, voxel size = 1 mm isotropic, matrix size = 256 × 256 ×176, FOV =
256 mm, total scan time = 4:38). This anatomic sequence used interleaved volumetric navigators
to prospectively track and correct for subject head motion (Tisdall et al., 2012). One or two
five-minute resting-state fMRI scans were acquired using a T2*-weighted multiband
gradient-echo echoplanar imaging (EPI) sequence (acquisition parameters: TR = 2000 ms, TE =
30.2 ms, BW = 1860 Hz/pixel, flip angle = 90°, voxel size = 2 mm isotropic, matrix size = 96 ×
96, 75 axial slices, FOV = 192 mm, volumes = 150–240, 5 dummy scans, multiband
acceleration factor = 3). We chose a multiband factor of three to minimize interactions between
multiband and motion (Risk et al., 2021).

Structural MRI preprocessing
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Structural image quality was manually assessed by two lab members individually,
without knowledge of participant information and demographics. Ratings ranged from 1 (good
quality) to 4 (poor quality), and were averaged across raters. Cortical surfaces were
reconstructed using FreeSurfer 6.0.0 (Dale et al., 1999; Fischl, 2012). After surface
reconstruction, structural images were inspected and edited for cortical surface reconstruction
errors. In images rated above 3.5, if reconstruction errors could not be resolved, participants
were excluded (n = 17). Morphometric measures (surface area and cortical thickness) were
extracted from a 400-region parcellation (Schaefer et al., 2018). Parcel-wise cortical thickness
was averaged within systems and surface area was summed within systems using the 7-system
partition: visual, somatomotor, limbic, dorsal attention, ventral attention, executive control, and
default mode systems (Yeo et al., 2011). “System” is used to refer to a set of regions defined a
priori (e.g., dorsal attention, frontoparietal or control, default mode networks).

Resting-state functional MRI preprocessing

Participant scans were excluded if average framewise displacement (FD) was greater
than 1 mm or if more than 30% of the volumes had FD > 0.5 mm, and if the scan had fewer than
130 volumes. Data that passed motion criteria also passed visual inspection for whole-brain
field of view coverage, signal blurring or artifacts, and proper alignment to the anatomic image.
fMRIPrep visual reports, MRIQC version 0.14.2, and xcpEngine scan quality outputs were used
for visual inspection. Preprocessing was performed using fMRIPrep version 1.2.6-1
(RRID:SCR_016216; Esteban, Markiewicz, et al., 2019; Esteban, Wright, et al., 2019), which is
based on Nipype version 1.1.7 (RRID:SCR_002502; Gorgolewski et al., 2011;
nipy/nipype:1.1.7); as well as xcpEngine version 1.0 (Ciric et al., 2018). Cortical surfaces were
reconstructed using recon-all (Dale et al., 1999). T1-weighted (T1w) images were corrected for
intensity nonuniformity using N4BiasFieldCorrection (Tustison et al., 2010; Advanced
Normalization ToolS (ANTS) version 2.2.0), and used as T1w references throughout the
workflow. The T1w image was skull stripped using antsBrainExtraction.sh script (ANTS version
2.2.0) using OASIS as the target template. The brain mask was refined with a custom variation
of the method to reconcile ANTS-derived and FreeSurfer-derived segmentations of the cortical
gray matter of Mindboggle (RRID:SCR_002438, Klein et al., 2017). Spatial normalization of the
T1w image to the ICBM 152 Nonlinear atlases version 2009c (RRID:SCR_008796; Fonov et al.,
2011) was performed through nonlinear registration with antsRegistration (ANTS version 2.2.0,
RRID:SCR_004757; Avants et al., 2010). Brain tissue segmentation of CSF, WM, and gray
matter was performed on the brain-extracted T1w using FAST [Functional MRI of the Brain
Software Library (FSL) version 5.0.9; RRID:SCR_002823; Zhang et al., 2001]. For each of the
resting-state BOLD runs, the following preprocessing steps were performed. A reference volume
and its skull-stripped version were generated using a custom methodology of fMRIPrep. The
BOLD reference was then coregistered to the T1w reference using bbregister (FreeSurfer)
which implements boundary-based registration (Greve and Fischl, 2009). Coregistration was
configured with nine degrees of freedom to account for distortions remaining in the BOLD
reference. Head-motion parameters were estimated before spatiotemporal filtering using the
mcflirt tool (FSL version 5.0.9; Jenkinson et al., 2002). Slice-time correction was done with
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3dTshift from Analysis of Functional NeuroImages (AFNI) 20160207 (RRID:SCR_005927; Cox
and Hyde, 1997). The functional images were resampled onto MNI152NLin2009cAsym
standard space by applying a single, composite transform, generating a preprocessed BOLD
run in MNI152NLin2009cAsym space.

We used a confound regression procedure that has been optimized to reduce the
influence of participant motion, implemented in xcpEngine version 1.0 (Ciric et al., 2017; Parkes
et al., 2018; Satterthwaite et al., 2013b), a multimodal tool kit that deploys processing
instruments from frequently used software libraries, including FSL (Jenkinson et al., 2012) and
AFNI (Cox, 1996). Functional time series were demeaned, linear and quadratic terms were
removed, and confound regression was performed. Confound regression was done using a
36-parameter model which accounted for mean whole-brain signal, signal from WM and CSF
compartments, six motion parameters, and their derivatives, quadratic terms, and quadratic
terms of the derivatives (Satterthwaite et al., 2013a). Motion censoring was performed with the
following criteria for removing time points: framewise displacement (FD) greater than 0.5 mm or
standardized DVARS (root-mean-square intensity difference from one volume to the next)
greater than 1.75. Outlier volumes were interpolated over using least-squares spectral analysis
(Power et al., 2014) before bandpass filtering to retain frequencies between 0.01 Hz and 0.08
Hz, then censored again. Before confound regression, all confound parameters were bandpass
filtered the same way as the original time series data, ensuring comparability of the signals in
frequency content (Hallquist et al., 2013).

Functional network analysis

As part of the xcpEngine pipeline, we extracted BOLD time series from preprocessed
and nuisance-regressed data using the Schaefer400 cortical parcellation (Schaefer et al., 2018),
which subdivides the Yeo 7 parcellation into evenly sized parcels. Functional connectivity
matrices were averaged across scan runs during one scan session, weighted by the number of
frames in each run passing the inclusion criteria.

Correlation matrices were represented as graphs or networks (Bassett et al., 2018),
where regions are represented as network nodes and correlations between time series of pairs
of regions are represented as the edges between nodes. Product-moment correlations were
calculated between parcels i and j and represented the edge weights of the edges between
region i and j (Zalesky et al., 2012). Fisher Z-transformation was performed on the functional
connectivity network matrix (of edge weights). The final networks were unthresholded, signed,
and weighted. We chose to use weighted rather than binary edges to reflect variation in the
strength of connectivity (Cole et al., 2012; Rubinov and Sporns, 2011; Santarnecchi et al.,
2014), and included both positive and negative edges because of evidence that anticorrelations
are meaningful (Chai et al., 2014; Nenning et al., 2023; Santarnecchi et al., 2014).

We calculated two graph measures, participation and clustering coefficient, to
characterize network integration and segregation. Participation and clustering coefficients were
calculated at the nodal level and then averaged across the same 7-system partition as the
structural MRI data: visual, somatomotor, limbic, dorsal attention, ventral attention, executive
control, and default mode systems (Yeo et al., 2011). These. All calculations of graph measures
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were performed using MATLAB R2020b (The MathWorks Inc., 2020) and the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010).

