

1 AnophelesModel: An R package to interface mosquito bionomics, human
2 exposure and intervention effects with models of malaria intervention impact

3

4 Monica Golumbeanu^{1,2*}, Olivier Briët^{1,2}, Clara Champagne^{1,2}, Jeanne Lemant^{1,2}, Munir Winkel^{1,2},
5 Barnabas Zogo³, Maximilian Gerhards^{1,2}, Marianne Sinka⁴, Nakul Chitnis^{1,2}, Melissa Penny^{1,2}, Emilie
6 Pothin^{1,2}, Tom Smith^{1,2}

7

8 ¹ Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland

9 ² University of Basel, Basel, Switzerland

10 ³ University of Montpellier, Montpellier, France

11 ⁴ Department of Zoology, University of Oxford, Oxford, UK

12

13 * Corresponding author

14 E-mail: monica.golumbeanu@swisstph.ch

15

16

17 **Abstract**

18 In recent decades, field and semi-field studies of malaria transmission have gathered geographic-specific
19 information about mosquito ecology, behaviour and their sensitivity to interventions. Mathematical models
20 of malaria transmission can incorporate such data to infer the likely impact of vector control interventions
21 and hence guide malaria control strategies in various geographies. To facilitate this process and make
22 model predictions of intervention impact available for different geographical regions, we developed
23 *AnophelesModel*. *AnophelesModel* is an online, open-access, R package that directly allows
24 incorporating generated entomological data for adjustment of models to assess intervention scenarios
25 according to species and location-specific characteristics. In addition, it includes a previously published,
26 comprehensive, curated database of field entomological data from over 50 *Anopheles* species, field data
27 on mosquito and human behaviour, and on estimates of vector control effectiveness. Using the input
28 data, the package parameterizes a discrete-time, state transition model of the mosquito oviposition cycle
29 and infers species-specific impacts of various interventions on vectorial capacity. In addition, it offers
30 formatted outputs ready to use in downstream analyses and by other models of malaria transmission for
31 accurate representation of the vector-specific components. Using *AnophelesModel*, we show how the
32 key implications for intervention impact change for various vectors and locations. The package facilitates
33 quantitative comparisons of likely intervention impacts in different geographical settings varying in vector
34 compositions, and can thus guide towards more robust and efficient malaria control recommendations.
35 The *AnophelesModel* R package is available under a GPL-3.0 license at
36 <https://github.com/SwissTPH/AnophelesModel>.

37

38

39

40

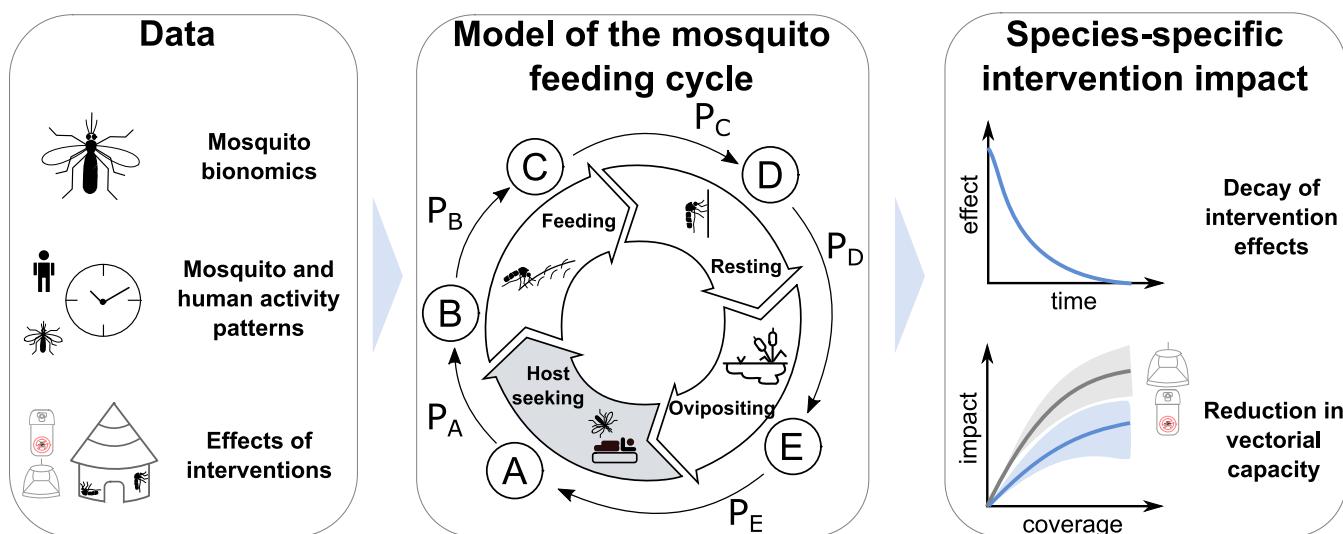
41 Introduction

42 Vector control targeting *Anopheles* (*An.*) mosquitoes and protecting people from their dangerous,
43 malaria-infectious bites has been the predominant way of reducing the malaria burden worldwide (1).
44 Over 220 million insecticide-treated nets (ITNs), the most common vector control tool, were distributed in
45 2021 (2), but the impact of these and other vector control interventions varies geographically depending
46 on multiple factors. These factors include intra and inter-species heterogeneity in the characteristics of
47 the vectors and geographical variation in vector species composition. *Anopheles* mosquitoes have a
48 complex life-cycle, continuously adapting to and evolving with the surrounding environment. The species
49 native to Africa can be very different to those found elsewhere (3). The interactions of circadian mosquito
50 biting patterns and the behavioural patterns of humans are particularly relevant for the risk of human
51 exposure to mosquitoes. Recent studies have emphasized the importance of considering these factors
52 when estimating the geographic-specific impact of vector control interventions and for implementing
53 vector control strategies (4-8). Additionally, the physical and chemical properties of the various
54 interventions, such as the physical integrity and insecticide efficiency of ITNs and how each of these vary
55 over time, also strongly impact the effectiveness of vector control (9-11).

