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Abstract

Exquisite binding specificity is essential for many protein functions but is difficult to engineer.
Many biotechnological or biomedical applications require the discrimination of very similar ligands,
which poses the challenge of designing protein sequences with highly specific binding profiles. Cur-
rent methods for generating specific binders rely on in vitro selection experiments, but these have
limitations in terms of library size and control over specificity profiles. We present a multi-stage
approach that overcomes these limitations by combining high-throughput sequencing of phage
display experiments with machine learning and biophysical modeling. Our models predict the
binding profiles of antibodies against multiple ligands and generate antibody sequences with de-
sired specificity profiles. The approach involves the identification of different binding modes, each
associated with a particular ligand against which the antibodies are either selected or not. We
demonstrate that the model successfully disentangles these modes, even when they are associated
with chemically very similar ligands. Additionally, we demonstrate and validate experimentally the
computational design of antibodies with customized specificity profiles, either with specific high
affinity for a particular target ligand, or with cross-specificity for multiple target ligands. Overall,
our results showcase the potential of leveraging a biophysical model learned from selections against
multiple ligands to design proteins with tailored specificity, with applications to protein engineering

extending beyond the design of antibodies.

INTRODUCTION

Proteins often exhibit a delicate balance of multiple physical properties. A prominent
example is binding specificity, where some ligand interactions are advantageous while oth-
ers are detrimental. Examples include transcription factors, which recognize specific DNA
motifs among a myriad of alternatives [1], enzymes with a strong preference for their sub-
strate over many similar molecules [2, 3], and immune receptors capable of distinguishing
a pathogenic molecule from many others, in particular self molecules [4]. Due to the close
chemical similarity between favorable and unfavorable ligands, and/or the dissimilarities

between favorable ligands, the engineering of such proteins poses formidable challenges. For
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instance, in the particular case of therapeutic antibodies, the desired specificity profile typ-
ically consists of strong binding affinity to the target antigen while retaining low binding
affinity to human self antigens to avoid auto-immune reactions. Additionally, when the
target antigen is a human protein, e.g. a tumor marker, antibody cross-specific binding to
the human and the cyno and/or murine homologous antigens is often desired to ease drug

development [5].

Presently, methods for obtaining specific binders essentially rely on in witro selection
experiments [6]. Phage or ribosome display [7, 8] with one immobilized targeted ligand in the
presence of soluble non-targeted ligands allows screening for specific binding to the targeted
ligand [9]. Yeast display combined with fluorescent-activated cell sorting [10] additionally
offers the unique possibility to control precisely specificity selection criteria (including cross-
specificity) upfront during the screening process by monitoring fluorescence associated with
the targeted and non-targeted ligands in different channels [11], albeit with a maximum
library size that is several orders of magnitude smaller. High-throughput selection can
be combined with high-throughput sequencing read-out to identify binders beyond the top
hits [12—-14], but all experimental approaches are limited by the maximal library size, ranging
from typically 10% (yeast), 10'° (phage) to 10" (ribosome). As large as these numbers may
appear, they represent a negligible fraction of the combinatorially large space of possible
sequences. Moreover, experimental screening for specificity requires the targeted and non-
targeted ligands to be physically separable, which may be complicated if not impossible in
some cases, for instance when considering distinct epitopes on the same molecule. Finally, in
experiments, non-targeted ligands are inevitably present, since targeted ligands are typically

attached to a cell, a tube/plate, or a magnetic bead.

Recently, works combining high-throughput sequencing and machine learning have
demonstrated the possibility of making predictions beyond the scope of experimentally
observed sequences [15, 16]. While past works predominantly focused on a single protein
property (binding, stability, or catalysis) directly linked to the selection criterion [17], a
few studies have shown the feasibility of inferring multiple physical properties, including
quantities that are not directly measured [18]. Notable successful examples include pre-
dicting thermal stability from binding affinity measurements [19], and inferring specificity
profiles of transcription factors from the selective enrichment of DNA sequences [20, 21].

Several recent works have started to apply this type of approach to predict and design
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antibody specificities [22-25] but, to our knowledge, none have addressed the critical but
most challenging problem of designing antibody sequences that discriminate closely related
ligands.

Here, we introduce a biophysics-informed approach that tackles this task. Trained on
a set of experimentally selected antibodies, our model associates to each potential ligand
a distinct binding mode, which enables the prediction and generation of specific variants
beyond those observed in the experiments. To showcase this approach, we conducted a series
of phage display experiments involving antibody selection against diverse combinations of
closely related ligands. First, we demonstrate the model’s predictive power by using data
from one ligand combination to predict outcomes for another. Second, we show its generative
capabilities by using it to generate antibody variants not present in the initial library that are
specific to a given combination of ligands. Our results highlight the potential of biophysical-
informed models to identify and disentangle multiple binding modes associated with specific
ligands. This approach has applications in designing antibodies with both specific and
cross-specific properties and in mitigating experimental artifacts and biases in selection

experiments.

RESULTS

We designed phage display experiments for the selection of antibody libraries and per-
formed two distinct experimental campaigns: in the first, we selected antibodies against
various combinations of ligands. This provided us with multiple training and test sets,
which we used to build and assess our computational model. In the second, we tested vari-
ants predicted by our model but not present in the training set to assess the model’s capacity

to propose novel antibody sequences with customized specificity profiles.

Experimental selection

Following our previously established protocols [13, 14], we carried out phage-display ex-
periments with a minimal antibody library based on a single naive human Vy domain in
which four consecutive positions of the third complementary determining region (CDR3)

are systematically varied to a large fraction of the 20* = 1.6 10° combinations of amino
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FIG. 1. A. In a phage display experiment, an initial library containing ~ 10° variants, each in
~ 10° copies (here illustrated with 3 variants in 2 copies) is incubated in the presence of DNA
hairpins (in black) coupled to magnetic beads (in orange). Antibodies are selected in proportion
to their binding probability. The input and output populations are sampled and sequenced to
provide data-sets of ~ 10° sequences each. B. We selected the same initial library against four
different combinations of ligands: two different DNA hairpins coupled to magnetic beads, presented
either alone or in combination, and naked magnetic beads. We refer to these four combinations
as “Black”, “Blue”, “Mix” and “Beads” complexes. For the Black, Blue, and Mix complexes, we
made two successive rounds of selection. The 10 boxes at the tip of the arrows indicate the 10
sequencing datasets thus produced to feed our model, in addition to the sequencing dataset from

the initial library.

acids (“Germline library” [14]). This library is small enough to allow a high-coverage of its
composition by high-throughput sequencing. Out of the 20* potential variants, 48% are ob-
served by sequencing, while we consider the remaining ones to be absent or unobserved. We
previously showed that this library contains antibodies that bind specifically to a diversity
of ligands, including proteins, DNA hairpins, and synthetic polymers [13, 14].