The participation coefficient quantifies the extent of integration of a region across
different systems. A higher participation coefficient reflects more diverse connections to different
systems (Guimerà and Amaral, 2005; Rubinov and Sporns, 2010). The participation coefficient
for a node i (Pi) was calculated as follows:

𝑃
𝑖 

=  1 −
𝑘∈𝐾
∑ (

𝑎
𝑖𝑘

𝑠
𝑖 

) 

Where k is a system (e.g., dorsal attention) as part of the set K of all 7 systems (Yeo et al.,
2011), aik is the sum of all edge weights between node i and all of the nodes in k, and si is the
sum of all edge weights from node i (otherwise referred to as node strength). In these analyses
of a signed network, the participation coefficient was calculated for positive and negative edges
separately (as implemented by Rubinov and Sporns, 2010), then negative and positive-edge
participation coefficients were averaged at the nodal level and then at the system level.

The clustering coefficient is a measure of local segregation that quantifies a node's local
neighborhood capacity to support information transfer (Achard et al., 2006; Bartolomei et al.,
2006; Bassett et al., 2006; Tooley et al., 2022b, 2020; Xu et al., 2016). The clustering coefficient
captures the strength of triangles of edges and nodes that surround a node. Nodes with high
clustering coefficients show strong connections to nodes that also have strong connections to
each other. We used an edge weight sign-sensitive generalization of the clustering coefficient
calculation (Costantini and Perugini, 2014; Zhang and Horvath, 2005). It distinguishes between
triangle signs (positive and negative triangles) and adjusts for nonredundancy in path
information based on edge weight signs. For a node i, clustering coefficient, Ci, is calculated as
follows:

𝐶
𝑖 

=  𝑗𝑞
∑(𝑎

𝑗𝑖
𝑎

𝑖𝑞
𝑎

𝑞𝑗
)

𝑗≠𝑞
∑ |𝑎

𝑗𝑖
𝑎

𝑞𝑖
|

Where i, j, and q are distinct (neighboring) nodes with edge weights aij between nodes i and j .

Multilayer network creation

Statistical analyses were performed using R (R Core Team, 2023) version 4.2.3
(“Funny-Looking Kid”) and RStudio version 2022.07.2 (“Spotted Wakerobin”). Summary
statistics and plots of networks were conducted using the packages corrplot (version 0.92, Wei
and Simko, 2021), jmv (version 2.3.4, Selker et al., 2022), OpenMx (version 2.21.1, Boker et al.,
2023; Neale et al., 2016), psych (version 2.2.5, Revelle, 2022), reshape2 (version 1.4.4,
Wickham, 2007), gtsummary (version 1.7.2, Sjoberg et al., 2021), and dplyr, tidyr, and ggplot2
from tidyverse (Wickham et al., 2019).

Because age and motion are significantly related to many of the brain measures studied
here, we residualized all brain measures for linear effects of age and scan quality measures.
Structural measures were residualized for linear effects of age and manually-rated scan quality.
Functional imaging-derived measures were residualized for linear effects of age, mean head
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framewise displacement, and average network edge weight. Associations between age and
brain measures, controlling for modality-specific quality measures, are shown in Supplemental
Figure 1.

We estimated our bilayer networks using Gaussian Graphical Models (Lauritzen, 1996).
Gaussian Graphical Models permit the calculation of weighted partial correlation coefficients,
which estimate the conditionally dependent relationships between nodes given the set of all
other nodes within the network. For instance, any partial correlation between one node (e.g.,
family income) and a different node such as the visual system is a statistical relationship that
remains after controlling for the associations among these two nodes with all other nodes in the
network, regardless of the level of organization (i.e., exposome vs brain network). To estimate
all Gaussian Graphical Models, we used the Extended Bayesian Information Criterion graphical
least absolute shrinkage and selection operator (EBICglasso, Chen and Chen, 2008; Epskamp
et al., 2012; Epskamp and Fried, 2018; Foygel and Drton, 2010; Friedman et al., 2014, 2008;
Tibshirani, 1996). The EBICglasso is a regularization method that generates sparser networks
by including penalization for more complex models. We set our EBIC tuning parameter to 0.5,
considered a high value that prefers simpler, more parsimonious networks (Epskamp and Fried,
2018; Foygel and Drton, 2010). This results in parameter estimates with very small edge
weights being set to 0. This procedure reduces the risk of spurious (i.e., false positive)
connections within the network.

We calculated Pearson correlations to use as our weighted partial correlation
coefficients, and we used pairwise deletion to account for data missingness. For each bilayer
network, we estimated two types: one without thresholding and one with thresholding.
Thresholding employs a rule for ensuring low false positive rates of edges (Jankova and van de
Geer, 2018), which sets edges to zero that are not larger than the threshold in the EBICglasso
computation of all considered models, as well as the final returned model. This uses a lower
bound for removing the smallest edges, resulting in different edge parameter estimations
compared to the unthresholded bilayer network (see Supplementary Material Figures 2 and
3). Given the exploratory nature of this study, we did not hypothesize any specific directions
(positive or negative) or magnitude (e.g., small or moderate partial correlations) among nodes.
All network estimation was done using the packages bootnet (version 1.5, Epskamp et al.,
2018) and qgraph (version 1.9.2, Epskamp et al., 2012).

A common practice in network science is to calculate which nodes have the greatest
influence within the network. This property of network nodes is called centrality. Given our
interest in inter-network connections between layers (i.e., exposome to brain), we calculated
nodal bridge centrality (Jones et al., 2021). Bridge centrality quantifies the extent to which a
node (e.g., exposome) forms a partial correlation with another node outside of its community
(brain). For our centrality measures, we calculated bridge strength and bridge expected
influence separately for each exposome and brain system node (Jones et al., 2021). Bridge
strength sums the absolute weights of the partial correlation coefficients for each node to a node
from a different community. Bridge expected influence, similar to bridge strength, sums the
signed weights of the partial correlation coefficients from each node to another node from a
different community. However, an important distinction is that while bridge strength sums the
absolute weights, bridge expected influence takes the sign of the partial correlation into account.
For example, a node might have two inter-network connections (i.e., partial correlations) to other
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nodes, one with a magnitude of 1 and the other with a magnitude of -1. In terms of bridge
strength centrality, the node would have a bridge strength of 2 while, for bridge expected
influence, the node would score 0. To account for differing community sizes between layers
(exposome = 14 nodes vs. brain = 7 nodes), we normalized all centrality measures, which
divides centrality estimates by their highest possible value, assuming a maximum edge weight
of 1. Centrality measures (bridge strength and bridge expected influence) were computed using
the networktools package (version 1.5.0, Jones, 2022).

We classified nodes as central if their bridge strength and/or bridge expected influence
z-score was positive and equal to or greater than one standard deviation above the mean. We
do not discuss or interpret negative centrality z-score values for our exposome-brain bilayer
networks. Central bridge strength nodes were interpreted as nodes that have the most
connections, compared to non-central bridge nodes, between network communities. For bridge
expected influence, highly central nodes were interpreted as having the greatest relative impact
between communities. In all bilayer networks, for both edge weight coefficients and centrality
measures, we calculated the correlation stability coefficient, which indicates the maximum
proportion of cases that can be dropped from the sample and, with 95% probability, still retain a
correlation of 0.7 (i.e., correlation between rank order of centrality in network estimated on full
sample with rank order of centrality indices estimated from networks using subsets of the total
sample, see (Epskamp and Fried, 2018). We estimated correlation stability coefficients using
2,000 bootstraps and considered a correlation stability value of 0.5 to be stable (Epskamp et al.,
2018).

