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Abstract 

Aging is the greatest risk factor for breast cancer; however, how age-related cellular and 
molecular events impact cancer initiation is unknown. We investigate how aging rewires 
transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, 
yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit 
epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated 
genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of 
senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets 
(Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics 
reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional 
signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic 
links between aging and cancer. Together, these data uncover that epithelial, immune, and 
stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged 
microenvironment, and neoplasia risk.  
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Main 

Age is the greatest risk factor for breast cancer, with two thirds of cancers occurring in 
women over 501. Understanding the cellular and molecular changes occurring in mammary cells 
during aging can reveal novel insights into the biology of aging-related cancer initiation. With 
age, the mammary gland undergoes extensive dynamic remodeling at the cellular and 
molecular level. Mammary tissues are composed of ducting-forming epithelial cells embedded in 
a stromal compartment that contains fibroblasts, vascular and endothelial cells, immune cells, 
and adipocytes. Two main epithelial cell types are of critical importance for mammary functions: 
i)  luminal epithelial cells which form the inner layer of mammary ducts and from which most 
breast cancers originate2, and ii) myoepithelial/basal cells which surround the luminal layer and 
act to limit epithelial cell dissemination3. Luminal cells are extremely sensitive to changes in their 
microenvironment, and their transcriptional regulatory programs can be influenced by age-
related changes in myoepithelial cells4. Several studies also have reported changes in epithelial 
cell proportions with age in mouse or human breast tissues, as well as decreased lineage 
fidelity4-10. While a number of studies have catalogued changes in epithelial cell populations 
during mouse mammary gland development and pregnancy11-19, our knowledge of the other cell 
types and their contributions in the mammary gland during aging remains limited9,20. In addition, 
the underlying molecular drivers of these age-dependent changes in mammary epithelial, 
stromal, and immune cell types are poorly understood.  

Aging is associated with widespread alterations in epigenetic, transcriptional, and post-
transcriptional programs across multiple cell and tissue types5,9,21,22. Among these, epigenetic 
alterations are considered a hallmark of aging across species and determine gene activity22,23. 
Age-related epigenetic changes have been observed in many tissues in humans and mice, 
including changes in chromatin accessibility with age in multiple tissues23,24

. In mammary 
tissues, single cell profiling of the chromatin landscape revealed distinct epithelial subtypes25,26 
in young adult mice; yet how aging impacts these chromatin accessibility profiles remains to be 
characterized. In aged human luminal epithelial cells exhibit distinct methylation patterns that 
impact genes involved in lineage fidelity and breast cancer susceptibility27,28, supporting the 
hypothesis that changes in chromatin accessibility are critical in aging. Finally, aging of the 
microenvironment triggers DNA methylation and gene expression changes in human luminal 
epithelial cells in vitro4, suggesting a complex role for epigenetic programs in mammary tissue 
aging that remains to be thoroughly investigated.    

Here, we leveraged single-cell RNA-sequencing (scRNA-seq) and single nucleus ATAC-
sequencing (snATAC-seq) technologies to comprehensively study, for the first time, both gene 
expression and chromatin accessibility programs during mammary gland aging in mice. We 
utilized a mouse model as longitudinal and well-controlled studies that are not possible in 
humans, mice exhibit age-dependent changes in epigenetics programs in other tissues22,23, and 
mouse and human mammary gland share structural and functional similarities; thereby making 
the mouse an effective model both for aging and breast cancer biology29-34. Our aging mammary 
gland atlas captured epithelial, immune, and stromal cells at high resolution, enabling in-depth 
subclustering analyses and detection of age-related changes (https://mga.jax.org/). We 
uncovered cell compositional changes along with transcriptomic and epigenomic changes within 
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mammary tissues with age. By integrating expression and chromatin accessibility data, we 
provided mechanistic insights into the transcriptional programs regulating mammary glands 
aging. With age, epithelial, immune, and stromal clusters exhibited decreased expression of cell 
identity marker genes, suggesting decreased lineage fidelity and increased cell plasticity. We 
also identified gene expression and chromatin accessibility changes in cancer-associated genes 
and pathways, senescence marker genes, and markers of inflammation. Further, using spatial 
transcriptomics we localized a subset of the age-related cell types identified in scRNAseq and 
investigated predicted cell co-localization patterns. Finally, by integrating expression data from 
human tumors, we identified age-related signatures of mammary cells that are found in human 
breast tumors, suggesting these could be mechanistically linked with preneoplasia.  

 

Results 

Mammary glands undergo cell compositional changes with aging 

To characterize the regulatory landscapes of aging mammary tissues, we isolated 
mammary glands from co-housed young adult (3 month) and older (18 month) virgin female 
C57BL/6J mice, which correspond to 20-30 year-old and >55 year-old humans35. Mammary 
tissues were dissociated using a two-step lysis protocol (See Methods) which includes a 
shorter, gentle digestion to better preserve viable immune cells and a longer digestion to 
recover epithelial and stromal cells. Gene expression and chromatin accessibility in viable, 
dissociated single cells were then profiled using 10X chromium scRNA-seq (n=6 replicates per 
age, where 3 mice are pooled per replicate) and matched snATAC-seq from half of the samples 
(n=3 replicates per age, 3 mice pooled per replicate) (Fig. 1a-c and Supplementary Table 
1a,b). Total cell and detected gene numbers were similar between samples from young and old 
mice (Supplementary Fig. 1a,b and Supplementary Table 1a,b). Initial cell clustering of 
scRNA-seq data36 revealed three epithelial clusters (luminal AV; luminal HS; myoepithelial), five 
immune cell clusters (naïve T cells; memory T & natural killer (NK) cells; plasma cells; dendritic 
cells (DCs) & macrophages; B cells), and three stromal cell clusters (fibroblasts; pericytes; 
vascular) that are annotated using the expression of well-established marker genes9,16; we also 
captured these cell clusters in snATAC-seq data (Fig. 1b,c, Supplementary Fig. 1c and 2, and 
Supplementary Table 2a). Cell compositional analysis revealed consistent changes between 
replicates in scRNA-seq and snATAC-seq data (Fig. 1d,e and Supplementary Fig. 1d and 
Supplementary Table 2b,c). In epithelial cells (n=7,308), two luminal subtypes - alveolar (AV) 
(n=2,843, expressing Csn3, Trf, Mfge8) and hormone sensing (HS) (n=1,494, expressing Esr1, 
Cited1, Prlr) cells both significantly decreased in proportion with age, while cells expressing 
myoepithelial markers (n=2,971, expressing Krt17, Acta2, Myl9) increased with age (Fig. 1d,e 
and Supplementary Fig. 1d). The decrease in luminal HS cells with age was consistent with a 
recent mouse study9, and reminiscent of the age-dependent shift in cell identity from luminal to 
myoepithelial-like cells in human breast4. For immune cells (n=36,100, expressing Ptprc), aged 
animals had higher proportions of myeloid cells (n=3,485, expressing Itgax or C1qa), plasma 
cells (n=116, expressing Jchain), and memory T cells (n=6,684, expressing Cd3d and S100a4), 
while numbers of naïve T cells (n=13,771, expressing Cd3d and Sell) decreased significantly 

(Fig. 1d,e and Supplementary Fig. 1d). A similar bias towards the myeloid lineage at the 
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expense of lymphoid cells is also seen in the blood of aged mice20,37, and in bone marrow 
samples from healthy human donors38. Finally, fibroblasts (n=3,130, expressing Fn1 and 
Col1a1) significantly increased with age in the mammary gland stroma (Fig. 1d,e and 
Supplementary Fig. 1d). In summary, aging was associated with significant changes in cell 
compositions within all three cell populations we captured in the mammary gland tissue, i.e., 
epithelial, immune, and stromal cells.  

 

Aged epithelial cell subtypes display changes in gene expression and chromatin 
landscapes in cancer-associated genes 

In addition to the epithelial cell compositional changes, we also detected cell-intrinsic 
gene expression and chromatin accessibility changes with age. We observed opposite 
expression patterns across epithelial subtypes, with luminal cells displaying a bias towards 
upregulated genes whereas myoepithelial cells exhibited more downregulated genes (Fig. 2a 
and Supplementary Table 3a). Overall, 80%, 71%, and 82% of age-related differentially 
expressed (DE) genes in luminal AV, HS, and myoepithelial cells respectively were cell-type 
specific; however, 29 genes were shared across all three epithelial cell types, potentially 
representing a general aging signature (Supplementary Fig. 3a and Supplementary Table 
3b). These shared genes included downregulation of ribosomal proteins (e.g., Rplp1, Rpl5, 
Rpl7a, Rpl26, Rpl36al, Rps6, Rps14, Rps23) and upregulation interferon gamma-related genes 
(e.g., Ccl5, B2m, H2-D1, H2-K1, H2-Q6, H2-Q7, H2-T22, Ifi47, Stat1, Psmb8) – reflecting two 
common trends in aging39,40. Interestingly, aged luminal epithelial cells, and in particular AV and 
HS cells, exhibited increased expression of genes with tumor suppressive activity41 (Fig. 2b) 
suggesting that aged mammary cells might activate tumor suppressor mechanisms to prevent 
cancer. In addition, multiple cancer hallmarks gene sets from the Molecular Signatures 
Database (MSigDB) were significantly differentially expressed with age across cell clusters: 
epithelial-to-mesenchymal transition (EMT) signaling was upregulated in all epithelial cells and 
largely downregulated in myoepithelial cells; mTORC signaling was upregulated in luminal HS 
and downregulated in luminal AV, HS, and myoepithelial cells; estrogen response was 
upregulated in all cell types; p53 signaling was downregulated in all luminal and upregulated in 
myoepithelial; whereas MYC target genes were upregulated in luminal AV and downregulated in 
both luminal HS and myoepithelial. Finally, inflammatory response genes were upregulated in 
luminal AV and myoepithelial cells, hypoxia was upregulated in luminal AV and myoepithelial 
and downregulated in all three cell types, and TNF� signaling was downregulated in both 
luminal cell types and upregulated myoepithelial cells (Supplementary Fig. 3b and 
Supplementary Table 3c).  

Along with gene expression changes, we also detected age-related changes in 
chromatin accessibility including: 3,038 peaks opening and 1,500 closing with age in luminal AV 
cells; 2,651 peaks opening and 4,256 closing in luminal HS; and 2,270 peaks opening and 
2,371 closing in myoepithelial cells (Fig. 2c and Supplementary Table 3d). Most of these 
chromatin accessibility changes were cell type specific, with only 260 genes with differentially 
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accessible (DA) peaks shared across cell clusters (Supplementary Fig. 3c and 
Supplementary Table 3e). Roughly 25% DA peaks were detected in promoter regions and 
remaining peaks were detected within exons, introns, UTRs, and intergenic regions 
(Supplementary Fig. 3d). Like gene expression changes, DA peaks were significantly 
associated with MSigDB cancer hallmarks gene sets, including estrogen response (opening in 
all epithelial cell types), hypoxia (opening in all epithelial cell types and closing in luminal HS), 
inflammatory response (opening in luminal HS and myoepithelial cells), and TNF� signaling 
(opening in all epithelial cell types) (Supplementary Fig. 3e and Supplementary Table 3f). To 
define putative regulators of age-related transcriptional changes in each cell type, we conducted 
ChromVar analyses42 to infer transcription factor (TF) activity based on chromatin accessibility 
levels associated with TF binding sites in young and old samples (Fig. 2d). Luminal AV cells 
displayed increased activity of AP-1 factors (JUN, FOS) and NFκB family members (including 
RELA/B) with age, which are involved in regulating pro-inflammatory responses. Whereas 
luminal HS cells displayed increased activity of tumor suppressor TP53 and family members 
and decreased activity of FOS and JUN with age (Fig. 2d and Supplementary Table 3g). In 
addition to changes in TF activity, cells from aged animals also exhibited changes in TF 
expression, with upregulation of Fos in luminal AV cells and decreased expression of JUN 
family members in luminal HS (Supplementary Fig. 3f).  