Here, we perform selections against complexes comprising two types of ligands, DNA
hairpin loops and the surface of streptavidin-coated magnetic beads on which the DNA
hairpins are immobilized. We performed independent selections against two such complexes,
referred to as “Black” for one DNA hairpin on beads, and “Blue” for another DNA hairpin
on beads, as well as selections against mixtures of Black and Blue complexes (“Mix”).
Following standard protocols, we performed two rounds of selection with an amplification

step in between, where each selection is preceded by an incubation of the phages with naked
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beads to (partly) deplete the antibody library of bead binders (see Fig. 4). These pre-
selections provided us with data with a fourth selective pressure where naked beads are the
only ligand (“Bead”). Importantly, we systematically rescued phages by infection of E. coli
bacteria at each step of the protocol to closely monitor the antibody library composition.
Input phages, phages bound to naked beads during the pre-selection step, and output phages
bound to DNA target-coupled beads during the selection step were thus rescued in bacteria
and extracted plasmids used as a template for high-throughput sequencing (see Fig. 4). The
relationships between the 8 selection experiments are represented in Figure 1, together with
the sequencing data that we collected.

For each experimental selection round ¢, empirical enrichments were computed for each
sequence s as €5 = Ry /Rg, where Ry and Ry, denote respectively the sequencing counts
before and after selection. Enrichments against the Black and Blue complexes are observed
to be very correlated, consistent with their close chemical similarities (Fig. 7). Enrichments
against one complex and the beads alone are less correlated, indicating both that the beads
are not dominant epitopes when coupled to DNA hairpins, and that they are chemically

more dissimilar from these hairpins (Fig. 14).

A model for multiple-specific selection

We built a computational model where the probability ps for an antibody sequence s
to be selected in a particular experiment ¢ is expressed in terms of selected and unselected
modes. Each mode w is mathematically described by two quantities: ., that depends only

on the experiment ¢, and F, that depends on the sequence, such that

Hwt—E
2 wes, &

Pst = _E _E.
Zwest e/—Lwt ws _'_ Zwe/\/t eﬂwt ws

(1)

where S; and N, represent, respectively, sets of selected and not-selected modes available in
experiment ¢. (1) is rooted in the thermodynamics of binding at thermal equilibrium [26]: if
a molecule can be in one of the selected (S;) and unselected (N;) thermodynamical states,
its probability to be selected is given by (1), which corresponds to a Boltzmann law with
E,s = AF,s/RT, where AF, represents the free energy of s in state w, R the universal
gas constant and T the temperature. A selected state can represent binding to a targeted

ligand w, in which case p,,; = In[w], where [w] is the relative concentration of free ligand
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w in the experiment ¢ (up to a scaling factor). The formula further includes an unselected
unbound mode, to account for the possibility that the molecule remains in solution instead

of binding any ligand.

Given that our experiments include three types of ligand — two DNA hairpins and mag-
netic beads — our model comprises four binding modes in total. A bead-bound mode is
always selected, the DNA hairpin-bound modes are either selected or absent depending on
the ligand present in the experiment, and the unbound mode is always unselected (Fig. 6).
In addition to these physical modes associated with the thermodynamics of binding, our
model can incorporate extra pseudo modes not related to binding, to account for biases that
may occur during phage production and antibody expression stages (Materials and Meth-
ods for details). For each mode w, E, is parametrized by a shallow dense neural network
(Materials and Methods). During training, the model parameters are optimized globally
to capture the evolution of antibody populations across several experiments. Through this
optimization process, the initial library abundances are also inferred (Materials and Meth-
ods). Once the model is trained, it can be used to simulate experiments with a custom set of
selected /unselected modes, enabling the prediction of the expected probability of selection
of variant reads, which can be compared to empirically observed enrichments of sequence

counts in actual experiments.

Furthermore, we verified that introducing more complexity into the model along two
different directions had a negligible impact. First, sequences recovered after one round
of selection must be amplified before undergoing another round of selection, which occurs
through phage infection and may be subject to biases. We collected sequencing data right
before and after amplification and verified that no significant amplification bias was present
(Fig. 9). Second, our model considers antibody sequences at the amino-acid level but
selection can potentially occur at a nucleotidic level as well. We analyzed the data at
this level and confirmed that no significant codon bias was observed in our experiments,
consistent with an interpretation of the selection modes as arising primarily from ligand

binding (Fig. 10).
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FIG. 2. The model predicts accurately the evolution of sequence variants abundances in response
to multiple selective pressures. We considered different tasks of increasing difficulty, depending
on the training set used: A. Model trained on the experiments with Black, Blue complexes, and
empty Beads, and prediction evaluated with a mixture of the Black and Blue complexes; B. Model
trained on experiments with a mix of Black and Blue complexes, Blue complexes only, and naked
Beads, with predictions evaluated on the experiment with Black complexes only; C. Model trained
on experiments with Blue complexes only, and predictions evaluated on experiments with naked
Beads; D. Model trained on experiments with mix of of Black and Blue complexes and naked Beads,
and predictions evaluated on experiments with Black complexes only. The panels show scatter plots
of the the observed (x-axis) vs. predicted sequence frequencies (y-axis), with the initial library
abundances shown in gray for comparison. The correlation between empirical selectivities and the

model-predicted selectivities for each task are given in Table I.

The model disentangles the effect of mixed ligands

To assess the model’s ability to disentangle the contribution to the selection of the dif-

ferent ligands, we conducted two types of validation.

