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Abstract 

Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of large protein 

complexes. Picking single protein particles from cryo-EM micrographs (images) is a crucial step in 

reconstructing protein structures from them. However, the widely used template-based particle picking 

process requires some manual particle picking and is labor-intensive and time-consuming. Though machine 

learning and artificial intelligence (AI) can potentially automate particle picking, the current AI methods 

pick particles with low precision or low recall. The erroneously picked particles can severely reduce the 

quality of reconstructed protein structures, especially for the micrographs with low signal-to-noise (SNR) 

ratios. To address these shortcomings, we devised CryoTransformer based on transformers, residual 

networks, and image processing techniques to accurately pick protein particles from cryo-EM micrographs. 

CryoTransformer was trained and tested on the largest labelled cryo-EM protein particle dataset - CryoPPP. 

It outperforms the current state-of-the-art machine learning methods of particle picking in terms of the 

resolution of 3D density maps reconstructed from the picked particles as well as F1-score and is poised to 

facilitate the automation of the cryo-EM protein particle picking.  

 

1. Introduction 

Cryogenic electron microscopy (cryo-EM) is a modern biophysical technique that captures two-

dimensional (2D) images of biological macromolecules, such as proteins and viruses at cryogenic 

temperature [1], through the use of an electron detection camera.  When subjected to an electron beam 

within a thin vitrified sample, this technique generates 2D image projections of the specimens (e.g., protein 

particles). These 2D representations are stored in various image formats (like mrc, tiff, tbz, eer, png, etc.), 

which are called micrographs.  A single micrograph can contain hundreds or thousands of particles of a 

protein, randomly oriented in different directions. Given the inherent challenges of ascertaining the 

orientations of the particles and the low SNR of micrographs, hundreds of thousands of high-quality 

particles are often required to be identified to determine a high-resolution three-dimensional (3D) structure 

of the protein.  

The initial step of determining the 3D structure of the proteins from the micrographs involves the 

recognition and extraction of particles from 2D micrographs, which is commonly referred to as particle 

picking. Its primary goal is to identify and locate individual protein particles within each micrograph while 

excluding malformed particles, crystalline ice contamination, and background regions. Essentially, the task 

of particle picking involves taking a micrograph as input and generating the coordinates for all protein 

particles present in that micrograph as the desired output (stored in the form of .box or .star files). These 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.19.563155doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.19.563155
http://creativecommons.org/licenses/by/4.0/


coordinates thereafter serve as the data for subsequent stages of 3D protein structure reconstruction. These 

3D structures of proteins are important for understanding their biological functions [2] and their interactions 

with ligands [3], [4], facilitate structure-based drug discovery [3] [5] . 

Because the SNR of micrographs is generally low, hundreds to thousands of micrographs need to be 

generated to obtain a high-resolution structure for a protein, from which as many as millions of particle 

images can be picked. Precise identification of true particles is important, as the presence of false positive 

particles complicates the down-stream 3D protein reconstruction process. The particle picking task is 

inherently challenging due to several factors, including high noise levels caused by ice and contamination, 

low contrast of particle images, heterogenous conformations of particles, and variation in the orientation of 

particles. 

This manual picking process by human is laborious, tedious, and time-consuming, which cannot be applied 

to pick millions of particles from thousands of micrographs. Therefore, substantial efforts have been put to 

develop semi-automated or fully automated methods to pick protein particles, which can be classified into 

two categories: (1) template-based particle picking and (2) machine learning particle picking.   

In the template-based particle picking, the identification of particles primarily hinges on measuring a 

potential particle’s similarity to user-predefined (manually selected) reference particles called templates. 

Because micrographs are usually noisy due to various factors such as ice contamination, carbon areas, 

overlapping particles, and other impurities, the template-based particle picking is often unable to detect 

particles of unusual shape and suffers from high false-positive rates. As a result, subsequent steps of manual 

particle selection are necessary to filter the particles picked by the template-based particle picking.  

Typically, iterative 2D-3D classification techniques are employed to scrutinize the picked particles and 

remove false particles. However, this particle picking, and downstream manual curation may introduce a 

degree of human bias into the final particle set selection, which may mistakenly exclude rare particle views 

and distinct conformations that are important for building high-resolution protein structures. Thus, this 

approach generally necessitates a large degree of human intervention and trial and errors to obtain good 

results.   

The machine learning particle picking consists of both unsupervised learning (clustering) methods [6] and 

supervised learning methods [7] [8] [9] [10]. Recently, a number of deep learning methods were developed 

to automate the protein particle picking, which include XMIPP [11], DeepPicker [12], DeepEM [13], Xiao 

et al.’s method [14], Warp [15], HydraPicker [16], McSweeney et al.’s method [17], DRPnet [18], CrYOLO 

[19]  and Topaz [20]. Among them, CrYOLO and Topaz based on convolutional neural networks have been 

widely used in particle picking. However, they have been trained with limited particle data and have the 

difficulty to generalize to new protein types or shapes. For instance, CrYOLO usually overlooks many true 

protein particles, while Topaz often picks excessive numbers of duplicate particles and some false positives 

such as ice contaminants and false particles in carbon-rich areas.  
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Figure 1: Overview of the CryoTransformer Particle Picking Pipeline. (A) Input raw micrograph undergoes initial denoising. (B) 

Denoised micrographs serve as input for subsequent processing. (C) CNN-Based Resnet-152 architecture extracts image features. 