We identified the top DE genes with age per cluster (Fig. 2e and Supplementary Table 
3a) and noted several genes associated with prior studies of normal gland function or breast 
cancer including decreased expression of Fndc4 in luminal AV cells, which encodes an 
extracellular matrix (ECM) protein associated with anti-inflammatory activity43 (Fig. 2f). Cells 
from aged mice also exhibit closing of a DA peak in the promoter region of Fndc4, suggesting 
regulation at the epigenetic level (Fig. 2f). Conversely, with age both the expression and 
promoter accessibility of the Haptoglobin (Hp), a gene implicated in metabolic reprogramming 
and breast cancer44, increase in luminal AV cells (Fig. 2g). In luminal HS cells, Pygl and 
Epb41l3 are upregulated with age, accompanied by opening of a DA peak in their respective 
promoter regions (Fig. 2h,i). Pygl encodes the glycogen phosphorylase L, an enzyme critical for 
sugar metabolism45 and has been linked with metabolic control in normal and breast cancer 
cells46. Epb41l3 is a tumor suppressor, often found demethylated in breast tumors47, and has 
been shown to inhibit cell proliferation, promote apoptosis, and modulate the activity of protein 
arginine N-methyltransferases47. Furthermore, aged myoepithelial cells expressed more Fli1 
and Prxx1 and displayed opening of DA peaks in their respective promoter regions (Fig. 2j,k). 
Expression of the TFs Fli1 and Prxx1 has been previously associated with breast cancer, with 
the proto-oncogene Fli1 playing a role in cell proliferation48, whereas Prxx1 acts as an activator 
of EMT and promotes drug resistance via PTEN/PI3K/AKT signaling49,50. Furthermore, each of 
the DA peaks in Fndc4, Hp, Pygl, Epb41l3, Fli1, and Prxx1 also contain putative binding motifs51 
for TFs with differential activity in old vs. young as reported above (Fig. 2d); these included 
BACH2 and FOX family members in luminal AV, FOS and TFAP2 family members in luminal 
HS, and IRF and LBX1 in myoepithelial cells (Fig. 2f-k). Finally, additional genes that exhibited 
both age-related expression and chromatin accessibility changes and were previously 
associated either with mammary gland function or with cancer initiation and progression include: 
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i) Pdk4, a pyruvate dehydrogenase kinase 4 implicated in glucose metabolism52,53; ii) Rspo1, a 
Wnt signaling agonist important in stem cell regulation54; iii) Alox12e, an arachidonate 
lipoxygenase involved in lipid metabolism55; iv) Agtr1a, an angiotensin II receptor associated 
with angiogenesis and cell proliferation56-58; v) Stk32a, a serine-threonine kinase overexpressed 
in breast tumors59,60; vi) Rbms1, an RNA-binding protein that regulates PD-L1 expression 61; vii) 
Rgs4, a suppressor of breast cancer migration62,63; viii) Lgasl3bp, a glycoprotein associated with 
poor prognosis64,65;  and ix) Brinp3, a gene involved in myoepithelial differentiation66 
(Supplementary Fig. 3g-i).  

Several DE genes (n=69) in mouse luminal cells were also detected in a recent study of 
aged human luminal epithelial cells in vitro67 (Supplementary Table 3h). Shared aging patterns 
between human and mice include the upregulation of: i) Fkbp5, a regulator of AKT and NFκB 
pathways, as well as of the androgen–receptor complex, and mostly known for being the target 
of the drug Rapamycin68; ii) stromal type IV collagen Col4a6, a protein that is often upregulated 
in metastatic breast tumors69; iii) Ifi204, an interferon activated protein implicated in DNA repair 
and STING-mediated type-I interferon production70; iv) Slk, a kinase involved in cell migration 
downstream of Erbb271; and downregulation of v) epithelia-specific TF Elf5, a known marker of 
luminal aging in humans72;  vi) Ntn4, a regulator of EMT in breast cancer73; v) Tead2, a TF that 
belongs to the family of nuclear effectors of the Hippo, TNF, and Wnt pathways74.  

Together these data suggest that aging had a profound effect on the epigenomic and 
transcriptional programs of epithelial cells in the mammary gland tissue with conserved changes 
between human and mouse cells.  

 

Distinct epithelial subpopulations are associated with the expression of cancer-
associated genes and loss of cell identity markers with age 

 To further define the expression signatures of epithelial cells and deconvolute age-
related changes in cell populations, we performed unsupervised subclustering of the three 
identified epithelial cell populations and uncovered three luminal HS (Epi-C1 to C3), four luminal 
AV (Epi-C4 to C7), and four myoepithelial (Epi-C8 to C11) subclusters (Supplementary Fig. 4a, 
Supplementary Table 3i).  While these subclusters shared similar expression patterns, we also 
detected subcluster specific expression patterns, potentially reflecting changes in cell states 
(Supplementary Fig. 4b and Supplementary Table 3j). Subclusters Epi-C8, Epi-C6, and Epi-
C2 significantly expanded with age, while Epi-C1 significantly decreased with age 
(Supplementary Fig. 4c-e).  

In the luminal HS subclusters, cells from Epi-C1, which decreased with age, are defined 
by the expression of the Rcan1 tumor suppressor75 (Supplementary Fig. 4f,g). Cells from Epi-
C2, which significantly increased with age, expressed Fxyd2, a ductal-cell subcluster marker 
gene16, and Tph1, both of which are implicated in mammary gland biology including mammary 
expansion and milk production76 (Supplementary Fig. 4f,g). Furthermore, Epi-C2 expressed 
Fam3c, a molecule that belongs to family of cytokines mainly expressed in highly proliferative 
tissue, and that play a core role in the activation of ERK1/2 and p38MAPK signaling. Increased 
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expression of FAM3C, also known as Interleukin-like EMT inducer (ILEI), has been observed in 
different cancers including breast cancer and this gene has been suggested to play roles in 
tumorigenesis, metastasis, and poor cancer survival77-79 (Supplementary Fig. 4f). Finally, cells 
from a small subcluster Epi-C3 (n=97), which trend toward a decrease with age, expressed 
marker genes of luminal HS, luminal AV, and progenitor cells, reminiscent of a recently 
proposed luminal HS-AV cluster9,16 (Supplementary Fig. 4f,g).  

Among the luminal AV subclusters, both Epi-C4 and Epi-C5 more highly expressed 
Hey1, a downstream effector of Notch signaling, and Thioredoxin (Txnip), a tumor suppressor80 
(Supplementary Fig. 4f). Epi-C4 trended towards depletion in older animals and expressed 
increased levels of luminal AV marker genes (e.g., Csn3, Mfge8, Cst3, and Igfbp5) compared to 
Epi-C5-C7 (Supplementary Fig. 4f,h); possibly suggesting a partial loss of cell identity with 
age. Epi-C6, significantly enriched with age, expressed lipoxygenase genes, Alox15 and 
Alox12e, thought to regulate inflammation55,81,82 and Palmd, a target of p53 and regulator of 
apoptosis83 (Supplementary Fig. 4f,h). Cells from both Epi-C5 and Epi-C6 expressed Rspo1, a 
regulator of the canonical Wnt/β-catenin-dependent pathway and non-canonical Wnt signaling, 
which promotes stem cell self-renewal84. Finally, Epi-C7 expressed several cycling markers 
(e.g., Mki67, Cdk1, Stmn1), like cells described during mammary gland development16. Though 
Epi-C7 did not significantly increase with age, it represented a small subcluster (n=108) and 
showed a trend towards expansion in multiple replicates (Supplementary Fig. 4f,h).  

In the myoepithelial subclusters, cells from Epi-C8 which were significantly more 
abundant  in older animals, exhibited decreased expression of Krt17 and Krt5  compared to 
other clusters (Supplementary Fig. 4i), suggesting a loss of cell identity markers with age. 
Further, cells from Epi-C9, which did not change with age but decreased in proportion to other 
cell types in older animals, expressed subcluster-specific marker genes (e.g.,Tagln, Postn, and 
Actg2), as well myoepithelial markers genes (e.g., Krt17 and Krt5) (Supplementary Fig. 4i,j). 
Finally, Epi-C11 expressed a strong inflammatory and interferon gamma signature (e.g., Ccl2, 
Cxcl10, Irgm1, Stat1) (Supplementary Fig. 4i); however, Epi-C11 cells originated mostly from 
one replicate (Supplementary Table 3i), and therefore this proinflammatory population should 
be further investigated.  

Finally, we also conducted differential expression analyses within subclusters with >100 
cells per age to detect age-related DE genes, revealing aging- or cancer-associated genes 
changing with age in epithelial subclusters (Supplementary Fig. 4e, 4k and Supplementary 
Table 3k). For example, increased expression of Igfals, which encodes a serum protein that 
binds insulin-like growth factors, is detected in Epi-C1 cells. Conversely decreased expression 
of TF Sox9 is detected in Epi-C1, but also in Epi-C2. Sox9 is a master regulator of cell fate in 
breast cancer, and is frequently upregulated during breast cancer progression85. Another 
downregulated target with age in Epi-C2 is Arid5b, a TF linked with oncogenic signaling and 
MYC activation in T-cell acute lymphoblastic leukemia86. Other examples of age-induced 
expression changes include: upregulation of Pdk4 in Epi-C4; in Epi-C5 upregulation of Rbm3, 
an RNA binding protein upregulated in ER+ breast tumors87; in Epi-C8 upregulation of Tspan8 
which has been shown to promote the expression of stem cell markers and pluripotency 
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transcription factors SOX2, OCT4, and NANOG in breast cancer cells, and lead to tumor 
formation in model systems88. Finally, Sfrp2 which is upregulated with age in Epi-C8 and Epi-
C9, encodes a secreted protein that plays a role in canonical and non-canonical Wnt signaling 
and is upregulated in serum of breast cancer patients89,90. 

In summary, age-related changes at the cluster and subcluster level suggest that with 
age, murine mammary gland epithelial cells display changes in cell proportions, chromatin 
accessibility and gene expression of age-related and cancer-related genes. 

 

Fibroblasts increase in numbers with age and express ECM protein genes and 
senescence markers 
 In the stroma, fibroblasts (n=2,981), pericytes (n=226), and vascular (n=625) cells 
showed both age-related gene expression and chromatin accessibility changes (Fig. 3a,b and 
Supplementary Table 4a,c). At the gene expression level, fibroblasts displayed the greatest 
number of DE genes (160 upregulated, 264 downregulated) compared to vascular cells (11 
upregulated, 35 downregulated) and pericytes (no DE genes) (Fig. 3a and Supplementary 
Table 4a). At the chromatin level, 3,007 DA peaks opening and 3,292 closing with age were 
detected in fibroblasts, 1,095 opening and 1,701 closing in vascular cells, as well as 945 
opening and 1,359 closing in pericytes (Fig. 3b and Supplementary Table 4c). We further 
focused our analysis on mammary fibroblasts due to their robust changes with age (cell 
composition, gene expression, and chromatin accessibility) and their critical role in the 
development and maintenance of the mammary gland- including extracellular matrix (ECM) 
deposition and remodeling, paracrine signals, and interactions with epithelial cells91-93. Gene set 
enrichment analysis of DE genes in fibroblasts revealed an increased expression of genes 
related to TNFα signaling (including Fos and Jun family members) and senescence-associated 
secretory proteins (notably Cdkn1a and Cdkn2a), and a decrease in EMT-related genes 
(including several collagens) and translation-related genes, a known hallmark of aging39 
(Supplementary Fig. 5a and Supplementary Table 4b). At the chromatin level, roughly 20% of 
DA peaks were found in promoter regions (Supplementary Fig. 5c). ChromVar analyses 
suggested a significant decrease of activity of fibrosis and EMT-related factors Twist1, Tcf12 
and Nfya with age, along with increased activity of Hand294-96 (Supplementary Fig. 5d and 
Supplementary Table 4e). Genes associated with opening DA peaks were enriched in TNFα 
signaling, pro-inflammatory, and breast cancer related gene sets (Supplementary Fig. 5b and 
Supplementary Table 4d), similar to pathways describe in age-related fibroblast DE genes.  

