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Abstract

In striated muscle, some sarcomere proteins regulate crossbridge cycling by varying the
propensity of myosin heads to interact with actin. Myosin-binding protein C (MyBP-C) is bound to
the myosin thick filament and is predicted to interact and stabilize myosin heads in a docked
position against the thick filament and limit crossbridge formation, the so-called OFF state. Via an
unknown mechanism, MyBP-C is thought to release heads into the so-called ON state, where
they are more likely to form crossbridges. To study this proposed mechanism, we used the C2-
mouse line to knock down fast-isoform MyBP-C completely and total MyBP-C by ~24%, and
conducted mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate
10 the myofilament structure. We report that C2~'~ fibers presented deficits in force production and
11 reduced calcium sensitivity. Structurally, passive C2 fibers presented altered SL-independent
12 and SL-dependent regulation of myosin head ON/OFF states, with a shift of myosin heads

13 towards the ON state. Unexpectedly, at shorter sarcomere lengths, the thin filament was axially
14  extended in C27 vs. non-transgenic controls, which we postulate is due to increased low-level

15 crossbridge formation arising from relatively more ON myosins in the passive muscle that

16 elongates the thin filament. The downstream effect of increasing crossbridge formation in a

17 passive muscle on contraction performance is not known. Such widespread structural changes to
18 sarcomere proteins provide testable mechanisms to explain the etiology of debilitating MyBP-C-
19 associated diseases.
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25 The force-generating unit of striated muscle is the sarcomere and is predominately comprised of
26 an interdigitating hexagonal array of thick and thin filaments (Fig.1A)12. Active force generation
27 arises from the interaction of myosin heads projecting from the thick filament and actin in the thin
28 filament, via so-called crossbridge cycling®4. Separate from thin-filament-based calcium-

29 dependent regulation of crossbridge formation by the troponin/tropomyosin®, the thick filament

30 also plays an independent regulatory role in crossbridge formation®-°. In passive sarcomeres,

31 each of the ~300 myosin heads per thick filament exists in a conformational state on a spectrum
32 between so-called “ON” and “OFF” states that affect crossbridge formation during contraction®1,
33 At one end is the OFF state, where the myosin head is docked against the helical tracks of the

34  thick filament and has a reduced propensity to form a crossbridge upon activation. At the other
35 endis the ON state, where the myosin head is positioned up and away from the thick filament,

36  making it more likely to form a crossbridge upon activation'2. Shifting a proportion of myosin

37  heads toward the ON state increases the propensity to form crossbridges upon contraction?.12-14,
38 Importantly, the sarcomere length (SL)-dependent transition of myosin heads toward the ON state
39 with increasing SL is considered the mechanical underpinning of length-dependence of calcium
40 sensitivity (length-dependent activation)!>16. However, myosin heads may also transition between
41 ON and OFF states by SL-independent mechanisms, leading to a basal transition of myosin

42 heads towards ON or OFF states while maintaining their SL-dependent property810.17.18,

43 Myosin-binding protein C (MyBP-C) is a proposed regulator of the myosin head ON/OFF state via
44  stabilizing interactions between myosin heads in the OFF conformation%-21, MyBP-C arises at
45  ~43 nm intervals along the thick filament backbone, interactions with up to 108 myosin heads per
46  thick filament?223, with MyBP-C dysfunction associated with debilitating human myopathies?+-27.
47 Skeletal muscle MyBP-C is a chain of 10 domains (Fig. 1A) with the C’-terminus bound to the

48  thick filament (C8-C10), and the other N’-terminal domains (C1-C7) pointed away from the thick
49  filament, most likely interacting with myosin heads and the thin filament?2.2328.29, Skeletal muscles
50 contain fast (fMyBP-C) and slow (sMpBP-C) isoforms that may function differently and are not

51 necessarily fiber-type specifict®. It was recently shown that rapid removal of the C1-C7 domains
52 of fMyBP-C in the fast-twitch dominant psoas muscle led to an SL-independent movement of

