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Abstract

Aging is the greatest risk factor for breast cancer; however, how age-related cellular and
molecular events impact cancer initiation is unknown. We investigate how aging rewires
transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution,
yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit
epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated
genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of
senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets
(Gzmk®, memory CD4", yd) and M2-like macrophages expand with age. Spatial transcriptomics
reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional
signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic
links between aging and cancer. Together, these data uncover that epithelial, immune, and
stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged
microenvironment, and neoplasia risk.
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Main

Age is the greatest risk factor for breast cancer, with two thirds of cancers occurring in
women over 50*. Understanding the cellular and molecular changes occurring in mammary cells
during aging can reveal novel insights into the biology of aging-related cancer initiation. With
age, the mammary gland undergoes extensive dynamic remodeling at the cellular and
molecular level. Mammary tissues are composed of ducting-forming epithelial cells embedded in
a stromal compartment that contains fibroblasts, vascular and endothelial cells, immune cells,
and adipocytes. Two main epithelial cell types are of critical importance for mammary functions:
i) luminal epithelial cells which form the inner layer of mammary ducts and from which most
breast cancers originate?, and ii) myoepithelial/basal cells which surround the luminal layer and
act to limit epithelial cell dissemination®. Luminal cells are extremely sensitive to changes in their
microenvironment, and their transcriptional regulatory programs can be influenced by age-
related changes in myoepithelial cells*. Several studies also have reported changes in epithelial
cell proportions with age in mouse or human breast tissues, as well as decreased lineage
fidelity*°. While a number of studies have catalogued changes in epithelial cell populations
during mouse mammary gland development and pregnancy™**°, our knowledge of the other cell
types and their contributions in the mammary gland during aging remains limited®?°. In addition,
the underlying molecular drivers of these age-dependent changes in mammary epithelial,
stromal, and immune cell types are poorly understood.

Aging is associated with widespread alterations in epigenetic, transcriptional, and post-
transcriptional programs across multiple cell and tissue types®®*?. Among these, epigenetic
alterations are considered a hallmark of aging across species and determine gene activity>%.
Age-related epigenetic changes have been observed in many tissues in humans and mice,
including changes in chromatin accessibility with age in multiple tissues®*!. In mammary
tissues, single cell profiling of the chromatin landscape revealed distinct epithelial subtypes®>?°
in young adult mice; yet how aging impacts these chromatin accessibility profiles remains to be
characterized. In aged human luminal epithelial cells exhibit distinct methylation patterns that
impact genes involved in lineage fidelity and breast cancer susceptibility?’?®, supporting the
hypothesis that changes in chromatin accessibility are critical in aging. Finally, aging of the
microenvironment triggers DNA methylation and gene expression changes in human luminal
epithelial cells in vitro*, suggesting a complex role for epigenetic programs in mammary tissue
aging that remains to be thoroughly investigated.

Here, we leveraged single-cell RNA-sequencing (scRNA-seq) and single nucleus ATAC-
sequencing (SnATAC-seq) technologies to comprehensively study, for the first time, both gene
expression and chromatin accessibility programs during mammary gland aging in mice. We
utilized a mouse model as longitudinal and well-controlled studies that are not possible in
humans, mice exhibit age-dependent changes in epigenetics programs in other tissues®***, and
mouse and human mammary gland share structural and functional similarities; thereby making
the mouse an effective model both for aging and breast cancer biology®®>*. Our aging mammary
gland atlas captured epithelial, immune, and stromal cells at high resolution, enabling in-depth
subclustering analyses and detection of age-related changes (https://mga.jax.org/). We
uncovered cell compositional changes along with transcriptomic and epigenomic changes within
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mammary tissues with age. By integrating expression and chromatin accessibility data, we
provided mechanistic insights into the transcriptional programs regulating mammary glands
aging. With age, epithelial, immune, and stromal clusters exhibited decreased expression of cell
identity marker genes, suggesting decreased lineage fidelity and increased cell plasticity. We
also identified gene expression and chromatin accessibility changes in cancer-associated genes
and pathways, senescence marker genes, and markers of inflammation. Further, using spatial
transcriptomics we localized a subset of the age-related cell types identified in scRNAseq and
investigated predicted cell co-localization patterns. Finally, by integrating expression data from
human tumors, we identified age-related signatures of mammary cells that are found in human
breast tumors, suggesting these could be mechanistically linked with preneoplasia.

Results

Mammary glands undergo cell compositional changes with aging

To characterize the regulatory landscapes of aging mammary tissues, we isolated
mammary glands from co-housed young adult (3 month) and older (18 month) virgin female
C57BL/6J mice, which correspond to 20-30 year-old and >55 year-old humans®*. Mammary
tissues were dissociated using a two-step lysis protocol (See Methods) which includes a
shorter, gentle digestion to better preserve viable immune cells and a longer digestion to
recover epithelial and stromal cells. Gene expression and chromatin accessibility in viable,
dissociated single cells were then profiled using 10X chromium scRNA-seq (n=6 replicates per
age, where 3 mice are pooled per replicate) and matched snATAC-seq from half of the samples
(n=3 replicates per age, 3 mice pooled per replicate) (Fig. 1la-c and Supplementary Table
1la,b). Total cell and detected gene numbers were similar between samples from young and old
mice (Supplementary Fig. la,b and Supplementary Table 1a,b). Initial cell clustering of
scRNA-seq data® revealed three epithelial clusters (luminal AV; luminal HS; myoepithelial), five
immune cell clusters (naive T cells; memory T & natural killer (NK) cells; plasma cells; dendritic
cells (DCs) & macrophages; B cells), and three stromal cell clusters (fibroblasts; pericytes;
vascular) that are annotated using the expression of well-established marker genes®*®; we also
captured these cell clusters in snATAC-seq data (Fig. 1b,c, Supplementary Fig. 1c and 2, and
Supplementary Table 2a). Cell compositional analysis revealed consistent changes between
replicates in scRNA-seq and snATAC-seq data (Fig. 1d,e and Supplementary Fig. 1d and
Supplementary Table 2b,c). In epithelial cells (n=7,308), two luminal subtypes - alveolar (AV)
(n=2,843, expressing Csn3, Trf, Mfge8) and hormone sensing (HS) (n=1,494, expressing Esrl,
Citedl, Prlr) cells both significantly decreased in proportion with age, while cells expressing
myoepithelial markers (n=2,971, expressing Krtl7, Acta2, Myl9) increased with age (Fig. 1d,e
and Supplementary Fig. 1d). The decrease in luminal HS cells with age was consistent with a
recent mouse study®, and reminiscent of the age-dependent shift in cell identity from luminal to
myoepithelial-like cells in human breast*. For immune cells (n=36,100, expressing Ptprc), aged
animals had higher proportions of myeloid cells (n=3,485, expressing Itgax or Clga), plasma
cells (n=116, expressing Jchain), and memory T cells (n=6,684, expressing Cd3d and S100a4),
while numbers of naive T cells (n=13,771, expressing Cd3d and Sell) decreased significantly
(Fig. 1d,e and Supplementary Fig. 1d). A similar bias towards the myeloid lineage at the
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expense of lymphoid cells is also seen in the blood of aged mice?®*, and in bone marrow

samples from healthy human donors®. Finally, fibroblasts (n=3,130, expressing Fnl and
Collal) significantly increased with age in the mammary gland stroma (Fig. 1d,e and
Supplementary Fig. 1d). In summary, aging was associated with significant changes in cell
compositions within all three cell populations we captured in the mammary gland tissue, i.e.,
epithelial, immune, and stromal cells.

Aged epithelial cell subtypes display changes in gene expression and chromatin
landscapes in cancer-associated genes

In addition to the epithelial cell compositional changes, we also detected cell-intrinsic
gene expression and chromatin accessibility changes with age. We observed opposite
expression patterns across epithelial subtypes, with luminal cells displaying a bias towards
upregulated genes whereas myoepithelial cells exhibited more downregulated genes (Fig. 2a
and Supplementary Table 3a). Overall, 80%, 71%, and 82% of age-related differentially
expressed (DE) genes in luminal AV, HS, and myoepithelial cells respectively were cell-type
specific; however, 29 genes were shared across all three epithelial cell types, potentially
representing a general aging signature (Supplementary Fig. 3a and Supplementary Table
3b). These shared genes included downregulation of ribosomal proteins (e.g., Rplpl, Rpl5,
Rpl7a, Rpl26, Rpl36al, Rps6, Rpsl4, Rps23) and upregulation interferon gamma-related genes
(e.g., Ccl5, B2m, H2-D1, H2-K1, H2-Q6, H2-Q7, H2-T22, Ifi47, Statl, Psmb8) — reflecting two
common trends in aging®“°. Interestingly, aged luminal epithelial cells, and in particular AV and
HS cells, exhibited increased expression of genes with tumor suppressive activity** (Fig. 2b)
suggesting that aged mammary cells might activate tumor suppressor mechanisms to prevent
cancer. In addition, multiple cancer hallmarks gene sets from the Molecular Signatures
Database (MSigDB) were significantly differentially expressed with age across cell clusters:
epithelial-to-mesenchymal transition (EMT) signaling was upregulated in all epithelial cells and
largely downregulated in myoepithelial cells; mMTORC signaling was upregulated in luminal HS
and downregulated in luminal AV, HS, and myoepithelial cells; estrogen response was
upregulated in all cell types; p53 signaling was downregulated in all luminal and upregulated in
myoepithelial; whereas MYC target genes were upregulated in luminal AV and downregulated in
both luminal HS and myoepithelial. Finally, inflammatory response genes were upregulated in
luminal AV and myoepithelial cells, hypoxia was upregulated in luminal AV and myoepithelial
and downregulated in all three cell types, and TNF[ sighaling was downregulated in both
luminal cell types and upregulated myoepithelial cells (Supplementary Fig. 3b and
Supplementary Table 3c).

Along with gene expression changes, we also detected age-related changes in
chromatin accessibility including: 3,038 peaks opening and 1,500 closing with age in luminal AV
cells; 2,651 peaks opening and 4,256 closing in luminal HS; and 2,270 peaks opening and
2,371 closing in myoepithelial cells (Fig. 2c and Supplementary Table 3d). Most of these
chromatin accessibility changes were cell type specific, with only 260 genes with differentially
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accessible (DA) peaks shared across cell clusters (Supplementary Fig. 3c and
Supplementary Table 3e). Roughly 25% DA peaks were detected in promoter regions and
remaining peaks were detected within exons, introns, UTRs, and intergenic regions
(Supplementary Fig. 3d). Like gene expression changes, DA peaks were significantly
associated with MSigDB cancer hallmarks gene sets, including estrogen response (opening in
all epithelial cell types), hypoxia (opening in all epithelial cell types and closing in luminal HS),
inflammatory response (opening in luminal HS and myoepithelial cells), and TNF[1 signaling
(opening in all epithelial cell types) (Supplementary Fig. 3e and Supplementary Table 3f). To
define putative regulators of age-related transcriptional changes in each cell type, we conducted
ChromVar analyses® to infer transcription factor (TF) activity based on chromatin accessibility
levels associated with TF binding sites in young and old samples (Fig. 2d). Luminal AV cells
displayed increased activity of AP-1 factors (JUN, FOS) and NFkB family members (including
RELA/B) with age, which are involved in regulating pro-inflammatory responses. Whereas
luminal HS cells displayed increased activity of tumor suppressor TP53 and family members
and decreased activity of FOS and JUN with age (Fig. 2d and Supplementary Table 3g). In
addition to changes in TF activity, cells from aged animals also exhibited changes in TF
expression, with upregulation of Fos in luminal AV cells and decreased expression of JUN
family members in luminal HS (Supplementary Fig. 3f).