Examples genes that go through concordant transcriptional and epigenetic changes with 
age in mammary fibroblasts include (Supplementary Fig. 5e): i) activation of Ets1, a TF that 
may contribute to senescent phenotypes and tumor invasiveness97,98; ii) inactivation of Ace, an 
angiotensin I-converting enzyme gene; iii) activation of Ptges, which encodes a key enzyme in 
prostaglandin E2 expression. Cancer-associated fibroblasts have been shown to produce 
prostaglandin E299, and upregulation of PTEGS has been linked with hormone-dependent 
breast cancer growth by impacting estrogen feedback mechanisms100; iv) Enpp5, a 
transmembrane protein involved in nucleotide metabolism, is upregulated with age and exhibits 
peak opening in its promoter, and is also overexpressed in triple negative breast cancer101. 
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Finally, while adipocytes were largely excluded in our 10X approach due to the lysis protocol, 
adipocyte bouyancy, and size constraints of cell sorting, we detected expression changes in 
adipose-related genes. For example, we detected an upregulation of fatty acid binding protein 4, 
Fapb4, with age and concordant age-related peak opening at the chromatin level (Fig. 3c). 
Fapb4, is critical for fatty acid transport and has been shown to promote breast tumorigenesis 
and metastasis102. These examples illustrated how age-related changes in epigenetics and 
transcriptomic programs impact the expression of cancer-related genes in the stroma, some of 
which may play a role in shaping the aged micro-environment.  

To further dissect the expression patterns of senescence- and cancer-related genes in 
fibroblasts, we performed subclustering of the fibroblasts, pericytes, and vascular cells to better 
resolve the stromal populations and identified eleven subclusters (Fib-C0 to C11) 
(Supplementary Fig. 5f-h, and Supplementary Table 4f,4g). Among the eleven stromal 
subclusters, Fib-C0 to C5 expressed fibroblast marker genes (e.g., Col1a1+, Pdgfra+) (Fig. 
3d,e), and could be further subclassified into two classes of universal fibroblasts: Col15a1+ 
fibroblasts that secrete basement membrane proteins (Fib-C0 to C3) and Pi16+ fibroblasts that 
may develop into specialized fibroblasts103 (Fib-C4) (Fig. 3e and Supplementary Fig. 5i). 
These correspond to ECM-remodeling (Fib-C0 and Fib-C1), high adipogenic capacity (Fib-C2), 
adipo-regulatory (Fib-C3), or Dpp4+ fibroblasts (Fib-C4) clusters as described in younger 
animals104. While the expression of pericyte and fibroblast markers by Fib-C5 (e.g., Rgs5+, 
Des+) was suggestive of a doublet cluster, these cells specifically expressed inflammatory and 
contractile markers as well as markers of fibroblastic reticular cells (Ccl19+) and potential 
mesenchymal stromal and osteolineage cells (Cxcl12+)103, potentially suggesting a specialized 
identity (Fig. 3e and Supplementary Fig. 5i). Subclustering analysis revealed that Fib-C2, Fib-
C0, and Fib-C4 showed the greatest statistically significant increases in number with age (Fig. 
3f and Supplementary Fig. 5f), with the most striking ~6-fold increase in Fib-C2 (Fig. 3f). 
Interestingly, compared to other clusters, Fib-C2 expressed a different repertoire of ECM 
proteins, including a reduced expression of fibronectin Fn1, a classical marker of fibroblast, and 
an increased expression of several collagens including Col6a3, Col5a3, Col4a1, and Col4a2 
(Fig. 3e,g and Supplementary Fig. 5h). This suggested a shift towards loss of cell identity or 
change in cell plasticity in Fib-C2 with age compared to the other fibroblast subclusters, 
especially Fib-C4 which expressed Fn1 at high levels (Fig. 3e,g and Supplementary Fig. 5h). 
Fib-C2 expressed several genes related to lipid metabolism suggesting an adipogenesis 
commitment104 (e.g., Lpl, Fabp4, and Pparg) as well as Fap, a well-established marker gene for 
cancer-associated fibroblasts105,106 (Fig. 3e,h), but lacked adipocyte marker genes (e.g., Adipoq 
and Plin1). Furthermore, scRNA-seq also revealed that old mammary glands have more stromal 
cells expressing well-defined senescence markers Cdkn2a (encoding p21) and Cdkn1a 
(encoding p16) compared to younger tissues (Fig. 3i,j, Supplementary Fig. 5j and 
Supplementary Table 4a). Cdkn2a was primarily expressed by Fib-C0 which expanded with 
age, whereas Cdkn1a was more universally expressed (Fig. 3i).  

Finally, we performed differential gene expression analysis on fibroblast subclusters with 
>100 cells per age and identified age-related differences in cancer- or aging-associated genes 
in Fib-C0, Fib-C2, Fib-C3, and Fib-C4 (Fig. 3k). For example, expression of senescence 
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markers Cdkn1a increased in older cells in Fib-C2 and Fib-C0, while expression of pleiotrophin 
Ptn, a secretory growth factor decreased (Fig. 3k). Pleiotrophin promotes the expression of 
vascular endothelial growth factor VEGF and angiogenesis and has been associated with breast 
cancer progression107,108. Aged cells from Fib-C4 downregulated five out of the ten genes 
(Gpx3, Spon1, Plac8, Ctsh, Col3a1) recently implicated in estrogen response of Dpp4+ 
fibroblasts104, suggesting a decline with age in responsiveness to this hormone 
(Supplementary Table 4e). Fib-C4 also exhibited upregulated levels of Ntn4, a protein 
associated with breast cancer cell migration and invasion via regulation of EMT-related genes73 
(Fig. 3k). Finally, with age Fib-C3 decreased expression of Meg3, a long noncoding RNA 
(lncRNA) implicated as a tumor suppressor gene in several human cancer types, including in 
breast cancer where it activates ER stress, NF-κB and p53 pathways109 (Fig. 3k). 

Overall, our data suggested that transcriptomic and epigenomic profiles of stromal cells 
are remodeled during mammary gland aging, with increased fibroblasts populations expressing 
distinct sets of ECM matrix proteins as well as increased senescence markers and changed 
expression of fibroblast marker genes.  

 

Memory CD4+ and GZMK-expressing T cell subsets significantly expand with age  

To investigate age-related changes of immune cells in the mammary gland, we analyzed 
lymphoid cells that displayed significant cell compositional changes with age, i.e., T and NK 
cells (Fig. 1). Further clustering uncovered ten subclusters among T and NK cells (n=20,455 
cells), corresponding to distinct populations of naïve (“Ccr7”) and memory (“S100a4”) CD4+ and 
CD8+ T cell subsets, γδ & MAIT cells (“Trdc”, “Zbtb16), as well NK cells (“Ncr1”) (Fig. 4a,b and 
Supplementary Fig. 6a,b and Supplementary Tables 5a-e). As expected, we observed a 
significant decline in naïve CD4+ and CD8+ T cell percentages with age (Fig. 4a)110. In contrast, 
Gzmk+ T cells, memory CD4, γδ & MAIT cells, and NK cells expanded significantly with age 
(Fig. 4a). Gzmk+ T cells111 encompassed both CD8+ and CD4+ T cells and were found to be 
significantly expanded by ~30-fold with age (Fig. 4a, Supplementary Fig. 6c, Supplementary 
Table 5b). Gzmk+ T cells were characterized by the expression of Tox, Eomes, Pdcd1, and 
Lag3, which is in line with an exhaustion phenotype (Supplementary Fig 6a,d). The memory 
CD4+ T cells, which included regulatory T cells (Tregs; expression of Foxp3 and Il2ra, Ctla4) 
significantly expanded ~1.8-fold with age (Fig. 4b and Supplementary Fig. 6e Supplementary 
Table 5f). A fraction of Tregs exhibited Itgae (Cd103), which mediates cell migration and 
lymphocyte homing through interaction with epithelial cells, suggesting a tissue resident 
phenotype (Supplementary Fig. 6a,f).  

Epigenomic analyses of T and NK cells recapitulated the immune subsets and cell 
compositional changes revealed by scRNA-seq data (Fig. 4c). We detected a significant ~30-
fold expansion of Gzmk+ T cells with age in ATAC-seq data, whereas naïve T cell subsets 
significantly declined with age (Fig. 4c). Chromatin around the cell-type specific marker genes 
were more accessible in the relevant cell types (Fig. 4d), confirming our cell-type annotations. 
For example, the promoter of the Gzmk gene was the most accessible in Gzmk+ T cells, 
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whereas Gzmm promoter was the most accessible in Gzmm+ CD8+ T cells. The promoters of 
Pdcd1 and Ctla4 were highly accessible in Gzmk+ T and memory CD4+ subsets (Fig. 4d). The 
loci around Ccl5 and T-Box TF Eomes were highly accessible in Gzmk+ T cells and Gzmm+ 
CD8+ T cells (Fig. 4d). 

To further describe epigenetic programs of these immune subsets, we conducted 
ChromVar analyses, which revealed that cytotoxic cells including age-associated Gzmk+ T cells 
had increased activity for several T-Box TFs, including EOMES, TBX1-6 (Supplementary Fig. 
6g, Supplementary Table 5h). Eomes was also significantly expressed in these cells, thereby 
supporting the previous observations in spleen111 regarding its role as a potential transcriptional 
regulator of Gzmk+ T cells expressing an exhausted signature. Interestingly, AP-1 complex 
members, particularly members of JUN and FOS family, were enriched in the memory CD4+ 
population that also significantly expanded with age, similar to findings from Tabula Senis20 
(Supplementary Fig. 6g). JUN/FOS TFs are important for regulating inflammatory responses 
and have been associated with aging and cancer in previous studies, and open chromatin 
regions of exhausted T cells have been shown to contain AP-1 binding motifs112-114. 

Overall, our data show an age-associated increase of a distinct Gzmk+ T cell subset 
exhibiting an exhaustion signature, as well as memory CD4+ T cells, including potentially tissue 
resident Tregs. 

 

Age-related changes in gene expression programs of memory T cells 

The analysis of cell-intrinsic age-related transcriptional changes within T and NK cells 
(old vs. young cells) revealed three memory T cell subclusters (Gzmm+ CD8+, Gzmk+ cells, and 
memory CD4+ subsets) that exhibited the most age-related changes, with 419, 365, and 182 DE 
genes with age, respectively (Supplementary Fig. 6h and Supplementary Table 5f). 
Annotation of these DE genes using immune modules115 and WikiPathways revealed that 
molecules associated with cytotoxicity (Gzmk, Gzmb, Prf1) are upregulated with age in Gzmk+ T 
cells and CD8+ Gzmm+ T cells (Supplementary Fig. 6i and Supplementary Table 5j). This 
suggested that in addition to the increase in abundance of cytotoxic cells, their level of 
cytotoxicity also changed with age. In addition, pro-inflammatory alarmins, S100a4 and S100a6 
molecules, were also upregulated with age in all three cell subclusters (Fig. 4e-g), and display 
open chromatin regions around these genes (Fig. 4f,g). Our results showed a shift from a naïve 
(in young cells) to a more effector cell state (in old mice), suggesting an age-associated cell 
state change (Fig. 4e). In all three subclusters, Ccl5 was significantly upregulated with age, 
suggesting that with age these cells switch to a more inflammatory and migratory states 
(Supplementary Fig. 6j). We also observed that checkpoint inhibitors are upregulated with age 
in Gzmk+ and memory CD4+ populations (Fig. 4h, Supplementary Figure 6j). Finally, 
downregulation of the protein synthesis machinery, including ribosomal genes, with age is one 
of the conserved hallmarks of aging across many tissues39, and is also observed across multiple 
immune cell populations in mammary tissues, notably in memory CD4+ and Gzmm+ CD8+ cells 
(Supplementary Table 5k). Cell scoring for senescence-associated genes (SenMayo 
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signature116), revealed an age-associated increase of senescence within CD8+ Isg15+, Gzmk+ T, 
and memory CD4+ T cells (Supplementary Fig. 6i). 

These differential results establish that, in addition to age-related cell-compositional 
changes, there were also cell-intrinsic gene expression changes associated within each subset, 
particularly in memory T cell subclusters. With age, these T cell subsets became fully 
differentiated, expressed senescence-associated genes, and upregulated check-point inhibitors. 

 

MAIT and γδ T cells significantly expand with age and express tissue homing molecule 
Itgae  

Along with MAIT cells, we also detected ‘unconventional’ γδ T cells117,118 which 
expressed TCR delta receptor Trdc, gamma variable Trgv2, and pro-inflammatory cytokine Il17a 
(Fig. 4a,b and Supplementary Fig. 6k). These cells play a role in cancer cell surveillance in the 
tissue and have been linked to favorable prognosis in solid human tumors119. In mammary 
tissues γδ T & MAIT cells significantly expanded by ~3-fold with age (Fig. 4a), similar to what 
was observed in aged lung and liver tissues111. These cells also highly expressed Itgae. We 
detected 148 DE genes with age in γδ T & MAIT cells (Supplementary Table 5f), including the 
upregulation of Ccl5 and chemokine receptor Cxcr3 - key immune chemoattractant during 
inflammatory responses-, as well as increased expression of Itgae and Tnf (Fig. 4a,e). Another 
molecule that was upregulated with age in γδ T & MAIT cells was Jag1 (Fig. 4e,i), which 
encodes the Jagged-1 protein that interacts with Notch proteins and is required to initiate Notch 
signaling, a critical mediator of cell differentiation, proliferation, and survival. Further, ChromVar 
analyses revealed γδT & MAIT cells had significant TF activity for tumor-suppressor TP53 as 
well as RAR-related orphan receptors (RORs).  