53 myosin heads towards the ON state, but the SL-dependent transition of myosin heads towards


https://sciwheel.com/work/citation?ids=157117,157115&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9719474,621285&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15399749&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14314795,2804404,12679936,10368698&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14777609,4639365&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12679898&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5917609,2804404,12679898,2279912&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7838427,2506293&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12679936,14777609,15386567,15370113&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14727017,12063245,10150978&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14702293,14702291&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8633136,9819391,12396119,8611191&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14702293,14702291,14800262,12534763&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14727017&pre=&suf=&sa=0&dbf=0
https://doi.org/10.1101/2023.10.19.563160
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.19.563160; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

54  the ON state at longer vs. shorter SLs was largely intact'®. These findings led to the hypothesis
55 that the C1-C7 domains and C8-C10 domains regulate the SL-independent and SL-dependent
56 components of myosin head ON/OFF regulation. If this is correct, then complete removal of

57 MyBP-C could ablate, or at least reduce, both SL-independent and SL-dependent controls of

58 myosin ON/OFF states. To explore the functional role of MyBP-C in skeletal muscle, we studied
59 extensor digitorum longus (EDL) muscles from a fMyBP-C global knockout mouse (C27-) vs. age-
60 matched non-transgenic (NTG) controls20. The NTG EDL is predominately a fast-twitch muscle
61  with a ~43% fMyBP-C expression3. C27/- express trace levels of fMyBP-C with a modest

62 increase in sMyBP-C that leads to thick filaments with ~24% fewer MyBP-C molecules?°. We

63 report that compared to NTG, C2~- fibers had reduced maximum tension and calcium sensitivity
64  but retained length-dependence of calcium sensitivity. C27/~ fibers presented an SL-independent
65  shift toward the ON state, however, SL-length dependent structural changes were either altered
66  or not detectable. Taken together, we provide evidence that MyBP-C plays a role in both the SL-
67  dependent and SL-independent regulation of the myosin ON/OFF level in passive sarcomeres.

68 Results and Discussion

69  We first evaluated the mechanical properties of permeabilized fiber bundles from C2~-and NTG
70  EDL muscles. Tension-pCa measurements were made at SLs of 2.4 and 2.8 um (Fig. 2B-C). In
71 relaxed fibers (pCa 8), we observed the characteristic increase in passive tension from 2.4 to 2.8
72 pm SL but no detectable difference between genotypes (Fig. 1D; Table 1). During maximal

73 contraction (pCa 4.5) both NTG and C27~ had increased tension at the longer SL, but C2~

74 produced less active tension across SLs (Fig. 1E; Table 1). NTG fibers increased pCaso at the
75 longer vs. shorter SL (Fig. 1F; Table 1), characteristic of a length-dependent activation!>16, While
76 C2'~ fibers also showed an increase in pCaso at the longer SL, values were generally decreased
77 across SLs (Fig. 1F; Table 1), as previously reported at 2.3 um SL2°, suggesting an SL-

78 independent reduction in calcium sensitivity. No SL effect of the Hill coefficient was detected but
79 there was a significant decrease for C27/~vs. NTG fibers (Fig. 1G; Table 1), which suggests a

80 general SL-independent impairment to crossbridge recruitment in C27~ fibers. We next quantified
81 force redevelopment after a small quick stretch that forcibly ruptured crossbridges for a measure
82  of crossbridge kinetics (Fig. 1H). We found no genotype effects for the rate of force release

83 (Krelease), force redevelopment (Kredevelopment), Of the slow phase (Ksiow) from the force

84  redevelopment curve (see methods) were all decreased at the longer vs. shorter SL (Fig. 1I-K;
85 Table 1), as expected3!. Taken together, C27 fibers present deficits in length-dependent

86 enhancements normally observed with force production and calcium sensitivity, but length-

87 dependence of crossbridge kinetics remains largely intact.

