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» 1 Abstract

» Metagenomic classification tackles the problem of characterising the taxonomic
» source of all DNA sequencing reads in a sample. A common approach to address the
» differences and biases between the many different taxonomic classification tools is
s to run metagenomic data through multiple classification tools and databases. This,
» however, is a very time-consuming task when performed manually - particularly
» when combined with the appropriate preprocessing of sequencing reads before the
u classification.

» Here we present nf-core/taxprofiler, a highly parallelised read-processing and taxo-
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s nomic classification pipeline. It is designed for the automated and simultaneous clas-
» sification and/or profiling of both short- and long-read metagenomic sequencing li-
% braries against a 11 taxonomic classifiers and profilers as well as databases within a
» single pipeline run. Implemented in Nextflow and as part of the nf-core initiative, the
« pipeline benefits from high levels of scalability and portability, accommodating from
« small to extremely large projects on a wide range of computing infrastructure. It has
«~ been developed following best-practise software development practises and commu-
»  nity support to ensure longevity and adaptability of the pipeline, to help keep it up to
« date with the field of metagenomics.

« 2 Introduction

s Whole-genome, metagenomic sequencing offers strong benefits to the taxonomic clas-
«  sification of DNA samples over targeted approaches (Eloe-Fadrosh et al. 2016; Florian
s P. Breitwieser, Lu, and Salzberg 2019). While metabarcoding approaches targeting
» the 16S rRNA or other marker genes are widely used due to low cost and large, di-
o verse reference databases (Yilmaz et al. 2014; Lynch and Neufeld 2015), metagenomic
s approaches have been gaining popularity with the increasingly lower costs of, for
2 example, shotgun sequencing. These metagenomic analyses with whole microbial
ss  genome as references have been shown to provide a similar level of taxonomic res-
s« olution (Hillmann et al. 2018). However they also have the added benefit of having
s greater reusability potential of the data, such as for whole genome and/or functional
s« classification (Sharpton 2014; Quince et al. 2017).

s> Taxonomic classifiers (sometimes referred to as taxonomic binners) aim to identify
s the original ‘taxonomic source’ of a given DNA sequence (Ye et al. 2019; Meyer et al.
s 2022; Govender and Eyre 2022). In metagenomics, this typically consists of comparing
« millions of DNA reads (sequenced DNA molecules) against hundreds or thousands
o of reference genomes either via sequence alignment or ‘k-mer matching’ (Sharpton
2 2014; Sun et al. 2021). The reference genome with the most similar match to the
s read is then considered the most likely original ‘source’ organism of that sequence. In
o« this article we will also refer to ‘taxonomic profilers’. We consider these as classifiers
& that also try to infer sequence abundance (i.e. re-assignment of counts to the most
s« likely source based on the distribution of other hits) or biological relative abundance
& of the organism in the original sample (by coverage of expected marker genes, copy
s number estimations etc.), in addition to the simple read classification (Nayfach and
» Pollard 2016). We will use classifiers and profilers interchangeably throughout the
» publication.

n  Having to identify the original source of the many DNA sequences out of the many ref-
7 erence genomes in a time and computationally efficient manner is a difficult problem.
7 In many cases biologists are not just interested as to which organism of each DNA
»  sequence comes from, but also in using this information to infer the original ‘cellular’
7 (or natural) abundance of each organism of the given environment - something that
7 is very difficult due to the biases inherent to DNA extraction and sequencing. There-
7 fore a plethora of tools have been developed to address these challenges, all with their
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s own biases and specific contexts (Sczyrba et al. 2017; Meyer et al. 2022). Furthermore,
» each tool often produces tool-specific output formats making it difficult to efficiently
o cross compare results. Thus, no established ‘gold standard’ classifier tool or method
s currently exists.

» One solution to addressing the problem of choice among the range of different tools
g3 is to run all of them in parallel, and cross compare the results. This can be useful both
s+ for benchmarking studies (e.g. Sczyrba et al. 2017; Meyer et al. 2022), but also to
s build consensus profiles whereby confidence of a particular taxonomic identification
ss  can be increased when it is detected by multiple tools (McIntyre et al. 2017; Ye et al.
s 2019).

s A second challenge in taxonomic classification (and arguably a larger one) is a ques-
» tion of databases. As with tools, there is no one set ‘gold standard’ database. Different
o questions and contexts require different databases, such as when a researcher wants
o to search for both bacterial and viral species in samples, but as an extension of this,
» taxonomic classifiers often will need different settings for each database. Further-
3 more, as genomic sequencing becomes cheaper and more efficient, the number of
s« publicly available reference genomes is rapidly increasing (Nasko et al. 2018). Conse-
s quently, the size of reference databases of taxonomic classifiers is also growing, often
s outpacing the computational capacity available to researchers. In fact, while this was
o one of the main motivations behind classifiers such as Kraken2 (Wood, Lu, and Lang-
s mead 2019), these algorithmic techniques are already becoming insufficient (Wright,
» Comeau, and Langille 2023).

wo  Finally, with the decrease of costs, the possibility for larger and larger metagenomic
w sequencing datasets increases, leading to increasing sample sizes in studies. This is
w2 exemplified by the doubling of the number of metagenomes on the European Bioin-
s formatic Institute’s MGnify database within just two years (Mitchell et al. 2019).

s Altogether this highlights the need for methods to efficiently profile many samples
s using many tools. Manually setting up bioinformatic jobs for classification tasks for
ws each database and settings against different tools on traditional academic computing
w  infrastructure (e.g. high performance computing clusters or ‘HPC’ clusters) can be
ws  very tedious. Additionally, particularly for very large sample sets, there is increas-
w  ing use of cloud platforms that have greater scalability than traditional HPCs. Being
o able to reliably and reproducibly execute taxonomic classification tasks across infras-
m  tructure with minimal intervention would therefore be a boon for the metagenomics

e fleld.

