bioRxiv preprint doi: https://doi.org/10.1101/2023.10.19.563155; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

CryoTransformer: A Transformer Model for Picking Protein Particles from Cryo-EM
Micrographs

Ashwin Dhakal“?, Rajan Gyawali*?, Liguo Wang?, Jianlin Cheng'>"

! Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
2 NextGen Precision Health, University of Missouri, Columbia, Columbia, MO 65211, USA
3 Laboratory for BioMolecular Structure (LBMS), Brookhaven National Laboratory, Upton, NY 11973, USA

*Corresponding author: Jianlin Cheng (chengji@missouri.edu)

Abstract

Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of large protein
complexes. Picking single protein particles from cryo-EM micrographs (images) is a crucial step in
reconstructing protein structures from them. However, the widely used template-based particle picking
process requires some manual particle picking and is labor-intensive and time-consuming. Though machine
learning and artificial intelligence (Al) can potentially automate particle picking, the current Al methods
pick particles with low precision or low recall. The erroneously picked particles can severely reduce the
quality of reconstructed protein structures, especially for the micrographs with low signal-to-noise (SNR)
ratios. To address these shortcomings, we devised CryoTransformer based on transformers, residual
networks, and image processing techniques to accurately pick protein particles from cryo-EM micrographs.
CryoTransformer was trained and tested on the largest labelled cryo-EM protein particle dataset - CryoPPP.
It outperforms the current state-of-the-art machine learning methods of particle picking in terms of the
resolution of 3D density maps reconstructed from the picked particles as well as F1-score and is poised to
facilitate the automation of the cryo-EM protein particle picking.

1. Introduction

Cryogenic electron microscopy (cryo-EM) is a modern biophysical technique that captures two-
dimensional (2D) images of biological macromolecules, such as proteins and viruses at cryogenic
temperature [1], through the use of an electron detection camera. When subjected to an electron beam
within a thin vitrified sample, this technique generates 2D image projections of the specimens (e.g., protein
particles). These 2D representations are stored in various image formats (like mrc, tiff, tbz, eer, png, etc.),
which are called micrographs. A single micrograph can contain hundreds or thousands of particles of a
protein, randomly oriented in different directions. Given the inherent challenges of ascertaining the
orientations of the particles and the low SNR of micrographs, hundreds of thousands of high-quality
particles are often required to be identified to determine a high-resolution three-dimensional (3D) structure
of the protein.

The initial step of determining the 3D structure of the proteins from the micrographs involves the
recognition and extraction of particles from 2D micrographs, which is commonly referred to as particle
picking. Its primary goal is to identify and locate individual protein particles within each micrograph while
excluding malformed particles, crystalline ice contamination, and background regions. Essentially, the task
of particle picking involves taking a micrograph as input and generating the coordinates for all protein
particles present in that micrograph as the desired output (stored in the form of .box or .star files). These
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coordinates thereafter serve as the data for subsequent stages of 3D protein structure reconstruction. These
3D structures of proteins are important for understanding their biological functions [2] and their interactions
with ligands [3], [4], facilitate structure-based drug discovery [3] [5] .

Because the SNR of micrographs is generally low, hundreds to thousands of micrographs need to be
generated to obtain a high-resolution structure for a protein, from which as many as millions of particle
images can be picked. Precise identification of true particles is important, as the presence of false positive
particles complicates the down-stream 3D protein reconstruction process. The particle picking task is
inherently challenging due to several factors, including high noise levels caused by ice and contamination,
low contrast of particle images, heterogenous conformations of particles, and variation in the orientation of
particles.

This manual picking process by human is laborious, tedious, and time-consuming, which cannot be applied
to pick millions of particles from thousands of micrographs. Therefore, substantial efforts have been put to
develop semi-automated or fully automated methods to pick protein particles, which can be classified into
two categories: (1) template-based particle picking and (2) machine learning particle picking.

In the template-based particle picking, the identification of particles primarily hinges on measuring a
potential particle’s similarity to user-predefined (manually selected) reference particles called templates.
Because micrographs are usually noisy due to various factors such as ice contamination, carbon areas,
overlapping particles, and other impurities, the template-based particle picking is often unable to detect
particles of unusual shape and suffers from high false-positive rates. As a result, subsequent steps of manual
particle selection are necessary to filter the particles picked by the template-based particle picking.
Typically, iterative 2D-3D classification techniques are employed to scrutinize the picked particles and
remove false particles. However, this particle picking, and downstream manual curation may introduce a
degree of human bias into the final particle set selection, which may mistakenly exclude rare particle views
and distinct conformations that are important for building high-resolution protein structures. Thus, this
approach generally necessitates a large degree of human intervention and trial and errors to obtain good
results.