Features extracted in (C) are processed by an (D) encoder-decoder Transformer. (E) Feed-forward networks further refine the 

processed data. (F) Predictions of particles encircled in micrographs, eventually stored in star files as the final output. 

To overcome these obstacles, we devised a transformer-based particle picking approach and trained it on 

the largest, diverse, manually-labelled CryoPPP protein particle dataset [21], [22]. Inspired by Meta’s 

Detection Transformer (DETR) [23] for detecting small objects, we designed the end-to-end detection 

transformer named as CryoTransformer.  Briefly, it has an initial step of reducing noise in micrographs ( 

Figure 1A, B), followed by the feature extraction through a ResNet-152 architecture (Figure 1C). 

Subsequently, a transformer model is used for detecting protein particles as shown in Figure 1D. This is 

succeeded by the feed-forward networks to predict particles (Figure 1E), which are followed by the post-

processing procedures. The output (Figure 1F) includes particle markings on the micrographs stored in 

.star files, which can be directly used for the subsequent stages of 3D protein structure reconstruction. We 

conducted a rigorous evaluation of CryoTransformer. It outperforms the two popular deep learning 

methods: CrYOLO and Topaz. The source code and data for CryoTransformer are openly available at: 

https://github.com/jianlin-cheng/CryoTransformer .  

 

2. Materials and Methods 

2.1 Dataset  
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Dataset acquisition 

We utilized the largest comprehensive CryoPPP dataset [21], [22] curated from Electron Microscopy Public 

Image Archive (EMPIAR) [24], to train, validate, and test CryoTransformer. The micrographs of 22 proteins 

(EMPIAR IDs) from the CryoPPP dataset were used, with the data of each EMPIAR ID split according to 

an 80%-10%-10% ratio for training, validation, and internal test. Moreover, we used the data of 6 distinct 

EMPIAR IDs in CryoPPP dataset different from the 22 proteins above as well as the 4 complete micrograph 

datasets from EMPIAR repository [24] as the independent test dataset to compare CryoTransformer with 

the external methods.  

The selection of training and test data considered a range of protein attributes, including type, shape, size, 

and overall structural characteristics. The 22 proteins used for the training, validation and internal test are 

described in Table 1. Supplementary Figure S1 illustrates the varying defocus values of the training data.  

The datasets encompass various protein categories, such as transport proteins, membrane proteins, viral 

proteins, ribosomes, signaling proteins, aldolases, and more. They are comprised of micrographs featuring 

diverse attributes, including those with ice patches, contaminants, varying ice thickness, and carbon areas. 

Different protein distribution patterns, including monodisperse, clumped clusters, and heterogeneous views, 

are also included. The Supplementary Table S1 and S2 contain the information and statistics of the 

proteins in the independent test dataset.  

Table 1: The statistics and information of the 22 sets of micrographs for training, validation, and internal test of 

CryoTransformer (* Theoretical weight) 

SN  
EMPIAR 

ID  
Type of Protein  Image Size  

Total 

Structure 

Weight 

(kDa)  

# Training 

Micrographs 

# Validation 

Micrographs 

# Test 

Micrographs 

# Total 

Micrographs 

1 11183 [25]  Signaling Protein  (5760, 4092)  139.36  250 25 25 300 

2 11057 [26]  Hydrolase  (5760, 4092)  149.43  250 25 20 295 

3 11051 [27] Transcription/DNA/RNA  (3838, 3710)  357.31  250 25 25 300 

4 10852 [28] Signaling Protein  (5760, 4092)  157.81  270 40 33 343 

5 10816 [29] Transport Protein  (7676, 7420)  166.62  250 25 25 300 

6 10760 [30] Membrane Protein  (3838, 3710)  321.69  250 25 25 300 

7 10737 [31] Membrane Protein  (5760, 4092)  155.83  250 25 17 292 

8 10671 [32] Signaling Protein  (5760, 4092)  77.14  250 25 23 298 

9 10590 [33] Transport Protein  (3710, 3838)  1000*  250 25 21 296 

10 10526 [34] Ribosome (50S)  (7676, 7420)  1085.81  180 20 20 220 

11 10444 [35] Membrane Protein  (5760, 4092)  295.89  250 25 21 296 

12 10406 [36] Ribosome (70S)  (3838, 3710)  632.89  200 20 19 239 

13 10387 [37] Viral Protein  (3710, 3838)  185.87  250 25 24 299 

14 10291 [38] Transport Protein  (3710, 3838)  361.39  250 25 25 300 

15 10289 [38] Transport Protein  (3710, 3838)  361.39  250 25 25 300 

16 10240 [39] Lipid Transport Protein  (3838, 3710)  171.72  250 25 24 299 

17 10184 [40] Aldolase  (3838, 3710)  150*  250 25 21 296 

18 10096 [41] Viral Protein  (3838, 3710)  150*  250 25 25 300 

19 10077 [42] Ribosome (70S)  (4096, 4096)  2198.78  250 25 25 300 

20 10075 [43]  Bacteriophage MS2  (4096, 4096)  1000*  250 25 24 299 
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21 10059 [44] Transport Protein  (3838, 3710)  317.88  250 25 16 291 