We identified the top DE genes with age per cluster (Fig. 2e and Supplementary Table
3a) and noted several genes associated with prior studies of normal gland function or breast
cancer including decreased expression of Fndc4 in luminal AV cells, which encodes an
extracellular matrix (ECM) protein associated with anti-inflammatory activity*® (Fig. 2f). Cells
from aged mice also exhibit closing of a DA peak in the promoter region of Fndc4, suggesting
regulation at the epigenetic level (Fig. 2f). Conversely, with age both the expression and
promoter accessibility of the Haptoglobin (Hp), a gene implicated in metabolic reprogramming
and breast cancer*, increase in luminal AV cells (Fig. 2g). In luminal HS cells, Pygl and
Epb41I3 are upregulated with age, accompanied by opening of a DA peak in their respective
promoter regions (Fig. 2h,i). Pygl encodes the glycogen phosphorylase L, an enzyme critical for
sugar metabolism*® and has been linked with metabolic control in normal and breast cancer
cells*®. Epb41I3 is a tumor suppressor, often found demethylated in breast tumors*’, and has
been shown to inhibit cell proliferation, promote apoptosis, and modulate the activity of protein
arginine N-methyltransferases*’. Furthermore, aged myoepithelial cells expressed more Flil
and Prxx1 and displayed opening of DA peaks in their respective promoter regions (Fig. 2j,k).
Expression of the TFs Flil and Prxx1 has been previously associated with breast cancer, with
the proto-oncogene Flil playing a role in cell proliferation®®, whereas Prxx1 acts as an activator
of EMT and promotes drug resistance via PTEN/PI3K/AKT signaling®*®*°. Furthermore, each of
the DA peaks in Fndc4, Hp, Pygl, Epb41I3, Flil, and Prxx1 also contain putative binding motifs*
for TFs with differential activity in old vs. young as reported above (Fig. 2d); these included
BACH2 and FOX family members in luminal AV, FOS and TFAP2 family members in luminal
HS, and IRF and LBX1 in myoepithelial cells (Fig. 2f-k). Finally, additional genes that exhibited
both age-related expression and chromatin accessibility changes and were previously
associated either with mammary gland function or with cancer initiation and progression include:
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i) Pdk4, a pyruvate dehydrogenase kinase 4 implicated in glucose metabolism®*°3; i) Rspol, a

Wnt signaling agonist important in stem cell regulation®®; iii) Alox12e, an arachidonate
lipoxygenase involved in lipid metabolism®; iv) Agtrla, an angiotensin Il receptor associated

with angiogenesis and cell proliferation®®*?; v) Stk32a, a serine-threonine kinase overexpressed

in breast tumors®®; vi) Rbms1, an RNA-binding protein that regulates PD-L1 expression ®*; vii)

Rgs4, a suppressor of breast cancer migration®*®; viii) Lgasl3bp, a glycoprotein associated with

poor prognosis®®; and ix) Brinp3, a gene involved in myoepithelial differentiation®®

(Supplementary Fig. 3g-i).

Several DE genes (n=69) in mouse luminal cells were also detected in a recent study of
aged human luminal epithelial cells in vitro®” (Supplementary Table 3h). Shared aging patterns
between human and mice include the upregulation of: i) Fkbp5, a regulator of AKT and NFkB
pathways, as well as of the androgen—receptor complex, and mostly known for being the target
of the drug Rapamycin®®; ii) stromal type IV collagen Col4a6, a protein that is often upregulated
in metastatic breast tumors®; iii) 1fi204, an interferon activated protein implicated in DNA repair
and STING-mediated type-I interferon production’; iv) Slk, a kinase involved in cell migration
downstream of Erbb2’*; and downregulation of v) epithelia-specific TF EIf5, a known marker of
luminal aging in humans’?; vi) Ntn4, a regulator of EMT in breast cancer’®; v) Tead2, a TF that
belongs to the family of nuclear effectors of the Hippo, TNF, and Wnt pathways .

Together these data suggest that aging had a profound effect on the epigenomic and
transcriptional programs of epithelial cells in the mammary gland tissue with conserved changes
between human and mouse cells.

Distinct epithelial subpopulations are associated with the expression of cancer-
associated genes and loss of cell identity markers with age

To further define the expression signatures of epithelial cells and deconvolute age-
related changes in cell populations, we performed unsupervised subclustering of the three
identified epithelial cell populations and uncovered three luminal HS (Epi-C1 to C3), four luminal
AV (Epi-C4 to C7), and four myoepithelial (Epi-C8 to C11) subclusters (Supplementary Fig. 4a,
Supplementary Table 3i). While these subclusters shared similar expression patterns, we also
detected subcluster specific expression patterns, potentially reflecting changes in cell states
(Supplementary Fig. 4b and Supplementary Table 3j). Subclusters Epi-C8, Epi-C6, and Epi-
C2 significantly expanded with age, while Epi-C1 significantly decreased with age
(Supplementary Fig. 4c-e).

In the luminal HS subclusters, cells from Epi-C1, which decreased with age, are defined
by the expression of the Rcanl tumor suppressor’> (Supplementary Fig. 4f,g). Cells from Epi-
C2, which significantly increased with age, expressed Fxyd2, a ductal-cell subcluster marker
gene’®, and Tph1, both of which are implicated in mammary gland biology including mammary
expansion and milk production” (Supplementary Fig. 4f,g). Furthermore, Epi-C2 expressed
Fama3c, a molecule that belongs to family of cytokines mainly expressed in highly proliferative
tissue, and that play a core role in the activation of ERK1/2 and p38MAPK signaling. Increased
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expression of FAM3C, also known as Interleukin-like EMT inducer (ILEI), has been observed in
different cancers including breast cancer and this gene has been suggested to play roles in
tumorigenesis, metastasis, and poor cancer survival’”"® (Supplementary Fig. 4f). Finally, cells
from a small subcluster Epi-C3 (n=97), which trend toward a decrease with age, expressed
marker genes of luminal HS, luminal AV, and progenitor cells, reminiscent of a recently
proposed luminal HS-AV cluster®® (Supplementary Fig. 4f,g).

Among the luminal AV subclusters, both Epi-C4 and Epi-C5 more highly expressed
Hey1, a downstream effector of Notch signaling, and Thioredoxin (Txnip), a tumor suppressor®
(Supplementary Fig. 4f). Epi-C4 trended towards depletion in older animals and expressed
increased levels of luminal AV marker genes (e.g., Csn3, Mfge8, Cst3, and Igfbp5) compared to
Epi-C5-C7 (Supplementary Fig. 4f,h); possibly suggesting a partial loss of cell identity with
age. Epi-C6, significantly enriched with age, expressed lipoxygenase genes, Alox15 and
Alox12e, thought to regulate inflammation®*®%? and Palmd, a target of p53 and regulator of
apoptosis®® (Supplementary Fig. 4f,h). Cells from both Epi-C5 and Epi-C6 expressed Rspol, a
regulator of the canonical Wnt/B-catenin-dependent pathway and non-canonical Wnt signaling,
which promotes stem cell self-renewal®. Finally, Epi-C7 expressed several cycling markers
(e.g., Mki67, Cdk1, Stmn1), like cells described during mammary gland development'®. Though
Epi-C7 did not significantly increase with age, it represented a small subcluster (n=108) and
showed a trend towards expansion in multiple replicates (Supplementary Fig. 4f,h).

In the myoepithelial subclusters, cells from Epi-C8 which were significantly more
abundant in older animals, exhibited decreased expression of Krtl7 and Krt5 compared to
other clusters (Supplementary Fig. 4i), suggesting a loss of cell identity markers with age.
Further, cells from Epi-C9, which did not change with age but decreased in proportion to other
cell types in older animals, expressed subcluster-specific marker genes (e.g.,Tagln, Postn, and
Actg?2), as well myoepithelial markers genes (e.g., Krtl7 and Krt5) (Supplementary Fig. 4i,j).
Finally, Epi-C11 expressed a strong inflammatory and interferon gamma signature (e.g., Ccl2,
Cxcl10, Irgml, Statl) (Supplementary Fig. 4i); however, Epi-C11 cells originated mostly from
one replicate (Supplementary Table 3i), and therefore this proinflammatory population should
be further investigated.

Finally, we also conducted differential expression analyses within subclusters with >100
cells per age to detect age-related DE genes, revealing aging- or cancer-associated genes
changing with age in epithelial subclusters (Supplementary Fig. 4e, 4k and Supplementary
Table 3k). For example, increased expression of Igfals, which encodes a serum protein that
binds insulin-like growth factors, is detected in Epi-C1 cells. Conversely decreased expression
of TF Sox9 is detected in Epi-C1, but also in Epi-C2. Sox9 is a master regulator of cell fate in
breast cancer, and is frequently upregulated during breast cancer progression®. Another
downregulated target with age in Epi-C2 is Arid5b, a TF linked with oncogenic signaling and
MYC activation in T-cell acute lymphoblastic leukemia®. Other examples of age-induced
expression changes include: upregulation of Pdk4 in Epi-C4; in Epi-C5 upregulation of Rbm3,
an RNA binding protein upregulated in ER+ breast tumors®’; in Epi-C8 upregulation of Tspan8
which has been shown to promote the expression of stem cell markers and pluripotency
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transcription factors SOX2, OCT4, and NANOG in breast cancer cells, and lead to tumor
formation in model systems®. Finally, Sfrp2 which is upregulated with age in Epi-C8 and Epi-
C9, encodes a secreted protein that plays a role in canonical and non-canonical Wnt signaling
and is upregulated in serum of breast cancer patients®%.

In summary, age-related changes at the cluster and subcluster level suggest that with
age, murine mammary gland epithelial cells display changes in cell proportions, chromatin
accessibility and gene expression of age-related and cancer-related genes.

Fibroblasts increase in numbers with age and express ECM protein genes and
senescence markers

In the stroma, fibroblasts (n=2,981), pericytes (n=226), and vascular (n=625) cells
showed both age-related gene expression and chromatin accessibility changes (Fig. 3a,b and
Supplementary Table 4a,c). At the gene expression level, fibroblasts displayed the greatest
number of DE genes (160 upregulated, 264 downregulated) compared to vascular cells (11
upregulated, 35 downregulated) and pericytes (no DE genes) (Fig. 3a and Supplementary
Table 4a). At the chromatin level, 3,007 DA peaks opening and 3,292 closing with age were
detected in fibroblasts, 1,095 opening and 1,701 closing in vascular cells, as well as 945
opening and 1,359 closing in pericytes (Fig. 3b and Supplementary Table 4c). We further
focused our analysis on mammary fibroblasts due to their robust changes with age (cell
composition, gene expression, and chromatin accessibility) and their critical role in the
development and maintenance of the mammary gland- including extracellular matrix (ECM)
deposition and remodeling, paracrine signals, and interactions with epithelial cells®*%. Gene set
enrichment analysis of DE genes in fibroblasts revealed an increased expression of genes
related to TNFa signaling (including Fos and Jun family members) and senescence-associated
secretory proteins (notably Cdknla and Cdkn2a), and a decrease in EMT-related genes
(including several collagens) and translation-related genes, a known hallmark of aging®
(Supplementary Fig. 5a and Supplementary Table 4b). At the chromatin level, roughly 20% of
DA peaks were found in promoter regions (Supplementary Fig. 5¢). ChromVar analyses
suggested a significant decrease of activity of fibrosis and EMT-related factors Twistl, Tcfl2
and Nfya with age, along with increased activity of Hand2°**® (Supplementary Fig. 5d and
Supplementary Table 4e). Genes associated with opening DA peaks were enriched in TNFa
signaling, pro-inflammatory, and breast cancer related gene sets (Supplementary Fig. 5b and
Supplementary Table 4d), similar to pathways describe in age-related fibroblast DE genes.

