

nf-core/taxprofiler: highly parallelised and flexible pipeline for metagenomic taxonomic classification and profiling

Sofia Stamouli¹, Moritz E. Beber², Tanja Normark³, Thomas A. Christensen II⁴, Lili Andersson-Li⁵, Maxime Borry⁶, Mahwash Jamy⁷, nf-core community⁸, James A. Fellows Yates⁹

¹Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet

¹Department of Clinical Microbiology, Karolinska University Hospital

²Institute for Globally Distributed Open Research and Education (IGDORE)

²Unseen Bio ApS

³Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet

³Department of Clinical Microbiology, Karolinska University Hospital

⁴Veterinary Diagnostic Laboratory, Kansas State University College of Veterinary Medicine

⁵Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet

⁵Department of Clinical Microbiology, Karolinska University Hospital

⁶Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology

⁶Research Unit Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (current address)

⁷Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet

⁷Department of Clinical Microbiology, Karolinska University Hospital

⁸<https://nf-co.re>

⁹Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology

⁹Research Unit Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (current address)

⁹Research Unit Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (current address)

1 Abstract

Metagenomic classification tackles the problem of characterising the taxonomic source of all DNA sequencing reads in a sample. A common approach to address the differences and biases between the many different taxonomic classification tools is to run metagenomic data through multiple classification tools and databases. This, however, is a very time-consuming task when performed manually - particularly when combined with the appropriate preprocessing of sequencing reads before the classification.

Here we present nf-core/taxprofiler, a highly parallelised read-processing and taxo-

36 nomic classification pipeline. It is designed for the automated and simultaneous clas-
37 sification and/or profiling of both short- and long-read metagenomic sequencing li-
38 braries against a 11 taxonomic classifiers and profilers as well as databases within a
39 single pipeline run. Implemented in Nextflow and as part of the nf-core initiative, the
40 pipeline benefits from high levels of scalability and portability, accommodating from
41 small to extremely large projects on a wide range of computing infrastructure. It has
42 been developed following best-practise software development practises and commu-
43 nity support to ensure longevity and adaptability of the pipeline, to help keep it up to
44 date with the field of metagenomics.

45 2 Introduction

46 Whole-genome, metagenomic sequencing offers strong benefits to the taxonomic clas-
47 sification of DNA samples over targeted approaches (Eloe-Fadrosh et al. 2016; Florian
48 P. Breitwieser, Lu, and Salzberg 2019). While metabarcoding approaches targeting
49 the 16S rRNA or other marker genes are widely used due to low cost and large, di-
50 verse reference databases (Yilmaz et al. 2014; Lynch and Neufeld 2015), metagenomic
51 approaches have been gaining popularity with the increasingly lower costs of, for
52 example, shotgun sequencing. These metagenomic analyses with whole microbial
53 genome as references have been shown to provide a similar level of taxonomic res-
54 olution (Hillmann et al. 2018). However they also have the added benefit of having
55 greater reusability potential of the data, such as for whole genome and/or functional
56 classification (Sharpton 2014; Quince et al. 2017).

57 Taxonomic classifiers (sometimes referred to as taxonomic binners) aim to identify
58 the original ‘taxonomic source’ of a given DNA sequence (Ye et al. 2019; Meyer et al.
59 2022; Govender and Eyre 2022). In metagenomics, this typically consists of comparing
60 millions of DNA reads (sequenced DNA molecules) against hundreds or thousands
61 of reference genomes either via sequence alignment or ‘k-mer matching’ (Sharpton
62 2014; Sun et al. 2021). The reference genome with the most similar match to the
63 read is then considered the most likely original ‘source’ organism of that sequence. In
64 this article we will also refer to ‘taxonomic profilers’. We consider these as classifiers
65 that also try to infer sequence abundance (i.e. re-assignment of counts to the most
66 likely source based on the distribution of other hits) or biological relative abundance
67 of the organism in the original sample (by coverage of expected marker genes, copy
68 number estimations etc.), in addition to the simple read classification (Nayfach and
69 Pollard 2016). We will use classifiers and profilers interchangeably throughout the
70 publication.

71 Having to identify the original source of the many DNA sequences out of the many ref-
72 erence genomes in a time and computationally efficient manner is a difficult problem.
73 In many cases biologists are not just interested as to which organism of each DNA
74 sequence comes from, but also in using this information to infer the original ‘cellular’
75 (or natural) abundance of each organism of the given environment - something that
76 is very difficult due to the biases inherent to DNA extraction and sequencing. There-
77 fore a plethora of tools have been developed to address these challenges, all with their

78 own biases and specific contexts (Sczyrba et al. 2017; Meyer et al. 2022). Furthermore,
79 each tool often produces tool-specific output formats making it difficult to efficiently
80 cross compare results. Thus, no established ‘gold standard’ classifier tool or method
81 currently exists.

82 One solution to addressing the problem of choice among the range of different tools
83 is to run all of them in parallel, and cross compare the results. This can be useful both
84 for benchmarking studies (e.g. Sczyrba et al. 2017; Meyer et al. 2022), but also to
85 build consensus profiles whereby confidence of a particular taxonomic identification
86 can be increased when it is detected by multiple tools (McIntyre et al. 2017; Ye et al.
87 2019).

88 A second challenge in taxonomic classification (and arguably a larger one) is a ques-
89 tion of databases. As with tools, there is no one set ‘gold standard’ database. Different
90 questions and contexts require different databases, such as when a researcher wants
91 to search for both bacterial and viral species in samples, but as an extension of this,
92 taxonomic classifiers often will need different settings for each database. Further-
93 more, as genomic sequencing becomes cheaper and more efficient, the number of
94 publicly available reference genomes is rapidly increasing (Nasko et al. 2018). Conse-
95 quently, the size of reference databases of taxonomic classifiers is also growing, often
96 outpacing the computational capacity available to researchers. In fact, while this was
97 one of the main motivations behind classifiers such as Kraken2 (Wood, Lu, and Lang-
98 mead 2019), these algorithmic techniques are already becoming insufficient (Wright,
99 Comeau, and Langille 2023).

100 Finally, with the decrease of costs, the possibility for larger and larger metagenomic
101 sequencing datasets increases, leading to increasing sample sizes in studies. This is
102 exemplified by the doubling of the number of metagenomes on the European Bioin-
103 formatic Institute’s MGnify database within just two years (Mitchell et al. 2019).

104 Altogether this highlights the need for methods to efficiently profile many samples
105 using many tools. Manually setting up bioinformatic jobs for classification tasks for
106 each database and settings against different tools on traditional academic computing
107 infrastructure (e.g. high performance computing clusters or ‘HPC’ clusters) can be
108 very tedious. Additionally, particularly for very large sample sets, there is increas-
109 ing use of cloud platforms that have greater scalability than traditional HPCs. Being
110 able to reliably and reproducibly execute taxonomic classification tasks across infras-
111 tructure with minimal intervention would therefore be a boon for the metagenomics
112 field.

113 In recent years, workflow managers such as Nextflow (Di Tommaso et al. 2017) or
114 Snakemake (Mölder et al. 2021) have become highly popular in bioinformatics. These
115 frameworks provide for developers robust workflow execution with different HPC
116 scheduling tools and software provisioning systems, ensuring maximum portability
117 and efficient in different computational contexts. While a range of metagenomic
118 pipelines already exist (a non-exhaustive list being for example, StaG-mwc by
119 Boulund et al. 2023; MetaMeta by Piro, Matschkowski, and Renard 2017; TAMA by
120 Sim et al. 2020; UGENE by Rose et al. 2019; and Sunbeam by Clarke et al. 2019), few

121 leverage workflow managers to make multi-step workflows easier to use in HPC or
122 cloud infrastructure. Furthermore, often these pipelines aim to carry out multiple
123 different types of metagenomic analyses (e.g. also performing functional or assembly
124 analyses, such as Moraes et al. 2022; Boulund et al. 2023) of which each step has
125 fewer options of tools and may execute functionality unwanted by the end user.

126 Here we present nf-core/taxprofiler (<https://nf-co.re/taxprofiler>), a pipeline designed
127 to allow users to efficiently and simultaneously taxonomically classify or profile
128 short- and long-read sequencing data. At the time of writing it supports 11 clas-
129 sifiers and an arbitrary number of databases per classifier in a single pipeline run.
130 nf-core/taxprofiler utilises Nextflow (Di Tommaso et al. 2017) to ensure efficiency,
131 portability, and scalability, and has been developed within the nf-core initiative of
132 Nextflow pipelines (Ewels et al. 2020) to ensure high quality coding practises and
133 user accessibility. It includes detailed documentation and a graphical-user-interface
134 (GUI) execution interface in addition to a standard command-line-interface (CLI).

135 3 Description

136 nf-core/taxprofiler aims to facilitate three main steps of a typical whole-genome,
137 metagenomic sequencing analysis workflow (Chiu and Miller 2019,Figure 1). A
138 longer description of the available functionality and motivations can be seen in the
139 [Supplementary Information](#).

140 In brief, nf-core/taxprofiler can accept short- (e.g. Illumina) and/or long-read
141 (e.g. Nanopore) FASTQ or FASTA files. These are supplied to the pipeline in the
142 form of a TSV file that includes basic sample and sequencing library metadata. The
143 pipeline can then be executed either via a standard Nextflow command-line-interface
144 execution or graphical-user-interface through either the open-source and free nf-core
145 launch page (<https://nf-co.re/launch>) or the commercial (with free-tier) Nextflow
146 tower (<https://tower.nf>) solution. Examples of the command-line execution and
147 nf-core launch GUI can be seen in the [Supplementary Information](#).

