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17 Abstract

18 In recent decades, field and semi-field studies of malaria transmission have gathered geographic-specific 

19 information about mosquito ecology, behaviour and their sensitivity to interventions. Mathematical models 

20 of malaria transmission can incorporate such data to infer the likely impact of vector control interventions 

21 and hence guide malaria control strategies in various geographies. To facilitate this process and make 

22 model predictions of intervention impact available for different geographical regions, we developed 

23 AnophelesModel. AnophelesModel is an online, open-access, R package that directly allows 

24 incorporating generated entomological data for adjustment of models to assess intervention scenarios 

25 according to species and location-specific characteristics. In addition, it includes a previously published, 

26 comprehensive, curated database of field entomological data from over 50 Anopheles species, field data 

27 on mosquito and human behaviour, and on estimates of vector control effectiveness. Using the input 

28 data, the package parameterizes a discrete-time, state transition model of the mosquito oviposition cycle 

29 and infers species-specific impacts of various interventions on vectorial capacity. In addition, it offers 

30 formatted outputs ready to use in downstream analyses and by other models of malaria transmission for 

31 accurate representation of the vector-specific components. Using AnophelesModel, we show how the 

32 key implications for intervention impact change for various vectors and locations. The package facilitates 

33 quantitative comparisons of likely intervention impacts in different geographical settings varying in vector 

34 compositions, and can thus guide towards more robust and efficient malaria control recommendations. 

35 The AnophelesModel R package is available under a GPL-3.0 license at 

36 https://github.com/SwissTPH/AnophelesModel. 

37

38
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41 Introduction

42 Vector control targeting Anopheles (An.) mosquitoes and protecting people from their dangerous, 

43 malaria-infectious bites has been the predominant way of reducing the malaria burden worldwide (1). 

44 Over 220 million insecticide-treated nets (ITNs), the most common vector control tool, were distributed in 

45 2021 (2), but the impact of these and other vector control interventions varies geographically depending 

46 on multiple factors. These factors include intra and inter-species heterogeneity in the characteristics of 

47 the vectors and geographical variation in vector species composition. Anopheles mosquitoes have a 

48 complex life-cycle, continuously adapting to and evolving with the surrounding environment. The species 

49 native to Africa can be very different to those found elsewhere (3). The interactions of circadian mosquito 

50 biting patterns and the behavioural patterns of humans are particularly relevant for the risk of human 

51 exposure to mosquitoes. Recent studies have emphasized the importance of considering these factors 

52 when estimating the geographic-specific impact of vector control interventions and for implementing 

53 vector control strategies (4-8). Additionally, the physical and chemical properties of the various 

54 interventions, such as the physical integrity and insecticide efficiency of ITNs and how each of these vary 

55 over time, also strongly impact the effectiveness of vector control (9-11).

56 Mathematical models of malaria transmission are frequently used to integrate quantitative evidence about 

57 the effects of malaria interventions to enhance prediction of impact and planning of interventions (12-14). 

58 This type of modelling has become an important part of decision-making, in particular for guiding national 

59 malaria strategic plans in malaria-endemic countries (15-17). For the models to accurately quantify the 

60 impacts of interventions, data from experimental hut trials and cluster-randomized control trials (9, 18-

61 26) are generally used to parameterize their effects (12, 27-31). Nonetheless, model parameterizations 

62 should also consider local variations in human behaviour and thus human exposure to mosquito bites. 

63 Considering human behavioural data and setting-specific differences in mosquito biting and bionomics 

64 can improve model predictions of intervention effectiveness (5).
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65 Integrating human activity, mosquito biting patterns and other entomological characteristics to adjust the 

66 estimated impact of vector control interventions comes with its challenges. Many independent studies 

67 with different experimental techniques and data recording approaches are involved. Comprehensive data 

68 are rarely collected at the same location and time. Several existing models and studies account for the 

69 life parameters of mosquitoes estimated from entomological data and have combined information on 

70 mosquito biting and human activity (7, 8, 30, 32-34). However, these are only a few studies and have 

71 been limited to a handful of locations. A comprehensive framework collating the different data types, 

72 allowing for direct data integration and interfacing with models to estimate location-specific intervention 

73 impact in a systematic way has been lacking.

74

75

76

77 Figure 1: Overview of the AnophelesModel R package and its components. The package integrates 

78 several types of data (first panel) to estimate how vector control interventions affect transitions between 

79 the different states of the mosquito feeding cycle (states of the cycle denoted with letters A – E in the 

80 middle panel with transition probabilities PA – PE). Within the package, an entomological model is 

81 parameterised and used to infer the species-specific effects of vector control interventions, including their 

82 decay over time as well as their impact on the vectorial capacity (third panel).
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83

84 Building on previous modelling of the mosquito feeding cycle (32) and of vector control impact (9, 28, 

85 30), we have developed the AnophelesModel R package (Fig 1) to address these challenges.  