ns  In recent years, workflow managers such as Nextflow (Di Tommaso et al. 2017) or
na  Snakemake (Molder et al. 2021) have become highly popular in bioinformatics. These
ns  frameworks provide for developers robust workflow execution with different HPC
ne  scheduling tools and software provisioning systems, ensuring maximum portability
wand efficient in different computational contexts. While a range of metagenomic
ns  pipelines already exist (a non-exhaustive list being for example, StaG-mwc by
m  Boulund et al. 2023; MetaMeta by Piro, Matschkowski, and Renard 2017; TAMA by
10 Sim et al. 2020; UGENE by Rose et al. 2019; and Sunbeam by Clarke et al. 2019), few
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w  leverage workflow managers to make multi-step workflows easier to use in HPC or
12 cloud infrastructure. Furthermore, often these pipelines aim to carry out multiple
13 different types of metagenomic analyses (e.g. also performing functional or assembly
124 analyses, such as Morais et al. 2022; Boulund et al. 2023) of which each step has
15 fewer options of tools and may execute functionality unwanted by the end user.

s Here we present nf-core/taxprofiler (https://nf-co.re/taxprofiler), a pipeline designed
1 to allow users to efficiently and simultaneously taxonomically classify or profile
s short- and long-read sequencing data. At the time of writing it supports 11 clas-
1 sifiers and an arbitrary number of databases per classifier in a single pipeline run.
1w nf-core/taxprofiler utilises Nextflow (Di Tommaso et al. 2017) to ensure efficiency,
w  portability, and scalability, and has been developed within the nf-core initiative of
1w Nextflow pipelines (Ewels et al. 2020) to ensure high quality coding practises and
1 user accessibility. It includes detailed documentation and a graphical-user-interface
1 (GUI) execution interface in addition to a standard command-line-interface (CLI).

= 3 Description

s nf-core/taxprofiler aims to facilitate three main steps of a typical whole-genome,
1w metagenomic sequencing analysis workflow (Chiu and Miller 2019 Figure 1). A
s longer description of the available functionality and motivations can be seen in the
1w Supplementary Information.

w In brief, nf-core/taxprofiler can accept short- (e.g. Illumina) and/or long-read
w  (e.g. Nanopore) FASTQ or FASTA files. These are supplied to the pipeline in the
w2 form of a TSV file that includes basic sample and sequencing library metadata. The
w3 pipeline can then be executed either via a standard Nextflow command-line-interface
s execution or graphical-user-interface through either the open-source and free nf-core
ws launch page (https://nf-co.re/launch) or the commercial (with free-tier) Nextflow
us tower (https://tower.nf) solution. Examples of the command-line execution and
w  nf-core launch GUI can be seen in the Supplementary Information.

s The pipeline can perform a range of metagenomics appropriate read preprocessing
1w steps, such adapter removal, read merging, low-sequence complexity filtering, host-
10 or contamination removal, and/or per-sample run merging. All of these steps are
s optional, and are aimed at removing possible sequencing artefacts that may result in
2 false positive taxonomic classification hits or improve classification efficiency. Most
153 of these steps also provide options of different tools to account for user preference.

1se After pre-processing, nf-core/taxprofiler can perform simultaneous profiling of pre-
155 processed reads with up to as many as 11 different taxonomic classifiers or profilers
s (Table 1). Additionally on top of this, also simultaneously for each of the classifiers,
w7 an arbitrary number of databases as supplied by the user. As of version 1.1.0, the
s following classifiers and profilers are available: Kraken2 (Wood, Lu, and Langmead
1 2019), Bracken (Lu et al. 2017), KrakenUniq (F. P. Breitwieser, Baker, and Salzberg
w  2018), Centrifuge (Kim et al. 2016), MALT (Véagene et al. 2018), DIAMOND (Buchfink,
w Reuter, and Drost 2021), Kaiju (Menzel, Ng, and Krogh 2016), MetaPhlAn (Blanco-
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w2 Miguez et al. 2023), mOTUs (Ruscheweyh et al. 2022), ganon (Piro et al. 2020), and
s KMCP (Shen et al. 2023). Databases are also supplied via a input TSV file, which
1w also allows per-database custom classification parameters - meaning a given database
s can be supplied multiple times each with different parameters or multiple different
s databases per profiler. All classifiers with secondary steps to generate or convert to
1w additional output file formats are also included.

s Post-processing of taxonomic profiles include standardisation and aggregation of pro-
1w files, i.e. merging of multiple profiles into a single multi-sample table for easier com-
o parison between profilers, with the tool TAXPASTA (Beber et al. 2023), and visualisa-
i tion of profiles with Krona (Ondov, Bergman, and Phillippy 2011) where supported.

iz All relevant preprocessing statistics are displayed in an interactive and dynamic Mul-
s tQC report (Ewels et al. 2020).
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Figure 1: Visual overview of the nf-core/taxprofiler workflow. nf-core/taxprofiler
can take in FASTQ (short or long reads) or FASTA files (long reads), that will op-
tionally go through sequencing quality control (e.g. with FastQC), read preprocessing
(e.g. removal of adapters), complexity filtering, host removal, and run merging be-
fore performing taxonomic classification and/or profiling with a user-selected range
of tools and databases. Output from all classifiers and profilers are standardised into
a common taxon table format, and when supported visualisations of the profiles are
generated.
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Table 1: List of nf-core/taxprofiler supported taxonomic/classifiers profilers as of ver-
sion 1.1 and their approximate method and supported input database types. Primary
algorithm refers to the algorithm type used for sequencing matching. Reference type
refers to the typical sequence type used in database construction of the tool. Sequenc-
ing matching type refers to which ‘molecular alphabet’ is primarily used for matching
between a query (read) and a reference (genome/gene).