148 The pipeline can perform a range of metagenomics appropriate read preprocessing
149 steps, such adapter removal, read merging, low-sequence complexity filtering, host-
150 or contamination removal, and/or per-sample run merging. All of these steps are
151 optional, and are aimed at removing possible sequencing artefacts that may result in
152 false positive taxonomic classification hits or improve classification efficiency. Most
153 of these steps also provide options of different tools to account for user preference.

154 After pre-processing, nf-core/taxprofiler can perform simultaneous profiling of pre-
155 processed reads with up to as many as 11 different taxonomic classifiers or profilers
156 (Table 1). Additionally on top of this, also simultaneously for each of the classifiers,
157 an arbitrary number of databases as supplied by the user. As of version 1.1.0, the
158 following classifiers and profilers are available: Kraken2 (Wood, Lu, and Langmead
159 2019), Bracken (Lu et al. 2017), KrakenUniq (F. P. Breitwieser, Baker, and Salzberg
160 2018), Centrifuge (Kim et al. 2016), MALT (Vågene et al. 2018), DIAMOND (Buchfink,
161 Reuter, and Drost 2021), Kaiju (Menzel, Ng, and Krogh 2016), MetaPhlAn (Blanco-

162 Míguez et al. 2023), mOTUs (Ruscheweyh et al. 2022), ganon (Piro et al. 2020), and
163 KMCP (Shen et al. 2023). Databases are also supplied via a input TSV file, which
164 also allows per-database custom classification parameters - meaning a given database
165 can be supplied multiple times each with different parameters or multiple different
166 databases per profiler. All classifiers with secondary steps to generate or convert to
167 additional output file formats are also included.

168 Post-processing of taxonomic profiles include standardisation and aggregation of pro-
169 files , i.e. merging of multiple profiles into a single multi-sample table for easier com-
170 parison between profilers, with the tool TAXPASTA (Beber et al. 2023), and visualisa-
171 tion of profiles with Krona (Ondov, Bergman, and Phillippy 2011) where supported.

172 All relevant preprocessing statistics are displayed in an interactive and dynamic Mul-
173 tiQC report (Ewels et al. 2020).

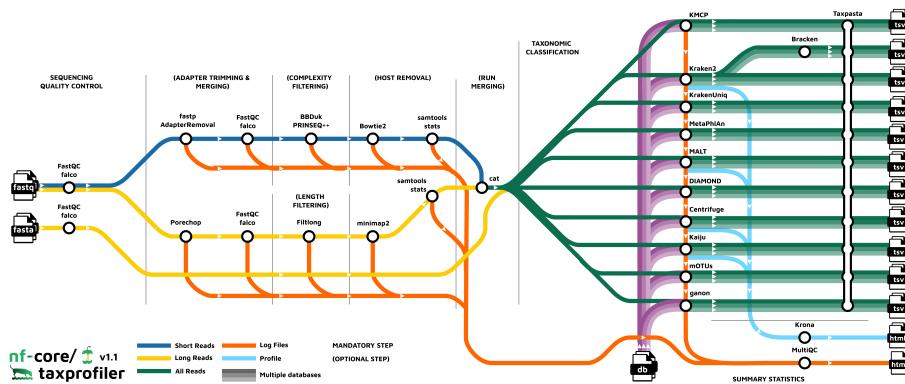


Figure 1: Visual overview of the nf-core/taxprofiler workflow. nf-core/taxprofiler can take in FASTQ (short or long reads) or FASTA files (long reads), that will optionally go through sequencing quality control (e.g. with FastQC), read preprocessing (e.g. removal of adapters), complexity filtering, host removal, and run merging before performing taxonomic classification and/or profiling with a user-selected range of tools and databases. Output from all classifiers and profilers are standardised into a common taxon table format, and when supported visualisations of the profiles are generated.

Table 1: List of nf-core/taxprofiler supported taxonomic/classifiers profilers as of version 1.1 and their approximate method and supported input database types. Primary algorithm refers to the algorithm type used for sequencing matching. Reference type refers to the typical sequence type used in database construction of the tool. Sequencing matching type refers to which ‘molecular alphabet’ is primarily used for matching between a query (read) and a reference (genome/gene).

Tool	Primary Algorithm	Reference Type	Sequence Matching Type
Kraken2	k-mer based	whole-genome	Nucleotide
Kaiju	k-mer based	whole-genome	Amino Acid
Bracken	k-mer based	whole-genome	Nucleotide
KrakenUniq	k-mer based	whole-genome	Nucleotide
ganon	k-mer based	whole-genome	Nucleotide
KMCP	k-mer based	whole-genome	Nucleotide
MALT	alignment based	whole-genome	Nucleotide/Amino Acid
DIAMOND	alignment based	whole-genome	Amino Acid
Centrifuge	alignment based	whole-genome	Nucleotide
MetaPhlAn	alignment based	marker-gene	Nucleotide
mOTUS	alignment based	marker-gene	Nucleotide

174 nf-core/taxprofiler comes with extensive documentation for general usage, short- and
175 long- parameter help texts, and output file descriptions. To ensure maximum accessibility,
176 these are available in pipeline results as markdown files (<https://github.com/nf->
177 [core/taxprofiler](https://github.com/nf-core/taxprofiler)), on the nf-core website (<https://nf-core.org/taxprofiler>) and for the pa-
178 rameter help texts on the command line via standard --help. The output documen-
179 tation also aims to guide users as the most suitable files for different types of down-
180 stream analysis

181 4 Discussion

182 A range of pipelines already exists for taxonomic profiling, however, each have
183 their own particular purpose and capabilities. We compared the functionality
184 of nf-core/taxprofiler against four other recently published or released pipelines,
185 selected based on their similarity of purpose to nf-core/taxprofiler. The selection
186 criteria and a more detailed comparison between the five pipelines can be seen
187 in the [Supplementary Information](#). Overall, while there was a general similarity
188 across all pipelines, nf-core/taxprofiler showed the largest number of options for
189 pipeline execution accessibility, and user choice. This is facilitated through the
190 use of an established workflow manager (with Nextflow supporting 7 software
191 environment/container systems), support for both CLI and GUI execution, and by the
192 number of supported classifiers. Furthermore, it is unique in that is the only pipeline
193 to support supplying multiple database for all of the tools in a single pipeline run.

Table 2: Comparison of functionality with four recent taxonomic pipelines with similar functionality. A more detailed textual comparison can be found in the [Supplementary Information](#). Category keys are as follows: I - Information, R - Reproducibility, A - Accessibility, P - Portability, S - Scalability, F - Functionality.

Category	Criterion	StaG-mwc	sunbeam	Unipro UGENE	tama	nf-core/taxprofiler
I	Source code URL	https://github.com/ctmrbio/stag-mwc	https://github.com/sunbeam-labs/sunbeam	https://github.com/ugeneuniprjklab/ugene	https://github.com/tama/TAMA	https://github.com/nf-core/taxprofiler
I	Evaluated version	0.7.0	4	48	githash: 3a22c8f	1.1.0
I	Last release date	2023-06-13	2023-08-08	2023-08-08	2022-03-02	2023-09-19
I	Publication year	Unpublished	2019	2019	2020	This publication
I	Publication DOI	Unpublished	10.1186/s40168-1093-bioinformatics-2019-0658-x	10.1186/s40168-1093-bioinformatics-2020-3533-7	10.1186/s40168-1093-bioinformatics-2020-3533-7	publication
R	Pipeline versioning	Yes	Yes	Yes	No	Yes
R	Software versioning	Yes	Yes	Yes	Yes	Yes
R	Nr. software environments or container engines supported	2	2	0	1	7
A	Installation documentation	Yes	Yes	Yes	Yes	Yes
A	Usage documentation	Yes	Yes	Yes	Yes	Yes
A	Output documentation	Yes	Yes	Yes	Yes	Yes
A	CLI execution interface	Yes	Yes	No	Yes	Yes
A	GUI execution interface	No	No	Yes	No	Yes

Category	Criterion	StaG-mwc	sunbeam	Unipro UGENE	tama	nf-core/taxprofiler
A/S	Integration a scheduling systems	Yes	Yes	No	No	Yes
P/A	Nr. supported operating systems	2	1	3	1	2
P	Local machine integration	Yes	Yes	Yes	Yes	Yes
P/S	HPC scheduler integration	Yes	Yes	No	No	Yes
P/S	Cloud computing integration	Unsure	Unsure	No	No	Yes
P/S	Integration with multiple scheduling systems	Partial	Partial	No	No	Yes
S	Per-process resource optimisation	Yes	Yes	Yes	No	Yes
F	Short read support	Yes	Yes	Yes	Yes	Yes
F	Long read support	No	No	Yes	No	Yes
F	Read preprocessing	Yes	Yes	Yes	Yes	Yes
F	Sequencing depth estimation	Yes	No	No	No	No
F	Complexity filtering	No	Yes	No	No	Yes
F	Host removal	Yes	Yes	Partial	No	Yes
F	Nr. supported taxonomic classifiers/profilers	7	3	3	3	11
F	Graphical run reports	Yes	No	No	No	Yes
F	Standardised profiles	No	No	No	Yes	Yes

Category	Criterion	StaG-mwc	sunbeam	Unipro UGENE	tama	nf-core/taxprofiler
F	Multiple database supported	Partial	No	No	No	Yes
F	Metagenomic assembly	No	Yes	No	No	No
F	Visualisation	No	No	No	No	Partial