Examples genes that go through concordant transcriptional and epigenetic changes with

age in mammary fibroblasts include (Supplementary Fig. 5e): i) activation of Etsl, a TF that

may contribute to senescent phenotypes and tumor invasiveness®; ii) inactivation of Ace, an

angiotensin I-converting enzyme gene; iii) activation of Ptges, which encodes a key enzyme in
prostaglandin E2 expression. Cancer-associated fibroblasts have been shown to produce
prostaglandin E2%, and upregulation of PTEGS has been linked with hormone-dependent
breast cancer growth by impacting estrogen feedback mechanisms'®; iv) Enpp5, a
transmembrane protein involved in nucleotide metabolism, is upregulated with age and exhibits

peak opening in its promoter, and is also overexpressed in triple negative breast cancer'.
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Finally, while adipocytes were largely excluded in our 10X approach due to the lysis protocol,
adipocyte bouyancy, and size constraints of cell sorting, we detected expression changes in
adipose-related genes. For example, we detected an upregulation of fatty acid binding protein 4,
Fapb4, with age and concordant age-related peak opening at the chromatin level (Fig. 3c).
Fapb4, is critical for fatty acid transport and has been shown to promote breast tumorigenesis
and metastasis'®. These examples illustrated how age-related changes in epigenetics and
transcriptomic programs impact the expression of cancer-related genes in the stroma, some of
which may play a role in shaping the aged micro-environment.

To further dissect the expression patterns of senescence- and cancer-related genes in
fibroblasts, we performed subclustering of the fibroblasts, pericytes, and vascular cells to better
resolve the stromal populations and identified eleven subclusters (Fib-CO to C11)
(Supplementary Fig. 5f-h, and Supplementary Table 4f,4g). Among the eleven stromal
subclusters, Fib-CO to C5 expressed fibroblast marker genes (e.g., Collal+, Pdgfra+) (Fig.
3d,e), and could be further subclassified into two classes of universal fibroblasts: Coll5al+
fibroblasts that secrete basement membrane proteins (Fib-CO to C3) and Pil6+ fibroblasts that
may develop into specialized fibroblasts'® (Fib-C4) (Fig. 3e and Supplementary Fig. 5i).
These correspond to ECM-remodeling (Fib-CO and Fib-C1), high adipogenic capacity (Fib-C2),
adipo-regulatory (Fib-C3), or Dpp4+ fibroblasts (Fib-C4) clusters as described in younger
animals'®. While the expression of pericyte and fibroblast markers by Fib-C5 (e.g., Rgs5+,
Des+) was suggestive of a doublet cluster, these cells specifically expressed inflammatory and
contractile markers as well as markers of fibroblastic reticular cells (Ccl19+) and potential
mesenchymal stromal and osteolineage cells (Cxcl12+)'%, potentially suggesting a specialized
identity (Fig. 3e and Supplementary Fig. 5i). Subclustering analysis revealed that Fib-C2, Fib-
CO0, and Fib-C4 showed the greatest statistically significant increases in number with age (Fig.
3f and Supplementary Fig. 5f), with the most striking ~6-fold increase in Fib-C2 (Fig. 3f).
Interestingly, compared to other clusters, Fib-C2 expressed a different repertoire of ECM
proteins, including a reduced expression of fibronectin Fnl, a classical marker of fibroblast, and
an increased expression of several collagens including Col6a3, Col5a3, Col4al, and Col4a2
(Fig. 3e,g and Supplementary Fig. 5h). This suggested a shift towards loss of cell identity or
change in cell plasticity in Fib-C2 with age compared to the other fibroblast subclusters,
especially Fib-C4 which expressed Fnl at high levels (Fig. 3e,g and Supplementary Fig. 5h).
Fib-C2 expressed several genes related to lipid metabolism suggesting an adipogenesis
commitment'® (e.g., Lpl, Fabp4, and Pparg) as well as Fap, a well-established marker gene for
cancer-associated fibroblasts'®*% (Fig. 3e,h), but lacked adipocyte marker genes (e.g., Adipoq
and Plinl). Furthermore, scRNA-seq also revealed that old mammary glands have more stromal
cells expressing well-defined senescence markers Cdkn2a (encoding p21) and Cdknla
(encoding p16) compared to younger tissues (Fig. 3i,j, Supplementary Fig. 5 and
Supplementary Table 4a). Cdkn2a was primarily expressed by Fib-CO which expanded with
age, whereas Cdknla was more universally expressed (Fig. 3i).

Finally, we performed differential gene expression analysis on fibroblast subclusters with
>100 cells per age and identified age-related differences in cancer- or aging-associated genes
in Fib-CO, Fib-C2, Fib-C3, and Fib-C4 (Fig. 3k). For example, expression of senescence
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markers Cdknla increased in older cells in Fib-C2 and Fib-CO, while expression of pleiotrophin
Ptn, a secretory growth factor decreased (Fig. 3k). Pleiotrophin promotes the expression of
vascular endothelial growth factor VEGF and angiogenesis and has been associated with breast
cancer progression'® % Aged cells from Fib-C4 downregulated five out of the ten genes
(Gpx3, Sponl, Plac8, Ctsh, Col3al) recently implicated in estrogen response of Dpp4"
fibroblasts'®, suggesting a decline with age in responsiveness to this hormone
(Supplementary Table 4e). Fib-C4 also exhibited upregulated levels of Ntn4, a protein
associated with breast cancer cell migration and invasion via regulation of EMT-related genes’
(Fig. 3k). Finally, with age Fib-C3 decreased expression of Meg3, a long noncoding RNA
(IncRNA) implicated as a tumor suppressor gene in several human cancer types, including in
breast cancer where it activates ER stress, NF-kB and p53 pathways'® (Fig. 3k).

Overall, our data suggested that transcriptomic and epigenomic profiles of stromal cells
are remodeled during mammary gland aging, with increased fibroblasts populations expressing
distinct sets of ECM matrix proteins as well as increased senescence markers and changed
expression of fibroblast marker genes.

Memory CD4" and GZMK-expressing T cell subsets significantly expand with age

To investigate age-related changes of immune cells in the mammary gland, we analyzed
lymphoid cells that displayed significant cell compositional changes with age, i.e., T and NK
cells (Fig. 1). Further clustering uncovered ten subclusters among T and NK cells (n=20,455
cells), corresponding to distinct populations of naive (“Ccr7”) and memory (“S100a4”) CD4" and
CD8" T cell subsets, yd & MAIT cells (“Trdc”, “Zbtb16), as well NK cells (“Ncrl”) (Fig. 4a,b and
Supplementary Fig. 6a,b and Supplementary Tables 5a-e). As expected, we observed a
significant decline in naive CD4" and CD8" T cell percentages with age (Fig. 4a)'™°. In contrast,
Gzmk™ T cells, memory CD4, yd & MAIT cells, and NK cells expanded significantly with age
(Fig. 4a). Gzmk® T cells'™ encompassed both CD8* and CD4" T cells and were found to be
significantly expanded by ~30-fold with age (Fig. 4a, Supplementary Fig. 6¢, Supplementary
Table 5b). Gzmk™ T cells were characterized by the expression of Tox, Eomes, Pdcdl, and
Lag3, which is in line with an exhaustion phenotype (Supplementary Fig 6a,d). The memory
CD4" T cells, which included regulatory T cells (Tregs; expression of Foxp3 and Il2ra, Ctla4)
significantly expanded ~1.8-fold with age (Fig. 4b and Supplementary Fig. 6e Supplementary
Table 5f). A fraction of Tregs exhibited Itgae (Cd103), which mediates cell migration and
lymphocyte homing through interaction with epithelial cells, suggesting a tissue resident
phenotype (Supplementary Fig. 6a,f).

Epigenomic analyses of T and NK cells recapitulated the immune subsets and cell
compositional changes revealed by scRNA-seq data (Fig. 4c¢). We detected a significant ~30-
fold expansion of Gzmk™ T cells with age in ATAC-seq data, whereas naive T cell subsets
significantly declined with age (Fig. 4c). Chromatin around the cell-type specific marker genes
were more accessible in the relevant cell types (Fig. 4d), confirming our cell-type annotations.
For example, the promoter of the Gzmk gene was the most accessible in Gzmk™ T cells,
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whereas Gzmm promoter was the most accessible in Gzmm® CD8" T cells. The promoters of
Pdcdl and Ctla4 were highly accessible in Gzmk™ T and memory CD4" subsets (Fig. 4d). The
loci around Ccl5 and T-Box TF Eomes were highly accessible in Gzmk™ T cells and Gzmm”
CD8" T cells (Fig. 4d).

To further describe epigenetic programs of these immune subsets, we conducted
ChromVar analyses, which revealed that cytotoxic cells including age-associated Gzmk™ T cells
had increased activity for several T-Box TFs, including EOMES, TBX1-6 (Supplementary Fig.
69, Supplementary Table 5h). Eomes was also significantly expressed in these cells, thereby
supporting the previous observations in spleen''! regarding its role as a potential transcriptional
regulator of Gzmk™ T cells expressing an exhausted signature. Interestingly, AP-1 complex
members, particularly members of JUN and FOS family, were enriched in the memory CD4"
population that also significantly expanded with age, similar to findings from Tabula Senis®
(Supplementary Fig. 6g). JUN/FOS TFs are important for regulating inflammatory responses
and have been associated with aging and cancer in previous studies, and open chromatin
regions of exhausted T cells have been shown to contain AP-1 binding motifs™***,

Overall, our data show an age-associated increase of a distinct Gzmk™ T cell subset
exhibiting an exhaustion signature, as well as memory CD4" T cells, including potentially tissue
resident Tregs.

Age-related changes in gene expression programs of memory T cells

The analysis of cell-intrinsic age-related transcriptional changes within T and NK cells
(old vs. young cells) revealed three memory T cell subclusters (Gzmm* CD8", Gzmk™ cells, and
memory CD4" subsets) that exhibited the most age-related changes, with 419, 365, and 182 DE
genes with age, respectively (Supplementary Fig. 6h and Supplementary Table 5f).
Annotation of these DE genes using immune modules™ and WikiPathways revealed that
molecules associated with cytotoxicity (Gzmk, Gzmb, Prfl) are upregulated with age in Gzmk™ T
cells and CD8" Gzmm® T cells (Supplementary Fig. 6i and Supplementary Table 5j). This
suggested that in addition to the increase in abundance of cytotoxic cells, their level of
cytotoxicity also changed with age. In addition, pro-inflammatory alarmins, S100a4 and S100a6
molecules, were also upregulated with age in all three cell subclusters (Fig. 4e-g), and display
open chromatin regions around these genes (Fig. 4f,g). Our results showed a shift from a naive
(in young cells) to a more effector cell state (in old mice), suggesting an age-associated cell
state change (Fig. 4e). In all three subclusters, Ccl5 was significantly upregulated with age,
suggesting that with age these cells switch to a more inflammatory and migratory states
(Supplementary Fig. 6j). We also observed that checkpoint inhibitors are upregulated with age
in Gzmk®™ and memory CD4" populations (Fig. 4h, Supplementary Figure 6j). Finally,
downregulation of the protein synthesis machinery, including ribosomal genes, with age is one
of the conserved hallmarks of aging across many tissues®, and is also observed across multiple
immune cell populations in mammary tissues, notably in memory CD4* and Gzmm* CD8" cells
(Supplementary Table 5k). Cell scoring for senescence-associated genes (SenMayo
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signature''®), revealed an age-associated increase of senescence within CD8" Isg15*, Gzmk™ T,

and memory CD4" T cells (Supplementary Fig. 6i).

These differential results establish that, in addition to age-related cell-compositional
changes, there were also cell-intrinsic gene expression changes associated within each subset,
particularly in memory T cell subclusters. With age, these T cell subsets became fully
differentiated, expressed senescence-associated genes, and upregulated check-point inhibitors.

MAIT and yo T cells significantly expand with age and express tissue homing molecule
ltgae

Along with MAIT cells, we also detected ‘unconventional’ yd T cells™’**® which

expressed TCR delta receptor Trdc, gamma variable Trgv2, and pro-inflammatory cytokine ll17a
(Fig. 4a,b and Supplementary Fig. 6k). These cells play a role in cancer cell surveillance in the
tissue and have been linked to favorable prognosis in solid human tumors'®. In mammary
tissues yO T & MAIT cells significantly expanded by ~3-fold with age (Fig. 4a), similar to what
was observed in aged lung and liver tissues™!. These cells also highly expressed ltgae. We
detected 148 DE genes with age in yd T & MAIT cells (Supplementary Table 5f), including the
upregulation of Ccl5 and chemokine receptor Cxcr3 - key immune chemoattractant during
inflammatory responses-, as well as increased expression of Itgae and Tnf (Fig. 4a,e). Another
molecule that was upregulated with age in yd T & MAIT cells was Jagl (Fig. 4e,i), which
encodes the Jagged-1 protein that interacts with Notch proteins and is required to initiate Notch
signaling, a critical mediator of cell differentiation, proliferation, and survival. Further, ChromVar
analyses revealed ydT & MAIT cells had significant TF activity for tumor-suppressor TP53 as
well as RAR-related orphan receptors (RORS).