88  We next evaluated myofilament structures using small-angle X-ray diffraction’2. We collected X-
89 ray diffraction patterns from relaxed (pCa 9) NTG and C2*- EDL fiber bundles at 2.4 and 2.8 um
90  SL. The myofilament lattice spacing was quantified via the 1,0 reflection (Fig. 2A) which
91 represents the spacing of the di lattice plane within the filament overlap region (Fig. 2B). dio
92 decreased with increasing SL, as expected, with no genotype effect (Fig. 2C; Table 2). Lattice
93  spacing heterogeneity (op)3? increased with increasing sarcomere length, as expected3?, but was
94 lower in C27- vs. NTG fibers across SLs (Fig. 2D; Table 2), suggesting that fMyBP-C impacts
95 lattice order across SLs potentially via thin filament interactions?'?¢. sMyBP-C and fMyBP-C have
96  well-characterized structural differences in their N-termini, yet differences in functionality are still
97  not fully described®*°. With only sMyBP-C in the C2-- fibers and a mix of MyBP-C isoforms in the
98 NTG, our results for di,0 and op suggest that sSMyBP-C supports or allows a greater radial
99  distance between myofilaments compared to fMyBP-C.

100

101 The distribution of myosin heads between the ON and OFF states is a critical determinant of

102 muscle performance during contraction (Fig. 2E)&115, In mammalian muscle, there is a well-

103 known SL-dependent mechanism by which myosin heads become ON: sarcomere stretch

104  extends I-band titin, which increases the titin-based force that elongates the thick filament axially

3
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105 and ultimately leads to some myosin heads shifting from an OFF towards an ON state12:3334,

106 Elongating the thick filament most likely dissociates the stabilizing interactions between OFF

107  myosin heads and the thick filament backbone (e.g. titin and MyBP-C)?223. Other mechanisms
108  regulate myosin heads in an SL-independent fashion, such as phosphorylation3® or the external
109  addition of pharmaceuticals that force myosin heads into OFF or ON states19:17:33, Importantly,
110  without SL change, repositioning myosin heads into the ON state still elongates the thick

111  filament917.33 most likely due to structural rearrangements within the thick filament backbone
112 that are not yet understood!!. We tracked three X-ray reflections to study this phenomenon. 1)
113 The intensity ratio between the 1,1 and 1,0 reflections (l1o0 / 111), which tracks the radial movement
114  of mass in the form of myosin heads from thick toward neighboring thin filaments36. 2) The

115  spacing and intensity of the M3 reflection (lms, Sms). Sms represents the average axial periodicity
116 between myosin crowns along the thick filament. Sms does not provide the radial position of the
117 myosin heads off the thick filament backbone but does provide an orientation change that

118  generally tracks the myosin ON/OFF state. Typically, increasing Swms aligns with myosin head
119 movement into an ON state, but is not strictly mandatory?!3. Ius is an indicator of the helical

120 ordering of the myosin heads and is a useful indicator of myosin structure change. Since the

121 diffracted intensity is proportional to the square of the total electron density, the square root of Iws
122 (VIus) is directly correlated to the number of diffracting myosin heads. All myosin heads can be in
123 different orientations along the thick filament, so increasing or decreasing the homogeneity of
124 myosin head positions will increase or decrease the Ius, respectively?’. 3) The spacing of the M6
125 reflection (Swme) captures the coiled-coil periodicity of the myosin tail along the thick filament

126  backbone and is used to measure thick filament elongation3®.

127

128 For NTG fibers, we observed the typical SL-dependent increase of l1o / 111, Sws, Sms, and VIM3
129  from the short to long SL (Fig. 2E-H; Table 2). Strikingly, C2 fibers presented nearly constant
130  values across SLs for Swe and Swms. Smes and Swmz values in C27- fibers were generally elevated to
131 the level of NTG fibers at the longer length, so that at the short SL, C27 values were greater than
132 NTG values (Fig. 2F-G; Table 2). These findings suggest two important conclusions. First,

133 compared to NTG fibers, C27 fibers have more myosin heads in the ON position across SLs. This
134 can be caused by destabilization of the OFF state, which seems likely in the C-zone, as OFF-
135  state myosin heads interact with MyBP-C domains C8-10%>%3. Second, muscles with diseased,
136 genetically modified, or partially cleaved MyBP-Cs all present evidence of destabilization of at
137 least some C-zone myosin heads in the OFF statel820, In theory, MyBP-C keeps a subpopulation
138  of myosin heads in the C-zone in a different orientation than those in the P- or D-zones?’. It

139  seems reasonable that removing about 50% of the MyBP-C molecules from the thick filament in
140 C2' leads to those “freed” C-zone myosin heads assuming the orientation of their P-zone and D-
141 zone counterparts, increasing overall myosin head order. Indeed, Vius was elevated in C27-

142 across SLs (Fig. 2H; Table 2), which indicates more myosin head order — something typically
143 associated with myosins transitioning towards the OFF state, but in this case, where other

144 markers indicate the opposite (see above), C-zone myosins being more ordered with D- and P-
145 zone myosin heads seems more likely.