The machine learning particle picking consists of both unsupervised learning (clustering) methods [6] and
supervised learning methods [7] [8] [9] [10]. Recently, a number of deep learning methods were developed
to automate the protein particle picking, which include XMIPP [11], DeepPicker [12], DeepEM [13], Xiao
et al.’s method [14], Warp [15], HydraPicker [16], McSweeney et al.’s method [17], DRPnet [18], CrYOLO
[19] and Topaz [20]. Among them, CrYOLO and Topaz based on convolutional neural networks have been
widely used in particle picking. However, they have been trained with limited particle data and have the
difficulty to generalize to new protein types or shapes. For instance, CrYOLO usually overlooks many true
protein particles, while Topaz often picks excessive numbers of duplicate particles and some false positives
such as ice contaminants and false particles in carbon-rich areas.
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Figure 1: Overview of the CryoTransformer Particle Picking Pipeline. (A) Input raw micrograph undergoes initial denoising. (B)
Denoised micrographs serve as input for subsequent processing. (C) CNN-Based Resnet-152 architecture extracts image features.
Features extracted in (C) are processed by an (D) encoder-decoder Transformer. (E) Feed-forward networks further refine the
processed data. (F) Predictions of particles encircled in micrographs, eventually stored in star files as the final output.

To overcome these obstacles, we devised a transformer-based particle picking approach and trained it on
the largest, diverse, manually-labelled CryoPPP protein particle dataset [21], [22]. Inspired by Meta’s
Detection Transformer (DETR) [23] for detecting small objects, we designed the end-to-end detection
transformer named as CryoTransformer. Briefly, it has an initial step of reducing noise in micrographs (
Figure 1A, B), followed by the feature extraction through a ResNet-152 architecture (Figure 1C).
Subsequently, a transformer model is used for detecting protein particles as shown in Figure 1D. This is
succeeded by the feed-forward networks to predict particles (Figure 1E), which are followed by the post-
processing procedures. The output (Figure 1F) includes particle markings on the micrographs stored in
.star files, which can be directly used for the subsequent stages of 3D protein structure reconstruction. We
conducted a rigorous evaluation of CryoTransformer. It outperforms the two popular deep learning
methods: CrYOLO and Topaz. The source code and data for CryoTransformer are openly available at:
https://github.com/jianlin-cheng/CryoTransformer .

2.  Materials and Methods

2.1 Dataset
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Dataset acquisition

We utilized the largest comprehensive CryoPPP dataset [21], [22] curated from Electron Microscopy Public
Image Archive (EMPIAR) [24], to train, validate, and test CryoTransformer. The micrographs of 22 proteins
(EMPIAR IDs) from the CryoPPP dataset were used, with the data of each EMPIAR ID split according to
an 80%-10%-10% ratio for training, validation, and internal test. Moreover, we used the data of 6 distinct
EMPIAR IDs in CryoPPP dataset different from the 22 proteins above as well as the 4 complete micrograph
datasets from EMPIAR repository [24] as the independent test dataset to compare CryoTransformer with
the external methods.

The selection of training and test data considered a range of protein attributes, including type, shape, size,
and overall structural characteristics. The 22 proteins used for the training, validation and internal test are
described in Table 1. Supplementary Figure S1 illustrates the varying defocus values of the training data.
The datasets encompass various protein categories, such as transport proteins, membrane proteins, viral
proteins, ribosomes, signaling proteins, aldolases, and more. They are comprised of micrographs featuring
diverse attributes, including those with ice patches, contaminants, varying ice thickness, and carbon areas.
Different protein distribution patterns, including monodisperse, clumped clusters, and heterogeneous views,
are also included. The Supplementary Table S1 and S2 contain the information and statistics of the
proteins in the independent test dataset.

Table 1: The statistics and information of the 22 sets of micrographs for training, validation, and internal test of
CryoTransformer (* Theoretical weight)

SN EMPIAR Type of Protein Image Size St:—lj);fdre #_Training #Yalidation # Test # Total
ID Weight | Micrographs | Micrographs | Micrographs | Micrographs
(kDa)
1[11183[25] | Signaling Protein (5760, 4092) | 139.36 250 25 25 300
211057 [26] | Hydrolase (5760, 4092) | 149.43 250 25 20 295
311051 [27] | Transcription/DNA/RNA | (3838, 3710) | 357.31 250 25 25 300
410852 [28] | Signaling Protein (5760, 4092) | 157.81 270 40 33 343
5110816 [29] | Transport Protein (7676, 7420) | 166.62 250 25 25 300
6| 10760 [30] | Membrane Protein (3838, 3710) | 321.69 250 25 25 300
7110737 [31] | Membrane Protein (5760, 4092) | 155.83 250 25 17 292
810671 [32] | Signaling Protein (5760, 4092) 77.14 250 25 23 298
910590 [33] | Transport Protein (3710, 3838) 1000* 250 25 21 296
10| 10526 [34] | Ribosome (50S) (7676, 7420) | 1085.81 180 20 20 220
11| 10444 [35] | Membrane Protein (5760, 4092) 295.89 250 25 21 296
12| 10406 [36] | Ribosome (70S) (3838, 3710) 632.89 200 20 19 239
1310387 [37] | Viral Protein (3710, 3838) 185.87 250 25 24 299
1410291 [38] | Transport Protein (3710, 3838) | 361.39 250 25 25 300
1510289 [38] | Transport Protein (3710, 3838) | 361.39 250 25 25 300
16| 10240 [39] | Lipid Transport Protein (3838, 3710) 171.72 250 25 24 299
17110184 [40] | Aldolase (3838, 3710) 150* 250 25 21 296
18 | 10096 [41] | Viral Protein (3838, 3710) 150* 250 25 25 300
19 | 10077 [42] | Ribosome (70S) (4096, 4096) | 2198.78 250 25 25 300
20 | 10075 [43] | Bacteriophage MS2 (4096, 4096) | 1000* 250 25 24 299
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2110059 [44] | Transport Protein (3838, 3710) 317.88 250 25 16 291
22 | 10005 [45] | Transport Protein (3710, 3710) 272.97 22 4 3 29
Total Micrographs 5,172 534 486 6,192