Results

Structural Bilayer Networks

Our structural analyses focused on cortical surface area and cortical thickness extracted
from a functional network parcellation (Yeo et al., 2011). We present two versions of each
network, one that is unthresholded to show a full picture of the possible relationships among
nodes, and one that is thresholded, with edges set to zero that are not larger than the threshold
both in the EBICglasso computation of all considered models, as well as the final returned
model. Bilayer structural networks (Figure 1) showed highest clustering within level
(intra-network connections), indicating that the exposome variables were highly interrelated, as
were brain structure measures. This was especially the case for the unthresholded networks
(Figure 1A-B), which were denser compared to the thresholded networks (Figure 1C-D). The
exposome’s neighborhood crime variables (e.g., murder, burglary, robbery, etc.) mostly
correlated positively with each other. In the unthresholded networks, the pollution (particulate
matter and lead) and socioeconomic status nodes (parent education, family income, percentage
of the neighborhood with bachelor’s degrees, neighborhood unemployment) correlated with
each other. Again only in the unthresholded networks, particulate matter and blood-lead level
mainly connected with neighborhood and family SES variables, while ACEs were associated
across every subcluster (neighborhood crime, pollution and SES). Interestingly, in the
thresholded bilayer networks, particular matter was ‘kicked out’ of the network, while ACEs
either only correlated with blood lead levels (Figure 1B) or was also kicked out of the network
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(Figure 1D). Descriptive statistical properties of the structural networks are shown in Table 3.
Partial correlations among all variables in our exposome-brain structure networks are in
Supplemental Figure 2.

Exposome-cortical surface area Exposome-cortical thickness

Unthresholded Thresholded Unthresholded Thresholded

Edge Weight
Mean (sd)
[range]

.07 (.17)
[-.39 – .52]

.18 (.28)
[-.45 – .69]

.07 (.15)
[-.39 – .51]

.22 (.24)
[-.44 – .65]

Total Nonzero
Edges

76 31 78 25

Total Negative
Edge Number

26 7 23 3

Nonzero
inter-network

edges

13 0 15 1

Negative
inter-network

edges

7 0 5 0

Edge weight
stability

.67 .67 .59 .59

Bridge strength
stability

.28 N/A .36 N/A

Bridge expected
influence stability

.21 N/A .13 N/A

Table 3. Network properties of the exposome-brain structure (cortical surface area and
thickness) bilayer networks.

We found convergent and divergent patterns in the inter-network (exposome to brain
layer) connections in our two structural bilayer networks. In the unthresholded
exposome-cortical surface area network (Figure 1A), limbic surface area was negatively
associated with two crime variables (murder PC = -.02, rape PC = -.07), and positively
associated with family income (PC = .10) and neighborhood unemployment (PC = .003).
Greater visual surface area was associated with higher parent income (PC = .04) and lower
neighborhood income inequality (PC = -.05), but it was also associated with higher
neighborhood unemployment (PC = .03), murder index (PC = -.004), and particulate matter
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concentration (PC = -.01). Surface area of the dorsal attention system was negatively
associated with neighborhood education levels (PC = -.06). Surface area of the ventral attention
system was positively associated with neighborhood blood lead levels (PC = .01). In the
thresholded exposome-cortical surface area network (Figure 1B), no between layer
connections remained.

For the unthresholded cortical thickness network (Figure 1C), greater visual system
thickness was associated with higher family income (PC = .14), higher parent education (PC =
.03), and higher robbery index (PC = .01). However, visual system thickness showed negative
partial correlations with neighborhood education levels (PC = -.03) and burglary index (PC =
-.02). Higher ventral attention system thickness was associated with higher neighborhood
unemployment (PC = .02), but lower incidence of burglary (PC = -.01) and fewer ACEs (PC =
-.03). Limbic system cortical thickness showed partial correlations with the neighborhood
incidence of robbery (PC = .02), neighborhood inequality (PC = .02), unemployment in the
neighborhood (PC = .004), and ACEs (PC = -.03). Thickness of the somatomotor system
correlated positively with parent education (PC = .01) and neighborhood unemployment (PC =
.01). Executive control system cortical thickness positively correlated with the Gini Index (PC =
.003). For the thresholded cortical thickness network (Figure 1D), only one between-layer
connection was found, from family income to visual cortical thickness (PC = .20).
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Figure 1. Exposome-Cortical Structure Networks. Multilayer networks were estimated using the
Extended Bayesian Information Criterion graphical least absolute shrinkage and selection operator
(EBICglasso). We set the tuning parameter to 0.5 and used pairwise deletion to account for data
missingness. Partial correlation coefficients (edge weights) were calculated using Pearson method. Green
solid lines show positive associations. Magenta lines show negative associations. Thickness of the edge
weights indicate the magnitude of the partial correlation (thicker edges show larger partial correlations
between nodes). Cortical systems are defined from a seven system parcellation (Yeo et al., 2011): visual
(Vis), somatomotor (Motor), dorsal attention (DorAtt), ventral attention (VenAtt), executive control (Contr),
default mode (Defau), limbic (Limb). Three exposome variables are reported by parents: income
(SESinc), parent education (SESedu), child adverse childhood experiences (ACEs). The other exposome
measures are geocoded from census block (see Supplementary Table 1): neighborhood incidence of
murder (Murder), aggravated assault (Assau), larceny (Lar), rape (Rape), robbery (Robb), burglary
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(Burg), unemployment over the age of 16 (Unemp16), percent of people over the age of 25 with a
Bachelor’s degree or higher (Bach25), Gini index of income inequality (Gini), particulate matter 2.5
(PartMatt), blood lead levels (Lead). A. Surface Area: Unthresholded. B. Surface Area: Thresholded.
Edges that are not larger than the threshold of both the EBICglasso computation of all considered models
and the final returned model are set to zero. C. Cortical Thickness: Unthresholded. D. Cortical Thickness:
Thresholded. Edges that are not larger than the threshold of both the EBICglasso computation of all
considered models and the final returned model are set to zero.

We calculated centrality measures only for the unthresholded networks because so few
between-layer connections emerged in the thresholded networks. For the exposome-cortical
surface area network (Figure 2A), four nodes displayed s high bridge strength (z-score > 1 SD):
parent income (z = 2.88), limbic system surface area (z = 1.72), rape index (z = 1.04), and
visual system surface area (z = 1.01). Only one node emerged as highly central, for bridge
expected influence (Figure 2B): parent income (z = 3.45). The exposome-cortical thickness
bilayer network contained two high-bridge-strength nodes (Figure 2C): parent income (z = 3.03)
and visual system thickness (z = 2.32). The same two nodes emerged as highly central in terms
of bridge expected influence (Figure 2D): family income (z = 3.31) and visual system thickness
(z = 1.45). All centrality estimates were unstable after undergoing bootstrap analysis, revealing
that fewer than 50% of the sample could be dropped and maintain a correlation of .70 with the
full sample, with .95 probability. However, edge-weights for all networks were stable after
bootstrapping. See Table 3 for estimates of centrality and centrality stability for all
exposome-brain structure networks.
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Figure 2. Normalized centrality metrics for the unthresholded exposome-cortical structure
networks. A. Surface Area: Bridge Strength. B. Surface Area: Bridge Expected Influence. C. Cortical
Thickness: Bridge Strength. D. Cortical Thickness: Bridge Expected Influence.
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Functional Bilayer Networks

We focused on two functional properties of cortex: the participation coefficient and the
clustering coefficient, which respectively capture integration and segregation. The participation
coefficient was negatively associated with age, and the clustering coefficient was positively
associated with age (Supplemental Figure 3). As in the structural networks, bilayer functional
networks showed strong connectivity among exposome variables and among functional
measures. Descriptive statistics of the functional networks are shown in Table 4. Partial
correlations among all variables in the exposome-brain function networks are in Supplemental
Figure 3.