Tool Primary Algorithm  Reference Type Sequence Matching Type
Kraken2 k-mer based whole-genome Nucleotide

Kaiju k-mer based whole-genome Amino Acid

Bracken k-mer based whole-genome Nucleotide

KrakenUniq  k-mer based whole-genome Nucleotide

ganon k-mer based whole-genome Nucleotide

KMCP k-mer based whole-genome Nucleotide

MALT alignment based whole-genome Nucleotide/Amino Acid
DIAMOND  alignment based whole-genome Amino Acid

Centrifuge alignment based whole-genome Nucleotide

MetaPhlAn  alignment based marker-gene Nucleotide

mOTUS alignment based marker-gene Nucleotide

1 nf-core/taxprofiler comes with extensive documentation for general usage, short- and
s long- parameter help texts, and output file descriptions. To ensure maximum accessi-
176 bility, these are available in pipeline results as markdown files (https://github.com/nf-
7 core/taxprofiler), on the nf-core website (https://nf-co.re/taxprofiler) and for the pa-
s rameter help texts on the command line via standard --help. The output documen-
1w  tation also aims to guide users as the most suitable files for different types of down-
w  stream analysis

» 4 Discussion

w2 A range of pipelines already exists for taxonomic profiling, however, each have
w3 their own particular purpose and capabilities. We compared the functionality
ws  of nf-core/taxprofiler against four other recently published or released pipelines,
ws  selected based on their similarity of purpose to nf-core/taxprofiler. The selection
s criteria and a more detailed comparison between the five pipelines can be seen
w in the Supplementary Information. Overall, while there was a general similarity
s across all pipelines, nf-core/taxprofiler showed the largest number of options for
1w pipeline execution accessibility, and user choice. This is facilitated through the
w use of an established workflow manager (with Nextflow supporting 7 software
w1 environment/container systems), support for both CLI and GUI execution, and by the
w2 number of supported classifiers. Furthermore, it is unique in that is the only pipeline
w3 to support supplying multiple database for all of the tools in a single pipeline run.
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Table 2: Comparison of functionality with four recent taxonomic pipelines with simi-
lar functionality. A more detailed textual comparison can be found in the Supplemen-
tary Information. Category keys are as follows: I - Information, R - Reproducibility,
A - Accessibility, P - Portability, S - Scalability, F - Functionality.

StaG- Unipro nf-
Category Criterion mwc sunbeam  UGENE tama core/taxprofiler
I Source code https: https: https: https://  https:
URL //github.  //github.  //github.  github.  //github.
com/ com/ com/ com/ com/nf-
ctmrbio/  sunbeam- ugeneuniprgkimlab/ core/
stag- labs/ ugene TAMA  taxprofiler/
mwc sunbeam
I Evaluated 0.7.0 4 48 githash:  1.1.0
version 3a22c8f
I Last release 2023-06-  2023-08- 2023-08-  2022- 2023-09-
date 13 08 08 03-02 19
I Publication Unpublished®019 2019 2020 This pub-
year lication
I Publication Unpublished 0.1186/s40168-1093/bioinfbot hdsickZBRg (iib-
DOI 019-0658- 020- lication
X 3533-7
R Pipeline Yes Yes Yes No Yes
versioning
R Software Yes Yes Yes Yes Yes
versioning
R Nr. software 2 2 0 1 7
environments
or container
engines
supported
A Installation Yes Yes Yes Yes Yes
documenta-
tion
A Usage docu- Yes Yes Yes Yes Yes
mentation
A Output docu-  Yes Yes Yes Yes Yes
mentation
A CLI execution  Yes Yes No Yes Yes
interface
A GUI No No Yes No Yes
execution
interface
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StaG- Unipro nf-
Category Criterion mwc sunbeam  UGENE tama core/taxprofiler

A/S Integrationa  Yes Yes No No Yes
scheduling
systems

P/A Nr. supported 2 1 3 1 2
operating
systems

P Local Yes Yes Yes Yes Yes
machine
integration

P/S HPC Yes Yes No No Yes
scheduler
integration

P/S Cloud Unsure Unsure No No Yes
computing
integration

P/S Integration Partial Partial No No Yes
with multiple
scheduling
systems

S Per-process Yes Yes Yes No Yes
resource
optimisation

F Short read Yes Yes Yes Yes Yes
support

F Long read No No Yes No Yes
support

F Read Yes Yes Yes Yes Yes
preprocessing

F Sequencing Yes No No No No
depth
estimation

F Complexity No Yes No No Yes

filtering

Host removal  Yes Yes Partial No Yes

F Nr. supported 7 3 3 3 11
taxonomic
classi-
fiers/profilers

F Graphical run ~ Yes No No No Yes
reports

F Standardised ~ No No No Yes Yes
profiles

v}
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StaG- Unipro nf-

Category Criterion mwc sunbeam  UGENE tama core/taxprofiler
F Multiple Partial No No No Yes

