

Main Manuscript for

Fast myosin binding protein C knockout in skeletal muscle alters length-dependent activation and myofilament structure.

Authors: Anthony L. Hessel^{1*}, Michel Kuehn¹, Seong-Won Han¹, Weikang Ma², Thomas C. Irving², Brent A. Momb³, Taejeong Song⁴, Sakthivel Sadayappan⁴, Wolfgang A. Linke¹, Bradley M. Palmer^{5*}.

Affiliations:

¹Institute of Physiology II, University of Muenster; Muenster, Germany.

²BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, USA.

³Department of Kinesiology, University of Massachusetts – Amherst; Amherst, MA, USA

⁴ Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA

⁵Department of Molecular Physiology and Biophysics, University of Vermont; Burlington, VT, USA.

*Corresponding authors Anthony L. Hessel and Bradley M. Palmer

Email: anthony.hessel@uni-muenster.de, Bradley.palmer@uvm.edu

Keywords: X-ray diffraction, mouse, ultrastructure, MYBPC2

This PDF file includes:

Main Text

Figures 1 to 2

Tables 1 to 2

1 **Abstract**

2 In striated muscle, some sarcomere proteins regulate crossbridge cycling by varying the
3 propensity of myosin heads to interact with actin. Myosin-binding protein C (MyBP-C) is bound to
4 the myosin thick filament and is predicted to interact and stabilize myosin heads in a docked
5 position against the thick filament and limit crossbridge formation, the so-called OFF state. Via an
6 unknown mechanism, MyBP-C is thought to release heads into the so-called ON state, where
7 they are more likely to form crossbridges. To study this proposed mechanism, we used the C2^{-/-}
8 mouse line to knock down fast-isoform MyBP-C completely and total MyBP-C by ~24%, and
9 conducted mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate
10 the myofilament structure. We report that C2^{-/-} fibers presented deficits in force production and
11 reduced calcium sensitivity. Structurally, passive C2^{-/-} fibers presented altered SL-independent
12 and SL-dependent regulation of myosin head ON/OFF states, with a shift of myosin heads
13 towards the ON state. Unexpectedly, at shorter sarcomere lengths, the thin filament was axially
14 extended in C2^{-/-} vs. non-transgenic controls, which we postulate is due to increased low-level
15 crossbridge formation arising from relatively more ON myosins in the passive muscle that
16 elongates the thin filament. The downstream effect of increasing crossbridge formation in a
17 passive muscle on contraction performance is not known. Such widespread structural changes to
18 sarcomere proteins provide testable mechanisms to explain the etiology of debilitating MyBP-C-
19 associated diseases.

20 **Main Text**

21 **Introduction**

22 The force-generating unit of striated muscle is the sarcomere and is predominately comprised of
23 an interdigitating hexagonal array of thick and thin filaments (Fig. 1A)^{1,2}. Active force generation
24 arises from the interaction of myosin heads projecting from the thick filament and actin in the thin
25 filament, via so-called crossbridge cycling^{3,4}. Separate from thin-filament-based calcium-
26 dependent regulation of crossbridge formation by the troponin/tropomyosin⁵, the thick filament
27 also plays an independent regulatory role in crossbridge formation⁶⁻⁹. In passive sarcomeres,
28 each of the ~300 myosin heads per thick filament exists in a conformational state on a spectrum
29 between so-called “ON” and “OFF” states that affect crossbridge formation *during contraction*^{10,11}.
30 At one end is the OFF state, where the myosin head is docked against the helical tracks of the
31 thick filament and has a reduced propensity to form a crossbridge upon activation. At the other
32 end is the ON state, where the myosin head is positioned up and away from the thick filament,
33 making it more likely to form a crossbridge upon activation¹². Shifting a proportion of myosin
34 heads toward the ON state increases the propensity to form crossbridges upon contraction^{7,12-14}.
35 Importantly, the sarcomere length (SL)-dependent transition of myosin heads toward the ON state
36 with increasing SL is considered the mechanical underpinning of length-dependence of calcium
37 sensitivity (length-dependent activation)^{15,16}. However, myosin heads may also transition between
38 ON and OFF states by SL-independent mechanisms, leading to a basal transition of myosin
39 heads towards ON or OFF states while maintaining their SL-dependent property^{8,10,17,18}.

40 Myosin-binding protein C (MyBP-C) is a proposed regulator of the myosin head ON/OFF state via
41 stabilizing interactions between myosin heads in the OFF conformation¹⁹⁻²¹. MyBP-C arises at
42 ~43 nm intervals along the thick filament backbone, interactions with up to 108 myosin heads per
43 thick filament^{22,23}, with MyBP-C dysfunction associated with debilitating human myopathies²⁴⁻²⁷.
44 Skeletal muscle MyBP-C is a chain of 10 domains (Fig. 1A) with the C'-terminus bound to the
45 thick filament (C8-C10), and the other N'-terminal domains (C1-C7) pointed away from the thick
46 filament, most likely interacting with myosin heads and the thin filament^{22,23,28,29}. Skeletal muscles
47 contain fast (fMyBP-C) and slow (sMyBP-C) isoforms that may function differently and are not
48 necessarily fiber-type specific¹⁹. It was recently shown that rapid removal of the C1-C7 domains
49 of fMyBP-C in the fast-twitch dominant psoas muscle led to an SL-independent movement of
50 myosin heads towards the ON state, but the SL-dependent transition of myosin heads towards
51

54 the ON state at longer vs. shorter SLs was largely intact¹⁸. These findings led to the hypothesis
55 that the C1-C7 domains and C8-C10 domains regulate the SL-independent and SL-dependent
56 components of myosin head ON/OFF regulation. If this is correct, then complete removal of
57 MyBP-C could ablate, or at least reduce, both SL-independent and SL-dependent controls of
58 myosin ON/OFF states. To explore the functional role of MyBP-C in skeletal muscle, we studied
59 extensor digitorum longus (EDL) muscles from a fMyBP-C global knockout mouse ($C2^{-/-}$) vs. age-
60 matched non-transgenic (NTG) controls²⁰. The NTG EDL is predominately a fast-twitch muscle
61 with a ~43% fMyBP-C expression³⁰. $C2^{-/-}$ express trace levels of fMyBP-C with a modest
62 increase in sMyBP-C that leads to thick filaments with ~24% fewer MyBP-C molecules²⁰. We
63 report that compared to NTG, $C2^{-/-}$ fibers had reduced maximum tension and calcium sensitivity
64 but retained length-dependence of calcium sensitivity. $C2^{-/-}$ fibers presented an SL-independent
65 shift toward the ON state, however, SL-length dependent structural changes were either altered
66 or not detectable. Taken together, we provide evidence that MyBP-C plays a role in both the SL-
67 dependent and SL-independent regulation of the myosin ON/OFF level in passive sarcomeres.