146

147 Surprisingly in C2 fibers, SL-extension did not elongate the thick filament or reorient the myosin
148 heads as is typical but did elevate the average position of myosin heads away from the

149  backbone, as demonstrated by the increased lio / |11, albeit with larger values across SL (Fig. 2E-
150 H; Table 2). One possible explanation is that C27 fibers were already transitioned to a higher ON
151 state, even at short SL, and so the effect of stretch was reduced (and may have occurred below
152 our detection limits). However, we could detect a radial head movement from short to long

153 lengths in C2- fibers, even though they were naturally transitioned to a more ON state across
154  SLs. This may suggest that the radial movement of myosin heads toward the thin filament (l11/110)
155 is more sensitive to sarcomere length than orientation changes that alter myosin periodicity (Sws).
156 It should be noted that the orientation of the blocked myosin head — the counterpart to the free
157 head — also contributes to the M3 reflection and may also alter its typically OFF-state position in
158 C2" vs. NTG fibers. Taken together, the fMyBP-C KO in C2”- present altered SL-independent
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159 and SL-dependent regulation of myosin head ON/OFF states that is likely linked to an inability to
160 stabilize the OFF state.

161

162  As alast assessment, we studied thin filament length. By a mysterious mechanism, thin filaments
163  elongate with increasing SL in passive mammalian cardiac and skeletal muscle!833:3% and we
164  evaluated if this changes in fMyBP-C KO muscle. Evidence from direct visualization

165  experiments?328.29 shows so-called C-links, where the N’-terminal domains of MyBP-C interact
166  with the thin filament, bridging the thick and thin filament. C-links, if present, would theoretically
167 elongate the thin filaments during sarcomere stretch, but since C-links are short compared to an
168 SL change (100’s of nm), the N’-terminal would drag along the surface of the thin filament. We
169  quantified thin filament elongation by the spacing of the A6 reflection (Sas), which represents the
170  periodicity of the left-handed helix of actin, and the T3 reflection (Sts), which represents the 3rd-
171 order axial spacing of troponin (Fig. H). In NTG fibers, we observed an increased Sas and Stz in
172 thelong vs. short SL (Fig. 21-J; Table 2). In contrast, C2 fibers presented no SL-dependence of
173 Sas Or Stz but had longer spacings at the short SL similar to those with longer SL (Fig. 2I-J; Table
174 2). While a loss of fMyBP-C and C-links could explain why there is little thin filament extension
175 with increasing SL, it cannot explain why the thin filaments became longer at the short SL in C2-
176 vs. NTG fibers. In this study, C27- sarcomeres have more ON myosin heads as well as longer thin
177 filaments. In passive muscles, ON myosins produce a small number of crossbridges that

178 generate a small amount of force on the thin filaments4%-43, These bound crossbridges, estimated
179 at ~2% of myosin heads, increase with increasing proportion of ON myosin heads#4. In C2+

180 fibers, more myosin heads are ON, and so we would predict more force-producing crossbridges
181 as well, contributing to thin filament extension. These hypotheses could be tested by using

182 mavacamten or dATP to force nearly all myosin heads into the OFF or ON state, respectively1045,
183  and tracking changes to thin filament length. The impact of this bridging and thin filament length
184  on contraction performance is an unexplored area of muscle science.