86 AnophelesModel estimates the species and geographic-specific impact of vector control interventions by 

87 allowing the user to directly integrate several layers of input data representing mosquito bionomic 

88 characteristics, mosquito and human activity patterns, human exposure to mosquitoes, and the effects 

89 of interventions.

90  

91 Design and Implementation

92 AnophelesModel uses the data provided by the user to parameterize a mathematical model describing 

93 the mosquito feeding cycle (32) which infers how the state to state transitions within the feeding cycle are 

94 affected by different interventions, considering their decay over time. Thus, the model estimates the 

95 reduction in vectorial capacity for a given intervention. The package allows the user to run analyses for 

96 interventions and species-bionomics with self-provided data. It can compare multiple interventions in 

97 terms of their effect on vectorial capacity for various mosquito species across a range of geographical 

98 settings. Furthermore, it produces ready-to-use outputs which can be plugged into established models of 

99 malaria transmission dynamics such as OpenMalaria (35, 36). 

100

101 Entomological model of the mosquito feeding cycle and vectorial 

102 capacity

103 Mosquito feeding dynamics are represented through a previously described state-transition model (Fig 

104 1, middle panel) that simulates the feeding behaviour of female mosquitoes from a population (32). 
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105 Briefly, the model quantifies the probabilities of mosquito survival across five stages of the feeding cycle: 

106 host seeking, feeding, searching for a resting place, resting, and ovipositing. The total numbers of host 

107 seeking, infected and infectious (sporozoite positive) mosquitoes are modelled through a system of 

108 difference equations with one-day time steps. In the absence of intervention pressure, the stage-specific 

109 survival probabilities are assigned the values derived in Chitnis et al. (32). Intervention effects are 

110 modelled through reductions in these probabilities. The vectorial capacity, defined as the total number of 

111 subsequent infectious mosquito bites originating from each mosquito biting a human infected with 

112 malaria, is calculated analytically using the formulation derived in Chitnis et al. (32) and constitutes a 

113 proxy for the intervention impact. 

114 Mosquito bionomics data

115 The feeding cycle model relies on quantified ecological and bionomic characteristics of the mosquitoes, 

116 including the parous rate, the human blood index, the sac rate, their endophily and endophagy. 

117 AnophelesModel allows the user to input their own data and tailor the entomological model to the vector 

118 species of interest. Additionally, it also harbours an extensive database of relevant parameters collated 

119 from published literature and publicly available sources. Using a Bayesian hierarchical model applied to 

120 previously-published entomological data (30, 37, 38), mosquito bionomic parameters were derived for 57 

121 Anopheles species and 17 complexes (groupings of sibling species) and included in the package. 

122 Modelling the effects of vector control interventions on the 

123 mosquito feeding cycle

124 The protective effects of vector control interventions used in the AnophelesModel package are defined 

125 in terms of the reduction in the proportion of mosquitoes reaching each stage in the feeding cycle (Fig 1 

126 middle panel). There are three main effects modelled:
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127  Deterrency: the reduction in the availability rate of humans to mosquitoes per day, estimated 

128 based on the proportion of mosquitoes that fail to reach a protected human or are deterred from 

129 biting due to intervention

130  Pre-prandial killing: the proportion of mosquitoes that are killed before feeding

131  Post-prandial killing: the proportion of mosquitoes that are killed after feeding

132 The user can directly input these effects and use the package to conduct impact analysis for the 

133 interventions of their choice. In addition, a couple of parameterisations for intervention effects are already 

134 available in the package for long-lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS) 

135 and house screening. These effects have been estimated using previously published intervention models 

136 (Table S1). Accordingly, they have been parameterised with data generated from experimental hut trials 

137 and adjusted according to the intervention-specific temporal decay functions, measuring attrition, change 

138 in use, insecticide decay and physical deterioration for LLINs, and insecticide decay for IRS (9, 28, 30). 

139 Each intervention is assigned a duration corresponding to the time between consecutive deployments 

140 (e.g., 3 years for LLINs and 0.5 years for IRS). The effects and the resulting reduction in vectorial capacity 

141 are calculated for a finite number of equally spaced time points throughout this duration (denoted as 

142 interpolation points in the package). All intervention effects are adjusted for the exposure of humans to 

143 mosquitoes as described in the section below.