Predicting selection against unseen miztures of ligands

In the first validation, we trained the model using selection experiments against the
Black and Blue complexes consisting of DNA hairpins attached to magnetic beads, and
used the inferred model to predict the outcomes of experiments where these two complexes

are mixed in equal proportions, which defines the Mix complex (Fig. 1). To assess the
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model’s performance, we compared the read counts of variants in the validation set with
the abundances predicted by the model (Fig. 2A), and estimated the correlation between
predicted probabilities of selection p,; and experimentally determined enrichments €, against
Mix (Table I). The results validate the model’s capacity to integrate different selection
experiments to predict the results of selection experiments with unseen combinations and
proportions of ligands. As a control, selectivities predicted using only one mode result in
significantly lower correlations, confirming that both Black and Blue modes are necessary

to model selection in the Mix experiment (Table I).

Predicting selection against hidden ligands

In the second validation phase, we trained the model to predict selections against unseen
subsets of ligand combinations. We considered three scenarios of increasing complexity: (i)
using the data from the Mix, Beads, and Blue selections to disentangle the Black mode
and predict the experiment with the Black complex (Fig. 2B), (ii) disentangle the effect
of Beads using Blue data exclusively and predict the Beads selection (Fig. 2C), and (iii)
disentangle the Black ligand effect from Mix and Beads selections and predict the Black
selection experiment (Fig. 2D). The second task is more challenging than the first because
the beads in the Blue complex are subdominant epitopes (Fig. 14), and the third task is
more challenging than the other two because the two hairpins are very similar (Fig. 7) and
not seen independently.

As previously, we compared in each case predicted selectivities to empirical enrichments
from experiments and obtained very good correlations (Fig. 2 and Table I). Altogether, these
results validate the model’s capacity to disentangle the contributions of different ligands, and

effectively “subtract” the contribution of some ligands to predict the contribution of others.

Generation and validation of antibodies with custom specificity profiles

In addition to predicting the outcome of experiments involving new combinations of lig-
ands, our model can be employed to design novel antibody sequences with predefined binding
profiles. These profiles can be either cross-specific, allowing interaction with several distinct

ligands, or specific, enabling interaction with a single ligand while excluding others. The
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generation of new sequences relies on optimizing over s the energy functions Fj, associated
with each mode w in (1). To obtain cross-specific sequences, we jointly minimize the func-
tions Ej, associated with the desired ligand. On the contrary, to obtain specific sequences,
we minimize F,, associated with the desired ligand w and maximize the ones associated
with undesired ligands.

Panel A of Figure 3 illustrates the distribution of sequences in the energy plane defined by
the modes associated with the two DNA hairpins, as inferred when using all available data.
Among all possible sequences, we select those not present in the initial library (thus not
included in the training set) and predicted to possess specific binding profiles: sequences in
blue are predicted to bind strongly to the Blue DNA hairpin while exhibiting weak binding
to the Black DNA hairpin, and reciprocally for those in black, while those in purple are
predicted to bind both hairpins.

We validated experimentally these predictions by phage display selection of a library
composed of these ~ 2000 computationally designed sequences and ~ 10 control sequences
for binding to either Black or Blue complexes. Panel B of Figure 3 provides a summary
of the results. The enrichments of variants in the two experiments are displayed, with
variants above two predefined thresholds (see Fig. 11 for details) considered as binders.
The four regions represent specific binders for Black and Blue DNA hairpins, cross-specific
binders, and non-binding variants. Percentages of the designed antibodies that fall within
the respective regions (true positives) are reported, along with the fraction of the total
number of points for comparison. Additionally, the composition of variants within the region
segmented by designed specificity is presented. Taken together, these results demonstrate
the capacity of the model to propose multiple sequences with desired specificities. Not all
designed antibodies have the desired properties, but it must be stressed that the results
of Figure 3 address the case of two very similar ligands with the further constraint that
the initial library already covers half of the potential diversity, which leaves a relatively
small novel design space. In contrast, designing binders to a single ligand regardless of their

affinity to the others is comparatively easier (Fig. 12).
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FIG. 3. Design and validation of antibodies with prescribed specificity. A. Model-based energy plot
where each sequence s is represented as a circle with coordinates (Fgyy, , Esw, ), with w; represent-
ing the binding mode associated with the Black hairpin and wo with the Blue hairpin. Sequences
predicted to be specific to the Blue hairpin, specific to the Black hairpin, or cross-specific to the
two hairpins are respectively highlighted in blue, black, and purple. We selected for experimental
validation all the colored sequences that are not present in the training set. B. Experiment-based
enrichment plot of the selected sequences where each sequence s is represented as a circle with
coordinates (10g €sy, , 10g €5y, ), With €gy, representing the enrichment against the Black complex
and wy against the Blue complex. Sequences with high enrichment in one experiment and low
enrichment in the other are ligand-specific, those with high enrichment in both are cross-specific,
and low-enrichment sequences are non-binders (false positives). We assess our computational ap-
proach’s effectiveness by calculating the percentage of designed sequences falling within the correct
region. Thresholds are set based on the average enrichment of all sequences in the experiment
including the control sequences (see Fig. 11 for more details). Cross-specific designed antibodies
achieve a 45% true positive rate, while Black and Blue-specific binders yield lower percentages (19%
and 8%, respectively), reflecting the capacity of our approach to design antibodies with desired

properties despite the challenges arising from the close similarity of the two ligands.
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DISCUSSION

In this study, we propose a multi-stage method that combines high-throughput sequencing
of coordinated phage-display experiments, with a machine-learning approach that trains a
biophysical model. This model is designed to capture statistical patterns associated with
different aspects of the selective pressures to which antibodies are experimentally subjected.
By disentangling the different factors influencing selection, we can design sequences with
novel combinations of physical properties, making the most of the wealth of information

contained in high-throughput sequencing data from selection experiments.

Over the past three years, several machine learning approaches have been developed with
the aim of analyzing antibody selection experiments to propose new antibody variants with
improved binding affinities for a prescribed target, given particular constraints. These con-
straints include parameters such as viscosity, clearance, solubility and immunogenicity [23],
which are important for drug development, or non-specific binding [24], to eliminate an-
tibodies that tend to bind indiscriminately to a large number of antigens. Some of these
works are based on experimental data similar to ours, combining selections against multiple

targets with a similar aim of extracting target-specific features [22].

