

1 **Failed reprogramming of transformed cells due to induction of apoptosis and**
2 **senescence impairs tumor progression in lung cancer**
3
4
5

6 Pablo Pedrosa^{1,†}, Zhenguang Zhang^{2, †}, David Macias^{2, ††}, Jianfeng Ge^{2, ††}, Mary Denholm^{2, 3},
7 Anna Dyas², Victor Nuñez-Quintela¹, Valentin Estevez-Souto¹, Patricia Lado-Fernandez^{1, 4},
8 Patricia Gonzalez⁵, Maria Gomez⁵, Jose Ezequiel Martin⁶, Sabela Da Silva-Alvarez¹,
9 Manuel Collado^{1, 7, ‡, *} and Daniel Muñoz-Espín^{2, 8, ‡, *}

10
11
12 ¹ *Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de*
13 *Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.*

14 ² *Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK*

15 ³ *Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK*

16 ⁴ *Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases*
17 *(CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.*

18 ⁵ *Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain*

19 ⁶ *CMDL, Department of Oncology, SMCL, Department of Medical Genetics, University of Cambridge,*
20 *UK*

21 ⁷ *Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC),*
22 *Madrid, Spain.*

23 ⁸ *CRUK Cambridge Centre Thoracic Cancer Programme, University of Cambridge, UK*

27 † These authors contributed equally to this work

28 †† These authors contributed equally to this work

29 ‡ Senior authors, contributed equally to this work

33 * Corresponding authors:

34 manuel.collado.rodriguez@sergas.es

35 dm742@cam.ac.uk

40 *Running title: OSKM expression induces apoptosis and senescence in lung cancer*

45 **Abstract**

46 Cell reprogramming to pluripotency applied to the study of cancer has identified transformation
47 and pluripotency as two independent and incompatible cell fates. A detailed knowledge of the
48 relationship between transformation and reprogramming could lead to the identification of new
49 vulnerabilities and therapeutic targets in cancer. Here, we explore this interplay and find that
50 OSKM expression limits tumor cell growth by inducing apoptosis and senescence. We identify
51 Oct4 and Klf4 as the main individual reprogramming factors responsible for this effect.
52 Mechanistically, the induction of cell cycle inhibitor p21 downstream of the reprogramming
53 factors acts as mediator of cell death and senescence. Using a variety of in vivo systems,
54 including allografts, orthotopic transplantation and KRAS-driven lung cancer mouse models,
55 we demonstrate that OSKM expression impairs tumor growth and reduces tumor burden.

56

57

58

59 **Keywords:** reprogramming / lung cancer / apoptosis / senescence / pluripotency

60

61

62 **Introduction**

63 The relation between pluripotency and cancer remains highly debated. The origin of the debate
64 stems from the seminal works of Weinberg¹ and Chang² laboratories. In these two papers, the
65 authors compared the transcriptional signatures of a variety of embryonic pluripotent stem
66 cells, adult tissue-specific stem cells, and cancers of various degrees of malignancy. Their
67 conclusion was that, although differing in many aspects, highly-malignant cells and embryonic
68 pluripotent cells shared a common “ES-like signature”. These observations initially suggested
69 that cancer cells achieve their maximal malignancy potential when they are less differentiated
70 and resemble pluripotent states.

71 Nuclear reprogramming of differentiated cells to produce pluripotent embryonic stem
72 cells (iPSCs or induced pluripotent stem cells) has been one of the greatest discoveries during
73 the last decades³. This implies the ectopic expression of four essential factors, namely Oct4,
74 Sox2, Klf4 and c-Myc (abbreviated here as OSKM), leading to a drastic change in cell identity.
75 The application of cellular reprogramming to the study of cancer and to identify vulnerabilities
76 in cancer cells is emerging as a potent strategy⁴. In particular, an interesting aspect is the
77 similarity between reprogramming to pluripotency and neoplastic transformation⁵.
78 Remarkably, reprogramming factors can act in cancer as oncogenes. For instance, Oct4 drives
79 the transformation potential of testicular germ cells⁶; Sox2 is an amplified lineage-survival
80 oncogene in lung and oesophageal squamous cell carcinomas^{7,8}; Klf4 can function as a
81 dominant oncogene, as it is frequently overexpressed in human breast tumors and squamous
82 cell carcinomas⁹; and c-Myc is a well-known gene deregulated in multiple human cancers¹⁰.
83 Both processes, reprogramming to pluripotency and neoplastic transformation, involve the
84 acquisition of new epigenetic programs¹¹. Accordingly, several chromatin modifiers acting on
85 reprogramming have also been found operating in cancer¹².

86 The similarities can also be extended to common barriers featured by the processes of
87 reprogramming and transformation. For both, the activities of several tumor suppressor genes
88 such as *Ink4/Arf* and *p53* result in decreased generation of pluripotent cells by normal
89 differentiated cells and reduced capacity of transformation¹³⁻¹⁸. One key process that
90 contributes to overcome the barriers that impair the transformation into a cancer cell is an initial
91 step of immortalization. It would therefore be expected that transformed cells are more
92 susceptible to being reprogrammed. However, there are very few reported examples of tumor
93 cells capable of undergoing full stable reprogramming into pluripotency, mainly in
94 hematopoietic cancer cells with single or few oncogenic events driving tumorigenesis^{19,20}.
95 Some other cases of partial or limited reprogramming include melanoma²¹, gastrointestinal

96 cancer cells²² and pancreatic ductal adenocarcinoma cells²³. In most of the cases though, cancer
97 cells remain resistant to being reprogrammed²⁰. A recent work by Ito et al.²⁴ emphasizes the
98 oncogene-dependent resistance to reprogramming and how the study of the underlying
99 mechanisms can be exploited to identify therapeutic targets.

100 In line with these results, we previously tested the consequences of introducing an
101 activated RAS oncogene as part of the reprogramming cocktail of Oct4, Sox2, Klf4 and c-
102 Myc²⁵. Interestingly, we found that while RAS increases the reprogramming efficiency in
103 normal cells its expression in the context of cellular transformation impairs reprogramming.
104 However, when oncogenic RAS is switched off the capacity of reprogramming is fully restored,
105 suggesting that cancer and reprogramming are incompatible cellular fates. Supporting this
106 concept others have also recently found that the molecular trajectories of reprogramming and
107 oncogenic transformation, although initially shared, diverge into two separate and defined cell
108 entities²⁶.

109 Here, we have further explored this relationship between oncogenic transformation and
110 cell reprogramming by analyzing the effect of expressing the reprogramming factors on lung
111 cancer cells. Our experiments confirm that both human and mouse lung cancer cells are highly
112 resistant to reprogramming. We find that OSKM expression limits tumor cell growth by
113 inducing apoptosis and senescence, and dissect the specific contribution of the independent
114 factors. Mechanistically, we identify the induction of the cell cycle inhibitor p21 downstream
115 of the reprogramming factors as a mediator of this effect. We further validate our findings in
116 vivo using allograft and orthotopic transplantation of lung tumor cells as well as a genetically
117 modified mouse model of KRAS-driven lung cancer. Our data show that OSKM expression in
118 lung cancer cells does not lead to pluripotency, but rather affects tumor growth and reduces
119 tumor burden.

120

121 **Results**

122 **OSKM expression impairs the growth of lung cancer cells**

123 Immortalization removes a barrier for cellular reprogramming by OSKM allowing a more
124 efficient de-differentiation and iPSC generation¹³⁻¹⁸. However, complete neoplastic
125 transformation, which requires previous immortalization, impairs successful reprogramming,
126 suggesting that reprogramming and transformation are incompatible cell fate²⁵. We further
127 explored this by subjecting different transformed cells to the expression of OSKM and
128 confirmed the inefficient reprogramming of these cells (**Supplementary Fig. 1**). During these
129 experiments we typically observed that cell cultures expressing OSKM were negatively
130 affected by the expression of the reprogramming factors. This prompted us to analyze in more
131 detail the effect of expressing the reprogramming factors in cancer cells.

132 We focused on lung cancer cells A549 and L1475luc (derived from a mouse model
133 expressing oncogenic Kras and lacking p53, namely KP) cells²⁷ of human and mouse origin,
134 respectively. Both cell lines were transduced with lentiviruses or transposon vectors that
135 express OSKM on a doxycycline-inducible manner (**Fig. 1a**). We confirmed the upregulation
136 of the reprogramming factors by RT-qPCR and Western blot in A549 cells (hereafter named
137 A549-rtTA-OSKM) (**Supplementary Fig. 2a**). For the L1475luc cells (hereafter named
138 L1475luc-rtTA-OSKM), after transfection mOrange positive cells (expressing OSKM factors)
139 were sorted by flow cytometry and the expression of Oct4 was confirmed by RT-qPCR and
140 Western blot (**Supplementary Fig. 2b, c**). When doxycycline was added for three days to both
141 cell lines, we observed a reduced growth of the cell cultures (**Fig. 1b**). Analysis at longer times
142 by colony formation assay confirmed the impaired growth caused by OSKM expression (**Fig.**
143 **1c**). A549-rtTA-OSKM cells also showed a reduced capacity to form colonies in soft agar when
144 expressing OSKM (**Supplementary Fig. 2d**), and when they were allowed to form colonies,
145 addition of doxycycline to induce the expression of OSKM caused their destruction (**Fig. 1d**).
146 We added to these colonies a probe that allows the detection of the active form of Caspase-3,
147 indicative of apoptosis induction. Expression of the reprogramming factors increased the
148 fluorescent signal indicating an increase in apoptosis coinciding with the destruction of the
149 colonies (**Fig. 1d**).

150 Altogether, these data show that OSKM expression results in a reduced growth of both
151 human and mouse lung cancer cells.

152

153 **Expression of the reprogramming factors activate apoptosis and cellular senescence in**
154 **lung cancer cells**

155 Next, we focused on analyzing the impact of expressing the reprogramming factors on the lung
156 cancer cell fate. Since we observed an increase of a fluorescent probe for the detection of active
157 Caspase-3, suggesting the induction of apoptosis, we decided to analyze this cell response by
158 flow cytometry using antibodies against cleaved Caspase-3 and for Annexin V. A549 cells
159 expressing the reprogramming factors showed an increase in both apoptotic markers compared
160 with the control condition (**Fig. 2a**). To further confirm the involvement of apoptosis in the
161 observed impaired growth, we treated cells expressing OSKM with a pan-Caspase inhibitor to
162 block the induction of apoptosis. First, we confirmed that incubation with the Caspase inhibitor
163 resulted in a reduced activation of cleaved Caspase-3 (**Supplementary Fig. 3a**). Then, we
164 followed cell cultures expressing the reprogramming factors in the presence or absence of this
165 inhibitor and observed a partial recovery of cell growth at short (3 days) and long time points
166 (14 days) when the pan-Caspase inhibitor was added to the OSKM-expressing cell cultures
167 (**Fig. 2b**). Similarly, when mouse cancer cells incubated with an apoptosis fluorescent reporter
168 were followed using a live cell analysis system, we confirmed the impaired growth and
169 apoptosis induction caused by OSKM expression (**Fig. 2c**). This reduced growth does not
170 reflect an intrinsic different proliferative capacity of both cell lines since they showed a similar
171 growth rate in the absence of doxycycline (**Supplementary Fig. 3b**). The reduction in cell
172 proliferation and the induction of apoptosis were further confirmed by flow cytometry
173 (**Supplementary Fig. 3c, d**).

174 While we were performing these analyses, we observed the frequent appearance of cells
175 showing the typical cell senescence morphology in the cell cultures of A549 cells expressing
176 OSKM. Cells were enlarged and flattened, and showed multivesicular cytoplasms (**Fig. 2d**).
177 To confirm and quantify this observation, we performed two assays to measure the levels of
178 senescence-associated beta-galactosidase activity (SA- β -gal), the most widely used marker of
179 cell senescence. Using two different substrates: Galacton, a chemiluminescent substrate; and
180 C12FDG, a fluorescent one, we confirmed the induction of cell senescence after expression of
181 the reprogramming factors (**Fig. 2e**). In addition, we measured the mRNA levels of several
182 markers of cell senescence (*IL6*, *CDKN1A*, *CXCL1*, *IL1A*, *SERPINE1*, *MMP3*, *GDF15* and
183 *IL8*) and observed an increased expression after OSKM induction (**Fig. 2f**).

184 The above results indicate that the expression of the reprogramming factors on lung
185 cancer cells triggers cell defense responses such as apoptosis and senescence that impair cell
186 growth.

187

188 **Transcriptomic and proteomic profiles reinforce the induction of apoptosis and**
189 **senescence upon OSKM expression**

190 To gain mechanistic insights on how gene expression was affected by OSKM induction, we
191 performed bulk RNA-seq transcriptomic analyses utilizing both human A549-rtTA-OSKM and
192 mouse L1475luc-rtTA-OSKM lung cancer cell lines and their control counterparts (lacking the
193 OSKM cassette) upon doxycycline exposure. Initial validation by RT-qPCR confirmed the
194 increased expression levels of mRNA corresponding to the four Yamanaka factors in A549-
195 rtTA-OSKM cells (**Supplementary Fig. 2a**) and L1475luc-rtTA-OSKM cells
196 (**Supplementary Fig. 4a**). Accordingly, gene set enrichment analysis (GSEA) of the
197 transcriptomic data showed that the Hallmark of MYC targets V1 and V2 are both significantly
198 upregulated in human A549-rtTA-OSKM and mouse L1475luc-rtTA-OSKM lung cancer cell
199 lines (**Fig. 3a, b** and **Supplementary Fig. 4b, c**), consistent with OSKM expression. KEGG
200 pathway database analyses showed that signalling pathways regulating Pluripotency of Stem
201 Cells and Apoptosis are significantly upregulated in both human and mouse lung cancer cell
202 lines suggesting that the induction of pluripotency features by OSKM overexpression and the
203 activation of apoptosis could be functionally interconnected (**Supplementary Table 1**). In
204 addition to apoptosis, pathways of cellular senescence were also significantly upregulated in
205 mouse L1475luc-rtTA-OSKM lung cancer cells when compared to their control counterparts
206 (**Supplementary Table 1**). Next, we reanalyzed the significantly upregulated genes from the
207 Apoptosis and Signalling Pathways Regulating Pluripotency of Stem Cells in KEGG using a
208 different analysis platform, namely WikiPathways²⁸. Enrichment plots (Emapplot and Circular
209 cnetplot) showed that pathways of Apoptosis and ESC Pluripotency Pathways are significantly
210 upregulated in A549-rtTA-OSKM vs A549-rtTA cells (**Fig. 3a**) and L1475luc-rtTA-OSKM vs
211 L1475luc-rtTA cells (**Fig. 3b**) upon doxycycline exposure. Our analyses showed a significant
212 enrichment of genes encoding for known apoptosis mediators, such as *FAS* and *CASP9* genes
213 in human A549-rtTA-OSKM cells or *Bid* in mouse L1475luc-rtTA-OSKM lung cancer cells
214 (**Fig. 3a, b**). Furthermore, upregulation of pathways (such as p53 signalling) and enrichment
215 of genes, such as *Cdkn1a* (encoding p21), related to the implementation of senescence, or *IL6*
216 or *IL1A*, related to the senescence-associated secretory phenotype (SASP), were observed in

217 L1475luc-rtTA-OSKM cells *vs* L1475luc-rtTA cells or A549-rtTA-OSKM *vs* A549-rtTA cells,
218 respectively, upon doxycycline addition (**Fig. 3a, b**). This correlates with the significant
219 upregulation of p53 pathway, NFkB, and MTOR signaling hallmarks, all of them often
220 activated in senescent cells, detected in the GSEA analyses (**Supplementary Fig. 4b, c**).

221 In order to validate the transcriptomic analyses at the protein level we used proteome
222 profiler human and mouse apoptosis arrays. The results show the overexpression of common
223 apoptotic factors in both A549-rtTA-OSKM cells (e.g. TRAIL R1/R2, FAS or phospho-p53)
224 and L1475luc-OSKM cells (e.g. cleaved-caspase 3 or cytochrome 3), as well as the
225 downregulation of anti-apoptotic factors (e.g. XIAP), upon doxycycline exposure (**Fig. 3c, d**
226 and **Supplementary Fig. 4d-g**). Moreover, increased levels of p-p53/p53, p27, and HSP60 in
227 human and/or lung cancer cell lines are consistent with the implementation of senescence
228 programmes (**Fig. 3c, d**).

229 Overall, transcriptomic and proteomic analyses are consistent with the induction of
230 apoptosis and senescence upon OSKM expression in both human and mouse lung cancer cell
231 lines.

232

233 **OSKM-induced apoptosis and senescence are partially driven by p21**

234 One of the most interesting genes identified on our analyses was *CDKN1A*, coding for the CDK
235 inhibitor p21. This protein has been described as being involved both in apoptosis and cell
236 senescence²⁹. We confirmed the upregulation of p21 at protein levels after induction of OSKM
237 expression in both, human and mouse cells (**Fig. 4a**). To functionally address the involvement
238 of p21 on the effect observed after expressing the reprogramming factors on cancer cells, we
239 decided to reduce its expression by using an shRNA targeting *CDKN1A*. Lentiviral
240 transduction of the A549-rtTA-OSKM cells with this plasmid caused a reduction on p21
241 mRNA and protein levels (**Fig. 4b**).

242 We then overexpressed the reprogramming factors alone or in combination with the
243 shRNA targeting p21 and assessed the growth of these cell cultures after 14 days. Cells with
244 reduced p21 showed a partial recovery of cell growth (**Fig. 4c**), and this was not caused by an
245 altered expression of OSKM since mRNA levels of the cassette were not reduced
246 (**Supplementary Fig. 5a**). To further assess the impact of reducing p21 levels on the context
247 of expression of OSKM, we analyzed apoptosis and senescence induction of cells lentivirally-
248 transduced with the shRNA targeting *CDKN1A*. Consistent with **Fig 4c**, flow cytometry
249 analysis of Annexin V expression showed a partial rescue of OSKM-induced apoptosis when

250 p21 levels were reduced (**Fig. 4d**). Similarly, the shRNA against *CDKN1A* caused reduced
251 induction of cell senescence by OSKM, as judged by SA- β -gal staining (**Fig. 4e**), and a
252 reduction of the expression of some genes encoding for common SASP markers (**Fig. 4f**).