Exposome-participation
coefficient

Exposome-clustering coefficient

Unthresholded Thresholded Unthresholded Thresholded

Edge Weight
Mean (sd)
[range]

.09 (.16)
[-.40 – .49]

.22 (.25)
[-.43 – .63]

.08 (.16)
[-.40 – .52]

.23 (.23)
[-.43 – .63]

Total Nonzero
Edges

61 25 74 27

Total Negative
Edge Number

14 4 18 3

Nonzero
inter-network

edges

1 1 11 0

Negative
inter-network

edges

1 1 1 0

Edge weight
stability

.52 .59 .59 .59

Bridge strength
stability

N/A N/A .00 N/A

Bridge expected
influence stability

N/A N/A .00 N/A

Table 4. Network properties of the exposome-brain function (participation coefficient and
clustering coefficient) bilayer networks.
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In the unthresholded exposome-participation coefficient network (Figure 3A), lead
showed a negative association with the participation coefficient of the dorsal attention system
(PC = -.05). In the thresholded exposome-participation coefficient network (Figure 3B), lead
negatively correlated with the participation coefficient of the default mode system (PC = -.20). In
the unthresholded exposome-clustering coefficient network (Figure 3C), lead showed a positive
association with the clustering coefficient of the default mode system (PC = .04). Particulate
matter was positively associated with the clustering coefficient of the control system (PC = .02).
The visual system positively correlated with employment (PC = .02), while the motor system
negatively correlated with family income (PC = -.02). Family education positively correlated with
the default mode system (PC = .01). Lastly, the dorsal attention system showed positive
associations with inequality (PC = .01) and larceny (PC = .01). There were several other
between-layer connections, but all had a partial correlation below .005 (see Supplemental
Figure 3C). In the thresholded exposome-clustering coefficient network (Figure 3D), no
between-layer edges emerged.

We only calculated bridge centrality for the unthresholded exposome-clustering
coefficient network (Figure 3C) due to the sparse or nonexistent bilayer connections for the
functional networks. For the exposome-clustering coefficient network (Figure 4A), three nodes
displayed high bridge strength (z-score > 1 SD): incidence of high blood lead levels (z = 2.88),
default mode network clustering coefficient (z = 1.41), and parent income (z = 1.20). Two nodes
emerged as highly central, for bridge expected influence (Figure 4B): incidence of high blood
lead levels (z = 2.61), default mode network clustering coefficient (z = 1.40), and neighborhood
rate of unemployment (z = 1.05). See Table 4 for edge weight stability estimates, descriptive
statistics for all exposome-brain function networks, and the bridge centrality stability estimates
for the exposome-clustering coefficient network..
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Figure 3. Exposome-Cortical Function Networks. Multilayer networks were estimated using the
Extended Bayesian Information Criterion graphical least absolute shrinkage and selection operator
(EBICglasso). We set the tuning parameter to 0.5 and used pairwise deletion to account for data
missingness. Partial correlation coefficients (edge weights) were calculated using Pearson method. Green
solid lines show positive associations. Magenta lines show negative associations. Thickness of the edge
weights indicate the magnitude of the partial correlation (thicker edges show larger partial correlations
between nodes). Cortical systems are defined from a seven system parcellation (Yeo et al., 2011): visual
(Vis), somatomotor (Motor), dorsal attention (DorAtt), ventral attention (VenAtt), executive control (Contr),
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default mode (Defau), limbic (Limb). Three exposome variables are reported by parents: income
(SESinc), parent education (SESedu), child adverse childhood experiences (ACEs). The other exposome
measures are geocoded from census block (see Supplementary Table 1): neighborhood incidence of
murder (Murder), aggravated assault (Assau), larceny (Lar), rape (Rape), robbery (Robb), burglary
(Burg), unemployment over the age of 16 (Unemp16), percent of people over the age of 25 with a
Bachelor’s degree or higher (Bach25), Gini index of income inequality (Gini), particulate matter 2.5
(PartMatt), blood lead levels (Lead). A. Participation Coefficient: Unthresholded. B. Participation
Coefficient: Thresholded. Edges that are not larger than the threshold of both the EBICglasso
computation of all considered models and the final returned model are set to zero. C. Clustering
Coefficient: Unthresholded. D. Clustering Coefficient: Thresholded. Edges that are not larger than the
threshold of both the EBICglasso computation of all considered models and the final returned model are
set to zero.

Figure 4. Normalized centrality metrics for the unthresholded exposome-clustering coefficient
network. A. Bridge Strength. B. Bridge Expected Influence.

Discussion

In this study, we built exposomes connecting family socioeconomic status and child
adversity with neighborhood measures of socioeconomic status, crime, and pollution. We linked
the exposomes to measures of cortical structural and functional maturation. This approach
yielded three key results. First, lower family income was associated with thinner visual cortex.
Second, greater neighborhood incidence of murder was associated with less limbic surface
area. Third, greater neighborhood incidence of high blood lead levels was associated with lower
participation coefficient and clustering coefficient in the default mode system. Taken together,
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these results demonstrate the potential of multilayer network models to generate new insights
into how children’s experiences influence their brain development. These models might make
previously unknown connections apparent as they take into account all possible connections in
the multilayer network (e.g., highly correlated environmental exposures and brain measures).

Our multilayer network models also uncovered associations previously found in studies
which focused on single exposures. For example, lower family income was associated with
thinner visual cortex. A meta-analysis of associations between SES and brain structure across
the first two decades of life found associations in visual areas, but these associations were not
specific (Rakesh and Whittle, 2021). In contrast, an analysis correlating income with cortical
thickness in early childhood (ages 4-7) found a specific relationship in visual cortex, with no
other areas showing a significant relationship (Leonard et al., 2019). If the stress associated
with low financial resources accelerates brain development, the association between SES and
cortical thinning might be strongest in early developing regions early in childhood. Indeed, in this
dataset, visual cortical thickness strongly correlates with age while other systems may not yet
be thinning. It is also possible that the relationship between income and visual cortical thickness
is driven by differences in visual experience, for example differences in exposure to novel or
complex objects or differences in how caregivers guide visual attention (Rosen et al., 2019;
Werchan et al., 2019). Other explanations for the strength of the visual effects are possible.
Visual cortex is also closer to head coil elements than other areas, especially for smaller heads,
and may be less susceptible to movement artifacts because children rest on the back of their
heads in the scanner (Alexander-Bloch et al., 2016; Rosen et al., 2018).

The finding that neighborhood violence shows a specific association with limbic structure
is consistent with the hypothesis that threats have a specific influence on limbic areas of the
brain (De Brito et al., 2013; Edmiston, 2011; Hanson et al., 2010; McLaughlin et al., 2014).
Neighborhood violence has been repeatedly linked to children’s cognition and behavior, even in
young children (McCoy et al., 2023; Sharkey, 2010). For example, a study in Brazil showed that
recent neighborhood violence was associated with reduced performance on cognitive tests in
3-year-old children (McCoy et al., 2023). Other work using a geocoded measure of murder
found that neighborhood murder was associated with inflammatory activity, but only in children
with low resting-state functional connectivity of the salience or central executive network,
suggesting that children differ in their sensitivity to neighborhood crime (Miller et al., 2021). This
work highlights the need for further study of how young children are influenced by neighborhood
violence to investigate possible mechanisms of how and in which environments (proximal or
distal) it affects brain development.