194 Another important advantage of nf-core/taxprofiler is that it is being developed
195 within the nf-core community (<https://nf-co.re>), that provides strong long-term
196 support for the continued community-based development and maintenance of its
197 pipelines. In this framework, we will continue to add additional preprocessing,
198 metagenomic classification, and profiling tools as they become established and as
199 requested by the metagenomics community. For example, we feel that the inclusion
200 of steps such as sequencing saturation estimation as already being performed
201 by a similar pipeline StaG-mwc (<https://github.com/ctmrbio/stag-mwc>) would be
202 beneficial to the nf-core/taxprofiler workflow (possibly with dedicated tools such as
203 Nonpareil, Rodriguez-R et al. 2018), and/or more performant complexity filtering
204 tools such as Komplexity as offered by the sunbeam metagenomics pipeline (Clarke
205 et al. 2019). Additional tools that could be added for short-read classification could
206 include sourmash (Titus Brown and Irber 2016) that provides scalable sequence
207 to sequence comparison or other marker gene reference tools such as tools such
208 as METAXA2 (Bengtsson-Palme et al. 2015) that use shotgun sequencing reads to
209 recover 16S sequences from metagenomic samples. Adding additional classifiers also
210 applies to extend support to other sequencing platforms; nf-core/taxprofiler already
211 supports Nanopore long-read data, however the use of long-read PacBio data for
212 metagenomic data is growing in interest (Portik, Brown, and Pierce-Ward 2022).
213 We are therefore considering adding dedicated preprocessing steps for this type of
214 sequencing data.

215 A remaining major challenge for metagenomics researchers (and not supported in
216 the same workflow by any of the compared pipelines above) is the construction of
217 databases for each profiling tool. Given there still are no curated, high-quality ‘gold
218 standard’ databases in metagenomics, and while nf-core/taxprofiler allows the pro-
219 filing against multiple databases and settings in parallel, currently the pipeline still
220 requires users to construct these manually and to supply to the pipeline. While we
221 feel this is currently a reasonable investment as such databases are typically repeat-
222 edly re-used, we are exploring the possibility to add an additional complementary
223 workflow in the pipeline to allow automated database construction of all classifica-
224 tion tools, given a set of FASTA reference files.

225 Finally, once an overall taxonomic profile is generated, researchers often wish to val-
226 idate hits through more sensitive and accurate methods such as with read-mapping
227 alignment. While read alignment is supported by other pipelines such as StaG-mwc,

228 this happens in-parallel to the taxonomic profiling and requires prior expectation of
229 which reference genomes to map against. Instead, nf-core/taxprofiler could be eas-
230 ily extended to have a validation step similar to the approach of the ancient DNA
231 metagenomic pipeline aMeta (Pochon et al. 2022). Utilising Nextflow’s execution par-
232 allelism, the input sequences could be aligned back to the reference genomes of only
233 those species with hits resulting from the taxonomic classification, but with dedicated
234 accurate short- or long-read aligners. In addition to the more precise classification,
235 post-classification read-alignment could also be particularly useful for researchers in
236 palaeogenomics who wish to use tools other than KrakenUniq for initial classification
237 (as in aMeta), where alignment information can be used to authenticate ancient DNA
238 within their samples, but also in clinical metagenomics to identify potential pathogens
239 at much finer resolution (e.g. down to strain level).

240 Another motivation for developing nf-core/taxprofiler, despite the large number of ex-
241 isting metagenomics pipelines, is that by establishing a taxonomic profiling pipeline
242 within the nf-core ecosystem, it is possible to begin building both standalone but
243 also an integrated suite of powerful interconnected pipelines for the major stages
244 of metagenomic workflows. Existing microbial- and metagenomics- related pipelines
245 within the nf-core initiative include nf-core/ampliseq (Straub et al. 2020), nf-core/mag
246 (Krakau et al. 2022), and nf-core/funcscan (<https://nf-co.re/funcscan>). We expect over
247 time the ability to link inputs and outputs of each workflow to develop comprehensive
248 metagenomic analyses, while still maintaining powerful standalone pipelines, provid-
249 ing maximal user choice but with familiar interfaces.

250 5 Conclusion

251 nf-core/taxprofiler is an accessible, efficient, and scalable pipeline for metagenomic
252 taxonomic classification and profiling that can be executed on anywhere from laptops
253 to the cloud. To our knowledge, the pipeline offers the largest number of taxonomic
254 profilers across similar pipelines, providing flexibility for users not just on choice of
255 profiling tool but also with databases and database settings within a single run. With
256 the development within the open and welcoming nf-core community and with best-
257 practise development infrastructure, we look forward to further contributions and in-
258 volvement of the wider metagenomics community, and also we hope that through de-
259 tailed documentation and a range of execution options, nf-core/taxprofiler will make
260 reproducible and high-throughput metagenomics more accessible for a wide range of
261 disciplines.

262 6 Code Availability

263 nf-core/taxprofiler source code is available on GitHub at <https://github.com/nf-core/>
264 [taxprofiler](#), and each release is archived on Zenodo (latest version DOI: [10.5281/zen-
265 odo.7728364](https://doi.org/10.5281/zenodo.7728364))

266 The version of the pipeline described in this paper is version 1.1.0 (release specific

267 Zenodo archive DOI: [10.5281/zenodo.8358147](https://doi.org/10.5281/zenodo.8358147))

268 **7 Acknowledgments**

269 We thank Prof. Christina Warinner and the Microbiome Sciences group MPI-EVA for
270 original discussions that lead to the pipeline. We are also grateful for the nf-core
271 community for the original and ongoing support in the development in the pipeline, in
272 particular for the contributions by Lauri Mesilaakso, Jianhong Ou, and Rafal Stępień.

273 **8 Funding**

274 S.S. and L.A-L. were supported by Rapid establishment of comprehensive laboratory
275 pandemic preparedness – RAPID-SEQ. This material is based upon work supported by
276 the U.S. Department of Agriculture, Agricultural Research Service, under agreement
277 No. 58-3022-0-001 (T.A.C II). M.B. and J.A.F.Y were supported by the Max Planck So-
278 ciety. M.B. was supported by the Deutsche Forschungsgemeinschaft (DFG, German
279 Research Foundation) under Germany's Excellence Strategy – EXC 2051 – Project-ID
280 390713860 (Balance of the Microverse). J.A.F.Y was supported by the Werner Siemens-
281 Stiftung ("Paleobiotechnology", Awarded to Prof. Pierre Stallforth and Prof. Christina
282 Warinner).

283 **9 Conflict of Interest Statement**

284 M.E.B. is a cofounder of Unseen Bio ApS, a company that offers gut microbiome pro-
285 filing to consumers, however had no role in study design, data collection and analysis,
286 decision to publish, or preparation of the manuscript. The remaining authors have no
287 conflicts of interest to declare.

288 10 Supplementary Information

289 10.1 Implementation

290 10.1.1 Input and Execution

291 The pipeline can be executed via typical Nextflow commands (Code Block 1), or us-
292 ing the standard nf-core ‘launch’ GUI (Figure 2), making the pipeline accessible for
293 both computationally experienced as well as less experienced researchers. In addi-
294 tion to the general usage and parameter documentation of the pipeline (<https://nf->
295 [co.re/taxprofiler](https://nf-co.re/taxprofiler)). The GUI offers immediate assistance and guidance to users on
296 what each parameter does, both in short- and long-form, with long-form parameter
297 descriptions additionally describing which tool-specific parameters are being modi-
298 fied for each pipeline parameter (<https://nf-co.re/launch/?pipeline=taxprofiler>). The
299 GUI also includes controlled user input by providing strict drop-down lists and input
300 validation prior execution of the pipeline (Figure 2) to reduce the risk of typos and
301 other mistakes, which is in contrast to the command-line interface that only includes
302 validation at pipeline run-time.

Listing 1 Example nf-core/taxprofiler command for running short-read quality con-
trol, removal of host DNA and executing the k-mer based Kraken2 and marker gene
alignment MetaPhlAn tools.

```
$ nextflow run nf-core/taxprofiler \
  -r 1.1.0 \
  -profile singularity,<institute> \
  --input <samplesheet.csv> \
  --databases <database.csv> \
  --perform_shortread_qc \
  --shortread_qc_minlength 20 \
  --preprocessing_qc_tool falco \
  --run_host_removal --hostremoval_reference 'host_genome.fasta' \
  --run_kraken2 --kraken2_save_reads \
  --run_metaphlan \
  --run_krona \
  --run_profile_standardisation
```

303 An example nf-core command line execution of the pipeline can be seen in Code
304 Block 1, where two input files are supplied: one file specifying paths of FASTQ files
305 of metagenomic samples and necessary metadata for preprocessing (such as sample
306 ID and sequencing platform), and the second file specifying paths to the user-defined
307 databases with per-database classification parameters. Various parameters are avail-
308 able to select different preprocessing steps, and provide additional configuration such
309 as tool selection and value options. Note that even if a user supplies a given database
310 in the database input sheet, the corresponding profiling tool must still be activated