database

supported
F Metagenomic  No Yes No No No

assembly
F Visualisation =~ No No No No Partial

ws  Another important advantage of nf-core/taxprofiler is that it is being developed
ws  within the nf-core community (https://nf-co.re), that provides strong long-term
ws  support for the continued community-based development and maintenance of its
w7 pipelines. In this framework, we will continue to add additional preprocessing,
ws metagenomic classification, and profiling tools as they become established and as
1w requested by the metagenomics community. For example, we feel that the inclusion
x of steps such as sequencing saturation estimation as already being performed
o by a similar pipeline StaG-mwc (https://github.com/ctmrbio/stag-mwc) would be
x2  beneficial to the nf-core/taxprofiler workflow (possibly with dedicated tools such as
xs  Nonpareil, Rodriguez-R et al. 2018), and/or more performant complexity filtering
aa  tools such as Komplexity as offered by the sunbeam metagenomics pipeline (Clarke
s et al. 2019). Additional tools that could be added for short-read classification could
us include sourmash (Titus Brown and Irber 2016) that provides scalable sequence
a7 to sequence comparison or other marker gene reference tools such as tools such
xs as METAXA2 (Bengtsson-Palme et al. 2015) that use shotgun sequencing reads to
a9 recover 16S sequences from metagenomic samples. Adding additional classifiers also
no  applies to extend support to other sequencing platforms; nf-core/taxprofiler already
m  supports Nanopore long-read data, however the use of long-read PacBio data for
x2  metagenomic data is growing in interest (Portik, Brown, and Pierce-Ward 2022).
n3  We are therefore considering adding dedicated preprocessing steps for this type of
e sequencing data.

»s A remaining major challenge for metagenomics researchers (and not supported in
ns  the same workflow by any of the compared pipelines above) is the construction of
27 databases for each profiling tool. Given there still are no curated, high-quality ‘gold
zs standard’ databases in metagenomics, and while nf-core/taxprofiler allows the pro-
no filing against multiple databases and settings in parallel, currently the pipeline still
» requires users to construct these manually and to supply to the pipeline. While we
a  feel this is currently a reasonable investment as such databases are typically repeat-
2 edly re-used, we are exploring the possibility to add an additional complementary
23 workflow in the pipeline to allow automated database construction of all classifica-
2 tion tools, given a set of FASTA reference files.

»s  Finally, once an overall taxonomic profile is generated, researchers often wish to val-
» idate hits through more sensitive and accurate methods such as with read-mapping
2 alignment. While read alignment is supported by other pipelines such as StaG-mwc,
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»s  this happens in-parallel to the taxonomic profiling and requires prior expectation of
»  which reference genomes to map against. Instead, nf-core/taxprofiler could be eas-
x ily extended to have a validation step similar to the approach of the ancient DNA
a  metagenomic pipeline aMeta (Pochon et al. 2022). Utilising Nextflow’s execution par-
2 allelism, the input sequences could be aligned back to the reference genomes of only
23 those species with hits resulting from the taxonomic classification, but with dedicated
x  accurate short- or long-read aligners. In addition to the more precise classification,
x5 post-classification read-alignment could also be particularly useful for researchers in
ns  palaeogenomics who wish to use tools other than KrakenUniq for initial classification
2 (as in aMeta), where alignment information can be used to authenticate ancient DNA
28 within their samples, but also in clinical metagenomics to identify potential pathogens
» at much finer resolution (e.g. down to strain level).

20 Another motivation for developing nf-core/taxprofiler, despite the large number of ex-
2 isting metagenomics pipelines, is that by establishing a taxonomic profiling pipeline
22 within the nf-core ecosystem, it is possible to begin building both standalone but
23 also an integrated suite of powerful interconnected pipelines for the major stages
xa  of metagenomic workflows. Existing microbial- and metagenomics- related pipelines
x5 within the nf-core initiative include nf-core/ampliseq (Straub et al. 2020), nf-core/mag
us  (Krakau et al. 2022), and nf-core/funcscan (https://nf-co.re/funcscan). We expect over
27 time the ability to link inputs and outputs of each workflow to develop comprehensive
»s metagenomic analyses, while still maintaining powerful standalone pipelines, provid-
»  ing maximal user choice but with familiar interfaces.

» 5 Conclusion

»  nf-core/taxprofiler is an accessible, efficient, and scalable pipeline for metagenomic
» taxonomic classification and profiling that can be executed on anywhere from laptops
»3 to the cloud. To our knowledge, the pipeline offers the largest number of taxonomic
s profilers across similar pipelines, providing flexibility for users not just on choice of
x5 profiling tool but also with databases and database settings within a single run. With
»s  the development within the open and welcoming nf-core community and with best-
»7  practise development infrastructure, we look forward to further contributions and in-
ss  volvement of the wider metagenomics community, and also we hope that through de-
» tailed documentation and a range of execution options, nf-core/taxprofiler will make
w0 reproducible and high-throughput metagenomics more accessible for a wide range of
2w  disciplines.

«» 6 Code Availability

xs  nf-core/taxprofiler source code is available on GitHub at https://github.com/nf-core/
x taxprofiler, and each release is archived on Zenodo (latest version DOI: 10.5281/zen-
265 0d0.7728364)

xs The version of the pipeline described in this paper is version 1.1.0 (release specific
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w» 7 Acknowledgments

2 We thank Prof. Christina Warinner and the Microbiome Sciences group MPI-EVA for
» original discussions that lead to the pipeline. We are also grateful for the nf-core
o community for the original and ongoing support in the development in the pipeline, in
x2  particular for the contributions by Lauri Mesilaakso, Jianhong Ou, and Rafal Stepien.

» 8 Funding

- S.S. and L.A-L. were supported by Rapid establishment of comprehensive laboratory
»s pandemic preparedness — RAPID-SEQ. This material is based upon work supported by
z the U.S. Department of Agriculture, Agricultural Research Service, under agreement
27 No. 58-3022-0-001 (T.A.C II). M.B. and J.A.FY were supported by the Max Planck So-
zs ciety. M.B. was supported by the Deutsche Forschungsgemeinschaft (DFG, German
2 Research Foundation) under Germany’s Excellence Strategy — EXC 2051 - Project-ID
w 390713860 (Balance of the Microverse). J.A.FY was supported by the Werner Siemens-
w  Stiftung (“Paleobiotechnology”, Awarded to Prof. Pierre Stallforth and Prof. Christina
» Warinner).