68 Results and Discussion

69 We first evaluated the mechanical properties of permeabilized fiber bundles from $C2^{-/-}$ and NTG
70 EDL muscles. Tension-pCa measurements were made at SLs of 2.4 and 2.8 μm (Fig. 2B-C). In
71 relaxed fibers (pCa 8), we observed the characteristic increase in passive tension from 2.4 to 2.8
72 μm SL but no detectable difference between genotypes (Fig. 1D; Table 1). During maximal
73 contraction (pCa 4.5) both NTG and $C2^{-/-}$ had increased tension at the longer SL, but $C2^{-/-}$
74 produced less active tension across SLs (Fig. 1E; Table 1), characteristic of a length-dependent activation^{15,16}. While
75 $C2^{-/-}$ fibers also showed an increase in pCa₅₀ at the longer SL, values were generally decreased
76 across SLs (Fig. 1F; Table 1), as previously reported at 2.3 μm SL²⁰, suggesting an SL-
77 independent reduction in calcium sensitivity. No SL effect of the Hill coefficient was detected but
78 there was a significant decrease for $C2^{-/-}$ vs. NTG fibers (Fig. 1G; Table 1), which suggests a
79 general SL-independent impairment to crossbridge recruitment in $C2^{-/-}$ fibers. We next quantified
80 force redevelopment after a small quick stretch that forcibly ruptured crossbridges for a measure
81 of crossbridge kinetics (Fig. 1H). We found no genotype effects for the rate of force release
82 (K_{Release}), force redevelopment ($K_{\text{Redevelopment}}$), or the slow phase (K_{slow}) from the force
83 redevelopment curve (see methods) were all decreased at the longer vs. shorter SL (Fig. 1I-K;
84 Table 1), as expected³¹. Taken together, $C2^{-/-}$ fibers present deficits in length-dependent
85 enhancements normally observed with force production and calcium sensitivity, but length-
86 dependence of crossbridge kinetics remains largely intact.

88 We next evaluated myofilament structures using small-angle X-ray diffraction¹². We collected X-
89 ray diffraction patterns from relaxed (pCa 9) NTG and $C2^{-/-}$ EDL fiber bundles at 2.4 and 2.8 μm
90 SL. The myofilament lattice spacing was quantified via the 1,0 reflection (Fig. 2A) which
91 represents the spacing of the $d_{1,0}$ lattice plane within the filament overlap region (Fig. 2B). $d_{1,0}$
92 decreased with increasing SL, as expected, with no genotype effect (Fig. 2C; Table 2). Lattice
93 spacing heterogeneity (σ_D)³² increased with increasing sarcomere length, as expected³³, but was
94 lower in $C2^{-/-}$ vs. NTG fibers across SLs (Fig. 2D; Table 2), suggesting that fMyBP-C impacts
95 lattice order across SLs potentially via thin filament interactions^{21,28}. sMyBP-C and fMyBP-C have
96 well-characterized structural differences in their N-termini, yet differences in functionality are still
97 not fully described^{19,30}. With only sMyBP-C in the $C2^{-/-}$ fibers and a mix of MyBP-C isoforms in the
98 NTG, our results for $d_{1,0}$ and σ_D suggest that sMyBP-C supports or allows a greater radial
99 distance between myofilaments compared to fMyBP-C.

100
101 The distribution of myosin heads between the ON and OFF states is a critical determinant of
102 muscle performance during contraction (Fig. 2E)^{8,11,15}. In mammalian muscle, there is a well-
103 known SL-dependent mechanism by which myosin heads become ON: sarcomere stretch
104 extends I-band titin, which increases the titin-based force that elongates the thick filament axially

105 and ultimately leads to some myosin heads shifting from an OFF towards an ON state^{12,33,34}.
106 Elongating the thick filament most likely dissociates the stabilizing interactions between OFF
107 myosin heads and the thick filament backbone (e.g. titin and MyBP-C)^{22,23}. Other mechanisms
108 regulate myosin heads in an SL-independent fashion, such as phosphorylation³⁵ or the external
109 addition of pharmaceuticals that force myosin heads into OFF or ON states^{10,17,33}. Importantly,
110 without SL change, repositioning myosin heads into the ON state still elongates the thick
111 filament^{10,17,33}, most likely due to structural rearrangements within the thick filament backbone
112 that are not yet understood¹¹. We tracked three X-ray reflections to study this phenomenon. 1) The
113 intensity ratio between the 1,1 and 1,0 reflections (I_{10} / I_{11}), which tracks the radial movement
114 of mass in the form of myosin heads from thick toward neighboring thin filaments³⁶. 2) The
115 spacing and intensity of the M3 reflection (I_{M3} , S_{M3}). S_{M3} represents the average axial periodicity
116 between myosin crowns along the thick filament. S_{M3} does not provide the radial position of the
117 myosin heads off the thick filament backbone but does provide an orientation change that
118 generally tracks the myosin ON/OFF state. Typically, increasing S_{M3} aligns with myosin head
119 movement into an ON state, but is not strictly mandatory¹³. I_{M3} is an indicator of the helical
120 ordering of the myosin heads and is a useful indicator of myosin structure change. Since the
121 diffracted intensity is proportional to the square of the total electron density, the square root of I_{M3}
122 ($\sqrt{I_{M3}}$) is directly correlated to the number of diffracting myosin heads. All myosin heads can be in
123 different orientations along the thick filament, so increasing or decreasing the homogeneity of
124 myosin head positions will increase or decrease the I_{M3} , respectively³⁷. 3) The spacing of the M6
125 reflection (S_{M6}) captures the coiled-coil periodicity of the myosin tail along the thick filament
126 backbone and is used to measure thick filament elongation³⁸.

127
128 For NTG fibers, we observed the typical SL-dependent increase of I_{10} / I_{11} , S_{M6} , S_{M3} , and $\sqrt{I_{M3}}$
129 from the short to long SL (Fig. 2E-H; Table 2). Strikingly, C2^{-/-} fibers presented nearly constant
130 values across SLs for S_{M6} and S_{M3} . S_{M6} and S_{M3} values in C2^{-/-} fibers were generally elevated to
131 the level of NTG fibers at the longer length, so that at the short SL, C2^{-/-} values were greater than
132 NTG values (Fig. 2F-G; Table 2). These findings suggest two important conclusions. First,
133 compared to NTG fibers, C2^{-/-} fibers have more myosin heads in the ON position across SLs. This
134 can be caused by destabilization of the OFF state, which seems likely in the C-zone, as OFF-
135 state myosin heads interact with MyBP-C domains C8-10^{22,23}. Second, muscles with diseased,
136 genetically modified, or partially cleaved MyBP-Cs all present evidence of destabilization of at
137 least some C-zone myosin heads in the OFF state^{18,20}. In theory, MyBP-C keeps a subpopulation
138 of myosin heads in the C-zone in a different orientation than those in the P- or D-zones³⁷. It
139 seems reasonable that removing about 50% of the MyBP-C molecules from the thick filament in
140 C2^{-/-} leads to those “freed” C-zone myosin heads assuming the orientation of their P-zone and D-
141 zone counterparts, increasing overall myosin head order. Indeed, $\sqrt{I_{M3}}$ was elevated in C2^{-/-}
142 across SLs (Fig. 2H; Table 2), which indicates more myosin head order – something typically
143 associated with myosins transitioning towards the OFF state, but in this case, where other
144 markers indicate the opposite (see above), C-zone myosins being more ordered with D- and P-
145 zone myosin heads seems more likely.