253 Together, these data point to p21 as a relevant player mediating the induction of apoptosis
254 and senescence by OSKM expression in cancer cells. Reducing p21 induction leads to a partial
255 recovery of the growth of A549 lung cancer cells. However, this recovery was not sufficient to
256 allow full cell reprogramming by OSKM, since we never observed the emergence of iPSC
257 colonies from these cell cultures (**Supplementary Fig. 5b**). This was not due to residual
258 expression of p21 since complete CRISPR-mediated deletion of *CDKN1A* did not result either
259 in iPSC colony formation not even when combined with a pan-Caspase inhibitor
260 (**Supplementary Fig. 5c**).

261

262 **Oct4 and Klf4 are the main factors contributing to apoptosis and senescence induction**

263 Next, we explored the individual contribution of each reprogramming factor to the impaired
264 growth caused by OSKM expression in lung cancer cells. To address this, we decided to
265 individually express each factor and compare the growth of these cells with the ones expressing
266 the polycistronic cassette (**Fig. 5a**). We confirmed that the expression of each individual factor
267 reached similar levels to the ones obtained with the polycistronic OSKM cassette
268 (**Supplementary Fig. 6a**). After 3 days in culture, we clearly observed that cells expressing
269 OCT4 or KLF4 showed a reduced cell growth comparable to the one observed when we
270 expressed the 4 factors (**Fig. 5b**). Longer cell culture times confirmed that the individual
271 expression of OCT4 or KLF4 produced a lower number of cell foci similar to the one obtained
272 with the combined expression of OSKM (**Fig. 5c**).

273 Since we detected that apoptosis and senescence induction were contributing to the
274 reduced growth of lung cancer cells triggered by OSKM expression, we evaluated how the
275 individual factors were affecting these processes. Flow cytometry analysis of Annexin V
276 showed that OCT4 and KLF4 induced apoptosis at a level similar to the combined expression
277 of the 4 factors, OSKM (**Fig. 5d**). The microscopic observation of these cell cultures expressing
278 the individual factors revealed that OCT4 and KLF4 expression caused a change in cell
279 morphology that resembled the phenotype of senescent cells (**Fig. 5e**). In agreement,
280 measurement of SA- β -gal activity confirmed that OCT4 and KLF4 expression induced this
281 marker of cell senescence (**Fig. 5f**), as well as an increase of mRNA levels of *CDKN1A* and
282 other genes involved in this process (**Fig. 5g**).

283 To evaluate whether OCT4 and KLF4 were acting through the induction of p21, similarly
284 to what we had already observed when we were using the 4 factors OSKM, we combined the
285 expression of each individual factor with the expression of the shRNA targeting *CDKN1A*.
286 First, we observed that individual OCT4 and KLF4 were both increasing p21 to similar levels
287 to OSKM (**Supplementary Fig. 6b**). Also, we confirmed that our shRNA targeting *CDKN1A*
288 was capable of reducing the expression of p21 (**Supplementary Fig. 6b**). Analysis of cell
289 growth at long periods of time showed that reducing the expression of p21 in the context of
290 single overexpression of OCT4 or KLF4 resulted in the partial protection of the growth of lung
291 cancer cells (**Fig. 5h**). This alleviation of the reduced growth induced by OCT4 and KLF4 after
292 reducing the expression of p21 was also accompanied by a partial reduction in apoptosis (**Fig.**
293 **5i; Supplementary Fig. 6c**) and cell senescence (**Fig. 5j; Supplementary Fig. 6d**).

294 In summary, the expression of OSKM did not promote efficient cellular reprogramming
295 of lung cancer cells, but impaired growth by engaging apoptosis and senescence. OCT4 and
296 KLF4 seemed to be the most relevant factors responsible of this effect and p21 was an
297 important mediator in this process.

298

299 **OSKM expression limits tumor initiation and progression in mouse models of 300 transplanted lung cancer cells**

301 The aforementioned *in vitro* experiments using human A549 and mouse L1475luc lung cancer
302 cells showed that OSKM expression impairs cell proliferation and growth by the induction of
303 apoptosis and cellular senescence. To validate *in vivo* the impact of OSKM expression on lung
304 tumor cell growth, we first subcutaneously transplanted L1475luc-rtTA cells (left flanks, TA)
305 and L1475luc-rtTA-OSKM cells (right flanks, 4F) in C57BL/6 mice. In our experimental
306 settings doxycycline (0.2 or 1 mg/mL) was uninterruptedly provided in the drinking water from
307 lung cancer cell transplantation to the experimental end point, and the tumor burden was
308 longitudinally monitored by measuring luciferase activity with an IVIS bioluminescence
309 imaging system (**Fig. 6a**). As shown in **Fig. 6b**, at 10 days post-transplantation, a significant
310 proportion of cells expressing OCT4, SOX2 or MYC were detected in L1475luc-rtTA-OSKM
311 tumor sections ($\text{Oct4}^+ 7.701 \pm 2.727\%$; $\text{Sox2}^+ 3.108 \pm 2.191\%$; $\text{c-Myc}^+ 24.96 \pm 2.662\%$) relative
312 to control L1475luc-rtTA tumor sections ($\text{Oct4}^+ 0.648 \pm 0.149\%$, $p = 0.011$; Sox2^+
313 $0.189 \pm 0.193\%$, $p = 0.08$; $\text{c-Myc}^+ 14.15 \pm 4.972\%$, $p = 0.029$, relative to OSKM-expressing
314 cells), where the levels of reprogramming factors remained essentially undetectable (**Fig. 6c**).
315 Early post-transplantation times (from day 1 to day 12) presented a similar tumor progression

316 for both L1475luc-rtTA cells and L1475luc-rtTA-OSKM cells (**Fig. 6d, e; Supplementary**
317 **Fig. 7a**). However, OSKM-expressing tumors significantly reduced their growth rate from day
318 12 to day 26 post-transplantation when compared to L1475luc-rtTA tumors, thereby resulting
319 in a reduced tumor burden (**Fig. 6d, e; Supplementary Fig. 7a**). Similar results were obtained
320 using two different doses of doxycycline to induce OSKM expression (**Fig. 6e;**
321 **Supplementary Fig. 7a**). Of note, this reduction in the luciferase signal inversely correlates
322 with a significant increase in apoptosis markers in L1475luc-rtTA-OSKM cells (cleaved
323 caspase 3⁺ ratio to tumor area 0.215 ± 0.109) relative to L1475luc-rtTA cells (cleaved caspase
324 3⁺ ratio to tumor area $0.078 \pm 0.033\%$, $p < 0.0001$) (**Fig. 6f, g**) concomitant with a trend of higher
325 p21 expression in L1475luc-rtTA-OSKM cells ($p21^+ 0.694 \pm 0.227\%$) relative to L1475luc-
326 rtTA cells ($p21^+ 0.579 \pm 0.184\%$, $p = 0.138$) (**Fig. 6h, i**). Tumor areas enriched in cleaved
327 caspase 3⁺ cells and cells expressing p21 correlate with the accumulation of cells expressing
328 Oct4, Sox2 and c-Myc (**Supplementary Fig. 7b**).

329 We next sought to ascertain the effect of OSKM expression in lung cancer L1475luc
330 cells in an orthotopic model where the cells were transplanted in the lungs of C57BL/6 mice
331 via tail-vein injection. Similarly to the allograft experiments, 1 mg/mL doxycycline was
332 provided in the mouse drinking water from initial cell transplantation times to the end point
333 (for a total of 2 weeks), and the tumor burden was longitudinally monitored by using an IVIS
334 bioluminescence imaging system (**Fig. 7a**). While the luciferase activity of both L1475luc-
335 rtTA cells (TA) and L1475luc-rtTA-OSKM cells (4F) was shown to be comparable at day 7
336 post-transplantation, the tumor progression was drastically diminished at day 14 post-
337 transplantation in OSKM-expressing cells ($119,154 \pm 56,871$ photon/s in L1475luc-rtTA-
338 OSKM cells relative to $667,055 \pm 285,305$ photon/s in L1475luc-rtTA cells, $p = 0.0191$) (**Fig.**
339 **7b, c; Supplementary Fig. 8**). Accordingly, lung histology sections from L1475luc-rtTA-
340 OSKM transplanted mice showed positive intratumoral levels of cleaved caspase 3 activation,
341 and evidence of p21 and Oct4 expression (**Fig. 7d,e**).

342 Taken together, tumor allografts and orthotopic transplantation models of murine lung
343 cancer L1475luc cell lines confirmed the induction of apoptosis upon OSKM expression
344 correlating with a reduction of the tumor burden. These results indicate that OSKM expression
345 in lung cancer cells limits tumor initiation and progression *in vivo*, thereby validating our *in*
346 *vitro* findings.

347

348 **Expression of OSKM factors results in reduced tumor burden in a GEMM of KRAS-
349 driven lung cancer**

350 Finally, we aimed to validate our observations using a distinct and more physiologically
351 relevant murine model of KRAS-driven lung adenocarcinoma induced by endogenous
352 expression of oncogenic KrasG12V. For this purpose, we made use of the *Kras-FSFG12V*
353 model, in which the expression of oncogenic KrasG12V is prevented by a *frt*-flanked DNA
354 sequence, which allows for lung tumor induction following intra-tracheal administration of
355 adenovirus-FLP (AdFLP)³⁰. *Kras-FSFG12V* mice were crossed with reprogrammable i4F-B
356 mice³¹, carrying the transcriptional activator (rtTA) within the ubiquitously-expressed *Rosa26*
357 locus and a single copy of a lentiviral doxycycline-inducible polycistronic cassette encoding
358 the four murine Yamanaka factors *Oct4*, *Sox2*, *Klf4* and *c-Myc*³¹, leading to
359 *Kras^{FSFG12V/+};i4F^{KI/WT}* mice, from here onwards KrasG12V;OSKM mice (**Fig. 8a**). To assess
360 the effect of OSKM expression in murine lung tumorigenesis, we treated KrasG12V and
361 KrasG12V; OSKM mice with doxycycline in the drinking water at 1 mg/mL, for 1 week/month
362 during 3 consecutive months, and starting at 6 months after intra-tracheal administration of
363 AdFLP (**Fig. 8a**). KrasG12V mice present at this stage (6 months) varying degrees of tumor
364 development, allowing for the observation of abundant early lung hyperplasias and adenomas,
365 with occasional progression to adenocarcinomas³². As an internal control of OSKM induction,
366 KrasG12V; OSKM mice and their control counterparts were treated for one week with 1
367 mg/mL doxycycline in drinking water, culled, and lung homogenates were subjected to RT-
368 qPCR analyses that confirmed the upregulation of *Oct4*, *Sox2* and *Klf4* genes (**Supplementary**
369 **Fig. 9a**).

370 Given the limited number of mice included in the experiment (n=8 for
371 KrasG12V;OSKM and n=7 for KrasG12V), we only collected lung samples at the endpoint
372 (after the third weekly doxycycline treatment at 8 months post-intratracheal injection). This
373 precluded us from performing a thorough histological analyses at earlier timepoints. However,
374 some tumors from KrasG12V; OSKM mice showed cleaved caspase 3 positivity while this was
375 never observed in KrasG12V mice (**Fig. 8d**). Regarding p21, no differences were observed
376 between the two experimental groups at the endpoint (**Supplementary Fig. 9b**). Remarkably
377 however, three consecutive cycles of OSKM induction by doxycycline administration resulted
378 in a significant reduction of the tumor burden as per the number of tumors (6.250 ± 3.955 tumors
379 in KrasG12V;OSKM mice relative to 14.86 ± 8.345 tumors in KrasG12V mice; $p = 0.225$) and
380 percentage of tumors/lung area ($2.011 \pm 1.465\%$ in KrasG12V;OSKM mice relative to
381 $5.135 \pm 3.121\%$ in KrasG12V mice) (**Fig. 8b and c**).

382 Collectively, data obtained using allografts, orthotopic transplantation and genetically-
383 engineered KRAS-driven lung cancer mouse models clearly demonstrate that transient OSKM
384 expression impairs tumor initiation and progression and results in a significant reduction of the
385 tumor burden.

386

387 **Discussion**

388 Transcription factor-mediated reprogramming to pluripotency is an ideal in vitro system to
389 study cellular processes involving changes in cell identity³. Pluripotency and cancer share
390 many commonalities, such as similar transcriptional signatures, and are the result of two
391 analogous processes, reprogramming and transformation, respectively¹². Despite these
392 similarities, and the fact that reprogramming factors have been individually involved in cancer,
393 there is a striking lack of reports showing a full and efficient reprogramming of cancer cells to
394 pluripotency. Apart from a few descriptions of successful reprogramming using blood cancers
395 and some metastable states achieved in epithelial cancer cells³³, it is widely accepted that
396 epithelial tumors, and specifically lung cancer cells, are highly resistant to reprogramming to
397 pluripotency. To gain insights into the molecular mechanisms underlying their resistance to
398 reprogramming, we have expressed the Yamanaka factors in human and mouse lung cancer
399 cells, and examined the effect on in vitro cell growth and in a variety of murine lung cancer
400 models.

401 First, we observed that cultures expressing OSKM factors were impaired in cell growth
402 due to a combination of apoptosis and senescence induction. This was shown by cell
403 proliferation and functional analyses, and further confirmed using high throughput
404 transcriptomic and proteomic approaches. Given the potential role of the reprogramming
405 factors as oncogenes, it is tempting to speculate that this response resembles oncogene-induced
406 apoptosis and senescence³⁴. In fact, apoptosis and senescence induced by the expression of
407 OSKM is known to limit the efficiency of reprogramming to pluripotency¹³⁻¹⁸. A similar
408 situation has been previously described for leukemia, in which OSKM expression results in an
409 epigenetic remodeling leading to increased chromatin accessibility near genes encoding pro-
410 apoptotic regulators³⁵.

411 When we expressed the individual Yamanaka factors, we observed that single
412 expression of Oct4 or Klf4 was sufficient to recapitulate the effects obtained with the full
413 OSKM cassette. In line with this, Oct4 has been shown to activate Caspase 3 and 8 during cell
414 reprogramming³⁶, while Klf4 has been reported to regulate adult lung tumor-initiating cells and
415 represses K-Ras-mediated lung cancer³⁷. Interestingly, Sox2 and Klf4 have been pointed out

416 as the relevant reprogramming factors inducing leukemic apoptosis, exemplifying the context
417 dependent effect of the Yamanaka factors in cancer cells of different origin.

418 In our work, besides apoptosis, a distinctive feature of OSKM expression in lung cancer
419 cells is the induction of cell senescence. A key gene involved in both senescence and apoptosis,
420 is the cell cycle and CDK inhibitor p21²⁹. Remarkably, we observed an increased expression
421 of p21 both at the mRNA and protein levels in lung cancer cells after activation of the OSKM
422 cassette or after individual expression of Oct4 or Klf4. This expression correlates with the
423 induction of apoptosis and senescence, and it is absent when the other two factors, Sox2 and c-
424 Myc, were expressed. In agreement, knockdown of p21 expression using shRNA, alleviates
425 the apoptosis and senescence induction and partially rescues the growth of full OSKM or
426 individual Oct4 or Klf4 expressing lung cancer cells. In this regard, mechanistically, Klf4 has
427 been previously shown to regulate the levels of p21 in a cancer context dependent manner⁹.
428 Together, these results causally connect OSKM-mediated induction of p21 with the
429 implementation of apoptosis and senescence during failed reprogramming of lung cancer cells.
430 However, CRISPR-mediated knockout of *CDKN1A* (encoding p21) in lung cancer cells is not
431 sufficient to render them susceptible to OSKM-mediated reprogramming to iPSCs, even when
432 combined with a pan-caspase inhibitor that also partially rescues the observed phenotypes.

433 To validate these results *in vivo*, we used three murine models of carcinogenesis,
434 namely subcutaneous tumor allograft implantation, orthotopic lung transplantation, and
435 genetically engineered *Kras*-driven lung cancer development. Consistently, our experiments
436 show that OSKM expression in lung cancer cells result in impaired tumor growth concomitant
437 with an accumulation of p21 and the induction of apoptosis.

438 Our previous work had already shown that neoplastic transformation and pluripotency
439 are two incompatible cellular fates²⁵. Cells expressing OSKM trigger a molecular trajectory
440 that, although initially intersecting with that originated by the transforming activity of Ras/c-
441 Myc, diverges towards an independent cellular state²⁶. Identifying the key regulatory elements
442 of cancer cell identity is instrumental for the discovery of novel vulnerabilities that would allow
443 us to design new and more effective therapeutic strategies^{4,38,39}.

444
445
446
447
448
449

450 **Methods**

451

452 **Cell line generation**

453 L1475luc cells are a kind of gift from Dr. Carla P Martins (AstraZeneca, Cambridge, UK)²⁷.
454 These cells were cultured in DMEM/F12 medium with 10% FBS. Transposon vectors
455 expressing OSKM and rtTA are kind gifts from Professor Keisuke Kaji, PiggyBac vector was
456 purchased from System Biosciences (PB210PA-1; Palo Alto, CA). For transfection, 0.5x10⁶
457 cells were seeded in 1 well of a 6-well plate the night before. For each well, the following
458 plasmid mixture solutions were added: 0.5 µg TetO-OSKM-mOrange, 0.5 µg rtTA-puro and
459 1µg of PiggyBac (for OSKM expressing cells) or 0.5 µg rtTA-puro and 1 µg of PiggyBac (for
460 control rtTA cells) in 100 µl Opti-MEM solution (31985062, Life Technologies) containing 5
461 µl of X-tremeGENE 9 transfection reagent (XTG9-RO Roche, Sigma-Aldrich). Three days
462 after transfection, puromycin (A1113803, Life Technologies) was added to transfected cells.
463 After 7 days, to select for the transfected cells, doxycycline (D9891, Sigma-Aldrich; 1 µg/ml
464 final concentration) was added for overnight treatment to induce mOrange reporter gene
465 expression. The next day, mOrange positive cells were sorted in BD Influx cell sorter (BD
466 Biosciences). Sorted cells were maintained in DMEM/F12 medium with 10% FBS containing
467 puromycin. All cells were used before passage 10 in all the experiments. In the experiments
468 with A549 cells, we introduced the FUW-M2rtTA construct⁴⁰ alone or in combination with
469 Tet-O-FUW-OSKM⁴¹, TetO-FUW-OCT4 (Addgene #20323) TetO-FUW-Sox2 (Addgene
470 #20326) TetO-FUW-Myc (Addgene #20324) or TetO-FUW-Klf4 (Addgene #2032)⁴². To
471 induce the expression of the reprogramming factors, cells were treated with doxycycline at 1
472 µg/mL (Sigma-Aldrich) and the culture medium was renewed every 2 days during the
473 treatment. All the cell lines used were maintained in fibroblast medium: DMEM (Dulbecco's
474 Modified Eagle Medium) with high concentration of glucose (4500 mg/L) (Sigma-Aldrich),
475 10% FBS (Sigma-Aldrich), 1% penicillin/streptomycin (Sigma-Aldrich), 1% glutamine
476 (Sigma-Aldrich). All lines were kept in an incubator at 37°C and 5% CO₂ atmosphere. To
477 induce OSKM expression in L1475luc-OSKM cells, doxycycline was added (D9891, Sigma-
478 Aldrich; 1 µg/ml final concentration except otherwise stated). All cells used were routinely
479 tested for mycoplasma.