56 Mathematical models of malaria transmission are frequently used to integrate quantitative evidence about
57 the effects of malaria interventions to enhance prediction of impact and planning of interventions (12-14).
58 This type of modelling has become an important part of decision-making, in particular for guiding national
59 malaria strategic plans in malaria-endemic countries (15-17). For the models to accurately quantify the
60 impacts of interventions, data from experimental hut trials and cluster-randomized control trials (9, 18-
61 26) are generally used to parameterize their effects (12, 27-31). Nonetheless, model parameterizations
62 should also consider local variations in human behaviour and thus human exposure to mosquito bites.
63 Considering human behavioural data and setting-specific differences in mosquito biting and bionomics
64 can improve model predictions of intervention effectiveness (5).

65 Integrating human activity, mosquito biting patterns and other entomological characteristics to adjust the
66 estimated impact of vector control interventions comes with its challenges. Many independent studies
67 with different experimental techniques and data recording approaches are involved. Comprehensive data
68 are rarely collected at the same location and time. Several existing models and studies account for the
69 life parameters of mosquitoes estimated from entomological data and have combined information on
70 mosquito biting and human activity (7, 8, 30, 32-34). However, these are only a few studies and have
71 been limited to a handful of locations. A comprehensive framework collating the different data types,
72 allowing for direct data integration and interfacing with models to estimate location-specific intervention
73 impact in a systematic way has been lacking.

74



75

76

77 **Figure 1: Overview of the AnophelesModel R package and its components.** The package integrates
78 several types of data (first panel) to estimate how vector control interventions affect transitions between
79 the different states of the mosquito feeding cycle (states of the cycle denoted with letters A – E in the
80 middle panel with transition probabilities P_A – P_E). Within the package, an entomological model is
81 parameterised and used to infer the species-specific effects of vector control interventions, including their
82 decay over time as well as their impact on the vectorial capacity (third panel).

83

84 Building on previous modelling of the mosquito feeding cycle (32) and of vector control impact (9, 28,
85 30), we have developed the AnophelesModel R package (Fig 1) to address these challenges.
86 AnophelesModel estimates the species and geographic-specific impact of vector control interventions by
87 allowing the user to directly integrate several layers of input data representing mosquito bionomic
88 characteristics, mosquito and human activity patterns, human exposure to mosquitoes, and the effects
89 of interventions.

90

91 **Design and Implementation**

92 AnophelesModel uses the data provided by the user to parameterize a mathematical model describing
93 the mosquito feeding cycle (32) which infers how the state to state transitions within the feeding cycle are
94 affected by different interventions, considering their decay over time. Thus, the model estimates the
95 reduction in vectorial capacity for a given intervention. The package allows the user to run analyses for
96 interventions and species-bionomics with self-provided data. It can compare multiple interventions in
97 terms of their effect on vectorial capacity for various mosquito species across a range of geographical
98 settings. Furthermore, it produces ready-to-use outputs which can be plugged into established models of
99 malaria transmission dynamics such as OpenMalaria (35, 36).

100

101 **Entomological model of the mosquito feeding cycle and vectorial 102 capacity**

103 Mosquito feeding dynamics are represented through a previously described state-transition model (Fig
104 1, middle panel) that simulates the feeding behaviour of female mosquitoes from a population (32).

105 Briefly, the model quantifies the probabilities of mosquito survival across five stages of the feeding cycle:
106 host seeking, feeding, searching for a resting place, resting, and ovipositing. The total numbers of host
107 seeking, infected and infectious (sporozoite positive) mosquitoes are modelled through a system of
108 difference equations with one-day time steps. In the absence of intervention pressure, the stage-specific
109 survival probabilities are assigned the values derived in *Chitnis et al.* (32). Intervention effects are
110 modelled through reductions in these probabilities. The vectorial capacity, defined as the total number of
111 subsequent infectious mosquito bites originating from each mosquito biting a human infected with
112 malaria, is calculated analytically using the formulation derived in *Chitnis et al.* (32) and constitutes a
113 proxy for the intervention impact.

114 **Mosquito bionomics data**

115 The feeding cycle model relies on quantified ecological and bionomic characteristics of the mosquitoes,
116 including the parous rate, the human blood index, the sac rate, their endophily and endophagy.
117 AnophelesModel allows the user to input their own data and tailor the entomological model to the vector
118 species of interest. Additionally, it also harbours an extensive database of relevant parameters collated
119 from published literature and publicly available sources. Using a Bayesian hierarchical model applied to
120 previously-published entomological data (30, 37, 38), mosquito bionomic parameters were derived for 57
121 *Anopheles* species and 17 complexes (groupings of sibling species) and included in the package.

122 **Modelling the effects of vector control interventions on the** 123 **mosquito feeding cycle**

124 The protective effects of vector control interventions used in the AnophelesModel package are defined
125 in terms of the reduction in the proportion of mosquitoes reaching each stage in the feeding cycle (Fig 1
126 middle panel). There are three main effects modelled:

127 • Deterency: the reduction in the availability rate of humans to mosquitoes per day, estimated
128 based on the proportion of mosquitoes that fail to reach a protected human or are deterred from
129 biting due to intervention

130 • Pre-prandial killing: the proportion of mosquitoes that are killed before feeding
131 • Post-prandial killing: the proportion of mosquitoes that are killed after feeding

132 The user can directly input these effects and use the package to conduct impact analysis for the
133 interventions of their choice. In addition, a couple of parameterisations for intervention effects are already
134 available in the package for long-lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS)
135 and house screening. These effects have been estimated using previously published intervention models
136 (Table S1). Accordingly, they have been parameterised with data generated from experimental hut trials
137 and adjusted according to the intervention-specific temporal decay functions, measuring attrition, change
138 in use, insecticide decay and physical deterioration for LLINs, and insecticide decay for IRS (9, 28, 30).