In the functional-exposome networks, default mode network (DMN) measures were
associated with neighborhood incidence of high blood lead levels in children. Lead exposure
has been linked to lower cortical volume and surface area in 9-10-year-olds (Marshall et al.,
2020). Childhood lead exposure has also been shown to relate to lower cortical surface area in
midlife (Reuben et al., 2020). The literature on lead effects on functional networks is limited, but
there are studies on other toxins. For example, pesticide exposure has been linked to greater
clustering coefficient in the DMN of 8-year-olds (Bahrami et al., 2022). Vehicle exhaust exposure
has been linked to weaker functional connectivity between medial frontal and angular gyrus
hubs of the DMN in 8-12-year-olds (Pujol et al., 2016). In our study, higher neighborhood lead
exposure was associated with lower DMN participation coefficient. Because the participation
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coefficient is negatively associated with age as network architecture is refined, this result is
consistent with the possibility of accelerated functional maturation (Fair et al., 2009, 2007;
Tooley et al., 2022b, 2020). DMN effects may reflect the network’s proximity to major arteries
and venous drainage (Satterthwaite et al., 2014). In animal models, it has been shown that a
variety of toxins are first deposited along the midline of the brain near major arteries (Kesler et
al., 2013; Mills et al., 2016). It is also possible that lead exposure is associated with
inflammatory responses, which is consistent with a documented relationship between
interleukin-6 levels in blood and functional connectivity of the DMN in adults (Marsland et al.,
2017).

This study has a number of limitations. Because of the small sample size, we
constrained the number of environmental and brain features in the models. Our sample and
geocoded data did not include measures on some key dimensions of early experiences, in
particular, positive and protective experiences, and on the duration and timing of exposures. Our
geocoded data can tell us about average experiences in a census block but do not provide
individual-level experiences with crime or exposure to environmental toxins, which could differ
along many aspects of family identities, including race, gender, and age. Likewise, the
measures used here were not all raw measures of exposures; the Market Profile crime indices
and particulate matter concentration in a census block are predictions from other available
county or city-level data. We also focused only on the cortex, dividing it into relatively large
regions. Future work with larger samples could expand the exposome, and facilitate a more
granular investigation of the brain, including subcortical gray matter and white matter. We did
not have the power to look at age by exposome interactions on brain development to ask
whether the patterns we see look different in younger vs. older children. This is further
evidenced in the low stability of all our bilayer networks, which suggests that the relationships
observed in this study have limited robustness. Larger longitudinal datasets are necessary to
better evaluate developmental timing hypotheses. Even in the constrained models, choices
about included variables, thresholding, sample size, and/or decisions about how to deal with
data missingness (e.g., data imputation to protect against estimation bias, see Liu et al., 2023)
can change network layouts, so we see the specific network architecture as a description of the
data in this sample under a set of sensible methodological choices rather than definitive
evidence for specific associations among exposome and brain layers. Despite these limitations,
recent work has demonstrated that with sample sizes of ~300, the EBICglasso estimator
performs well at recovering a network structure resembling the true network and the strongest
edges (Isvoranu and Epskamp, 2021). Whether this finding translates to our smaller sample
size remains unknown. Moreover, the EBICglasso estimator has shown good sensitivity
regarding the detection of bridge edges, especially those strongest within the network. However,
this comes at the expense of lower precision and specificity, which suggests that some bridge
edges might be false positives. Altogether, this points to the need for future research to expand
upon our findings using larger sample sizes (e.g., the ABCD study, see Casey et al., 2018) and
comparisons among different estimation methods. However, the current sample benefits from
containing detailed exposure measures and neuroimaging data from a community sample of
children from diverse backgrounds (see demographic characteristics from Table 1), which
makes it unique to explore these associations.
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To conclude, we took a multilayer network approach to characterize how a diverse set of
early experiences in children’s homes and neighborhoods relate to cortical structure and
function. This approach has the potential to inform not only basic science theories of brain
development, but also intervention approaches. Our specific results suggest that family income
is central, connecting multiple types of adversity to children’s brain structure. Our results also
suggest that lead exposure could be impacting default mode network function above and
beyond stress exposure. If these results replicate, they could be seen as additional justification
for policies like unconditional cash transfers and lead monitoring and abatement, though the
empirical support for these policies is already extensive (for review, see Blair and Raver, 2016;
Farah, 2018). Repeating these analyses in different geographic contexts could test how regional
differences in the coincidence of exposures (e.g., spatial correlations of crime and pollution),
and differences in policies to mitigate the impact of poverty (Weissman et al., 2023) and lead
exposure, change associations with child brain development. Experimental changes in nodes of
these networks, like cash transfers (Baby’s First Years; Noble et al., 2021), will give us even
stronger insights into the validity of the networks we describe here. Together, this study
highlights the utility of connecting explanatory levels by applying a multilayer approach to not
only replicate previous findings but also provide new directions for further understanding the
complex interactions between childhood brain development and their environments.
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SUPPLEMENTARY MATERIAL

Structural imaging
(n = 170)

Excluded
participants
(n = 42)

Comparison test
p-value

Age (years, mean [SD] {range}) 6.34 [1.40]
{4.05-10.59}

5.66 [0.95]
{4.18-7.52}

0.003**

Sex (n [%]) 89 [52.4%] female
81 [47.6%] male
0 [0%] other

20 [47.6%] female
22 [52.4%] male
0 [0%] other

0.6

Race (%) 50.6 % Black
41.8 % White
11.8 % Asian
1.8 % Native

Hawaiian or Other
Pacific Islander
1.8% American
Indian or Alaska

Native
6.5% Other

47.6 % Black
40.5 % White
11.9 % Asian
2.4 % Native

Hawaiian or Other
Pacific Islander
2.4% American
Indian or Alaska

Native
0.0% Other

(0.9) Black
(>0.9) White
(>0.9) Asian
(>0.9) Native

Hawaiian or Other
Pacific Islander
(>0.9) American
Indian or Alaska

Native
(0.13) Other

Ethnicity (%) 11.3%
Latinx/Hispanic

16.7%
Latinx/Hispanic

0.4

Family Income (thousands of $,
mean [SD])

80.1 [68.2] 92.4 [63.4] 0.4

Parent Education (years, mean
[SD])

14.88 [2.72] 15.26 [2.79] 0.4

Adverse Childhood Experiences
(ACEs)
(mean, [SD])

0.97 [1.35] 1.12 [1.31] 0.2

Neighborhood unemployment, (%,
mean [SD])

34.7 [24.5] 36.3 [27.9] >0.9

Percentage of people (25+ years
old) with a Bachelor's degree in
the neighborhood (%, mean [SD])

8.3 [5.4] 9.3 [6.7] 0.6

Percentage incidence of high
blood levels in neighborhood (%,
mean [SD])

6.3 [3.4] 6.1 [2.6] 0.7

Average particulate matter
concentration in neighborhood
(μg/m3, mean [SD])

1.30 [0.33] 1.29 [0.33] >0.9
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Murder Index十 (unitless, mean
[SD])

110.5 [50.8] 92.5 [50.5] 0.11

Rape Index十 (unitless, mean [SD]) 94.0 [53.0] 81.7 [50.3] 0.2

Robbery Index十 (unitless, mean
[SD])