480

481 **Cell proliferation and apoptosis**

482 For cell proliferation, A549-rtTA-OSKM or L1475luc-OSKM cells were seeded in 6-well
483 plates (0.5x10⁶ cells/well). Doxycycline was added to each group (n=3 wells/group) on the

484 treatment plate and a control plate without doxycycline was also prepared. We analyzed the
485 proliferative capacity during the first 3 days by counting cells on a Neubauer chamber (Hausser
486 Scientific). For real-time live imaging, plates were placed in Incucyte Zoom System (Essen
487 BioScience) and images were taken every 3 h for about 120 h, at 16 field/image, with a 10x
488 objective. To detect apoptotic cells, Incucyte Caspase-3/7 Green Dye (4440, Essen BioScience)
489 was added, and images were taken in both, bright field (for cell proliferation) and green
490 fluorescence channel for Alexa 488 (for apoptosis detection). Data analysis was performed
491 with the Incucyte Zoom software (2016B). Cell confluence was calculated by label free
492 identification of cell and blank areas. Cell apoptosis was calculated by measuring green pixels
493 per area. The experiments were performed in 3 biological replicates.

494 Cell proliferation and apoptosis were also determined by flow cytometry. For
495 L1475luc-OSKM, cells were studied daily from day 1 to day 5. Cell number was calculated
496 with reference beads (424902, BioLegend, using 50 μ l beads per 500 μ l cell suspension) and
497 apoptosis was detected with eBioscience Annexin V Apoptosis Detection Kit (88-8005-74,
498 ThermoFisher). For apoptosis, DAPI was used to label dead cells. Cell acquisition was done in
499 BD LSРFortessa Cell Analyzer. Flow cytometry data were analyzed with FlowJo V10.7
500 software, and apoptotic cells were defined as DAPI $^{-}$ Annexin V $^{+}$ cells. In A549, for the
501 detection of cleaved Caspase 3 we used the PE active Caspase 3 apoptosis kit (550914, BD
502 Biosciences) and for the detection of Annexin V we used the FITC Annexin V Kit
503 (Immunostep). We analyzed 1×10^4 cells in each sample with a FACScan cytometer (BD
504 Biosciences).

505 To inhibit the apoptosis process, we used the inhibitor Z-VAD-(Ome)-FMK
506 (MedChem) at a concentration of 20 μ M. The inhibitor was renewed every 2 days during the
507 treatment.

508

509 **Clonogenicity assay**

510 For the clonogenicity assays, we seeded 500-1000 cells expressing or not the reprogramming
511 factors in 6-well plates, in triplicate, for each condition. The medium and doxycycline, in the
512 corresponding condition, were renewed every 2 days. After 10-14 days we evaluated cell
513 growth and foci formation with crystal violet staining. Where indicated, crystal violet was
514 eluted with 10% acetic acid, and the optical density was measured by spectrophotometry (at
515 570 nm) or colonies were counted either with ImageJ or software8.

516

517

518 **Colony formation assay in soft agar**

519 6-well plates were coated with a solid base of 1 mL of agar (0.8% in complete DMEM)
520 (Thermo Fisher). On top of this solid base, 2.5×10^3 A549 cells were seeded on 1 mL of agar
521 (0.35% in fibroblast complete DMEM). Fresh medium and doxycycline were added at a
522 concentration of 1 μ g/ml, every 2 days for 10 days, and the number of colonies per well was
523 quantified using an AxioVert.A1 Microscope (Zeiss). To detect apoptosis in soft agar colonies,
524 we added cellEventTM Caspase-3 Green detection reagent (C10423, Invitrogen) at 2 μ M.

525

526 **Apoptosis protein array**

527 For the apoptosis protein array assay, the kits used were: Proteome Profiler Human (ARY009)
528 and Mouse (ARY131) Apoptosis Array Kits, following the manufacturer's specifications.

529

530 **RNA-seq**

531 RNeasy Mini Kit (Qiagen 74104) was used for total RNA extraction on sub-confluent cells in
532 four replicates according to the manufacturer's protocol. The quality and concentration were
533 assessed with the Agilent RNA Nano 6000 kit (Agilent 5067-1511) on Agilent Bioanalyzer
534 2100 instrument. RNA-seq libraries were prepared by BGI. Sequencing reads were mapped to
535 hg38 using RSEM and bowtie2. Differentially expressed genes were identified using DeSeq2⁴³.
536 Gene set enrichment analysis was performed using R packages ClusterProfiler⁴⁴, Molecular
537 Signature Database (MSigDB) Hallmarks gene set (Version 7.1.1), magrittr (Version 2.02).

538

539 **SA- β -Gal activity**

540 For the detection of SA- β -Gal activity by flow cytometry we used the cellEventTM Senescence
541 Green Flow Cytometry Assay kit (C10840, Invitrogen). For the chemiluminescent detection of
542 SA- β -Gal activity, the Galacto-Light PlusTM beta-Galactosidase Reporter Gene Assay System
543 kit (Applied Biosystems) was used, following the manufacturer's instructions, except for the
544 citric acid/sodium phosphate buffer that was used at pH 6.0, since it was better suited for the
545 detection of this enzyme in the A549 cells analyzed.

546

547 **RT-qPCR**

548 To measure gene expression, we extracted total RNA from cell cultures using the NucleoSpin[®]
549 RNA Kit (Macherey-Nagel), following the manufacturer's instructions, and converted it to
550 cDNA using High-Capacity cDNA Reverse Transcription (Applied Biosystems).
551 Quantification was performed using the NZYSpeedy qPCR Green Master Mix reagent (2X),

552 ROX (NZYTech) and the AriaMx Real-Time PCR systems thermocycler (Agilent
553 Technologies). For each reaction, 33 ng of cDNA, oligonucleotides at a final concentration of
554 0.25 μ M, 5 μ L of SYBR and nuclease-free water were used up to a final volume of 10 μ L per
555 reaction. GAPDH was used as housekeeping gene and the values of the analyzed genes were
556 relativized to its expression level. Triplicates were used for each analysis. The results were
557 analyzed with the AriaMx 1.0 software (Agilent Technologies) and the oligonucleotides used
558 were purchased from Eurofins Genomics:

559 In the case of human oligonucleotides:

Gene	Forward	Reverse
<i>GAPDH</i>	5'-TCCATGACAACCTTGGCATCGTGG-3'	5'-GTTGCTGTTGAAGTCACAGGAGAC-3'
<i>IL6</i>	5'-CCAGGAGCCCAGCTATGAAC-3'	5'-CCCAGGGAGAAGGCAACTG-3'
<i>CXCL1</i>	5'-GAAAGCTGCCTCAATCCTG-3'	5'-CACCAGTGAGCTCCTCCCTC-3'
<i>CDKN1A</i>	5'-CCTGTAACTGTCTTGACCCCT-3'	5'GCGTTGGAGTGGTAGAAAT-3'
<i>KLF4</i>	5'-CACCATGGACCCGGCGTGGCTGCCAGAAA-3'	5'-TTAGGCTGTTCTTCCGGGGCACGA-3'
<i>OCT4</i>	5'-GTTGGAGAAGGTGGAACCAA-3'	5'-CCAAGGTGATCCTCTTCTGC-3'
<i>SOX2</i>	5'-GGTTACCTCTCCTCCCCTCCAG-3'	5'-TCACATGTGCGACAGGGCA-3'
<i>c-MYC</i>	5'-CCTAGTGCTGCATGAGGAGAC-3' R	5'-CCTCATCTTCTTGCTCTTCTCA-3'

560

561 In the case of murine oligonucleotides:

Gene	Forward	Reverse
<i>Oct4</i>	5'-GTTGGAGAAGGTGGAACCAA-3',	5'-CCAAGGTGATCCTCTTCTGC-3'
<i>Sox2-Klf4</i>	5'-ACTGCCCTGTCGCACAT-3'	5'-CATGTCAGACTGCCAGGTG-3'
<i>Klf4</i>	5'-CCCCTCTCTCCATTATCAAG-3'	5'- CTCTGGTATAGGTTTGCC-3'
<i>Sox2</i>	5'- ATGAGAGATCTGGGACTTC-3'	5'- TCTATACATGGTCCGATTCC-3'
<i>c-Myc</i>	5'- TTTGTCTATTGGGGACAG-3'	5'- CATAGTCCTGTTGGTGAAG-3'
<i>Cdkn1a</i>	5'- CTAGGGAAATTGGAGTCAGG-3'	5'- AGAGACAACGGCACACTTG-3'

562

563 Western blotting

564 Protein samples were prepared from cells lysed with RIPA buffer (R0278-50ML, Sigma-
565 Aldrich) containing proteinase and phosphatase inhibitors (4693159001 and 4906845001,
566 Sigma-Aldrich). Protein concentration was quantified with BCA assay (23225, Life

567 Technologies). Precast gradient gels (4561086, Bio-Rad) were used to run the samples with
568 20-30 µg protein/well. After transfer and blocking with 5% milk solution, first antibodies
569 (GAPDH: 10494-1-AP, Proteintech, 1:3,000; beta-actin: 4967, Cell Signaling Technology,
570 1:3,000; Oct4: 2840, Cell Signaling Technology, 1:100; Xiap: AF8221, Bio-Techne, 1:100;
571 Beta-Tubulin: 2146, Cell Signaling Technology, 1:5,000; p21 Waf1/Cip1(12D1): 2947, Cell
572 Signaling Technology, 1:1,000) were incubated overnight. Secondary antibodies from Li-Cor
573 (Li-Cor Biosciences) were incubated for 1 h with 1:10,000 dilution. The membranes were
574 imaged in a Li-Cor Odyssey device (Li-Cor Biosciences) or a ChemiDoc (Bio-Rad).

575

576 **Subcutaneous and lung orthotopic murine cancer models**

577 Expression of mOrange was routinely examined in each batch of 4F cells and was always
578 shown to be over 80% positive after doxycycline induction *in vitro*. Early passage (<10) 4F
579 and TA cells were cultured until about 80% confluence before being detached by TrypLE
580 Express enzyme (12604013, ThermoFisher). Cells were washed and resuspended in PBS and
581 counted by Countess II automated cell counter (AMQAX1000, ThermoFisher) and over 90%
582 cells were found to be viable. Female 8 weeks old C57BL/6 mice were purchased (Charles
583 River Laboratories) and acclimatized to the local facility conditions at least 7 days before use.
584 Mice were treated with doxycycline formulated in water (1 mg/ml with 7% sucrose or 0.2%
585 mg/ml in 1.4% sucrose, as indicated) on day 0, irradiated with 4 Grays on day 1, and rested for
586 24 h before cell injection on day 2. TA or 4F cells (2×10^6) were injected subcutaneously in 200
587 µl of DMEM at each flank of the mouse (left and right side, respectively). For orthotopic model,
588 2×10^5 cells in 200 µl were intravenously injected into each mouse. Tumor bioluminescence
589 signals were monitored twice per week using an IVIS Spectrum In Vivo Imaging System
590 (PerkinElmer), at 10 min after injection of 200 µl/mouse, of 15 mg/ml D-luciferin (122799,
591 PerkinElmer) solution in PBS. Exposure time was set to 15 s, 30 s, 1 and 3 min or optimal
592 setting from the Living Image Software (V4.5.2, PerkinElmer). Non-saturated images (usually
593 30 s exposure for the orthotopic model) were quantified with the same software. In the
594 orthotopic experiment, 2 mice were injected with PBS instead of cells and their
595 bioluminescence signal was set as background value. The experiments were stopped after 26
596 days (in the subcutaneous model) or 14 days (in the orthotopic transplantation model) after cell
597 injection. Subcutaneous tumor samples and lungs were collected in 10% formalin solution for
598 histological analysis.

599

600 **KrasG12V-driven lung cancer model**

601 KrasG12V mice, a kind gift from Professor Mariano Barbacid (CNIO, Madrid, Spain)^{30, 32}
602 were crossed with OSKM mice, a kind gift from Professor Manuel Serrano (CNIO, Madrid,
603 Spain)³¹, resulting in KrasG12V;OSKM mice. Transgenes were detected by PCR according to
604 their published protocols. Mice were housed in groups under controlled conditions: 12 h
605 light/darkness cycle at 21°C with free access to standard rodent chow and water. Both male
606 and female mice (around 8-week-old) were used in the experiments. To induce KrasG12V
607 expression, 2.5x10⁷ pfu adenovirus expressing flippase recombinase (Ad5CMVFlpo, VVC-U
608 of Iowa-530, Viral Vector Core Facility, University of Iowa) was intranasally instilled into
609 mice according to published protocol³⁰. At 6 months post infection, we administered
610 doxycycline in the drinking water for 3 cycles comprised of: 1 week doxycycline and 3 weeks
611 resting with normal drinking water. After the last doxycycline treatment, animals were culled.
612 Lung tissues were fixed in 10% formalin overnight, followed by ethanol treatment before
613 paraffin embedding.

614 All experiments were approved for Ethical Conduct by the Home Office England and
615 Central Biomedical Services (CBS), regulated under the Animals (Scientific Procedures) Act
616 1986 (ASPA), as stated in The International Guiding Principles for Biomedical Research
617 involving Animals.

618

619 **Tissue histology and immunostaining**

620 Formalin fixed, paraffin embedded blocks were cut into 5 µm tissue sections and used for
621 histological analysis and immunostaining. Oct4, Sox2, p21, c-Myc and active Caspase-3
622 immunohistochemistry staining were performed by CNIO's Histopathology Unit, and whole
623 sections were scanned using an Axio Z1 slide scanner (Carl Zeiss). For quantification, tissue
624 scans were analyzed with HALO software (V3.0.311.373, Indica Labs).

625 For tumor burden assessment in *KrasG12V;OSKM* mice, lung tissues were collected
626 and fixed in 10% formalin before paraffin embedding. Paraffin blocks were serially cut into 5
627 µm sections (2-3 sections/slide), with 50 µm trimmed off every 10 slides, and at least 90 slides
628 collected for each mouse. For H&E staining, 8-12 sections in regular intervals were used for
629 each mouse and whole slides were scanned with Axio Z1 slide scanner (Carl Zeiss Ltd.). Tumor
630 grading and counting were carried out according to a published protocol⁴⁵. Briefly, tissues can
631 be auto detected, and the regions of interest (ROI) corresponding to tumour areas were
632 manually defined and analyzed by using HALO software (V3.0.311.373, Indica Labs). The
633 ratio of tumor to lung area was calculated by dividing total area of all tumor lesions by the total
634 lung area. For the representative comparison between genotypes (*KrasG12V* vs

635 *KrasG12V;OSKM* mice), the slide with maximum tumor to lung tissue ratio was used for each
636 mouse.

637

638 **Statistics**

639 Prism Software (GraphPad, v.9) was used for statistical analysis. All data are displayed as mean
640 \pm SD unless otherwise stated. Group allocation was performed in a randomized manner. For
641 normally distributed data with equal variance, statistical significance was determined using
642 two-tailed unpaired Student's t-test. Welch's correction was performed for samples with
643 unequal variance. Two-way ANOVA was used to analyze data with two variables, such as
644 tumor growth over time.

645 A p-value below 0.05 was considered significant and indicated with an asterisk (* $p <$
646 0.05 , ** $p < 0.01$, *** $p < 0.001$).

647

648 **Data availability**

649 The bulk RNAseq dataset generated to support the findings of this study are available in the
650 Gene Expression Omnibus (GEO) repository, Accession Number XXX
651 (<https://www.ncbi.nlm.nih.gov/geo/>). All other data will be available from the authors upon
652 request.

653

654

655 **References**

- 656 1. Ben-Porath, I. *et al.* An embryonic stem cell-like gene expression signature in poorly
657 differentiated aggressive human tumors. *Nat Genet* **40**, 499–507 (2008).
- 658 2. Wong, D. J. *et al.* Module map of stem cell genes guides creation of epithelial cancer
659 stem cells. *Cell Stem Cell* **2**, 333–344 (2008).
- 660 3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse
661 embryonic and adult fibroblast cultures by defined factors. *Cell* **126**, 663–676 (2006).
- 662 4. Papapetrou, E. P. Patient-derived induced pluripotent stem cells in cancer research and
663 precision oncology. *Nat Med* **22**, 1392–1401 (2016).
- 664 5. Goding, C. R., Pei, D. & Lu, X. Cancer: pathological nuclear reprogramming? *Nat Rev
665 Cancer* **14**, 568–573 (2014).
- 666 6. Gidekel, S., Pizov, G., Bergman, Y. & Pikarsky, E. Oct-3/4 is a dose-dependent
667 oncogenic fate determinant. *Cancer Cell* **4**, 361–370 (2003).
- 668 7. Bass, A. J. *et al.* SOX2 is an amplified lineage-survival oncogene in lung and esophageal
669 squamous cell carcinomas. *Nat Genet* **41**, 1238–1242 (2009).
- 670 8. Sarkar, A. & Hochedlinger, K. The sox family of transcription factors: versatile
671 regulators of stem and progenitor cell fate. *Cell Stem Cell* **12**, 15–30 (2013).
- 672 9. Rowland, B. D., Bernards, R. & Peeper, D. S. The KLF4 tumour suppressor is a
673 transcriptional repressor of p53 that acts as a context-dependent oncogene. *Nat Cell Biol*
674 **7**, 1074–1082 (2005).
- 675 10. Dhanasekaran, R. *et al.* The MYC oncogene - the grand orchestrator of cancer growth
676 and immune evasion. *Nat Rev Clin Oncol* **19**, 23–36 (2022).
- 677 11. Orkin, S. H. & Hochedlinger, K. Chromatin connections to pluripotency and cellular
678 reprogramming. *Cell* **145**, 835–850 (2011).
- 679 12. Suvà, M. L., Riggi, N. & Bernstein, B. E. Epigenetic reprogramming in cancer. *Science*
680 **339**, 1567–1570 (2013).
- 681 13. Kawamura, T. *et al.* Linking the p53 tumour suppressor pathway to somatic cell
682 reprogramming. *Nature* **460**, 1140–1144 (2009).
- 683 14. Li, H. *et al.* The Ink4/Arf locus is a barrier for iPS cell reprogramming. *Nature* **460**,
684 1136–1139 (2009).
- 685 15. Marión, R. M. *et al.* A p53-mediated DNA damage response limits reprogramming to
686 ensure iPS cell genomic integrity. *Nature* **460**, 1149–1153 (2009).
- 687 16. Hong, H. *et al.* Suppression of induced pluripotent stem cell generation by the p53-p21
688 pathway. *Nature* **460**, 1132–1135 (2009).
- 689 17. Utikal, J. *et al.* Immortalization eliminates a roadblock during cellular reprogramming
690 into iPS cells. *Nature* **460**, 1145–1148 (2009).
- 691 18. Banito, A. *et al.* Senescence impairs successful reprogramming to pluripotent stem cells.
692 *Genes Dev* **23**, 2134–2139 (2009).
- 693 19. Ramos-Mejia, V., Fraga, M. F. & Menendez, P. iPSCs from cancer cells: challenges and
694 opportunities. *Trends Mol Med* **18**, 245–247 (2012).