139 Each intervention is assigned a duration corresponding to the time between consecutive deployments
140 (e.g., 3 years for LLINs and 0.5 years for IRS). The effects and the resulting reduction in vectorial capacity
141 are calculated for a finite number of equally spaced time points throughout this duration (denoted as
142 interpolation points in the package). All intervention effects are adjusted for the exposure of humans to
143 mosquitoes as described in the section below.

144

145 *Modelled effects of LLINs included in the package*

146 A previously published system of logistic regression models (9, 30) can be used with the package to
147 estimate the effects of LLINs deployments (cf. Supplementary Material). The decay of physical properties
148 of mosquito nets in terms of attrition, use, physical and chemical integrity has been estimated using the
149 data from the President Malaria Initiative (PMI) net durability studies (39), and on data from Morgan *et*
150 *al.* (40) as described in *Briet et al.* (9) (cf. Supplementary Material). These datasets, containing properties
151 of various net types in different countries, are also included in the package.

152

153 *Modelled effects of IRS included in the package*

154 The package includes several parameterisations of IRS effects for different insecticide and vector species
155 combinations (cf. Supplementary Material) derived using experimental data from previous studies (23-
156 26, 41).

157

158 *Effects of house screening included in the package*

159 The effect of house screening interventions available in the package is assumed to be a linear relationship
160 with the availability of humans to mosquitoes, with a 59% reduction as estimated in (30) based on data
161 from Belize (42) and Ghana (43).

162 **Integrating mosquito and human activity patterns, estimating 163 human exposure to mosquitoes**

164 AnophelesModel implements a novel approach which allows using input data on biting rhythms and
165 human activity to adjust the effects of vector control interventions depending on the exposure of humans
166 to mosquito biting, endophily (the proportion of indoor resting mosquitoes) and endophagy (the proportion
167 of indoor feeding mosquitoes). Precisely, the deterrence, pre-prandial and post-prandial killing effects of
168 the interventions are adjusted by multiplying them by the corresponding setting-specific exposure
169 coefficient. A detailed description of this approach is provided in the Supplementary Material.
170 AnophelesModel also includes ready-to-use data on biting rhythms and human activity recently compiled
171 by Sherrard-Smith *et al.* (7). In addition, the package database contains entries from a non-systematic
172 sample of publications (44-53).

173 **Interfacing with models of malaria transmission dynamics**

174 In addition to providing estimates of intervention effects on vectorial capacity, the *AnophelesModel*
175 package estimates the decay of intervention effects over time and generates parameterizations of vector
176 control components which may be used for running simulations with the *OpenMalaria* model.
177 *OpenMalaria* is an agent-based, stochastic model of malaria transmission dynamics and it has been
178 extensively described in previous publications (13, 35, 36, 54). It can be used to simulate malaria
179 transmission within a population of individuals, deploy interventions and estimate their impact on malaria
180 burden over time.

181 *OpenMalaria* requires a configuration file in XML format which includes all the specifications of a
182 simulation. The objects required for modelling vector characteristics and the effects of vector control
183 interventions in *OpenMalaria* are XML snippets for inclusion in the scenario XML. Entomological
184 characteristics are defined through an entomology XML snippet and intervention effects can be defined
185 through the “*generic vector intervention*” (GVI) XML snippet (further information about *OpenMalaria* XML
186 definitions is provided at <https://github.com/SwissTPH/openmalaria/wiki>). The GVI snippet includes the
187 definition of decay and initial effect parameters for deterrence, pre- and post-prandial killing effects of
188 interventions. In *OpenMalaria*, the intervention effects modelled through GVI components can be
189 associated one of seven possible decay functions. *AnophelesModel* uses nonlinear least squares (R
190 package *minpack.lm* version 1.2-2) to fit in turn each of the seven decay functions to the time series of
191 estimated intervention effects and chooses the decay with the best fit (smallest residual sum of squares).
192 The XML components needed for *OpenMalaria* simulation specifications can then be generated with the
193 package.