Our work differs from these studies in the difficulty of the task we are tackling. We focus
indeed on inferring and designing high levels of binding specificity, which involves discrim-
inating between molecular targets with significant structural and chemical similarity. To
provide a clear proof of concept, we considered two targets that are not of direct biomedical
interest but whose similarity is well characterized. Our two 24-nucleotide hairpins thus differ
only by 7 nucleotides in their loop. This difference is comparable to the difference between
DNA sequences recognized by transcription factors or restriction enzymes, some of the most
specific proteins found naturally. Generating data and developing a model from which to

design sequences that discriminate between these two targets is a very rigorous test.

A practical application of our approach is the design of new protein candidates with pre-
scribed specificity profiles. The minimal breadth of our initial library reduces the possibility
of testing entirely new variants, but our approach is also applicable to libraries of greater
breadth. As these libraries are necessarily much more undersampled, the potential for dis-
covering better variants is greater, although undersampling can also lead to less accurate

models. Finally, although not all the variants proposed by our model proved experimentally
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to have the desired properties, a significant fraction did, which is enough to provide several

alternative sequences at the typical scale of ~100 variants that can be tested experimentally.

There are several avenues for extending the scope of our work. One is to increase the
diversity of the initial library, which also allows the incorporation of additional physical
modes associated, for example, with thermal stability. Another is to generate and integrate
data from experiments in which ligand libraries are selected to bind to one, or several,
binders. Beyond practical applications, these extensions have the potential to provide a

general approach to deducing the multiple physical properties encoded in protein sequences.

MATERIALS AND METHODS

Phage display selection

Phage display selections were performed essentially as in our previous study [14]. Our
'Germline’ Vi library [14] and the library of designed sequences are both cloned in the
pIT2 phagemid vector. MI13KO7 (Invitrogen) was used as a helper phage, and TG1 E.
coli as a host. M280 streptavidin-coated magnetic beads (Dynal) were used for DNA target
immobilization. DNA targets are single-stranded DNA oligonucleotides biotinylated at their
5" end (IDT). For the selection against Mix, beads coupled to the Black DNA hairpin target
were mixed 50-50 with beads coupled to the Blue DNA hairpin target.

Phage display experiments included a pre-selection step with naked beads followed by
a selection step with DNA target-coupled beads. Specific to the present study, we rescued
phages at three steps of the selection process (see Fig. 4), namely (i) input phages, (ii)
output phages bound to naked beads during pre-selection, (iii) output phages bound to
DNA target-coupled beads during selection. The exact same washing and elution procedures
were applied to naked beads and DNA target-coupled beads prior to phage rescue in TG1
cells. Consistent with efficient selection for DNA target-binding, we typically observed a 10
to 100-fold higher phage titer in elutions from beads coupled to DNA targets (10° to 107
phages) than from naked beads (10° phages).
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Sequencing read-out

For each phage sample to be sequenced, an amplicon encompassing the 4 randomized
CDRS3 sites flanked with Illumina adapters bearing sample-specific indices was produced by
PCR on DNA purified from TG1 cells following phage rescue. The number of PCR. cycles
was kept as low as possible to avoid distortion due to amplification biases, which we checked
specifically.

The ’Germline’ library selection was sequenced on the Illumina™ NextSeq 500 platform,
producing 76 bp reads. The in-silico designed library selection was sequenced on the Illu-

mina™ NextSeq 1000 producing 60460 bp (paired ends) reads.

Model training

The model is trained by maximizing the likelihood of the observed sequencing read counts
of each sequence s in an experiment ¢, that we denote by R, and which are modeled as a

multinomial distribution:

PR H{N}) o [N (2)

where N, is the estimated abundance of this variant in the experiment. The abundances
evolve from one experiment ¢ to the next ¢/, according to Ny o py Ny, where py; are the
selectivities in (1). Iterating this relation, we can express Ny as a function of the abundances
in the initial library, Ny. Since the N, are not directly observed, they are also inferred by
maximum likelihood. The Mathematical Supplement contains more details about the model
and its implementation.

An L squared norm regularization is added to penalize large fields (in the independent-
site model), or the neural network weights. Training is substantially accelerated by splitting
the sequences into mini-batches. In practice, we form random batches of 128 sequences,

which are re-shuffled at each epoch. Further details are given in Supplementary Materials.

Processing of the data

Sequences containing stop codons are discarded. They are either sequencing errors or

can be enriched during amplification since the expression of the antibody is costly for the
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bacteria. To further reduce sequencing errors, we sequences where the flanking constant
regions of the CDR3 do not coincide with the designed framework sequence are also fitered

out.

Data and Software Availability

All sequencing data generated from our selection experiments will be shared on the Se-
quence Read Archive (SRA), the primary NIH-funded archive for high throughput datasets.
This data received the accession code BioProject ID PRJNA1028404 and can be accessed at
http://www.ncbi.nlm.nih.gov/bioproject/1028404. The code to reproduce the results
in this paper is available at https://github.com/2023ab4/ab4.
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Appendix A: Detailed experimental methods

Phage display selection

Phage display selections were performed essentially as in our previous study [14] with
our ‘Germline’ Vi library [14] or the library of designed sequences, both cloned in the
pIT2 phagemid vector. MI13KO7 (Invitrogen) was used as a helper phage, and TG1 E.
coli (Agilent) as a host. Beads coupled to DNA were prepared by adding 10pL of 400pM
biotinylated ssDNA target (IDT) incubated for 15mn with 50pL M280 streptavidin-coated
magnetic beads (Dynal) that had been washed prior according to the manufacturer’s in-
structions, followed by two additional washing steps. The Black biotinylated ssDNA target
sequence is biotin-AAAAGACCCCATAGCGGTCTGCGT. The Blue biotinylated ssDNA
target sequence is biotin-AAAAGACTTGGTAATAGTCTGCGT. Both ssDNA targets form
a hairpin sharing a common stem and bearing different loops. For the selection against Mix,
beads coupled to the Black DNA hairpin target were mixed 50-50 with beads coupled to the
Blue DNA hairpin target.

The general scheme of our phage display experiments is described in Fig. 4. Experiments
included a pre-selection step with naked beads followed by a selection step with DNA target-
coupled beads. Specific to the present study, we rescued phages at three steps of the selection
process, namely (i) input phages, (ii) output phages bound to naked beads during pre-
selection, (iii) output phages bound to DNA target-coupled beads during selection. The
exact same washing and elution procedures were applied to naked beads and DNA target-

coupled beads prior to phage rescue in TG1 cells.