22 10005 [45] Transport Protein  (3710, 3710)  272.97  22 4 3 29 

    Total Micrographs     5,172 534 486 6,192 

 

Denoising and pre-processing of cryo-EM micrographs 

The cryo-EM micrographs in .mrc format, serve as the initial input for CryoTransformer. To reduce noise 

and improve the signal-to-noise ratio, a Gaussian filter with a kernel size of 9 is applied to convolve with 

the images. Subsequently, the images undergo standard normalization to achieve consistent intensity ranges. 

The normalized pixel values of the images are computed using the formula [pixel = (pixel- μ)/ σ], ensuring 

that the data is centered and scaled appropriately for the further analysis. The normalized images are then 

converted to grayscale, which collapses multi-channel intensity information into a single channel, ensuring 

a uniform representation of pixel values ranging from 0 to 255 (Figure 2A). 

Effective noise reduction is essential to reveal clear structural details in cryo-EM micrographs. We employ 

a two-step denoising process to the normalized images, involving Fast Non-Local Means (FastNLMeans) 

denoising followed by Weiner filtering (Figure 2B). FastNLMeans denoising is employed to retain image 

details while suppressing noise artifacts. By exploiting the redundancy present in natural images, 

FastNLMeans replaces the noisy pixel with a weighted average of similar pixels from a larger 

neighborhood. The trade-off between noise suppression and detail preservation is controlled by the choice 

of template window size (7 in this case) and the search window size (21 in this case).  

The output of FastNLMeans denoising is subjected to Weiner filtering to further reduce the residual noise 

and enhance the image's structural fidelity (Figure 2C). It achieves this by estimating the original image's 

frequency spectrum and applying a correction factor to mitigate the effects of noise. Enhancing contrast in 

cryo-EM micrographs is crucial for improving particle visibility and overall image quality. We incorporate 

the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique for this purpose (Figure 2D). 

The CLAHE technique, with a clip limit of 2 and a tile grid size of 16x16, is applied to the denoised images. 

This technique effectively addresses non-uniform illumination and low contrast, leading to enhanced visual 

clarity. 

To accomplish selective smoothing and fine detail preservation, guided filtering is performed using the 

CLAHE-enhanced image as a guide (Figure 2E). Guided filtering operates by estimating the local linear 

relationship between the guidance image and the target image (Figure 2F). This relationship is then used 

to determine the filtering weights applied to each pixel, resulting in controlled smoothing, while retaining 

sharp edges and fine details. The filtering fine-tunes the micrographs, achieving a balance between noise 

reduction and preservation of important structural information (Figure 2G). 
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Figure 2: The denoising used to preprocess cryo-EM micrographs in CryoTransformer. (A) Raw micrographs with low contrast 

and low SNR go through (B) Gaussian filtering and Grayscale conversion. Normalized micrograph undergoes (C) FastNLMeans 

denoising technique. (D) Weiner filtering is applied to the micrographs from the previous step, and subsequently (E) CLAHE 

technique is used to enhance visual clarity of the micrograph. Eventually, (F) Guided filtering is performed using the CLAHE-

enhanced image as a guide to obtain (G) denoised micrographs. (H) Ground truth particle annotation data. Particle coordinates 

from ground truth coordinate files are extracted to create COCO-dataset that is used as target labels for training CryoTransformer. 

Generating COCO-dataset for labelled protein particles in micrographs 

We used the ground truth particle coordinate data from the CryoPPP dataset [21], [22] to generate labels to 

train CryoTransformer. The particle labels were stored in the widely adopted Common Objects in Context 

(COCO) format [46]. This format is extensively used for object detection and segmentation tasks, and it 

adheres to a structured JSON layout that defines how labels and associated metadata are stored for an image 

dataset. An illustration of how these labels are stored is depicted in Figure 2H. In the case of all training 

and validation images, we have two JSON files: one for training (referred to as the "train JSON") and 

another for validation (referred to as the "validation JSON"). We chose to adopt this labeling data format 

because the COCO format imposes a standardized structure for annotations, including object category 

labels and bounding box coordinates. This uniformity streamlines the data preprocessing process and 

ensures that models can readily comprehend and learn from the annotated data. The COCO format permits 

the annotation of multiple objects (protein particles) within a single image (micrograph). Each object is 

associated with its distinct category label and bounding box. For each particle, we retain details such as its 

bounding box coordinates, area, category label (typically set to 1 in our case as all objects to be detected 

are protein particles), the corresponding image reference, and a unique particle ID. 
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2.2 Design and Implementation of CryoTransformer 

CryoTransformer is designed to achieve the accurate prediction of bounding boxes for the protein particles 

within a micrograph, while minimizing the number of false positives. It undergoes an end-to-end training, 

using a specialized loss function that effectively combines the bipartite matching loss between predicted 

and ground-truth protein particles in the micrographs.  