Together these data showed that with age, γδT &MAIT cells expanded with age and 
upregulated Itgae along with proinflammatory programs.  

 

Myeloid cell subsets expand with age 

Further clustering of myeloid cells (n=3,407) revealed seven major subclusters (Mye-C1 
to C7) captured by both scRNA-seq and snATAC-seq (Fig. 5a,c). These subclusters expressed 
marker genes for monocytes (e.g., S100a8, S100a9), M1-like macrophages (e.g., Cd86, Cd38), 
M2-like macrophages (e.g., Cd163, Mrc1), and conventional dendritic cells (DC) including 
markers for conventional Type 1 Dendritic Cells (cDC1) (e.g., Clec9a, Xcr1), and mature DCs 
enriched in immunoregulatory molecules' (mregDCs) (e.g., Ccr7, Fscn1)120 (Fig. 5b,d and 
Supplementary Fig. 6a and Supplementary Tables 6a-e).  

Cell compositional analysis of myeloid subclusters showed that Mye-C3, Mye-C5, Mye-
C1, and Mye-C6 significantly increased in proportion with age (Fig. 5a,c). Mye-C3 significantly 
expanded by ~4-fold with age (Fig. 5a,c) and expressed markers associated with M2 
macrophages including receptors Mrc1 (aka Cd206) and Cd163121-123 (Fig. 5b,e and 
Supplementary Fig. 7a). M2 macrophages mediate tissue repair, resolve of inflammation, and 
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share similarities with tumor-associated macrophages121,124. The top DE genes for this cluster 
included chemokines Ccl7 and Ccl8, suggesting their ability to recruit other immune cells 
including memory T cells to the tissue (Fig. 5f). This finding is consistent with age-related 
increases in human breast, particularly in the intralobular stroma123. On the other hand, Mye-C2 
did not significantly change with age and expressed pro-inflammatory M1 macrophage marker 
genes including matrix metalloproteinases Mmp12 and Mmp13 that regulate inflammatory 
responses125, as well as surface receptor Cd86 that provides costimulatory signals for T cell 
activation126 (Fig. 5e,f). Another myeloid cluster that significantly expanded by ~2.5-fold with 
age is Mye-C5, which expressed interferon stimulated genes (ISGs), including Ifitm3 and 
Ifi27l2a, (Fig. 5a,c,f and Supplementary Fig. 7b). Mye-C5 also highly expressed Cebpb (Fig. 
5f and Supplementary Table 6c), a TF that regulates the expression of genes involved in 
immune and inflammatory responses including IL-1 and IL-6. ChromVar analyses showed 
increased variation in CEBP binding sites in cluster Mye-C5 (Fig. 5g and Supplementary Table 
6e), in alignment with the gene expression signatures. While not changing with age, cluster 
Mye-C4 co-expressed immuno-regulatory genes (e.g., Cd274) and maturation genes (e.g., 
Ccr7, Cd40) (Fig. 5b and Supplementary Fig. 7a). These markers genes are consistent with a 
recently described mregDC population in lung tissue in both mice and human120.  As previously 
reported120, cluster Mye-C4 also highly and specifically expressed Fscn1, a gene involved in cell 
migration and cellular interactions (Fig. 5b,e).  Overall, age-related transcriptional changes in 
myeloid cells were restricted to a few molecules (Supplementary Table 6f), suggesting that 
there are more cell compositional changes with age than cell intrinsic changes. Further, the 
increases in M2-like cells that are anti-inflammatory and linked with tumor progression suggest 
a potentially interesting link between aging of immune cells and breast cancer risk. 

 
Spatial investigation of cell-cell interactions in aged mammary gland 

We generated spatial transcriptomic (ST) data using the 10X Visium platform on two 
mammary glands from aged 18-month-old mice (ST1 and ST2) to spatially investigate age-
related cell types and co-occurrence of epithelial, immune and fibroblast cells in situ. Using the 
expression of marker genes, we identified six ST clusters: one epithelial-enriched ST cluster, 
one immune-enriched ST cluster, and four stromal-enriched ST clusters (Fig. 6a,b and 
Supplementary Fig. 8a,b). By histopathology, the mammary gland can be divided into regions 
with adipose tissue, connective tissue, epithelial-rich regions, and lymph nodes. Encouragingly, 
the ST annotations largely matched with the tissue annotation from H&E staining: immune-
enriched spots corresponded to the lymph node region (Immune), whereas epithelial-enriched 
spots matched with the location of mammary ducts (Epithelial). The cell types captured in ST 
largely resembled the cell types identified in our single cell data. In addition, ST data allowed us 
to capture adipocytes, which were largely lost during tissue dissociation in scRNA-seq and 
snATAC-seq. Of the four stromal ST clusters, stromal ST cluster 2 (Stroma2) was enriched in 
fibroblast marker genes, stromal ST cluster 3 (Stroma3) expressed hemoglobin-related and 
vascular genes, stromal ST cluster 4 (Stroma4) expressed genes related to metabolism 
including fatty acid biosynthesis (e.g., Acaca and Fasn), and finally stromal ST cluster 1 
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(Stroma1) did not express identifiable top genes compared to other clusters, potentially 
reflecting large gene-deplete adipocytes (Fig. 6b, Supplementary Fig 8b).  

We then leveraged the ST data to determine whether the age-related T cell populations 
from scRNA-seq and snATAC-seq could be found in situ in proximity to mammary ducts and 
lobules. To determine the spatial localization of Gzmk+ cells, we identified ST spots that 
expressed both T cell markers (Cd3d, Cd3e, Cd3g, Cd247, Cd8a, or Cd8b1) and Gzmk or 
Pdcd1. As expected, most of the positive spots were immune-enriched in the lymph node 
(Supplementary Fig. 8c); however, after excluding the lymph node region, multiple positive ST 
spots were found within the adipose and ductal regions, with most being Epithelial spots in both 
samples (Fig. 6c and Supplementary Fig. 8c). Similarly, to determine the spatial localization of 
γδ T cells, we looked for ST spots that expressed both T cell markers (Cd3d, Cd3e, Cd3g, 
Cd247) and Il17a, and identified signal both inside and outside the lymph node regions (Fig. 6c 
and Supplementary Fig. 8c). Thus, the ST data supported the co-localization of tissue-resident 
immune cells with epithelial cells in situ in aged mice, suggesting that these cell-cell interactions 
might have a functional impact on aging tissues.   

To further investigate cellular interactions, we inferred putative ligand-receptor 
interactions between immune cells and epithelial cells and fibroblasts from scRNA-seq data 
using CellPhoneDB127 (Supplementary Table 7), focusing on Gzmk+ and γδ T cells. First, we 
detected an increase with age in predicted interactions between integrins in Gzmk+ cells (e.g., 
a4b1) and other molecules on epithelial cells, including receptor for urokinase plasminogen 
activator (Plaur) and vascular cell adhesion molecule-1 (Vcam-1) (Fig. 6d and Supplementary 
Table 7). Both PLAUR and VCAM-1 are often aberrantly expressed in breast cancer and 
mediate pro-metastatic tumor-stromal interactions and increase cell invasiveness128-131. Age-
related increases in integrin interactions were observed for all epithelial cell types (luminal HS, 
luminal AV, myoepithelial) as well as for fibroblasts (Fig. 6d and Supplementary Table 7). Age-
related increases in integrin interactions in Gzmk+ cells were previously predicted in other aging 
mouse tissues (spleen, lung, and kidney)111, providing further support for the functional 
relevance of these interactions in aging mammary tissue. Further, supporting these predicted 
interactions from single cell analysis, our ST data confirmed the presence of multiple ST spots 
that co-express both integrins and Plaur or Vcam-1, with a majority of these spots being 
epithelial-enriched (after excluding the lymph node) (Fig. 6e and Supplementary Fig. 8d). In 
addition, a subset of these ST spots that co-express integrins and Plaur or Vcam-1 also 
colocalized with Gzmk+ spots in situ in aged mammary glands (Fig. 6f), further supporting these 
predicted interactions.  

In addition, we detected interactions between the immune-inhibitory receptor Pdcd1 on 
immune cells (Gzmk+ cells and Cd4+ T cell populations) and Fam3c in all three epithelial cell 
subsets and fibroblasts detected by scRNA-seq (Fig. 6g and Supplementary Fig. 8e). Fam3c 
was upregulated in luminal HS cells and served as a marker gene for Epi-C2 that expanded with 
age (Supplementary Fig. 4f). We identified multiple ST spots that co-expressed Fam3c and 
Pdcd1, with a majority of these being epithelial-enriched (Fig. 6h), including a subset that also 
colocalized with Gzmk+ spots (Fig. 6i).  Furthermore, CellPhoneDB analysis revealed increased 
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interactions with age between chemokine ligands highly expressed by Gzmk+ cells and 
receptors expressed by epithelial cell types, including Ccl5-Ackr4, Ccl3-Ide, and Ccl4-Slc7a1 
(Fig. 6j). Interestingly, Ccl5 is a chemokine associated with breast cancer metastasis and 
recurrence132,133, whereas Ackr4 (also known as Ccrl1) is a chemokine receptor that inhibits 
inflammation and controls intratumor T cell accumulation and activation in mouse models of 
breast cancer134,135. ST analysis confirmed the existence of multiple ST spots that co-express 
these chemokine ligand-receptor pairs (Fig. 6k and Supplementary Fig. 8f), including a subset 
that colocalize also with Gzmk+ ST spots in situ (Fig. 6i and Supplementary Fig. 8f).  

Finally, CellphoneDB analysis revealed increased cellular interactions between γδ T 
cells and luminal HS, myoepithelial, and fibroblasts cells through Jag1 and Notch proteins (Fig. 
6j). In addition, multiple Notch family members were upregulated with age in mammary tissues, 
with increased levels of Notch1 in myoepithelial cells and Notch3 in fibroblasts (Supplementary 
Tables 3,4). Activation of Notch signaling correlates with mammary tumorigenesis in mice 
models, and increased expression of Notch receptors is detected in multiple tumor types 
including in breast cancer136-139. Moreover, the Jag-Notch interaction is further supported by the 
co-occurrence in situ of ST spots that express both Notch3 and Jag1, with a majority of ST 
spots being epithelial-enriched (Fig. 6k,l). These ligands and receptors were rather ubiquitously 
expressed in the mammary gland, and thus the ST data might have captured interactions 
between several cell types. 

Together, the ST data supported the existence of tissue-resident Gzmk+ and γδ T cells 
identified by single cell approaches in the mammary gland tissue and their co-localization with 
epithelial cell subsets, supporting the computationally inferred cell-cell interactions between 
these cell subsets. 

  

Conserved gene signatures of murine aging and human breast cancer  

Among the genes differentially expressed with age in mouse luminal cells 
(Supplementary Table 3a), several genes have been previously associated with cancer 
including: i) upregulation of epidermal growth factor Egfr and tumor suppressor Trp53, and 
downregulation of apoptotic factor Bcl2 and epithelial cellular adhesion molecule Epcam in 
luminal AV; ii) upregulation of tumor suppressor Socs2 and stemness regulator Mex3a, and 
downregulation of tumor suppressor Rbms2 and oncogenic transcription factor (TF) Myc in 
luminal HS cells; iii) upregulation of the Notch 1 and Fgfr3 receptors, and downregulation of 
tumor suppressor Slit2 and cyclin Ccnd2 in myoepithelial cells.  