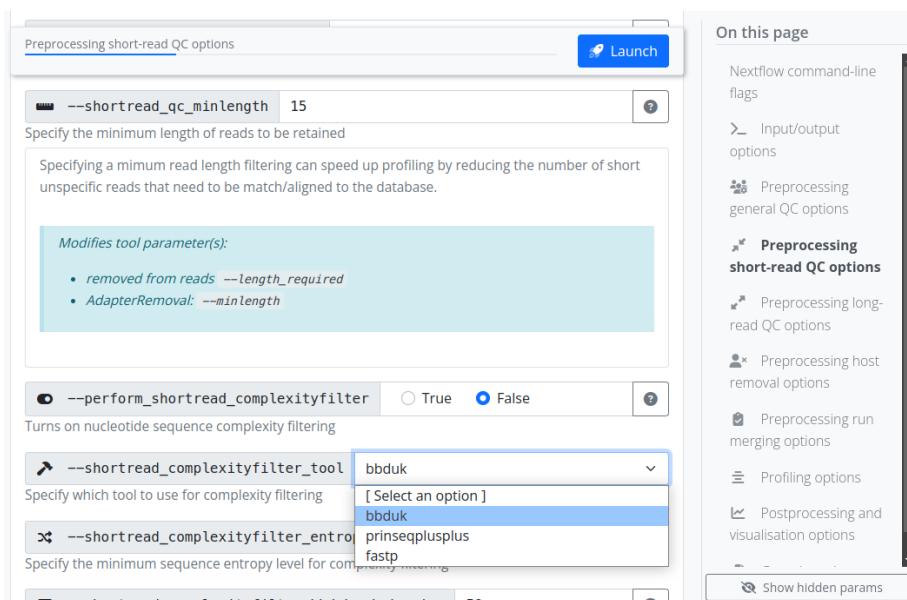


Figure 2: Screenshot of the nf-core pipeline launch graphical user interface with nf-core/taxprofiler options displayed. The web browser-based interface provides guidance for how to configure each pipeline parameter by providing both short and long help descriptions to help guide users in which contexts to configure each parameter. Additional elements such as radio buttons, drop down menus, and background regular expressions check for validity of input. When pressing launch, a prepared configuration file and command is provided that can be copied and pasted by the user into the terminal

311 with the corresponding pipeline parameter (e.g. `--run_kraken2`). Per-classifier flags
312 are also available for the optional saving of additional non-profile output files. Alter-
313 natively to command line flags, parameters can be specified via pre-configured YAML
314 format files, with which (provided no hardcoded paths are included) can be re-used
315 across pipeline runs.

316 All nf-core pipelines are strictly versioned (specified with the Nextflow `-r` flag), and to
317 ensure reproducibility, each version of the pipeline has a fixed set of software used for
318 each step of the pipeline. The fixed set of software are controlled through the use of
319 the conda package manager or containers (Docker, or Apptainer - previously known
320 as Singularity, etc) from the stable Bioconda (Grüning et al. 2018) or BioContainers
321 (Veiga Leprevost et al. 2017) repositories. This, coupled with the intrinsic Nextflow
322 ability to execute on most infrastructure whether that is a local laptop (resource re-
323 quirements permitting), traditional HPC, as well across common cloud providers also
324 makes nf-core/taxprofiler a very portable pipeline that can be used in many contexts.

325 **10.1.2 Preprocessing**

326 Preprocessing steps in nf-core/taxprofiler are aimed at removing laboratory and se-
327 quencing artefacts that may influence taxonomic profiling, either for computing re-
328 source consumption or and/or false-positive or false-negative classification reasons.
329 First sequencing quality control with FastQC (Andrews 2010) or Falco (Sena Brandine
330 and Smith 2021) is carried out. Falco was included for reduced memory requirements,
331 in particular for long read sequencing data. Artificial library adapter sequences added
332 during sequencing reduce sequencing matching accuracy by reducing sequence speci-
333 ficity, and in some cases, may result in false-positive hits due to adapter sequence con-
334 tamination in reference genomes (Schäffer et al. 2018; F. P. Breitwieser, Baker, and
335 Salzberg 2018)¹. Additionally, paired-end merging may provide longer sequences
336 that will allow for more specific classification when paired-end alignment is not sup-
337 ported by a given classifier. For these tasks nf-core/taxprofiler can apply either fastp
338 (Chen et al. 2018) or AdapterRemoval2 (Schubert, Lindgreen, and Orlando 2016) for
339 short reads, and currently Porechop (Wick et al. 2017) for Oxford Nanopore long-read
340 data. For both short and long reads, FastQC or Falco is run again to allow assessment
341 on the performance of the adapter removal and/or pair-merging step.

342 Low complexity sequences, e.g. sequences containing long stretches of mono- or
343 di-nucleotide repeats provide little specific genetic information that contribute to
344 taxonomic identification, as they can align to many different reference genomes
345 (Schmieder and Edwards 2011; Clarke et al. 2019). Including such reads during
346 taxonomic profiling can increase run-time and memory usage for little gain, as
347 during lowest-common-ancestor (LCA) classification steps they will be assigned to

¹For an ‘infamous’ case of adapter sequences in a published eukaryotic genome, see the following blog posts

Graham Etherington: <https://web.archive.org/web/20201219022000/http://grahametherington.blogspot.com/2014/09/why-you-should-qc-your-reads-and-your.html?m=1>
Sixing Huang: <https://web.archive.org/web/20220904205331/https://dgg32.medium.com/carp-in-the-soil-1168818d2191>

(Accessed 2023-08-25)

348 high-level taxonomic ranks (e.g. Kingdom). nf-core/taxprofiler performs removal of
349 these reads through complexity filtering algorithms as provided by fastp, BBDuk
350 (Bushnell 2022), or PRINSEQ++ (Cantu, Sadural, and Edwards 2019). Long read
351 sequences often do not have such reads, as lengths are sufficient enough to capture
352 greater sequence diversity - but it is sometimes desirable to only classify reads longer
353 than a certain length - as these provide more precise taxonomic information (Dilthey
354 et al. 2019; Portik, Brown, and Pierce-Ward 2022). Therefore, nf-core/taxprofiler can
355 remove reads shorter than a user-defined length using Filtlong.

356 Removing host DNA is another common preprocessing step in metagenomic studies.
357 This can help speed up run-time, particularly in microbiome studies, where detection
358 of microbes are of interest. Furthermore, host-contamination of reference genomes in
359 public databases is common (Longo, O'Neill, and O'Neill 2011; Kryukov and Imanishi
360 2016; Florian P. Breitwieser et al. 2019). Therefore, the removal of such sequences can
361 help decrease the risk of false positive taxonomic assignment. To remove multiple
362 hosts or other sequences, all reference genomes can be combined into a single FASTA
363 reference file. Short read host removal can be carried out with Bowtie2 (Langmead
364 and Salzberg 2012; Langmead et al. 2019) and minimap2 (Li 2018) for long reads, both
365 in combination with SAMtools (Li et al. 2009; Danecek et al. 2021), where reads are
366 aligned against the reference genome and the off-target (unaligned) reads are then
367 converted back to FASTQ format for classification.

368 Finally, nf-core/taxprofiler can optionally perform ‘run merging’ where multiple
369 FASTQ files from the same sample but have been sequenced over multiple lanes are
370 concatenated together to generate one profile per sample or library. The final set of
371 reads used for profiling can be optionally saved for downstream re-use. Throughout
372 all steps, relevant statistics and log files are generated and used both for the final
373 pipeline run report as well as saved into the results directory of the pipeline run for
374 further inspection where necessary.

375 **10.1.3 Profiling**

376 There are many types of metagenomic profiling techniques, from profiling against
377 whole-genome references with alignment or k-mer based approaches, to methods in-
378 volving alignment to species-specific marker-gene families (Quince et al. 2017; Ye et
379 al. 2019). nf-core/taxprofiler aims to support and include all established classification
380 or profiling tools as requested by the community.

381 The choice of tools used in a pipeline run is up to the user, with a tool being executed
382 when both the corresponding database and --run_<tool> flag is provided. Specific
383 classification settings for each tool and database are specified in the database CSV
384 input sheet. Some tools also have pipeline level command-line flags for controlling
385 certain aspects of output files.

386 The following classifiers and profilers are supported in version 1.1.0 of nf-
387 core/taxprofiler: Kraken2 (Wood, Lu, and Langmead 2019), Bracken (Lu et al.
388 2017), KrakenUniq (F. P. Breitwieser, Baker, and Salzberg 2018), Centrifuge (Kim et
389 al. 2016), MALT (Vågene et al. 2018), DIAMOND (Buchfink, Reuter, and Drost 2021),

390 Kaiju (Menzel, Ng, and Krogh 2016), MetaPhlAn (Blanco-Miguel et al. 2023), mOTUs
391 (Ruscheweyh et al. 2022), ganon (Piro et al. 2020), KMCP (Shen et al. 2023).

392 By default, nf-core/taxprofiler produces the default per-sample taxonomic classifica-
393 tion profile output from a tool or a tool's report generation tool. The output is nor-
394 mally in the form of counts per reference sequencing, with additional statistics about
395 the hits of a particular organism (estimated sequence abundance, taxonomic level etc.).
396 Users can also optionally request output of per-read classification output and output
397 such as classified and unclassified reads in FASTQ format, where supported.