194

195 **Results**

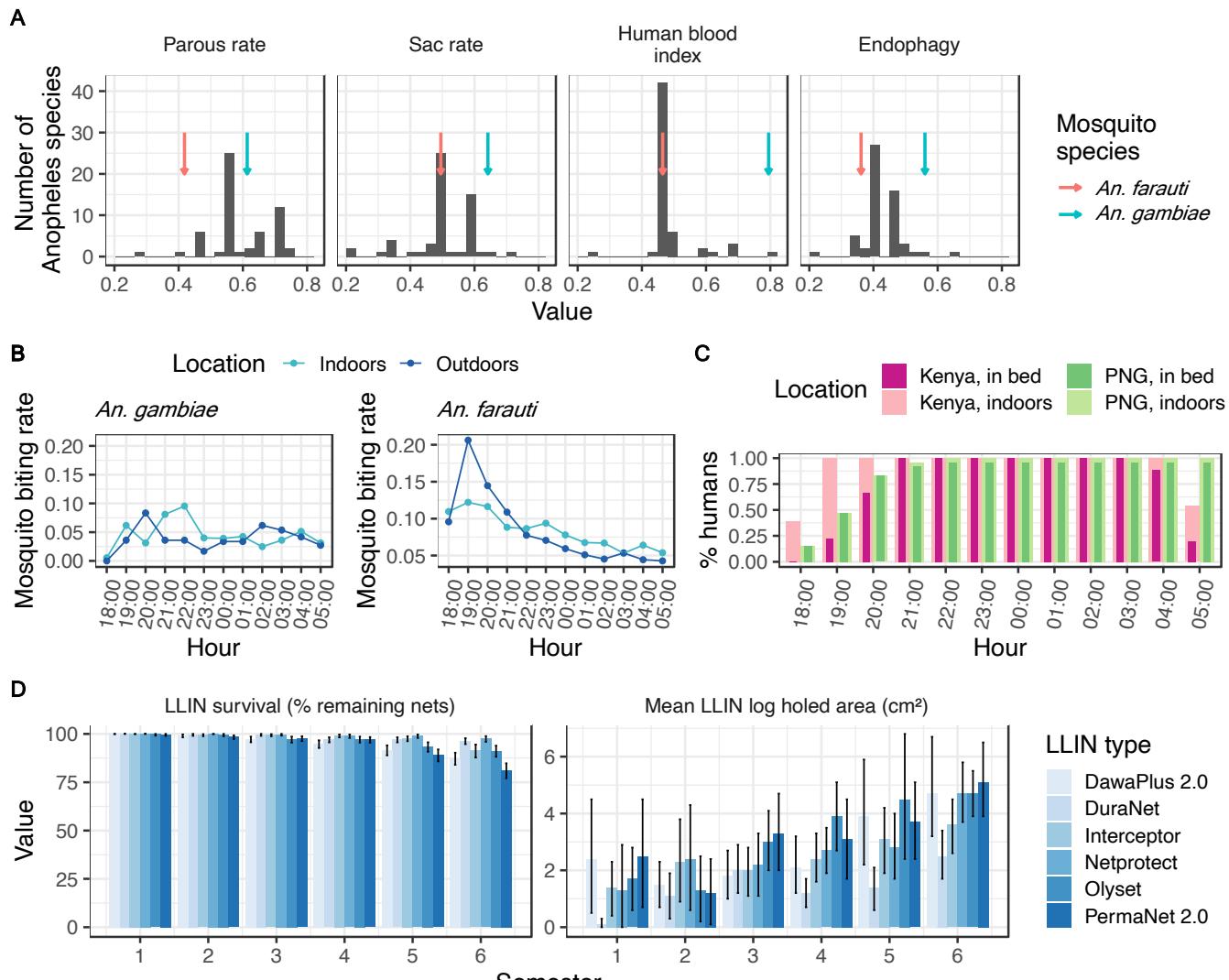
196 To illustrate the functionalities of the package, we provide examples using the data included in the
197 package for two mosquito species, namely *Anopheles farauti* and *Anopheles gambiae* and compare the

198 effects of LLINs deployments. All the code used in the analysis presented in this paper is included in the
199 package GitHub repository (see section Availability and Future Directions).

200

201 **Visualising human, mosquito and intervention characteristics**

202 The AnophelesModel package can provide visualisations of the entomological characteristics of mosquito
203 species at different locations and model how these impact various vector control interventions. One
204 resource included in the package is a readily available database encompassing human activity patterns,
205 mosquito biting patterns, mosquito entomological characteristics and intervention characteristics. The
206 user can directly access the various data types through dedicated data objects. A detailed description of
207 these data objects is provided in the package documentation.



208

209 **Figure 2: Examples of the key types of data available within the AnophelesModel database which**
 210 **can be used to estimate the impact of vector control interventions.** In the package, entomological
 211 parameters (**A**), mosquito biting patterns (**B**), human activity patterns (**C**) and intervention properties (**D**)
 212 are provided and can be used to parameterise an entomological model of the mosquito feeding cycle.
 213 Examples are provided for *An. gambiae* and *An. farauti* in Kenya and Papua New Guinea (PNG) settings,
 214 respectively. In panel (**A**), the arrows indicate the bars corresponding to the two mosquito species. In
 215 panel (**B**), the grey area highlights the time when people sleep under a net. Panel (**D**) summarizes the
 216 observed variation in physical properties of LLINs in a Kenya-like setting (9). Data sources of all data
 217 types are specified in the “Design and Implementation” section.

218 The package database can be queried, for example to analyse how *An. gambiae*, among the dominant
219 malaria vectors in sub-Saharan Africa (55), differs from *An. farauti*, a major vector in Papua New Guinea
220 (PNG) (Fig 2). The two species are different not only in their bionomics, but also in terms of their biting
221 patterns. *An. gambiae* has higher parous rates, sac rates, and human blood index, and is more
222 endophagic than *An. farauti* (Fig 2A). Furthermore, *An. gambiae* preferentially bites indoors during the
223 night, while *An. farauti* also bites outdoors, especially in the early evening (Fig 2B). These differences all
224 affect the modelled impacts of interventions such as LLINs. In the following example, we demonstrate
225 how AnophelesModel can be used to compare the impacts of LLINs for these two species in their
226 respective settings mainly relying on the data present in the package database, and incorporating new,
227 recently published data on human behaviour for a PNG-like setting (56) (Fig 2C).