695 20. Kim, J. & Zaret, K. S. Reprogramming of human cancer cells to pluripotency for models
696 of cancer progression. *EMBO J* **34**, 739–747 (2015).

697 21. Hochedlinger, K. *et al.* Reprogramming of a melanoma genome by nuclear
698 transplantation. *Genes Dev* **18**, 1875–1885 (2004).

699 22. Miyoshi, N. *et al.* Defined factors induce reprogramming of gastrointestinal cancer cells.
700 *Proc Natl Acad Sci U S A* **107**, 40–45 (2010).

701 23. Kim, J. *et al.* An iPSC line from human pancreatic ductal adenocarcinoma undergoes
702 early to invasive stages of pancreatic cancer progression. *Cell Rep* **3**, 2088–2099 (2013).

703 24. Ito, K. *et al.* The oncogene-dependent resistance to reprogramming unveils cancer
704 therapeutic targets. *Cell Rep* **39**, (2022).

705 25. Ferreira, A. *et al.* Context-Dependent Impact of RAS Oncogene Expression on Cellular
706 Reprogramming to Pluripotency. *Stem Cell Reports* **12**, 1099–1112 (2019).

707 26. Huyghe, A. *et al.* Comparative roadmaps of reprogramming and oncogenic
708 transformation identify Bcl11b and Atoh8 as broad regulators of cellular plasticity. *Nat
709 Cell Biol* **24**, 1350–1363 (2022).

710 27. Turrell, F. K. *et al.* Lung tumors with distinct p53 mutations respond similarly to p53
711 targeted therapy but exhibit genotype-specific statin sensitivity. *Genes Dev* **31**, 1339–
712 1353 (2017).

713 28. Martens, M. *et al.* WikiPathways: connecting communities. *Nucleic Acids Res* **49**,
714 D613–D621 (2021).

715 29. Georgakilas, A. G., Martin, O. A. & Bonner, W. M. p21: A Two-Faced Genome
716 Guardian. *Trends Mol Med* **23**, 310–319 (2017).

717 30. Sanclemente, M. *et al.* c-RAF Ablation Induces Regression of Advanced Kras/Trp53
718 Mutant Lung Adenocarcinomas by a Mechanism Independent of MAPK Signaling.
719 *Cancer Cell* **33**, 217-228.e4 (2018).

720 31. Abad, M. *et al.* Reprogramming in vivo produces teratomas and iPS cells with
721 totipotency features. *Nature* **502**, 340–345 (2013).

722 32. Guerra, C. *et al.* Tumor induction by an endogenous K-ras oncogene is highly dependent
723 on cellular context. *Cancer Cell* **4**, 111–120 (2003).

724 33. Kim, J. Cellular reprogramming to model and study epigenetic alterations in cancer.
725 *Stem Cell Res* **49**, 102062 (2020).

726 34. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras
727 provokes premature cell senescence associated with accumulation of p53 and
728 p16INK4a. *Cell* **88**, 593–602 (1997).

729 35. Wang, Y. *et al.* Targeting of apoptosis gene loci by reprogramming factors leads to
730 selective eradication of leukemia cells. *Nat Commun* **10**, (2019).

731 36. Li, F. *et al.* Apoptotic caspases regulate induction of iPSCs from human fibroblasts. *Cell
732 Stem Cell* **7**, 508–520 (2010).

733 37. Yu, T. *et al.* KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-
734 mediated lung cancer. *Cell Death Differ* **23**, 207–215 (2016).

735 38. Smith, R. C. & Tabar, V. Constructing and Deconstructing Cancers using Human
736 Pluripotent Stem Cells and Organoids. *Cell Stem Cell* **24**, 12–24 (2019).

737 39. Gong, L. *et al.* Cancer cell reprogramming: a promising therapy converting malignancy
738 to benignity. *Cancer Commun (Lond)* **39**, (2019).

739 40. Hockemeyer, D. *et al.* A drug-inducible system for direct reprogramming of human
740 somatic cells to pluripotency. *Cell Stem Cell* **3**, 346–353 (2008).

741 41. Carey, B. W. *et al.* Reprogramming of murine and human somatic cells using a single
742 polycistronic vector. *Proc Natl Acad Sci U S A* **106**, 157–162 (2009).

743 42. Welstead, G. G., Brambrink, T. & Jaenisch, R. Generating iPS cells from MEFS through
744 forced expression of Sox-2, Oct-4, c-Myc, and Klf4. *J Vis Exp* (2008) doi:10.3791/734.

745 43. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
746 for RNA-seq data with DESeq2. *Genome Biol* **15**, (2014).

747 44. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing
748 biological themes among gene clusters. *OMICS* **16**, 284–287 (2012).

749 45. DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using
750 adenoviral or lentiviral delivery of Cre recombinase. *Nat Protoc* **4**, 1064 (2009).

751

752

753

754 **Acknowledgements**

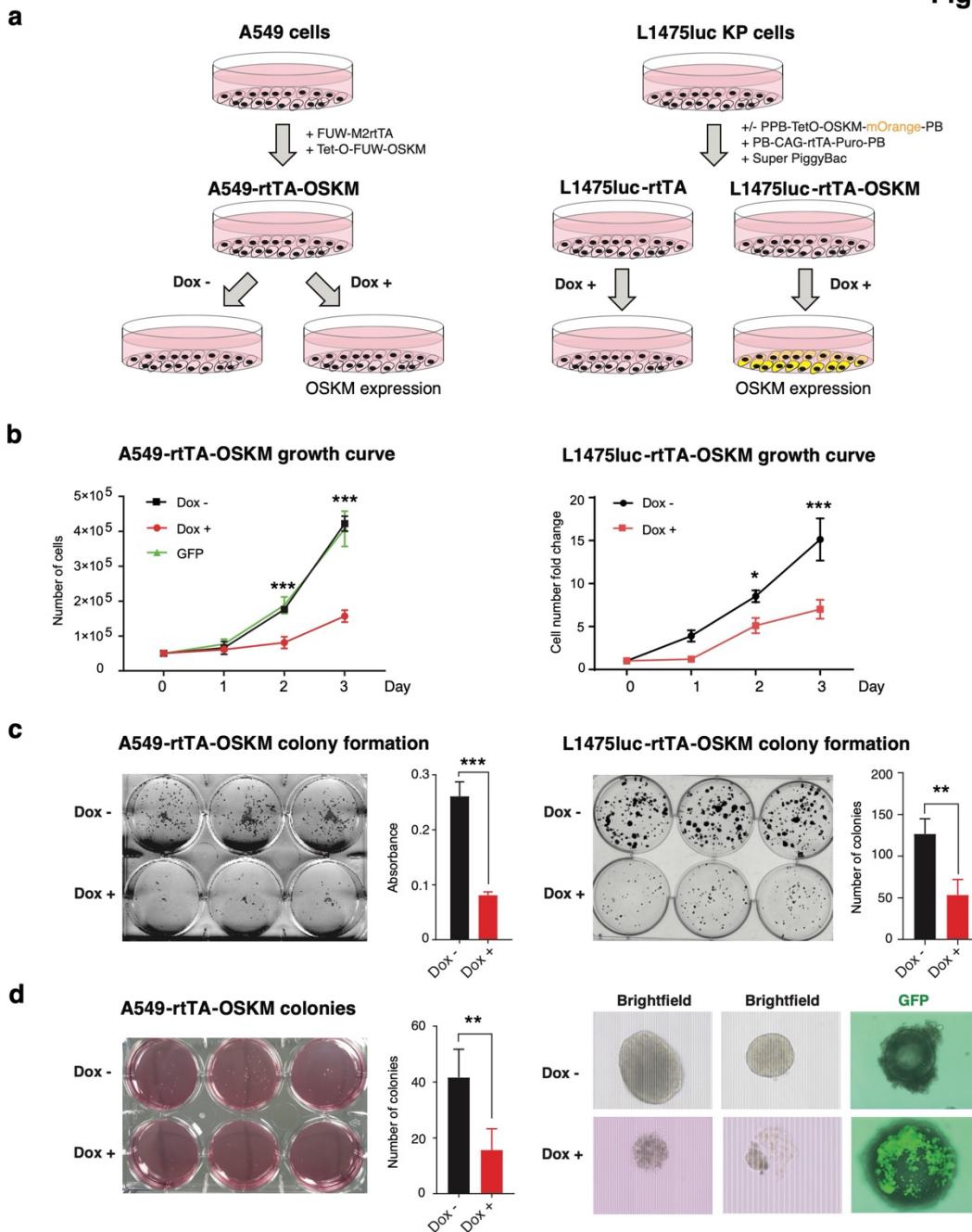
755 We thank Dr Carla P Martins (AstraZeneca, Cambridge, UK) for the provision of L1475luc
756 cells. P.P., V.N.Q. and P.L-F. were supported by predoctoral fellowships from GAIN (IN606A-
757 2017/002, IN606A-2021/016 and ED481A-2020/066, respectively), from Xunta de Galicia.
758 S.D.S.-A. was supported by a postdoctoral fellowship from GAIN (IN606B-2021/011), Xunta
759 de Galicia. Work in the laboratory of M.C. is funded by grants from MCINN/AEI/FEDER, UE
760 (PID2021-125479OB-I00) and GAIN, Xunta de Galicia (IN607D2021/08). DM-E's laboratory
761 was supported by the CRUK Cambridge Centre Early Detection Program (RG86786), by a
762 CRUK Program Foundation Award (C62187/A29760), by a CRUK Early Detection OHSU
763 Project Award (C62187/A26989), an MRC New Investigator Research Grant (NIRG)
764 (MR/R000530/1), and a Darley/Sands Downing College Fellowship (G109261).

765

766 **Author Contributions**

767 JG, MD, JEM, and AD analyzed data; PP, ZZ, DM, VN-Q, VE-S, PL-F, PG, MG, SDS-A,
768 performed experiments and analyzed data; PP, ZZ, MC and DM-E, designed experiments; PP,
769 MC and DM-E, wrote the manuscript; MC and DM-E, supervised the project and secured
770 funding; all the authors read and commented the manuscript.

771


772 **Competing Interest Statement**

773 The authors declare no conflict of interest.

774

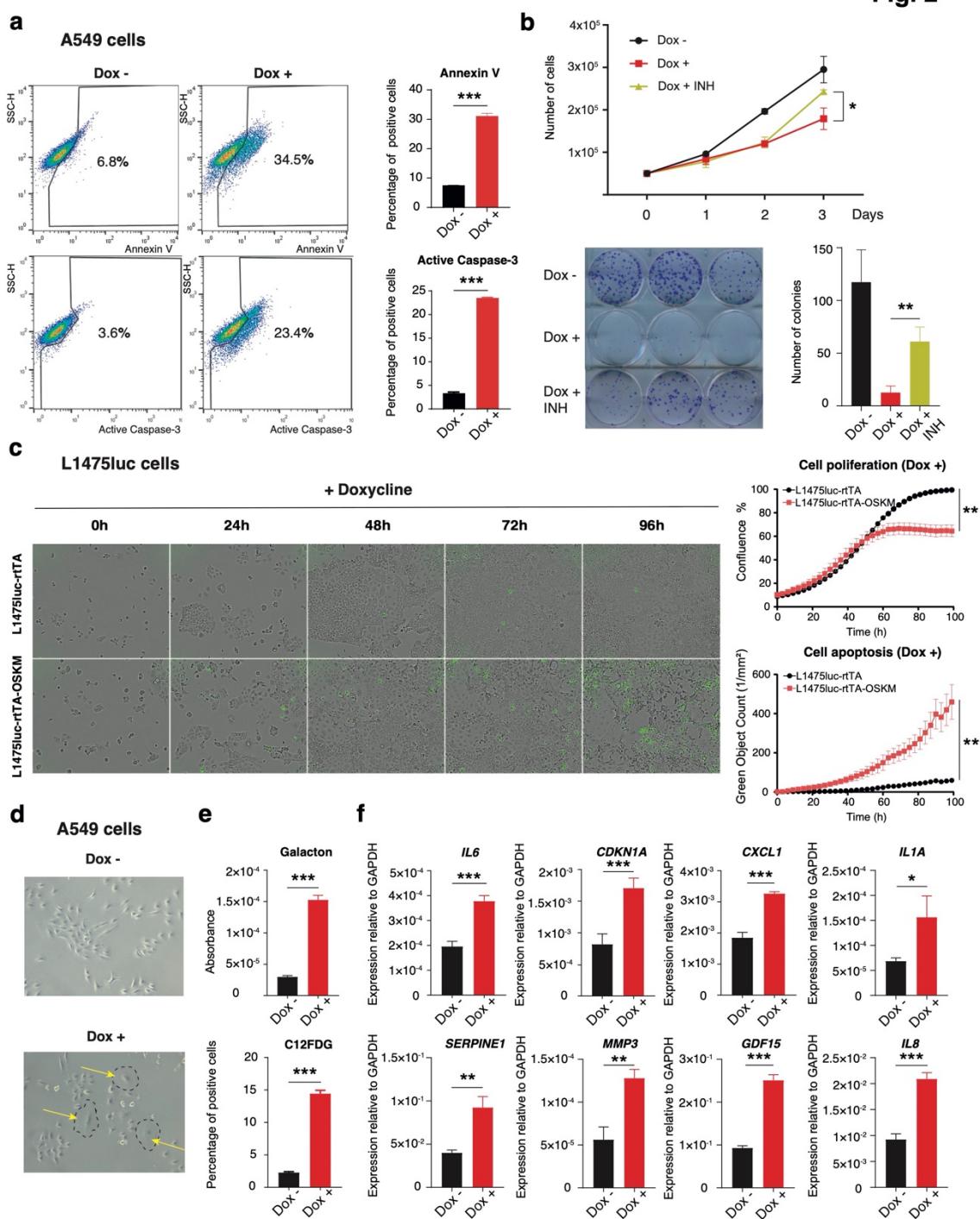
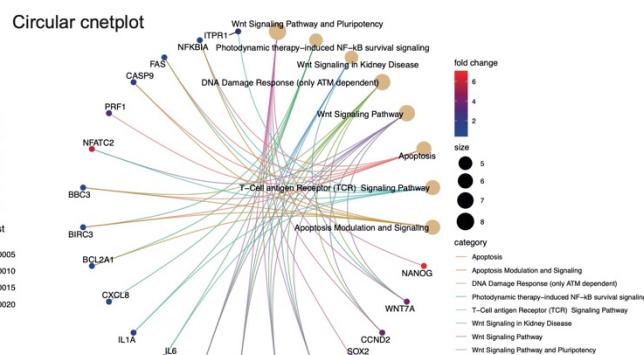
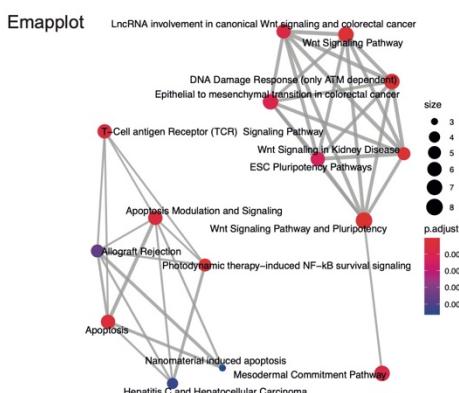

775 **FIGURES**
776

Fig. 1

778 **Fig. 1: OSKM expression reduces proliferation and colony formation in lung**
779 **adenocarcinoma cell lines A549 and L1475luc.** (a) Schematic representation of the
780 generation of the experimental systems. Left: Lentiviral vectors carrying the reprogramming
781 factors (OSKM) and the tetracycline-dependent reverse transactivator (rtTA) were transduced
782 into A549 cells, allowing the expression of the reprogramming factors in the presence of
783 doxycycline in the culture medium. The conditions to be analyzed are therefore Dox +
784 (expression of the factors) and Dox - (no expression of the factors). Right: For OSKM
785 expression in L1475luc cells, three transposon vectors containing TetO-OSKM-mOrange,
786 rtTA and PiggyBac were transfected into the cells. For single rtTA expressing cells, only the
787 latter two vectors were used. (b) Cell growth curves of A549-GFP and A549-rtTA-OSKM cells
788 (left) or L1475luc rtTA-OSKM cells (right), over 3 days, treated or not with doxycycline (1
789 $\mu\text{g/ml}$). (c) Representative images and quantifications of colony formation assays of A549-
790 rtTA-OSKM cells (left) or L1475luc-rtTA and L1475luc-rtTA-OSKM cells (right), over 3
791 days, treated or not with doxycycline (1 $\mu\text{g/ml}$). Mean and SD are shown. (d) Left:
792 Representative image and quantification of a colony formation assay in soft agar of A549-
793 rtTA-OSKM cells treated or not with doxycycline (1 $\mu\text{g/ml}$). Right: Representative images of
794 colonies of A549-rtTA-OSKM cells treated or not with doxycycline (1 $\mu\text{g/ml}$), and detection of
795 cleaved Caspase-3 using a fluorescent probe. Statistical significance was calculated using
796 Student's t-test, ***P<0.001; **P<0.01; *P<0.05. Data are mean \pm SD.
797
798

Fig. 2



800 **Figure 2. OSKM expression induces lung cancer cell apoptosis and senescence in vitro.**
801 **(a)** Flow cytometric analysis of Annexin V levels (left top) and quantification (right top) and
802 of cleaved Caspase-3 levels (left bottom) and quantification (right bottom). **(b)** Analysis of the
803 proliferative capacity (top) and clonal expansion (bottom) in A549-rtTA-OSKM cells
804 expressing (Dox +) or not (Dox -) the reprogramming factors, and treated or not with the
805 caspase inhibitor (INH). **(c)** Quantification (top panels) and representative images (bottom
806 panels) of cell proliferation and apoptosis in Incucyte experiments. Cells were treated or not
807 with 1 μ g/ml doxycycline and images taken every 3h for over 96h. Incucyte Caspase-3/7 Green
808 Dye was used to detect green apoptotic cells. Data are mean \pm SD (n=3). **(d)** Representative
809 microscopy images of A549-rtTA-OSKM cells expressing (Dox +) or not (Dox -) the
810 reprogramming factors. Arrows in yellow point to cells showing typical enlarged and flattened
811 morphology of senescent cells (indicated by dashed lines). **(e)** Measurement of SA- β -gal
812 activity using Galacton adjusted to the number of cells (top) or C12FDG by flow cytometry
813 (bottom). **(f)** Expression levels by RT-qPCR of mRNAs for: *IL6*, *CDKN1A*, *CXCL1*, *IL1A*,
814 *SERPINE1*, *MMP3*, *GDF15* and *IL8*.
815 Statistical significance was calculated using Student's t-test, ***P<0.001; **P<0.01; *P<0.05.
816 Data are mean \pm SD.