398 The pipeline provides high efficiency, particularly during the metagenomic classifica-
399 tion stage, through the inherent parallelisation provided by Nextflow. While metage-
400 nomic classification is comparatively computationally intensive (in terms of mem-
401 ory and execution time; due to a combination of sequencing depth and number of
402 reference genomes), Nextflow automatically optimises the execution order of all the
403 steps in pipeline, maximising the number parallel running of multiple profilers and/or
404 databases at any given time point, as far as the available computational resources al-
405 low. For local machines such as laptops or desktops, Nextflow will automatically
406 detect all available computational resources, but this is customisable using Nextflow
407 configuration files. For HPC and cloud infrastructure, users typically have to define
408 the computational infrastructural environment the pipeline is being executed on (CPU
409 or memory limitations, queues, instance types, etc.). To facilitate the pipeline computa-
410 tional configuration, nf-core/taxprofiler supports use of more than 90 pre-defined
411 centralised generic and pipeline-specific institutional Nextflow configurations as pro-
412 vided by nf-core/configs (<https://nf-co.re/configs>). However, of course users are still
413 welcome to supply their own custom configuration files as with any typical Nextflow
414 run, further refining computational limitations or execution specifications.

415 **10.1.4 Post-profiling**

416 In metagenomic studies, it is common practise to compare the profiles among many
417 samples, and the results of multiple profiles are normally stored in 'taxon tables', i.e,
418 counts per reference taxon (rows), for each sample (columns). When available, nf-
419 core/taxprofiler supports the option to produce the 'native' taxon table of each classi-
420 fication tool when multiple samples are run.

421 One of the challenges that researchers face when comparing multiple taxonomic clas-
422 sifiers or profilers is the heterogenous output formats that are produced, that often
423 require custom parsing and merging scripts for each tool to standardise. To facilitate
424 more user-friendly cross-comparisons between tools, nf-core/taxprofiler utilises the
425 TAXPASTA tool (Beber et al. 2023) to generate standardised profiles and generate
426 multi-sample tables.

427 Summary statistics for the entire pipeline are visualised and displayed in a customis-
428 able MultiQC report (Ewels et al. 2020). When supported, quality control of data and
429 pipeline runs are shown for manual verification. Krona plots (Ondov, Bergman, and
430 Phillippy 2011) can also optionally be generated for supported tools to help provide
431 further visualisation of taxonomic profiles.

432 **10.1.5 Output**

433 To summarise, the main default output from nf-core/taxprofiler are both classifier
434 ‘native’ and standardised single- and multi-sample taxonomic profiles with counts
435 per-taxon and an interactive MultiQC run report with all run statistics, in addition to
436 the raw log files themselves where available.

437 The MultiQC run report displays statistics and summary visualisations for all steps of
438 the pipeline where possible, lists of versions for all tools of each step of the pipeline.
439 It also provides a dynamically-constructed text for the recommended ‘methods’ for
440 reporting how the pipeline was executed (including relevant citations) that users can
441 use in their own publications.

442 Optional outputs can include other types of profiles (e.g. per read classification) and
443 in other formats as produced by the tools themselves, as well as raw reads from pre-
444 processing steps and output visualisations from Krona. Nextflow resource usage and
445 trace reports are also by default produced for users to check pipeline performance.

446 **10.2 Comparison with other solutions**

447 nf-core/taxprofiler has been specifically developed for the analysis of whole-genome,
448 *metagenomic* sequencing data. While other types of taxonomic profiling data such
449 as 16S amplicon sequencing are well established fields with a range of popular high-
450 quality and best-practise tools pipelines (e.g. Blanco-Míguez et al. 2023; Schloss et
451 al. 2009) and databases (DeSantis et al. 2006; Yilmaz et al. 2014), ‘gold standard’
452 tools and databases for metagenomics remain much less established. Thus, the need
453 for highly-multiplexed classification is more desirable for the newer metagenomics
454 methods.

455 We searched Google Scholar for open-source pipelines published or released in the last
456 5 years (at the time of writing, since 2018) that were designed primarily for metage-
457 nomic classification screening, that supported at least 2 classifiers, had at least one
458 preprocessing step and were not specifically targeted at read classification of spe-
459 cific domains of taxa (e.g. viruses or bacteriophages only). We also included an addi-
460 tional open-source but unpublished pipeline at the recommendations of the authors
461 of the pipeline due to the functional overlap to nf-core/taxprofiler. We then evalua-
462 ted the pipelines based on their publications and documentation for typical metage-
463 nomic profiling workflow steps. We used a range of criteria related to expectations of
464 modern bioinformatic workflows that can be summarised in the following four cate-
465 gories: reproducibility, accessibility, scalability, and portability (Wratten, Wilm, and
466 Göke 2021). After searching, we selected the following pipelines for comparison with
467 nf-core/taxprofiler that matched the specific criteria described above: sunbeam (v4,
468 Clarke et al. 2019), Unipro UGENE (v48, Rose et al. 2019), TAMA (githash: 3a22c8f,
469 Sim et al. 2020), and StaG-mwc (0.7.0, Boulund et al. 2023).

470 In terms of accessibility, all pipelines have documentation describing the installation
471 steps, usage instructions, and output files. However, there are varying levels of de-
472 tail and comprehensiveness. In particular, StaG-mwc and nf-core/taxprofiler have

473 the most detailed descriptions of all possible output files for every supported mod-
474 ule, whereas Unipro UGENE and sunbeam have very minimal to possibly unfinished
475 output documentation. For execution options, most of the pipelines provide CLI ex-
476 ecution, except for Unipro UGENE which offers only GUI-based pipeline set-up (de-
477 spite a command-line execution of the GUI generated configuration). In particular, nf-
478 core/taxprofiler is the only pipeline providing both CLI and GUI interfaces for pipeline
479 run execution.

480 Criteria covering portability also overlap with accessibility, as it implies options for
481 and ease of different users running on different types of computing infrastructure,
482 whether that is on their own laptop, on an HPC cluster, or in the cloud. Unipro UGENE
483 is the only pipeline that explicitly states support for execution on all three major op-
484 erating systems (Linux, OSX, Windows), whereas StaG-mwc and nf-core/taxprofiler
485 can be run on unix operating systems (albeit possibly on Windows via Windows Sub-
486 system for Linux (WSL)), and sunbeam and TAMA are only being supported on Linux.

487 While all pipelines support ‘local’ machine execution (e.g. personal laptops or desk-
488 tops), a large portion of academic users execute computationally intensive bioinfor-
489 matic tasks on HPC clusters. In these contexts, pipeline task submissions are normally
490 managed by job schedulers, thus integration with schedulers is an important criterion
491 for running large multi-step and parallelised pipelines. The three pipelines leveraging
492 workflow managers (Snakemake and Nextflow) support integration with schedulers
493 (StaG-mwc, sunbeam, and nf-core/taxprofiler) with nf-core/taxprofiler supporting the
494 most by far ([>10 scheduling systems](#)) as natively offered by Nextflow. This allows
495 the greatest possible choice for users in terms of which HPC infrastructure they can
496 execute their pipeline on. As an extension of this, only nf-core/taxprofiler has ex-
497 plicit support for cloud computing (e.g. AWS, GCP, or Microsoft Azure) as provided
498 by Nextflow, again maximising user choice and portability when it comes to running
499 the pipeline.

500 In terms of scalability, the aforementioned integration with schedulers and cloud com-
501 puting support implicitly maximises efficiency and parallelisation of pipeline runs,
502 providing good scalability for varying numbers of input files and steps in the pipeline.
503 Again, the three workflow manager based pipelines provide scalability, whereas there
504 is no mention neither Unipro UGENE nor TAMA in reference to parallel task execu-
505 tion. Furthermore, all pipelines except TAMA, allowed per-process customisation of
506 computational resources, something critical for maximising efficient scalability to en-
507 sure only the necessary resources for a given step of a pipeline are requested.

508 In terms of reproducibility, all five pipelines are good at ensuring reproducibility in
509 terms of pipeline and software versioning (allowing re-execution of pipeline runs us-
510 ing the same software), with only TAMA not having stable versioned releases. How-
511 ever, installing software manually across different infrastructures can result in vari-
512 ability in the execution of each software ² (Di Tommaso et al. 2017). The current most

²As demonstrated in this blogpost from Paweł Przytula: <https://web.archive.org/web/20230320223436/https://appslon.com/reproducible-research-when-your-results-cant-be-reproduced/> (Accessed 2023-08-25)

513 popular solution to the problem of inconsistent software environments is to use con-
514 tainer engines such as Docker or Apptainer to run container images which are iso-
515 lated, deterministic computing environments which can be executed by any system
516 providing a container runtime. Only Unipro UGENE does not document the use of a
517 container system, with nf-core/taxprofiler offering the biggest choice for users, again,
518 courtesy of Nextflow with 6 different engine systems at the time of writing.