To further reveal which age-related changes might promote mammary cells to undergo 
transformation and form tumors, we compared DE genes found in mouse aged epithelial cells 
with those found in human breast tumors compared to normal breast tissues from The Cancer 
Genome Atlas (TCGA) project (Supplementary Fig. 9a,b). We focused on luminal A and B 
tumors, which are thought to originate from luminal cells and increase in incidence with age140. 
We identified 143 genes upregulated in both aged mouse luminal HS cells and human luminal A 
or B tumors, as well as 92 downregulated in both (Fig. 7a, Supplementary Fig.9a and 
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Supplementary Table 8a). Among the top 25 DE genes, both aged cells and tumors 
upregulated insulin-like growth factor binding protein IGFALS and stemness regulator MEX3A; 
while they downregulated the tumor suppressor RCAN1, and TFs ARID5B and SOX9 (Fig. 7b). 
Similarities in gene expression changes were also detected between aged luminal AV and 
human luminal A or B tumors with 242 genes upregulated and 137 genes downregulated in both 
(Fig. 7c, Supplementary Fig. 9b and Supplementary Table 8b). For example, both aged cells 
and tumors upregulated NKD2, a component of Wnt signaling, CXCL17, a chemokine 
associated with poor survival in breast cancer patients141, and CRIP1 a gene encoding a protein 
proposed to have both tumor suppressive and oncogenic properties142-144; whereas they 
decreased expression of the secreted anti-inflammatory factor FNDC4 and SEMA6A, a 
semaphorin with tumor suppressor activity in brain cancers145 (Fig. 7d). While a subset of these 
shared expression changes was found exclusively in luminal tumors, a number of DE genes 
were also found in other tumor types, including in Her2+ or basal tumors (Supplementary Fig. 9 
and Supplementary Table 8a,b).  

While tumors are enriched with epithelial cells, stromal cells (including fibroblasts and 
immune cells) are known to infiltrate and support tumor growth. Therefore, we looked for the 
presence of fibroblast changes in the human breast tumors from TCGA and identified 330 
genes upregulated and 108 genes downregulated in both mouse fibroblasts and human luminal 
A or B tumors (Fig. 7e and Supplementary Table 8d). In tumors and aged mammary 
fibroblasts, Fap increased in expression (Fig. 7e). High expression of FAP is a proposed 
characteristic of cancer associated fibroblasts and age-related Fibroblast cluster C2 (Fig. 3e). In 
contrast, Pi16 decreased in expression in tumors and aged fibroblasts (Fig. 7e). PI16 is a 
marker gene of a class of universal fibroblasts with the ability to differentiate into specialized 
fibroblasts. While total numbers of the fibroblasts increased in aged animals (Fib-C4), we see 
that in proportion to other fibroblasts, the Pi16+ fibroblasts become less abundant (Fig. 3e-f). 
Further, a recent spatial transcriptomics study of human lung tumors found FAP+ fibroblasts to 
be enriched in lung tumors and PI16 to be enriched in surrounding tissue146. Together, this 
might suggest that an aged stromal microenvironment might be pro-tumorigenic. Finally, several 
pro-inflammatory and checkpoint inhibitor related genes implicated in immune response were 
differentially expressed with age and in tumors (Fig. 7f). For example, aged mouse mammary 
tissues expressed higher levels of Pdcd1, Gzmk, Lag3 (Fig. 4 and Supplementary Fig. 6), as 
did human breast tumors (Fig. 7f), suggesting that either tumor infiltrating immune cells express 
markers of aged-immune cells or that immune cells expressing signatures of cytotoxicityand/or 
exhaustion that are accumulating with age also are found in tumors.  

Overall, we uncovered the components of the aged mammary that were conserved in 
human breast tumors (Supplementary Table 8), which suggested that epithelial cells giving 
rise to tumors exhibit some of these age-related molecular markers. 
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Discussion 

Aging is associated with widespread alterations in epigenetic, transcriptional, and post-
transcriptional programs across cell/tissue types5,9,21,22. How mammary gland tissue is affected 
with age in multiple modalities and how these age-related changes relate to breast cancer gene 
expression programs are not known. To fill this gap, we generated an aging atlas capturing for 
the first time both expression and chromatin accessibility changes at the single cell level in the 
mammary glands from younger and older mice. The data are made available through an 
interactive web portal (https://mga.jax.org/) which provides tools for querying and visualizing the 
data. Further, using spatial transcriptomics we inferred spatial information on cell types and cell 
co-localization patterns predicted by our single cell analyses. Our findings revealed age-related 
cellular and molecular changes in all cell types in the mammary gland and provided novel 
insights into the underlying epigenetic mechanisms that might be driving some of these 
alterations.  

 

Cell composition and cell identity shifts with age 

With age, breast tissues exhibit gross morphological changes in size, fat content, and 
fibrosity147,148. Our single cell analysis revealed shifts in cell identities and states across multiple 
cell types, highlighting common age-related changes including dysregulation of cell function and 
identity, increased in cell plasticity, decreased ribosomal expression, and increased in markers 
of inflammation and senescence.  

In epithelial populations, cells expressing myoepithelial markers became more abundant 
in number with age. Similar age-related cell proportional changes can be seen in 18–21-month-
old C57BL/6 female mice from the Tabula Muris Senis as well as in middle-aged adult 12–14-
month-old female mice of mixed background9,20. Moreover, our data suggested similarities 
between age-related changes in mouse and human, with a shift from luminal to myoepithelial-
like expression patterns in human cells4. Our subclustering analysis further identified luminal AV 
and myoepithelial cell subclusters that were enriched in older animals and downregulated 
multiple classical marker genes. This supported the concept that aged cells may be shifting in 
identity and/or acquiring cellular plasticity, trending towards a dysregulated state149-151. 

In the stroma, fibroblasts increased in overall numbers with age and downregulated 
expression of cell marker genes such as Fn1, while changing expression of specific collagens 
and gaining expression markers of cancer-associated fibroblasts and senescence marker 
genes. Interestingly, our data pointed to an aging-driven increase in Fib-C2, which expressed 
genes related to adipogenicity, did not strongly express the fibroblast marker gene Fn1, but 
exhibited increased expression of Fap. As these fibroblasts were Dpp4 negative, they were 
more likely to interact with epithelial cells in adipose-rich portions of the mammary gland104. This 
can be further supported by the spatial transcriptomics data which suggested that Col15a1+ 
fibroblasts were enriched in the epithelial spots. These age-related changes in the cellular 
composition of the stroma might reflect either an increase in adipocyte-like cells and/or 
remodeling of transcriptomic profiles of fibroblasts themselves. 
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In immune cells, there was a general shift from naïve to memory T cells and an 
expansion of Gzmk+ cells expressing Ccl5 and an exhaustion signature, memory CD4+ T cells 
(including Tregs) expressing Itgae, and γδ T/MAIT cells. T cells from older animals became 
more fully differentiated and expressed exhaustion-associated genes like previous reports152. 
Previous literature supports the expansion of Gzmk+ T cells (also named age associated T cells) 
in several other mice tissues (i.e., spleen, peritoneum, lung and liver) as well as in human 
blood111, and  the role of Gzmk+ T cells in increased inflammatory responses of non-immune 
cells111. In our analysis, these Gzmk+ T cells expressed markers of exhaustion and inflammation 
– both hallmarks of immune system aging and immune cell dysfunction with age. Ccl5, that is 
highly expressed in T cells from aged animals, is also upregulated in different cancers including 
breast cancer and has been associated with cancer progression and metastasis153, thus 
suggesting a potential link between immune aging and tumor initiation. Further, spatial 
transcriptomics data confirmed that although most cytotoxic T cells resided in the lymph node, 
some of them were detected near epithelial cells, with which they might functionally interact. 
Lastly, our data revealed a significant increase in myeloid cells with age across all macrophage 
and DC subsets, in alignment with the age-related increases in myeloid lineage in hematopoietic 
stem cells and increases in inflammation154. By capturing more immune cells, including more 
myeloid cells than previous aging studies of mammary glands9, we can more precisely detect 
age-related changes in immune cells that are resident in mammary gland tissue and nearby 
lymph nodes.   

With age, cells have been reported to lose normal cellular plasticity, which is required for 
regeneration and tissue repair, while acquiring abnormal plasticity that can ultimately lead to 
cancer155. Interestingly, senescent cells need to acquire cellular plasticity to overcome tumor 
suppressor mechanisms and evolve towards a pre-cancerous state156. We speculate that a 
subset of the aging-driven increase in cell plasticity we identify in the mammary gland might 
therefore play a role in enabling clonal expansion, tumor initiation, and immune escape with 
age.  

 

Epigenetic regulation of aging mammary tissues 

To gain mechanistic insights into the regulation of aging-related changes in gene 
expression in the mammary gland, we focused here on unravelling the epigenetic regulatory 
programs in aged mammary glands. Indeed, changes in chromatin accessibility have been 
linked with aging in other organs23,157, but their impact on aging mammary tissues had not been 
studied before at the single cell level.  

Using snATAC-seq, we uncovered epigenetic changes linked to changes in cell identity 
and gene expression across every one of the cell types we profiled. For example, in myeloid 
and T cell populations, we detected open chromatin regions that may contribute to the 
expression of critical marker genes and lineage commitment of age-related cell populations. 
Previous studies reported epigenetic control of specific lineage genes and age-related 
epigenetic dysregulation in blood and bone marrow158,159, thus supporting our hypothesis that 
changes in chromatin accessibility may be at least in part driving the age-related populations 
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shifts and cellular dysfunction in aged mammary glands. Further, we can speculate that some of 
the changes in chromatin accessibility may help to poise cells to respond to insults. For 
example, promoters of checkpoint inhibitors Pdcd1 and Ctla4, were highly accessible in naïve T 
cells even though they are not frequently or highly expressed in these cell types, which could be 
a poised epigenetic signature of immune checkpoint inhibitors to facilitate rapid immune 
responses.  

In addition, our single cell analysis also revealed changes in gene expression that could 
be explained by aging-related changes in chromatin accessibility. For example, our study 
reported increased expression of Pdk4 in luminal AV cells with age, similar to a recent study 
using middle-aged adult mice9. Our snATAC-seq analysis pointed to an opening of the 
chromatin region near the Pdk4 promoter with age thus providing a putative mechanism to 
explain its change in expression. Age also led to changes in expression and chromatin 
accessibility in cancer-related genes Pygl, and Prrx1. Those could be resolved in the future by 
designing more targeted experiments to dissect the age-related changes in chromatin 
accessibility of more rare cell populations in mammary glands. Furthermore, future studies are 
also critically needed to uncover the contribution of other gene expression regulatory programs, 
including at the post-transcriptional and translation, and post-translational level and their impact 
on the biology of aged mammary glands. 

 

Aging-driven (epi)genomic programs impact cancer-associated genes and phenotypes 

Despite the undeniable role of genetics, the accumulation of mutations with age is not 
enough to explain the increases in breast cancer with age8,160,161, suggesting that age-
dependent molecular and cellular changes of tumor-initiating and supporting cells contribute to 
breast cancer development and risk through other mechanisms8,162,163. Interestingly, how these 
age-related molecular and cellular alterations interact with each other, and drive breast aging 
and contribute to cancer initiation is poorly understood8,162,163. Our single cell study of aged 
mammary tissues revealed intriguing similarities between aging and cancer by uncovering age-
related changes that impact expression of cancer-associated genes and cellular events that 
underly tissue remodeling during oncogenesis. 

At the molecular level, altered expression of tumor suppressors and oncogenes has 
been shown drive tumor initiation and cancer progression164. While our analysis revealed that 
there is not a singular age-related expression change that directly lead to a known and validated 
tumor initiating event, we detected multiple age-related transcript level changes that are also 
found in human tumors. For example, in luminal HS cells and tumors, we detected increased 
expression of Tmprss6, Mex3a, Tph1 and decreased expression of Rcan1, Cav1, and Dmbt1. 
Similarly, increased expression of Crip1, Ecm1, Tk1 and decreased expression of Fndc4, 
Masp1, and Sema6a was seen in aged Luminal AV cells and in tumors. Interestingly, several of 
the genes that increase in expression and accessibility with age exhibited tumor suppressor 
activity. This suggested that aged mammary cells might activate tumor suppressor mechanisms 
to prevent cancer, similarly to what was proposed in immune cells165,166. This is particularly 
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evident in aged luminal AV and HS cells, which also decreased in numbers with age, suggesting 
a possible decline in cell populations that have an anti-tumor or protective role in the aging 
mammary gland. This leads us to speculate that age is associated with cellular dysregulation 
leading to the expansion of cells that might contribute to cancer development. 