= 9 Conflict of Interest Statement
x  M.E.B. is a cofounder of Unseen Bio ApS, a company that offers gut microbiome pro-
x5 filing to consumers, however had no role in study design, data collection and analysis,

x  decision to publish, or preparation of the manuscript. The remaining authors have no
x  conflicts of interest to declare.

11


https://doi.org/10.5281/zenodo.8358147
https://doi.org/10.1101/2023.10.20.563221
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.20.563221; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

» 10 Supplementary Information

» 10.1 Implementation
» 10.1.1 Input and Execution

1 The pipeline can be executed via typical Nextflow commands (Code Block 1), or us-
» ing the standard nf-core ‘launch’ GUI (Figure 2), making the pipeline accessible for
»3  both computationally experienced as well as less experienced researchers. In addi-
»s tion to the general usage and parameter documentation of the pipeline (https://nf-
»s co.re/taxprofiler). The GUI offers immediate assistance and guidance to users on
»s what each parameter does, both in short- and long-form, with long-form parameter
w7 descriptions additionally describing which tool-specific parameters are being modi-
»s fied for each pipeline parameter (https://nf-co.re/launch/?pipeline=taxprofiler). The
»  GUI also includes controlled user input by providing strict drop-down lists and input
w validation prior execution of the pipeline (Figure 2) to reduce the risk of typos and
s other mistakes, which is in contrast to the command-line interface that only includes
w2 validation at pipeline run-time.

Listing 1 Example nf-core/taxprofiler command for running short-read quality con-
trol, removal of host DNA and executing the k-mer based Kraken2 and marker gene
alignment MetaPhlAn tools.

$ nextflow run nf-core/taxprofiler \
-r 1.1.0 \
-profile singularity,<institute> \
--input <samplesheet.csv> \
--databases <database.csv> \
--perform_shortread_qc \
--shortread_qc_minlength 20 \
--preprocessing_qc_tool falco \
--run_host_removal --hostremoval_reference 'host_genome.fasta' \
--run_kraken2 --kraken2 save reads \
--run_metaphlan \
--run_krona \
--run_profile_standardisation

w3 An example nf-core command line execution of the pipeline can be seen in Code
s Block 1, where two input files are supplied: one file specifying paths of FASTQ files
w5 of metagenomic samples and necessary metadata for preprocessing (such as sample
xs 1D and sequencing platform), and the second file specifying paths to the user-defined
w7 databases with per-database classification parameters. Various parameters are avail-
ws  able to select different preprocessing steps, and provide additional configuration such
w  as tool selection and value options. Note that even if a user supplies a given database
w0 in the database input sheet, the corresponding profiling tool must still be activated
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Figure 2: Screenshot of the nf-core pipeline launch graphical user interface with nf-
core/taxprofiler options displayed. The web browser-based interface provides guid-
ance for how to configure each pipeline parameter by providing both short and long
help descriptions to help guide users in which contexts to configure each parameter.
Additional elements such as radio buttons, drop down menus, and background regular
expressions check for validity of input. When pressing launch, a prepared configura-
tion file and command is provided that can be copied and pasted by the user into the
terminal
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s with the corresponding pipeline parameter (e.g. --run_kraken2). Per-classifier flags
sz are also available for the optional saving of additional non-profile output files. Alter-
»3  natively to command line flags, parameters can be specified via pre-configured YAML
su  format files, with which (provided no hardcoded paths are included) can be re-used
ns  across pipeline runs.

s All nf-core pipelines are strictly versioned (specified with the Nextflow -r flag), and to
a7 ensure reproducibility, each version of the pipeline has a fixed set of software used for
ns  each step of the pipeline. The fixed set of software are controlled through the use of
n9  the conda package manager or containers (Docker, or Apptainer - previously known
w0 as Singularity, etc) from the stable Bioconda (Griining et al. 2018) or BioContainers
= (Veiga Leprevost et al. 2017) repositories. This, coupled with the intrinsic Nextflow
= ability to execute on most infrastructure whether that is a local laptop (resource re-
23 quirements permitting), traditional HPC, as well across common cloud providers also
2« makes nf-core/taxprofiler a very portable pipeline that can be used in many contexts.

»s 10.1.2 Preprocessing

2 Preprocessing steps in nf-core/taxprofiler are aimed at removing laboratory and se-
w quencing artefacts that may influence taxonomic profiling, either for computing re-
ns  source consumption or and/or false-positive or false-negative classification reasons.
2 First sequencing quality control with FastQC (Andrews 2010) or Falco (Sena Brandine
s and Smith 2021) is carried out. Falco was included for reduced memory requirements,
s in particular for long read sequencing data. Artificial library adapter sequences added
s during sequencing reduce sequencing matching accuracy by reducing sequence speci-
s ficity, and in some cases, may result in false-positive hits due to adapter sequence con-
su tamination in reference genomes (Schaffer et al. 2018; F. P. Breitwieser, Baker, and
= Salzberg 2018) !. Additionally, paired-end merging may provide longer sequences
s that will allow for more specific classification when paired-end alignment is not sup-
s ported by a given classifier. For these tasks nf-core/taxprofiler can apply either fastp
s (Chen et al. 2018) or AdapterRemoval2 (Schubert, Lindgreen, and Orlando 2016) for
s short reads, and currently Porechop (Wick et al. 2017) for Oxford Nanopore long-read
u data. For both short and long reads, FastQC or Falco is run again to allow assessment
sn  on the performance of the adapter removal and/or pair-merging step.