90.1 [58.2] 79.6 [56.8] 0.3

Assault Index十 (unitless, mean
[SD])

113.2 [41.8] 92.4 [53.2] 0.054

Larceny Index十 (unitless, mean
[SD])

115.2 [41.8] 103.0 [45.0] 0.2

Burglary Index十 (unitless, mean
[SD])

112.1 [50.4] 88.4 [56.0] 0.029*

Gini Index (unitless, mean [SD]) 0.460 [0.065] 0.454 [0.057] 0.9

Supplemental Table 1. Demographic and geocoded information of participants in the structural
neuroimaging sample and the participants who participated at their first scan session but were excluded.
*Survey form allowed parents to endorse more than one racial identity hence the sum of racial identities is
greater than 100%. 十Market Profile variables indices represent deviations from the U.S. average rate of
that specific crime - U.S. mean rate of a specific crime is 100. Comparisons between continuous
variables, such as crime indices, Gini index, age, income, years of education, PM2.5 concentrations, and
others were performed using Wilcoxon rank sum t-tests; categorical variables (specific race categories,
ethnicity, and sex) were compared with Fisher exact t-tests. Two variables were found to be significantly
different (p < 0.05) between the two samples: burglary index and age.

Functional imaging
sample
(n = 130)

First available
session for excluded

participants
(n = 87)

Comparison test
p-value

Age (years, mean [SD] {range}) 6.64 [1.35]
{4.11-10.59}

5.73 [1.21]
{4.05-9.98}

<0.001***

Sex (n [%]) 69 [53.1%] female
61 [46.9%] male
0 [0%] other

42 [48.3%] female
45 [51.7%] male
0 [0%] other

0.5

Race* (%) 51.5 % Black
42.3 % White
13.8 % Asian
2.3% Native

Hawaiian or Other
Pacific Islander
1.5% American
Indian or Alaska

Native
3.1% Other

48.3 % Black
40.2 % White
9.2 % Asian
0.0% Native

Hawaiian or Other
Pacific Islander
2.3% American
Indian or Alaska

Native
8.0% Other

(0.7) Black
(0.8) White
(0.4) Asian
(0.3) Native

Hawaiian or Other
Pacific Islander
(>0.9) American
Indian or Alaska

Native
(0.12) Other
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Ethnicity (%) 10.9%
Latinx/Hispanic

14.0%
Latinx/Hispanic

0.5

Family Income (thousands of $,
mean [SD])

85.7 [68.2] 75.7 [65.8] 0.3

Parent Education (years, mean
[SD])

15.09 [2.72] 14.76 [2.72] 0.4

Adverse Childhood Experiences
(ACEs)
(mean, [SD])

1.02 [1.31] 0.99 [1.45] 0.7

Neighborhood unemployment, (%,
mean [SD])

34.3 [23.9] 35.2 [26.6] >0.9

Percentage of people (25+ years
old) with a Bachelor's degree in
the neighborhood (%, mean [SD])

8.3 [5.4] 9.1 [6.1] 0.4

Percentage incidence of high
blood levels in neighborhood (%,
mean [SD])

6.1 [3.4] 6.8 [3.1] 0.2

Average particulate matter
concentration in neighborhood
(μg/m3, mean [SD])

1.32 [0.33] 1.29 [0.33] 0.4

Murder Index十 (unitless, mean
[SD])

108.3 [49.2] 105.8 [53.1] 0.8

Rape Index十 (unitless, mean [SD]) 91.5 [52.2] 92.5 [53.5] >0.9

Robbery Index十 (unitless, mean
[SD])

88.4 [58.0] 88.5 [58.4] >0.9

Assault Index十 (unitless, mean
[SD])

109.3 [45.0] 111.5 [52.9] 0.5

Larceny Index十 (unitless, mean
[SD])

111.7 [42.2] 115.3 [42.2] 0.4

Burglary Index十 (unitless, mean
[SD])

108.4 [52.2] 108.7 [51.9] >0.9

Gini Index (unitless, mean [SD]) 0.458 [0.063] 0.461 [0.066] 0.7

Supplemental Table 2. Demographic and geocoded information of participants in the functional
neuroimaging sample and the earliest available scan session of the participants who participated in at
least one scan session (including those with an earliest scan session after the first) but were excluded.
*Survey form allowed parents to endorse more than one racial identity hence the sum of racial identities is
greater than 100%. 十Market Profile variables indices represent deviations from the U.S. average rate of
that specific crime - U.S. mean rate of a specific crime is 100. Comparisons between continuous
variables, such as crime indices, Gini index, age, income, years of education, PM2.5 concentrations, and
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others were performed using Wilcoxon rank sum t-tests; categorical variables (specific race categories,
ethnicity, and sex) were compared with Fisher exact t-tests. One variable was found to be significantly
different (p < 0.05) between the two samples: age.

Measure Definition Source

Murder Index Neighborhood incidence of murder, as defined as the act
of one person taking another person's life outside of the
categories of negligence, suicide, and accident

Market Profile

Aggravated
Assault Index

Neighborhood incidence of violent attacks with the
attempt to inflict serious bodily harm and/or potentially
death

Market Profile

Larceny Index Neighborhood incidence of theft of personal property of
varying value without force or fraud and can be thus
classified as a non-violent crime

Market Profile

Rape Index Neighborhood incidence of sexual assault, attempts, or
other kinds of assault with the intent to sexually assault,
excluding statutory rape and incest

Market Profile

Robbery Index Neighborhood incidence of taking something of value,
care, or custody using violence, force, and/or threat of
force

Market Profile

Burglary Index Neighborhood incidence of unlawful entry (or attempt)
into a structure to commit a felony or theft. It does not by
definition require force to enter

Market Profile

Unemployment
over the age of

16

Neighborhood proportion of people older than 16 years
old in the labor force that are not employed, not
including people such as stay-at-home parents,
students, incarcerated or otherwise institutionalized
individuals, and retired or seasonal workers

American
Community
Survey

People over 25
with a

Bachelor's
degree or
higher

Neighborhood proportion of people over the age of 25
with some form of higher education qualification
(Bachelor's, Master's, professional degree (MD, JD), or
PhD)

American
Community
Survey

Gini Index Neighborhood income inequality index, operationalized
by taking the difference between the actual income
distribution curve and the perfect equality curve. The
higher the index, the higher the inequality

American
Community
Survey
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Particulate
matter 2.5
(PM2.5)

Neighborhood concentration estimate of fine inhalable
particles greater than 2.5 µm in diameter such as
industrial pollutants, exhaust fumes, among other
harmful inhalants

Environmental
Protection
Agency

Blood lead
levels

Neighborhood percentage of children with blood lead
levels above 5 µg/mL

Philadelphia
Department of
Public Health

Supplemental Table 3. Geocoded exposome variables.
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Supplemental Figure 1. Associations between age and brain measures. A. Cortical Structure
measures. Measures include surface area (SA) and cortical thickness (CT). Structural metrics were
residualized for image quality rating. B. Cortical Function Measures. Measures include participation
coefficient (PC) and clustering coefficient (CC). Functional metrics were residualized for mean head
framewise displacement and average network non-zero edge-weight. Cortical systems are defined from a
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seven system parcellation (Yeo et al., 2011): visual (Vis), somatomotor (Motor), dorsal attention (DorAtt),
ventral attention (VenAtt), executive control (Contr), default mode (Defau), limbic (Limb).