144

145 Modelled effects of LLINs included in the package

146 A previously published system of logistic regression models (9, 30) can be used with the package to 

147 estimate the effects of LLINs deployments (cf. Supplementary Material). The decay of physical properties 

148 of mosquito nets in terms of attrition, use, physical and chemical integrity has been estimated using the 

149 data from the President Malaria Initiative (PMI) net durability studies (39), and on data from Morgan et 

150 al. (40) as described in Briet et al. (9) (cf. Supplementary Material). These datasets, containing properties 

151 of various net types in different countries, are also included in the package.
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152

153 Modelled effects of IRS included in the package

154 The package includes several parameterisations of IRS effects for different insecticide and vector species 

155 combinations (cf. Supplementary Material) derived using experimental data from previous studies (23-

156 26, 41). 

157

158 Effects of house screening included in the package

159 The effect of house screening interventions available in the package is assumed to be a linear relationship 

160 with the availability of humans to mosquitoes, with a 59% reduction as estimated in (30) based on data 

161 from Belize (42) and Ghana (43).

162 Integrating mosquito and human activity patterns, estimating 

163 human exposure to mosquitoes

164 AnophelesModel implements a novel approach which allows using input data on biting rhythms and 

165 human activity to adjust the effects of vector control interventions depending on the exposure of humans 

166 to mosquito biting, endophily (the proportion of indoor resting mosquitoes) and endophagy (the proportion 

167 of indoor feeding mosquitoes). Precisely, the deterrency, pre-prandial and post-prandial killing effects of 

168 the interventions are adjusted by multiplying them by the corresponding setting-specific exposure 

169 coefficient. A detailed description of this approach is provided in the Supplementary Material. 

170 AnophelesModel also includes ready-to-use data on biting rhythms and human activity recently compiled 

171 by Sherrard-Smith  et al. (7). In addition, the package database contains entries from a non-systematic 

172 sample of publications (44-53).

173 Interfacing with models of malaria transmission dynamics
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174 In addition to providing estimates of intervention effects on vectorial capacity, the AnophelesModel 

175 package estimates the decay of intervention effects over time and generates parameterizations of vector 

176 control components which may be used for running simulations with the OpenMalaria model.  

177 OpenMalaria is an agent-based, stochastic model of malaria transmission dynamics and it has been 

178 extensively described in previous publications (13, 35, 36, 54). It can be used to simulate malaria 

179 transmission within a population of individuals, deploy interventions and estimate their impact on malaria 

180 burden over time. 

181 OpenMalaria requires a configuration file in XML format which includes all the specifications of a 

182 simulation. The objects required for modelling vector characteristics and the effects of vector control 

183 interventions in OpenMalaria are XML snippets for inclusion in the scenario XML. Entomological 

184 characteristics are defined through an entomology XML snippet and intervention effects can be defined 

185 through the “generic vector intervention” (GVI) XML snippet (further information about OpenMalaria XML 

186 definitions is provided at https://github.com/SwissTPH/openmalaria/wiki). The GVI snippet includes the 

187 definition of decay and initial effect parameters for deterrency, pre- and post-prandial killing effects of 

188 interventions. In OpenMalaria, the intervention effects modelled through GVI components can be 

189 associated one of seven possible decay functions. AnophelesModel uses nonlinear least squares (R 

190 package minpack.lm version 1.2-2) to fit in turn each of the seven decay functions to the time series of 

191 estimated intervention effects and chooses the decay with the best fit (smallest residual sum of squares). 

192 The XML components needed for OpenMalaria simulation specifications can then be generated with the 

193 package. 

194

195 Results

196 To illustrate the functionalities of the package, we provide examples using the data included in the 

197 package for two mosquito species, namely Anopheles farauti and Anopheles gambiae and compare the 
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198 effects of LLINs deployments. All the code used in the analysis presented in this paper is included in the 

199 package GitHub repository (see section Availability and Future Directions).

200

201 Visualising human, mosquito and intervention characteristics

202 The AnophelesModel package can provide visualisations of the entomological characteristics of mosquito 

203 species at different locations and model how these impact various vector control interventions. One 

204 resource included in the package is a readily available database encompassing human activity patterns, 

205 mosquito biting patterns, mosquito entomological characteristics and intervention characteristics. The 

206 user can directly access the various data types through dedicated data objects. A detailed description of 

207 these data objects is provided in the package documentation.
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208

209 Figure 2: Examples of the key types of data available within the AnophelesModel database which 

210 can be used to estimate the impact of vector control interventions. In the package, entomological 

211 parameters (A), mosquito biting patterns (B), human activity patterns (C) and intervention properties (D) 

212 are provided and can be used to parameterise an entomological model of the mosquito feeding cycle. 