817

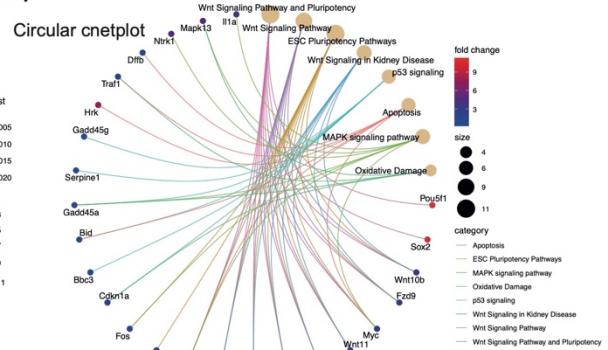
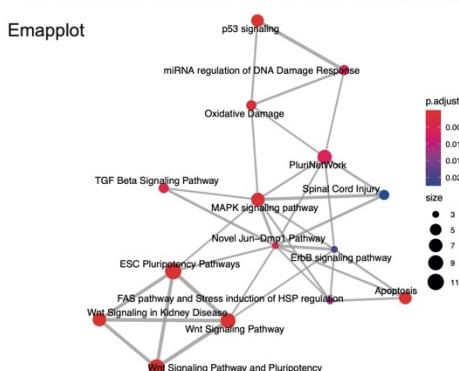
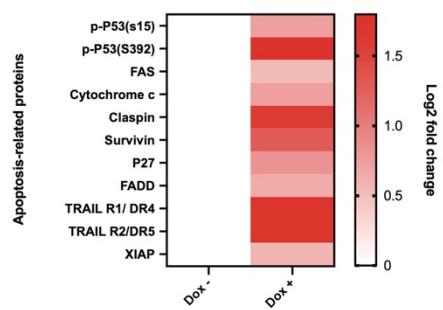
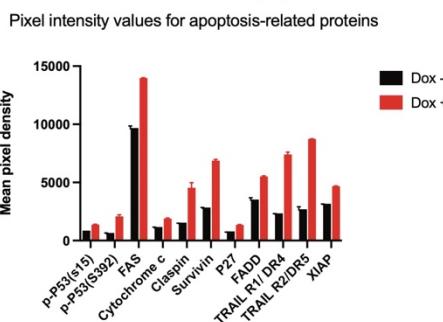
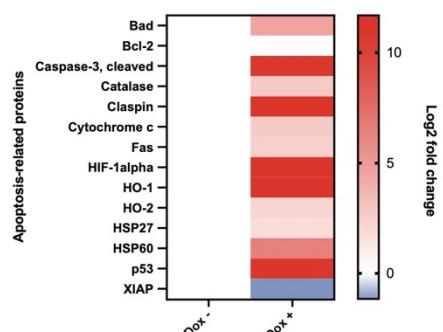
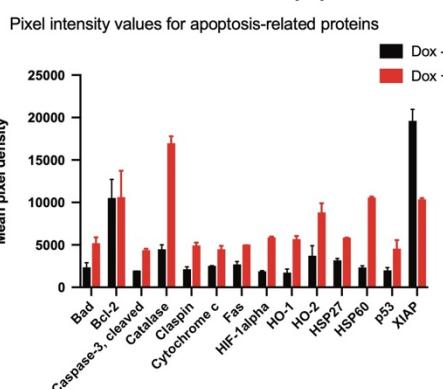
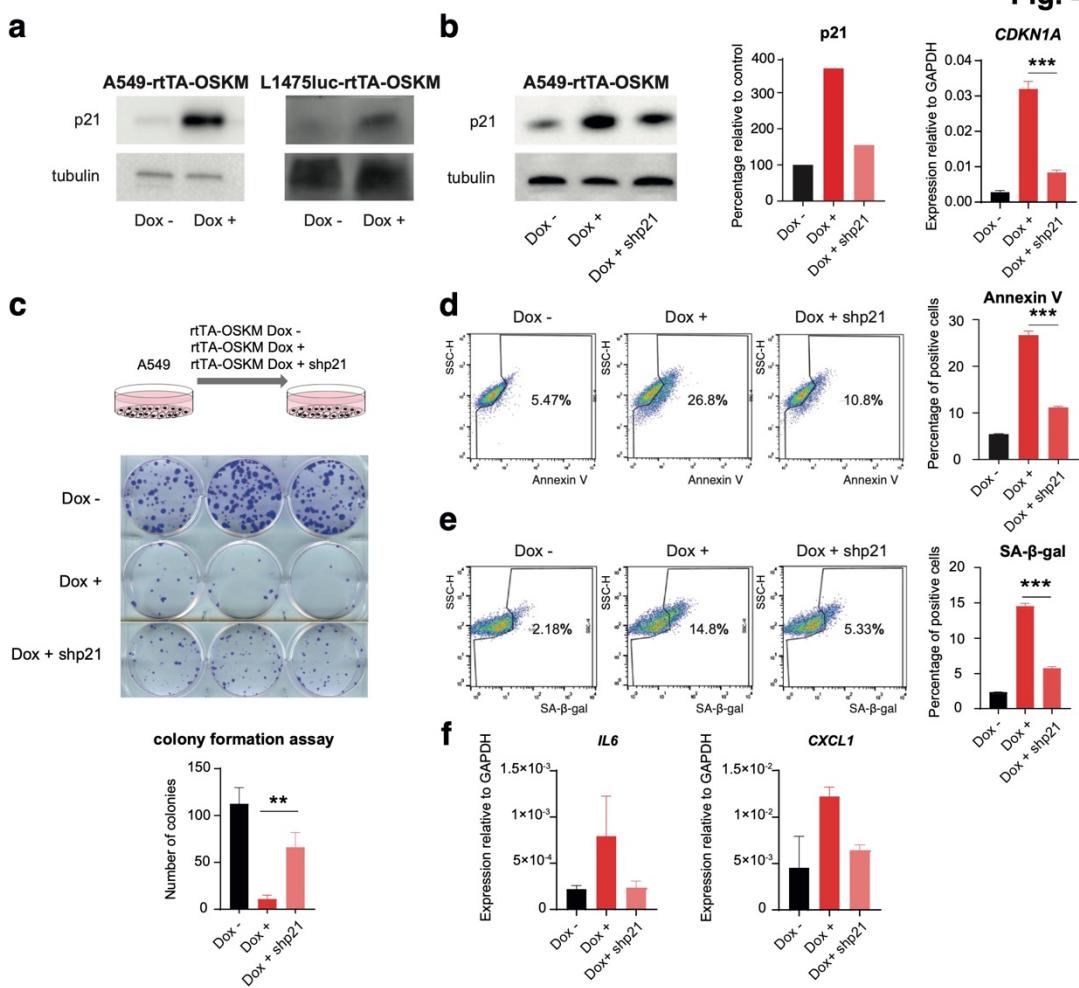


818

Fig. 3



a A549-rtTA-OSKM vs A549-rtTA cells RNAseq



b L1475luc-rtTA-OSKM vs L1475-rtTA cells RNAseq

c A549-rtTA-OSKM cells - Apoptosis Protein Array


d L1475luc-rtTA-OSKM cells - Apoptosis Protein Array

820 **Figure 3. Transcriptomic and proteomic profiles showing evidence of apoptosis and**
821 **senescence induction in lung cancer cells upon OSKM expression.** Enrichment plots
822 (Emapplot, left and Circular cnetplot, right) showing upregulated pathways and genes in A549-
823 rtTA-OSKM vs A549-rtTA cells (**a**) and L1475luc-rtTA-OSKM vs L1475luc-rtTA cells (**b**)
824 upon doxycycline exposure. Emapplot of enriched “Biological Process” gene ontology terms
825 ($P < 0.05$, $FDR < 0.05$). $p.adjust$ = the Benjamini-Hochberg adjusted P -value for the enriched
826 ontology term. Fold change = the fold change difference in the annotated genes between
827 OSKM-expressing cells and control cells. Size = the number of differentially expressed genes
828 which belong to the enriched gene ontology term or category. (**c**) Graph showing pixel intensity
829 values using a human apoptosis-related protein array with A549-rtTA-OSKM cells expressing
830 (Dox +) or not (Dox -) the reprogramming factors (left) and associated heatmap (right). (**d**)
831 Same as (c) but using a specific mouse apoptosis protein array for L1475luc-rtTA-OSKM cells
832 expressing (Dox +) or not (Dox -) the reprogramming factors. Log2 fold change = the logarithm
833 to base 2 fold change difference in the annotated proteins between OSKM-expressing cells and
834 control cells.

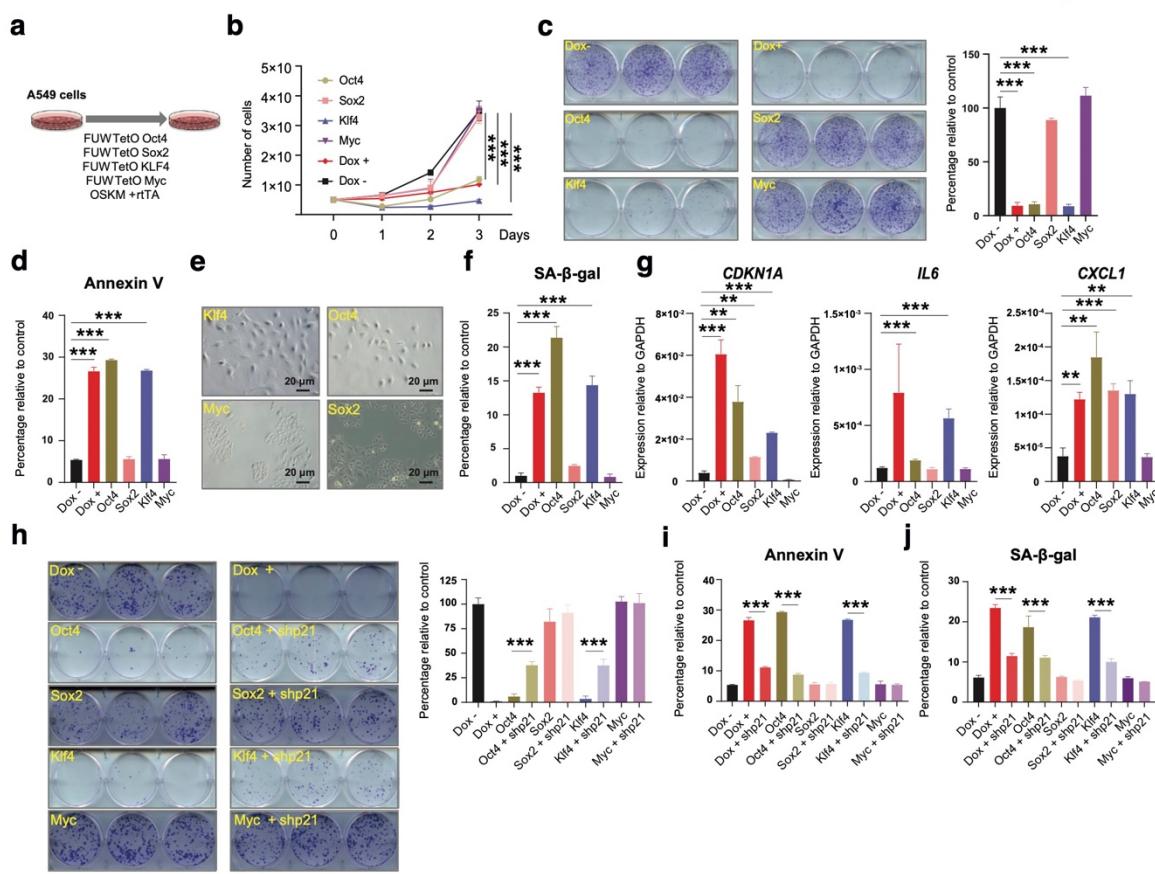
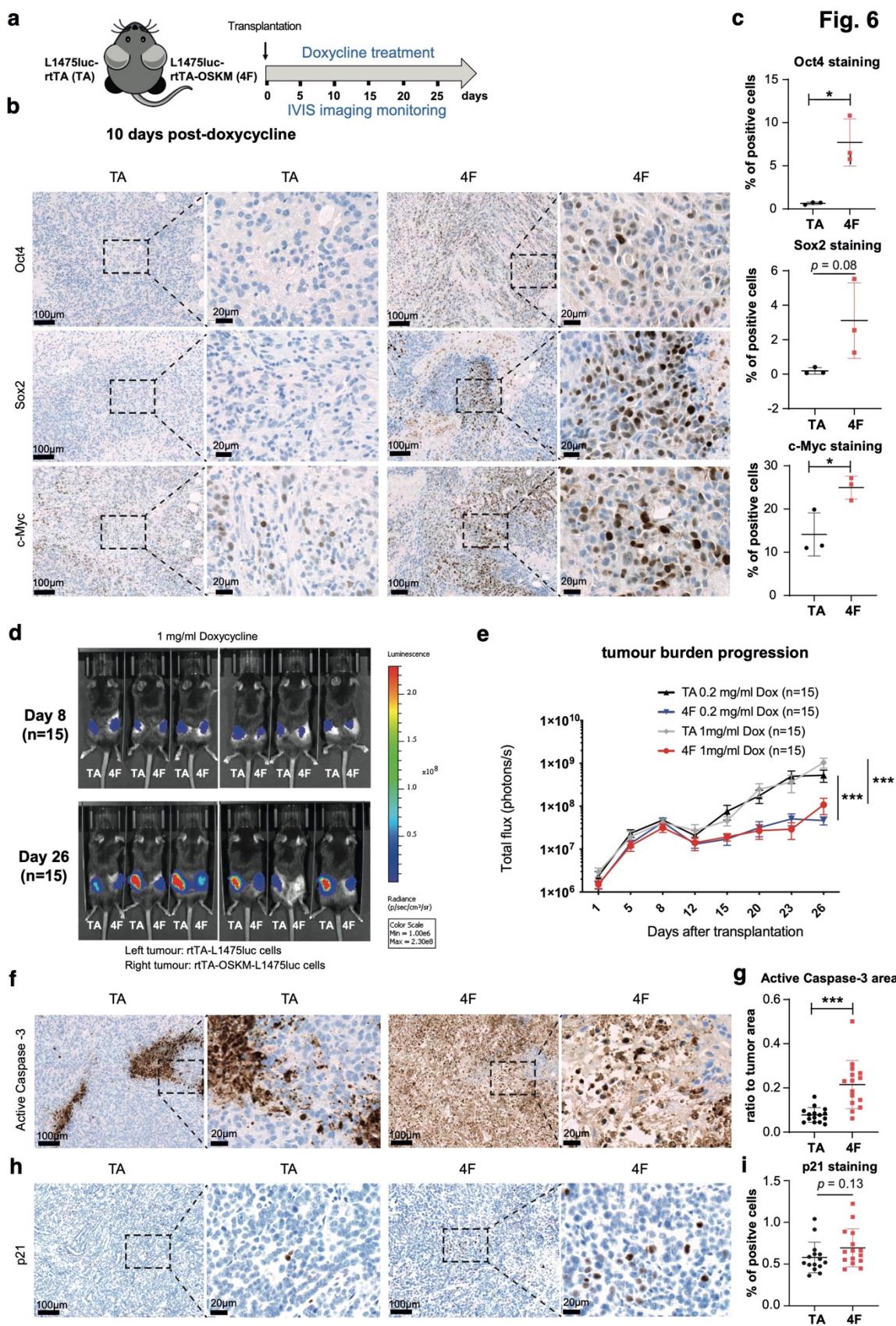
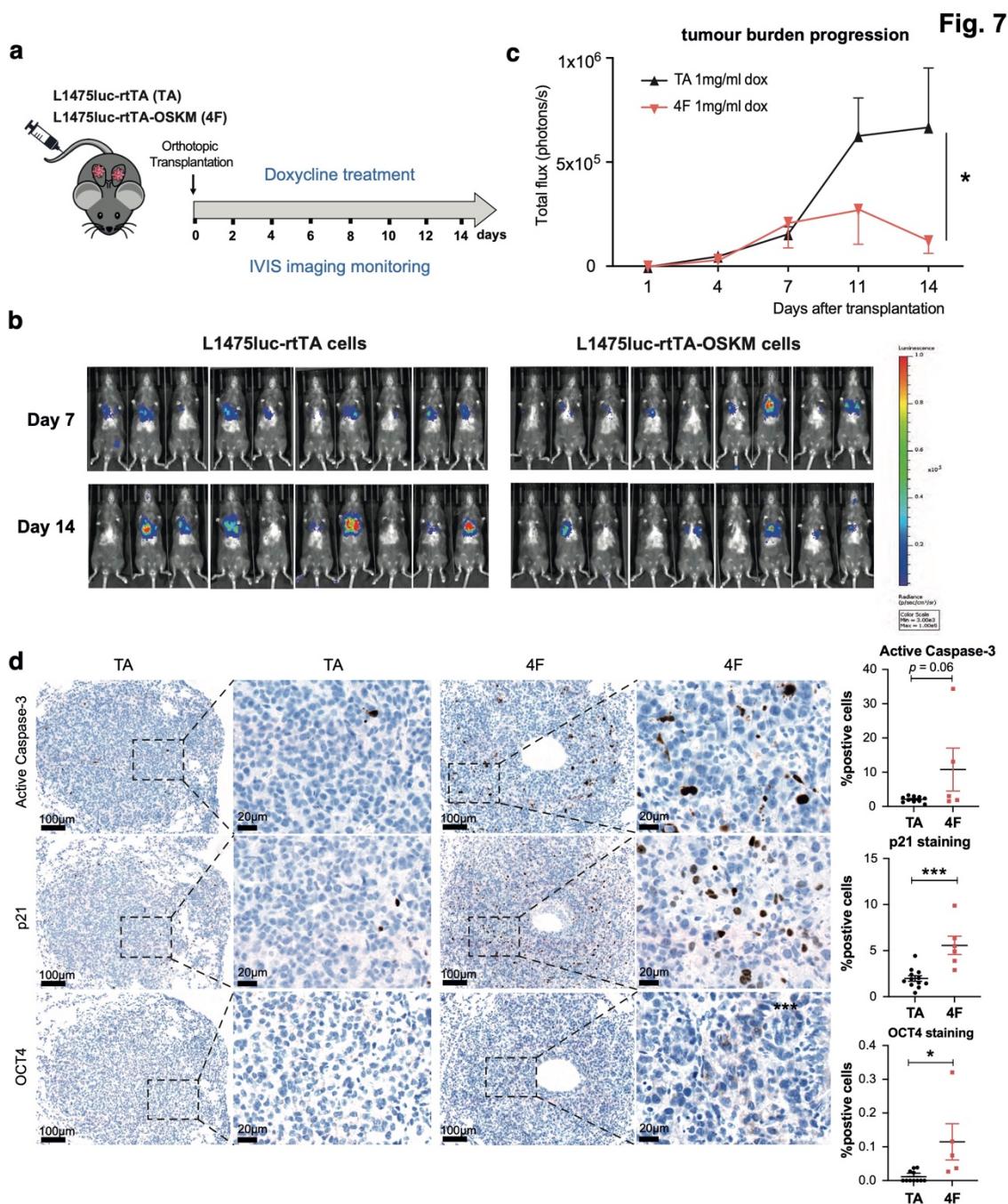