Supplemental Figure 2. Exposome-Cortical Structure Partial Correlations. Positive partial
correlations are shown in green, and negative partial correlations are shown in magenta. Cortical systems
are defined from a seven system parcellation (Yeo et al., 2011): visual (Vis), somatomotor (Motor), dorsal
attention (DorAtt), ventral attention (VenAtt), executive control (Contr), default mode (Defau), limbic
(Limb). Three exposome variables are reported by parents: income (SESinc), parent education (SESedu),
child adverse childhood experiences (ACEs). The other exposome measures are geocoded from census
block (see Supplementary Table 1): neighborhood incidence of murder (Murder), aggravated assault
(Assau), larceny (Lar), rape (Rape), robbery (Robb), burglary (Burg), unemployment over the age of 16
(Unemp16), percent of people over the age of 25 with a Bachelor’s degree or higher (Bach25), Gini index
of income inequality (Gini), particulate matter 2.5 (PartMatt), blood lead levels (Lead). A. Surface Area:
Unthresholded. B. Surface Area: Thresholded. Edges that are not larger than the threshold of both the
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EBICglasso computation of all considered models and the final returned model are set to zero. C. Cortical
Thickness: Unthresholded. D. Cortical Thickness: Thresholded. Edges that are not larger than the
threshold of both the EBICglasso computation of all considered models and the final returned model are
set to zero.

Supplemental Figure 3. Exposome-Cortical Function Partial Correlations. Positive partial
correlations are shown in green, and negative partial correlations are shown in magenta. Cortical systems
are defined from a seven system parcellation (Yeo et al., 2011): visual (Vis), somatomotor (Motor), dorsal
attention (DorAtt), ventral attention (VenAtt), executive control (Contr), default mode (Defau), limbic
(Limb). Three exposome variables are reported by parents: income (SESinc), parent education (SESedu),
child adverse childhood experiences (ACEs). The other exposome measures are geocoded from census
block (see Supplementary Table 1): neighborhood incidence of murder (Murder), aggravated assault
(Assau), larceny (Lar), rape (Rape), robbery (Robb), burglary (Burg), unemployment over the age of 16

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.563611doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?EbKpyh
https://doi.org/10.1101/2023.10.23.563611
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Unemp16), percent of people over the age of 25 with a Bachelor’s degree or higher (Bach25), Gini index
of income inequality (Gini), particulate matter 2.5 (PartMatt), blood lead levels (Lead). ). A. Participation
Coefficient: Unthresholded. B. Participation Coefficient: Thresholded. Edges that are not larger than the
threshold of both the EBICglasso computation of all considered models and the final returned model are
set to zero. C. Clustering Coefficient: Unthresholded. D. Clustering Coefficient: Thresholded. Edges that
are not larger than the threshold of both the EBICglasso computation of all considered models and the
final returned model are set to zero.

Supplemental Methods
Evaluating a sum score approach to modeling neighborhood crime

Sum scores are commonly used as an aggregate metric of a particular measure of
interest (e.g., IQ, SES, etc.). We considered creating a sum score of total neighborhood crime
composed of our murder, aggravated assault, larceny, rape, robbery, and burglary crime indices.
However, sum scores often misrepresent the underlying construct they are attempting to
capture (e.g., clinical diagnoses) if the assumptions underlying the creation of the sum score are
not met (see McNeish and Wolf, 2020). For example, we could assume that all neighborhood
crime indices are related equally to a latent construct (e.g., Neighborhood Crime), regardless of
the nature of the crime (e.g., larceny vs aggravated assault). In this instance, we should
constrain the weights of all neighborhood crime indices to be identical when creating the total
crime sum score. However, this assumption might be false if any of the crime indices
differentially relate to the Neighborhood Crime latent construct (i.e., have non-identical factor
loading estimates). In this case, it would instead be appropriate to assign the weight of each
crime index depending on its relation to the Neighborhood Crime latent construct.

Furthermore, we might not be justified to use only one sum score to capture
neighborhood crime. Instead, neighborhood crime might be better characterized using two or
more latent constructs. For example, we can group the individual crime indices into two
categories: nonviolent (larceny, robbery and burglary) and violent (rape, aggravated assault and
murder). We classify robbery as a nonviolent crime since its definition includes the possibility of
stealing an item without physical force (e.g., only the threat of force). Establishing whether
neighborhood crime is better represented as a single or multi-factor construct has important
implications. For example, if the covariance structure among the crime indices is better
represented by two (Non-Violent Crime and Violent Crime) latent constructs rather than one
(Neighborhood Crime), it suggests that neighborhood crime is multidimensional, with the
potential that these two categories of neighborhood crimes have distinct effects on childhood
structural and functional brain development.

Structural equation modeling, used for sum score analyses of our exposome
neighborhood crime data (aggravated assault, burglary, larceny, murder, rape, and robbery),
was completed using the lavaan (version 0.6-12; Rosseel, 2012) and semPlot (version 1.1.5;
Epskamp, 2022) packages for factor model estimation and visualization, respectively. Structural
equation modeling (SEM) is a multivariate statistical modeling approach that calculates the
correlations (factor loadings) between observed (e.g., neighborhood crime indices) and latent
variables (e.g., Neighborhood Crime) (Beaujean, 2014). Moreover, SEM permits the estimation
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of the fit of the theorized model compared to a baseline model to help determine how well your
model captures the covariance structure of your data. We used the robust full information
maximum likelihood estimator (FIML) with a Yuan-Bentler scaled test statistic (MLR) and robust
standard errors (Schermelleh-Engel et al., 2003) to account for deviations from multivariate
normality and missing data. We assessed model fit through the (Satorra-Bentler scaled)
chi-squared test, the comparative fit index (Robust CFI), the root mean square error of
approximation (Robust RMSEA) with its confidence interval, and the standardized root mean
squared residuals (Robust SRMR) (Schermelleh-Engel et al., 2003). Evaluation of model fit was
defined as: Robust CFI (good fit > 0.97, acceptable fit 0.95-0.97), Robust RMSEA (good fit <
0.05, acceptable fit 0.05-0.08), and Robust SRMR (good fit < 0.05, acceptable fit 0.05–.10).

We followed the guidance set forth by McNeish and Wolf, 2020 for determining the
proper weighting (equal or allowed to vary) and factorial structure (single or multiple factors) of
our neighborhood crime data. To assess the optimal weighting of the neighborhood crime
variables, we fit two types of factor models: parallel and congeneric. For the parallel factor
model, we constrained all factor loadings (i.e., correlation between the observed crime indices
and the Neighborhood Crime latent factor) to be equal. We also constrained the error (residual)
variances for each neighborhood crime index to be equal. As a result, the parallel factor model
assumes each neighborhood crime index contributes equally to the latent Neighborhood Crime
construct. The second type of model we fit is known as a congeneric factor model. The
congeneric factor model freely estimates the factor loading of each neighborhood crime index
so that they are allowed to differ from each other. Thus, in contrast to the parallel factor model,
the congeneric factor model does not assume that each neighborhood crime index contributes
equally to the latent construct and, therefore, has a unique error variance (Graham, 2006).
Furthermore, in this model, we constrained the variance of the latent variable, Neighborhood
Crime, to 1 (McNeish and Wolf, 2020).