146
147 Surprisingly in C2^{-/-} fibers, SL-extension did not elongate the thick filament or reorient the myosin
148 heads as is typical but did elevate the average position of myosin heads away from the
149 backbone, as demonstrated by the increased I_{10} / I_{11} , albeit with larger values across SL (Fig. 2E-
150 H; Table 2). One possible explanation is that C2^{-/-} fibers were already transitioned to a higher ON
151 state, even at short SL, and so the effect of stretch was reduced (and may have occurred below
152 our detection limits). However, we could detect a radial head movement from short to long
153 lengths in C2^{-/-} fibers, even though they were naturally transitioned to a more ON state across
154 SLs. This may suggest that the radial movement of myosin heads toward the thin filament (I_{11}/I_{10})
155 is more sensitive to sarcomere length than orientation changes that alter myosin periodicity (S_{M3}).
156 It should be noted that the orientation of the blocked myosin head — the counterpart to the free
157 head — also contributes to the M3 reflection and may also alter its typically OFF-state position in
158 C2^{-/-} vs. NTG fibers. Taken together, the fMyBP-C KO in C2^{-/-} present altered SL-independent

159 and SL-dependent regulation of myosin head ON/OFF states that is likely linked to an inability to
160 stabilize the OFF state.

161
162 As a last assessment, we studied thin filament length. By a mysterious mechanism, thin filaments
163 elongate with increasing SL in passive mammalian cardiac and skeletal muscle^{18,33,39} and we
164 evaluated if this changes in fMyBP-C KO muscle. Evidence from direct visualization
165 experiments^{23,28,29} shows so-called C-links, where the N'-terminal domains of MyBP-C interact
166 with the thin filament, bridging the thick and thin filament. C-links, if present, would theoretically
167 elongate the thin filaments during sarcomere stretch, but since C-links are short compared to an
168 SL change (100's of nm), the N'-terminal would drag along the surface of the thin filament. We
169 quantified thin filament elongation by the spacing of the A6 reflection (S_{A6}), which represents the
170 periodicity of the left-handed helix of actin, and the T3 reflection (S_{T3}), which represents the 3rd-
171 order axial spacing of troponin (Fig. H). In NTG fibers, we observed an increased S_{A6} and S_{T3} in
172 the long vs. short SL (Fig. 2I-J; Table 2). In contrast, $C2^{-/-}$ fibers presented no SL-dependence of
173 S_{A6} or S_{T3} but had longer spacings at the short SL similar to those with longer SL (Fig. 2I-J; Table
174 2). While a loss of fMyBP-C and C-links could explain why there is little thin filament extension
175 with increasing SL, it cannot explain why the thin filaments became longer at the short SL in $C2^{-/-}$
176 vs. NTG fibers. In this study, $C2^{-/-}$ sarcomeres have more ON myosin heads as well as longer thin
177 filaments. In passive muscles, ON myosins produce a small number of crossbridges that
178 generate a small amount of force on the thin filaments⁴⁰⁻⁴³. These bound crossbridges, estimated
179 at ~2% of myosin heads, increase with increasing proportion of ON myosin heads⁴⁴. In $C2^{-/-}$
180 fibers, more myosin heads are ON, and so we would predict more force-producing crossbridges
181 as well, contributing to thin filament extension. These hypotheses could be tested by using
182 mavacamten or dATP to force nearly all myosin heads into the OFF or ON state, respectively^{10,45},
183 and tracking changes to thin filament length. The impact of this bridging and thin filament length
184 on contraction performance is an unexplored area of muscle science.

185
186 **Materials and Methods**
187

188 **Animal model and muscle preparation**

189 Animal procedures were performed according to the *Guide for the Use and Care of Laboratory*
190 *Animals* published by the National Institutes of Health and approved by the institutional animal
191 care and use committee at the University of Vermont and the University of Cincinnati. Mice of
192 either sex, 14-16 weeks old were deeply anesthetized with 2-4% isoflurane and killed by cervical
193 dislocation. Skeletal muscles including extensor digitorum longus (EDL) were prepared as
194 previously described⁴⁶. Muscles were removed, and their tendons tied to wooden sticks to
195 prevent contraction and placed in a relaxing solution composed of (mM): EGTA (5), MgCl₂ (2.5),
196 Na₂H₂ATP (2.5), imidazole (10), K-propionate (170), a protease inhibitor (1 minitab per 10 mL,
197 Roche), pH = 7. Over the next 18 hours at 4°C, 50% of the relaxing solution was gradually
198 replaced with glycerol. Samples were then stored at -20°C.

199
200 **Muscle Mechanics**

201 Length-dependence of Ca²⁺ sensitivity was assessed by performing force-pCa curves at
202 sarcomere lengths of 2.4 (short) and 2.8 (long) μm using standard protocols⁴⁷. Steady-state
203 active force was assessed at pCa's: 8.0, 6.33, 6.17, 6.0, 5.83, 5.67, 5.5, 5.0 (maximal [Ca²⁺]).
204 The solution contained (mM): EGTA (5), MgCl₂ (1.12), BES (20), Na₂H₂ATP (5), Na-methyl
205 sulfonate (67), PiOH (5), creatine phosphate (15), creatine kinase (300 U/mL), pH = 7. Force was
206 normalized to the maximum force at pCa 5.0. A four-parameter Hill equation was fit to the
207 normalized force-pCa data⁴⁸ to calculate pCa₅₀ (pCa at 50% maximum force; a measure of Ca²⁺
208 sensitivity) and the Hill coefficient. At pCa 5, a quick stretch of 0.25% muscle length was applied,
209 and the force was fit to an equation of three exponentials: A exp (-k_{release} t) - B exp(-k_{redevelopment} t)
210 + C exp(-k_{slow} t).

211
212

213 **Small angle X-ray diffraction and fiber mechanics apparatus**

214 Samples were shipped to the BioCAT facility on ice for all experimental tests and stored at -20°C
215 until used. On the day of experiments, EDL muscles were removed from the storage solution and
216 vigorously washed in relaxing solution (composition (in mM): potassium propionate (45.3), N,N-
217 Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid BES (40); EGTA (10), MgCl₂ (6.3), Na-ATP (6.1),
218 DTT (10), protease inhibitors (complete), pH 7.0)). Whole fascicles were excised from EDL
219 muscle and silk suture knots (sizing 6-0 or 4-0) were tied at the distal and proximal ends at the
220 muscle-tendon junction as close to the fascicle as possible. Samples were then immediately
221 transferred to the experimental chamber.