At the cellular level, aging of the tumor microenvironment can dramatically impact cancer 
initiation and progression167. Aging-driven biophysical changes in the ECM, alterations in 
secreted factors, and changes in the immune system can all lead to a tumor permissive 
microenvironment. Our analysis pointed to an age-related increase in fibroblasts expressing 
Fap, along with genes related to adipogenicity, and exhibiting altered expression of ECM 
proteins. Cancer-associated fibroblast play a critical role in promoting tumor development and 
outgrowth168. Given the links between adipose tissue and inflammation and altered ECM with 
cancer, these aged fibroblasts could contribute to a cancer promoting environment. On the 
immune front, our study revealed an expansion with age of Gzmk+ and memory Cd4+ 
(consisting of Tregs) cells expressing high levels of exhaustion markers. Aged T cells express 
higher levels of Pdcd1 (also known as PD1), the immunosuppressive PD-1 ligand often 
expressed on cancer cells, and which enables immune surveillance evasion. Thus, the increase 
of these cell populations in older patients might impact their response to immune checkpoint 
blockade targeting CTLA4, PD-1, or PD-L1. In depth studies to define the therapeutic impact of 
age on clinical efficacy and toxicity of checkpoint inhibitors are greatly needed169. Interestingly, it 
has been described that in triple negative breast cancer, the aged tumor microenvironment is 
unable to generate a proper antitumor response to immune checkpoint blockade leading to age-
related immune dysfunction37. In addition, BRCA1 and BRCA2 loss, which are associated with 
an accelerated aging phenotype10,170 and are also more frequent in triple negative tumors, have 
been linked with differential responses to immune checkpoint blockade, partially due to 
microenvironment changes171. Both of these findings support the hypothesis that changes in the 
microenvironment can impact responses to checkpoint inhibitors. Yet, more comprehensive 
studies in young and old patient cohorts, especially in luminal tumors, are needed to determine 
whether age impacts response to checkpoint inhibitors and if so how?  

Finally, epigenetic alterations are frequently found in human tumors, where they can 
upregulate oncogenes or suppress tumor‐suppressor genes via chromatin compaction172-174. 
Moreover, breast tumors exhibit cancer-specific and subtype-specific chromatin accessibility 
profiles173. Recent studies have uncovered an association between accelerated DNA 
methylation aging and increased breast cancer risk175-177. Further, age-related changes in 
normal breast tissue can also be detected in breast cancer178-181. However, while epigenetic 
alterations have been associated with both cancer etiology and aging22-24,182, it is unclear how 
age-driven epigenetic changes contribute to tumor initiation and much work remains to be 
carried out.  

 In conclusion, in aged mice, we detected changes in cell populations, gene expression, 
chromatin accessibility, transcription factor activity, and imputed cell-cell interactions. We have 
used spatial transcriptomics to support cell localization and cell-cell interactions. Several of the 
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age-related changes have implications in breast cancer biology. Further investigation will need 
to be performed to determine the mechanistic links between aging and cancer in breast tissue. 
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Methods 

Experimental model 

Virgin female young (3-4 months old) and older (17-18 months old) C57BL/6J mice (JAX 
#000664) were used in this study. All mice were bred and maintained in house under regular 
conditions, with 12hr/12hr light/dark cycle, and food (LabDiet 5K0G) and water ad libitum. 
Young and older animals were housed together for at least a month prior to tissue collection to 
eliminate environmental differences and to synchronize their estrous cycles. All animal work 
was performed in accordance with protocols approved by the Institutional Animal Care and Use 
Committee at The Jackson Laboratory. 

Tissue dissociation for single-cell analysis 

To isolate mammary cells from young and aged mice we adapted protocols from 183-185. Fresh 
mammary glands (each sample was prepared from mammary glands from three mice) were 
surgically excised, finely minced and then incubated in a digestion solution containing 
DMEM/F12 (GIBCO #11320-033), 10% heat-inactivated fetal bovine serum (Seradigm #1500-
500), 1.5 mg/ml collagenase IV (Sigma #C5138), 0.2% trypsin (Corning #25-054), 5 ug/ml 
insulin (Sigma #I-1882),  2.5 ug/ml gentamycin (GIBCO #15750) for 15 min at 37°C with gentle 
manual agitation. Following a brief 2 min centrifugation at 600g, the top floating fraction and 
pelleted tissue (which contained undigested tissues) were collected and further digested at 37°C 
for 20 min prior to a second centrifugation at 600g for 7 min. The aqueous fraction was pelleted, 
resuspended in DMEM/F12 +FBS, and stored on ice (to preserve easy to dissociate, sensitive 
cells such as immune cells). Pellets from both fractions were combined and further digested 
using a solution of DMEM/F12 (GIBCO #11320-033) and 1U/ml DNAse I (Invitrogen #18068) for 
2-5 min at room temperature with constant gentle manual shaking. Cells were then pulse-
centrifuged three times at 520g as previously described183,184, and cells found in the pellet and 
supernatant fractions at each step were separated and collected. Epithelial cells, which were 
enriched in the pellet fraction, were further digested for 10 min at 37C in a solution containing 
TrypLE (Gibco #12604) and 1U/ml DNAse I (Invitrogen #18068) and monitored for viability and 
digestion using a microscope. Cells found in the supernatant fraction were then subjected to red 
blood cell lysis in ACK buffer (Gibco #A10492) for 3-4 min. Dissociated cells from both fractions 
were filtered through a 70 μm cell strainer and stained with propidium iodide (PI) and calcein 
(Invitrogen #C1430, BD #556463). Live cells (calcein+ and PI-) from both fractions were isolated 
using flow cytometry (nozzle 130, flow rate 1) and collected in DMEM/F12 with 10% FBS. 
Fractions were combined at a 1:1 ratio for downstream library preparations.  

Single-cell RNA-seq and single-nuclei ATAC-seq library preparation and sequencing 

Dissociated cells isolated from young and aged mice as described above were counted and 
assessed for viability on the Countess II automated cell counter (ThermoFisher), and 12,000 
viable cells were loaded into one lane of a 10X Chromium microfluidic chip for scRNA-seq for a 
targeted cell recovery of 6,000 cells per lane. From the remaining cell suspensions, nuclei were 
isolated according to 10X Genomics protocol (#CG000212, Protocol 1.2). 
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For scRNA-seq, single cell capture, barcoding and library preparation were performed using the 
10X Chromium v.3 chemistry, according to the manufacturer’s protocol (#CG00183). cDNA and 
single cell libraries for RNA-seq were checked for quality on an Agilent 4200 TapeStation, 
quantified by KAPA qPCR, and sequenced on a Novaseq6000 instrument (Illumina) to an 
average depth of 50,000 reads per cell. For snATAC-seq, nuclei suspensions were incubated in 
a transposase-containing mix, nuclei were counted, and 9,250 nuclei were loaded into one lane 
of a 10X Chromium microfluidic chip.  Single nuclei capture, barcoding and library preparation 
were performed using the 10X Chromium v.1 chemistry, according to the manufacturer’s 
protocol (#CG000168).  Libraries for snATAC-seq were checked for quality on an Agilent 2100 
Bioanalyzer, quantified by KAPA qPCR, and sequenced on a Novaseq6000 instrument 
(Illumina) to an average depth of 25,000 read pairs per nucleus by The Jackson Laboratory 
Genome Technologies core service.  

Single cell RNA-seq data processing 

The base call files from Illumina were demultiplexed and converted to FASTQ files using 
bcl2fastq (v2.20.0.422) (Illumina). The CellRanger (10X Genomics v3.1.0) pipeline was used to 
align the sequence reads against the mm10 reference genome, deduplicate reads, call cells and 
generate cell by gene counts matrices for each library. Paired-end reads were processed and 
mapped to the mm10 mouse genome using Cell Ranger pipeline v4.0.0. We performed 
preliminary filtering of low QC cells (gene counts <200). Cell doublets were estimated using 
Scrublet186 and DoubletDecon v1.1187. Additional filtering was applied within the Seurat package 
to eliminate cells with i) gene counts <500 and ii) mitochondrial gene ratio >10%, yielding 
48,180 cells from 12 samples (n=6 per age; see Supplementary Table 1 for details). Filtered 
data matrices were then analyzed using Seurat v4188 and normalization performed using Log-
normalization method utilizing the NormalizeData() function. We used the 
FindVariableFeatures() function to identify highly variable features, including all genes as 
features. ScaleData() was utilized to scale data using all genes as features. To reduce the 
dimensionality of the data, we ran principal component analysis using the RunPCA() function. 
We used 10 principal components to define 11 clusters that are annotated into distinct cell types 
using the following marker genes: B cell (Blnk, Cd79a, Cd79b), Plasma cell (Jchain), T cell 
(Cd3d, Cd3e, Cd3g), Macrophage (Itgax), Dendritic cell (Fcgr2b, Cd209a, Itgam), Luminal-AV 
(Mfge8, Trf, Csn3, Wfdc18, Elf5, Ltf), Luminal-HS (Prlr, Cited1, Pgr, Prom1, Esr1), Myoepithelial 
(Krt17, Krt14, Krt5, Acta2, Myl9, Mylk, Myh11), Fibroblasts (Col1a1, Col1a2, Col3a1, Fn1), 
Vascular (Pecam1, Cdh5, Eng, Pdgfra, Pdgfrb, Fap), Pericytes (Rgs5, Des, Notch3). 
Neighborhood graph computing was performed FindNeighbors() and clusters were dtermined 
using FindClusters(). Harmony189 was used for batch correction between the two batches (batch 
#1 replicates 1-2-3 and batch #2 replicates 4-5-6). We removed the Doublet cluster (n=539) 
from downstream analyses. The neighborhood graph was visualized as a uMAP using 
RunUMAP(). A doublet cluster expressing B and T cell marker genes was excluded from 
downstream analysis, resulting in 47, 641 cells. 
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Single nucleus ATAC-seq data processing 

Paired-end reads were processed and mapped to the mm10 mouse genome using the Cell 
Ranger ATAC pipeline v1.2.0. Doublets were removed using AMULET190. Simple repeats, 
segmental duplications, repeat masker and blacklisted regions obtained from the UCSC 
Genome Browser and ENCODE project are filtered out as part of the AMULET software. We 
kept cells based on the following criteria: i) total number of fragments in peaks >1000 or 
<100000; and(ii) fraction of fragments (percent reads) in peaks>40; and iii) blacklist ratio<0.01; 
and iv) nucleosome signal<4; and v) Transcription start site enrichment score>2. Filtered reads 
were analyzed using Signac v1.1191. The combined filtered data for downstream analysis 
yielded 173,699 chromatin accessibility sites (i.e., peaks) associated with 22,018 genes 
detected in 22,842 cells (n=3 per age; see Supplementary Table 1b for details). Data 
normalization and dimensionality reduction was performed using Signac with latent semantic 
indexing (LSI), consisting of term frequency-inverse document frequency (TF-IDF) normalization 
and singular vector decomposition (SVD) for dimensionality reduction. Clustering was 
performed using the SLM (Smart local moving) algorithm and the anchors were transferred from 
scRNAseq to snATAC using CCA (canonical correlation analysis) reduction method. Genome 
browsers are generated using igvtools192. 

Cell compositional changes with age  

A two-sided paired t-test using experimental pairs was used to quantify age-related changes in 
cell compositions between young and old mice for each cell type (i.e., for epithelial, immune and 
stromal cells). Fold change enrichment between old and young were calculated as the log ratio 
of number of cells per cell type in old mice vs. number of cells per cell type in young mice. To 
determine whether the changes were significant or not, a t-test was used against a zero-fold 
change reference group.   

Epithelial subset analyses 

For scRNA-seq, epithelial cells (Luminal HS, Luminal AV, and Myoepithelial) were subsetted 
from the overall scRNA-seq population (n=7308 cells) and data reprocessed using Seurat v4. 
We calculated all features for the subsetted data and ran PCA for these variable features. We 
used 14 principal components; we used Harmony to correct for batch effects between the two 
batches (batch #1 replicates 1-2-3 and batch #2 replicates 4-5-6) and clustering at resolution 
0.8. Suspected doublet clusters (expressing immune marker genes) and low-quality cells were 
further filtered prior to final clustering, resulting in 12 subclusters (6953 cells) remaining for 
downstream analyses. 