CryoTransformer Architecture  

As illustrated in Figure 3, CryoTransformer comprises three main components: a Convolutional Neural 

Network (CNN) with residual connections (Resnet-152 [47]) responsible for feature extraction, an encoder-

decoder transformer [23], [48]  for learning the shapes of the particles in the context of an entire image, and 

a feed-forward network (FFN) responsible for producing the ultimate particle predictions.  

 

Figure 3: Architecture of CryoTransformer. The raw micrographs are denoised and are fed into the ResNet-152 module for feature 

extraction. The images features, along with positional encoding, are fed to the encoder of the transformer. The output from the 

encoder is subsequently passed to the decoder layer. Finally, the decoder’s output is passed to the feed forward networks that 
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generate the protein particle bounding box predictions. These predictions are used in generating the predicted protein particles 

encircled in micrographs, which are stored in the .star files. 

 

Resnet-152 Backbone Block 

The Resnet-152 receives the preprocessed micrographs 𝑥img ∈ ℝ3×𝐻0×𝑊0  (with 3 color channels)) as input 

and generates a lower-resolution activation map as 𝑓 ∈ ℝ𝐶×𝐻×𝑊, Where 𝐶 = 2048, and 𝐻 =
𝐻0

32
, 𝑊 =

𝑊0

32
. 

0 padding is applied to the images in a batch to make sure that they all have same input dimensions (𝐻0,𝑊0) 
as the largest image size of the batch.  

Transformer Module 

The features extracted from the Resnet-152 are subsequently passed through the transformer. This 

transformer consists of two main components: encoder and decoder. The image features from 
the Resnet-152 backbone block are passed through the transformer along with the positional encoding and 

particle queries. The transformer outputs intermediate predictions, which are fed to the FFN module to 

predict particle labels and bounding boxes.   

Transformer Encoder 

The encoder plays a vital role in generating coherent and context-aware outputs. In the encoder, a 1x1 

convolution operation is used to decrease the channel dimension of the high-level activation map, denoted 

as 𝑓, from 𝐶 to a smaller dimension 𝑑, yielding a new feature map 𝑧0 ∈ ℝ𝑑×𝐻×𝑊. Since the encoder accepts 

a one-dimensional sequence as input, we collapse the spatial dimensions of 𝑧0 into a single dimension. As 

a result, the resultant input becomes a feature map of dimension 𝑑 × 𝐻𝑊. Here, every encoder layer follows 

a consistent structure, comprising a multi-head self-attention component and a FFN layer. To account for 

the permutation-invariant nature of the transformer architecture, we enhance it by incorporating the 

positional encodings [49] [50], which are included in the input of every multi-head self-attention layer. 

Transformer Decoder 

The decoder receives the memory from encoder, positional encoding, and particle queries as input. It 

involves the transformation of 𝑁 embeddings of size d (in our specific scenario, 𝑁 = 600, meaning 

predicting max 600 protein particles per micrograph) through the multi-headed self- attention mechanisms. 

It’s worth noting that since the decoder is also designed to be permutation-invariant, it requires distinct 

particle queries (initialized as random vectors) within the set of 𝑁 inputs to generate different outcomes. 

These particle queries, added to the input at each attention layer, are a are updated through back propagation. 

Subsequently, the output of the decoder is individually used to predict box coordinates and class labels (1 

in our case) through a feed-forward network, a process detailed in the following subsection, resulting in 𝑁 

final predictions.  

Feed-Forward Networks Module 

The final prediction is generated through a 3-layer perceptron with a ReLU activation function and 𝑑 hidden 

nodes in each hidden layer, followed by a linear projection layer. This FFN is responsible for predicting the 

normalized center coordinates, height, and width of the bounding box relative to the input micrograph. 

Additionally, the linear layer predicts the class label using a softmax function. Considering that we are 

making predictions for a fixed-size set of 𝑁 potential bounding boxes, and 𝑁 is typically much larger than 

the actual number of protein particles in a single micrograph, we introduce a special class label denoted as 
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∅. This label means that no protein particle has been detected in a particular slot. Its role is akin to the 

"background" class in conventional object detection. 

 

Loss Function 

CryoTransformer generates a consistent set of 𝑁 predictions in a single traversal of the decoder. This 

number 𝑁 was deliberately chosen to exceed the usual count of protein particles in a micrograph. To achieve 

this, the loss function is designed to establish an ideal bipartite matching between the predicted protein 

particles and their corresponding ground truth. Subsequently, the model optimizes the losses pertaining to 

individual particles in order to refine the predictions further. 