228

229 **Quantifying and comparing the species-specific impact of vector 230 control interventions**

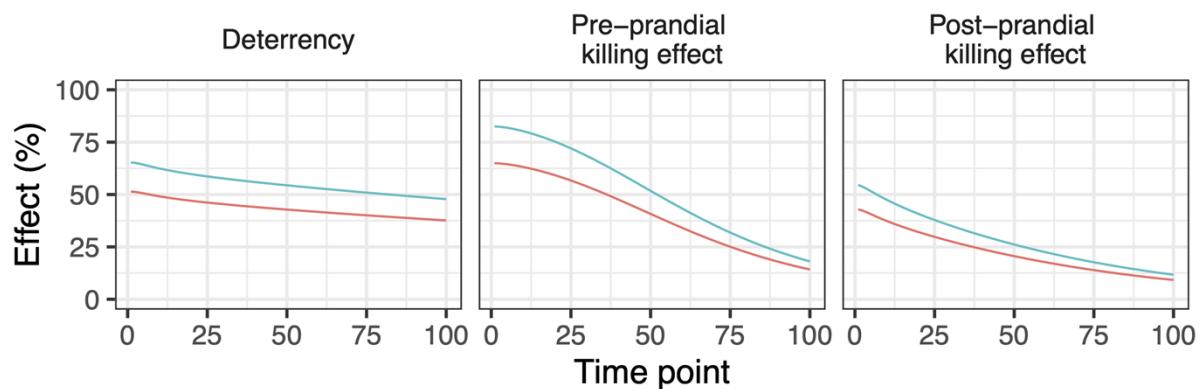
231 We used AnophelesModel to incorporate the different mosquito, human and intervention data (Fig 2) and
232 to model the effects of LLINs for the two species using distinct values for detergency, pre- and post-
233 prandial killing effects for the two settings. We estimated higher effects of LLINs for *An. gambiae* in the
234 Kenyan-like setting compared to *An. farauti* in the PNG-like setting (Fig 3A), and a correspondingly higher
235 reduction in vectorial capacity for *An. gambiae* in the Kenyan setting (Fig 3B).

236 The effectiveness of a vector control intervention is influenced by both its chemical and physical
237 properties, and by the alignment of its temporal effects with the circadian rhythms of human behaviour
238 and the mosquito biting patterns. With human presence indoors and in bed exhibiting the patterns shown
239 in Fig 2C, a substantial proportion of the bites from *An. farauti* occur in the early evening when people
240 are not yet sleeping under a net, in contrast to *An. gambiae*, which mostly bites at night. Thus, as found
241 in previous analyses of the African data (7), the mosquito and human activity patterns strongly affect the

242 estimated impact of vector control interventions, even when the physical and chemical durability of the
243 mosquito nets are uniform (Fig 2D).

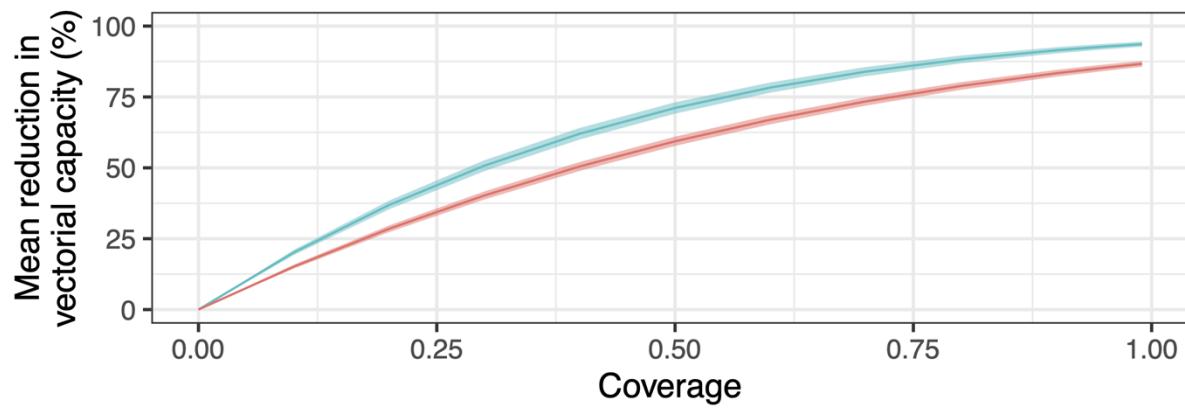
A

Mosquito species — *An. gambiae* — *An. farauti*



B

Mosquito species ■ *An. gambiae* ■ *An. farauti*



244

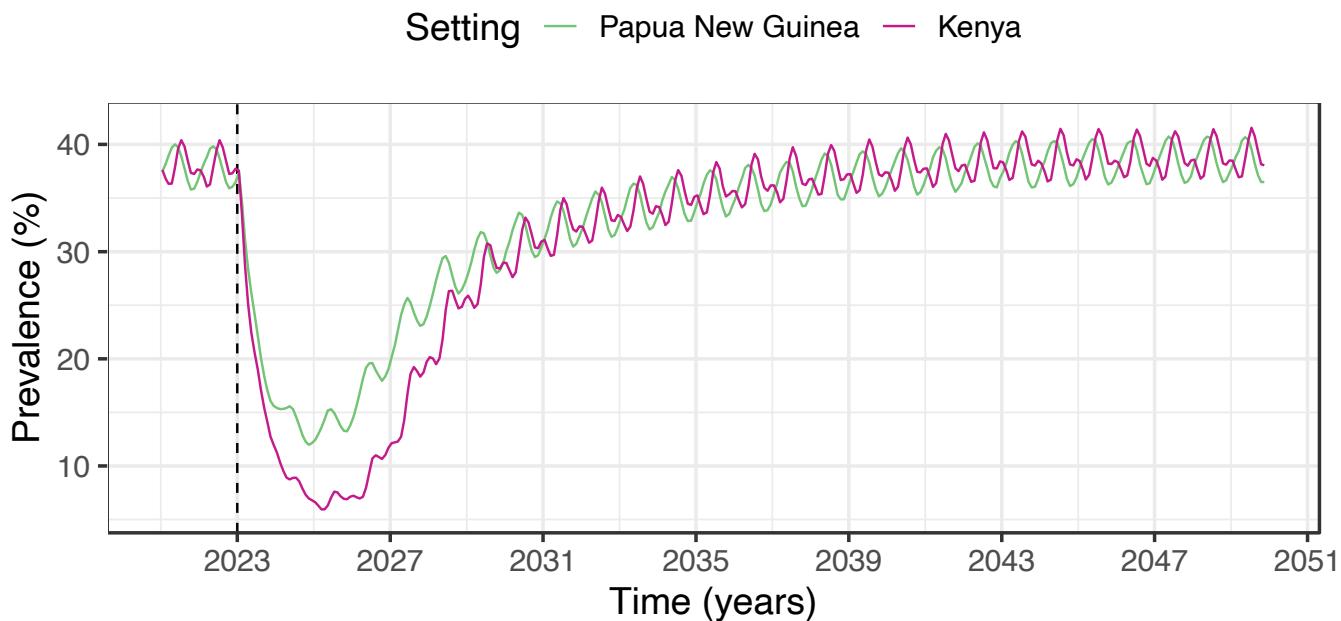
245 **Figure 3: Estimated effects of LLINs deployment for *An. gambiae* and *An. farauti*.** Mosquito, human
246 and intervention data are combined in the AnophelesModel package to estimate the different types of
247 intervention decay throughout time (A), as well as the resulting mean reduction in vectorial capacity for
248 varying LLINs deployment coverages (here equivalent to LLINs usage) (B). The time units in panel (A)
249 are defined by 100 equally distanced interpolation points across the duration of the interventions (i.e., 3
250 years for LLINs). The ribbons in panel (B) correspond to the variation of the vectorial capacity estimated