519 Finally, we compared metagenomics related functionality between the pipelines. All
520 pipelines support short-read FASTQ input, but only nf-core/taxprofiler explicitly re-
521 ports long-read support, while the documentation in Unipro UGENE states that assem-
522 bled contigs are possible input to some of the profilers. All pipelines support read pre-
523 processing (adapter clipping, and merging). In terms of tools used for preprocessing,
524 Trimmomatic (Bolger, Lohse, and Usadel 2014) is popular across the other pipelines
525 but is not supported in nf-core/taxprofiler. Only sunbeam and nf-core/taxprofiler sup-
526 port complexity filtering to remove low sequence diversity reads. In fact within sun-
527 beam, the authors developed their own dedicated, performant complexity filtering
528 tool Komplexity (Clarke et al. 2019). Most pipelines support some form of host re-
529 moval (only TAMA did not support this), and it is likely possible with Unipro UGENE
530 (although not directly described). In all cases, host removal consists of mapping pro-
531 cessed reads with an aligner and using the off-target reads for downstream profiling
532 (as implemented in nf-core/taxprofiler), however StaG-mwc has an additional sepa-
533 rate metagenomic host removal step with Kraken2. nf-core/taxprofiler supports by
534 far the largest number of taxonomic classifiers and profilers at 11 as of v1.1.0 - pro-
535 viding the greatest choice to users - with StaG-mwc offering 7, and the remaining
536 pipelines only 3. Only nf-core/taxprofiler and partly StaG-mwc explicitly support run-
537 ning each profiler with multiple databases. nf-core/taxprofiler is the only pipeline that
538 supports running an arbitrary number of different metagenomic profiler databases
539 each with their own settings. This makes it a useful for tool parameter compari-
540 son, testing different databases, or reducing the size of each database (e.g. per do-
541 main) to make it more flexibility for running on smaller computational infrastructure.
542 StaG-mwc allows multiple references for their short-read alignment steps rather than
543 the metagenomic profilers. For output, nf-core/taxprofiler, StaG-mwc, and sunbeam
544 (via an extension) support a singular run report for summarising all preprocessing
545 step. Only nf-core/taxprofiler and TAMA produce standardised output for all taxo-
546 nomic profilers, the former with the dedicated standalone tool TAXPASTA (Beber et
547 al. 2023). However Unipro UGENE additionally offers a 'consensus' profile using
548 WEVOTE (Metwally et al. 2016).

549 To summarise, many of the pipelines reviewed here offer similar functionality, with
550 particularly StaG-mwc having a strong overlap with nf-core/taxprofiler. Thus, users
551 in most cases will be able to select the pipeline depending on which framework they
552 feel most comfortable with. However the advantages of nf-core/taxprofiler mainly
553 come from the offering of the greatest choice of tools, as well the particular benefits
554 provided by Nextflow. It provides the greatest number of computational infrastruc-
555 ture types the pipeline can be executed on, and container systems can be used to
556 ensure reproducibility, as well the support of the nf-core community due to the cen-
557 tralised pool of 'plug-and-play' modules to make it easier to update the pipeline over

558 time to add new tools classifiers.

559 The functionality offered by other pipelines not currently supported by nf-
560 core/taxprofiler include sequencing saturation estimation (StaG-mwc), taxonomy-
561 free composition comparison (StaG-mwc), functional profiling (StaG-mwc), *de novo*
562 assembly (sunbeam), and reference mapping (StaG-mwc, sunbeam). We do not
563 plan to support *de novo* assembly or functional profiling in nf-core/taxprofiler as
564 we feel these are already better served by other existing dedicated pipelines within
565 the nf-core ecosystem: nf-core/mag for *de novo* assembly, (Krakau et al. 2022)
566 and nf-core/funcscan for functional profiling (<https://nf-co.re/funcscan>), as well as
567 elsewhere e.g. MetaWRAP (Uritskiy, DiRuggiero, and Taylor 2018).

568 References

569 Andrews, Simon. 2010. "FastQC: A Quality Control Tool for High Throughput Se-
570 quence Data." <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

571 Beber, Moritz E, Maxime Borry, Sofia Stamouli, and James A Fellows Yates. 2023.
572 "TAXPASTA: TAXonomic Profile Aggregation and STAndardisation." *Journal of*
573 *Open Source Software* 8 (87): 5627. <https://doi.org/10.21105/joss.05627>.

574 Bengtsson-Palme, Johan, Martin Hartmann, Karl Martin Eriksson, Chandan Pal, Kaisa
575 Thorell, Dan Göran Joakim Larsson, and Rolf Henrik Nilsson. 2015. "METAXA2:
576 Improved Identification and Taxonomic Classification of Small and Large Subunit
577 rRNA in Metagenomic Data." *Molecular Ecology Resources* 15 (6): 1403–14. <https://doi.org/10.1111/1755-0998.12399>.

578 Blanco-Míguez, Aitor, Francesco Beghini, Fabio Cumbo, Lauren J McIver,
579 Kelsey N Thompson, Moreno Zolfo, Paolo Manghi, et al. 2023. "Extend-
580 ing and Improving Metagenomic Taxonomic Profiling with Uncharacter-
581 ized Species Using MetaPhlAn 4." *Nature Biotechnology*, February, 1–12.
582 <https://doi.org/10.1038/s41587-023-01688-w>.

583 Bolger, Anthony M, Marc Lohse, and Bjoern Usadel. 2014. "Trimmomatic: A Flexible
584 Trimmer for Illumina Sequence Data." *Bioinformatics (Oxford, England)* 30 (15):
585 2114–20. <https://doi.org/10.1093/bioinformatics/btu170>.

586 Boulund, Fredrik, Aron Arzoomand, Justine Debelius, chrsb, and Lisa Olsson. 2023.
587 "Ctmrbio/Stag-Mwc: Stag v0.7.0." Zenodo. <https://doi.org/10.5281/ZENODO.8032462>.

588 Breitwieser, F P, D N Baker, and S L Salzberg. 2018. "KrakenUniq: Confident and Fast
589 Metagenomics Classification Using Unique k-Mer Counts." *Genome Biology* 19 (1):
590 198. <https://doi.org/10.1186/s13059-018-1568-0>.

591 Breitwieser, Florian P, Jennifer Lu, and Steven L Salzberg. 2019. "A Review of Meth-
592 ods and Databases for Metagenomic Classification and Assembly." *Briefings in*
593 *Bioinformatics* 20 (4): 1125–36. <https://doi.org/10.1093/bib/bbx120>.

594 Breitwieser, Florian P, Mihaela Pertea, Aleksey Zimin, and Steven L Salzberg. 2019.
595 "Human Contamination in Bacterial Genomes Has Created Thousands of Spurious
596 Proteins." *Genome Research* 29 (May): 954–60. <https://doi.org/10.1101/gr.245373.118>.

597 Buchfink, Benjamin, Klaus Reuter, and Hajk-Georg Drost. 2021. "Sensitive Protein
598 Alignments at Tree-of-Life Scale Using DIAMOND." *Nature Methods* 18 (4): 366–
599 68. <https://doi.org/10.1038/s41592-021-01101-x>.

600 Bushnell, Brian. 2022. "BBMap." <https://sourceforge.net/projects/bbmap/>.

601 Cantu, Vito Adrian, Jeffrey Sadural, and Robert Edwards. 2019. "PRINSEQ++, a Multi-
602 Threaded Tool for Fast and Efficient Quality Control and Preprocessing of Se-
603 quencing Datasets." e27553v1. PeerJ Preprints; PeerJ Inc. <https://doi.org/10.7287/peerj.preprints.27553v1>.

604 Chen, Shifu, Yanqing Zhou, Yaru Chen, and Jia Gu. 2018. "Fastp: An Ultra-Fast All-
605 in-One FASTQ Preprocessor." *Bioinformatics* 34 (17): i884–90. <https://doi.org/10.1093/bioinformatics/bty560>.

606 Chiu, Charles Y, and Steven A Miller. 2019. "Clinical Metagenomics." *Nature Reviews.*
607 *Genetics* 20 (6): 341–55. <https://doi.org/10.1038/s41576-019-0113-7>.

613 Clarke, Erik L, Louis J Taylor, Chunyu Zhao, Andrew Connell, Jung-Jin Lee, Bryton
614 Fett, Frederic D Bushman, and Kyle Bittinger. 2019. “Sunbeam: An Extensible
615 Pipeline for Analyzing Metagenomic Sequencing Experiments.” *Microbiome* 7 (1):
616 46. <https://doi.org/10.1186/s40168-019-0658-x>.

617 Danecek, Petr, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew Whitwham, et al. 2021. “Twelve Years of SAMtools and
618 BCFtools.” *GigaScience* 10 (2). <https://doi.org/10.1093/gigascience/giab008>.

619 DeSantis, T Z, P Hugenholtz, N Larsen, M Rojas, E L Brodie, K Keller, T Huber, D
620 Dalevi, P Hu, and G L Andersen. 2006. “Greengenes, a Chimera-Checked 16S
621 rRNA Gene Database and Workbench Compatible with ARB.” *Applied and Environ-
622 mental Microbiology* 72 (7): 5069–72. <https://doi.org/10.1128/AEM.03006-05>.

623 Di Tommaso, Paolo, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio Palumbo, and Cedric Notredame. 2017. “Nextflow Enables Repro-
624 ducible Computational Workflows.” *Nature Biotechnology* 35 (4): 316–19.
625 <https://doi.org/10.1038/nbt.3820>.

626 Dilthey, Alexander T, Chirag Jain, Sergey Koren, and Adam M Phillippy. 2019. “Strain-
627 Level Metagenomic Assignment and Compositional Estimation for Long Reads
628 with MetaMaps.” *Nature Communications* 10 (1): 3066. <https://doi.org/10.1038/s41467-019-10934-2>.

629 Eloe-Fadrosh, Emiley A, Natalia N Ivanova, Tanja Woyke, and Nikos C Kyrpides. 2016.
630 “Metagenomics Uncovers Gaps in Amplicon-Based Detection of Microbial Diver-
631 sity.” *Nature Microbiology* 1 (4): 15032. <https://doi.org/10.1038/nmicrobiol.2015.32>.

632 Ewels, Philip A, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes
633 Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso, and Sven Nahnsen.
634 2020. “The Nf-Core Framework for Community-Curated Bioinformatics Pipelines.”
635 *Nature Biotechnology* 38 (3): 276–78. <https://doi.org/10.1038/s41587-020-0439-x>.