185

186 Materials and Methods

187

188 Animal model and muscle preparation

189 Animal procedures were performed according to the Guide for the Use and Care of Laboratory
190 Animals published by the National Institutes of Health and approved by the institutional animal
191 care and use committee at the University of Vermont and the University of Cincinnati. Mice of
192 either sex, 14-16 weeks old were deeply anesthetized with 2-4% isoflurane and killed by cervical
193 dislocation. Skeletal muscles including extensor digitalis longus (EDL) were prepared as

194  previously described*é. Muscles were removed, and their tendons tied to wooden sticks to

195 prevent contraction and placed in a relaxing solution composed of (mM): EGTA (5), MgCl2 (2.5),
196 NazH2ATP (2.5), imidazole (10), K-propionate (170), a protease inhibitor (1 minitab per 10 mL,
197 Roche), pH = 7. Over the next 18 hours at 4°C, 50% of the relaxing solution was gradually

198 replaced with glycerol. Samples were then stored at —20°C.

199

200 Muscle Mechanics

201 Length-dependence of Ca2* sensitivity was assessed by performing force-pCa curves at

202 sarcomere lengths of 2.4 (short) and 2.8 (long) um using standard protocols*’. Steady-state

203  active force was assessed at pCa’s: 8.0, 6.33, 6.17, 6.0, 5.83, 5.67, 5.5, 5.0 (maximal [Ca?*]).
204  The solution contained (mM): EGTA (5), MgClz (1.12), BES (20), NazH2ATP (5), Na-methyl

205 sulfonate (67), PIOH (5), creatine phosphate (15), creatine kinase (300 U/mL), pH = 7. Force was
206 normalized to the maximum force at pCa 5.0. A four-parameter Hill equation was fit to the

207 normalized force-pCa data®® to calculate pCaso (pCa at 50% maximum force; a measure of Ca?*
208  sensitivity) and the Hill coefficient. At pCa 5, a quick stretch of 0.25% muscle length was applied,
209  and the force was fit to an equation of three exponentials: A exp (-Krelease t) - B €Xp(-Kredevelopment t)
210  + C exp(-Ksiow t).

211

212
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213  Small angle X-ray diffraction and fiber mechanics apparatus

214  Samples were shipped to the BioCAT facility on ice for all experimental tests and stored at -20°C
215 until used. On the day of experiments, EDL muscles were removed from the storage solution and
216  vigorously washed in relaxing solution (composition (in mM): potassium propionate (45.3), N,N-
217 Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid BES (40); EGTA (10), MgClz (6.3), Na-ATP (6.1),
218 DTT (10), protease inhibitors (complete), pH 7.0)). Whole fascicles were excised from EDL

219 muscle and silk suture knots (sizing 6-0 or 4-0) were tied at the distal and proximal ends at the
220 muscle-tendon junction as close to the fascicle as possible. Samples were then immediately

221 transferred to the experimental chamber.

222

223 X-ray diffraction patterns were collected using the small-angle instrument on the BioCAT

224 beamline 18ID at the Advanced Photon Source, Argonne National Laboratory*®. The X-ray beam
225 (0.103 nm wavelength) was focused to ~0.06 x 0.15 mm at the detector plane. X-ray exposures
226  were set at 1 s with an incident flux of ~3x1012? photons per second. The sample-to-detector

227 distance was set between 3.0 and 3.5 m, and the X-ray fiber diffraction patterns were collected
228  with a CCD-based X-ray detector (Mar 165, Rayonix Inc, Evanston IL, USA). An inline camera
229 built into the system allowed for initial alignment with the X-ray beam and continuous sample
230 visualization during the experiment. Prepared fiber bundles were attached longitudinally to a force
231 transducer (402A, Aurora Scientific, Aurora, Canada) and motor (322C, Aurora Scientific, Aurora,
232 Canada), and placed into a bath of relaxing solution at 27°C. Force and length data were

233 collected at 1000 Hz using a 600A: Real-Time Muscle Data Acquisition and Analysis System
234 (Aurora Scientific, Aurora, Canada). Sarcomere length (SL) was measured via laser diffraction
235 using a 4-mW Helium-Neon laser. The force baseline was set at slack length = 0 mN. After this
236 initial setup, fiber length changes were accomplished through computer control of the motor,

237  which we confirmed appropriate SL length change on a subset of samples. The mechanical rig
238  was supported on a custom-designed motorized platform that allowed placement of muscle into
239  the X-ray flight path and small movements to target X-ray exposure during experiments. Using
240 the inline camera of the X-ray apparatus, the platform was moved to target the beam at different
241 locations along the length of the sample. To limit X-ray exposure of any one part of the

242 preparation, no part of the sample was exposed more than once.