222
223 X-ray diffraction patterns were collected using the small-angle instrument on the BioCAT
224 beamline 18ID at the Advanced Photon Source, Argonne National Laboratory⁴⁹. The X-ray beam
225 (0.103 nm wavelength) was focused to ~0.06 x 0.15 mm at the detector plane. X-ray exposures
226 were set at 1 s with an incident flux of ~3x10¹² photons per second. The sample-to-detector
227 distance was set between 3.0 and 3.5 m, and the X-ray fiber diffraction patterns were collected
228 with a CCD-based X-ray detector (Mar 165, Rayonix Inc, Evanston IL, USA). An inline camera
229 built into the system allowed for initial alignment with the X-ray beam and continuous sample
230 visualization during the experiment. Prepared fiber bundles were attached longitudinally to a force
231 transducer (402A, Aurora Scientific, Aurora, Canada) and motor (322C, Aurora Scientific, Aurora,
232 Canada), and placed into a bath of relaxing solution at 27°C. Force and length data were
233 collected at 1000 Hz using a 600A: Real-Time Muscle Data Acquisition and Analysis System
234 (Aurora Scientific, Aurora, Canada). Sarcomere length (SL) was measured via laser diffraction
235 using a 4-mW Helium-Neon laser. The force baseline was set at slack length = 0 mN. After this
236 initial setup, fiber length changes were accomplished through computer control of the motor,
237 which we confirmed appropriate SL length change on a subset of samples. The mechanical rig
238 was supported on a custom-designed motorized platform that allowed placement of muscle into
239 the X-ray flight path and small movements to target X-ray exposure during experiments. Using
240 the inline camera of the X-ray apparatus, the platform was moved to target the beam at different
241 locations along the length of the sample. To limit X-ray exposure of any one part of the
242 preparation, no part of the sample was exposed more than once.

243
244 **Experimental protocols and analysis**

245 The experimental approach captured X-ray images in samples at two SLs across the *in vivo*
246 physiological operating range⁵⁰. Samples were stretched from 2.4 μm SL to 2.8 μm SL, at 0.1 μm
247 SL s⁻¹ with a 90 s hold phase to allow for stress relaxation. X-ray images were collected at the
248 end of each hold phase.

249
250 **Analysis of X-ray diffraction patterns**

251 X-ray images were analyzed using the MuscleX open-source data reduction package⁵¹. The
252 “Quadrant Folding” routine was used to improve the signal-to-noise by adding together the four
253 equatorial-meridional quadrants, which each provide the same information (Friedel’s Law). The
254 “Equator” routine of MuscleX was used to calculate the $I_{1,1} / I_{1,0}$ intensity ratio, $d_{1,0}$ lattice spacing,
255 and σ_d . Meridional (M3, T3, M6) and off-meridional reflections (A6) were analyzed using the
256 MuscleX “Projection Traces” routine. Spacing measurements of the meridional reflections were
257 made in the reciprocal radial range $\sim 0 \leq R \leq 0.032 \text{ nm}^{-1}$ for M3, M6, and T3 reflections, and
258 $\sim 0.013 \leq R \leq 0.053 \text{ nm}^{-1}$ for the A6 reflection, where R denotes the radial coordinate in reciprocal
259 space⁵². Every image provides intensities of different quality, which leads to various levels of
260 Gaussian fit errors for each intensity modeled, which increases the variation in spacings in the
261 dataset. To limit these effects, fit errors > 10% were discarded. Positions of X-ray reflections on
262 the diffraction patterns in pixels were converted to sample periodicities in nm using the 100-
263 diffraction ring of silver behenate at $d_{001} = 5.8380 \text{ nm}$. Intensity was normalized by the radially
264 symmetric background measured by the “Quadrant Folding” routine.

265
266

267 **Statistics**

268 Statistical analysis was conducted using JMP Pro (V16, SAS Institute, USA). The significance
269 level was always set at $\alpha = 0.05$. We used a repeated-measures analysis of variance (ANOVA)
270 design with fixed effects SL, genotype, SL x genotype interaction term, and a nested random
271 (repeated-measures) effect of the individual (when appropriate). Data was best Box-Cox
272 transformed to meet assumptions of normality and homoscedasticity when necessary, which
273 were assessed by residual analysis, Shapiro-Wilk's test for normality, and Levene's test for
274 unequal variance. Significant main effects were subject to Tukey's highly significant difference
275 (HSD) multiple comparison procedures to assess differences between factor levels. This data is
276 indicated in graphs via so-called connecting letters, where factor levels sharing a common letter
277 are not significantly different from each other. All data presented as mean \pm s.e.m.
278

279 **Data availability statement:** Datasets used to generate the figures and tables are included in
280 supplemental information. Additional data that support the findings of this study are available from
281 the corresponding authors upon reasonable request.
282

283 **References**

1. Huxley, H. & Hanson, J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. *Nature* **173**, 973–976 (1954).
2. Huxley, A. F. & Niedergerke, R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. *Nature* **173**, 971–973 (1954).
3. Squire, J. Special Issue: The Actin-Myosin Interaction in Muscle: Background and Overview. *Int. J. Mol. Sci.* **20**, (2019).
4. Huxley, A. F. & Simmons, R. M. Proposed mechanism of force generation in striated muscle. *Nature* **233**, 533–538 (1971).
5. Wakabayashi, T. Mechanism of the calcium-regulation of muscle contraction--in pursuit of its structural basis. *Proc Jpn Acad, Ser B, Phys Biol Sci* **91**, 321–350 (2015).
6. Ma, W., Nag, S., Gong, H., Qi, L. & Irving, T. C. Cardiac myosin filaments are directly regulated by calcium. *J. Gen. Physiol.* **154**, (2022).
7. Fusi, L., Brunello, E., Yan, Z. & Irving, M. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. *Nat. Commun.* **7**, 13281 (2016).
8. Ma, W. *et al.* The Super-Relaxed State and Length Dependent Activation in Porcine Myocardium. *Circ. Res.* **129**, 617–630 (2021).
9. Caremani, M. *et al.* Inotropic interventions do not change the resting state of myosin motors during cardiac diastole. *J. Gen. Physiol.* **151**, 53–65 (2019).
10. Ma, W. *et al.* Structural OFF/ON transitions of myosin in relaxed porcine myocardium predict calcium-activated force. *Proc Natl Acad Sci USA* **120**, e2207615120 (2023).
11. Irving, M. Regulation of Contraction by the Thick Filaments in Skeletal Muscle. *Biophys. J.* **113**, 2579–2594 (2017).
12. Ma, W. & Irving, T. C. Small Angle X-ray Diffraction as a Tool for Structural Characterization of Muscle Disease. *ijms* **23**, 3052 (2022).
13. Ma, W. *et al.* Thick-Filament Extensibility in Intact Skeletal Muscle. *Biophys. J.* **115**, 1580–1588 (2018).
14. Linari, M. *et al.* Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. *Nature* **528**, 276–279 (2015).
15. Irving, T. C. & Craig, R. Getting into the thick (and thin) of it. *J. Gen. Physiol.* **151**, 610–613 (2019).
16. de Tombe, P. P. *et al.* Myofilament length dependent activation. *J. Mol. Cell. Cardiol.* **48**, 851–858 (2010).
17. Kooiker, K. B. *et al.* Danicamivir Increases Myosin Recruitment and Alters Cross-Bridge Cycling in Cardiac Muscle. *Circ. Res.* **133**, 430–443 (2023).
18. Hessel, A. L. *et al.* Myosin-binding protein C forms C-links and stabilizes OFF states of myosin. *BioRxiv* (2023) doi:10.1101/2023.09.10.556972.

320 19. Song, T. *et al.* Etiology of genetic muscle disorders induced by mutations in fast and slow
321 skeletal MyBP-C paralogs. *Exp. Mol. Med.* **55**, 502–509 (2023).