636 Govender, Kumeren N, and David W Eyre. 2022. “Benchmarking Taxonomic Classi-
637 fiers with Illumina and Nanopore Sequence Data for Clinical Metagenomic Diag-
638 nóstic Applications.” *Microbial Genomics* 8 (10): 000886. <https://doi.org/10.1099/mgen.0.000886>.

639 Grüning, Björn, Ryan Dale, Andreas Sjödin, Brad A Chapman, Jillian Rowe,
640 Christopher H Tomkins-Tinch, Renan Valieris, Johannes Köster, and Bio-
641 conda Team. 2018. “Bioconda: Sustainable and Comprehensive Soft-
642 ware Distribution for the Life Sciences.” *Nature Methods* 15 (7): 475–76.
643 <https://doi.org/10.1038/s41592-018-0046-7>.

644 Hillmann, Benjamin, Gabriel A Al-Ghalith, Robin R Shields-Cutler, Qiyun Zhu, Daryl
645 M Gohl, Kenneth B Beckman, Rob Knight, and Dan Knights. 2018. “Evaluating the
646 Information Content of Shallow Shotgun Metagenomics.” *mSystems* 3 (6). <https://doi.org/10.1128/mSystems.00069-18>.

647 Kim, Daehwan, Li Song, Florian P Breitwieser, and Steven L Salzberg. 2016. “Cen-
648 trifuge: Rapid and Sensitive Classification of Metagenomic Sequences.” *Genome
649 Research* 26 (12): 1721–29. <https://doi.org/10.1101/gr.210641.116>.

650 Krakau, Sabrina, Daniel Straub, Hadrien Gourlé, Gisela Gabernet, and Sven Nahnsen.
651 2022. “Nf-Core/Mag: A Best-Practice Pipeline for Metagenome Hybrid Assembly
652 and Binning.” *NAR Genomics and Bioinformatics* 4 (1). <https://doi.org/10.1093/>

659 nargab/lqac007.

660 Kryukov, Kirill, and Tadashi Imanishi. 2016. “Human Contamination in Public
661 Genome Assemblies.” *PloS One* 11 (9): e0162424. <https://doi.org/10.1371/journal.pone.0162424>.

662 Langmead, Ben, and Steven L Salzberg. 2012. “Fast Gapped-Read Alignment with
663 Bowtie 2.” *Nature Methods* 9 (4): 357–59. <https://doi.org/10.1038/nmeth.1923>.

664 Langmead, Ben, Christopher Wilks, Valentin Antonescu, and Rone Charles. 2019.
665 “Scaling Read Aligners to Hundreds of Threads on General-Purpose Processors.”
666 *Bioinformatics* 35 (3): 421–32. <https://doi.org/10.1093/bioinformatics/bty648>.

667 Li, Heng. 2018. “Minimap2: Pairwise Alignment for Nucleotide Sequences.” *Bioinformatics*
668 34 (18): 3094–3100. <https://doi.org/10.1093/bioinformatics/bty191>.

669 Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
670 Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Pro-
671 cessing Subgroup. 2009. “The Sequence Alignment/Map Format and SAMtools.”
672 *Bioinformatics* 25 (16): 2078–79. <https://doi.org/10.1093/bioinformatics/btp352>.

673 Longo, Mark S, Michael J O’Neill, and Rachel J O’Neill. 2011. “Abundant Human
674 DNA Contamination Identified in Non-Primate Genome Databases.” *PloS One* 6
675 (2): e16410. <https://doi.org/10.1371/journal.pone.0016410>.

676 Lu, Jennifer, Florian P Breitwieser, Peter Thielen, and Steven L Salzberg. 2017.
677 “Bracken: Estimating Species Abundance in Metagenomics Data.” *PeerJ*
678 *Computer Science* 3 (e104): e104. <https://doi.org/10.7717/peerj-cs.104>.

679 Lynch, Michael D J, and Josh D Neufeld. 2015. “Ecology and Exploration of the Rare
680 Biosphere.” *Nature Reviews. Microbiology* 13 (4): 217–29. <https://doi.org/10.1038/nrmicro3400>.

681 McIntyre, Alexa B R, Rachid Ounit, Ebrahim Afshinnekoo, Robert J Prill, Elizabeth
682 Hénaff, Noah Alexander, Samuel S Minot, et al. 2017. “Comprehensive Bench-
683 marking and Ensemble Approaches for Metagenomic Classifiers.” *Genome Biology*
684 18 (1): 182. <https://doi.org/10.1186/s13059-017-1299-7>.

685 Menzel, Peter, Kim Lee Ng, and Anders Krogh. 2016. “Fast and Sensitive Taxonomic
686 Classification for Metagenomics with Kaiju.” *Nature Communications* 7 (April):
687 11257. <https://doi.org/10.1038/ncomms11257>.

688 Metwally, Ahmed A, Yang Dai, Patricia W Finn, and David L Perkins. 2016. “WEVOTE:
689 Weighted VOTing Taxonomic idEntification Method of Microbial Sequences.” *PloS
690 One* 11 (9): e0163527. <https://doi.org/10.1371/journal.pone.0163527>.

691 Meyer, Fernando, Adrian Fritz, Zhi-Luo Deng, David Koslicki, Till Robin Lesker,
692 Alexey Gurevich, Gary Robertson, et al. 2022. “Critical Assessment of
693 Metagenome Interpretation: The Second Round of Challenges.” *Nature Methods*
694 19 (4): 429–40. <https://doi.org/10.1038/s41592-022-01431-4>.

695 Mitchell, Alex L, Alexandre Almeida, Martin Beracochea, Miguel Boland, Josephine
696 Burgin, Guy Cochrane, Michael R Crusoe, et al. 2019. “MGnify: The Microbiome
697 Analysis Resource in 2020.” *Nucleic Acids Research*, November. <https://doi.org/10.1093/nar/gkz1035>.

698 Mölder, Felix, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H
699 Tomkins-Tinch, Vanessa Sochat, Jan Forster, et al. 2021. “Sustainable Data Anal-
700 ysis with Snakemake.” *F1000Research* 10 (January): 33. <https://doi.org/10.12688/f1000research.29032.2>.

701

702

703

704

705 Morais, Diego A A, João V F Cavalcante, Shênia S Monteiro, Matheus A B Pasquali,
706 and Rodrigo J S Dalmolin. 2022. “MEDUSA: A Pipeline for Sensitive Taxonomic
707 Classification and Flexible Functional Annotation of Metagenomic Shotgun Se-
708 quences.” *Frontiers in Genetics* 13 (March): 814437. <https://doi.org/10.3389/fgene.2022.814437>.

710 Nasko, Daniel J, Sergey Koren, Adam M Phillippy, and Todd J Treangen. 2018. “Ref-
711 Seq Database Growth Influences the Accuracy of k-Mer-Based Lowest Common
712 Ancestor Species Identification.” *Genome Biology* 19 (1): 165. <https://doi.org/10.1186/s13059-018-1554-6>.

714 Nayfach, Stephen, and Katherine S Pollard. 2016. “Toward Accurate and Quantitative
715 Comparative Metagenomics.” *Cell* 166 (5): 1103–16. <https://doi.org/10.1016/j.cell.2016.08.007>.

717 Ondov, Brian D, Nicholas H Bergman, and Adam M Phillippy. 2011. “Interactive
718 Metagenomic Visualization in a Web Browser.” *BMC Bioinformatics* 12 (1): 385.
719 <https://doi.org/10.1186/1471-2105-12-385>.

720 Piro, Vitor C, Temesgen H Dadi, Enrico Seiler, Knut Reinert, and Bernhard Y Renard.
721 2020. “Ganon: Precise Metagenomics Classification Against Large and up-to-Date
722 Sets of Reference Sequences.” *Bioinformatics (Oxford, England)* 36 (Suppl_1): i12–
723 20. <https://doi.org/10.1093/bioinformatics/btaa458>.

724 Piro, Vitor C, Marcel Matschkowski, and Bernhard Y Renard. 2017. “MetaMeta: Inte-
725 grating Metagenome Analysis Tools to Improve Taxonomic Profiling.” *Microbiome*
726 5 (1): 101. <https://doi.org/10.1186/s40168-017-0318-y>.

727 Pochon, Zoé, Nora Bergfeldt, Emrah Kirdök, Mário Vicente, Thijessen Naidoo, Tom
728 van der Valk, N Ezgi Altınışık, et al. 2022. “aMeta: An Accurate and Memory-
729 Efficient Ancient Metagenomic Profiling Workflow.” *bioRxiv*. <https://doi.org/10.1101/2022.10.03.510579>.

731 Portik, Daniel M, C Titus Brown, and N Tessa Pierce-Ward. 2022. “Evaluation of
732 Taxonomic Classification and Profiling Methods for Long-Read Shotgun Metage-
733 nomic Sequencing Datasets.” *BMC Bioinformatics* 23 (1): 541. <https://doi.org/10.1186/s12859-022-05103-0>.

735 Quince, Christopher, Alan W Walker, Jared T Simpson, Nicholas J Loman, and Nicola
736 Segata. 2017. “Shotgun Metagenomics, from Sampling to Analysis.” *Nature
737 Biotechnology* 35 (9): 833–44. <https://doi.org/10.1038/nbt.3935>.

738 Rodriguez-R, Luis M, Santosh Gunturu, James M Tiedje, James R Cole, and Konstantinos
739 T Konstantinidis. 2018. “Nonpareil 3: Fast Estimation of Metagenomic Cov-
740 erage and Sequence Diversity.” *mSystems* 3 (3). <https://doi.org/10.1128/mSystems.00039-18>.