243

244 Experimental protocols and analysis

245 The experimental approach captured X-ray images in samples at two SLs across the in vivo

246 physiological operating range®®. Samples were stretched from 2.4 ym SL to 2.8 ym SL, at 0.1 um
247 SL st with a 90 s hold phase to allow for stress relaxation. X-ray images were collected at the
248 end of each hold phase.

249

250  Analysis of X-ray diffraction patterns

251 X-ray images were analyzed using the MuscleX open-source data reduction package>!. The

252 “Quadrant Folding” routine was used to improve the signal-to-noise by adding together the four
253 equatorial-meridional quadrants, which each provide the same information (Friedel’s Law). The
254  “Equator” routine of MuscleX was used to calculate the 11,1 / l1,0 intensity ratio, di,0 lattice spacing,
255 and op. Meridional (M3, T3, M6) and off-meridional reflections (A6) were analyzed using the

256 MuscleX “Projection Traces” routine. Spacing measurements of the meridional reflections were
257 made in the reciprocal radial range ~0 < R < 0.032 nm! for M3, M6, and T3 reflections, and

258  ~0.013 <R <£0.053 nm for the A6 reflection, where R denotes the radial coordinate in reciprocal
259  space®2. Every image provides intensities of different quality, which leads to various levels of
260  Gaussian fit errors for each intensity modeled, which increases the variation in spacings in the
261  dataset. To limit these effects, fit errors > 10% were discarded. Positions of X-ray reflections on
262 the diffraction patterns in pixels were converted to sample periodicities in nm using the 100-

263  diffraction ring of silver behenate at doox = 5.8380 nm. Intensity was normalized by the radially
264  symmetric background measured by the “Quadrant Folding” routine.

265

266
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267  Statistics

268 Statistical analysis was conducted using JMP Pro (V16, SAS Institute, USA). The significance
269 level was always set at a = 0.05. We used a repeated-measures analysis of variance (ANOVA)
270  design with fixed effects SL, genotype, SL x genotype interaction term, and a nested random
271 (repeated-measures) effect of the individual (when appropriate). Data was best Box-Cox

272 transformed to meet assumptions of normality and homoscedasticity when necessary, which
273  were assessed by residual analysis, Shapiro-Wilk’s test for normality, and Levene’s test for

274 unequal variance. Significant main effects were subject to Tukey's highly significant difference
275 (HSD) multiple comparison procedures to assess differences between factor levels. This data is
276 indicated in graphs via so-called connecting letters, where factor levels sharing a common letter
277 are not significantly different from each other. All data presented as mean + s.e.m.

278

279 Data availability statement: Datasets used to generate the figures and tables are included in
280  supplemental information. Additional data that support the findings of this study are available from
281 the corresponding authors upon reasonable request.
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Table 1. Mechanical analysis from data in Figure 1. The ANOVA analysis F-stats and P-
values are provided, as well as a connecting letter report from a Tukey HSD analysis. Data
reported as mean * s.e.m. *Significant (P < 0.05).