Denoising and pre-processing of cryo-EM micrographs

The cryo-EM micrographs in .mrc format, serve as the initial input for CryoTransformer. To reduce noise
and improve the signal-to-noise ratio, a Gaussian filter with a kernel size of 9 is applied to convolve with
the images. Subsequently, the images undergo standard normalization to achieve consistent intensity ranges.
The normalized pixel values of the images are computed using the formula [pixel = (pixel- p)/ o], ensuring
that the data is centered and scaled appropriately for the further analysis. The normalized images are then
converted to grayscale, which collapses multi-channel intensity information into a single channel, ensuring
a uniform representation of pixel values ranging from 0 to 255 (Figure 2A).

Effective noise reduction is essential to reveal clear structural details in cryo-EM micrographs. We employ
a two-step denoising process to the normalized images, involving Fast Non-Local Means (FastNLMeans)
denoising followed by Weiner filtering (Figure 2B). FastNLMeans denoising is employed to retain image
details while suppressing noise artifacts. By exploiting the redundancy present in natural images,
FastNLMeans replaces the noisy pixel with a weighted average of similar pixels from a larger
neighborhood. The trade-off between noise suppression and detail preservation is controlled by the choice
of template window size (7 in this case) and the search window size (21 in this case).

The output of FastNLMeans denoising is subjected to Weiner filtering to further reduce the residual noise
and enhance the image's structural fidelity (Figure 2C). It achieves this by estimating the original image's
frequency spectrum and applying a correction factor to mitigate the effects of noise. Enhancing contrast in
cryo-EM micrographs is crucial for improving particle visibility and overall image quality. We incorporate
the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique for this purpose (Figure 2D).
The CLAHE technique, with a clip limit of 2 and a tile grid size of 16x16, is applied to the denoised images.
This technique effectively addresses non-uniform illumination and low contrast, leading to enhanced visual
clarity.

To accomplish selective smoothing and fine detail preservation, guided filtering is performed using the
CLAHE-enhanced image as a guide (Figure 2E). Guided filtering operates by estimating the local linear
relationship between the guidance image and the target image (Figure 2F). This relationship is then used
to determine the filtering weights applied to each pixel, resulting in controlled smoothing, while retaining
sharp edges and fine details. The filtering fine-tunes the micrographs, achieving a balance between noise
reduction and preservation of important structural information (Figure 2G).
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Figure 2: The denoising used to preprocess cryo-EM micrographs in CryoTransformer. (A) Raw micrographs with low contrast
and low SNR go through (B) Gaussian filtering and Grayscale conversion. Normalized micrograph undergoes (C) FastNLMeans
denoising technique. (D) Weiner filtering is applied to the micrographs from the previous step, and subsequently (E) CLAHE
technique is used to enhance visual clarity of the micrograph. Eventually, (F) Guided filtering is performed using the CLAHE-
enhanced image as a guide to obtain (G) denoised micrographs. (H) Ground truth particle annotation data. Particle coordinates
from ground truth coordinate files are extracted to create COCO-dataset that is used as target labels for training CryoTransformer.