322 20. Song, T. *et al.* Fast skeletal myosin-binding protein-C regulates fast skeletal muscle
323 contraction. *Proc Natl Acad Sci USA* **118**, (2021).

324 21. Harris, S. P. Making waves: A proposed new role for myosin-binding protein C in
325 regulating oscillatory contractions in vertebrate striated muscle. *J. Gen. Physiol.* **153**,
326 (2021).

327 22. Dutta, D., Nguyen, V., Campbell, K. S., Padrón, R. & Craig, R. Cryo-EM structure of the
328 human cardiac myosin filament. *BioRxiv* (2023) doi:10.1101/2023.04.11.536274.

329 23. Tamborrini, D. *et al.* In situ structures from relaxed cardiac myofibrils reveal the
330 organization of the muscle thick filament. *BioRxiv* (2023) doi:10.1101/2023.04.11.536387.

331 24. Geist, J. & Kontrogianni-Konstantopoulos, A. MYBPC1, an emerging myopathic gene:
332 what we know and what we need to learn. *Front. Physiol.* **7**, 410 (2016).

333 25. Gurnett, C. A. *et al.* Myosin binding protein C1: a novel gene for autosomal dominant
334 distal arthrogryposis type 1. *Hum. Mol. Genet.* **19**, 1165–1173 (2010).

335 26. Sarkar, S. S. *et al.* The hypertrophic cardiomyopathy mutations R403Q and R663H
336 increase the number of myosin heads available to interact with actin. *Sci. Adv.* **6**,
337 eaax0069 (2020).

338 27. Adhikari, A. S. *et al.* β -Cardiac myosin hypertrophic cardiomyopathy mutations release
339 sequestered heads and increase enzymatic activity. *Nat. Commun.* **10**, 2685 (2019).

340 28. Huang, X. *et al.* Cryo-electron tomography of intact cardiac muscle reveals myosin binding
341 protein-C linking myosin and actin filaments. *J. Muscle Res. Cell Motil.* (2023)
342 doi:10.1007/s10974-023-09647-3.

343 29. Wang, Z. *et al.* Structures from intact myofibrils reveal mechanism of thin filament
344 regulation through nebulin. *Science* **375**, eabn1934 (2022).

345 30. Li, A. *et al.* Skeletal MyBP-C isoforms tune the molecular contractility of divergent skeletal
346 muscle systems. *Proc Natl Acad Sci USA* **116**, 21882–21892 (2019).

347 31. Stelzer, J. E. & Moss, R. L. Contributions of stretch activation to length-dependent
348 contraction in murine myocardium. *J. Gen. Physiol.* **128**, 461–471 (2006).

349 32. Irving, T. C. & Millman, B. M. Changes in thick filament structure during compression of
350 the filament lattice in relaxed frog sartorius muscle. *J. Muscle Res. Cell Motil.* **10**, 385–394
351 (1989).

352 33. Hessel, A. L. *et al.* Titin force in muscle cells alters lattice order, thick and thin filament
353 protein formation. *Proc Natl Acad Sci USA* **119**, e2209441119 (2022).

354 34. Irving, T. *et al.* Thick-filament strain and interfilament spacing in passive muscle: effect of
355 titin-based passive tension. *Biophys. J.* **100**, 1499–1508 (2011).

356 35. Yamaguchi, M. *et al.* X-ray diffraction analysis of the effects of myosin regulatory light
357 chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers. *Am
358 J Physiol, Cell Physiol* **310**, C692–700 (2016).

359 36. Haselgrove, J. C. & Huxley, H. E. X-ray evidence for radial cross-bridge movement and for
360 the sliding filament model in actively contracting skeletal muscle. *J. Mol. Biol.* **77**, 549–568
361 (1973).

362 37. Reconditi, M. Recent improvements in small angle x-ray diffraction for the study of muscle
363 physiology. *Rep. Prog. Phys.* **69**, 2709–2759 (2006).

364 38. Huxley, H. E., Reconditi, M., Stewart, A. & Irving, T. X-ray interference evidence
365 concerning the range of crossbridge movement, and backbone contributions to the
366 meridional pattern. *Adv. Exp. Med. Biol.* **538**, 233–41; discussion 241 (2003).

367 39. Ait-Mou, Y. *et al.* Titin strain contributes to the Frank-Starling law of the heart by structural
368 rearrangements of both thin- and thick-filament proteins. *Proc Natl Acad Sci USA* **113**,
369 2306–2311 (2016).

370 40. Eakins, F., Pinali, C., Gleeson, A., Knupp, C. & Squire, J. M. X-ray Diffraction Evidence for
371 Low Force Actin-Attached and Rigor-Like Cross-Bridges in the Contractile Cycle. *Biology
(Basel)* **5**, (2016).

373 41. Jarvis, K. J., Bell, K. M., Loya, A. K., Swank, D. M. & Walcott, S. Force-velocity and
374 tension transient measurements from *Drosophila* jump muscle reveal the necessity of both
375 weakly-bound cross-bridges and series elasticity in models of muscle contraction. *Arch.*
376 *Biochem. Biophys.* **701**, 108809 (2021).

377 42. Regnier, M., Morris, C. & Homsher, E. Regulation of the cross-bridge transition from a
378 weakly to strongly bound state in skinned rabbit muscle fibers. *Am. J. Physiol.* **269**,
379 C1532-9 (1995).

380 43. Donaldson, C. *et al.* Myosin cross-bridge dynamics in patients with hypertension and
381 concentric left ventricular remodeling. *Circ. Heart Fail.* **5**, 803–811 (2012).

382 44. Prodanovic, M., Wang, Y., Mijailovich, S. M. & Irving, T. Using Multiscale Simulations as a
383 Tool to Interpret Equatorial X-ray Fiber Diffraction Patterns from Skeletal Muscle. *Int. J.*
384 *Mol. Sci.* **24**, (2023).

385 45. Ma, W. *et al.* Myosin in autoinhibited off state(s), stabilized by mavacamten, can be
386 recruited via inotropic effectors. *Biophys. J.* **122**, 122a (2023).

387 46. Momb, B. A., Patino, E., Akchurin, O. M. & Miller, M. S. Iron Supplementation Improves
388 Skeletal Muscle Contractile Properties in Mice with CKD. *Kidney360* **3**, 843–858 (2022).

389 47. Hessel, A. L., Joumaa, V., Eck, S., Herzog, W. & Nishikawa, K. C. Optimal length, calcium
390 sensitivity, and twitch characteristics of skeletal muscles from *mdm* mice with a deletion in
391 N2A titin. *J. Exp. Biol.* (2019) doi:10.1242/jeb.200840.

392 48. Walker, J. S., Li, X. & Buttrick, P. M. Analysing force-pCa curves. *J. Muscle Res. Cell*
393 *Motil.* **31**, 59–69 (2010).

394 49. Ma, W. & Irving, T. C. X-ray Diffraction of Intact Murine Skeletal Muscle as a Tool for
395 Studying the Structural Basis of Muscle Disease. *J. Vis. Exp.* (2019) doi:10.3791/59559.

396 50. Llewellyn, M. E., Barreto, R. P. J., Delp, S. L. & Schnitzer, M. J. Minimally invasive high-
397 speed imaging of sarcomere contractile dynamics in mice and humans. *Nature* **454**, 784–
398 788 (2008).