For snATAC-seq, Epithelial cells were subsetted from the overall snATAC-seq population 
(n=6,963 cells) and data reprocessed using Signac. We performed LSI (n=50) and created the 
UMAP using the first 20 LSI components. We excluded the first LSI component as it had a 
strong correlation with the total number of cell counts. These cells were assigned to cell types 
using the annotation from scRNA-seq using the FindTransferAnchors functions in Signac.  

Stromal cell subset analysis 
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For scRNA-seq, stromal cells (Fibroblasts, Pericytes, and Vascular) were subsetted from the 
overall scRNA-seq population (n=4233 cells) and data reprocessed using Seurat v4. We 
calculated all features for the subsetted data and ran PCA for these variable features. We used 
14 principal components, we used Harmony to correct for batch effects between the two 
batches (batch #1 replicates 1-2-3 and batch #2 replicates 4-5-6), and clustering at resolution 
0.4. Suspected doublet clusters (expressing immune marker genes), cells expressing putative 
muscle marker genes, and a cluster of cells of low quality were filtered prior to final clustering, 
resulting in 11 subclusters (3832 cells) remaining for downstream analyses.  

For snATAC-seq, Fibroblast cells were subsetted from the overall snATAC-seq population 
(n=2,029 cells) and data reprocessed using Signac. We performed LSI (n=50) and created the 
UMAP using the first 20 LSI components. We excluded the first LSI component as it had a 
strong correlation with the total number of cell counts. These cells were assigned to cell types 
using the annotation from scRNA-seq using the FindTransferAnchors functions in Signac.  

T cell subset analyses 

For scRNA-seq, T cells were subsetted from the overall scRNA-seq population (n=20,455 cells) 
and data reprocessed using Seurat v4. We calculated the top 2000 features for the subsetted 
data and ran PCA for these variable features. We used 30 Principal components to correct for 
batch effects between the two batches (batch #1 replicates 1-2-3 and batch #2 replicates 4-5-6) 
using harmony and clustering at resolution 0.5. These analyses yielded 11 clusters which were 
associated with different cell type identities using cell type markers. One subcluster was filtered 
out from further downstream analysis since it included markers for different cell types (i.e., 
potential doublets), resulting in 10 subclusters (19,693 cells) remaining for downstream 
analyses.  

For snATAC-seq, T cells were subsetted from the overall snATAC-seq population (n=6,443 
cells) and data reprocessed using Signac. We performed LSI (n=50) and clustered the data 
using the first 10 LSI components at resolution 0.5. We excluded the first LSI component as it 
had a strong correlation with the total number of cell counts. This analysis generated 11 
subclusters which were assigned to cell types using the annotation from scRNA-seq using the 
FindTransferAnchors functions in Signac. We similarly filtered out a doublet cluster, resulting in 
9 subclusters (6,078 cells) for downstream analyses. For robust epigenomic comparisons, a 
certain number of cells are needed (e.g., 100 cells), therefore cell-intrinsic epigenomic 
comparisons were not conducted if we did not have enough cells in either age group e.g., 
Gzmk+ cells.  

Myeloid cell subset analysis 

For scRNA-seq, myeloid cells were subsetted from the overall scRNA-seq population (n=3,485 
cells) and data reprocessed using Seurat v4. We calculated the top 2000 features for the 
subsetted data and ran PCA for these variable features. We used 50 Principal components to 
correct for batch effects between the two batches (batch #1 replicates 1-2-3 and batch #2 
replicates 4-5-6) using harmony and clustering at resolution 0.5. This resulted in 13 subclusters 
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which were associated with different cell types using cell type specific marker genes. One of 
these subclusters was filtered out from further downstream analysis as potential doublets and 
several of them are merged together since they have similar transcriptional profiles, resulting in 
7 subclusters (3,407 cells) remaining for downstream analyses.  

For snATAC-seq, myeloid cells were subsetted from the overall scATAC-seq population 
(n=1,509 cells) and data reprocessed using Signac. We performed LSI (n=50) and clustered the 
data using the first 10 LSI components at resolution 0.2. We excluded the first LSI component 
as it had a strong correlation with the total number of cell counts. The remaining 7 subclusters 
were assigned to cell types using the annotations from scRNA-seq using the 
FindTransferAnchors functions in Signac.  

Differential gene expression between old and young  

For epithelial cells and fibroblasts (at the cluster and subcluster level), we used both single cell 
and pseudo-bulk differential analyses pipelines. Differential expression (DE) analysis at the 
single cell level was performed using logistic regression within the FindMarkers function in 
Seurat v4188. Pseudo-bulk differential expression analysis was conducted using DESeq2193 
following this pipeline (https://hbctraining.github.io/scRNA-
seq/lessons/pseudobulk_DESeq2_scrnaseq.html). Internal normalization within DESeq2 was 
performed, which corrects for library size and RNA composition bias. We used FDR<0.05 cut-
offs to identify age-associated genes for both analyses. The union of the DE genes from single 
cell and pseudo bulk analyses was used for downstream analysis. To functionally annotate DE 
genes, hypergeometric tests were used using different annotation databases: KEGG, 
Wikipathways and GO databases from the Msigdb collection. These annotations are conducted 
using the cinaR R package194 or Enrichr195. For scoring, we used a curated ECM list (Cald1, 
Dcn, Dpysl3, Ecm1, Flna, Fstl1, Igfbp3, Lamc1, Lgals1, Pdlim4, Ptx3, Qsox1, Serpinh1, 
Vcam1), the Wikipathways Integrated Breast Cancer list, and the Wikipathways Cytoplasmic 
Proteins list. To identify tumor suppressors, we utilized TSGene 2.0 
(https://bioinfo.uth.edu/TSGene/). 

For T cells and among myeloid clusters, we conducted one versus all differential gene 
expression analysis for the scRNA-seq data. We used a Wilcoxon Rank Sum test to compute 
the differential expression using cutoffs of logFC≥0.25 and a minimum 10% of cells expressing 
the gene. Hypergeometric geneset enrichment testing was carried out on the age specific and 
cell type specific differential genes obtained from the T Cell and Dendritic Cells/Macrophage 
subclustering. The enrichment results were adjusted using the Benjamini-Hochberg FDR 
adjustment method (FDR=10%). We used Wikipathways and Immune System related modules24 
from the CinaRgenesets194 to conduct the enrichment analyses.  

Differential peak analysis between old and young 

For epithelial cells and fibroblasts (at the cluster level), pseudo bulk differential peak analysis, 
cell-type specific alignment files were obtained per sample using the sinto package 
(https://github.com/timoast/sinto). MACS2196 was used for peak calling for each sample per cell 
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type using the BAMPE option. We used the Diffbind197 package for generating the consensus 
sequences per cell type, which are then used  for differential analyses between young and old 
using DESeq2 with absolute log2FC≥1 within cinaR R package194. The differential peaks were 
annotated with gene identities using ChIPSeeker198. In cases where the ChIPseeker algorithm 
was not able to annotate the peaks to the nearest gene, we used HOMER199 for further 
annotations. For single cell differential peak analysis in immune cell subsets, we used the 
FindMarkers function available in Signac to calculate differential accessibility between old and 
young mice cells. We used a Wilcoxon rank sum test with a minimum of 10% cells accessible to 
the peak as our cutoff. Peaks with Padjusted>0.05 were filtered out from downstream analysis.  

ChromVar analyses 

We added motif information to the snATAC-seq object using the AddMotifs function in signac for 
the mm10 genome using the JASPAR2020 database. We then calculated a per cell motif 
activity score using chromVAR42 and added this information to the snATAC-seq object. We used 
these motif activity scores to conduct differential analysis using the FindMarkers function in 
Signac between old and young mice using the Wilcoxon Rank Sum test with no cutoffs being 
used for fold change or minimum percentage of cells expressing the motif. 

Senescence Scoring 

Using the SenMayo gene list, we calculated the counts per gene and divide by the total number 
of transcripts per cell. We then scale this ratio between 0 and 1 and plot the scaled scores 
utilizing the VlnPlot() function. 

Ligand Receptor Interactions 

CellphoneDB127 was used to calculate ligand receptor interactions between different cell types in 
young and old mice. The normalized cell counts were extracted from the scRNA-seq object and 
the metadata object was provided which contained cell type annotations for each cell. The final 
results were obtained by running the statistical_analysis function available in CellphoneDB. The 
analysis was run separately for old and young mice cells.  

TCGA Analyses 

To uncover DE genes from human TCGA data, we downloaded tumor and normal tissue 
samples from TCGA Biolinks and tumors that passed quality testing as described200 (Normal 
Tissue n=112, Luminal A tumors n=547, Luminal B tumors n=207). Differential expression 
analysis was performed using DESeq2193. A Wald test was used to calculate p-values, and 
Benjamini-Hochberg procedure to calculate corrected p-values. Differential genes were selected 
based on Padj<0.05 and log2 fold change >0.5 or <−0.5. 

Spatial transcriptomics (ST) profiling of aged mammary tissues 

ST experiments were performed using the Visium Platform (10x Genomics) according to the 
manufacturer’s protocols. Fresh mammary tissues from 18-month-old mice were NBF-fixed and 
paraffin-embedded (FFPE). Two 15 um sections from each tissue block were used for total RNA 
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extraction with Rneasy Micro kit (Qiagen), and the percentage of RNA fragments larger than 
200bp as determined by Agilent Bioanalyzer system (DV200 score) was used as a measure of 
RNA quality. Tissue blocks with DV200 scores were above 50%.   

Briefly, sections from each tissue block were placed on microscopy slides (ColorFrost Plus, 
Fisher) and subsequently deparaffinized, H&E stained, then imaged in brightfield using a 
NanoZoomer SQ (Hamamatsu) slide scanner.  Each slide was incubated with mouse-specific 
probe sets provided by the manufacturer for subsequent mRNA labeling, probe transfer using 
the CytAssist (10x Genomics) onto a Visium CytAssist Slide, and subsequent library generation 
per the manufacturer's protocol (10x Genomics, CG000495).  Library concentration was 
quantified using a Tapestation High Sensitivity DNA ScreenTape (Agilent) and fluorometry 
(Thermofisher Qubit) and verified via KAPA qPCR.  Libraries were pooled for sequencing on an 
Illumina NovaSeq 6000 200 cycle S4 flow cell using a 28-10-10-90 read configuration, targeting 
100,000 read pairs per spot covered by tissue. 

Illumina base call files for all libraries were converted to FASTQs using bcl2fastq v2.20.0.422 
(Illumina). For each tissue section and corresponding library, the whole slide brightfield image 
and CytAssist image were aligned manually using the Loupe Browser (v6.4.1) via landmark 
registration. Each whole slide image was uploaded to a local OMERO server where a 
rectangular region of interest (ROI) containing just the tissue was drawn via OMERO.web and 
OMETIFF images of each ROI were programmatically generated using the OMERO Python 
API.  FASTQ files, the image registration JSON file, and associated OMETIFF corresponding to 
high resolution bright field image were used for further processing, including alignment to the 
GRChm38 mm10-specific filtered probe set (10x Genomics Mouse Probeset v1.0.0) using the 
version 2.1.0 Space Ranger count pipeline (10x Genomics).    

Spatial transcriptomics data analysis 

Sequencing reads from Visium Spatial Gene Expression Slide were pre-processed with 
Scanpy201. Spots with <245 genes and >10% of mitochondrial gene expression were filtered out 
to remove false positive signal. Mitochondrial genes were defined using MitoCarta2202, 
considering only the top 250 genes that were highly specific to mitochondria. Based on these 
mitochondrial genes, we calculated their expression proportion in each sample. Additionally, we 
filtered out rarely expressed genes that had <3 reads in each spot. As a results, filtered data 
contains 6,428 spots in sample #1 and 8,662 spots in sample #2, along with 19,203 genes. 

Raw read counts in each sample were normalized using the Pearson residual method203 to 
reduce technical difference while preserving their natural biological differences. Before merging 
the two older samples, we checked for batch effects between them and found a slight batch 
effect. Thus, we used BBKNN204 to remove the batch effect and extracted biologically 
meaningful clusters using the Leiden clustering method (resolution 0.15). Based on the defined 
clusters, we defined the dominant cell type in each cluster by identifying marker genes in each 
cluster compared to the other using log-normalized counts. 