Generating COCO-dataset for labelled protein particles in micrographs

We used the ground truth particle coordinate data from the CryoPPP dataset [21], [22] to generate labels to
train CryoTransformer. The particle labels were stored in the widely adopted Common Objects in Context
(COCO) format [46]. This format is extensively used for object detection and segmentation tasks, and it
adheres to a structured JSON layout that defines how labels and associated metadata are stored for an image
dataset. An illustration of how these labels are stored is depicted in Figure 2H. In the case of all training
and validation images, we have two JSON files: one for training (referred to as the "train JSON") and
another for validation (referred to as the "validation JSON"). We chose to adopt this labeling data format
because the COCO format imposes a standardized structure for annotations, including object category
labels and bounding box coordinates. This uniformity streamlines the data preprocessing process and
ensures that models can readily comprehend and learn from the annotated data. The COCO format permits
the annotation of multiple objects (protein particles) within a single image (micrograph). Each object is
associated with its distinct category label and bounding box. For each particle, we retain details such as its
bounding box coordinates, area, category label (typically set to 1 in our case as all objects to be detected
are protein particles), the corresponding image reference, and a unique particle ID.
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2.2 Design and Implementation of CryoTransformer

CryoTransformer is designed to achieve the accurate prediction of bounding boxes for the protein particles
within a micrograph, while minimizing the number of false positives. It undergoes an end-to-end training,
using a specialized loss function that effectively combines the bipartite matching loss between predicted
and ground-truth protein particles in the micrographs.

CryoTransformer Architecture

As illustrated in Figure 3, CryoTransformer comprises three main components: a Convolutional Neural
Network (CNN) with residual connections (Resnet-152 [47]) responsible for feature extraction, an encoder-
decoder transformer [23], [48] for learning the shapes of the particles in the context of an entire image, and
a feed-forward network (FFN) responsible for producing the ultimate particle predictions.
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Figure 3: Architecture of CryoTransformer. The raw micrographs are denoised and are fed into the ResNet-152 module for feature
extraction. The images features, along with positional encoding, are fed to the encoder of the transformer. The output from the
encoder is subsequently passed to the decoder layer. Finally, the decoder’s output is passed to the feed forward networks that
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generate the protein particle bounding box predictions. These predictions are used in generating the predicted protein particles
encircled in micrographs, which are stored in the .star files.

Resnet-152 Backbone Block

The Resnet-152 receives the preprocessed micrographs Xy, € R3*Ho*Wo (with 3 color channels)) as input

and generates a lower-resolution activation map as f € R€*#*W Where C = 2048, and H = %, W= %
0 padding is applied to the images in a batch to make sure that they all have same input dimensions (Hy, W)

as the largest image size of the batch.

Transformer Module

The features extracted from the Resnet-152 are subsequently passed through the transformer. This
transformer consists of two main components: encoder and decoder. The image features from
the Resnet-152 backbone block are passed through the transformer along with the positional encoding and
particle queries. The transformer outputs intermediate predictions, which are fed to the FFN module to
predict particle labels and bounding boxes.

Transformer Encoder

The encoder plays a vital role in generating coherent and context-aware outputs. In the encoder, a 1x1
convolution operation is used to decrease the channel dimension of the high-level activation map, denoted
as f, from C to a smaller dimension d, yielding a new feature map z, € R“*#*W Since the encoder accepts
a one-dimensional sequence as input, we collapse the spatial dimensions of z; into a single dimension. As
aresult, the resultant input becomes a feature map of dimension d X HW . Here, every encoder layer follows
a consistent structure, comprising a multi-head self-attention component and a FFN layer. To account for
the permutation-invariant nature of the transformer architecture, we enhance it by incorporating the
positional encodings [49] [50], which are included in the input of every multi-head self-attention layer.

Transformer Decoder

The decoder receives the memory from encoder, positional encoding, and particle queries as input. It
involves the transformation of N embeddings of size d (in our specific scenario, N = 600, meaning
predicting max 600 protein particles per micrograph) through the multi-headed self- attention mechanisms.
It’s worth noting that since the decoder is also designed to be permutation-invariant, it requires distinct
particle queries (initialized as random vectors) within the set of N inputs to generate different outcomes.
These particle queries, added to the input at each attention layer, are a are updated through back propagation.
Subsequently, the output of the decoder is individually used to predict box coordinates and class labels (1
in our case) through a feed-forward network, a process detailed in the following subsection, resulting in N
final predictions.

Feed-Forward Networks Module

The final prediction is generated through a 3-layer perceptron with a ReLU activation function and d hidden
nodes in each hidden layer, followed by a linear projection layer. This FFN is responsible for predicting the
normalized center coordinates, height, and width of the bounding box relative to the input micrograph.
Additionally, the linear layer predicts the class label using a softmax function. Considering that we are
making predictions for a fixed-size set of N potential bounding boxes, and N is typically much larger than
the actual number of protein particles in a single micrograph, we introduce a special class label denoted as
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@. This label means that no protein particle has been detected in a particular slot. Its role is akin to the
"background" class in conventional object detection.

Loss Function

CryoTransformer generates a consistent set of N predictions in a single traversal of the decoder. This
number N was deliberately chosen to exceed the usual count of protein particles in a micrograph. To achieve
this, the loss function is designed to establish an ideal bipartite matching between the predicted protein
particles and their corresponding ground truth. Subsequently, the model optimizes the losses pertaining to
individual particles in order to refine the predictions further.