Input phages were produced for 7h at 30°C following infection with a 20-fold excess of
helper phages, and the culture supernatant used as is (no phage precipitation to avoid phage
clusters). Our libraries were screened by pre-selection of 10! input phages in 1mL against
50nL naked magnetic beads for 90mn, followed by selection of phages that were not bound
to naked beads against biotinylated target DNA hairpins immobilized on 50pL. magnetic
beads for 90mn. Ten washing steps were performed with 8mL 0.1% Tween20 (Sigma) prior
to elution with ImL 100mM triethylamine (Sigma) for 20mn and neutralization with 0.5
mL Tris 1M pH=7.4 (Sigma), both on naked beads to recover bead binders and on DNA

target-coupled beads to recover DNA target binders via phage rescue by infection of an
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excess of TG1 cells. Input phages were also rescued in TG1 cells by adding 500pL TG1 to
500uL of a 100-fold dilution of the input phage stock.

Consistent with efficient selection for DNA target-binding, we typically observed a 10
to 100-fold higher phage titer in elutions from beads coupled to DNA targets (10° to 107
phages) than from naked beads (10° phages).

Cloning of designed sequences

The library of ~ 2000 designed sequences was constructed by PCR-amplification with
the Q5 High-fidelity 2x Master mix (New England Biolabs) of a 120bp oligo pool (Twist
Bioscience), the sequence of which encompasses the 4 randomized CDR3 sites, followed by
homology-based assembly (HiFi NEBuilder, New England Biolabs) cloning into the same

pIT2 vector as our 'Germline’ Vy library.

Sequencing read-out

TG1 cells used for phage rescue (input, output from naked beads, output from DNA
target-coupled beads), grown on solid plates overnight, were scraped and DNA extracted
using a miniprep kit (Macherey-Nagel). A 200bp amplicon encompassing the 4 randomized
CDRS sites flanked with Illumina adapters bearing sample-specific indices was produced in
2 PCR steps. A first PCR uses purified pI'T2 plasmid from TG1 cells as a template and
staggering oligonucleotides (to favor clustering, as the upstream and downstream flanking
sequences of CDR3 sites are constant) to add half of the Illumina adapters without indices.
A specific pair of staggering oligonucleotides is used for every subsample to be sequenced
(input, output with target or without target). A second PCR uses the product of the first
PCR step as template and adds the indices and the remaining part of Illumina adapters.
Both PCR steps were carried out with the Q5 High-fidelity 2x Master mix (New England
Biolabs) for 15 cycles to avoid distortion due to amplification biases, which we checked
specifically.

The ’Germline’ library selection was sequenced on the Illumina™ NextSeq 500 platform,
producing 76 bp reads. The in-silico designed library selection was sequenced on the Illu-

mina™ NextSeq 1000 producing 60460 bp (paired ends) reads.
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Appendix B: Analysis of empirical enrichments

For each experimental selection ¢, empirical enrichments were computed for each sequence

S as

€st = Rst’/Rst (B1>

where R, and R, denote respectively the sequencing counts before and after selection.
Since the empirical estimate (B1) is susceptible to sampling noise, and can be undefined if
R, vanishes, in practice €4 is computed only for sequences s for which both Ry and Ry
are larger than a minimum threshold count. As the diversity of the population decreases
between the first and second rounds of selection, it is expected that these enrichments are
best estimated at the second round of selection, although for a smaller set of sequences that

are more represented.

Fig. 7 compares the enrichments obtained in different experiments, where selection cor-
responds to binding different targets. Fig. 8 plots the Pearson correlations between these
enrichments, as a function of the minimum count threshold imposed in the numerator and
denominator of (B1). Empirical enrichment against the Blue, Black, and Mix complexes
show significant correlations (Fig. 8), consistent with the structural and chemical similarity
of the two DNA hairpins. This feature reflects our choice to study closely related ligands that
are challenging to differentiate. In contrast, empirical enrichments from selection against
the Beads are appreciably more distinct from the other ones (bottom rows of Figures 7 and

8).

For variants with more than 50 counts before and after selection, we compute their
empirical enrichment and compared this to the model predicted selectivity. Results are
shown in Table I. We did this for each of the computational predictions in Fig. 2, and
report here the resulting correlations in each case. As a control the last column of Table I
reports the correlation if the mode Blue is used to predict the enrichments, instead of the

correct one.
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Appendix C: Mathematical supplement
Biophysical model of selection

Let Ny be the total number of phages carrying sequence s in a library at round ¢, before
selection. In one experimental round, phages are selected by some phenotypic criteria (e.g.
binding to a target). In our model, we consider each sequence to be in one of several possible
thermodynamic states w (target bound, unfolded, in solution, etc.). Each thermodynamic
state w is populated by a number of particles ng,,, and we have > ngu = Ng. Also, each
thermodynamic state is described by a sequence-dependent energy function E,,, related to
the propensity of a sequence to be found in this state (in the following we describe some
possible parametrization of this function). We denote by i, the chemical potentials for

each state at a particular round, we can then model the abundances ng,; as follows,

n e,ufwthsw

swt _ = (C].)
Nst Zw, elw!t —E s/

In the case of a thermodynamic state corresponding to binding a target, the chemical po-

tentials pu,,; are proportional to the logarithmic concentration of the available target to bind.

Next, we define the selectivity of a sequence s in the experimental round ¢, as:

puwt—E
2wes &
E —FE E —FE
u)GSt e#wt sw + wGM ellwt sw

Here, we consider a subset of states S; which are selected in the current experiment (e.g.

Pst = (CQ)

bound to target), and a set of states N; which are depleted (e.g., washed in solution).
Together, S; U N; defines the set of feasible thermodynamic states in the experimental
conditions of round ¢. Particles that adopt states w € &;, are selected and result in an
enrichment of the corresponding sequence. The remaining (1 — pg )Ny particles of sequence

s are washed away.

Amplification

After the selection step, there is an amplification step when the overall population size
is restored. Assuming that the abundances are normalized, > Ny = 1 and denoting by

N 141 the phage abundances prepared for the next round, we have:

pstht
Nst11 = = C3
o Zo‘ potNat ( )
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Here, (>, pgtNUt)_l is the amplification factor necessary to restore the original population

size after selection in round t.