Together these data showed that with age, y0T &MAIT cells expanded with age and
upregulated Itgae along with proinflammatory programs.

Myeloid cell subsets expand with age

Further clustering of myeloid cells (n=3,407) revealed seven major subclusters (Mye-C1
to C7) captured by both scRNA-seq and snATAC-seq (Fig. 5a,c). These subclusters expressed
marker genes for monocytes (e.g., S100a8, S100a9), M1-like macrophages (e.g., Cd86, Cd38),
M2-like macrophages (e.g., Cd163, Mrcl), and conventional dendritic cells (DC) including
markers for conventional Type 1 Dendritic Cells (cDC1) (e.g., Clec9a, Xcrl), and mature DCs
enriched in immunoregulatory molecules' (mregDCs) (e.g., Ccr7, Fscnl)'® (Fig. 5b,d and
Supplementary Fig. 6a and Supplementary Tables 6a-e).

Cell compositional analysis of myeloid subclusters showed that Mye-C3, Mye-C5, Mye-
C1, and Mye-C6 significantly increased in proportion with age (Fig. 5a,c). Mye-C3 significantly
expanded by ~4-fold with age (Fig. 5a,c) and expressed markers associated with M2
macrophages including receptors Mrcl (aka Cd206) and Cd163'2''?® (Fig. 5b,e and
Supplementary Fig. 7a). M2 macrophages mediate tissue repair, resolve of inflammation, and
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share similarities with tumor-associated macrophages*?**?*. The top DE genes for this cluster
included chemokines Ccl7 and Ccl8, suggesting their ability to recruit other immune cells
including memory T cells to the tissue (Fig. 5f). This finding is consistent with age-related
increases in human breast, particularly in the intralobular stroma'*. On the other hand, Mye-C2
did not significantly change with age and expressed pro-inflammatory M1 macrophage marker
genes including matrix metalloproteinases Mmpl1l2 and Mmpl3 that regulate inflammatory
responses'®®, as well as surface receptor Cd86 that provides costimulatory signals for T cell
activation'?® (Fig. 5e,f). Another myeloid cluster that significantly expanded by ~2.5-fold with
age is Mye-C5, which expressed interferon stimulated genes (ISGs), including Ifitm3 and
Ifi2712a, (Fig. 5a,c,f and Supplementary Fig. 7b). Mye-C5 also highly expressed Cebpb (Fig.
5f and Supplementary Table 6c¢), a TF that regulates the expression of genes involved in
immune and inflammatory responses including IL-1 and IL-6. ChromVar analyses showed
increased variation in CEBP binding sites in cluster Mye-C5 (Fig. 5g and Supplementary Table
6e), in alignment with the gene expression signatures. While not changing with age, cluster
Mye-C4 co-expressed immuno-regulatory genes (e.g., Cd274) and maturation genes (e.g.,
Ccr7, Cd40) (Fig. 5b and Supplementary Fig. 7a). These markers genes are consistent with a
recently described mregDC population in lung tissue in both mice and human'®. As previously
reported*?°, cluster Mye-C4 also highly and specifically expressed Fscnl, a gene involved in cell
migration and cellular interactions (Fig. 5b,e). Overall, age-related transcriptional changes in
myeloid cells were restricted to a few molecules (Supplementary Table 6f), suggesting that
there are more cell compositional changes with age than cell intrinsic changes. Further, the
increases in M2-like cells that are anti-inflammatory and linked with tumor progression suggest
a potentially interesting link between aging of immune cells and breast cancer risk.

Spatial investigation of cell-cell interactions in aged mammary gland

We generated spatial transcriptomic (ST) data using the 10X Visium platform on two
mammary glands from aged 18-month-old mice (ST1 and ST2) to spatially investigate age-
related cell types and co-occurrence of epithelial, immune and fibroblast cells in situ. Using the
expression of marker genes, we identified six ST clusters: one epithelial-enriched ST cluster,
one immune-enriched ST cluster, and four stromal-enriched ST clusters (Fig. 6a,b and
Supplementary Fig. 8a,b). By histopathology, the mammary gland can be divided into regions
with adipose tissue, connective tissue, epithelial-rich regions, and lymph nodes. Encouragingly,
the ST annotations largely matched with the tissue annotation from H&E staining: immune-
enriched spots corresponded to the lymph node region (Immune), whereas epithelial-enriched
spots matched with the location of mammary ducts (Epithelial). The cell types captured in ST
largely resembled the cell types identified in our single cell data. In addition, ST data allowed us
to capture adipocytes, which were largely lost during tissue dissociation in scRNA-seq and
SNATAC-seq. Of the four stromal ST clusters, stromal ST cluster 2 (Stroma2) was enriched in
fibroblast marker genes, stromal ST cluster 3 (Stroma3) expressed hemoglobin-related and
vascular genes, stromal ST cluster 4 (Stroma4d) expressed genes related to metabolism
including fatty acid biosynthesis (e.g., Acaca and Fasn), and finally stromal ST cluster 1
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(Stromal) did not express identifiable top genes compared to other clusters, potentially
reflecting large gene-deplete adipocytes (Fig. 6b, Supplementary Fig 8b).

We then leveraged the ST data to determine whether the age-related T cell populations
from scRNA-seq and snATAC-seq could be found in situ in proximity to mammary ducts and
lobules. To determine the spatial localization of Gzmk® cells, we identified ST spots that
expressed both T cell markers (Cd3d, Cd3e, Cd3g, Cd247, Cd8a, or Cd8bl) and Gzmk or
Pdcdl. As expected, most of the positive spots were immune-enriched in the lymph node
(Supplementary Fig. 8c); however, after excluding the lymph node region, multiple positive ST
spots were found within the adipose and ductal regions, with most being Epithelial spots in both
samples (Fig. 6¢ and Supplementary Fig. 8c). Similarly, to determine the spatial localization of
yO T cells, we looked for ST spots that expressed both T cell markers (Cd3d, Cd3e, Cd3g,
Cd247) and ll17a, and identified signal both inside and outside the lymph node regions (Fig. 6¢
and Supplementary Fig. 8c). Thus, the ST data supported the co-localization of tissue-resident
immune cells with epithelial cells in situ in aged mice, suggesting that these cell-cell interactions
might have a functional impact on aging tissues.

To further investigate cellular interactions, we inferred putative ligand-receptor
interactions between immune cells and epithelial cells and fibroblasts from scRNA-seq data
using CellPhoneDB"’ (Supplementary Table 7), focusing on Gzmk* and yd T cells. First, we
detected an increase with age in predicted interactions between integrins in Gzmk™ cells (e.g.,
a4bl) and other molecules on epithelial cells, including receptor for urokinase plasminogen
activator (Plaur) and vascular cell adhesion molecule-1 (Vcam-1) (Fig. 6d and Supplementary
Table 7). Both PLAUR and VCAM-1 are often aberrantly expressed in breast cancer and
mediate pro-metastatic tumor-stromal interactions and increase cell invasiveness?®**'. Age-
related increases in integrin interactions were observed for all epithelial cell types (luminal HS,
luminal AV, myoepithelial) as well as for fibroblasts (Fig. 6d and Supplementary Table 7). Age-
related increases in integrin interactions in Gzmk™ cells were previously predicted in other aging
mouse tissues (spleen, lung, and kidney)'', providing further support for the functional
relevance of these interactions in aging mammary tissue. Further, supporting these predicted
interactions from single cell analysis, our ST data confirmed the presence of multiple ST spots
that co-express both integrins and Plaur or Vcam-1, with a majority of these spots being
epithelial-enriched (after excluding the lymph node) (Fig. 6e and Supplementary Fig. 8d). In
addition, a subset of these ST spots that co-express integrins and Plaur or Vcam-1 also
colocalized with Gzmk™ spots in situ in aged mammary glands (Fig. 6f), further supporting these
predicted interactions.

In addition, we detected interactions between the immune-inhibitory receptor Pdcdl on
immune cells (Gzmk™ cells and Cd4" T cell populations) and Fam3c in all three epithelial cell
subsets and fibroblasts detected by scRNA-seq (Fig. 6g and Supplementary Fig. 8e). Fam3c
was upregulated in luminal HS cells and served as a marker gene for Epi-C2 that expanded with
age (Supplementary Fig. 4f). We identified multiple ST spots that co-expressed Fam3c and
Pdcdl, with a majority of these being epithelial-enriched (Fig. 6h), including a subset that also
colocalized with Gzmk™ spots (Fig. 6i). Furthermore, CellPhoneDB analysis revealed increased
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interactions with age between chemokine ligands highly expressed by Gzmk* cells and
receptors expressed by epithelial cell types, including Ccl5-Ackr4, Ccl3-lde, and Ccl4-Sic7al
(Fig. 6j). Interestingly, Ccl5 is a chemokine associated with breast cancer metastasis and
recurrence™?'®, whereas Ackr4 (also known as Ccrll) is a chemokine receptor that inhibits
inflammation and controls intratumor T cell accumulation and activation in mouse models of
breast cancer®*'®*. ST analysis confirmed the existence of multiple ST spots that co-express
these chemokine ligand-receptor pairs (Fig. 6k and Supplementary Fig. 8f), including a subset
that colocalize also with Gzmk™ ST spots in situ (Fig. 6i and Supplementary Fig. 8f).

Finally, CellphoneDB analysis revealed increased cellular interactions between yo T
cells and luminal HS, myoepithelial, and fibroblasts cells through Jag1l and Notch proteins (Fig.
6j). In addition, multiple Notch family members were upregulated with age in mammary tissues,
with increased levels of Notchl in myoepithelial cells and Notch3 in fibroblasts (Supplementary
Tables 3,4). Activation of Notch signaling correlates with mammary tumorigenesis in mice
models, and increased expression of Notch receptors is detected in multiple tumor types
including in breast cancer****°, Moreover, the Jag-Notch interaction is further supported by the
co-occurrence in situ of ST spots that express both Notch3 and Jagl, with a majority of ST
spots being epithelial-enriched (Fig. 6k,l). These ligands and receptors were rather ubiquitously
expressed in the mammary gland, and thus the ST data might have captured interactions
between several cell types.

Together, the ST data supported the existence of tissue-resident Gzmk™ and yd T cells
identified by single cell approaches in the mammary gland tissue and their co-localization with
epithelial cell subsets, supporting the computationally inferred cell-cell interactions between
these cell subsets.

Conserved gene signatures of murine aging and human breast cancer

Among the genes differentially expressed with age in mouse Iuminal cells
(Supplementary Table 3a), several genes have been previously associated with cancer
including: i) upregulation of epidermal growth factor Egfr and tumor suppressor Trp53, and
downregulation of apoptotic factor Bcl2 and epithelial cellular adhesion molecule Epcam in
luminal AV; ii) upregulation of tumor suppressor Socs2 and stemness regulator Mex3a, and
downregulation of tumor suppressor Rbms2 and oncogenic transcription factor (TF) Myc in
luminal HS cells; iii) upregulation of the Notch 1 and Fgfr3 receptors, and downregulation of
tumor suppressor Slit2 and cyclin Ccnd2 in myoepithelial cells.