399 51. Jiratrakanvong, J. *et al.* *MuscleX: software suite for diffraction X-ray imaging*. (BioCAT,
400 Argonne National Labs, 2018).

401 52. Wakabayashi, K. *et al.* X-ray diffraction evidence for the extensibility of actin and myosin
402 filaments during muscle contraction. *Biophys. J.* **67**, 2422–2435 (1994).

403

404 Acknowledgments

405 We thank the BioCAT beamline support staff at the APS for their steadfast commitment to our
406 project, and Anna Good for critical text and artistic editing. Some of the figures here were
407 designed using the program Biorender. This research used resources of the Advanced Photon
408 Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE
409 Office of Science by Argonne National Laboratory under Contract No. DE - AC02 - 06CH11357,
410 and further NIH support. The content is solely the responsibility of the authors and does not
411 necessarily reflect the official views of the National Institute of General Medical Sciences or the
412 National Institutes of Health.

413 Funding

414 German Research Foundation grant 454867250 (ALH)
415 German Research Foundation grant SFB1002,A08 (WAL)
416 IZKF Münster Li1/029/20 (WAL)
417 National Institutes of Health P41 GM103622(TI), P30 GM138395 (TI), R01 AR079435 (SS), R01
418 AR079477 (SS), R01 HL130356 (SS), R01 HL105826 (SS), R01 AR078001 (SS), and R01
419 HL143490 (SS)
420 The American Heart Association 19UFEL34380251 (SS), 19TPA34830084 (SS) and 945748 (SS)
421 The PLN Foundation (SS)

Competing Interest Statement: TI provides consulting and collaborative research studies to Edgewise Therapeutics Inc. ALH and MK are owners of Accelerated Muscle Biotechnologies Consultants LLC, and SS provides consulting and collaborative research studies to the Leducq Foundation (CURE-PLAN), Red Saree Inc., Greater Cincinnati Tamil Sangam, Novo Nordisk, Pfizer, AavantiBio, Affinia Therapeutics Inc., Cardiocare Genetics - Cosmogene Skincare Pvt Ltd, AstraZeneca, MyoKardia, Merck and Amgen, but such work is unrelated to the content of this article. Other authors declare that they have no competing interests.

Author Contributions:

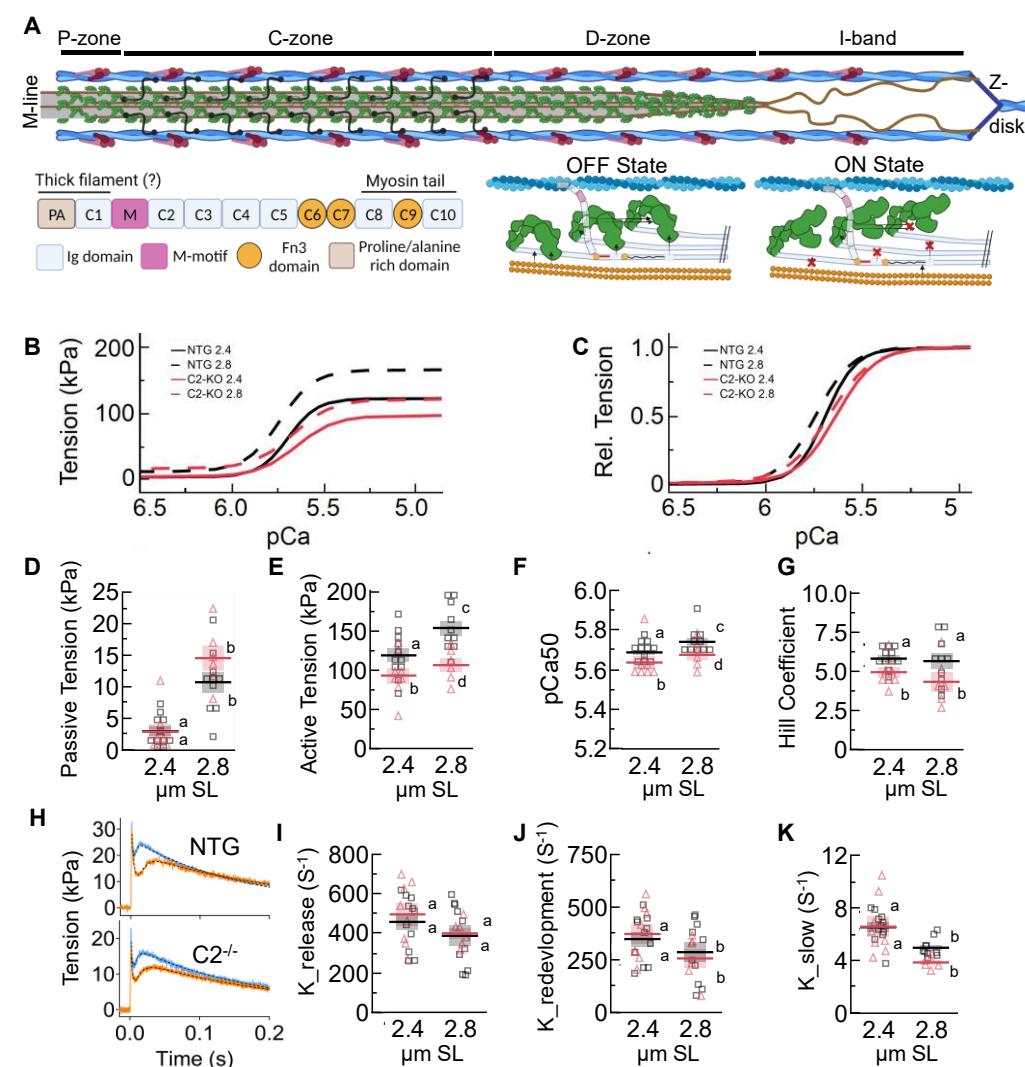
Conceptualization: BMP, ALH
Methodology: ALH, BMP, BAM, TS, SS
Investigation: BMP, ALH, MK, SH, WM
Visualization: ALH, BMP, WM, WL, TCI
Funding acquisition: BMP, ALH, TCI, TS, SS, WL
Project administration: ALH, BMP
Supervision: ALH, BMP
Writing – original draft: ALH
Writing – review & editing: All authors

Materials and Correspondence: Materials and correspondence requests can be submitted to Dr. Anthony Hessel (anthony.hessel@uni-muenster.de) and Dr. Bradley Palmer (Bradley.palmer@uvm.edu).