251 based on the confidence intervals of the mosquito bionomics parameters (details on uncertainty
252 propagation provided in the Supplementary Material).

253 Similar to the examples provided for *An. gambiae* and *An. farauti*, the AnophelesModel package can be
254 used to estimate and compare how the effects of interventions vary for other mosquito species and
255 geographical locations. The user is not limited to the package database, but can input new data and use
256 these in the modelling. The package documentation provides further examples illustrating the use of new
257 data and also reproducing previously published analyses comparing *An. gambiae* and *An. albimanus*
258 (30).

259 **Interfacing AnophelesModel with models of intervention impact
260 and malaria transmission**

261 The estimated, exposure-adjusted effects of interventions (Fig 3) can be further incorporated in
262 downstream analyses and models of malaria transmission dynamics. In particular, AnophelesModel
263 contains functions for producing formatted entomology and intervention input for the OpenMalaria model.
264



265

266 **Figure 4: Simulation of the impact of LLINs deployment in OpenMalaria.** XML snippets produced by
267 AnophelesModel were used in OpenMalaria to model the entomology and effects of LLINs deployments
268 in Kenyan-like and PNG-like settings and to simulate all-age prevalence. One deployment of LLINs was
269 simulated in January 2023 (dashed line).

270

271 For illustrating using OpenMalaria the example considering the Kenyan-like and PNG-like settings
272 described before (Fig 2-3), we informed the model parameters regarding seasonality of transmission,
273 entomological, and vector control interventions with geographic-specific values. To do so, we estimated
274 the geographic-specific entomological parameters (Fig 2A) and intervention effects decays (Fig 3A) of
275 LLINs deployment using AnophelesModel and further incorporated them in OpenMalaria simulations of
276 malaria dynamics. OpenMalaria version 44 was used for this analysis. Populations of 10,000 people in
277 each setting were simulated starting January 1999, with a single LLINs deployment in January 2023 at
278 60% coverage. Case management was the only other intervention present in the simulation, deployed
279 from the beginning, and was set to 50% effective coverage for both settings. Coverage of an intervention
280 was defined as the proportion of people protected against malaria infection by that intervention.

281 For simplicity, in this simulation example, malaria transmission was treated as proportional to monthly
282 rainfall, an assumption that is not implicit in real-world settings. Rainfall data was extracted from
283 WorldClim (57) and shifted by a lag period of 30 days to consider the delay in mosquito density,
284 emergence and infection. The Kenyan-like simulation used the rainfall profile of the Kisumu region, and
285 the PNG-like simulation that of the Momase region. For the sake of comparison, the transmission intensity
286 prior to start of the interventions deployment was considered similar in both settings by choosing an initial
287 annual entomological inoculation rate of 15 infective bites per person per year for both simulated settings.

288 *Plasmodium falciparum* prevalence in all ages over time was simulated for the two settings (Fig 4). As
289 expected, the impact in reducing prevalence by LLINs deployment was lower in the PNG-like setting
290 compared to the Kenya-like setting. By allowing accurate incorporation of intervention effects in models
291 of malaria transmission such as OpenMalaria, AnophelesModel facilitates exploring further, more
292 complex intervention scenarios, such as combining vector control with drug interventions or
293 supplementing the LLINs deployments with other interventions potentially targeting outdoor biting in PNG.

294

295 Availability and Future Directions

296 The AnophelesModel R package source code and data are publicly available online in a dedicated GitHub
297 repository at <https://github.com/SwissTPH/AnophelesModel>. A user-friendly website available at
298 <https://swisstph.github.io/AnophelesModel/index.html> provides package installation instructions,
299 comprehensive descriptions of functions, parameters and data, and detailed examples of use-cases. A
300 systematic tutorial and documentation of the different package functions are provided at
301 <https://swisstph.github.io/AnophelesModel/articles/AnophelesModel.html>. Furthermore, all code used for
302 the examples presented in this paper and for generating the corresponding figures is available at
303 <https://github.com/SwissTPH/AnophelesModel/tree/main/extdata>. This include the XML files and scripts
304 used for OpenMalaria simulations.

305 Patterns of human exposure to mosquitoes alongside mosquito bionomics should always be considered
306 when using impact modelling to make decisions about vector control options in different geographical
307 settings (4, 5, 7). For this purpose, the AnophelesModel package combines these different types of data
308 to provide inputs into malaria models. In this paper, we have provided an example describing how to use
309 the package outputs with the OpenMalaria model (35, 36). In the presented analysis, following inclusion
310 of the exposure-adjusted intervention effects in OpenMalaria, we observed a clear difference in public
311 health impact of LLINs deployment between the Kenya-like and PNG-like settings with similar pre-
312 intervention transmission prevalence.