We can represent the ground truth set of particles as 𝑦 and the set of 𝑁 predictions as 𝑦̂ = {𝑦̂𝑖}𝑖=1
𝑁  .  When 

N exceeds the number of true protein particles in the micrograph, we enlarge 𝑦 as a set of size 𝑁, with 

padding represented by ∅ (no protein particle). To find the optimal bipartite matching between these two 

sets, we aim to find a permutation of 𝑁 elements denoted as 𝜎 ∈ 𝔖𝑁 that incurs the lowest cost. This 

permutation is determined by the following equation, given in equation I: 

𝜎̂ = arg⁡min
𝜎∈𝔖𝑁

∑ 

𝑁

𝑖

ℒmatch (𝑦𝑖, 𝑦̂𝜎(𝑖)) I 

ℒmatch (𝑦𝑖 , 𝑦̂𝜎(𝑖))⁡represents the pairwise matching cost between the ground truth particle 𝑦𝑖 and a prediction 

indexed by 𝜎(𝑖). This cost is calculated using the following equation II: 

ℒmatch (𝑦𝑖 , 𝑦̂𝜎(𝑖)) = ⁡−𝟙{𝑐𝑖≠∅}𝑝̂𝜎(𝑖)(𝑐𝑖) + 𝟙{𝑐𝑖≠∅}ℒbox (𝑏𝑖, 𝑏̂𝜎(𝑖)) II 

 

We can view each element 𝑖 in the ground truth set as a 𝑦𝑖 = (𝑐𝑖 , 𝑏𝑖), where 𝑐𝑖 represents the target class 

label, and 𝑏𝑖 belongs to the range [0,1]4, representing a vector that specifies the center coordinates of the 

ground truth box, along with its height and width relative to the micrograph dimensions. This approach 

ensures a one-to-one matching, preventing duplicate predictions when directly predicting sets. 

The next stage involves calculating the Hungarian loss using the Hungarian algorithm [51] for all pairs that 

were matched in the preceding step. We define this loss according to the equation III: 

ℒHungarian (𝑦, 𝑦̂) =∑  

𝑁

𝑖=1

[−log⁡ 𝑝̂𝜎̂(𝑖)(𝑐𝑖) + 𝟙{𝑐𝑖≠∅}ℒbox (𝑏𝑖, 𝑏̂𝜎̂(𝑖))] III 

Here, 𝜎̂ represents the optimal assignment obtained from the initial equation I.  

In practical implementation, we apply a down-weighting factor of 10 to the log-probability term when 𝑐𝑖 is 

equal to ∅, denoting the absence of a particle. This adjustment is made to address the issue of class 

imbalance. The second part of the Hungarian loss (ℒbox (⋅)) scores the bounding boxes is given by the 

equation IV:  

ℒbox (𝑏𝑖, 𝑏̂𝜎(𝑖)) = ⁡𝜆iou ℒiou (𝑏𝑖, 𝑏̂𝜎(𝑖)) + 𝜆L1∥∥𝑏𝑖 − 𝑏̂𝜎(𝑖)∥∥1
 IV 

 

Where 𝜆iou , 𝜆L1 ∈ ℝ are hyperparameters and ℒiou (⋅) is the generalized IoU [52] given by equation V: 
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ℒiou (𝑏𝜎(𝑖), 𝑏̂𝑖) = 1 − (
|𝑏𝜎(𝑖) ∩ 𝑏̂𝑖|

|𝑏𝜎(𝑖) ∪ 𝑏̂𝑖|
−
|𝐵(𝑏𝜎(𝑖), 𝑏̂𝑖) ∖ 𝑏𝜎(𝑖) ∪ 𝑏̂𝑖|

|𝐵(𝑏𝜎(𝑖), 𝑏̂𝑖)|
) 

 

V 

In the context provided, |.| denotes "area," and we use the terms union and intersection of box coordinates 

as shorthand references for the boxes themselves. To compute the areas of unions or intersections, we rely 

on the minimum/maximum of linear functions involving 𝑏𝜎(𝑖)and 𝑏̂𝑖. This approach ensures that the loss 

behaves in a stable manner for the computation of stochastic gradients. 𝐵(𝑏𝜎(𝑖), 𝑏̂𝑖)⁡refers to the largest 

bounding box that contains both 𝑏𝜎(𝑖), 𝑏̂𝑖. 

 

Model Implementation and Training  

We trained CryoTransformer with AdamW optimizer [52] by setting the initial transformer’s learning rate 

to 10−4, the backbone’s to 10−5, and weight decay to 10−4. All weights are randomly initialized with Xavier 

initialization [53]. Additive dropout of 0.1 is applied after every multi-head attention and FFN before layer 

normalization. We use a training schedule of 300 epochs with a learning rate drop by a factor of 10 after 

200 epochs, where a single epoch is a pass over all training images once. Training the model for 300 epochs 

on NVIDIA A100 80GB GPU took 2 days and 11 hours to complete.  

 

2.3 Postprocessing Predictions and Reconstructing Protein Density Maps from Picked Particles 

The FFN module of CryoTransformer predicts the coordinates of particles and their corresponding 

confidence scores (ranging from 0 to1). The predictions are processed in a few steps to generate final 

particle predictions, group the picked particles into different 2D orientation classes, and use them to build 

3D density maps of proteins. The visual representation of the overall process is shown in Figure 4.  

The predictions are first used to generate individual box files for every micrograph for a protein, containing 

the center coordinates (x and y) of all the predicted protein particles. We retain only the particles whose 

confidence score falls in the range from 25th percentile to 100th percentile. Subsequently, these box files are 

merged to create a .star file that can be accepted by CryoSPARC [54] for density map construction for the 

protein.  