426 **Tables**

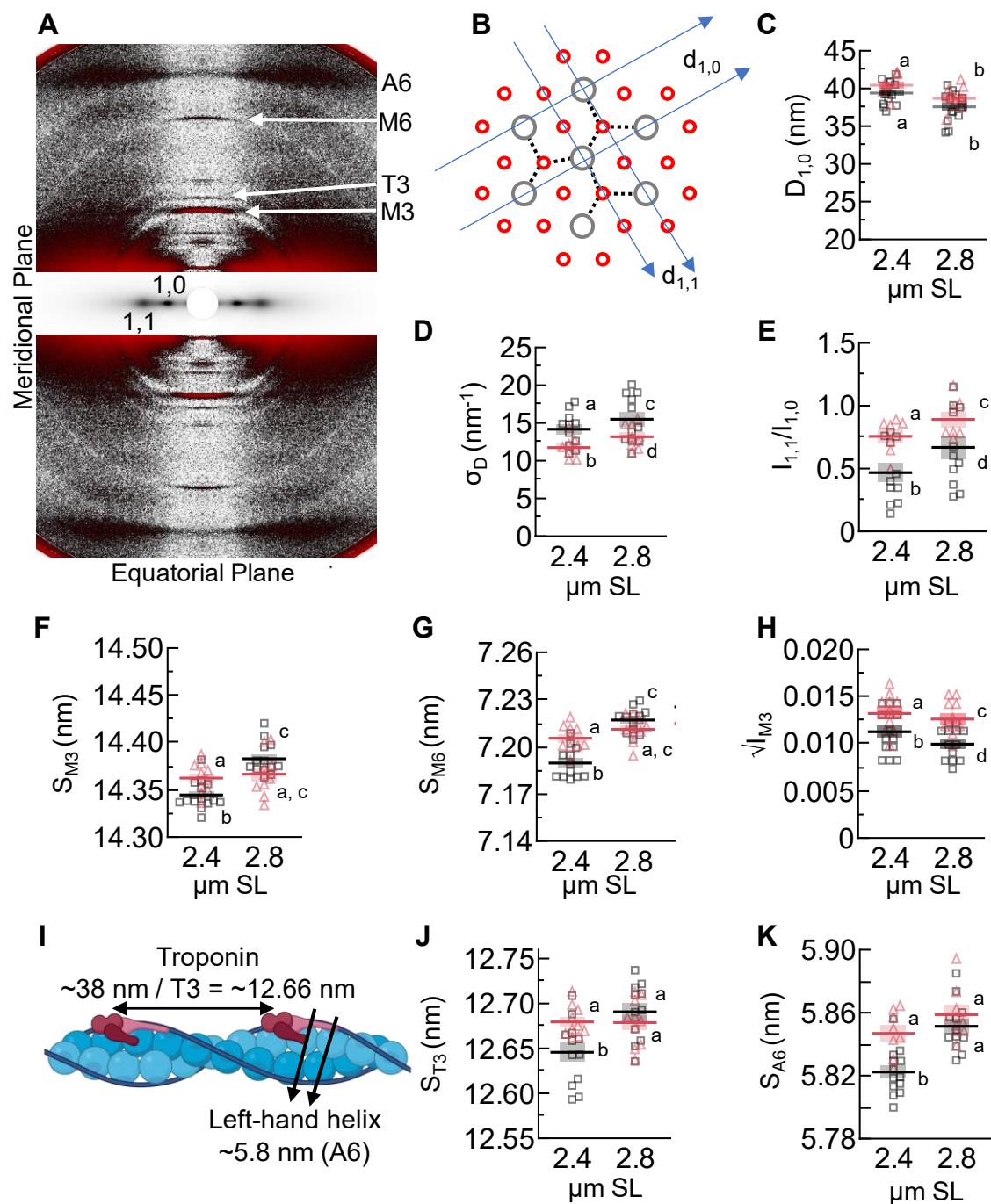
427 **Table 1. Mechanical analysis from data in Figure 1. The ANOVA analysis F-stats and P-**
 428 **values are provided, as well as a connecting letter report from a Tukey HSD analysis. Data**
 429 **reported as mean \pm s.e.m. *Significant ($P < 0.05$).**

Parameter	Genotype	SL (μm)	N	Mean	s.e.m.	Effect	F	P	Letters
$K_{\text{release}} (\text{S}^{-1})$	WT	2.4	11	458.09	40.12	Genotype	0.28	0.60	a
$K_{\text{release}} (\text{S}^{-1})$	WT	2.8	10	387.68	51.53	SL	2.88	0.10	a
$K_{\text{release}} (\text{S}^{-1})$	$C2^{-/-}$	2.4	8	496.21	56.13	Interaction	0.06	0.81	a
$K_{\text{release}} (\text{S}^{-1})$	$C2^{-/-}$	2.8	6	400.06	26.91				a
$K_{\text{red.}} (\text{S}^{-1})$	WT	2.4	11	348.46	33.33	Genotype	0.00	0.95	a
$K_{\text{red.}} (\text{S}^{-1})$	WT	2.8	10	286.15	46.19	SL	4.17	0.04*	b
$K_{\text{red.}} (\text{S}^{-1})$	$C2^{-/-}$	2.4	8	372.55	45.85	Interaction	0.37	0.55	a
$K_{\text{red.}} (\text{S}^{-1})$	$C2^{-/-}$	2.8	6	256.54	44.46				b
$K_{\text{slow}} (\text{s}^{-1})$	WT	2.4	11	6.54	0.36	Genotype	6.23	0.02*	a
$K_{\text{slow}} (\text{s}^{-1})$	WT	2.8	10	4.98	0.22	SL	30.29	<0.0001*	b
$K_{\text{slow}} (\text{s}^{-1})$	$C2^{-/-}$	2.4	8	6.58	0.78	Interaction	3.93	0.06	a
$K_{\text{slow}} (\text{s}^{-1})$	$C2^{-/-}$	2.8	6	3.86	0.18				b
Min. Tension (mN)	WT	2.4	11	2.93	0.72	Genotype	0.70	0.41	a
Min. Tension (mN)	WT	2.8	10	10.71	1.61	SL	48.56	<0.0001*	b
Min. Tension (mN)	$C2^{-/-}$	2.4	8	2.86	1.21	Interaction	1.16	0.29	a
Min. Tension (mN)	$C2^{-/-}$	2.8	6	14.54	1.99				b
Max. Tension (mN)	WT	2.4	11	121.56	9.05	Genotype	11.28	0.002*	a
Max. Tension (mN)	WT	2.8	10	164.21	9.76	SL	11.00	0.002*	c
Max. Tension (mN)	$C2^{-/-}$	2.4	8	95.80	10.61	Interaction	0.52	0.48	b
Max. Tension (mN)	$C2^{-/-}$	2.8	6	120.75	9.66				d
pCa_{50}	WT	2.4	11	5.69	0.01	Genotype	7.01	0.01*	a
pCa_{50}	WT	2.8	10	5.74	0.02	SL	4.28	0.04*	c
pCa_{50}	$C2^{-/-}$	2.4	8	5.64	0.03	Interaction	0.07	0.79	b
pCa_{50}	$C2^{-/-}$	2.8	6	5.68	0.03				d
Hill Coeff.	WT	2.4	11	5.84	0.19	Genotype	6.91	0.01*	a
Hill Coeff.	WT	2.8	10	5.68	0.48	SL	0.58	0.45	a
Hill Coeff.	$C2^{-/-}$	2.4	8	4.97	0.33	Interaction	0.28	0.60	b
Hill Coeff.	$C2^{-/-}$	2.8	6	4.36	0.61				b


430

431 **Table 2. Small angle X-ray diffraction analysis from data in Figure 2. The ANOVA analysis**
 432 **F-stats and P- values are provided, as well as a connecting letter report from a Tukey HSD**
 433 **analysis. Data reported as mean \pm s.e.m. *Significant ($P < 0.05$).**