Multiple rounds

When dealing with multiple selection experiments, the output of a selection round can
be used as the input of another selection round. We consider the selection experiments to
be arranged into a rooted tree, such as the one depicted in (Fig. 1). The nodes represent
phage populations at a specific time with the root representing the initial sequence library.
The edges represent a selection and amplification process that modifies the population in
the parent node to the descendant node. In each branch, the node’s generations are denoted
by t, with ¢ = 0 being the root. In particular, Ny, represents the initial library abundances.
The parent of a non-root node, ¢t > 0, is denoted by a(t). Starting from a node ¢, we can

traverse back to its ancestors until we reach the root of the tree. We define by:

A(t) = {t,a(t), a(a(t)),. .., 0} (C4)

the set of ancestors encountered during this traversal (note that A(t) includes t itself, for
convenience). In particular, for the root node A(0) = {0}. For ¢ > 0, we have that py
denotes the selectivity of sequence s, in the round of selection that brings the population
from a(t) to node ¢. It follows that we can write:

_ pstha(t) _ NSOPSt
Zg patNau(t) Zt

for ¢ > 0, by induction, where P} = [[ . 44 Psr and Zy = 3 Ny P;. For the root nodes it

Nyt (C5)

is convenient to set psg = 1, Pyy = 1, Zy = 1, and a(0) = 0. Then these formulas remain
valid at the root. Given the selectivities p,; and the initial abundances Ny, we can use these

expressions to determine all future populations of the tree.

Training the model

The data are the counts of sequence reads taken at each sequenced round (that could
be a subset of all nodes in the experiment tree), {Rs}. As the result of a sampling and

sequencing procedure, the counts are related to the actual abundances by a multinomial
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distribution:

PN = TP TIN5 (co

The abundances of all populations { Ny} are determined by the initial abundances { Ny} and
the selectivities, {ps:}. Therefore, we can write P({Rs:}H{Nst}) = P Rst}{pst}, {NVso})-
Since the initial abundances { Ny} are usually unknown, we can train our model by max-
imizing P({Rs }|{pst}, {Nso}) with respect to the parameters determining the selectivities
{pst} (to be specified below) and the initial abundances {Ny}, subject to Ny > 0 and

> s Nso = 1. To carry out the maximization over {Ny} we can introduce a Lagrangian,
L =PRI N} Apa}) + 1D Nao (C7)

where we used the Lagrange multiplier A for the constraint ) Ny = 1. Differentiating with

respect to Ny and setting the derivative to zero, gives the equation:
> Ry > e NPT+ ANy =0 (C8)
T T ZT ’

where R, =) Ry, and R./Z; is the sampling coverage at round 7. Note that:

oL
Nyg—— = Ny =\ C9
; YON ; 0 (C9)
Therefore the stationarity conditions 88750 = 0 imply A = 0. This is also intuitively expected,

because £ depends only on the relative ratios among the Ny, and would be insensitive to a
global increase of the total ) Ny while preserving those ratios. Therefore £ has no gradient
orthogonal to the constraint ) | Ny = 1, making the Lagrange multiplier unnecessary. Now

solving for Ny, we obtain:

ZT RST
S P(R,/Z;)
which gives Ny as functions of Z; and the selectivities pg. In particular note that Ny =

NSO =

(C10)

0 for unobserved sequences (those for which Ry = 0 for all ¢ in the tree). There are
two contributions to the initial abundances: the different sampling coverage at different
rounds and the effect of selection. In absence of selection, the formula above becomes more
intuitive. Then Py, /Z; is a constant independent of s, ¢, which must be one by normalization.
Then, Nyo = > Rs:/ >, R is also independent of ¢, and we just aggregate all the read
samples to make an inference of the underlying abundances. The factors P, R./Z, in the

denominator of (C10), then serve to account for the effect of selection.
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By using Equation (C10) we can consider Z; as free parameters, in place of the initial

abundances Ny. Obtaining the following learning gradient:
oL Ry
— == Ng —1 11
- (o)

Notice that £ as a function of {P?, Z;} depends only on the ratios Z;/Z, and is invariant
to a multiplication of all the Z; by a common factor. Therefore we can set Zy = 1 to break
this degeneracy, consistent with the previous definitions. The stationary conditions {?_Zﬁt =0
reproduce the normalization constraints > Ny = 1. It follows that if we treat the Z; as

free parameters, at a stationary point of £ these constraints will be satisfied automatically.

Low-selectivity regime (or rare binding approximation)

A further simplification can be obtained by assuming a low-selectivity regime, where

pst < 1 for all sequences in all rounds. We can then approximate:

6:“'11}1:_Esw
pa = _ s (C12)

1 — pst Z’LUGNt e,uwt—Esw

We call this the rare binding approzimation (RBA) [16].

Sequence to energy mapping

The selectivities pg; are given by Equation (C2). In turn, a mapping giving the energies
FE,, for each sequence must be parameterized. We here considered two models. In the
simplest case, all the sites of the sequence are independent, which leads to an additive

model,
L
Eg =— Z hui(si) (C13)
i=1

that we call the independent-site model (IS), and where the local fields h,,; are learned
during model training. This assumption fails to consider epistatic effects between pairs of
sites within a mode. To account for these, a possibility is to introduce a Potts-like model
with two-body interactions, as typically done in DCA-like approaches [27, 28]. However this
results in a large number of coupling parameters (~ 202L?). More generally, we can consider

any functions Fg, = FE,(s) assigning energies to sequences in different thermodynamic
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states. We here considered a feed-forward neural network, taking as input a one-hot encoded
sequence, and producing as output the energy, ENY = ENN(s). The parameters of the neural
network (NN) are then learned during model training. Epistatic interactions arise as non-
trivial correlations induced by the non-linearities of the network. We report the details of

our architectural choices below.

Gauge invariance in the rare-binding approximation (RBA)

In the low-selectivity regime, a new gauge invariance appears. We make the following

change of variables:

Pt +ap w €S,

Hoy = ) (C14)
fwt + b wE N,
Inz, =Inz +a, — b (C15)
Then, under the RBA regime,
D I o~ mz—actb, _ Pst (C16)

Thus, the amplification factors become indistinguishable from the chemical potentials. In
other words: we cannot infer the amplification factors.