We can represent the ground truth set of particles as y and the set of N predictions as y = {§;}*.; . When
N exceeds the number of true protein particles in the micrograph, we enlarge y as a set of size N, with
padding represented by @ (no protein particle). To find the optimal bipartite matching between these two
sets, we aim to find a permutation of N elements denoted as o € Sy that incurs the lowest cost. This
permutation is determined by the following equation, given in equation I:

arg mlnz Linater (Vi Io)) :

gECN
Loatch (yi, 3”/0(0) represents the pairwise matchmg cost between the ground truth particle y; and a prediction
indexed by o(i). This cost is calculated using the following equation II:

Lonateh Vo Vo) = —Lic;20yPo(y (€ + Lic;201Loox (bir boiy) I

We can view each element i in the ground truth set as a y; = (c;, b;), where c; represents the target class
label, and b; belongs to the range [0,1]%, representing a vector that specifies the center coordinates of the
ground truth box, along with its height and width relative to the micrograph dimensions. This approach
ensures a one-to-one matching, preventing duplicate predictions when directly predicting sets.

The next stage involves calculating the Hungarian loss using the Hungarian algorithm [51] for all pairs that
were matched in the preceding step. We define this loss according to the equation III:

N
Liungarian .9 = Z [—log ﬁ&(i) (ci) + ﬂ{cii(Z)}Lbox (bi’B&(i))] 1

i=1
Here, 6 represents the optimal assignment obtained from the initial equation I.

In practical implementation, we apply a down-weighting factor of 10 to the log-probability term when c; is
equal to @, denoting the absence of a particle. This adjustment is made to address the issue of class
imbalance. The second part of the Hungarian loss (L, (+)) scores the bounding boxes is given by the
equation I'V:

Loox (b boiy) = Aiow Liow (bir boiy) + Avallbi — Ba(i)nl 1Y

Where 4,,,, 111 € R are hyperparameters and L, (+) is the generalized IoU [52] given by equation V:
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by N bi|  |B(bogy, bi) \ bogiy YU 5i|>
v

Lioy (bo(iy, bi) =1 - ( ~ ~

|bociy U bil |B(bociy bi)
In the context provided, |.| denotes "area," and we use the terms union and intersection of box coordinates
as shorthand references for the boxes themselves. To compute the areas of unions or intersections, we rely

on the minimum/maximum of linear functions involving b, ;yand b;. This approach ensures that the loss
behaves in a stable manner for the computation of stochastic gradients. B(bd(i), Bi) refers to the largest

bounding box that contains both by ;), b;.

Model Implementation and Training

We trained CryoTransformer with AdamW optimizer [52] by setting the initial transformer’s learning rate
to 107*, the backbone’s to 107>, and weight decay to 107*. All weights are randomly initialized with Xavier
initialization [53]. Additive dropout of 0.1 is applied after every multi-head attention and FFN before layer
normalization. We use a training schedule of 300 epochs with a learning rate drop by a factor of 10 after
200 epochs, where a single epoch is a pass over all training images once. Training the model for 300 epochs
on NVIDIA A100 80GB GPU took 2 days and 11 hours to complete.

2.3 Postprocessing Predictions and Reconstructing Protein Density Maps from Picked Particles

The FFN module of CryoTransformer predicts the coordinates of particles and their corresponding
confidence scores (ranging from 0 tol). The predictions are processed in a few steps to generate final
particle predictions, group the picked particles into different 2D orientation classes, and use them to build
3D density maps of proteins. The visual representation of the overall process is shown in Figure 4.

The predictions are first used to generate individual box files for every micrograph for a protein, containing
the center coordinates (x and y) of all the predicted protein particles. We retain only the particles whose
confidence score falls in the range from 25" percentile to 100™ percentile. Subsequently, these box files are
merged to create a .star file that can be accepted by CryoSPARC [54] for density map construction for the
protein.

The star files generated are imported into CryoSPARC through the ‘import particles’ task, accompanied by
input parameters such as Acceleration Voltage (kV), Spherical Aberration (mm), and Pixel Size (A) as well
as the patch-based Contrast Transfer Function (CTF)-estimated micrographs. Subsequently, these particles
are extracted using a specified extraction box size (in pixels) and fed into the 2D classification function of
CryoSPARC to group them into different orientation classes.
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Figure 4: Post processing steps to generate 3D protein density maps from picked particles. CryoTransformer outputs the .star files,
which are imported into CryoSPARC along with the micrographs. Steps (1-6) are performed in CryoSPARC to generate the 3D
density maps for a protein. The resolution of the density maps is employed as the main metric to evaluate the quality of the picked
particles.

This 2D classification step helps identify and exclude false particles through manual inspection, which
usually can improve the resolution of the density maps reconstructed from the picked particles.