To further reveal which age-related changes might promote mammary cells to undergo
transformation and form tumors, we compared DE genes found in mouse aged epithelial cells
with those found in human breast tumors compared to normal breast tissues from The Cancer
Genome Atlas (TCGA) project (Supplementary Fig. 9a,b). We focused on luminal A and B
tumors, which are thought to originate from luminal cells and increase in incidence with age™*.
We identified 143 genes upregulated in both aged mouse luminal HS cells and human luminal A

or B tumors, as well as 92 downregulated in both (Fig. 7a, Supplementary Fig.9a and
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Supplementary Table 8a). Among the top 25 DE genes, both aged cells and tumors
upregulated insulin-like growth factor binding protein IGFALS and stemness regulator MEX3A;
while they downregulated the tumor suppressor RCAN1, and TFs ARID5B and SOX9 (Fig. 7b).
Similarities in gene expression changes were also detected between aged luminal AV and
human luminal A or B tumors with 242 genes upregulated and 137 genes downregulated in both
(Fig. 7c, Supplementary Fig. 9b and Supplementary Table 8b). For example, both aged cells
and tumors upregulated NKD2, a component of Wnt signaling, CXCL17, a chemokine
associated with poor survival in breast cancer patients**!, and CRIP1 a gene encoding a protein
proposed to have both tumor suppressive and oncogenic properties™*'**: whereas they
decreased expression of the secreted anti-inflammatory factor FNDC4 and SEMAGA, a
semaphorin with tumor suppressor activity in brain cancers'*® (Fig. 7d). While a subset of these
shared expression changes was found exclusively in luminal tumors, a humber of DE genes
were also found in other tumor types, including in Her2" or basal tumors (Supplementary Fig. 9
and Supplementary Table 8a,b).

While tumors are enriched with epithelial cells, stromal cells (including fibroblasts and
immune cells) are known to infiltrate and support tumor growth. Therefore, we looked for the
presence of fibroblast changes in the human breast tumors from TCGA and identified 330
genes upregulated and 108 genes downregulated in both mouse fibroblasts and human luminal
A or B tumors (Fig. 7e and Supplementary Table 8d). In tumors and aged mammary
fibroblasts, Fap increased in expression (Fig. 7e). High expression of FAP is a proposed
characteristic of cancer associated fibroblasts and age-related Fibroblast cluster C2 (Fig. 3e). In
contrast, Pil6 decreased in expression in tumors and aged fibroblasts (Fig. 7e). PI16 is a
marker gene of a class of universal fibroblasts with the ability to differentiate into specialized
fibroblasts. While total humbers of the fibroblasts increased in aged animals (Fib-C4), we see
that in proportion to other fibroblasts, the Pi16" fibroblasts become less abundant (Fig. 3e-f).
Further, a recent spatial transcriptomics study of human lung tumors found FAP™ fibroblasts to
be enriched in lung tumors and PI16 to be enriched in surrounding tissue**®. Together, this
might suggest that an aged stromal microenvironment might be pro-tumorigenic. Finally, several
pro-inflammatory and checkpoint inhibitor related genes implicated in immune response were
differentially expressed with age and in tumors (Fig. 7f). For example, aged mouse mammary
tissues expressed higher levels of Pdcdl, Gzmk, Lag3 (Fig. 4 and Supplementary Fig. 6), as
did human breast tumors (Fig. 7f), suggesting that either tumor infiltrating immune cells express
markers of aged-immune cells or that immune cells expressing signatures of cytotoxicityand/or
exhaustion that are accumulating with age also are found in tumors.

Overall, we uncovered the components of the aged mammary that were conserved in
human breast tumors (Supplementary Table 8), which suggested that epithelial cells giving
rise to tumors exhibit some of these age-related molecular markers.
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Discussion

Aging is associated with widespread alterations in epigenetic, transcriptional, and post-
transcriptional programs across cell/tissue types>®?*%2. How mammary gland tissue is affected
with age in multiple modalities and how these age-related changes relate to breast cancer gene
expression programs are not known. To fill this gap, we generated an aging atlas capturing for
the first time both expression and chromatin accessibility changes at the single cell level in the
mammary glands from younger and older mice. The data are made available through an
interactive web portal (https://mga.jax.org/) which provides tools for querying and visualizing the
data. Further, using spatial transcriptomics we inferred spatial information on cell types and cell
co-localization patterns predicted by our single cell analyses. Our findings revealed age-related
cellular and molecular changes in all cell types in the mammary gland and provided novel
insights into the underlying epigenetic mechanisms that might be driving some of these
alterations.

Cell composition and cell identity shifts with age

With age, breast tissues exhibit gross morphological changes in size, fat content, and
fibrosity®*”**8. Our single cell analysis revealed shifts in cell identities and states across multiple
cell types, highlighting common age-related changes including dysregulation of cell function and
identity, increased in cell plasticity, decreased ribosomal expression, and increased in markers
of inflammation and senescence.

In epithelial populations, cells expressing myoepithelial markers became more abundant
in number with age. Similar age-related cell proportional changes can be seen in 18-21-month-
old C57BL/6 female mice from the Tabula Muris Senis as well as in middle-aged adult 12—-14-
month-old female mice of mixed background®®. Moreover, our data suggested similarities
between age-related changes in mouse and human, with a shift from luminal to myoepithelial-
like expression patterns in human cells*. Our subclustering analysis further identified luminal AV
and myoepithelial cell subclusters that were enriched in older animals and downregulated
multiple classical marker genes. This supported the concept that aged cells may be shifting in
identity and/or acquiring cellular plasticity, trending towards a dysregulated state*****,

In the stroma, fibroblasts increased in overall numbers with age and downregulated
expression of cell marker genes such as Fnl, while changing expression of specific collagens
and gaining expression markers of cancer-associated fibroblasts and senescence marker
genes. Interestingly, our data pointed to an aging-driven increase in Fib-C2, which expressed
genes related to adipogenicity, did not strongly express the fibroblast marker gene Fnl, but
exhibited increased expression of Fap. As these fibroblasts were Dpp4 negative, they were
more likely to interact with epithelial cells in adipose-rich portions of the mammary gland*®*. This
can be further supported by the spatial transcriptomics data which suggested that Coll5al+
fibroblasts were enriched in the epithelial spots. These age-related changes in the cellular
composition of the stroma might reflect either an increase in adipocyte-like cells and/or
remodeling of transcriptomic profiles of fibroblasts themselves.
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In immune cells, there was a general shift from naive to memory T cells and an
expansion of Gzmk™ cells expressing Ccl5 and an exhaustion signature, memory CD4" T cells
(including Tregs) expressing ltgae, and y0 T/MAIT cells. T cells from older animals became
more fully differentiated and expressed exhaustion-associated genes like previous reports*®2.
Previous literature supports the expansion of Gzmk™ T cells (also named age associated T cells)
in several other mice tissues (i.e., spleen, peritoneum, lung and liver) as well as in human
blood'*!, and the role of Gzmk* T cells in increased inflammatory responses of non-immune
cells'**. In our analysis, these Gzmk* T cells expressed markers of exhaustion and inflammation
— both hallmarks of immune system aging and immune cell dysfunction with age. Ccl5, that is
highly expressed in T cells from aged animals, is also upregulated in different cancers including
breast cancer and has been associated with cancer progression and metastasis™®, thus
suggesting a potential link between immune aging and tumor initiation. Further, spatial
transcriptomics data confirmed that although most cytotoxic T cells resided in the lymph node,
some of them were detected near epithelial cells, with which they might functionally interact.
Lastly, our data revealed a significant increase in myeloid cells with age across all macrophage
and DC subsets, in alignment with the age-related increases in myeloid lineage in hematopoietic
stem cells and increases in inflammation®**. By capturing more immune cells, including more
myeloid cells than previous aging studies of mammary glands®, we can more precisely detect
age-related changes in immune cells that are resident in mammary gland tissue and nearby
lymph nodes.

With age, cells have been reported to lose normal cellular plasticity, which is required for
regeneration and tissue repair, while acquiring abnormal plasticity that can ultimately lead to
cancer™. Interestingly, senescent cells need to acquire cellular plasticity to overcome tumor
suppressor mechanisms and evolve towards a pre-cancerous state™®. We speculate that a
subset of the aging-driven increase in cell plasticity we identify in the mammary gland might
therefore play a role in enabling clonal expansion, tumor initiation, and immune escape with

age.

Epigenetic regulation of aging mammary tissues

To gain mechanistic insights into the regulation of aging-related changes in gene
expression in the mammary gland, we focused here on unravelling the epigenetic regulatory
programs in aged mammary glands. Indeed, changes in chromatin accessibility have been
linked with aging in other organs®*°’, but their impact on aging mammary tissues had not been
studied before at the single cell level.

Using snATAC-seq, we uncovered epigenetic changes linked to changes in cell identity
and gene expression across every one of the cell types we profiled. For example, in myeloid
and T cell populations, we detected open chromatin regions that may contribute to the
expression of critical marker genes and lineage commitment of age-related cell populations.
Previous studies reported epigenetic control of specific lineage genes and age-related
epigenetic dysregulation in blood and bone marrow™®'°, thus supporting our hypothesis that
changes in chromatin accessibility may be at least in part driving the age-related populations
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shifts and cellular dysfunction in aged mammary glands. Further, we can speculate that some of
the changes in chromatin accessibility may help to poise cells to respond to insults. For
example, promoters of checkpoint inhibitors Pdcd1 and Ctla4, were highly accessible in naive T
cells even though they are not frequently or highly expressed in these cell types, which could be
a poised epigenetic signature of immune checkpoint inhibitors to facilitate rapid immune
responses.

In addition, our single cell analysis also revealed changes in gene expression that could
be explained by aging-related changes in chromatin accessibility. For example, our study
reported increased expression of Pdk4 in luminal AV cells with age, similar to a recent study
using middle-aged adult mice®. Our snATAC-seq analysis pointed to an opening of the
chromatin region near the Pdk4 promoter with age thus providing a putative mechanism to
explain its change in expression. Age also led to changes in expression and chromatin
accessibility in cancer-related genes Pygl, and Prrx1. Those could be resolved in the future by
designing more targeted experiments to dissect the age-related changes in chromatin
accessibility of more rare cell populations in mammary glands. Furthermore, future studies are
also critically needed to uncover the contribution of other gene expression regulatory programs,
including at the post-transcriptional and translation, and post-translational level and their impact
on the biology of aged mammary glands.

Aging-driven (epi)genomic programs impact cancer-associated genes and phenotypes

Despite the undeniable role of genetics, the accumulation of mutations with age is not
enough to explain the increases in breast cancer with age®'®®®! suggesting that age-
dependent molecular and cellular changes of tumor-initiating and supporting cells contribute to
breast cancer development and risk through other mechanisms®'%%®, Interestingly, how these
age-related molecular and cellular alterations interact with each other, and drive breast aging
and contribute to cancer initiation is poorly understood®!®?'®3. Our single cell study of aged
mammary tissues revealed intriguing similarities between aging and cancer by uncovering age-
related changes that impact expression of cancer-associated genes and cellular events that
underly tissue remodeling during oncogenesis.

At the molecular level, altered expression of tumor suppressors and oncogenes has
been shown drive tumor initiation and cancer progression®*. While our analysis revealed that
there is not a singular age-related expression change that directly lead to a known and validated
tumor initiating event, we detected multiple age-related transcript level changes that are also
found in human tumors. For example, in luminal HS cells and tumors, we detected increased
expression of Tmprss6, Mex3a, Tphl and decreased expression of Rcanl, Cavl, and Dmbtl.
Similarly, increased expression of Cripl, Ecml, Tkl and decreased expression of Fndc4,
Maspl, and Sema6a was seen in aged Luminal AV cells and in tumors. Interestingly, several of
the genes that increase in expression and accessibility with age exhibited tumor suppressor
activity. This suggested that aged mammary cells might activate tumor suppressor mechanisms
to prevent cancer, similarly to what was proposed in immune cells'®*%. This is particularly
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evident in aged luminal AV and HS cells, which also decreased in numbers with age, suggesting
a possible decline in cell populations that have an anti-tumor or protective role in the aging
mammary gland. This leads us to speculate that age is associated with cellular dysregulation
leading to the expansion of cells that might contribute to cancer development.