2 Low complexity sequences, e.g. sequences containing long stretches of mono- or
s di-nucleotide repeats provide little specific genetic information that contribute to
s taxonomic identification, as they can align to many different reference genomes
us  (Schmieder and Edwards 2011; Clarke et al. 2019). Including such reads during
us taxonomic profiling can increase run-time and memory usage for little gain, as
s during lowest-common-ancestor (LCA) classification steps they will be assigned to

IFor an ‘infamous’ case of adapter sequences in a published eukaryotic genome, see the following blog
posts
Graham Etherington: https://web.archive.org/web/20201219022000/http://grahametherington.blogspot.
com/2014/09/why-you-should-qc-your-reads-and-your.html?m=1why-you-should-qc-your-reads-and-
yourhtml Sixing Huang: https://web.archive.org/web/20220904205331/https://dgg32.medium.com/carp-
in-the-soil-1168818d2191
(Accessed 2023-08-25)
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us  high-level taxonomic ranks (e.g. Kingdom). nf-core/taxprofiler performs removal of
u these reads through complexity filtering algorithms as provided by fastp, BBDuk
s (Bushnell 2022), or PRINSEQ++ (Cantu, Sadural, and Edwards 2019). Long read
s sequences often do not have such reads, as lengths are sufficient enough to capture
s greater sequence diversity - but it is sometimes desirable to only classify reads longer
»3 than a certain length - as these provide more precise taxonomic information (Dilthey
s et al. 2019; Portik, Brown, and Pierce-Ward 2022). Therefore, nf-core/taxprofiler can
5 remove reads shorter than a user-defined length using Filtlong.

s Removing host DNA is another common preprocessing step in metagenomic studies.
s7 This can help speed up run-time, particularly in microbiome studies, where detection
s of microbes are of interest. Furthermore, host-contamination of reference genomes in
s public databases is common (Longo, O’Neill, and O’Neill 2011; Kryukov and Imanishi
s 2016; Florian P. Breitwieser et al. 2019). Therefore, the removal of such sequences can
s help decrease the risk of false positive taxonomic assignment. To remove multiple
sz hosts or other sequences, all reference genomes can be combined into a single FASTA
xs  reference file. Short read host removal can be carried out with Bowtie2 (Langmead
s and Salzberg 2012; Langmead et al. 2019) and minimap2 (Li 2018) for long reads, both
s in combination with SAMtools (Li et al. 2009; Danecek et al. 2021), where reads are
ws aligned against the reference genome and the off-target (unaligned) reads are then
w7 converted back to FASTQ format for classification.

s Finally, nf-core/taxprofiler can optionally perform ‘run merging’ where multiple
s FASTQ files from the same sample but have been sequenced over multiple lanes are
s concatenated together to generate one profile per sample or library. The final set of
s reads used for profiling can be optionally saved for downstream re-use. Throughout
w2 all steps, relevant statistics and log files are generated and used both for the final
s pipeline run report as well as saved into the results directory of the pipeline run for
s further inspection where necessary.

s 10.1.3 Profiling

ws There are many types of metagenomic profiling techniques, from profiling against
w7 whole-genome references with alignment or k-mer based approaches, to methods in-
ws  volving alignment to species-specific marker-gene families (Quince et al. 2017; Ye et
s al. 2019). nf-core/taxprofiler aims to support and include all established classification
s or profiling tools as requested by the community.

s The choice of tools used in a pipeline run is up to the user, with a tool being executed
s when both the corresponding database and --run_<tool> flag is provided. Specific
w3 classification settings for each tool and database are specified in the database CSV
s input sheet. Some tools also have pipeline level command-line flags for controlling
w5 certain aspects of output files.

s The following classifiers and profilers are supported in version 1.1.0 of nf-
w7 core/taxprofiler: Kraken2 (Wood, Lu, and Langmead 2019), Bracken (Lu et al
s 2017), KrakenUniq (F. P. Breitwieser, Baker, and Salzberg 2018), Centrifuge (Kim et
s al. 2016), MALT (Vagene et al. 2018), DIAMOND (Buchfink, Reuter, and Drost 2021),
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w  Kaiju (Menzel, Ng, and Krogh 2016), MetaPhlAn (Blanco-Miguez et al. 2023), mOTUs
»  (Ruscheweyh et al. 2022), ganon (Piro et al. 2020), KMCP (Shen et al. 2023).

»2 By default, nf-core/taxprofiler produces the default per-sample taxonomic classifica-
13 tion profile output from a tool or a tool’s report generation tool. The output is nor-
»a  mally in the form of counts per reference sequencing, with additional statistics about
»s  the hits of a particular organism (estimated sequence abundance, taxonomic level etc.).
»s  Users can also optionally request output of per-read classification output and output
w7 such as classified and unclassified reads in FASTQ format, where supported.

»s The pipeline provides high efficiency, particularly during the metagenomic classifica-
w tion stage, through the inherent parallelisation provided by Nextflow. While metage-
w0 nomic classification is comparatively computationally intensive (in terms of mem-
w1 ory and execution time; due to a combination of sequencing depth and number of
«: reference genomes), Nextflow automatically optimises the execution order of all the
w3 steps in pipeline, maximising the number parallel running of multiple profilers and/or
ws databases at any given time point, as far as the available computational resources al-
ws low. For local machines such as laptops or desktops, Nextflow will automatically
ws detect all available computational resources, but this is customisable using Nextflow
w7 configuration files. For HPC and cloud infrastructure, users typically have to define
ws the computational infrastructural environment the pipeline is being executed on (CPU
w9 or memory limitations, queues, instance types, etc.). To facilitate the pipeline compu-
a0 tational configuration, nf-core/taxprofiler supports use of more than 90 pre-defined
a1 centralised generic and pipeline-specific institutional Nextflow configurations as pro-
sz vided by nf-core/configs (https://nf-co.re/configs). However, of course users are still
sz welcome to supply their own custom configuration files as with any typical Nextflow
na  run, further refining computational limitations or execution specifications.

a5 10.1.4 Post-profiling

ss In metagenomic studies, it is common practise to compare the profiles among many
a7 samples, and the results of multiple profiles are normally stored in ‘taxon tables’, i.e,
ns counts per reference taxon (rows), for each sample (columns). When available, nf-
as  core/taxprofiler supports the option to produce the ‘native’ taxon table of each classi-
w0 fication tool when multiple samples are run.

o One of the challenges that researchers face when comparing multiple taxonomic clas-
m  sifiers or profilers is the heterogenous output formats that are produced, that often
»3  require custom parsing and merging scripts for each tool to standardise. To facilitate
w0 more user-friendly cross-comparisons between tools, nf-core/taxprofiler utilises the
s TAXPASTA tool (Beber et al. 2023) to generate standardised profiles and generate
»s  multi-sample tables.