To confirm co-localization of specific cell types and ligand-receptor pairs in the spatial 
transcriptomic data, we transformed the read counts of marker genes (for cell type and ligand-
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receptor pairs) into binary values (positive and negative). Consequently, each spot was 
assigned a value of 1 (positive signal) if they had at least one read for the marker genes. Using 
this binary count matrix, we defined Cd3d or Cd3g or Cd3e or Cd247 or Cd8a or Cd8b1 as 
Cd3+ or Cd8+ cells, and Cd3d or Cd3g or Cd3e or Cd247 as Cd3+ cells. Based on these 
definitions, we considered a spot to be Cd3+ or Cd8+ and Gzmk+ if it had a positive signal for 
both Cd3+ or Cd8+ cells and Gzmk.  We applied same process to other target cells, such as 
Cd3+ or Cd8+ and Pdcd1, and γδ T cells. After that, the number of target cell spots was 
normalized by the total count of spots in each cluster to compare their enrichment between 
different clusters. Regarding ligand-receptor confirmation, we considered a spot to be a specific 
ligand-receptor spot if it had a positive signal for both ligand and receptor genes. We applied the 
same normalization method as used for specific cell type spots to compare their enrichment 
between different clusters. Additionally, using this ligand receptor spot information, we 
confirmed the co-localization of ligand-receptor pairs and specific cell type spot. In that case, we 
considered a spot to be co-localized if it had a positive signal for both the ligand-receptor pair 
and the specific cell type or was close to both signals. 

 

Data availability 

Data has been deposited to GEO: GSE216542 (Access token mvepawimxnalbqj) 

Data can be visualized and queried via an interactive web portal: https://mga.jax.org/.  

 

Code availability 

Code is available on:  https://github.com/UcarLab/Mammary_gland_aging 
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MAIN FIGURES 

 

 
Figure 1. Cell compositional changes during mammary gland aging revealed by scRNA-seq and snATAC-seq.  

(a) Experimental approach using scRNA-seq and snATAC-seq on cells isolated from freshly dissociated mammary 
glands from 3-month (3M) old and 18-month (18M) old virgin female C57BL/6J mice.  

(b,c) UMAP visualization of epithelial (Luminal AV, Luminal HS and Myoepithelial), immune (Memory T and NK cells, 
Naive T cells, B cells, Plasma cells, and DCs and Macrophages), and stromal (Pericytes, Vascular, and Fibroblasts) 
clusters captured by scRNA-seq identified based on characteristic marker genes (b) and by snATAC-seq upon 
annotation transfer from scRNA-seq. 

(d,e) Average proportions of epithelial, immune, and stromal cells in 3M and 18M mice captured by scRNA-seq (n=6) 
(d) and by  snATAC-seq (n=3) (e) (Paired t-test; *P≤0.05, **P≤0.01, ***P≤0.001,****P≤0.0001). 

See also Supplementary Figures 1-2 and Supplementary Tables 1-2. 
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Figure 2. Age-related changes in (epi)-transcriptomic programs in mammary epithelial cells. 
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(a,c) UMAP visualization of epithelial cell clusters captured by scRNA-seq (a) and snATAC-seq (c). The number of 
significant DE genes detected by single cell and pseudobulk analysis with age (a) and DA peaks with age (c), is shown 
per cell cluster.  

(b) Number of significant DE genes with tumor suppressor activity in luminal AV, luminal HS, and myoepithelial cell 
clusters from 18M vs. 3M mice (detected by single cell and pseudobulk analysis).   

(d) Differential TF activity score with age. Significant differential motifs (PAdj<0.05) are indicated by an asterisk.  

(e) Top DE genes from 18M vs. 3M mice across replicates from pseudo-bulk scRNA-seq data. 

(f-k) Examples of DE genes with DA peaks in luminal AV (f,g), luminal HS (h,i), or myoepithelial (j,k) clusters in 3M 
vs. 18M mice. Normalized values are shown for individual cells (t-test; *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001), 
along with a pie chart depicting the percentage of expressing cells vs. non-expressing cells (left panel). Pseudobulk 
snATAC-seq tracks in 3M vs. 18M mice are shown, along with gene structures and significant DA peaks with 
corresponding log2 fold changes (FC) values (right panel). Predicted TF binding motifs from JASPAR are indicated 
within the DA peaks. 

See also Supplementary Figures 3-4 and Supplementary Table 3. 
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Figure 3. Age-related changes in (epi)-transcriptomic programs in mammary stromal cells. 

(a-b) UMAP visualization of stromal cell clusters captured by scRNA-seq (a) and snATAC-seq (b). The number of 
significant DE genes detected by single cell and pseudobulk analysis with age (a) and DA peaks with age (b), is shown 
per cell cluster.  

(c) Example of DE gene with DA peak in fibroblast clusters in 3M vs.18M mice. Normalized values are shown for 
individual cells (t-test; ***P≤0.001), along with a pie chart depicting the percentage of expressing cells vs. non-
expressing cells (left panel). Pseudobulk snATAC-seq tracks in 3M vs. 18M mice are shown, along with gene structures 
and significant DA peaks with corresponding log2 fold changes (FC) values (right panel).  

(d-e) UMAP visualization of fibroblast subclusters FibC0-C5 captured by scRNA-seq (d) along with expression of 
canonical marker genes (e). The proportions of cells from 3M and 18M mice are shown on the right. 

(f) Differences in cell number ratios with age per fibroblast subclusters captured by scRNA-seq (n=6; t-test; *P≤0.05, 
**P≤0.01).  

(g,h) Expression of marker genes in fibroblast subclusters captured by scRNA-seq. 

(i) Expression of Cdkn1a in fibroblasts with age (t-test; *P≤0.05, **P≤0.01, ***P≤0.001,****P≤0.0001).   

(j) Expression of Cdkn1a in fibroblast subclusters with age (t-test; *P≤0.05, **P≤0.01, ***P≤0.001,****P≤0.0001).   
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(k) Top DE genes with age across replicates from pseudo-bulk scRNA-seq data for indicated fibroblast subclusters. 

See also Supplementary Figure 5 and Supplementary Table 4. 
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Figure 4. Age-related changes in (epi)-transcriptomic programs in T cell subclusters. 

(a,c) UMAP visualization of based T and NK cell subclusters (left panel) along with differences in cell number ratios 
with age (right panels) captured by scRNA-seq (n=6; t-test; *P≤0.05, **P≤0.01, ***P≤0.001).  

(b) Expression of marker genes in scRNA-seq subclusters. 

(c) UMAP visualization of based T and NK cell subclusters (left panels) along with differences in cell number ratios with 
age (right panels) captured by snATAC-sI(c) (n=3; t-test; *P≤0.05, **P≤0.01, ***P≤0.001).  

(d) Examples of marker genes that display chromatin accessibility signatures shown as pseudobulk snATAC-seq tracks 
per cell subcluster. 

(e) DE genes with age across replicates from pseudo-bulk scRNA-seq data related to cell function of memory CD4, 
CD8 Gzmk+, and CD8 Gzmm+ immune subclusters. 

(g-h) Examples of DE genes with DA peaks in memory CD4, CD8 Gzmk+ and CD8 Gzmm+ immune clusters in 3M vs. 
18M mice. Normalized values are shown for individual cells (t-test; *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001, n.s., 
not significant), along with a pie chart depicting the percentage of expressing cells vs. non-expressing cells (left panel). 
Pseudobulk snATAC-seq tracks in 3M vs. 18M mice are shown, along with gene structures and DA peaks (right panel).  

(i) Examples of DE genes in γδ T and MAIT cells subclusters in 3M vs. 18M mice. Normalized values are shown for 
individual cells (t-test; **P≤0.01, ***P≤0.001, ****P≤0.0001; n.s., not significant), along with a pie chart depicting the 
percentage of expressing cells vs. non-expressing cells (left panel). 

See also Supplementary Figures 6-7 and Supplementary Table 5. 
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Figure 5. (Epi)transcriptomic landscape of dendritic cell and macrophage cells. 

(a,c) UMAP visualization of myeloid subclusters (left panels) along with differences in cell number ratios in 18M vs. 3M 
mice (right panels) captured by scRNA-seq (a) and snATAC-seq (c) (n=3-6; t-test; *P≤0.05, **P≤0.01, ***P≤0.001).  

(b) Expression of canonical marker genes in scRNA-seq DC and macrophage subclusters. 

(d) Examples of cell cluster marker genes that display chromatin accessibility signatures shown as pseudobulk 
snATAC-seq tracks per cell cluster. 

(e) Expression of selected markers genes in scRNA-seq DC and macrophage subclusters.  

(f) Averaged gene expression of the top ten DE genes in every subcluster vs. every other scRNA-seq subcluster.  

(g) Differential TF activity score per subcluster. Significant differential motifs compared to every other cluster (Bonferroni 
Padj<0.05) are colored, non-significant are in grey. 

See also Supplementary Figure 8 and Supplementary Table 6. 
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Figure 6. Cellular interactions are altered with age in the mammary gland. 
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(a,b) Identification and annotation of spatial transcriptomics (ST) spots within aged mammary gland tissues. Each ST 
spot is classified using the expression of selected marker genes (b) as an epithelial-enriched, immune-enriched, or 
stromal-enriched ST cluster, and colored accordingly. 

(c) Expression of indicated immune marker genes in ST spots in each mammary tissue after excluding the lymph node.  
Zoomed-in images show ST spots located near epithelial ducts as identified based on H&E staining (ST clusters 
epithelial-enriched, immune-enriched, or stromal-enriched are colored). Dot plot shows the fraction of ST spots 
expressing the marker gene per ST cluster (epithelial-enriched, immune-enriched, or stromal-enriched) colored by 
mean expression. 

(d,g,j) Ligand-receptor interactions inferred from scRNA-seq using CellPhoneDB between epithelial or fibroblast vs. 
CD8 Gzmk+ clusters (d), CD8 Gzmk+ vs. epithelial or fibroblast clusters (g), and γδ T cells vs. epithelial or fibroblast 
clusters (j). Dot size represents P-value scaled to a negative log10 values, color represents the mean of the average 
expression of the first interacting molecule in the first cluster and second interacting molecule in the second cluster. 

(e,h,k) Expression of indicated ligand-receptor pairs in ST spots in each mammary tissue after excluding the lymph 
node (ST clusters epithelial-enriched, immune-enriched, or stromal-enriched are colored). Dot plot shows the fraction 
of ST spots expressing the gene pair per ST cluster (epithelial-enriched, immune-enriched, or stromal-enriched), 
colored by normalized proportion. 

(f,i,l) Co-localization of ST spots expressing indicated immune marker gene (yellow) and ligand-receptor pair (blue) in 
each mammary tissue after excluding the lymph node. Zoomed-in images show example of co-occurring (green) or 
directly adjacent ST spots located near epithelial ducts as identified based on H&E staining (ST clusters epithelial-
enriched, immune-enriched, or stromal-enriched are colored). 

See also Supplementary Figure 9. 
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Figure 7. Age-related differentially expressed genes are found in human aged breast tissues and human 
breast tumors.  
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(a,c) Overlap between DE genes in luminal HS (a) or AV (c) cells from 18M vs. 3M mouse (n=6 per age) and DE 
genes in TCGA human luminal A (n=547) or luminal B (n=207) tumors vs. normal breast tissues (n=112) 
(log2FC>|0.5|, Padj< 0.05). Only the top 25 significant upregulated or downregulated genes changing in the same 
direction are shown. P-values are indicated.  

(b,d)  Examples of overlapping DE genes from a,c. Normalized values are shown from single cell analysis of luminal 
HS (b) or AV (d) cells from 3M vs. 18M mice (t-test), along with a pie chart depicting the percentage of expressing 
cells vs. non-expressing cells (left panel). Normalized values are shown for normal tissue (n=112) and TCGA luminal 
A (n=547) and B tumors (n=207) (t-test) (right panel). P-values are indicated. 

(e,f)  Examples of DE fibroblast (e) and T cell (f) marker genes in 3M  vs. 18M mice and DE genes from TCGA 
human luminal A (n=547) or luminal B (n=207) tumors vs. normal breast tissues (n=112). Normalized values are 
shown from single cell analysis of fibroblast or T cells from 3M vs. 18M mice (t-test), along with a pie chart depicting 
the percentage of expressing cells vs. non-expressing cells (left panel). Normalized values are shown for normal 
tissue (n=112) and TCGA luminal A (n=547) and B tumors (n=207) (t-test) (right panel). P-values are indicated. 

See also Supplementary Figure 10 and Supplementary Table 8. 
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