742 Rose, Rebecca, Olga Golosova, Dmitrii Sukhomlinov, Aleksey Tiunov, and Mattia
743 Prospieri. 2019. “Flexible Design of Multiple Metagenomics Classification
744 Pipelines with UGENE.” *Bioinformatics (Oxford, England)* 35 (11): 1963–65.
745 <https://doi.org/10.1093/bioinformatics/bty901>.

746 Ruscheweyh, Hans-Joachim, Alessio Milanese, Lucas Paoli, Nicolai Karcher,
747 Quentin Clayssen, Marisa Isabell Keller, Jakob Wirbel, et al. 2022. “Cultivation-
748 Independent Genomes Greatly Expand Taxonomic-Profiling Capabilities
749 of mOTUs Across Various Environments.” *Microbiome* 10 (1): 212. <https://doi.org/10.1186/s40168-022-01410-z>.

751 Schäffer, Alejandro A, Eric P Nawrocki, Yoon Choi, Paul A Kitts, Ilene Karsch-
752 Mizrachi, and Richard McVeigh. 2018. “VecScreen_plus_taxonomy: Imposing
753 a Tax(onomy) Increase on Vector Contamination Screening.” *Bioinformatics*
754 (*Oxford, England*) 34 (5): 755–59. <https://doi.org/10.1093/bioinformatics/btx669>.

755 Schloss, Patrick D, Sarah L Westcott, Thomas Ryabin, Justine R Hall, Martin Hart-
756 mann, Emily B Hollister, Ryan A Lesniewski, et al. 2009. “Introducing Mothur:
757 Open-Source, Platform-Independent, Community-Supported Software for De-
758 scribing and Comparing Microbial Communities.” *Applied and Environmental*
759 *Microbiology* 75 (23): 7537–41. <https://doi.org/10.1128/AEM.01541-09>.

760 Schmieder, Robert, and Robert Edwards. 2011. “Quality Control and Preprocessing
761 of Metagenomic Datasets.” *Bioinformatics (Oxford, England)* 27 (6): 863–64. <https://doi.org/10.1093/bioinformatics/btr026>.

763 Schubert, Mikkel, Stinus Lindgreen, and Ludovic Orlando. 2016. “AdapterRemoval v2:
764 Rapid Adapter Trimming, Identification, and Read Merging.” *BMC Research Notes*
765 9 (February): 88. <https://doi.org/10.1186/s13104-016-1900-2>.

766 Sczyrba, Alexander, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen,
767 Johannes Dröge, Ivan Gregor, et al. 2017. “Critical Assessment of Metagenome
768 Interpretation-a Benchmark of Metagenomics Software.” *Nature Methods* 14 (11):
769 1063–71. <https://doi.org/10.1038/nmeth.4458>.

770 Sena Brandine, Guilherme de, and Andrew D Smith. 2021. “Falco: High-Speed FastQC
771 Emulation for Quality Control of Sequencing Data.” *F1000Research* 8 (1874): 1874.
772 <https://doi.org/10.12688/f1000research.21142.2>.

773 Sharpton, Thomas J. 2014. “An Introduction to the Analysis of Shotgun Metagenomic
774 Data.” *Frontiers in Plant Science* 5 (June): 209. <https://doi.org/10.3389/fpls.2014.00209>.

776 Shen, Wei, Hongyan Xiang, Tianquan Huang, Hui Tang, Mingli Peng, Dachuan Cai,
777 Peng Hu, and Hong Ren. 2023. “KMCP: Accurate Metagenomic Profiling of Both
778 Prokaryotic and Viral Populations by Pseudo-Mapping.” *Bioinformatics* 39 (1):
779 btac845. <https://doi.org/10.1093/bioinformatics/btac845>.

780 Sim, Mikang, Jongin Lee, Daehwan Lee, Daehong Kwon, and Jaebum Kim. 2020.
781 “TAMA: Improved Metagenomic Sequence Classification Through Meta-Analysis.”
782 *BMC Bioinformatics* 21 (1): 185. <https://doi.org/10.1186/s12859-020-3533-7>.

783 Straub, Daniel, Nia Blackwell, Adrian Langarica-Fuentes, Alexander Peltzer, Sven
784 Nahnse, and Sara Kleindienst. 2020. “Interpretations of Environmental Micro-
785 bial Community Studies Are Biased by the Selected 16S rRNA (Gene) Amplicon
786 Sequencing Pipeline.” *Frontiers in Microbiology* 11 (October): 550420. <https://doi.org/10.3389/fmicb.2020.550420>.

788 Sun, Zheng, Shi Huang, Meng Zhang, Qiyun Zhu, Niina Haiminen, Anna Paola Car-
789 rrieri, Yoshiki Vázquez-Baeza, et al. 2021. “Challenges in Benchmarking Metage-
790 nomic Profilers.” *Nature Methods* 18 (6): 618–26. <https://doi.org/10.1038/s41592-021-01141-3>.

792 Titus Brown, C, and Luiz Irber. 2016. “Sourmash: A Library for MinHash Sketching
793 of DNA.” *Journal of Open Source Software* 1 (5): 27. <https://doi.org/10.21105/joss.00027>.

795 Uritskiy, Gherman V, Jocelyne DiRuggiero, and James Taylor. 2018. “MetaWRAP-a
796 Flexible Pipeline for Genome-Resolved Metagenomic Data Analysis.” *Microbiome*

797 6 (1): 158. <https://doi.org/10.1186/s40168-018-0541-1>.

798 Vågene, Åshild J, Alexander Herbig, Michael G Campana, Nelly M Robles García,
799 Christina Warinner, Susanna Sabin, Maria A Spyrou, et al. 2018. “Salmonella
800 Enterica Genomes from Victims of a Major Sixteenth-Century Epidemic in Mex-
801 ico.” *Nature Ecology & Evolution* 2 (3): 520–28. <https://doi.org/10.1038/s41559-017-0446-6>.

802 Veiga Leprevost, Felipe da, Björn A Grüning, Saulo Alves Aflitos, Hannes L
803 Röst, Julian Uszkoreit, Harald Barsnes, Marc Vaudel, et al. 2017. “Bio-
804 Containers: An Open-Source and Community-Driven Framework for Soft-
805 ware Standardization.” *Bioinformatics (Oxford, England)* 33 (16): 2580–82.
806 <https://doi.org/10.1093/bioinformatics/btx192>.

807 Wick, Ryan R, Louise M Judd, Claire L Gorrie, and Kathryn E Holt. 2017. “Completing
808 Bacterial Genome Assemblies with Multiplex MinION Sequencing.” *Microbial
809 Genomics* 3 (10): e000132. <https://doi.org/10.1099/mgen.0.000132>.

810 Wood, Derrick E, Jennifer Lu, and Ben Langmead. 2019. “Improved Metagenomic
811 Analysis with Kraken 2.” *Genome Biology* 20 (1): 257. <https://doi.org/10.1186/s13059-019-1891-0>.

812 Wratten, Laura, Andreas Wilm, and Jonathan Göke. 2021. “Reproducible, Scalable,
813 and Shareable Analysis Pipelines with Bioinformatics Workflow Managers.” *Nature
814 Methods* 18 (10): 1161–68. <https://doi.org/10.1038/s41592-021-01254-9>.

815 Wright, Robyn J, Andrè M Comeau, and Morgan G I Langille. 2023. “From Defaults to
816 Databases: Parameter and Database Choice Dramatically Impact the Performance
817 of Metagenomic Taxonomic Classification Tools.” *Microbial Genomics* 9 (3). <https://doi.org/10.1099/mgen.0.000949>.

818 Ye, Simon H, Katherine J Siddle, Daniel J Park, and Pardis C Sabeti. 2019. “Bench-
819 marking Metagenomics Tools for Taxonomic Classification.” *Cell* 178 (4): 779–94.
820 <https://doi.org/10.1016/j.cell.2019.07.010>.

821 Yilmaz, Pelin, Laura Wegener Parfrey, Pablo Yarza, Jan Gerken, Elmar Pruesse, Chris-
822 tian Quast, Timmy Schweer, Jörg Peplies, Wolfgang Ludwig, and Frank Oliver
823 Glöckner. 2014. “The SILVA and ‘All-Species Living Tree Project (LTP)’ Taxo-
824 nomic Frameworks.” *Nucleic Acids Research* 42 (Database issue): D643–8. <https://doi.org/10.1093/nar/gkt1209>.

825

826

827

828

— `shortread_qc_nolength` — 15

Specify the maximum length of `rescue` to be retained.

Specifying a minimum road length filtering can speed up profiling by reducing the number of short, unproductive roads that need to be manually assigned to the database.

ANSWER THE QUESTIONS

- measured from mouth —longest, rigid rect.
- **Accessory Seminal Vesicle** —our larvae

② --perform_shortened_completelyfilter

True False

Thermal nucleotide exchange complexity filtering

→ shapefile_pumpellyfilter_tool

Why we do not do away with money

3. —The final completed user entry

Finally, the modern approach may lead to a

File Edit View Insert Tools Help

- ↳ **Specifying file tags**
- ↳ **Specifying global options**
- ↳ **Preprocessing general QC options**
- ↳ **Preprocessing short-read QC options**
- ↳ **Preprocessing assembly and filtering options**
- ↳ **Preprocessing haplotype merging options**
- ↳ **Trimming options**
- ↳ **Preprocessing, recombination options**