27 Summary statistics for the entire pipeline are visualised and displayed in a customis-
o5 able MultiQC report (Ewels et al. 2020). When supported, quality control of data and
o pipeline runs are shown for manual verification. Krona plots (Ondov, Bergman, and
« Phillippy 2011) can also optionally be generated for supported tools to help provide
w  further visualisation of taxonomic profiles.
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s 10.1.5 Output

= To summarise, the main default output from nf-core/taxprofiler are both classifier
s+ ‘native’ and standardised single- and multi-sample taxonomic profiles with counts
s per-taxon and an interactive MultiQC run report with all run statistics, in addition to
s the raw log files themselves where available.

«  The MultiQC run report displays statistics and summary visualisations for all steps of
as  the pipeline where possible, lists of versions for all tools of each step of the pipeline.
w It also provides a dynamically-constructed text for the recommended ‘methods’ for
mo  reporting how the pipeline was executed (including relevant citations) that users can
w1 use in their own publications.

w2 Optional outputs can include other types of profiles (e.g. per read classification) and
«  in other formats as produced by the tools themselves, as well as raw reads from pre-
w  processing steps and output visualisations from Krona. Nextflow resource usage and
ws  trace reports are also by default produced for users to check pipeline performance.

« 10.2 Comparison with other solutions

«  nf-core/taxprofiler has been specifically developed for the analysis of whole-genome,
ws  metagenomic sequencing data. While other types of taxonomic profiling data such
us  as 16S amplicon sequencing are well established fields with a range of popular high-
s quality and best-practise tools pipelines (e.g. Blanco-Miguez et al. 2023; Schloss et
s al. 2009) and databases (DeSantis et al. 2006; Yilmaz et al. 2014), ‘gold standard’
w2 tools and databases for metagenomics remain much less established. Thus, the need
s for highly-multiplexed classification is more desirable for the newer metagenomics
e methods.

s We searched Google Scholar for open-source pipelines published or released in the last
w6 5 years (at the time of writing, since 2018) that were designed primarily for metage-
»7  nomic classification screening, that supported at least 2 classifiers, had at least one
s preprocessing step and were not specifically targeted at read classification of spe-
s cific domains of taxa (e.g. viruses or bacteriophages only). We also included an addi-
w tional open-source but unpublished pipeline at the recommendations of the authors
w of the pipeline due to the functional overlap to nf-core/taxprofiler. We then evalu-
« ated the pipelines based on their publications and documentation for typical metage-
«»  nomic profiling workflow steps. We used a range of criteria related to expectations of
w modern bioinformatic workflows that can be summarised in the following four cate-
w5 gories: reproducibility, accessibility, scalability, and portability (Wratten, Wilm, and
ws  Goke 2021). After searching, we selected the following pipelines for comparison with
«r  nf-core/taxprofiler that matched the specific criteria described above: sunbeam (v4,
ws Clarke et al. 2019), Unipro UGENE (v48, Rose et al. 2019), TAMA (githash: 3a22c8f,
w Sim et al. 2020), and StaG-mwc (0.7.0, Boulund et al. 2023).

m  In terms of accessibility, all pipelines have documentation describing the installation
o steps, usage instructions, and output files. However, there are varying levels of de-
w2 tail and comprehensiveness. In particular, StaG-mwc and nf-core/taxprofiler have
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s the most detailed descriptions of all possible output files for every supported mod-
w ule, whereas Unipro UGENE and sunbeam have very minimal to possibly unfinished
w5 output documentation. For execution options, most of the pipelines provide CLI ex-
s ecution, except for Unipro UGENE which offers only GUI-based pipeline set-up (de-
a7 spite a command-line execution of the GUI generated configuration). In particular, nf-
ws  core/taxprofiler is the only pipeline providing both CLI and GUI interfaces for pipeline
a5 run execution.

w Criteria covering portability also overlap with accessibility, as it implies options for
s and ease of different users running on different types of computing infrastructure,
sz  whether that is on their own laptop, on an HPC cluster, or in the cloud. Unipro UGENE
s is the only pipeline that explicitly satates support for execution on all three major op-
w  erating systems (Linux, OSX, Windows), whereas StaG-mwc and nf-core/taxprofiler
w5 can be run on unix operating systems (albiet possibly on Windows via Windows Sub-
s system for Linux (WSL)), and sunbeam and TAMA are only being supported on Linux.

w While all pipelines support ‘local’ machine execution (e.g. personal laptops or desk-
s tops), a large portion of academic users execute computationally intensive bioinfor-
w0 matic tasks on HPC clusters. In these contexts, pipeline task submissions are normally
» managed by job schedulers, thus integration with schedulers is an important criterion
w  for running large multi-step and parallelised pipelines. The three pipelines leveraging
w2 workflow managers (Snakemake and Nextflow) support integration with schedulers
w3 (StaG-mwec, sunbeam, and nf-core/taxprofiler) with nf-core/taxprofiler supporting the
ws  most by far (10 scheduling systems) as natively offered by Nextflow. This allows
»s  the greatest possible choice for users in terms of which HPC infrastructure they can
»s execute their pipeline on. As an extension of this, only nf-core/taxprofiler has ex-
w7 plicit support for cloud computing (e.g. AWS, GCP, or Microsoft Azure) as provided
»s by Nextflow, again maximising user choice and portability when it comes to running
wo  the pipeline.