The star files generated are imported into CryoSPARC through the ‘import particles’ task, accompanied by 

input parameters such as Acceleration Voltage (kV), Spherical Aberration (mm), and Pixel Size (Å) as well 

as the patch-based Contrast Transfer Function (CTF)-estimated micrographs. Subsequently, these particles 

are extracted using a specified extraction box size (in pixels) and fed into the 2D classification function of 

CryoSPARC to group them into different orientation classes.  
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Figure 4: Post processing steps to generate 3D protein density maps from picked particles. CryoTransformer outputs the .star files, 

which are imported into CryoSPARC along with the micrographs. Steps (1-6) are performed in CryoSPARC to generate the 3D 

density maps for a protein. The resolution of the density maps is employed as the main metric to evaluate the quality of the picked 

particles. 

This 2D classification step helps identify and exclude false particles through manual inspection, which 

usually can improve the resolution of the density maps reconstructed from the picked particles.  

To assess the quality of the particles picked by CryoTransformer, CrYOLO and Topaz, we carried out the 

density map reconstruction experiments with and without the 2D selection respectively. When the 2D 

classification was used, we generated a total of 50 particle classes, employing a window inner radius of 

0.85 and an outer radius of 0.99. Additionally, we performed 15 iterations to refine the CryoSPARC’s noise 

model. The selected particles were used by an ab initio reconstruction process with the standard parameter 

settings, which includes 300 iterations of reconstruction with a Fourier radius step of 0.04 and a momentum 

of 0 and an initial learning rate of 0.4 for the stochastic gradient descent optimization. Additionally, a 

lowpass filter cutoff in Fourier radii of 7 was applied to the initial random structures.  

After generating the initial density map for a protein, the cryoSPARC's ‘homogeneous refinement’ job was 

employed to enhance it further. The homogeneous refinement was applied to correct the higher-order 

aberrations and to refine particle defocus caused by factors such as beam tilt and spherical aberration. To 

ensure the fairness in comparisons of the particle picking methods, the experiment was conducted three 

times for each method with different random seed values, and the best score (in Angstrom units) out of the 

three experiments was used in the comparison.  
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3. Results  

We evaluated the particle picking performance of CryoTransformer in the following complementary ways. 

First, we compared it with CrYOLO and Topaz in terms of the resolution of the density maps reconstructed 

from the particles picked by them from the full set of micrographs in the EMPIAR repository for the four 

proteins in the independent test dataset. Second, we compared it with CrYOLO and Topaz in terms of the 

resolution of the density maps picked from a subset of labeled micrographs in the CryoPPP dataset for the 

proteins in the independent test dataset. Finally, we visually inspected and assessed the particles picked by 

the three methods.   

3.1 Comparing CryoTransformer, CrYOLO, and Topaz in terms of resolution of density maps 

reconstructed from the particles picked from the full set of micrographs in the EMPIAR 

repository (~1600 micrographs per protein) 

The full set of micrographs in the EMPIAR repository for the four test proteins (Human HCN1 

Hyperpolarization-Activated Channel (EMPIAR 10081), Influenza Hemagglutinin (EMPIAR 10532), 

mechanotransduction channel NOMPC (EMPIAR 10093), and asymmetric αVβ8 (EMPIAR 10345)) in the 

independent test dataset were used to compare CryoTransformer, CrYOLO and Topaz. The resolution of 

the density map reconstructed from the particles picked by each method for each protein was calculated. 

The density maps were reconstructed by CryoSPARC in two modes: with 2D particle selection (Select 2D) 

or without it. The experiment for each method and each protein was conducted three times and the best 

results were selected for the comparison. The comparative results of the three methods are summarized in 

Table 2, while the detailed results of each trial reported in Supplementary Table S3.  

Table 2: Comparison of CryoTransformer with crYOLO and Topaz’s performance in terms of the resolution of density maps 

reconstructed from the particles picked from the full set of micrographs of the four test proteins.  

EMPIAR 

ID 

Number of 

Micrographs 

Without Select 2D With Select 2D 
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3D Resolution 
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Number of Particles 

3D Resolution 

(Å) 

C
rY

O
L

O
 

T
o

p
az

 

C
ry

o
T

ra
n

sf
o

rm
er

 

C
rY

O
L

O
 

T
o

p
az

 

C
ry

o
T

ra
n

sf
o

rm
er

 

C
rY

O
L

O
 

T
o

p
az

 

C
ry

o
T

ra
n

sf
o

rm
er

 

C
rY

O
L

O
 

T
o

p
az

 

C
ry

o
T

ra
n

sf
o

rm
er

 
10081 [55] 997 59,559 383,558 293,980 7.45 6.34 4.89 32,472 148,378 147,662 6.39 4.19 4.15 

10532 [56] 1,556 62,732 1,574,179 764,215 8.34 3.97 3.86 16,079 260,266 259,757 7.82 3.27 3.21 

10093 [57] 1,873 53,482 791,064 596,192 6 4.72 6.11 40,374 359,619 204,355 5.57 4.37 4.65 