313 The value and usability of the package, as well as its interfacing with other models, have been already
314 demonstrated in other published applications. For example, in a recently published study,
315 AnophelesModel was used to inform the impact of vector control in a compartmental model of
316 *Plasmodium vivax* malaria dynamics applied to identify malaria transmission hotspots in Panama (58).
317 Furthermore, the package has been incorporated in a mathematical modelling framework to quantify the
318 country-specific impact of interventions against *Plasmodium vivax* malaria (59).

319 The AnophelesModel package is flexible beyond the provided database, allowing the user to plug in new
320 data and parameters and model intervention effects for a custom setting. The package database is not
321 exhaustive and does not account for seasonal variation or variation by human age or occupational group.
322 The package is a powerful tool for exploring how the impact of vector control interventions changes
323 following the observed variation in input mosquito biting and human behaviour patterns.

324 Planned developments of the AnophelesModel package include extension of the database of mosquito,
325 human behaviour and intervention characteristics through systematic reviews, including more recently-
326 generated data and intervention models. Currently three interventions are modelled within the package,
327 namely IRS, LLINs and house screening, but other interventions such as spatial repellents and attractive
328 toxic sugar baits will be added in the future.

329

330

References

331 1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria
332 control on *Plasmodium falciparum* in Africa between 2000 and 2015. *Nature*. 2015;526:207.

333 2. World Health Organization. World malaria report 2022 2022 [Available from:
334 <https://apps.who.int/iris/rest/bitstreams/1484818/retrieve>].

335 3. Sinka ME. Global distribution of the dominant vector species of malaria. *Anopheles*
336 mosquitoes-New insights into malaria vectors: IntechOpen; 2013.

337 4. Monroe A, Moore S, Olapeju B, Merritt AP, Okumu F. Unlocking the human factor to increase
338 effectiveness and sustainability of malaria vector control. *Malaria Journal*. 2021;20(1):1-6.

339 5. Monroe A, Moore S, Okumu F, Kiware S, Lobo NF, Koenker H, et al. Methods and indicators for
340 measuring patterns of human exposure to malaria vectors. *Malaria journal*. 2020;19(1):1-14.

341 6. Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor
342 biting Anopheline malaria vector communities. *Parasites & Vectors*. 2020;13(1):1-15.

343 7. Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding
344 behavior and how it influences residual malaria transmission across Africa. *Proceedings of the National*
345 *Academy of Sciences*. 2019;116(30):15086-95.

346 8. Fernandez Montoya L, Alafo C, Martí-Soler H, Máquina M, Comiche K, Cuamba I, et al.
347 Overlaying human and mosquito behavioral data to estimate residual exposure to host-seeking
348 mosquitoes and the protection of bednets in a malaria elimination setting where indoor residual
349 spraying and nets were deployed together. *PloS one*. 2022;17(9):e0270882.

350 9. Briet O, Koenker H, Norris L, Wiegand R, Vanden Eng J, Thackeray A, et al. Attrition, physical
351 integrity and insecticidal activity of long-lasting insecticidal nets in sub-Saharan Africa and modelling of
352 their impact on vectorial capacity. *Malaria journal*. 2020;19(1):1-15.

353 10. Ahogni IB, Salako AS, Akinro B, Sovi A, Gnanguenon V, Azondekon R, et al. Physical integrity and
354 survivorship of long-lasting insecticidal nets distributed to households of the same socio-cultural
355 community in Benin, West Africa. *Malaria journal*. 2020;19:1-13.

356 11. Lindsay SW, Thomas MB, Kleinschmidt I. Threats to the effectiveness of insecticide-treated
357 bednets for malaria control: thinking beyond insecticide resistance. *The Lancet Global Health*.
358 2021;9(9):e1325-e31.

359 12. Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, et al.
360 Optimising the deployment of vector control tools against malaria: a data-informed modelling study.
361 *The Lancet Planetary Health*. 2022;6(2):e100-e9.

362 13. Penny MA, Verity R, Bever CA, Sauboin C, Galaktionova K, Flasche S, et al. Public health impact
363 and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from
364 four mathematical models. *The Lancet*. 2016;387(10016):367-75.

365 14. Runge M, Mapua S, Nambunga I, Smith TA, Chitnis N, Okumu F, et al. Evaluation of different
366 deployment strategies for larvicide to control malaria: a simulation study. *Malaria journal*.
367 2021;20(1):1-14.

368 15. Runge M, Snow RW, Molteni F, Thawer S, Mohamed A, Mandike R, et al. Simulating the council-
369 specific impact of anti-malaria interventions: a tool to support malaria strategic planning in Tanzania.
370 *PloS one*. 2020;15(2):e0228469.

371 16. Runge M, Molteni F, Mandike R, Snow RW, Lengeler C, Mohamed A, et al. Applied
372 mathematical modelling to inform national malaria policies, strategies and operations in Tanzania.
373 *Malaria journal.* 2020;19(1):1-10.

374 17. Ozodiegwu ID, Ambrose M, Galatas B, Runge M, Nandi A, Okuneye K, et al. Application of
375 mathematical modelling to inform national malaria intervention planning in Nigeria. *Malaria journal.*
376 2023;22(1):1-19.

377 18. Mosha JF, Kulkarni MA, Lukole E, Matowo NS, Pitt C, Messenger LA, et al. Effectiveness and
378 cost-effectiveness against malaria of three types of dual-active-ingredient long-lasting insecticidal nets
379 (LLINs) compared with pyrethroid-only LLINs in Tanzania: a four-arm, cluster-randomised trial. *The
380 Lancet.* 2022;399(10331):1227-41.