835
836

Fig. 4

838 **Figure 4. OSKM induction of cell apoptosis and senescence is mediated by p21. (a)**
839 Western blot of p21 in A549-rtTA-OSKM cells (left) and L1475luc-rtTA-OSKM cells (right)
840 expressing (Dox +) or not (Dox -) the reprogramming factors. **(b)** Expression of p21 by
841 Western blot (left panel, blot and quantification) and RT-qPCR (right panel) in A549-rtTA-
842 OSKM cells expressing (Dox +) or not (Dox -) the reprogramming factors, and in cells
843 expressing the factors and after knockdown of p21 (Dox + shp21). **(c)** Schematic representation
844 of the experimental system used to test the proliferation of A549-rtTA-OSKM cells after
845 knockdown of p21 (top panel). Representative images of a clonal expansion assay (middle
846 panel) and crystal violet staining quantification (bottom panel) for the indicated experimental
847 conditions. **(d)** Annexin V and **(e)** SA- β -gal activity measurements by flow cytometry (left)
848 and quantification (right) for the indicated experimental conditions. **(f)** Expression levels by
849 RT-qPCR of *IL6* and *CXCL1* mRNA.
850 Statistical significance was calculated using Student's t-test, ***P<0.001; **P<0.01; *P<0.05.
851 Data are mean \pm SD.
852
853


Fig. 5

855 **Figure 5. Contribution of individual reprogramming factors to the impaired cell growth.**
856 **(a)** Schematic representation of the experimental system used. **(b)** Analysis of the proliferative
857 capacity and **(c)** Clonal expansion assay and quantification of A549 cells expressing individual
858 reprogramming factors compared to A549-rtTA-OSKM cells expressing (Dox +) or not (Dox
859 -) the four Yamanaka factors. **(d)** Quantification of Annexin V levels of cells expressing factors
860 as in (b) measured by flow cytometry. **(e)** Representative light microscopy images of A549
861 cells expressing individual reprogramming factors. **(f)** Measurement of SA- β -galactosidase
862 activity of cells expressing factors as in (b) by flow cytometry. **(g)** Expression levels by RT-
863 qPCR of *CDKN1A*, *IL6* and *CXCL1* in cells expressing factors as in (b). **(h)** Clonal expansion
864 assay and quantification of A549 cells expressing individual reprogramming factors alone or
865 after p21 knockdown (shp21) compared to A549-rtTA-OSKM cells expressing (Dox +) or not
866 (Dox -) the four Yamanaka factors. **(i)** Quantification of Annexin V levels of cells expressing
867 factors as in (h). **(j)** Measurement of SA- β -galactosidase activity of cells expressing factors as
868 in (h) by flow cytometry.


869 Statistical significance was calculated using Student's t-test, ***P<0.001; **P<0.01; *P<0.05.
870 Data are mean \pm SD.

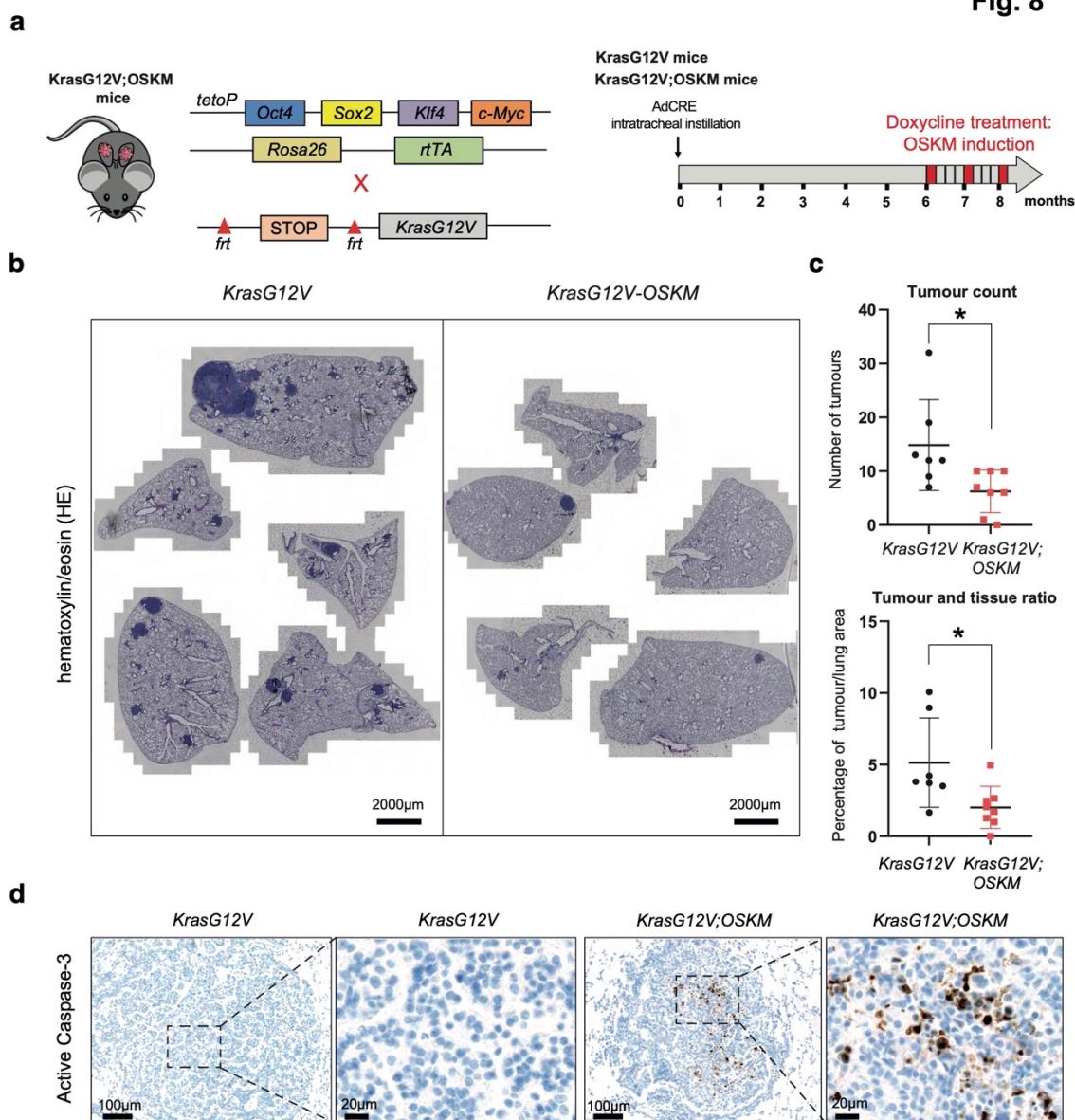
871
872

874 **Figure 6. Expression of OSKM impairs growth of subcutaneous tumors.** **(a)** Schematic
875 representation of the in vivo experimental system. L1475luc-rtTA cells were injected in the left
876 flanks (TA) and L1475luc-rtTA-OSKM cells in the right flanks (4F) of C57BL/6 mice that
877 were treated with doxycycline and monitored for the indicated period of time (n=15). **(b)**
878 Immunohistochemistry and **(c)** quantification of the expression of Oct4, Sox2 and c-Myc at 10
879 days post-doxycycline administration in tissue sections from TA and 4F tumors. Dashed lines
880 indicate magnified areas. **(d)** Representative images of TA and 4F tumors exhibiting luciferase
881 activity measured by IVIS at the indicated time points after transplantation. **(e)** Longitudinal
882 quantification of TA and 4F tumor growth in mice treated with 0.2 mg/ml and 1 mg/ml
883 doxycycline. **(f)** Immunohistochemistry and **(g)** quantification of the expression of active
884 Caspase-3 at the end point (26 days) in tissue sections from TA and 4F tumors. Dashed lines
885 indicate magnified areas. **(h)** Immunohistochemistry and **(i)** quantification of the expression of
886 active p21 as in (f) and (g).
887 Statistical significance of the different tumor growth was analyzed by two-way ANOVA, ***,
888 p<0.001. For the histological analysis, the Student's t-test was used, ***P<0.001; **P<0.01;
889 *P<0.05. Data are mean \pm SD.

890
891

893 **Figure 7. Expression of OSKM impairs lung tumor growth of orthotopically transplanted**
894 **cells. (a)** Schematic representation of the in vivo experimental system. L1475luc-rtTA (TA) or
895 L1475luc-rtTA-OSKM (4F) cells were tail-vein injected for orthotopic transplantation in the
896 lungs of C57BL/6 mice that were treated with doxycycline and monitored for the indicated
897 period of time (n=9-10). **(b)** Representative images of TA and 4F tumors exhibiting luciferase
898 activity measured by IVIS at the indicated time points after transplantation. **(c)** Longitudinal
899 quantification of TA and 4F tumor growth in mice treated with 1 mg/ml doxycycline. **(d)**
900 Representative images (left) of immunohistochemistry for active Caspase-3, p21 and Oct4 in
901 TA mice and 4F mice and quantifications (right).

902 Statistical significance of the different tumor growth was analyzed by two-way ANOVA, *,
903 p<0.05.

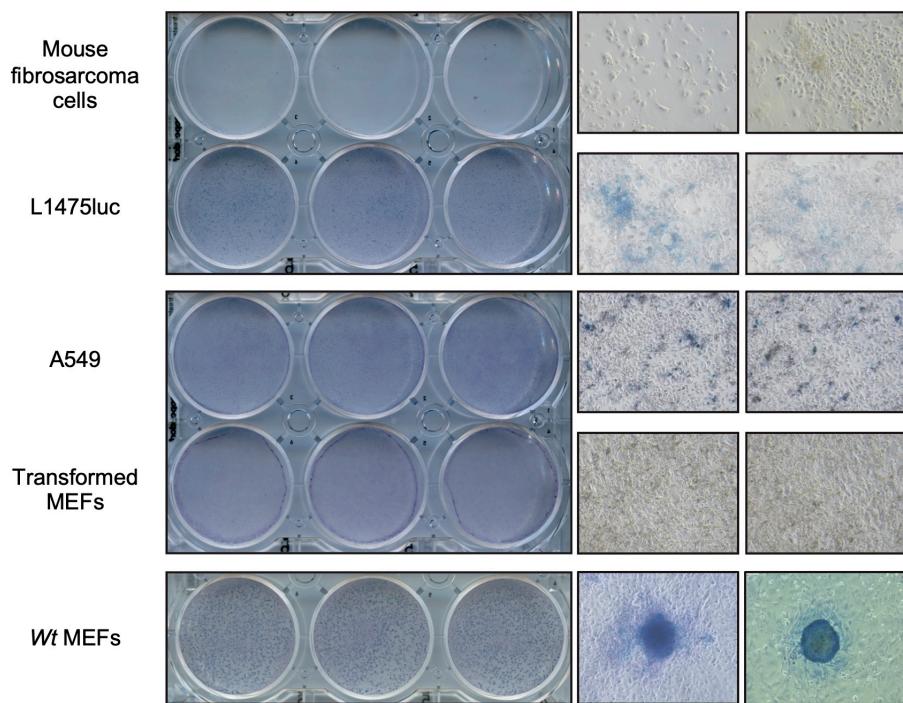

904 For the histological analysis, the Student's t-test was used, ***P<0.001; **P<0.01; *P<0.05.

905 Data are mean \pm SD.

906

907

Fig. 8



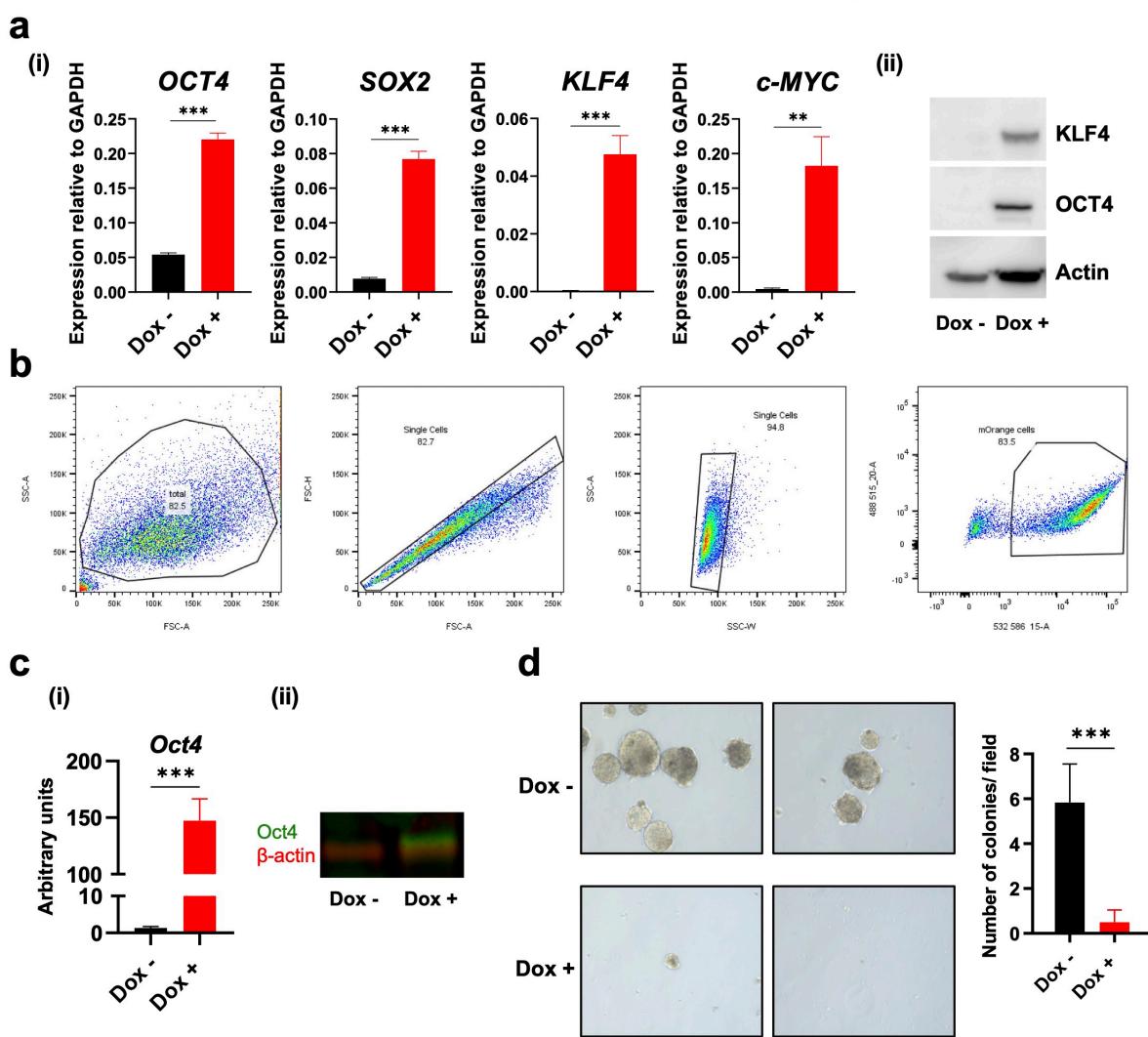
909 **Figure 8. OSKM expression reduces lung tumor burden in a KrasG12V mouse model. (a)**
910 Schematic representation of the generation of the genetically-engineered mouse model.
911 Inducible OSKM expressing mice were crossed with KrasG12V mice to generate
912 KrasG12V;OSKM mice (left). Experimental design summary. Experimental mice (KrasG12V
913 n=7 and KrasG12V;OSKM n=8) were intranasally-treated with adenovirus-FLP (AdFLP)
914 expressing flippase recombinase to activate oncogenic KrasG12V mutation. Mice were treated
915 with 1mg/ml doxycycline (one week on, three weeks off, during 3 consecutive cycles) in
916 drinking water from 6-month post lung cancer initiation. Mice were culled after the last one-
917 week long doxycycline treatment and the lungs were collected for histology analyses (right).
918 **(b)** Representative H&E staining images of lung sections from KrasG12V (left) and
919 KrasG12V;OSKM mice (right), as indicated. **(c)** Number of tumors per mouse (top graph) and
920 percentage of tumor per lung are (bottom graph) in the indicated experimental groups. Each
921 data point represents one mouse. **(d)** Representative images of immunohistochemistry for active
922 Caspase-3 in lungs of KrasG12V mice (left) and KrasG12V;OSKM mice (right), as indicated.
923 Statistical significance was calculated using Student's t-test, ***P<0.001; **P<0.01; *P<0.05.
924 Data are mean \pm SEM.
925