To assess the quality of the particles picked by CryoTransformer, CrYOLO and Topaz, we carried out the
density map reconstruction experiments with and without the 2D selection respectively. When the 2D
classification was used, we generated a total of 50 particle classes, employing a window inner radius of
0.85 and an outer radius of 0.99. Additionally, we performed 15 iterations to refine the CryoSPARC’s noise
model. The selected particles were used by an ab initio reconstruction process with the standard parameter
settings, which includes 300 iterations of reconstruction with a Fourier radius step of 0.04 and a momentum
of 0 and an initial learning rate of 0.4 for the stochastic gradient descent optimization. Additionally, a
lowpass filter cutoff in Fourier radii of 7 was applied to the initial random structures.

After generating the initial density map for a protein, the cryoSPARC's ‘homogeneous refinement’ job was
employed to enhance it further. The homogeneous refinement was applied to correct the higher-order
aberrations and to refine particle defocus caused by factors such as beam tilt and spherical aberration. To
ensure the fairness in comparisons of the particle picking methods, the experiment was conducted three
times for each method with different random seed values, and the best score (in Angstrom units) out of the
three experiments was used in the comparison.
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3. Results

We evaluated the particle picking performance of CryoTransformer in the following complementary ways.
First, we compared it with CrYOLO and Topaz in terms of the resolution of the density maps reconstructed
from the particles picked by them from the full set of micrographs in the EMPIAR repository for the four
proteins in the independent test dataset. Second, we compared it with CrYOLO and Topaz in terms of the
resolution of the density maps picked from a subset of labeled micrographs in the CryoPPP dataset for the
proteins in the independent test dataset. Finally, we visually inspected and assessed the particles picked by
the three methods.

3.1 Comparing CryoTransformer, CrYOLO, and Topaz in terms of resolution of density maps
reconstructed from the particles picked from the full set of micrographs in the EMPIAR
repository (~1600 micrographs per protein)

The full set of micrographs in the EMPIAR repository for the four test proteins (Human HCNI
Hyperpolarization-Activated Channel (EMPIAR 10081), Influenza Hemagglutinin (EMPIAR 10532),
mechanotransduction channel NOMPC (EMPIAR 10093), and asymmetric aVB8 (EMPIAR 10345)) in the
independent test dataset were used to compare CryoTransformer, CrYOLO and Topaz. The resolution of
the density map reconstructed from the particles picked by each method for each protein was calculated.
The density maps were reconstructed by CryoSPARC in two modes: with 2D particle selection (Select 2D)
or without it. The experiment for each method and each protein was conducted three times and the best
results were selected for the comparison. The comparative results of the three methods are summarized in
Table 2, while the detailed results of each trial reported in Supplementary Table S3.

Table 2: Comparison of CryoTransformer with crYOLO and Topaz’s performance in terms of the resolution of density maps
reconstructed from the particles picked from the full set of micrographs of the four test proteins.

Without Select 2D With Select 2D
Number of Particles 3D ResAqutlon Number of Particles 3D Res;lutlon
(A) (A)

EMPIAR | Number of e g g g
ID Micrographs | Q N S - N |8 S N 2 9 N | 8

e s 2 o) s 2 o) s 2 o) s 2

r | ¢ S - - < - - I -

S 5 ] 5 3] 5 3] 5

e > > >

O (8) (&) (&)
10081 [55] 997 59,559 | 383,558 | 293980 | 7.45 | 6.34 | 4.89 | 32,472 | 148,378 | 147,662 | 6.39 | 419 | 4.15
10532 [56] 1,556 62,732 | 1,574,179 | 764,215 | 8.34 | 3.97 | 3.86 | 16,079 | 260,266 | 259,757 | 7.82 | 3.27 | 3.21
10093 [57] 1,873 53,482 | 791,064 | 596,192 6 4,72 | 6.11 | 40,374 | 359,619 | 204,355 | 5.57 | 4.37 | 4.65
10345 [58] 1,644 19,836 | 396,882 | 182,397 | 7.27 | 3.5 | 522 | 5,377 | 155,023 | 111,375 | 6.06 | 3.47 | 3.45