At the cellular level, aging of the tumor microenvironment can dramatically impact cancer
initiation and progression'®’. Aging-driven biophysical changes in the ECM, alterations in
secreted factors, and changes in the immune system can all lead to a tumor permissive
microenvironment. Our analysis pointed to an age-related increase in fibroblasts expressing
Fap, along with genes related to adipogenicity, and exhibiting altered expression of ECM
proteins. Cancer-associated fibroblast play a critical role in promoting tumor development and
outgrowth'®®. Given the links between adipose tissue and inflammation and altered ECM with
cancer, these aged fibroblasts could contribute to a cancer promoting environment. On the
immune front, our study revealed an expansion with age of Gzmk®™ and memory Cd4*
(consisting of Tregs) cells expressing high levels of exhaustion markers. Aged T cells express
higher levels of Pdcdl (also known as PD1), the immunosuppressive PD-1 ligand often
expressed on cancer cells, and which enables immune surveillance evasion. Thus, the increase
of these cell populations in older patients might impact their response to immune checkpoint
blockade targeting CTLA4, PD-1, or PD-L1. In depth studies to define the therapeutic impact of
age on clinical efficacy and toxicity of checkpoint inhibitors are greatly needed'®. Interestingly, it
has been described that in triple negative breast cancer, the aged tumor microenvironment is
unable to generate a proper antitumor response to immune checkpoint blockade leading to age-
related immune dysfunction37. In addition, BRCA1 and BRCAZ2 loss, which are associated with
an accelerated aging phenotype®*”® and are also more frequent in triple negative tumors, have
been linked with differential responses to immune checkpoint blockade, partially due to
microenvironment changes'’. Both of these findings support the hypothesis that changes in the
microenvironment can impact responses to checkpoint inhibitors. Yet, more comprehensive
studies in young and old patient cohorts, especially in luminal tumors, are needed to determine
whether age impacts response to checkpoint inhibitors and if so how?

Finally, epigenetic alterations are frequently found in human tumors, where they can
upregulate oncogenes or suppress tumor-suppressor genes via chromatin compaction!’?*".
Moreover, breast tumors exhibit cancer-specific and subtype-specific chromatin accessibility
profiles’”. Recent studies have uncovered an association between accelerated DNA
methylation aging and increased breast cancer risk'”>*"". Further, age-related changes in
normal breast tissue can also be detected in breast cancer'’®'®', However, while epigenetic
alterations have been associated with both cancer etiology and aging®*'®?, it is unclear how
age-driven epigenetic changes contribute to tumor initiation and much work remains to be
carried out.

In conclusion, in aged mice, we detected changes in cell populations, gene expression,
chromatin accessibility, transcription factor activity, and imputed cell-cell interactions. We have
used spatial transcriptomics to support cell localization and cell-cell interactions. Several of the
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age-related changes have implications in breast cancer biology. Further investigation will need
to be performed to determine the mechanistic links between aging and cancer in breast tissue.
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Methods

Experimental model

Virgin female young (3-4 months old) and older (17-18 months old) C57BL/6J mice (JAX
#000664) were used in this study. All mice were bred and maintained in house under regular
conditions, with 12hr/12hr light/dark cycle, and food (LabDiet 5KOG) and water ad libitum.
Young and older animals were housed together for at least a month prior to tissue collection to
eliminate environmental differences and to synchronize their estrous cycles. All animal work
was performed in accordance with protocols approved by the Institutional Animal Care and Use
Committee at The Jackson Laboratory.

Tissue dissociation for single-cell analysis

To isolate mammary cells from young and aged mice we adapted protocols from **'%, Fresh
mammary glands (each sample was prepared from mammary glands from three mice) were
surgically excised, finely minced and then incubated in a digestion solution containing
DMEM/F12 (GIBCO #11320-033), 10% heat-inactivated fetal bovine serum (Seradigm #1500-
500), 1.5 mg/ml collagenase IV (Sigma #C5138), 0.2% trypsin (Corning #25-054), 5 ug/ml
insulin (Sigma #1-1882), 2.5 ug/ml gentamycin (GIBCO #15750) for 15 min at 37°C with gentle
manual agitation. Following a brief 2 min centrifugation at 600g, the top floating fraction and
pelleted tissue (which contained undigested tissues) were collected and further digested at 37°C
for 20 min prior to a second centrifugation at 600g for 7 min. The aqueous fraction was pelleted,
resuspended in DMEM/F12 +FBS, and stored on ice (to preserve easy to dissociate, sensitive
cells such as immune cells). Pellets from both fractions were combined and further digested
using a solution of DMEM/F12 (GIBCO #11320-033) and 1U/ml DNAse | (Invitrogen #18068) for
2-5 min at room temperature with constant gentle manual shaking. Cells were then pulse-
centrifuged three times at 520g as previously described™®*!®* and cells found in the pellet and
supernatant fractions at each step were separated and collected. Epithelial cells, which were
enriched in the pellet fraction, were further digested for 10 min at 37C in a solution containing
TrypLE (Gibco #12604) and 1U/ml DNAse | (Invitrogen #18068) and monitored for viability and
digestion using a microscope. Cells found in the supernatant fraction were then subjected to red
blood cell lysis in ACK buffer (Gibco #A10492) for 3-4 min. Dissociated cells from both fractions
were filtered through a 70 um cell strainer and stained with propidium iodide (PI) and calcein
(Invitrogen #C1430, BD #556463). Live cells (calcein+ and PI-) from both fractions were isolated
using flow cytometry (nozzle 130, flow rate 1) and collected in DMEM/F12 with 10% FBS.
Fractions were combined at a 1:1 ratio for downstream library preparations.

Single-cell RNA-seq and single-nuclei ATAC-seq library preparation and sequencing

Dissociated cells isolated from young and aged mice as described above were counted and
assessed for viability on the Countess Il automated cell counter (ThermoFisher), and 12,000
viable cells were loaded into one lane of a 10X Chromium microfluidic chip for scRNA-seq for a
targeted cell recovery of 6,000 cells per lane. From the remaining cell suspensions, nuclei were
isolated according to 10X Genomics protocol (#CG000212, Protocol 1.2).
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For scRNA-seq, single cell capture, barcoding and library preparation were performed using the
10X Chromium v.3 chemistry, according to the manufacturer’s protocol (#CG00183). cDNA and
single cell libraries for RNA-seq were checked for quality on an Agilent 4200 TapeStation,
quantified by KAPA gPCR, and sequenced on a Novaseq6000 instrument (lllumina) to an
average depth of 50,000 reads per cell. For snATAC-seq, nuclei suspensions were incubated in
a transposase-containing mix, nuclei were counted, and 9,250 nuclei were loaded into one lane
of a 10X Chromium microfluidic chip. Single nuclei capture, barcoding and library preparation
were performed using the 10X Chromium v.1 chemistry, according to the manufacturer’s
protocol (#CG000168). Libraries for shATAC-seq were checked for quality on an Agilent 2100
Bioanalyzer, quantified by KAPA gPCR, and sequenced on a Novaseq6000 instrument
(Mlumina) to an average depth of 25,000 read pairs per nucleus by The Jackson Laboratory
Genome Technologies core service.

Single cell RNA-seq data processing

The base call files from Illumina were demultiplexed and converted to FASTQ files using
bcl2fastq (v2.20.0.422) (lllumina). The CellRanger (10X Genomics v3.1.0) pipeline was used to
align the sequence reads against the mm10 reference genome, deduplicate reads, call cells and
generate cell by gene counts matrices for each library. Paired-end reads were processed and
mapped to the mml1l0 mouse genome using Cell Ranger pipeline v4.0.0. We performed
preliminary filtering of low QC cells (gene counts <200). Cell doublets were estimated using
Scrublet*®® and DoubletDecon v1.1'®". Additional filtering was applied within the Seurat package
to eliminate cells with i) gene counts <500 and ii) mitochondrial gene ratio >10%, yielding
48,180 cells from 12 samples (n=6 per age; see Supplementary Table 1 for details). Filtered
data matrices were then analyzed using Seurat v4'® and normalization performed using Log-
normalization = method utilizing the NormalizeData() function. We used the
FindVvariableFeatures() function to identify highly variable features, including all genes as
features. ScaleData() was utilized to scale data using all genes as features. To reduce the
dimensionality of the data, we ran principal component analysis using the RunPCA() function.
We used 10 principal components to define 11 clusters that are annotated into distinct cell types
using the following marker genes: B cell (BInk, Cd79a, Cd79b), Plasma cell (Jchain), T cell
(Cd3d, Cd3e, Cd3g), Macrophage (Itgax), Dendritic cell (Fcgr2b, Cd209a, Iltgam), Luminal-AV
(Mfge8, Trf, Csn3, Wfdc18, EIf5, Ltf), Luminal-HS (Prlr, Citedl1, Pgr, Prom1, Esrl), Myoepithelial
(Krt17, Krtl4, Krt5, Acta2, Myl9, Mylk, Myh11), Fibroblasts (Collal, Colla2, Col3al, Fnl),
Vascular (Pecaml, Cdh5, Eng, Pdgfra, Pdgfrb, Fap), Pericytes (Rgs5, Des, Notch3).
Neighborhood graph computing was performed FindNeighbors() and clusters were dtermined
using FindClusters(). Harmony*®® was used for batch correction between the two batches (batch
#1 replicates 1-2-3 and batch #2 replicates 4-5-6). We removed the Doublet cluster (n=539)
from downstream analyses. The neighborhood graph was visualized as a uMAP using
RunUMAP(). A doublet cluster expressing B and T cell marker genes was excluded from
downstream analysis, resulting in 47, 641 cells.
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Single nucleus ATAC-seq data processing

Paired-end reads were processed and mapped to the mm10 mouse genome using the Cell
Ranger ATAC pipeline v1.2.0. Doublets were removed using AMULET'®. Simple repeats,
segmental duplications, repeat masker and blacklisted regions obtained from the UCSC
Genome Browser and ENCODE project are filtered out as part of the AMULET software. We
kept cells based on the following criteria: i) total number of fragments in peaks >1000 or
<100000; and(ii) fraction of fragments (percent reads) in peaks>40; and iii) blacklist ratio<0.01,
and iv) nucleosome signal<4; and v) Transcription start site enrichment score>2. Filtered reads
were analyzed using Signac v1.1'. The combined filtered data for downstream analysis
yielded 173,699 chromatin accessibility sites (i.e., peaks) associated with 22,018 genes
detected in 22,842 cells (h=3 per age; see Supplementary Table 1b for details). Data
normalization and dimensionality reduction was performed using Signac with latent semantic
indexing (LSI), consisting of term frequency-inverse document frequency (TF-IDF) normalization
and singular vector decomposition (SVD) for dimensionality reduction. Clustering was
performed using the SLM (Smart local moving) algorithm and the anchors were transferred from
ScRNAseq to snATAC using CCA (canonical correlation analysis) reduction method. Genome

browsers are generated using igvtools*®.

Cell compositional changes with age

A two-sided paired t-test using experimental pairs was used to quantify age-related changes in
cell compositions between young and old mice for each cell type (i.e., for epithelial, immune and
stromal cells). Fold change enrichment between old and young were calculated as the log ratio
of number of cells per cell type in old mice vs. number of cells per cell type in young mice. To
determine whether the changes were significant or not, a t-test was used against a zero-fold
change reference group.

Epithelial subset analyses

For scRNA-seq, epithelial cells (Luminal HS, Luminal AV, and Myoepithelial) were subsetted
from the overall scRNA-seq population (n=7308 cells) and data reprocessed using Seurat v4.
We calculated all features for the subsetted data and ran PCA for these variable features. We
used 14 principal components; we used Harmony to correct for batch effects between the two
batches (batch #1 replicates 1-2-3 and batch #2 replicates 4-5-6) and clustering at resolution
0.8. Suspected doublet clusters (expressing immune marker genes) and low-quality cells were
further filtered prior to final clustering, resulting in 12 subclusters (6953 cells) remaining for
downstream analyses.