Parameter	Genotype	SL (μm)	N	Mean	s.e.m.	Effect	F	P	Letters
D _{1,0} (nm)	WT	2.4	14	39.39	0.41	Genotype	8.28	0.01*	a
D _{1,0} (nm)	WT	2.8	14	37.57	0.51	SL	97.33	<.0001*	b
D _{1,0} (nm)	C2 ^{-/-}	2.4	9	40.44	0.46	Interaction	11.57	0.0001*	a
D _{1,0} (nm)	C2 ^{-/-}	2.8	9	38.68	0.54				b
σ_D (nm ⁻¹)	WT	2.4	11	14.17	0.6866	Genotype	5.87	0.03*	a
σ_D (nm ⁻¹)	WT	2.8	11	15.50	0.9687	SL	22.27	<.0001*	c
σ_D (nm ⁻¹)	C2 ^{-/-}	2.4	8	11.74	0.4896	Interaction	0.02	0.98	b
σ_D (nm ⁻¹)	C2 ^{-/-}	2.8	8	13.18	0.5929				d
I _{1,1} /I _{1,0}	WT	2.4	11	0.47	0.0735	Genotype	11.79	0.003*	a
I _{1,1} /I _{1,0}	WT	2.8	11	0.67	0.0931	SL	3.54	0.04*	c
I _{1,1} /I _{1,0}	C2 ^{-/-}	2.4	7	0.76	0.0554	Interaction	1.13	0.34	b
I _{1,1} /I _{1,0}	C2 ^{-/-}	2.8	7	0.89	0.0601				d
S _{M3} (nm)	WT	2.4	14	14.344	0.0041	Genotype	5.17	0.03*	a
S _{M3} (nm)	WT	2.8	13	14.383	0.0047	SL	22.22	<.0001*	c
S _{M3} (nm)	C2 ^{-/-}	2.4	10	14.362	0.0051	Interaction	22.52	<.0001*	b
S _{M3} (nm)	C2 ^{-/-}	2.8	10	14.366	0.0071				a, c
S _{M6} (nm)	WT	2.4	12	7.190	0.003	Genotype	0.01	0.91	a
S _{M6} (nm)	WT	2.8	12	7.217	0.002	SL	58.77	<.0001*	c
S _{M6} (nm)	C2 ^{-/-}	2.4	10	7.206	0.003	Interaction	21.29	<.0001*	b
S _{M6} (nm)	C2 ^{-/-}	2.8	10	7.211	0.003				a, c
$\sqrt{I_{M3}}$	WT	2.4	14	0.0113	0.0006	Genotype	9.64	0.01*	a
$\sqrt{I_{M3}}$	WT	2.8	13	0.0099	0.0005	SL	5.79	0.03*	c
$\sqrt{I_{M3}}$	C2 ^{-/-}	2.4	10	0.0132	0.0006	Interaction	0.86	0.36	b
$\sqrt{I_{M3}}$	C2 ^{-/-}	2.8	10	0.0126	0.0006				d
S _{T3} (nm)	WT	2.4	12	12.645	0.0105	Genotype	0.96	0.34	a
S _{T3} (nm)	WT	2.8	11	12.690	0.0098	SL	5.79	0.01*	c
S _{T3} (nm)	C2 ^{-/-}	2.4	10	12.679	0.0054	Interaction	3.91	0.03*	b
S _{T3} (nm)	C2 ^{-/-}	2.8	10	12.678	0.0082				d
S _{A6} (nm)	WT	2.4	13	5.822	0.0041	Genotype	7.48	0.01*	a
S _{A6} (nm)	WT	2.8	12	5.851	0.0047	SL	14.20	<.0001*	a
S _{A6} (nm)	C2 ^{-/-}	2.4	8	5.847	0.005	Interaction	2.65	0.05*	b
S _{A6} (nm)	C2 ^{-/-}	2.8	8	5.859	0.0062				a


434

Figures and Figure Legends

435
436 **Figure 1. Mechanical assessment of permeabilized C2^{-/-} (black / squares) and NTG fibers**
437 **(red / triangles) from EDL.** (A) Cartoon representation of a half sarcomere. Thin filaments are
438 comprised of actin filaments (blue), troponin-tropomyosin complexes (purple), and nebulin (not
439 shown). Thick filament backbones (gray) are populated with myosin heads (green), titin filaments
440 (brown), and MyBP-C (black). Thick filaments are demarcated into P-, C-, and D-zones, where
441 MyBP-C is localized in the C-zone. In the I-band, titin extends from the Z-disk to the tops of the
442 thick filament and produces titin-based force as an extensible spring. (B-C) Tension-pCa
443 experiments for NTG (B) and C2^{-/-} (C) fiber bundles at 2.4 and 2.8 μm SL. (D) passive tension,
444 (E) active tension, (F) pCa₅₀, and (G) Hill coefficient were derived from tension-pCa experiments.
445 (H) Representative traces of quick-stretch – redevelopment experiments for NTG (top) and C2^{-/-}
446 fibers (bottom) at 2.4 (orange and 2.8 (blue) μm SL. From these, the rate of force release (I;
447 K_{release}) force redevelopment (J; K_{redevelopment}) and slow phase (K; K_{slow}) are calculated. Statistical
448 results are presented as a connecting letters report, where different letters are statistically
449 different (P < 0.05). Data reported as mean ± s.e.m. with full statistical details provided in Table 1.

450

451

452

Figure 2. Sarcomere structures of C2^{-/-} (black / squares) and NTG fibers (red / triangles).
 453 (A) A representative image of an X-ray diffraction pattern, with reflections of interest labeled. The
 454 area around the equatorial axis was scaled differently to make reflections easier to view. (B) A
 455 cross-section of a myofibril in the thick (gray) and thin (red) filament overlap zone. Example
 456 myosin thick-thin filament crossbridges drawn (dotted lines). Overlayed are the geometric lattice
 457 planes $d_{1,0}$ and $d_{1,1}$, which lead to the 1,0 and 1,0 equatorial intensities, respectively. (C) $d_{1,0}$
 458 spacing quantifies lattice spacing. (D) σ_D quantifies lattice spacing heterogeneity. (E) $I_{1,1}/I_{1,0}$ is a
 459 measure of mass distribution (i.e., myosin heads) between thick and thin filaments. (F) S_{M3} is the
 460 periodicity between myosin heads along the thick filament and indicates myosin head orientation.

461 (G) S_{M6} is from a periodicity along the thick filament and quantifies the average thick filament
462 length. (H) $\sqrt{IM3}$ is proportional to the electron density creating the reflection and can be
463 interpreted as quantifying the orderness of myosin heads along the thick filament. (I) A cartoon
464 representation of the thin filament, with periodicities of interest labeled. (J) S_{T3} is the (third-order)
465 axial periodicity of troponin. (K) S_{A6} is the axial periodicity of the left-handed helix of actin and
466 indicates thin filament twisting and elongation. Statistical results are presented as a connecting
467 letters report, where different letters are statistically different ($P < 0.05$). Data reported as mean \pm
468 s.e.m. with full statistical details provided in Table 2.
469