With Select 2D, CryoTransformer has the highest resolution of the reconstructed density maps for three out
of four proteins (i.e., EMPIAR IDs: 10081, 10532, and 10345), while Topaz has the highest resolution for
one protein. Without Select 2D, CryoTransformer and Topaz each perform best on two proteins. The
detailed assessment of cr'YOLO, Topaz, and CryoTransformer based on the 3D resolution of Gold Standard
Fourier Shell Correlation (CSFSC) curves, 3D density maps, and density projections with Select 2D is
visualized in Figure 5.
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Figure 5: Assessment of CrYOLO, Topaz, and CryoTransformer based on the 3D resolution CSFSC curves, 3D density maps, and
density projections. The top diagram in each row shows CSFSC curves, which indicate the resolution of 3D density maps for
proteins structures reconstructed from picked particles. Bottom-left image in each sub-figure provides a visual representation of
the 3D density map. The bottom-right image in each sub-figure depicts the density projections from the intermediate output of the
ab initio reconstruction phase. The integrated density values along the normal direction to that plane are displayed. The color
scheme in the heatmap corresponds to the scalar density values at each voxel, with the color intensity indicating density magnitude.
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Figure 6: Assessment of CrYOLO, Topaz, and CryoTransformer based on the 2Dl orientation classes of the picked protein particles.
Each block displays two sections: the upper section presents the viewing direction plots as elevation vs azimuth plots, while the
lower section showcases the averaged 2D orientation classes generated from picked particles.
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In Figure 5Figure 5 , CSFSC curves are plotted to assess the resolution of the obtained 3D density maps.
Different variations of Fourier Shell Correlation (FSC) plots are presented: one employing an automatically
generated mask with a 15 A falloff, termed the 'loose mask' curve, and the other using an auto-generated
mask with a falloff of 6 A for all FSC plots, referred to as the 'tight mask' curve. The 3D density map
reconstructed by each method for each protein is also visualized. The notable difference between the results
of CrYOLO and CryoTransformer can be observed. For instance, in the case of EMPIAR 10345, the correct
shape of the density map has three distinct legs, but CrYOLO failed to capture all three, yielding a lower
resolution of 6.06 A. In contrast, CryoTransformer captured all of them and achieved a high resolution of
3.45 A. Similarly, in case of EMPIAR 10532, Topaz missed the central segment of the rod-like protein
structure, whereas CryoTransformer successfully reconstructed that portion, attaining the highest resolution
(3.21 A) among all methods.

The plot located in the lower-right corner of each section in Figure 5 represents the intermediate output of
the ab-initio reconstruction phase. These plots depict density projections, but instead of slicing the density
along a specific plane, the integrated density values along the normal direction to that plane are displayed.
The color scheme in the heatmap corresponds to the scalar density values at each voxel, with color intensity
indicating density magnitude.

In addition to this visual assessment in Figure 5, we conducted a comparison based on the 2D orientation
classes of the picked particles (Figure 6), showing that CryoTransformer picked particles in multiple
orientation states that are important for obtaining high-resolution density maps. This analysis specifically
involved analyzing the elevation vs azimuth plots for each test EMPIAR IDs. In the case of EMPIAR 10532
row, CrYOLO struggled to select particles representing various orientations, resulting in low-quality 2D
particle classes. In contrast, Topaz performed reasonably well in picking particles with a diverse range of
orientations, and CryoTransformer excelled in picking a substantial number of particles with a broad
angular distribution, as indicated by the red color in the heatmap. The higher intensity of the red color in
the upper section of each blocks in Figure 6 corresponds to the higher number of particles in the elevation
vs azimuth plots. Similarly, the lower section of each block depicts the averaged 2D orientation classes
generated from picked particles. The diverse set of particles picked by CryoTransformer enabled the
reconstruction of the density map of the highest resolution for this protein.

3.2. Comparing CryoTransformer, CrYOLO, and Topaz on a subset of micrographs in CryoPPP for
the independent test proteins (~300 micrographs per protein)

Similarly, as in Section 3.1, we compared CryoTransformer, CrYOLO, and Topaz on the labeled subset of
micrographs in CryoPPP for the six proteins in the independent test dataset in terms of the resolution of
reconstructed density maps. The density maps were reconstructed using the Select 2D job from the picked
particles. The 3D resolution is listed in Table 3.

Table 3: Comparison of CryoTransformer with CrYOLO and Topaz'’s performance in terms of the resolution of 3D density maps
reconstructed for six test proteins from the particles picked from a small set of micrographs in the CryoPPP

EMPIAR Number of Number of Particles 3D Resolution (A)
ID Micrographs
CrYOLO Topaz CryoTransformer | CrYOLO Topaz CryoTransformer
10017 [59] 84 283 98,625 43,735 10.4 5.3 5.61
10081 [55] 300 17,550 111,752 88,632 9.78 7.81 5.47



https://doi.org/10.1101/2023.10.19.563155
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.19.563155; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10093 [57] 295 8,802 257,490 151,545 8.8 6.06 6.86
10345 [58] 295 4,095 93,699 105,739 10.2 8.12 6.43
10532 [56] 300 12,166 356,222 148,345 15.69 5.47 3.92
11056 [60] 305 46,582 144,600 98,193 10 8.34 7.42

Among the six datasets considered, CryoTransformer outperforms crYOLO and Topaz in four instances,
despite picking a much smaller number of particles than Topaz in most cases. This observation underscores
Topaz's tendency to pick more overlapped/duplicate particles or false positives. CrYOLO performs
substantially worse than CryoTransformer and Topaz because it picks a much small number of particles,
which are not sufficient to build good density maps. For the same four proteins, the best resolution of the
density maps in Table 3 is lower than that in Table 2 because a much small number of micrographs were

used for the particle picking and density map reconstruction.