For snATAC-seq, Epithelial cells were subsetted from the overall snATAC-seq population
(n=6,963 cells) and data reprocessed using Signac. We performed LSI (n=50) and created the
UMAP using the first 20 LSI components. We excluded the first LS| component as it had a
strong correlation with the total number of cell counts. These cells were assigned to cell types
using the annotation from scRNA-seq using the FindTransferAnchors functions in Signac.

Stromal cell subset analysis
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For scRNA-seq, stromal cells (Fibroblasts, Pericytes, and Vascular) were subsetted from the
overall scRNA-seq population (n=4233 cells) and data reprocessed using Seurat v4. We
calculated all features for the subsetted data and ran PCA for these variable features. We used
14 principal components, we used Harmony to correct for batch effects between the two
batches (batch #1 replicates 1-2-3 and batch #2 replicates 4-5-6), and clustering at resolution
0.4. Suspected doublet clusters (expressing immune marker genes), cells expressing putative
muscle marker genes, and a cluster of cells of low quality were filtered prior to final clustering,
resulting in 11 subclusters (3832 cells) remaining for downstream analyses.

For snATAC-seq, Fibroblast cells were subsetted from the overall snATAC-seq population
(n=2,029 cells) and data reprocessed using Signac. We performed LS| (n=50) and created the
UMAP using the first 20 LSI components. We excluded the first LS| component as it had a
strong correlation with the total number of cell counts. These cells were assigned to cell types
using the annotation from scRNA-seq using the FindTransferAnchors functions in Signhac.

T cell subset analyses

For scRNA-seq, T cells were subsetted from the overall sScRNA-seq population (n=20,455 cells)
and data reprocessed using Seurat v4. We calculated the top 2000 features for the subsetted
data and ran PCA for these variable features. We used 30 Principal components to correct for
batch effects between the two batches (batch #1 replicates 1-2-3 and batch #2 replicates 4-5-6)
using harmony and clustering at resolution 0.5. These analyses yielded 11 clusters which were
associated with different cell type identities using cell type markers. One subcluster was filtered
out from further downstream analysis since it included markers for different cell types (i.e.,
potential doublets), resulting in 10 subclusters (19,693 cells) remaining for downstream
analyses.

For snATAC-seq, T cells were subsetted from the overall shATAC-seq population (n=6,443
cells) and data reprocessed using Signac. We performed LSI (n=50) and clustered the data
using the first 10 LSI components at resolution 0.5. We excluded the first LSI component as it
had a strong correlation with the total number of cell counts. This analysis generated 11
subclusters which were assigned to cell types using the annotation from scRNA-seq using the
FindTransferAnchors functions in Signac. We similarly filtered out a doublet cluster, resulting in
9 subclusters (6,078 cells) for downstream analyses. For robust epigenomic comparisons, a
certain number of cells are needed (e.g., 100 cells), therefore cell-intrinsic epigenomic
comparisons were not conducted if we did not have enough cells in either age group e.g.,
Gzmk+ cells.

Myeloid cell subset analysis

For scRNA-seq, myeloid cells were subsetted from the overall sScRNA-seq population (n=3,485
cells) and data reprocessed using Seurat v4. We calculated the top 2000 features for the
subsetted data and ran PCA for these variable features. We used 50 Principal components to
correct for batch effects between the two batches (batch #1 replicates 1-2-3 and batch #2
replicates 4-5-6) using harmony and clustering at resolution 0.5. This resulted in 13 subclusters


https://doi.org/10.1101/2023.10.20.563147
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.20.563147; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

which were associated with different cell types using cell type specific marker genes. One of
these subclusters was filtered out from further downstream analysis as potential doublets and
several of them are merged together since they have similar transcriptional profiles, resulting in
7 subclusters (3,407 cells) remaining for downstream analyses.

For snATAC-seq, myeloid cells were subsetted from the overall scATAC-seq population
(n=1,509 cells) and data reprocessed using Signac. We performed LSI (n=50) and clustered the
data using the first 10 LSI components at resolution 0.2. We excluded the first LSl component
as it had a strong correlation with the total number of cell counts. The remaining 7 subclusters
were assigned to cell types wusing the annotations from scRNA-seq using the
FindTransferAnchors functions in Signac.

Differential gene expression between old and young

For epithelial cells and fibroblasts (at the cluster and subcluster level), we used both single cell
and pseudo-bulk differential analyses pipelines. Differential expression (DE) analysis at the
single cell level was performed using logistic regression within the FindMarkers function in
Seurat v4'®. Pseudo-bulk differential expression analysis was conducted using DESeq2'®®
following this pipeline (https://hbctraining.qgithub.io/scRNA-
seqg/lessons/pseudobulk DESeq2_scrnaseg.html). Internal normalization within DESeq2 was
performed, which corrects for library size and RNA composition bias. We used FDR<0.05 cut-
offs to identify age-associated genes for both analyses. The union of the DE genes from single
cell and pseudo bulk analyses was used for downstream analysis. To functionally annotate DE
genes, hypergeometric tests were used using different annotation databases: KEGG,
Wikipathways and GO databases from the Msigdb collection. These annotations are conducted
using the cinaR R package™* or Enrichr'®®. For scoring, we used a curated ECM list (Cald1,
Dcn, Dpysl3, Ecml, Flna, Fstll, Igfbp3, Lamcl, Lgalsl, Pdlim4, Ptx3, Qsoxl, Serpinhl,
Vcaml), the Wikipathways Integrated Breast Cancer list, and the Wikipathways Cytoplasmic
Proteins listt. To identify tumor  suppressors, we utilized TSGene 2.0
(https://bioinfo.uth.edu/TSGene/).

For T cells and among myeloid clusters, we conducted one versus all differential gene
expression analysis for the scRNA-seq data. We used a Wilcoxon Rank Sum test to compute
the differential expression using cutoffs of logFC=0.25 and a minimum 10% of cells expressing
the gene. Hypergeometric geneset enrichment testing was carried out on the age specific and
cell type specific differential genes obtained from the T Cell and Dendritic Cells/Macrophage
subclustering. The enrichment results were adjusted using the Benjamini-Hochberg FDR
adjustment method (FDR=10%). We used Wikipathways and Immune System related modules®*
from the CinaRgenesets'® to conduct the enrichment analyses.

Differential peak analysis between old and young

For epithelial cells and fibroblasts (at the cluster level), pseudo bulk differential peak analysis,
cell-type specific alignment files were obtained per sample using the sinto package
(https://github.com/timoast/sinto). MACS2™°® was used for peak calling for each sample per cell
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type using the BAMPE option. We used the Diffbind*®’ package for generating the consensus
sequences per cell type, which are then used for differential analyses between young and old
using DESeq2 with absolute log,FC=1 within cinaR R package'®*. The differential peaks were
annotated with gene identities using ChIPSeeker'®®. In cases where the ChIPseeker algorithm
was not able to annotate the peaks to the nearest gene, we used HOMER® for further
annotations. For single cell differential peak analysis in immune cell subsets, we used the
FindMarkers function available in Signac to calculate differential accessibility between old and
young mice cells. We used a Wilcoxon rank sum test with a minimum of 10% cells accessible to
the peak as our cutoff. Peaks with Pagjuste>0.05 were filtered out from downstream analysis.

ChromVar analyses

We added motif information to the snATAC-seq object using the AddMotifs function in signac for
the mm10 genome using the JASPAR2020 database. We then calculated a per cell motif
activity score using chromVAR* and added this information to the snATAC-seq object. We used
these motif activity scores to conduct differential analysis using the FindMarkers function in
Signac between old and young mice using the Wilcoxon Rank Sum test with no cutoffs being
used for fold change or minimum percentage of cells expressing the motif.

Senescence Scoring

Using the SenMayo gene list, we calculated the counts per gene and divide by the total number
of transcripts per cell. We then scale this ratio between 0 and 1 and plot the scaled scores
utilizing the VInPlot() function.

Ligand Receptor Interactions

CellphoneDB'?’ was used to calculate ligand receptor interactions between different cell types in
young and old mice. The normalized cell counts were extracted from the scRNA-seq object and
the metadata object was provided which contained cell type annotations for each cell. The final
results were obtained by running the statistical_analysis function available in CellphoneDB. The
analysis was run separately for old and young mice cells.

TCGA Analyses

To uncover DE genes from human TCGA data, we downloaded tumor and normal tissue
samples from TCGA Biolinks and tumors that passed quality testing as described®® (Normal
Tissue n=112, Luminal A tumors n=547, Luminal B tumors n=207). Differential expression
analysis was performed using DESeq2'®®. A Wald test was used to calculate p-values, and
Benjamini-Hochberg procedure to calculate corrected p-values. Differential genes were selected
based on P,4<0.05 and log; fold change >0.5 or <-0.5.

Spatial transcriptomics (ST) profiling of aged mammary tissues

ST experiments were performed using the Visium Platform (10x Genomics) according to the
manufacturer’s protocols. Fresh mammary tissues from 18-month-old mice were NBF-fixed and
paraffin-embedded (FFPE). Two 15 um sections from each tissue block were used for total RNA
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extraction with Rneasy Micro kit (Qiagen), and the percentage of RNA fragments larger than
200bp as determined by Agilent Bioanalyzer system (DV200 score) was used as a measure of
RNA quality. Tissue blocks with DV200 scores were above 50%.

Briefly, sections from each tissue block were placed on microscopy slides (ColorFrost Plus,
Fisher) and subsequently deparaffinized, H&E stained, then imaged in brightfield using a
NanoZoomer SQ (Hamamatsu) slide scanner. Each slide was incubated with mouse-specific
probe sets provided by the manufacturer for subsequent mRNA labeling, probe transfer using
the CytAssist (10x Genomics) onto a Visium CytAssist Slide, and subsequent library generation
per the manufacturer's protocol (10x Genomics, CG000495). Library concentration was
quantified using a Tapestation High Sensitivity DNA ScreenTape (Agilent) and fluorometry
(Thermofisher Qubit) and verified via KAPA gPCR. Libraries were pooled for sequencing on an
lllumina NovaSeq 6000 200 cycle S4 flow cell using a 28-10-10-90 read configuration, targeting
100,000 read pairs per spot covered by tissue.

lllumina base call files for all libraries were converted to FASTQs using bcl2fastq v2.20.0.422
(Mlumina). For each tissue section and corresponding library, the whole slide brightfield image
and CytAssist image were aligned manually using the Loupe Browser (v6.4.1) via landmark
registration. Each whole slide image was uploaded to a local OMERO server where a
rectangular region of interest (ROI) containing just the tissue was drawn via OMERO.web and
OMETIFF images of each ROI were programmatically generated using the OMERO Python
API. FASTQ files, the image registration JSON file, and associated OMETIFF corresponding to
high resolution bright field image were used for further processing, including alignment to the
GRChm38 mm10-specific filtered probe set (10x Genomics Mouse Probeset v1.0.0) using the
version 2.1.0 Space Ranger count pipeline (10x Genomics).

Spatial transcriptomics data analysis

Sequencing reads from Visium Spatial Gene Expression Slide were pre-processed with
Scanpy®’’. Spots with <245 genes and >10% of mitochondrial gene expression were filtered out
to remove false positive signal. Mitochondrial genes were defined using MitoCarta2?®,
considering only the top 250 genes that were highly specific to mitochondria. Based on these
mitochondrial genes, we calculated their expression proportion in each sample. Additionally, we
filtered out rarely expressed genes that had <3 reads in each spot. As a results, filtered data
contains 6,428 spots in sample #1 and 8,662 spots in sample #2, along with 19,203 genes.

Raw read counts in each sample were normalized using the Pearson residual method®® to
reduce technical difference while preserving their natural biological differences. Before merging
the two older samples, we checked for batch effects between them and found a slight batch
effect. Thus, we used BBKNN?** to remove the batch effect and extracted biologically
meaningful clusters using the Leiden clustering method (resolution 0.15). Based on the defined
clusters, we defined the dominant cell type in each cluster by identifying marker genes in each
cluster compared to the other using log-normalized counts.