o In terms of scalability, the aforementioned integration with schedulers and cloud com-
sn  puting support implicitly maximises efficiency and parallellisation of pipeline runs,
s providing good scalability for varying numbers of input files and steps in the pipeline.
s Again, the three workflow manager based pipelines provide scalability, whereas there
s is no mention neither Unipro UGENE nor TAMA in reference to parallel task execu-
s tion. Furthemore, all pipelines except TAMA, allowed per-process customisation of
s computational resources, something critical for maximising efficient scalability to en-
sv  sure only the necessary resources for a given step of a pipeline are requested.

s In terms of reproducibility, all five pipelines are good at ensuring reproducibility in
so  terms of pipeline and software versioning (allowing re-execution of pipeline runs us-
s ing the same software), with only TAMA not having stable versioned releases. How-
s ever, installing software manually across different infrastructures can result in vari-
s2  ability in the execution of each software 2 (Di Tommaso et al. 2017). The current most

2As demonstrated in this blogpost from Pawet Przytuta: https://web.archive.org/web/20230320223436/
https://appsilon.com/reproducible-research-when-your-results-cant-be-reproduced/ (Accessed 2023-08-
25)
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sz popular solution to the problem of inconsistent software environments is to use con-
su  tainer engines such as Docker or Apptainer to run container images which are iso-
ss  lated, deterministic computing environments which can be executed by any system
s providing a container runtime. Only Unipro UGENE does not document the use of a
sv container system, with nf-core/taxprofiler offering the biggest choice for users, again,
sis  courtesy of Nextflow with 6 different engine systems at the time of writing,.

s Finally, we compared metagenomics related functionality between the pipelines. All
so  pipelines support short-read FASTQ input, but only nf-core/taxprofiler explicitly re-
sn  ports long-read support, while the documentation in Unipro UGENE states that assem-
s2  bled contigs are possible input to some of the profilers. All pipelines support read pre-
23 processing (adapter clipping, and merging). In terms of tools used for preprocessing,
s« Trimmomatic (Bolger, Lohse, and Usadel 2014) is popular across the other pipelines
s but is not supported in nf-core/taxprofiler. Only sunbeam and nf-core/taxprofiler sup-
s port complexity filtering to remove low sequence diversity reads. In fact within sun-
sv beam, the authors developed their own dedicated, performant complexity filtering
s tool Komplexity (Clarke et al. 2019). Most pipelines support some form of host re-
s» moval (only TAMA did not support this), and it is likely possible with Unipro UGENE
s (although not directly described). In all cases, host removal consists of mapping pro-
sn cessed reads with an aligner and using the off-target reads for downstream profiling
sz (as implemented in nf-core/taxprofiler), however StaG-mwc has an additional sepa-
s rate metagenomic host removal step with Kraken2. nf-core/taxprofiler supports by
su far the largest number of taxonomic classifers and profilers at 11 as of v1.1.0 - pro-
s viding the greatest choice to users - with StaG-mwec offering 7, and the remaining
s%  pipelines only 3. Only nf-core/taxprofiler and partly StaG-mwec explicitly support run-
s» ning each profiler with multiple databases. nf-core/taxprofiler is the only pipeline that
s supports running an arbitrary number of different metagenomic profiler databases
s»  each with their own settings. This makes it a useful for tool parameter compari-
so  son, testing different databases, or reducing the size of each database (e.g. per do-
s main) to make it more flexibility for running on smaller computational infrastructure.
sz StaG-mwec allows multiple references for their short-read alignment steps rather than
s the metagenomic profilers. For output, nf-core/taxprofiler, StaG-mwc, and sunbeam
su (via an extension) support a singular run report for summarising all preprocessing
s step. Only nf-core/taxprofiler and TAMA produce standardised output for all taxo-
s nomic profilers, the former with the dedicated standalone tool TAXPASTA (Beber et
sv al. 2023). However Unipro UGENE additionally offers a ‘consensus’ profile using
s« WEVOTE (Metwally et al. 2016).

s To summarise, many of the pipelines reviewed here offer similar functionality, with
so  particularly StaG-mwc having a strong overlap with nf-core/taxprofiler. Thus, users
s in most cases will be able to select the pipeline depending on which framework they
s2 feel most comfortable with. However the advantages of nf-core/taxprofiler mainly
53 come from the offering of the greatest choice of tools, as well the particular benefits
s« provided by Nextflow. It provides the greatest number of computational infrastruc-
s ture types the pipeline can be executed on, and container systems can be used to
s ensure reproducibility, as well the support of the nf-core community due to the cen-
s tralised pool of ‘plug-and-play’ modules to make it easier to update the pipeline over
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55 time to add new tools classifiers.

s» The functionality offered by other pipelines not currently supported by nf-
s core/taxprofiler include sequencing saturation estimation (StaG-mwc), taxonomy-
s« free composition comparison (StaG-mwec), functional profiling (StaG-mwc), de novo
sz assembly (sunbeam), and reference mapping (StaG-mwc, sunbeam). We do not
ss plan to support de novo assembly or functional profiling in nf-core/taxprofiler as
s« we feel these are already better served by other existing dedicated pipelines within
ss the nf-core ecosystem: nf-core/mag for de novo assembly, (Krakau et al. 2022)
s« and nf-core/funcscan for functional profiling (https://nf-co.re/funcscan), as well as
s elsewhere e.g. MetaWRAP (Uritskiy, DiRuggiero, and Taylor 2018).
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