To compare the single-factor parallel and congeneric models, we used a likelihood ratio
test, computing a scaled chi-squared difference test. We also compared the models’ Akaike
information criterion (AIC, Bozdogan, 1987) and Bayesian information criterion (BIC, Bollen et
al., 2014; Schwarz, 1978) estimates, which indicate whether increased model fit warrants
increased model complexity (e.g., fewer degrees of freedom). We considered a model to be
‘better’ if the chi-squared difference test was significant (p<0.05), which indicated that the fits
differed between models, and if the model’s AIC and BIC were lower than the model it was
compared to. Depending on which single-factor model was determined to be better (parallel or
congeneric), we repeated the SEM analyses with a corresponding two-factor model with the
latent constructs Non-Violent Crime and Violent Crime. Here, the likelihood ratio test would
assess whether the two-factor parallel or congeneric model fit better given its additional
complexity (i.e., a second latent variable) compared to its single-factor counterpart. If none of
the models displayed good or acceptable fit well to the data, we would not create a total crime
sum score and would instead include each neighborhood crime index variable as a separate
node in our bilayer network estimations. Note, the goal of this SEM analysis procedure was not
to find the best-fitting model overall. Therefore, we did not fit any alternative models with more
than two latent factors. Instead the aim was to establish whether unit-weighting (i.e., each crime
variable contributes equally to the total crime sum score) and/or a single factor adequately
represents the neighborhood crime data in this sample. This would indicate whether estimating
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the relationships of the individual crime indices is more appropriate than creating a new total
crime sum score or multiple sum scores based on these six variables.

First, we describe the sum score analysis findings for the exposome-structural MRI data,
which contained the same neighborhood crime index data (n = 170, 152 with crime data). The
single-factor parallel model displayed poor fit to the data (𝜒2(19) = 296.348, p < .001,
Yuan-Bentler scaling factor = .986, CFI = .531, RMSEA = .308 [.277 .339], SRMR = .148).
Similarly, the single-factor congeneric model also displayed poor fit (𝜒2(9) = 132.484, p < .001,
Yuan-Bentler scaling factor = 1.115, CFI = .791, RMSEA = .319 [.275 .364], SRMR = .088),
although better than the parallel model (𝜒2Δ = 166.08, dfΔ = 10, AICΔ = 124.6, BICΔ = 94.4, p <
.001). This suggests that, if sum scored, the neighborhood crime indices should not be
unit-weighted (i.e., each crime variable contributes equally to the total crime sum score) for the
exposome-brain structural MRI data. Furthermore, given the poor fit of the single-factor
congeneric model, we did not create an aggregate sum score based on the Neighborhood
Crime latent variable.

Next, we investigated the factorial structure of the exposome-structural MRI
neighborhood crime index data to determine whether a two-factor model (Non-Violent Crime
and Violent Crime) would show acceptable or good fit to the data. We fitted a congeneric
two-factor model corresponding to the best fitting single-factor model. In line with the
single-factor models, the two-factor congeneric model also fitted poorly to the crime data (𝜒2(8) =
120.107, p < .001, Yuan-Bentler scaling factor = 1.128, CFI = .813, RMSEA = .324 [.277 .373],
SRMR = .093). However, it did outperform the single-factor congeneric model (𝜒2Δ = 12.100, dfΔ
= 1, AICΔ = 10.2, BICΔ = 7.2, p < .001). Overall, these results indicate that the neighborhood
crime indices from our exposome-structural MRI data should neither be unit-weighted nor
combined into a single sum score. Therefore, we chose to include the individual neighborhood
crime indices (aggravated assault, burglary, rape, larceny, murder, and robbery) as separate
nodes to estimate their relationships in the exposome-cortical surface area and thickness
networks.

We repeated the above sum score analyses for the exposome-functional MRI data,
which contained a different set of neighborhood crime index data from the structural MRI sample
(n = 130, of which 112 had crime index data). The single-factor parallel model exhibited poor fit
to the data (𝜒2(19) = 239.228, p < .001, Yuan-Bentler scaling factor = .965, CFI = .557, RMSEA
= .316 [.281 .352], SRMR = .158). Similarly, the single-factor congeneric model also fitted poorly
to the data (𝜒2(9) = 110.357, p < .001, Yuan-Bentler scaling factor = 1.098, CFI = .767, RMSEA
= .333 [.281 .388], SRMR = .096), although better than the parallel model (𝜒2Δ = 129.75, dfΔ =
10, AICΔ = 90.6, BICΔ = 62.6, p < .001). This suggests that, if sum scored, the neighborhood
crime indices should not be unit-weighted (i.e., each crime variable contributes equally to the
total crime sum score) for the exposome-functional MRI data. Moreover, since the single-factor
congeneric model fitted poorly to the neighborhood crime data, we did not create an aggregate
sum score based on the Neighborhood Crime latent variable.

Lastly, we replicated the previous investigation of the factorial structure of the
neighborhood crime index data in exposome-functional MRI data. We fitted a congeneric
two-factor model corresponding to the best fitting single-factor model. In line with the
single-factor models, the two-factor congeneric model also fitted poorly to the crime data (𝜒2(8) =
96.202, p < .001, Yuan-Bentler scaling factor = 1.105, CFI = .796, RMSEA = .330 [.274 .390],
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SRMR = .099). However, it did outperform the single-factor congeneric model (𝜒2Δ = 14.282, dfΔ
= 1, AICΔ = 12.8, BICΔ = 10.1, p < .001). These results suggest that, as with
exposome-structural data, neighborhood crime index data for exposome-functional MRI data
should neither be unit-weighted nor combined into a single sum score. Hence, we chose to use
the individual indices for the exposome-participation coefficient and exposome-clustering
coefficient multilayer network estimation.

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.563611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563611
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

Beaujean, A.A., 2014. Latent Variable Modeling Using R, 0 ed. Routledge.
https://doi.org/10.4324/9781315869780

Bollen, K.A., Harden, J.J., Ray, S., Zavisca, J., 2014. BIC and Alternative Bayesian Information
Criteria in the Selection of Structural Equation Models. Struct. Equ. Model. Multidiscip. J.
21, 1–19. https://doi.org/10.1080/10705511.2014.856691

Bozdogan, H., 1987. Model selection and Akaike’s Information Criterion (AIC): The general
theory and its analytical extensions. Psychometrika 52, 345–370.
https://doi.org/10.1007/BF02294361

Epskamp, S., 2022. semPlot: Path Diagrams and Visual Analysis of Various SEM Packages’
Output.

Graham, J.M., 2006. Congeneric and (Essentially) Tau-Equivalent Estimates of Score Reliability:
What They Are and How to Use Them. Educ. Psychol. Meas. 66, 930–944.
https://doi.org/10.1177/0013164406288165

McNeish, D., Wolf, M.G., 2020. Thinking twice about sum scores. Behav. Res. Methods 52,
2287–2305. https://doi.org/10.3758/s13428-020-01398-0

Rosseel, Y., 2012. lavaan : An R Package for Structural Equation Modeling. J. Stat. Softw. 48.
https://doi.org/10.18637/jss.v048.i02

Schermelleh-Engel, K., Moosbrugger, H., Müller, H., 2003. Evaluating the Fit of Structural
Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures.
Methods Psychol. Res. Online 8, 23–74.

Schwarz, G., 1978. Estimating the Dimension of a Model. Ann. Stat. 6.
https://doi.org/10.1214/aos/1176344136

Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman,
J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L., 2011. The
organization of the human cerebral cortex estimated by intrinsic functional connectivity.
J. Neurophysiol. 106, 1125–1165. https://doi.org/10.1152/jn.00338.2011

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.563611doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://www.zotero.org/google-docs/?7uPrOR
https://doi.org/10.1101/2023.10.23.563611
http://creativecommons.org/licenses/by-nc-nd/4.0/