213 Examples are provided for An. gambiae and An. farauti in Kenya and Papua New Guinea (PNG) settings, 

214 respectively. In panel (A), the arrows indicate the bars corresponding to the two mosquito species. In 

215 panel (B), the grey area highlights the time when people sleep under a net. Panel (D) summarizes the 

216 observed variation in physical properties of LLINs in a Kenya-like setting (9). Data sources of all data 

217 types are specified in the “Design and Implementation” section.
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218 The package database can be queried, for example to analyse how An. gambiae, among the dominant 

219 malaria vectors in sub-Saharan Africa (55), differs from An. farauti, a major vector in Papua New Guinea 

220 (PNG) (Fig 2). The two species are different not only in their bionomics, but also in terms of their biting 

221 patterns. An. gambiae has higher parous rates, sac rates, and human blood index, and is more 

222 endophagic than An. farauti (Fig 2A). Furthermore, An. gambiae preferentially bites indoors during the 

223 night, while An. farauti also bites outdoors, especially in the early evening (Fig 2B). These differences all 

224 affect the modelled impacts of interventions such as LLINs. In the following example, we demonstrate 

225 how AnophelesModel can be used to compare the impacts of LLINs for these two species in their 

226 respective settings mainly relying on the data present in the package database, and incorporating new, 

227 recently published data on human behaviour for a PNG-like setting (56) (Fig 2C).

228

229 Quantifying and comparing the species-specific impact of vector 

230 control interventions

231 We used AnophelesModel to incorporate the different mosquito, human and intervention data (Fig 2) and 

232 to model the effects of LLINs for the two species using distinct values for deterrency, pre- and post-

233 prandial killing effects for the two settings. We estimated higher effects of LLINs for An. gambiae in the 

234 Kenyan-like setting compared to An. farauti in the PNG-like setting (Fig 3A), and a correspondingly higher 

235 reduction in vectorial capacity for An. gambiae in the Kenyan setting (Fig 3B).

236 The effectiveness of a vector control intervention is influenced by both its chemical and physical 

237 properties, and by the alignment of its temporal effects with the circadian rhythms of human behaviour 

238 and the mosquito biting patterns. With human presence indoors and in bed exhibiting the patterns shown 

239 in Fig 2C, a substantial proportion of the bites from An. farauti occur in the early evening when people 

240 are not yet sleeping under a net, in contrast to An. gambiae, which mostly bites at night. Thus, as found 

241 in previous analyses of the African data (7), the mosquito and human activity patterns strongly affect the 
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242 estimated impact of vector control interventions, even when the physical and chemical durability of the 

243 mosquito nets are uniform (Fig 2D).

244

245 Figure 3: Estimated effects of LLINs deployment for An. gambiae and An. farauti. Mosquito, human 

246 and intervention data are combined in the AnophelesModel package to estimate the different types of 

247 intervention decay throughout time (A), as well as the resulting mean reduction in vectorial capacity for 

248 varying LLINs deployment coverages (here equivalent to LLINs usage) (B). The time units in panel (A) 

249 are defined by 100 equally distanced interpolation points across the duration of the interventions (i.e., 3 

250 years for LLINs). The ribbons in panel (B) correspond to the variation of the vectorial capacity estimated 
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251 based on the confidence intervals of the mosquito bionomics parameters (details on uncertainty 

252 propagation provided in the Supplementary Material).

253 Similar to the examples provided for An. gambiae and An. farauti, the AnophelesModel package can be 

254 used to estimate and compare how the effects of interventions vary for other mosquito species and 

255 geographical locations. The user is not limited to the package database, but can input new data and use 

256 these in the modelling. The package documentation provides further examples illustrating the use of new 

257 data and also reproducing previously published analyses comparing An. gambiae and An. albimanus 

258 (30). 

259 Interfacing AnophelesModel with models of intervention impact 

260 and malaria transmission

261 The estimated, exposure-adjusted effects of interventions (Fig 3) can be further incorporated in 

262 downstream analyses and models of malaria transmission dynamics. In particular, AnophelesModel 

263 contains functions for producing formatted entomology and intervention input for the OpenMalaria model. 

264
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265

266 Figure 4: Simulation of the impact of LLINs deployment in OpenMalaria. XML snippets produced by 

267 AnophelesModel were used in OpenMalaria to model the entomology and effects of LLINs deployments 

268 in Kenyan-like and PNG-like settings and to simulate all-age prevalence. One deployment of LLINs was 

269 simulated in January 2023 (dashed line).