Parameter Genotype SL (um) N Mean s.e.m. Effect F P Letters
Krelease (S1) WT 24 11 458.09 40.12 Genotype 0.28 0.60 a
Krelease (S1) WT 2.8 10 387.68 51.53 SL 2.88 0.10 a
Krelease (S1) c2-+ 2.4 8 496.21 56.13 Interaction 0.06 0.81 a
Krelease (S1) Cc2'" 2.8 6 400.06 26.91 a
Kred. (S1) WT 2.4 11 348.46 33.33 Genotype 0.00 0.95 a
Kred. (S1) WT 2.8 10 286.15 46.19 SL 4.17 0.04* b
Kred. (S1) c2+ 2.4 8 372,55 4585 Interaction 0.37 0.55 a
Kred. (S1) c2 2.8 6 256.54 44.46 b
Ksiow (s1) WT 2.4 11 654 0.36 Genotype 6.23 0.02* a
Ksiow (s72) WT 2.8 10 4.98 0.22 SL 30.29 <.0001* b
Ksiow (s71) c2-+ 2.4 8 6.58 0.78 Interaction  3.93 0.06 a
Ksiow (52 c2+ 2.8 6 386 0.8 b
Min. Tension (mN) WT 2.4 11 293 0.72  Genotype 0.70 0.41 a
Min. Tension (mN) WT 2.8 10 1071 161 SL 48.56 <.0001* b
Min. Tension (mN) Cc2+ 24 8 2.86 1.21 Interaction 1.16 0.29 a
Min. Tension (mN) C2+ 2.8 6 1454 199 b
Max. Tension (mN) WT 2.4 11 12156 9.05 Genotype 11.28 0.002* a
Max. Tension (mN) WT 2.8 10 164.21 9.76 SL 11.00 0.002* c
Max. Tension (mN) c2+ 2.4 8 9580 10.61 Interaction 0.52 0.48 b
Max. Tension (mN) C2+ 2.8 6 120.75 9.66 d
pCaso WT 2.4 11 5.69 0.01 Genotype 7.01 0.01* a
pCaso WT 2.8 10 5.74 0.02 SL 4.28 0.04* c
pCaso c2+ 2.4 8 5.64 0.03 Interaction 0.07 0.79 b
pCaso C2+ 2.8 6 5.68 0.03 d
Hill Coeff. WT 2.4 11 584 0.19 Genotype 6.91 0.01* a
Hill Coeff. WT 2.8 10 5.68 0.48 SL 0.58 0.45 a
Hill Coeff. Cc2'" 2.4 8 4.97 0.33 Interaction 0.28 0.60 b
Hill Coeff. c2- 2.8 6 4.36 0.61 b
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431 Table 2. Small angle X-ray diffraction analysis from data in Figure 2. The ANOVA analysis
432 F-stats and P- values are provided, as well as a connecting letter report from a Tukey HSD
433  analysis. Data reported as mean * s.e.m. *Significant (P < 0.05).

Parameter Genotype SL({um) N Mean s.em. Effect F P Letters
D10 (nm) WT 24 14 39.39 0.41 Genotype 8.28 0.01* a
D10 (nm) WT 2.8 14 37.57 0.51 SL 97.33  <.0001* b
D10 (nm) c2+ 2.4 9 4044 0.46 Interaction 11.57  0.0001* a
D10 (nm) C2+ 2.8 9 38.68 0.54 b
op (hm?) WT 2.4 11 14.17 0.6866 Genotype 5.87 0.03* a
op (nm) WT 2.8 11 1550 0.9687 SL 22.27  <.0001* c
oo (nm?) c2+ 2.4 8 11.74 0.4896 Interaction 0.02 0.98 b
op (hm?) c2-+ 2.8 8 13.18 0.5929 d