To confirm co-localization of specific cell types and ligand-receptor pairs in the spatial
transcriptomic data, we transformed the read counts of marker genes (for cell type and ligand-
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receptor pairs) into binary values (positive and negative). Consequently, each spot was
assigned a value of 1 (positive signal) if they had at least one read for the marker genes. Using
this binary count matrix, we defined Cd3d or Cd3g or Cd3e or Cd247 or CdB8a or Cd8bl as
Cd3+ or Cd8+ cells, and Cd3d or Cd3g or Cd3e or Cd247 as Cd3" cells. Based on these
definitions, we considered a spot to be Cd3" or Cd8" and Gzmk” if it had a positive signal for
both Cd3" or Cd8" cells and Gzmk. We applied same process to other target cells, such as
Cd3" or Cd8" and Pdcdl, and yd T cells. After that, the number of target cell spots was
normalized by the total count of spots in each cluster to compare their enrichment between
different clusters. Regarding ligand-receptor confirmation, we considered a spot to be a specific
ligand-receptor spot if it had a positive signal for both ligand and receptor genes. We applied the
same normalization method as used for specific cell type spots to compare their enrichment
between different clusters. Additionally, using this ligand receptor spot information, we
confirmed the co-localization of ligand-receptor pairs and specific cell type spot. In that case, we
considered a spot to be co-localized if it had a positive signal for both the ligand-receptor pair
and the specific cell type or was close to both signals.

Data availability

Data has been deposited to GEO: GSE216542 (Access token mvepawimxnalbgj)

Data can be visualized and queried via an interactive web portal: https://mga.jax.org/.

Code availability

Code is available on: https://github.com/UcarLab/Mammary gland aging
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Figure 1. Cell compositional changes during mammary gland aging revealed by scRNA-seq and snATAC-seq.

(a) Experimental approach using scRNA-seq and snATAC-seq on cells isolated from freshly dissociated mammary
glands from 3-month (3M) old and 18-month (18M) old virgin female C57BL/6J mice.

(b,c) UMAP visualization of epithelial (Luminal AV, Luminal HS and Myoepithelial), immune (Memory T and NK cells,
Naive T cells, B cells, Plasma cells, and DCs and Macrophages), and stromal (Pericytes, Vascular, and Fibroblasts)
clusters captured by scRNA-seq identified based on characteristic marker genes (b) and by snATAC-seq upon
annotation transfer from scRNA-seq.

(d,e) Average proportions of epithelial, immune, and stromal cells in 3M and 18M mice captured by scRNA-seq (n=6)
(d) and by snATAC-seq (n=3) (e) (Paired t-test; *P<0.05, **P<0.01, ***P<0.001,****P<0.0001).

See also Supplementary Figures 1-2 and Supplementary Tables 1-2.
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Figure 2. Age-related changes in (epi)-transcriptomic programs in mammary epithelial cells.
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(a,c) UMAP visualization of epithelial cell clusters captured by scRNA-seq (a) and snATAC-seq (c). The number of
significant DE genes detected by single cell and pseudobulk analysis with age (a) and DA peaks with age (c), is shown
per cell cluster.

(b) Number of significant DE genes with tumor suppressor activity in luminal AV, luminal HS, and myoepithelial cell
clusters from 18M vs. 3M mice (detected by single cell and pseudobulk analysis).

(d) Differential TF activity score with age. Significant differential motifs (Paqj<0.05) are indicated by an asterisk.
(e) Top DE genes from 18M vs. 3M mice across replicates from pseudo-bulk scRNA-seq data.

(f-k) Examples of DE genes with DA peaks in luminal AV (f,g), luminal HS (h,i), or myoepithelial (j,k) clusters in 3M
vs. 18M mice. Normalized values are shown for individual cells (t-test; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001),
along with a pie chart depicting the percentage of expressing cells vs. non-expressing cells (left panel). Pseudobulk
SnATAC-seq tracks in 3M vs. 18M mice are shown, along with gene structures and significant DA peaks with
corresponding logz fold changes (FC) values (right panel). Predicted TF binding motifs from JASPAR are indicated
within the DA peaks.

See also Supplementary Figures 3-4 and Supplementary Table 3.
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Figure 3. Age-related changes in (epi)-transcriptomic programs in mammary stromal cells.

(a-b) UMAP visualization of stromal cell clusters captured by scRNA-seq (a) and snATAC-seq (b). The number of
significant DE genes detected by single cell and pseudobulk analysis with age (a) and DA peaks with age (b), is shown
per cell cluster.

(c) Example of DE gene with DA peak in fibroblast clusters in 3M vs.18M mice. Normalized values are shown for
individual cells (t-test; ***P<0.001), along with a pie chart depicting the percentage of expressing cells vs. non-
expressing cells (left panel). Pseudobulk snATAC-seq tracks in 3M vs. 18M mice are shown, along with gene structures
and significant DA peaks with corresponding logz fold changes (FC) values (right panel).

(d-e) UMAP visualization of fibroblast subclusters FibCO-C5 captured by scRNA-seq (d) along with expression of
canonical marker genes (e). The proportions of cells from 3M and 18M mice are shown on the right.

(f) Differences in cell number ratios with age per fibroblast subclusters captured by scRNA-seq (n=6; t-test; *P<0.05,
**P<0.01).

(g,h) Expression of marker genes in fibroblast subclusters captured by scRNA-seq.
(i) Expression of Cdknla in fibroblasts with age (t-test; *P<0.05, **P<0.01, ***P<0.001,****P<0.0001).
(i) Expression of Cdknla in fibroblast subclusters with age (t-test; *P<0.05, **P<0.01, ***P<0.001,****P<0.0001).
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(k) Top DE genes with age across replicates from pseudo-bulk scRNA-seq data for indicated fibroblast subclusters.
See also Supplementary Figure 5 and Supplementary Table 4.
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Figure 4. Age-related changes in (epi)-transcriptomic programs in T cell subclusters.

(a,c) UMAP visualization of based T and NK cell subclusters (left panel) along with differences in cell number ratios
with age (right panels) captured by scRNA-seq (n=6; t-test; *P<0.05, **P<0.01, ***P<0.001).

(b) Expression of marker genes in scRNA-seq subclusters.

(c) UMAP visualization of based T and NK cell subclusters (left panels) along with differences in cell number ratios with
age (right panels) captured by snATAC-sl(c) (n=3; t-test; *P<0.05, **P<0.01, ***P<0.001).

(d) Examples of marker genes that display chromatin accessibility signatures shown as pseudobulk snATAC-seq tracks
per cell subcluster.

(e) DE genes with age across replicates from pseudo-bulk scRNA-seq data related to cell function of memory CD4,
CD8 Gzmk*, and CD8 Gzmm™* immune subclusters.

(g-h) Examples of DE genes with DA peaks in memory CD4, CD8 Gzmk*and CD8 Gzmm* immune clusters in 3M vs.
18M mice. Normalized values are shown for individual cells (t-test; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, n.s.,
not significant), along with a pie chart depicting the percentage of expressing cells vs. non-expressing cells (left panel).
Pseudobulk snATAC-seq tracks in 3M vs. 18M mice are shown, along with gene structures and DA peaks (right panel).

(i) Examples of DE genes in yd T and MAIT cells subclusters in 3M vs. 18M mice. Normalized values are shown for
individual cells (t-test; **P<0.01, ***P<0.001, ****P<0.0001; n.s., not significant), along with a pie chart depicting the
percentage of expressing cells vs. non-expressing cells (left panel).

See also Supplementary Figures 6-7 and Supplementary Table 5.
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Figure 5. (Epi)transcriptomic landscape of dendritic cell and macrophage cells.

(a,c) UMAP visualization of myeloid subclusters (left panels) along with differences in cell number ratios in 18M vs. 3M
mice (right panels) captured by scRNA-seq (a) and snATAC-seq (c) (n=3-6; t-test; *P<0.05, **P<0.01, ***P<0.001).

(b) Expression of canonical marker genes in scRNA-seq DC and macrophage subclusters.

(d) Examples of cell cluster marker genes that display chromatin accessibility signatures shown as pseudobulk
sSnATAC-seq tracks per cell cluster.

(e) Expression of selected markers genes in scRNA-seq DC and macrophage subclusters.
(f) Averaged gene expression of the top ten DE genes in every subcluster vs. every other sScRNA-seq subcluster.

(g) Differential TF activity score per subcluster. Significant differential motifs compared to every other cluster (Bonferroni
Pagi<0.05) are colored, non-significant are in grey.

See also Supplementary Figure 8 and Supplementary Table 6.
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Figure 6. Cellular interactions are altered with age in the mammary gland.
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(a,b) Identification and annotation of spatial transcriptomics (ST) spots within aged mammary gland tissues. Each ST
spot is classified using the expression of selected marker genes (b) as an epithelial-enriched, immune-enriched, or
stromal-enriched ST cluster, and colored accordingly.

(c) Expression of indicated immune marker genes in ST spots in each mammary tissue after excluding the lymph node.
Zoomed-in images show ST spots located near epithelial ducts as identified based on H&E staining (ST clusters
epithelial-enriched, immune-enriched, or stromal-enriched are colored). Dot plot shows the fraction of ST spots
expressing the marker gene per ST cluster (epithelial-enriched, immune-enriched, or stromal-enriched) colored by
mean expression.

(d,g.j) Ligand-receptor interactions inferred from scRNA-seq using CellPhoneDB between epithelial or fibroblast vs.
CD8 Gzmk* clusters (d), CD8 Gzmk* vs. epithelial or fibroblast clusters (g), and yd T cells vs. epithelial or fibroblast
clusters (j). Dot size represents P-value scaled to a negative logio values, color represents the mean of the average
expression of the first interacting molecule in the first cluster and second interacting molecule in the second cluster.

(e,h,k) Expression of indicated ligand-receptor pairs in ST spots in each mammary tissue after excluding the lymph
node (ST clusters epithelial-enriched, immune-enriched, or stromal-enriched are colored). Dot plot shows the fraction
of ST spots expressing the gene pair per ST cluster (epithelial-enriched, immune-enriched, or stromal-enriched),
colored by normalized proportion.

(f,i,I) Co-localization of ST spots expressing indicated immune marker gene (yellow) and ligand-receptor pair (blue) in
each mammary tissue after excluding the lymph node. Zoomed-in images show example of co-occurring (green) or
directly adjacent ST spots located near epithelial ducts as identified based on H&E staining (ST clusters epithelial-
enriched, immune-enriched, or stromal-enriched are colored).

See also Supplementary Figure 9.
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Figure 7. Age-related differentially expressed genes are found in human aged breast tissues and human

breast tumors.
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(a,c) Overlap between DE genes in luminal HS (a) or AV (c) cells from 18M vs. 3M mouse (n=6 per age) and DE
genes in TCGA human luminal A (n=547) or luminal B (n=207) tumors vs. normal breast tissues (n=112)
(log2FC>|0.5|, Padj< 0.05). Only the top 25 significant upregulated or downregulated genes changing in the same
direction are shown. P-values are indicated.

(b,d) Examples of overlapping DE genes from a,c. Normalized values are shown from single cell analysis of luminal
HS (b) or AV (d) cells from 3M vs. 18M mice (t-test), along with a pie chart depicting the percentage of expressing
cells vs. non-expressing cells (left panel). Normalized values are shown for normal tissue (n=112) and TCGA luminal
A (n=547) and B tumors (n=207) (t-test) (right panel). P-values are indicated.

(e,f) Examples of DE fibroblast (e) and T cell (f) marker genes in 3M vs. 18M mice and DE genes from TCGA
human luminal A (n=547) or luminal B (n=207) tumors vs. normal breast tissues (n=112). Normalized values are
shown from single cell analysis of fibroblast or T cells from 3M vs. 18M mice (t-test), along with a pie chart depicting
the percentage of expressing cells vs. non-expressing cells (left panel). Normalized values are shown for normal
tissue (n=112) and TCGA luminal A (n=547) and B tumors (n=207) (t-test) (right panel). P-values are indicated.

See also Supplementary Figure 10 and Supplementary Table 8.
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