Table 4: Comparison of CryoTransformer with crYOLO and Topaz in terms of precision, recall, F1-score, and dice score of
particle picking on the micrographs of six independent test proteins

Precision Recall F1 Score Dice Score

# Particles 5 5 5 5

in Ground IS IS g £

EMITDIAR Type of Protein ,\,’?I-umber of Truth Qo N S 9 N S 9 & $ 2 3 £

icrographs - < 17 = S 17 = < 7] = < 7]

(CryoPPP ©] Qo = @) Q = @) Q = ) o =

dataset) z P = z i = z 2 = z P =

O o ®) o O o O =]

> > > >

O O (8] (8]
10017 B-galactosidase 84 49,391 0.695 | 0.57 | 0.745 | 0.024 | 0.998 | 0.587 | 0.046 | 0.726 | 0.657 | 0.041 | 0.694 | 0.623
10081 Transport 300 39,352 0.405 | 0.736 | 0.860 0.18 0.965 | 0.889 | 0.25 | 0.835 | 0.874 | 0.214 | 0.825 | 0.823
10093 Membrane 295 56,394 0.574 | 0.617 | 0.560 | 0.054 | 0.537 | 0.689 | 0.098 | 0.574 | 0.618 | 0.086 | 0.504 | 0.600
10345 Signaling 295 15,894 0.543 | 0.526 | 0.744 0.134 0.981 0.864 | 0.215 | 0.685 | 0.799 | 0.111 | 0.659 | 0.684
10532 Viral 300 87,933 0.715 | 0.672 | 0.813 0.201 0.976 0.665 | 0.313 | 0.796 | 0.732 | 0.239 | 0.757 | 0.614
11056 Transport 305 125,908 0.513 | 0.731 | 0.853 0.214 0.832 0.683 | 0.302 | 0.778 | 0.758 | 0.284 | 0.692 | 0.679
Average 0.574 | 0.642 | 0.7625 | 0.1345 | 0.8815 | 0.7295 | 0.204 | 0.732 | 0.740 | 0.163 | 0.689 | 0.671

In addition to the evaluation based on 3D resolution and the number of picked particles, we also assessed

the performance of the three methods using precision, recall, F1 score, and dice score, as detailed in Table
4,

Moreover, we compared the particles picked by each method with the ground truth particles labeled in
CryoPPP in terms of four machine learning metrics including precision, recall, F1 score (the geometric
mean of the precision and recall), and Dice score (Table 4).

CryoTransformer stands out with the highest average precision of 0.7625 and the highest average F1-score
of 0.740, indicating that it excels in producing accurate positive predictions and achieves the best-balanced
performance considering both precision and recall. Topaz has the highest average recall and dice score of
0.8815 and 0.671, highlighting its ability to correctly identify a high proportion of true positive particles
and generate a strong overlap between predicted and actual positive instances.
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3.3 Visual inspection of particles picked by CryoTransformer, CrYOLOQO, and Topaz

Figure 7 visualizes the particles picked by the three methods from the four representative micrographs of
four proteins in the internal test data, which consist of 10% of micrographs from the 80%-10%-10% train-
valid-test split (see detailed results in Supplementary Table S4). Consistent with the results in Section 3.2,
CrYOLO tends to select few true protein particles, consequently missing many true positive across various
protein types. In contrast, Topaz selects an excessive number of particles, often leading to overlaps and
duplicates. Additionally, Topaz frequently picks false particles from contaminations, particle aggregates
and ice patches, which can result in lower-resolution 3D density map reconstruction. Furthermore, picking
a lot of redundant particles requires much more storage to store them and a lot of time and memory to
reconstruct density maps from them. CryoTransformer, on the other hand, often picks most of true particles
while keeping false positives to a low level, which is beneficial for 3D density map reconstruction.

EMPIAR 10075 EMPIAR 10059 EMPIAR 10077 EMPIAR 10289

Topaz CrYOLO

CryoTransformer

Figure 7: Assessment of CrYOLO, Topaz, and CryoTransformer based on visual inspection of predicted particles in micrographs
of four typical proteins. The first row (indicated by red circles) represents protein particles picked by CrYOLO. The second row
(marked by green circles) displays protein particles picked by Topaz. The third row (with yellow circles) illustrates protein particles
picked by CryoTransformer.
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Conclusion

We present CryoTransformer, a novel deep learning method for particle recognition and extraction. It
leverages the power of transformers, residual networks, traditional image processing techniques, and a
bipartite matching loss function. CryoTransformer was trained and tested on the largest labeled particle
dataset available. According to the rigorous evaluations and comparisons, CryoTransformer achieves state-
of-the-art performance, making it a robust Al-based tool to automate the process of picking protein particles
from cryo-EM micrographs.

Code Availability

The source code and data are available at the GitHub repository:  https://github.com/jianlin-
cheng/CryoTransformer .
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