l1,1/11,0 WT 2.4 11  0.47 0.0735 Genotype 11.79 0.003* a
l11/l10 WT 2.8 11 0.67 0.0931 SL 3.54 0.04* c
l11/110 Cc2+ 2.4 7 0.76  0.0554 Interaction 1.13 0.34 b
l11/l10 c2-+ 2.8 7 0.89 0.0601 d
Swmsz (hm) WT 2.4 14 14.344 0.0041 Genotype 5.17 0.03* a
Swmz (Nm) WT 2.8 13 14.383 0.0047 SL 22.22  <.0001* o
Sws (nm) c2+ 2.4 10 14.362 0.0051 |Interaction 2252  <.0001* b
Swmz (nm) c2-+ 2.8 10 14.366 0.0071 a, c
Sws (M) WT 2.4 12 7.190 0.003 Genotype 0.01 0.91 a
Swme (NM) WT 2.8 12 7.217 0.002 SL 58.77  <.0001* o
Swe (NM) c2+ 2.4 10 7.206 0.003 |Interaction 21.29 <.0001* b
Swes (NmM) c2-+ 2.8 10 7.211  0.003 a,c
Vv WT 2.4 14 0.0113 0.0006 Genotype  9.64 0.01* a
Vv WT 2.8 13 0.0099 0.0005 SL 5.79 0.03* c
VIus C2+ 2.4 10 0.0132 0.0006 Interaction 0.86 0.36 b
Vv c2-+ 2.8 10 0.0126 0.0006 d
Sts(nm) WT 2.4 12 12.645 0.0105 Genotype 0.96 0.34 a
St3(nm) WT 2.8 11 12.690 0.0098 SL 5.79 0.01* c
St3(nm) c2+ 2.4 10 12.679 0.0054 Interaction 3.91 0.03* b
St3(nm) c2-+ 2.8 10 12.678 0.0082 d
Sas (nm) WT 2.4 13 5.822 0.0041 Genotype 7.48 0.01* a
Sae (NM) WT 2.8 12 5.851 0.0047 SL 14.20 <.0001* a
Sas (nm) c2+ 2.4 8 5.847 0.005 Interaction 2.65 0.05* b
Sas (Nm) c2-+ 2.8 8 5.859 0.0062 a

434
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435
436 Figure 1. Mechanical assessment of permeabilized C27 (black / squares) and NTG fibers

437 (red / triangles) from EDL. (A) Cartoon representation of a half sarcomere. Thin filaments are
438 comprised of actin filaments (blue), troponin-tropomyosin complexes (purple), and nebulin (not
439  shown). Thick flament backbones (gray) are populated with myosin heads (green), titin filaments
440 (brown), and MyBP-C (black). Thick filaments are demarcated into P-, C-, and D-zones, where
441 MyBP-C is localized in the C-zone. In the I-band, titin extends from the Z-disk to the tops of the
442 thick filament and produces titin-based force as an extensible spring. (B-C) Tension-pCa

443 experiments for NTG (B) and C27- (C) fiber bundles at 2.4 and 2.8 pum SL. (D) passive tension,
444 (E) active tension, (F) pCaso, and (G) Hill coefficient were derived from tension-pCa experiments.
445 (H) Representative traces of quick-stretch — redevelopment experiments for NTG (top) and C2+*
446  fibers (bottom) at 2.4 (orange and 2.8 (blue) um SL. From these, the rate of force release (I;

447 Krelase) force redevelopment (J; Kredevelopment) @and slow phase (K; Ksiow) are calculated. Statistical
448 results are presented as a connecting letters report, where different letters are statistically

449 different (P < 0.05). Data reported as mean + s.e.m. with full statistical details provided in Table 1.

450
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451
452 Figure 2. Sarcomere structures of C27 (black / squares) and NTG fibers (red / triangles).

453 (A) A representative image of an X-ray diffraction pattern, with reflections of interest labeled. The
454  area around the equatorial axis was scaled differently to make reflections easier to view. (B) A
455 cross-section of a myofibril in the thick (gray) and thin (red) filament overlap zone. Example

456 myosin thick-thin filament crossbridges drawn (dotted lines). Overlayed are the geometric lattice
457 planes di,0 and di,1, which lead to the 1,0 and 1,0 equatorial intensities, respectively. (C) dio

458  spacing quantifies lattice spacing. (D) op quantifies lattice spacing heterogeneity. (E) l1,1/l10 is a
459 measure of mass distribution (i.e., myosin heads) between thick and thin filaments. (F) Swmz is the
460 periodicity between myosin heads along the thick flament and indicates myosin head orientation.
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(G) Swmeis from a periodicity along the thick filament and quantifies the average thick filament
length. (H) VIM3 is proportional to the electron density creating the reflection and can be
interpreted as quantifying the orderness of myosin heads along the thick filament. (I) A cartoon
representation of the thin filament, with periodicities of interest labeled. (J) Sts is the (third-order)
axial periodicity of troponin. (K) Sae is the axial periodicity of the left-handed helix of actin and
indicates thin filament twisting and elongation. Statistical results are presented as a connecting
letters report, where different letters are statistically different (P < 0.05). Data reported as mean +
s.e.m. with full statistical details provided in Table 2.
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