926 **Supplementary Figures**

927

Supplementary Fig. 1

928

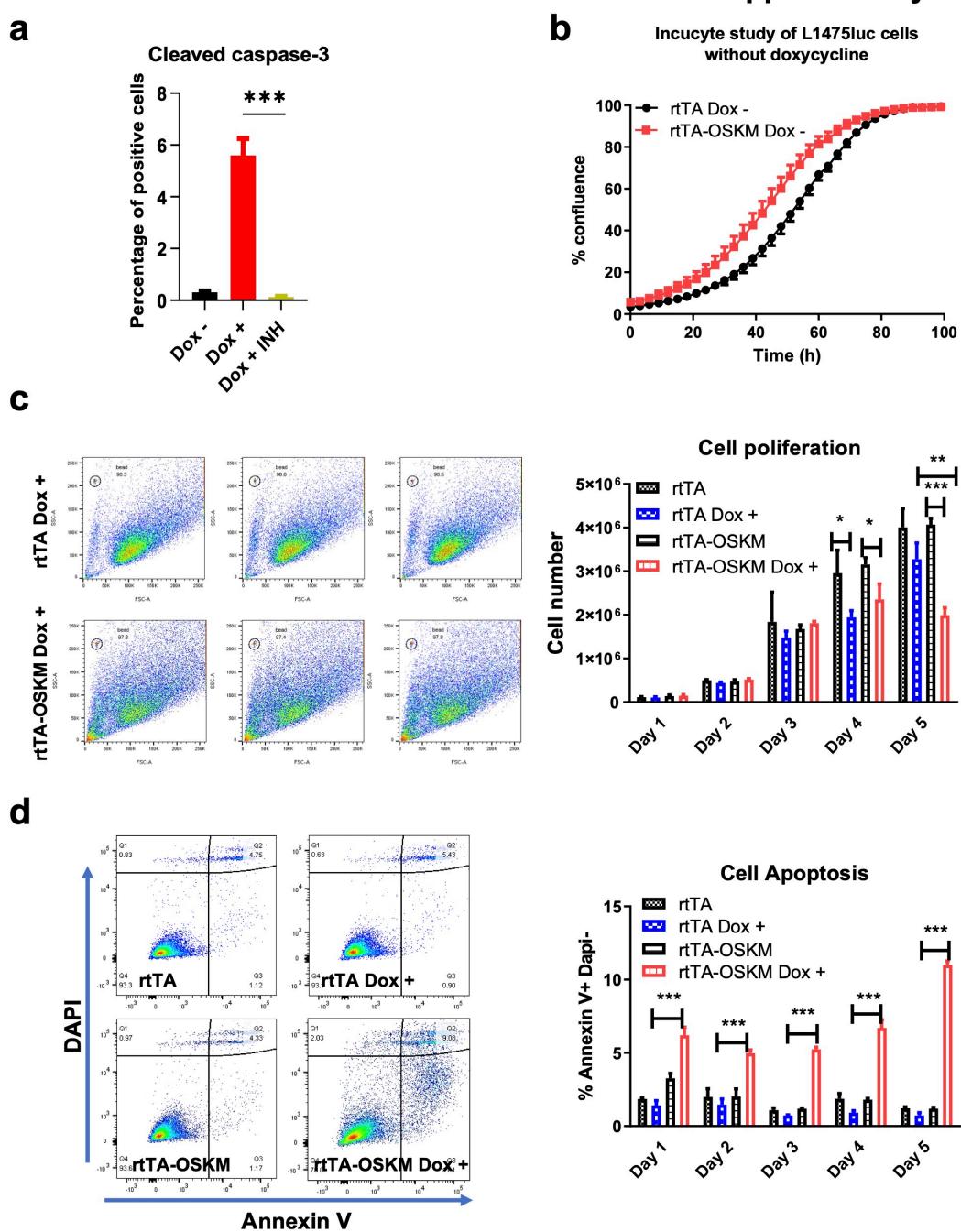

929 **Supplementary Figure 1. In vitro reprogramming of cancer cell lines and MEFs to iPSCs.**

930 **(a)** In vitro reprogramming assays of the indicated cellular types: mouse fibrosarcoma cells,
931 mouse L1475luc and human A549 lung cancer cells, and transformed MEFs (carrying a
932 construct that blocks p53 and another that causes an overexpression of the Ras oncogene).
933 Wild-type (Wt) MEFs were used as positive reprogramming control to iPSCs. Alkaline
934 phosphatase staining plates and representative microscopy images of cells after reprogramming
935 are shown.

936

937

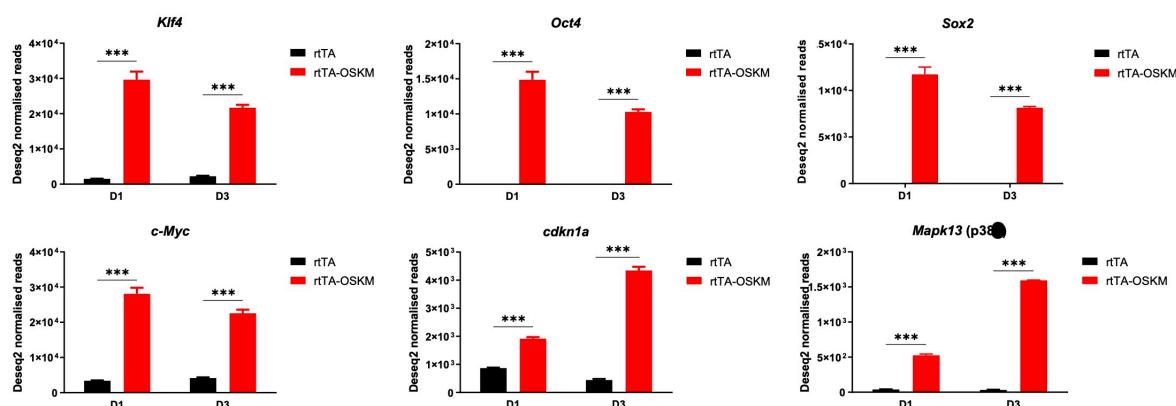
Supplementary Fig. 2

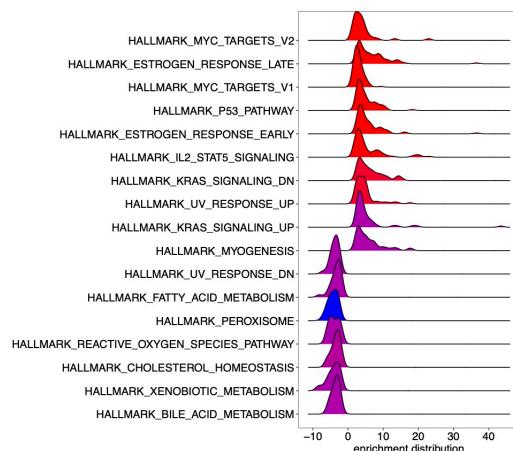

939 **Supplementary Figure 2. Validation of the expression of reprogramming factors in A549**
940 **and L1475luc lung cancer cells. (a)** mRNA levels of *Oct4*, *Sox2*, *Klf4* and *c-Myc* in A549-
941 rtTA-OSKM cells, treated or not with doxycycline, by RT-qPCR (i), and KLF4 and OCT4 by
942 Western blot (ii). **(b)** Flow cytometry plots showing the gating strategy for the sorting of
943 L1475luc-rtTA-OSKM cells. The gating shows total cells, single cells, alive cells and mOrange
944 positive cells in independent plots. **(c)** Expression levels of Oct4 in L1475luc-rtTA-OSKM
945 cells, treated or not with 1 μ g/ml doxycycline, by RT-qPCR (i), and Oct4 by Western blot (ii).
946 Oct4 protein is shown in red color and β -actin in green color. **(d)** Representative image (left)
947 and quantification (right) of a colony formation assay in soft agar of A549-rtTA-OSKM cells
948 treated or not with doxycycline (1 μ g/ml).

949 Statistical significance was calculated using Student's t-test, ***P<0.001; **P<0.01; *P<0.05.
950 Data are mean \pm SD.

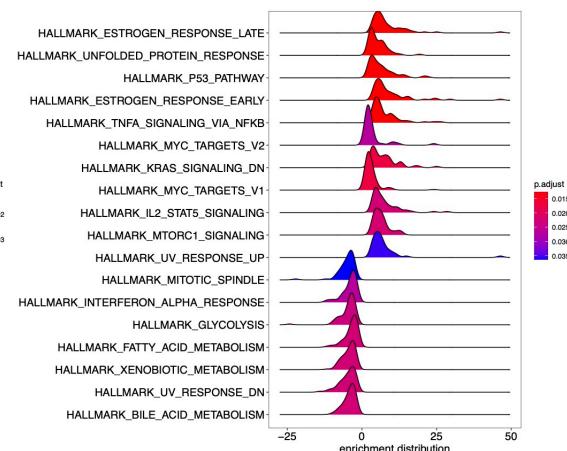
951

952

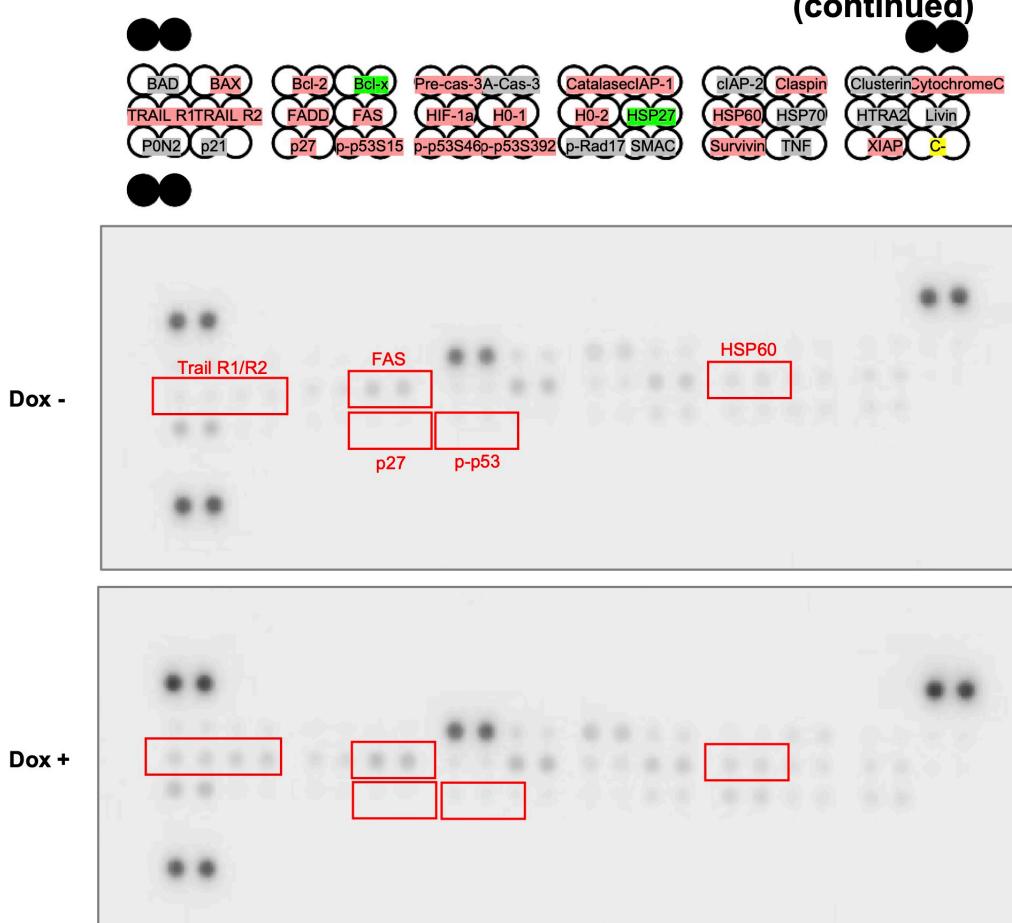

Supplementary Fig. 3


954 **Supplementary Figure 3. OSKM expression induces lung cancer cell apoptosis and**
955 **senescence in vitro.** **(a)** Percentage of A549-rtTA-OSKM cells positive for cleaved Caspase-
956 3 expressing (Dox +) or not (Dox -) the reprogramming factors, and treated or not with the
957 caspase inhibitor (INH), as indicated. **(b)** Quantification of L1475luc-rtTA and L1475luc-
958 rtTA-OSKM cell proliferation in the absence of doxycycline using Incucyte technology.
959 Images were taken every 3 h for over 96 h. Flow cytometry analysis of L1475luc-rtTA and
960 L1475luc-rtTA-OSKM cell proliferation **(c)** and apoptosis **(d)** in the absence or presence of
961 doxycycline, as indicated. Left, flow cytometry plots. Right, quantification of cell numbers and
962 percentage of Annexin V⁺/DAPI⁻ cells (Q3), as indicated.
963 Statistical significance was calculated using Student's t-test, ***P<0.001; **P<0.01; *P<0.05.
964 Data are mean \pm SD.
965
966

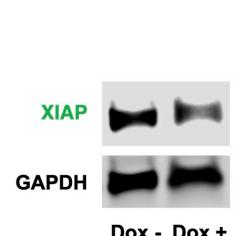
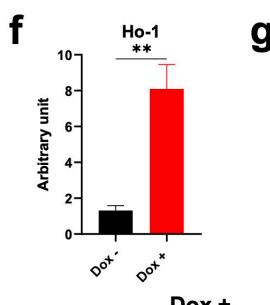
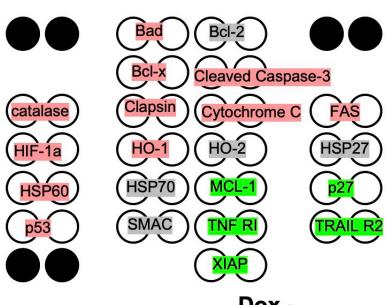
Supplementary Fig. 4


a L1475luc-rtTA-OSKM vs L1475luc-rtTA cells

b A549-rtTA-OSKM vs A549- rtTA cells GSEA



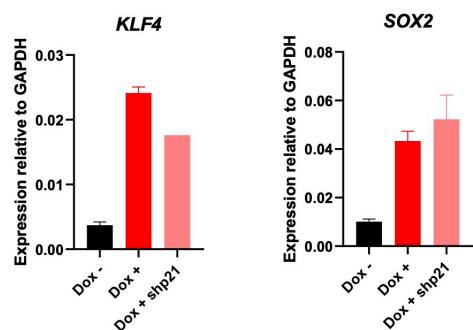
c L1475luc-rtTA-OSKM vs L1475luc-rtTA cells GSEA

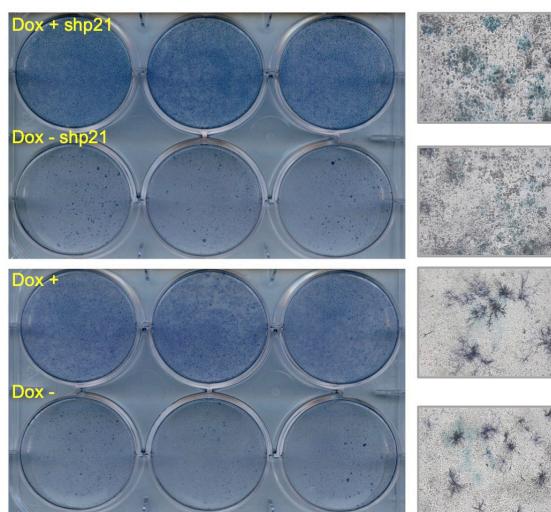
d A549-rtTA-OSKM cells - Apoptosis Protein Array

**Supplementary Fig. 4
(continued)**

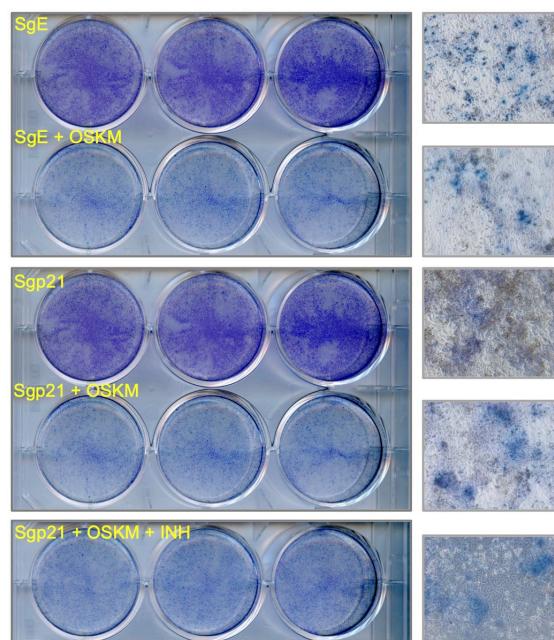
e L1475Luc-rtTA-OSKM cells - Apoptosis Protein Array


969 **Supplementary Figure 4. Transcriptomic and proteomic profiles of lung cancer cells upon**
970 **OSKM expression.** (a) mRNA levels of *Oct4*, *Sox2*, *Klf4*, *c-Myc*, *Cdkn2a* and *Mapk13* in
971 L1475luc-rtTA and L1475luc-rtTA-OSKM cells at day 1 or 3 post-doxycycline treatment, by
972 RT-qPCR. Ridge plot displaying the gene set enrichment analysis (GSEA) for A549-rtTA-
973 OSKM vs A549-rtTA cells (b) and L1475luc-rtTA and L1475luc-rtTA-OSKM (c) with
974 adjusted *p*-value <0.05. Membrane-based antibody apoptosis array for A549-rtTA-OSKM (d)
975 and L1475luc-rtTA-OSKM (e) expressing (Dox +) or not (Dox -) the reprogramming factors.
976 Top panel, schematic representation of the array showing capture antibodies spotted in
977 duplicate on nitrocellulose membranes for the indicated target apoptotic factors. Red color
978 refers to upregulated protein expression, green color states to downregulated protein
979 expression, and grey color indicates unchanged protein levels. Bottom panels, apoptosis protein
980 array membranes assessing lung cancer cell lines in the presence or absence of doxycycline, as
981 indicated. (f) mRNA levels of *Ho-1* in L1475luc-rtTA-OSKM cells treated or not with
982 doxycycline, by RT-qPCR. (g) Western blot of XIAP expression levels in L1475luc-rtTA-
983 OSKM cells expressing (Dox +) or not (Dox -) the reprogramming factors.
984 Statistical significance was calculated using Student's t-test, ***P<0.001; **P<0.01; *P<0.05.
985 Data are mean \pm SD.