From the previous section recall that we imposed the gauge >y = 0. This means
that as, b, are not completely free, but rather they must satisfy |S;|a; + |N;|by = 0. The
remaining degree of freedom can be exploited to enforce ) s Huwt = D yen;, Pt = 0, which
is stronger than the condition ) 1, = 0 from the previous section. More precisely, given

chemical potentials ji,,;, we can choose:

1
Ay = — 75— Mt s (Cl?)
‘S | wWES:
1
by = —— . C18

which satisfy |S;|a; + |[NV;]b; = 0, and for which:

> =ttt + |Silar =0, (C19)

wESy wWESy
> = e+ [Nifby =0 (C20)
weNy wEN;
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while the amplification factors transform as:
lnzgzlnzt—L Z,uwt—i-L Z ot (C21)
S| 4 [NV

When the chemical potentials satisfy > . Huwt = D pen: Hwt = 0, we will say that we are
in the rare binding gauge.

This change of variables shows how one can absorb the amplification factors into the
chemical potentials. Alternatively, we can exploit this new gauge invariance to impose that

_ : MG _ IS¢
(; = 0, by choosing a; = BRIV and b, = SAEEak

Architecture of feed-forward neural network

For each state considered, the architecture consists of 3 layers, with 20 and 5 hidden

units, with a SeLU nonlinearity [29] in each.

Regularization
For the independent-site model, the regularization penalty has the form:
A2 Y hia)® (C22)

while for the NN model the sum extends over all weight parameters in the network. The
coefficient Ao was panned over a range between 10~* and 10. The optimal choice in terms

log-likelihood of a withheld dataset was chosen, resulting in Az, = 0.01.
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Appendix D: Supplementary Figures

phage display experiment scheme

 linput library in E. coli

phage production l

10" input phages

pre-selection on
H naked beads
phage rescue and H

amplification in E.coli input phages Output phages
: not bound to naked beads bound to naked beads
(~1017) (~109)

selection on
DNA-coupled beads

output phages
* |bound to DNA-coupled beads
(~1086 to 107)

sequencing readout

phage DNA PCR and
rescue extraction sequencing

[E_co] —

|phages|

FIG. 4. Phage display experiment scheme. Input phages are produced from FE. coli bacteria
and first pre-selected against naked beads. Phages that did not bind naked beads are then selected
for binding to DNA target-coupled beads. Phages bound to DNA-coupled beads are rescued by
infection of E. coli bacteria for the next cycle. Sequencing readout. Input phages, output
phages bound to naked beads and output phages bound to DNA-coupled beads are rescued by
infection in F. coli bacteria. Plasmid DNA is extracted from bacteria to serve as a template for

high-throughput sequencing of a PCR amplicon encompassing the 4 randomized antibody CDR3

sites.
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solution amplification
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FIG. 5. The figure illustrates the modes integrated into the model, each associated with distinct
states: The first mode corresponds to an unselected, unbound state, and it is a common element
in every selection round. The other modes are linked to the binding of either the Black and Blue
ligand or the Beads, where they are immobilized. An additional mode exists in the model, which
isn’t directly related to the physical binding to specific ligands, instead it accounts for the broader
process of amplification and the potential biases introduced within the phage population. The

selection or exclusion of these modes depends on the specific selection round, as visually depicted

in Fig. 6.
Training data Prediction Correlation Control (Blue)
Beads (1,2), Black (1,2), Blue (1,2) Mix (2) 0.63 0.61
Beads (1,2), Blue (1,2), Mix (1,2) Black (2) 0.70 0.54
Blue (1,2) Beads (2) 0.54 0.12
Mix (1,2), Beads (1,2) Black (2) 0.71 0.46

TABLE I. Correlations between predicted and empirical enrichments. A model trained on the data
from the first column is used to predict enrichments of the experiment in the second column. The
correlations between empirical log-enrichments and model log-selectivities are given in the third
column. To demonstrate that the inferred modes have a meaningful correspondence to the physical
modes, the last column shows (as a control) how the correlation decreases if only the Blue mode

is used to predict the selectivity.
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Selection / Blue Selection / Mix

Selection / Black

------------------------------- Initial library AL L R R L L L

Round 1

Selected modes
bead

@ black hairpin

@ blue hairpin
amplification

Round 2

(saok2) (5eac?) | (owez) (5eacez) & (wwz) (5eac?)

FIG. 6. Training the model: selected set of modes. The selected modes incorporated in the model
vary with each specific round. This adaptability enables comprehensive training using all available
data. In the figure, the tree structure of the experiment (as presented in Figure 1 of the main text)
is reported with the annotations of the selected mode for each branch or selection round. The four
modes model distinct physical processes depicted in Fig. 5: binding the black hairpin, binding
the blue hairpin, binding the supporting bead, and the bias introduced during the amplification

process.

27


https://doi.org/10.1101/2023.10.23.563570
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.23.563570; this version posted October 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Black vs. Blue Black vs. Mix Blue vs. Mix
Round 1 Round 1 Round 1
° 1073 3 1073 3 1073 3 R
=] E o = 3 Z E
@ 3 ‘ = 3 = 3
5 10 2 S 10 3 S 10
5 -1 G ] * count > 50
_g 10° 4 E 10°° 3 E 107 4 e count > 200
° E £ E 2 E
c 7 c E c 1
0 1 L 1 ] E
10 ® o 10 +——rrmm—rrrm—rr 10®
10% 10° 10* 10 10® 10% 10* 10°% 10% 10° 10* 10
Enrichment for Black Enrichment for Black Enrichment for Blue
Black vs. Blue Black vs. Mix Blue vs. Mix
Round 2 Round 2 Round 2
o 10°3 — 10° 3 102 3 ;
5 3 Z 3 ¥ R E ;
o] = ] =
S 1073 9 10 5 2 10 <
5 7 5 5 ]
€ 105 5 -5 |
5 10 5 10 S 10
c 3 c c E
LlJ - |_u : Lu -
10 ¢ e 10°® 10 ¢
10% 10° 10* 10° 10® 10° 10* 107 10% 10° 10* 10°
Enrichment for Black Enrichment for Black Enrichment for Blue
Black vs. Beads Blue vs. Beads Mix vs. Beads
o 107 3 — w 1072 3 - c o 107 7 —
e} 3 e] 3 © 3
(0] 3 © 3 3] 7
d ] @ ] @ ]
51073 51073 51073
= i = i = i
€ 10% 3 € 10°5 3 € 10° 4
< 3 < 3 < E
k3] E g 3 2 3
LICJ 10»6_- LICJ 10-6: LIC.I 106_-
10% 10° 10* 10 10® 10% 10* 10°% 10 10° 10* 103
Enrichment for Black Enrichment for Blue Enrichment for Mix