10345 [58] 1,644 19,836 396,882 182,397 7.27 3.5 5.22 5,377 155,023 111,375 6.06 3.47 3.45 

 

With Select 2D, CryoTransformer has the highest resolution of the reconstructed density maps for three out 

of four proteins (i.e., EMPIAR IDs: 10081, 10532, and 10345), while Topaz has the highest resolution for 

one protein. Without Select 2D, CryoTransformer and Topaz each perform best on two proteins. The 

detailed assessment of crYOLO, Topaz, and CryoTransformer based on the 3D resolution of Gold Standard 

Fourier Shell Correlation (CSFSC) curves, 3D density maps, and density projections with Select 2D is 

visualized in Figure 5.   
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Figure 5: Assessment of CrYOLO, Topaz, and CryoTransformer based on the 3D resolution CSFSC curves, 3D density maps, and 

density projections. The top diagram in each row shows CSFSC curves, which indicate the resolution of 3D density maps for 

proteins structures reconstructed from picked particles. Bottom-left image in each sub-figure provides a visual representation of 

the 3D density map. The bottom-right image in each sub-figure depicts the density projections from the intermediate output of the 

ab initio reconstruction phase. The integrated density values along the normal direction to that plane are displayed. The color 

scheme in the heatmap corresponds to the scalar density values at each voxel, with the color intensity indicating density magnitude.  
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Figure 6: Assessment of CrYOLO, Topaz, and CryoTransformer based on the 2Dl orientation classes of the picked protein particles. 

Each block displays two sections: the upper section presents the viewing direction plots as elevation vs azimuth plots, while the 

lower section showcases the averaged 2D orientation classes generated from picked particles. 
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In Figure 5Figure 5 , CSFSC curves are plotted to assess the resolution of the obtained 3D density maps. 

Different variations of Fourier Shell Correlation (FSC) plots are presented: one employing an automatically 

generated mask with a 15 Å falloff, termed the 'loose mask' curve, and the other using an auto-generated 

mask with a falloff of 6 Å for all FSC plots, referred to as the 'tight mask' curve. The 3D density map 

reconstructed by each method for each protein is also visualized. The notable difference between the results 

of CrYOLO and CryoTransformer can be observed. For instance, in the case of EMPIAR 10345, the correct 

shape of the density map has three distinct legs, but CrYOLO failed to capture all three, yielding a lower 

resolution of 6.06 Å. In contrast, CryoTransformer captured all of them and achieved a high resolution of 

3.45 Å. Similarly, in case of EMPIAR 10532, Topaz missed the central segment of the rod-like protein 

structure, whereas CryoTransformer successfully reconstructed that portion, attaining the highest resolution 

(3.21 Å) among all methods.  

The plot located in the lower-right corner of each section in Figure 5 represents the intermediate output of 

the ab-initio reconstruction phase. These plots depict density projections, but instead of slicing the density 

along a specific plane, the integrated density values along the normal direction to that plane are displayed. 

The color scheme in the heatmap corresponds to the scalar density values at each voxel, with color intensity 

indicating density magnitude.  

In addition to this visual assessment in Figure 5, we conducted a comparison based on the 2D orientation 

classes of the picked particles (Figure 6), showing that CryoTransformer picked particles in multiple 

orientation states that are important for obtaining high-resolution density maps. This analysis specifically 

involved analyzing the elevation vs azimuth plots for each test EMPIAR IDs. In the case of EMPIAR 10532 

row, CrYOLO struggled to select particles representing various orientations, resulting in low-quality 2D 

particle classes. In contrast, Topaz performed reasonably well in picking particles with a diverse range of 

orientations, and CryoTransformer excelled in picking a substantial number of particles with a broad 

angular distribution, as indicated by the red color in the heatmap. The higher intensity of the red color in 

the upper section of each blocks in Figure 6 corresponds to the higher number of particles in the elevation 

vs azimuth plots. Similarly, the lower section of each block depicts the averaged 2D orientation classes 

generated from picked particles. The diverse set of particles picked by CryoTransformer enabled the 

reconstruction of the density map of the highest resolution for this protein.  

 

3.2. Comparing CryoTransformer, CrYOLO, and Topaz on a subset of micrographs in CryoPPP for 

the independent test proteins (~300 micrographs per protein) 

Similarly, as in Section 3.1, we compared CryoTransformer, CrYOLO, and Topaz on the labeled subset of 

micrographs in CryoPPP for the six proteins in the independent test dataset in terms of the resolution of 

reconstructed density maps. The density maps were reconstructed using the Select 2D job from the picked 

particles.  The 3D resolution is listed in Table 3.  