986

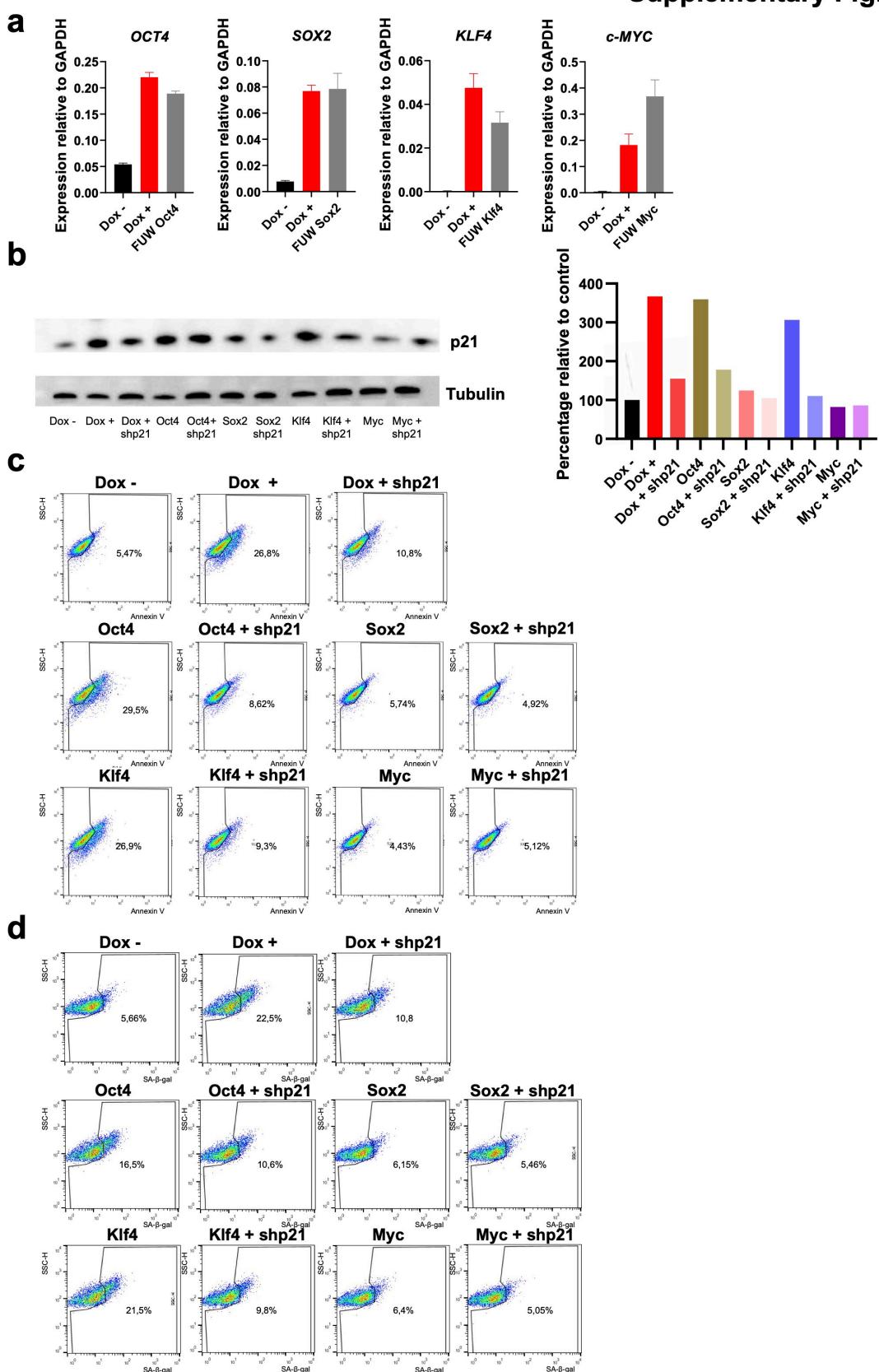

987

Supplementary Fig.5


a

b

c

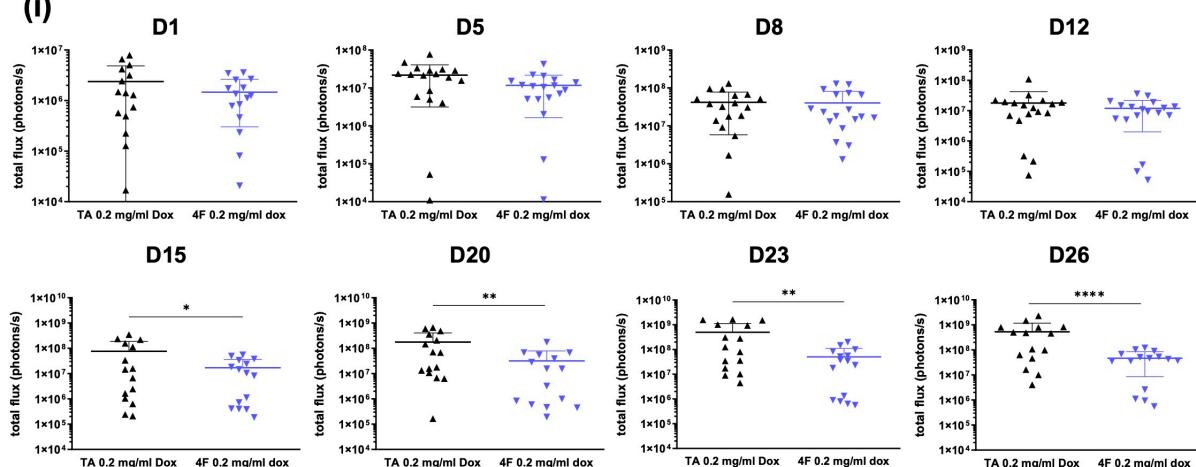


989 **Supplementary Figure 5. p21 downregulation and knockdown do not allow A549**
990 **reprogramming to pluripotency. (a)** mRNA expression levels of *KLF4* and *SOX2* by RT-
991 qPCR in A549-rtTA-OSKM cells expressing (Dox +) or not (Dox -) the reprogramming
992 factors, and in cells expressing the factors and after knockdown of *p21* (*CDKN1A*) (Dox +
993 shp21). **(b)** In vitro reprogramming assays of A549 cells that do or do not express shp21.
994 Alkaline phosphatase staining plaques and representative microscopy images of cells after
995 reprogramming are shown. **(c)** In vitro reprogramming assays of A549 cells that express
996 CRISPR/Cas9 with an empty guide (SgE), with a guide against p21 (Sgp21), or with a guide
997 against p21 and treated with a pan caspase inhibitor (Sgp21 + INH). Alkaline phosphatase
998 staining plaques and representative microscopy images of cells after reprogramming are
999 shown.

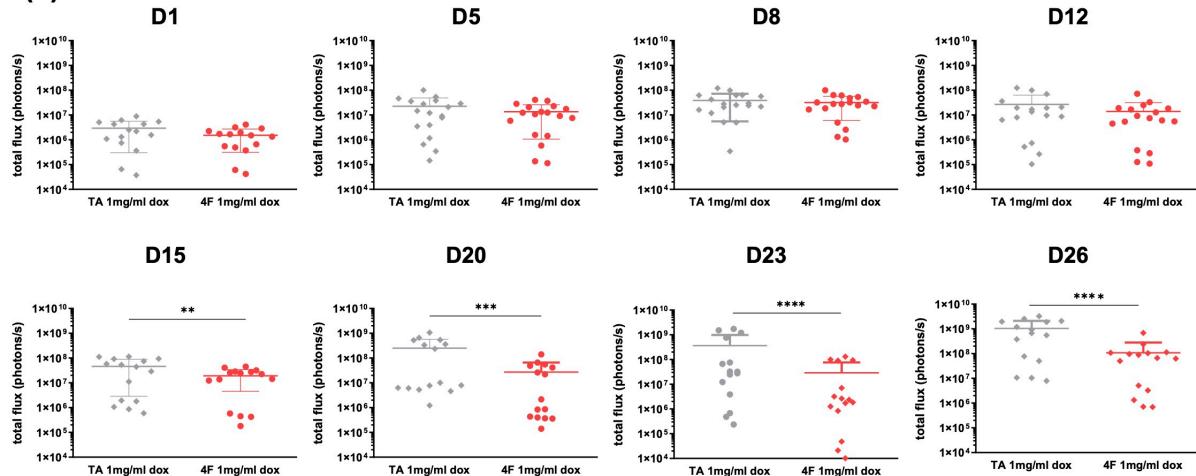
1000

1001

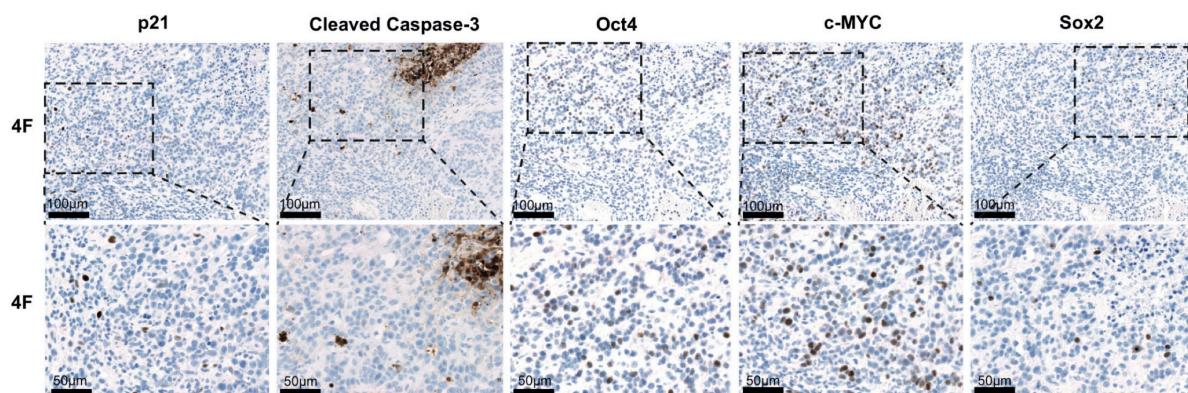
Supplementary Fig. 6



1003 **Supplementary Figure 6. Contribution of individual reprogramming factors to the**
1004 **impaired cell growth and effect of p21 knockdown. (a)** Expression of reprogramming factors
1005 by RT-qPCR in A549 cells that do not express reprogramming factors (Dox -), cells that co-
1006 express them (Dox +) and cells that individually express reprogramming factors (FUW OCT4,
1007 SOX2, KLF4 or c-MYC). **(b)** Expression of p21 protein levels in A549 cells that express or
1008 not the reprogramming factors (Dox +/-), in combination or individually (OCT4, SOX2, KLF4
1009 and c-MYC), alone or after shp21 (+ shp21). Blot (left), quantification (right). **(c)** Flow
1010 cytometry plots for Annexin V as a marker indicative of cell apoptosis. **(d)** Flow cytometry
1011 plots for SA- β -gal as a marker indicative of cell senescence.
1012
1013

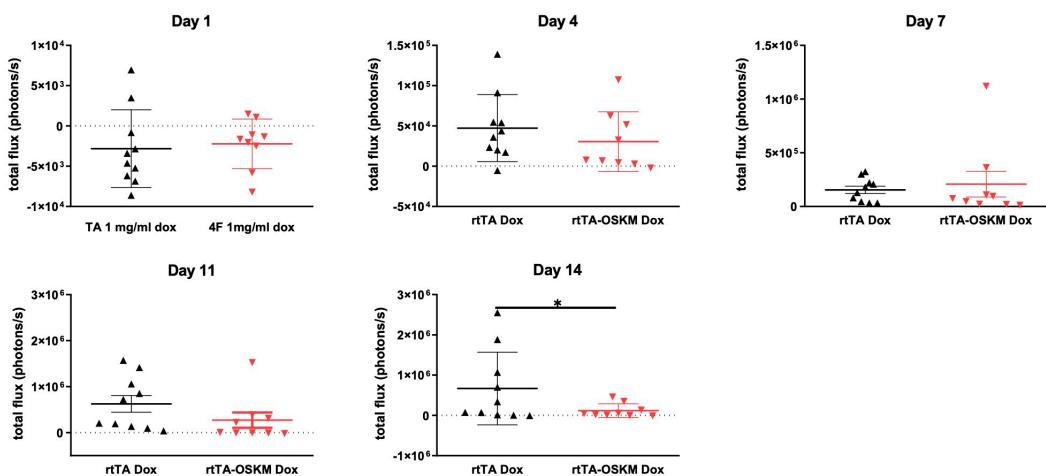

Supplementary Fig. 7

a

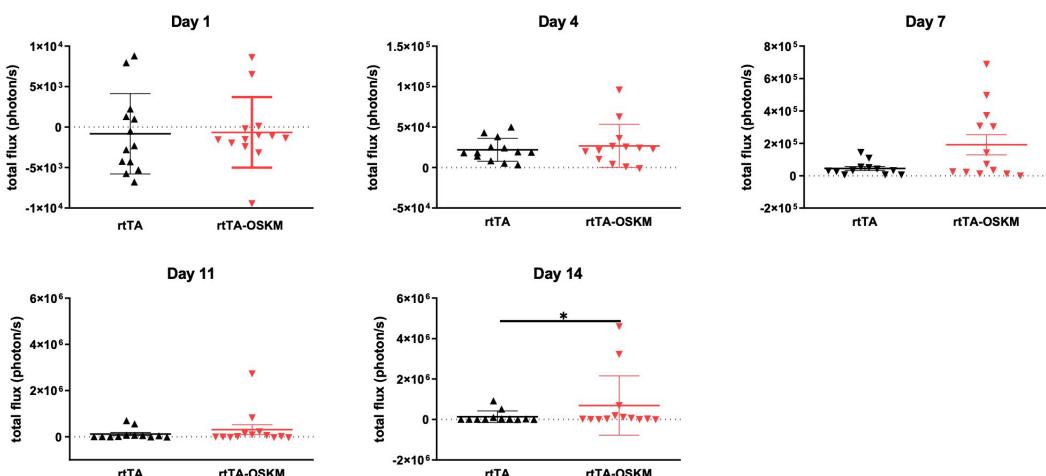

(i)

(ii)

b

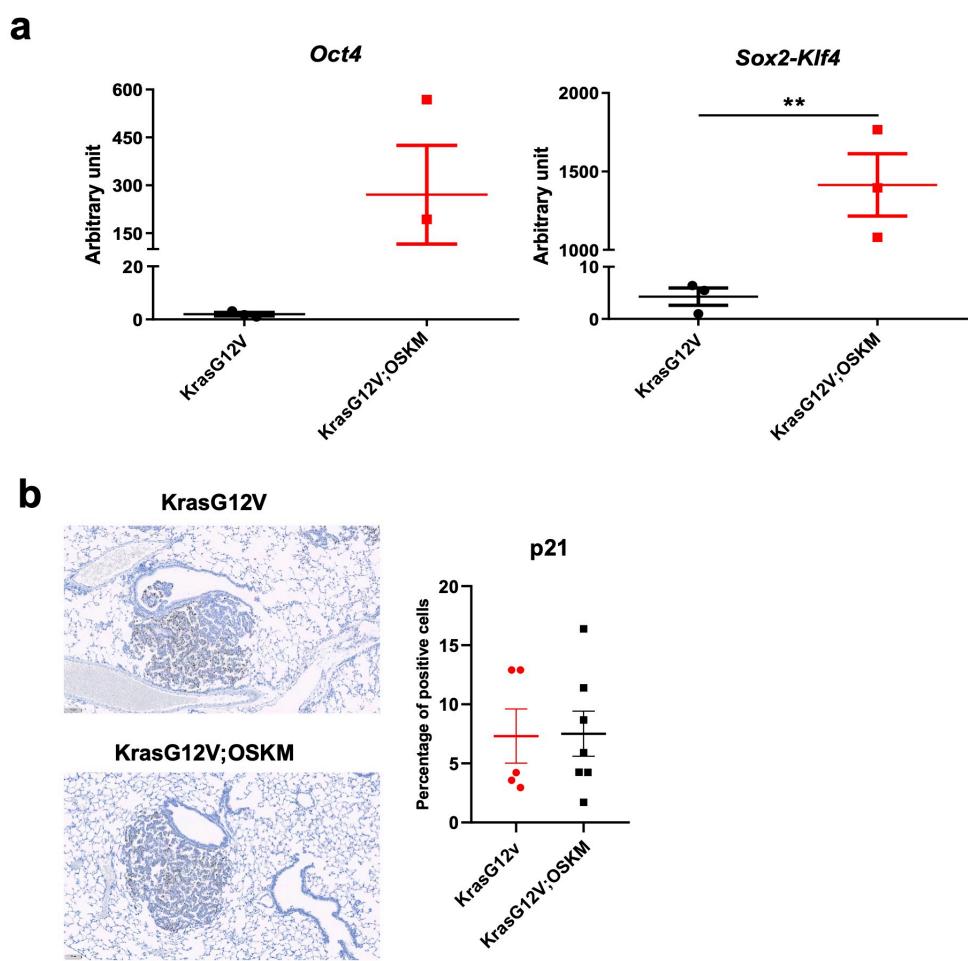


1015 **Supplementary Figure 7. Expression of OSKM impairs growth of subcutaneous tumors.**
1016 **(a)** Quantification of bioluminescence signal from groups treated with 0.2 mg/ml (i) and 1
1017 mg/ml (ii) doxycycline. **(b)** Immunohistochemistry for p21, cleaved Caspase-3, Oct4, c-Myc
1018 and Sox2 in 4F mice.
1019 Data shown are mean and SD for each individual day. Wilcoxon matched-pairs signed rank
1020 test is used to compare the 2 groups on each day. *, p<0.05; **, p<0.01; ****, p<0.0001.
1021
1022


Supplementary Fig. 8

a

(i) DOXYCYCLINE



(ii) CONTROL NO DOXYCYCLINE

1024 **Supplementary Figure 8. OSKM expression reduces lung tumor burden in a KrasG12V**
1025 **mouse model. (a)** Quantification of bioluminescence signal from animals treated with 1 mg/ml
1026 doxycycline (i) or non-treated (ii).
1027 Data shown are mean and SD in each individual day. Wilcoxon matched-pairs signed rank test
1028 is used to compare the 2 groups on each day. *, p<0.05; **, p<0.01; ***, p<0.0001.
1029
1030

Supplementary Fig. 9

1032 **Supplementary Figure 9. OSKM expression reduces lung tumor burden in a KrasG12V**
1033 **mouse model. (a)** Oct4 and Sox2-Klf4 expression by RT-qPCR in lungs of mice that express
1034 (KrasG12V;OSKM) or not (KrasG12V) the reprogramming factors. **(b)**
1035 Immunohistochemistry for p21 in lungs of KrasG12V and KrasG12V-OSKM mice.
1036 Representative images (left) and quantification (right).