FIG. 7. Comparison of empirical enrichments of each sequence in different experiments. The first
and second row compare enrichments in the first and second rounds of selection (first and second
row), against the Black, Blue, and Mix complexes. In each panel, the z-axis is the enrichment
against a ligand (Black, Blue, or Mix), and the y-axis is the enrichment of the same sequence
against a different ligand. The bottom row compares the enrichments against the Beads vs. the
enrichments against the Black, Blue, and Mix ligands. See (B1) for the definition of enrichment.
Sequences with counts lower than a given threshold are filtered out, as indicated in the legend at
the top-right: all sequences with at least one read before and after selection are shown in gray,
while sequences with more than 50 (200) reads before and after selection are shown in black (red).

The Pearson correlations corresponding to each panel are shown in Fig. 8.
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FIG. 8. Pearson correlations between log-enrichments (log(es:), where €g is defined in (B1)) in

different experiments. Each panel shows the correlations between log(es;) and log(egy ) for different

experiments t,t’, indicated in the panel title. The correlations are computed after filtering out

sequences with counts lower than a given threshold (indicated in the z-axis) before and after

selection. Panels are in correspondence to Fig. 7.

29


https://doi.org/10.1101/2023.10.23.563570
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.23.563570; this version posted October 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Black branch Blue branch Mix branch
102 E 1072 102
g ] g g
= 1073 4 - = = 10
£ .8 E £ .S c .S
aE ] ~ E ~E
EE el S E X £ 04
% s 107 4 % s s s 10
2 ] ]
< 1 < < ;
= 10'5-5 = ~10°%
10 10 1073 102 10 10 1073 102 10 10 1073 102
Black 1 out Blue 1 out Mix 1 out
(Before amplification) (Before amplification) (Before amplification)
Black branch 4 Blue branch 4 Mix branch
—R>0
37 3 — R > 100
£ 2 ] £ ] — R > 1000
S 5] S5] S 5]
Q 2 3 e} 2 3 Qo 2 3
[SH [SH [SH
a3 a3 a3
17 17 17
0 dretftls e 0 At e 0 e R
0 1 2 3 0 1 2 3 0 1 2 3
Enrichment ratios Enrichment ratios Enrichment ratios

FIG. 9. Sequencing reads are collected before and after amplification, after the first round of
selection is finished and before starting the second round of selections. This was done for each
branch of the experiment tree (see Fig. 1 in the main text): Black branch, Blue branch, and Mix
branch. The top panels show a scatter of the normalized counts before (x-axis) and after (y-axis)
amplification. The Pearson correlation coefficients are: 0.97 (for Black branch), 0.98 (for Blue
branch), and 0.97 (for Mix branch). The bottom panels show histograms of the corresponding
enrichment ratios (see (B1)), after filtering out sequences with counts below a threshold (indicated

in the legend). The histograms concentrate around 1, indicating no selection.
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FIG. 10. Each amino-acid sequence can correspond to many nucleotide variants due to codon
degeneracy. The plots show a comparison of empirical enrichments ((B1)) for codon-sequences vs.
the equivalent amino-acid sequences. Each panel corresponds to one experiment. Effects due to
codon bias would be revealed by strong systematic dispersion in this plot. Sequences with less

than 50 copies (at nucleotide or amino-acid level) are filtered out.
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FIG. 11. Experimental enrichment of model-designed sequences and controls. This figure illustrates
the experimental enrichment results for model-generated sequences, marked in gray, and a selection
of control sequences that serve as references and provide a sanity check for the experimental
data. Among the selected sequences are the best specific binders, cross-specific binders, and two
negatively selected sequences based on previous experiments. The horizontal lines represent the two
predefined thresholds used to evaluate the generative performance, as detailed in Figure 3 of the
main text. These thresholds correspond to the mean values of the two experimental enrichments.
Notably, the negative and cross-specific control sequences align correctly with these thresholds.
However, a majority of the specific sequences (blue and black triangles) fall outside the expected
range. While more sophisticated methods for performance assessment exist, such as threshold
selection based on blue-black enrichment ratios, we opted for a simpler approach in this instance.
The primary goal here was to illustrate the model’s generative capacity, and a comprehensive

definition of specificity falls outside the scope of this study.
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FIG. 12. Validation of high-affinity antibodies generated via single-mode optimization. Designing
high-affinity binders for a specific ligand, regardless of their affinity to other ligands, is a relatively
easier task compared to selecting a specificity profile, as it involves no additional constraints on
the optimization of single-model energies. In panels (a) and (b), the histograms depict the energies
of designed sequences. Those in black and blue represent sequences predicted to exhibit high
affinity for their respective ligands, while those in red are predicted to have low affinity. Red lines
correspond to negative controls (see Fig. 11). Below these panels, two histograms illustrate the
enrichment of these same sequences in validation experiments. Panel (e) showcases ROC curves
for binder prediction using the model. Sequences above the threshold, denoted by the gray lines in
panels (c¢) and (d), are considered binders. This threshold is set as the average of the enrichments
plus one standard deviation. The model energy ranks these sequences, and the ROC curves are
computed for both the black and blue ligand experiments. The Area Under the Curve (AUC)
values are 0.92 for black and 0.79 for blue.
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FIG. 13. Number of reads of the initial library. Variants are displayed in descending order (from

the most numerous variant to the less numerous one). The distribution is strongly non-uniform

(note the log-scale on the y-axis).
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FIG. 14. Histograms of Egy,, — . The plots show the number of sequences s with a given value of
FEgp — piwt- The first column corresponds to experiments carried out with the Black target, and w is
either the Black-bound mode (black line) or the Beads-bound mode (in brown). The right column
corresponds to experiments carried out with the Blue target, and w is either the BLue-bound mode
blue line) or the Beads-bound mode (in brown). The first and second rows correspond to the first
and second rounds of selection. The binding energies to the Black and Blue targets are generally

lower than the Beads binding energies.
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