Table 3: Comparison of CryoTransformer with CrYOLO and Topaz’s performance in terms of the resolution of 3D density maps 

reconstructed for six test proteins from the particles picked from a small set of micrographs in the CryoPPP  

EMPIAR 

ID 

Number of 

Micrographs 

Number of Particles 3D Resolution (Å) 

 

CrYOLO Topaz CryoTransformer CrYOLO Topaz CryoTransformer  

10017 [59] 84 283 98,625 43,735 10.4 5.3 5.61  

10081 [55] 300 17,550 111,752 88,632 9.78 7.81 5.47  
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10093 [57] 295 8,802 257,490 151,545 8.8 6.06 6.86  

10345 [58] 295 4,095 93,699 105,739 10.2 8.12 6.43  

10532 [56] 300 12,166 356,222 148,345 15.69 5.47 3.92  

11056 [60] 305 46,582 144,600 98,193 10 8.34 7.42  

 

Among the six datasets considered, CryoTransformer outperforms crYOLO and Topaz in four instances, 

despite picking a much smaller number of particles than Topaz in most cases. This observation underscores 

Topaz's tendency to pick more overlapped/duplicate particles or false positives. CrYOLO performs 

substantially worse than CryoTransformer and Topaz because it picks a much small number of particles, 

which are not sufficient to build good density maps. For the same four proteins, the best resolution of the 

density maps in Table 3 is lower than that in Table 2 because a much small number of micrographs were 

used for the particle picking and density map reconstruction.   

Table 4: Comparison of CryoTransformer with crYOLO and Topaz in terms of precision, recall, F1-score, and dice score of 

particle picking on the micrographs of six independent test proteins 

EMPIAR 

ID 
Type of Protein 

Number of 

Micrographs 

# Particles 

in Ground 

Truth 

(CryoPPP 

dataset) 

Precision  Recall F1 Score Dice Score 
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10017 β-galactosidase 84 49,391 0.695 0.57 0.745 0.024 0.998 0.587 0.046 0.726 0.657 0.041 0.694 0.623 

10081 Transport 300 39,352 0.405 0.736 0.860 0.18 0.965 0.889 0.25 0.835 0.874 0.214 0.825 0.823 

10093 Membrane 295 56,394 0.574 0.617 0.560 0.054 0.537 0.689 0.098 0.574 0.618 0.086 0.504 0.600 

10345 Signaling 295 15,894 0.543 0.526 0.744 0.134 0.981 0.864 0.215 0.685 0.799 0.111 0.659 0.684 

10532 Viral 300 87,933 0.715 0.672 0.813 0.201 0.976 0.665 0.313 0.796 0.732 0.239 0.757 0.614 

11056 Transport 305 125,908 0.513 0.731 0.853 0.214 0.832 0.683 0.302 0.778 0.758 0.284 0.692 0.679 

 Average   0.574 0.642 0.7625 0.1345 0.8815 0.7295 0.204 0.732 0.740 0.163 0.689 0.671 

 

In addition to the evaluation based on 3D resolution and the number of picked particles, we also assessed 

the performance of the three methods using precision, recall, F1 score, and dice score, as detailed in Table 

4. 

Moreover, we compared the particles picked by each method with the ground truth particles labeled in 

CryoPPP in  terms of four machine learning metrics including precision, recall, F1 score (the geometric 

mean of the precision and recall), and Dice score (Table 4). 

CryoTransformer stands out with the highest average precision of 0.7625 and the highest average F1-score 

of 0.740, indicating that it excels in producing accurate positive predictions and achieves the best-balanced 

performance considering both precision and recall.  Topaz has the highest average recall and dice score of 

0.8815 and 0.671, highlighting its ability to correctly identify a high proportion of true positive particles 

and generate a strong overlap between predicted and actual positive instances.   
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3.3 Visual inspection of particles picked by CryoTransformer, CrYOLO, and Topaz 

Figure 7 visualizes the particles picked by the three methods from the four representative micrographs of 

four proteins in the internal test data, which consist of 10% of micrographs from the 80%-10%-10% train-

valid-test split (see detailed results in Supplementary Table S4). Consistent with the results in Section 3.2, 

CrYOLO tends to select few true protein particles, consequently missing many true positive across various 

protein types. In contrast, Topaz selects an excessive number of particles, often leading to overlaps and 

duplicates. Additionally, Topaz frequently picks false particles from contaminations, particle aggregates 

and ice patches, which can result in lower-resolution 3D density map reconstruction. Furthermore, picking 

a lot of redundant particles requires much more storage to store them and a lot of time and memory to 

reconstruct density maps from them. CryoTransformer, on the other hand, often picks most of true particles 

while keeping false positives to a low level, which is beneficial for 3D density map reconstruction. 

 

Figure 7: Assessment of CrYOLO, Topaz, and CryoTransformer based on visual inspection of predicted particles in micrographs 

of four typical proteins. The first row (indicated by red circles) represents protein particles picked by CrYOLO. The second row 

(marked by green circles) displays protein particles picked by Topaz. The third row (with yellow circles) illustrates protein particles 

picked by CryoTransformer. 
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Conclusion 

We present CryoTransformer, a novel deep learning method for particle recognition and extraction. It 

leverages the power of transformers, residual networks, traditional image processing techniques, and a 

bipartite matching loss function. CryoTransformer was trained and tested on the largest labeled particle 

dataset available. According to the rigorous evaluations and comparisons, CryoTransformer achieves state-

of-the-art performance, making it a robust AI-based tool to automate the process of picking protein particles 

from cryo-EM micrographs.  

Code Availability 

The source code and data are available at the GitHub repository:  https://github.com/jianlin-

cheng/CryoTransformer .  
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