270

271 For illustrating using OpenMalaria the example considering the Kenyan-like and PNG-like settings 

272 described before (Fig 2-3), we informed the model parameters regarding seasonality of transmission, 

273 entomological, and vector control interventions with geographic-specific values. To do so, we estimated 

274 the geographic-specific entomological parameters (Fig 2A) and intervention effects decays (Fig 3A) of 

275 LLINs deployment using AnophelesModel and further incorporated them in OpenMalaria simulations of 

276 malaria dynamics. OpenMalaria version 44 was used for this analysis. Populations of 10,000 people in 

277 each setting were simulated starting January 1999, with a single LLINs deployment in January 2023 at 

278 60% coverage. Case management was the only other intervention present in the simulation, deployed 

279 from the beginning, and was set to 50% effective coverage for both settings. Coverage of an intervention 

280 was defined as the proportion of people protected against malaria infection by that intervention. 
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281 For simplicity, in this simulation example, malaria transmission was treated as proportional to monthly 

282 rainfall, an assumption that is not implicit in real-world settings. Rainfall data was extracted from 

283 WorldClim (57) and shifted by a lag period of 30 days to consider the delay in mosquito density, 

284 emergence and infection. The Kenyan-like simulation used the rainfall profile of the Kisumu region, and 

285 the PNG-like simulation that of the Momase region. For the sake of comparison, the transmission intensity 

286 prior to start of the interventions deployment was considered similar in both settings by choosing an initial 

287 annual entomological inoculation rate of 15 infective bites per person per year for both simulated settings.

288 Plasmodium falciparum prevalence in all ages over time was simulated for the two settings (Fig 4). As 

289 expected, the impact in reducing prevalence by LLINs deployment was lower in the PNG-like setting 

290 compared to the Kenya-like setting. By allowing accurate incorporation of intervention effects in models 

291 of malaria transmission such as OpenMalaria, AnophelesModel facilitates exploring further, more 

292 complex intervention scenarios, such as combining vector control with drug interventions or 

293 supplementing the LLINs deployments with other interventions potentially targeting outdoor biting in PNG.

294

295 Availability and Future Directions

296 The AnophelesModel R package source code and data are publicly available online in a dedicated GitHub 

297 repository at https://github.com/SwissTPH/AnophelesModel. A user-friendly website available at 

298 https://swisstph.github.io/AnophelesModel/index.html provides package installation instructions, 

299 comprehensive descriptions of functions, parameters and data, and detailed examples of use-cases. A 

300 systematic tutorial and documentation of the different package functions are provided at 

301 https://swisstph.github.io/AnophelesModel/articles/AnophelesModel.html. Furthermore, all code used for 

302 the examples presented in this paper and for generating the corresponding figures is available at 

303 https://github.com/SwissTPH/AnophelesModel/tree/main/extdata. This include the XML files and scripts 

304 used for OpenMalaria simulations.
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305 Patterns of human exposure to mosquitoes alongside mosquito bionomics should always be considered 

306 when using impact modelling to make decisions about vector control options in different geographical 

307 settings (4, 5, 7). For this purpose, the AnophelesModel package combines these different types of data 

308 to provide inputs into malaria models. In this paper, we have provided an example describing how to use 

309 the package outputs with the OpenMalaria model (35, 36). In the presented analysis, following inclusion 

310 of the exposure-adjusted intervention effects in OpenMalaria, we observed a clear difference in public 

311 health impact of LLINs deployment between the Kenya-like and PNG-like settings with similar pre-

312 intervention transmission prevalence. 

313 The value and usability of the package, as well as its interfacing with other models, have been already 

314 demonstrated in other published applications. For example, in a recently published study, 

315 AnophelesModel was used to inform the impact of vector control in a compartmental model of 

316 Plasmodium vivax malaria dynamics applied to identify malaria transmission hotspots in Panama (58). 

317 Furthermore, the package has been incorporated in a mathematical modelling framework to quantify the 

318 country-specific impact of interventions against Plasmodium vivax malaria (59).

319 The AnophelesModel package is flexible beyond the provided database, allowing the user to plug in new 

320 data and parameters and model intervention effects for a custom setting. The package database is not 

321 exhaustive and does not account for seasonal variation or variation by human age or occupational group. 

322 The package is a powerful tool for exploring how the impact of vector control interventions changes 

323 following the observed variation in input mosquito biting and human behaviour patterns.

324 Planned developments of the AnophelesModel package include extension of the database of mosquito, 

325 human behaviour and intervention characteristics through systematic reviews, including more recently-

326 generated data and intervention models. Currently three interventions are modelled within the package, 

327 namely IRS, LLINs and house screening, but other interventions such as spatial repellents and attractive 

328 toxic sugar baits will be added in the future. 

329
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