381 19. Sangoro O, Turner E, Simfukwe E, Miller JE, Moore SJ. A cluster-randomized controlled trial to
382 assess the effectiveness of using 15% DEET topical repellent with long-lasting insecticidal nets (LLINs)
383 compared to a placebo lotion on malaria transmission. *Malaria journal.* 2014;13(1):1-15.

384 20. Nash RK, Lambert B, N'Guessan R, Ngufor C, Rowland M, Oxborough R, et al. Systematic review
385 of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in
386 Africa. *Current research in parasitology & vector-borne diseases.* 2021;1:100047.

387 21. Bayili K, Ki HD, Bayili B, Sow B, Ouattara A, Small G, et al. Laboratory and experimental hut trial
388 evaluation of VECTRON™ T500 for indoor residual spraying (IRS) against insecticide resistant malaria
389 vectors in Burkina Faso. *Gates Open Research.* 2022;6(57):57.

390 22. Yewhalaw D, Balkew M, Zemene E, Chibsa S, Mumba P, Flatley C, et al. An experimental hut
391 study evaluating the impact of pyrethroid-only and PBO nets alone and in combination with
392 pirimiphos-methyl-based IRS in Ethiopia. *Malaria Journal.* 2022;21(1):1-11.

393 23. Bown DN, Rodríguez M, Arredondo-Jimenez JI, Loyola E, Rodriguez MdC. Age structure and
394 abundance levels in the entomological evaluation of an insecticide used in the control of *Anopheles*
395 *albimanus* in southern Mexico. *J Am Mosq Control Assoc.* 1991;7(2):180-7.

396 24. Agossa FR, Aïkpon R, Azondékon R, Govoetchan R, Padonou GG, Oussou O, et al. Efficacy of
397 various insecticides recommended for indoor residual spraying: pirimiphos methyl, potential
398 alternative to bendiocarb for pyrethroid resistance management in Benin, West Africa. *Transactions of
399 the Royal Society of Tropical Medicine and Hygiene.* 2014;108(2):84-91.

400 25. Tchicaya ES, Nsanzabana C, Smith TA, Donzé J, de Hipsl ML, Tano Y, et al. Micro-encapsulated
401 pirimiphos-methyl shows high insecticidal efficacy and long residual activity against pyrethroid-
402 resistant malaria vectors in central Côte d'Ivoire. *Malaria journal.* 2014;13:1-13.

403 26. Bangs MJ. The susceptibility and behavioral response of *Anopheles albimanus* Weidemann and
404 *Anopheles vestitipennis* Dyar and Knab (Diptera: Culicidae) to insecticides in northern Belize, Central
405 America: Uniformed Services University of the Health Sciences; 1999.

406 27. Briët OJ, Penny MA. Repeated mass distributions and continuous distribution of long-lasting
407 insecticidal nets: modelling sustainability of health benefits from mosquito nets, depending on case
408 management. *Malaria journal.* 2013;12(1):1-19.

409 28. Briët OJ, Hardy D, Smith TA. Importance of factors determining the effective lifetime of a mass,
410 long-lasting, insecticidal net distribution: a sensitivity analysis. *Malaria journal.* 2012;11(1):1-27.

411 29. Sherrard-Smith E, Ngufor C, Sanou A, Guelbeogo MW, N'Guessan R, Elobolobo E, et al. Inferring
412 the epidemiological benefit of indoor vector control interventions against malaria from mosquito data.
413 *Nature communications.* 2022;13(1):3862.

414 30. Briët OJ, Impoinvil DE, Chitnis N, Pothin E, Lemoine JF, Frederic J, et al. Models of effectiveness
415 of interventions against malaria transmitted by *Anopheles albimanus*. *Malaria journal*. 2019;18(1):1-12.

416 31. Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid resistance
417 on the efficacy and effectiveness of bednets for malaria control in Africa. *Elife*. 2016;5:e16090.

418 32. Chitnis N, Smith T, Steketee R. A mathematical model for the dynamics of malaria in
419 mosquitoes feeding on a heterogeneous host population. *Journal of Biological Dynamics*.
420 2008;2(3):259-85.

421 33. Guglielmo F, Sanou A, Churcher T, Ferguson HM, Ranson H, Sherrard-Smith E. Quantifying
422 individual variability in exposure risk to mosquito bites in the Cascades region, Burkina Faso. *Malaria*
423 *Journal*. 2021;20(1):1-14.

424 34. Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking human behaviours
425 and malaria vector biting risk in south-eastern Tanzania. *PLoS one*. 2019;14(6):e0217414.

426 35. Smith T, Killeen GF, Maire N, Ross A, Molineaux L, Tediosi F, et al. Mathematical modeling of
427 the impact of malaria vaccines on the clinical epidemiology and natural history of *Plasmodium*
428 *falciparum* malaria: Overview. *The American journal of tropical medicine and hygiene*.
429 2006;75(2_suppl):1-10.

430 36. Smith T, Ross A, Maire N, Chitnis N, Studer A, Hardy D, et al. Ensemble Modeling of the Likely
431 Public Health Impact of a Pre-Erythrocytic Malaria Vaccine. *PLOS Medicine*. 2012;9(1):e1001157.

432 37. Massey NC, Garrod G, Wiebe A, Henry AJ, Huang Z, Moyes CL, et al. A global bionomic database
433 for the dominant vectors of human malaria. *Scientific Data*. 2016;3(1):1-13.

434 38. Lemant J, Zogo B, Smith TA, Champagne C, Golumbeanu M, Pothin E, editors. Estimating the
435 variability of *Anopheles* bionomics and its impact on transmission with a hierarchical Bayesian model.
436 *American Journal of Tropical Medicine and Hygiene*; 2021: Amer Soc Trop Med & Hygiene 8000
437 Westpark DR, STE 130, McLean, VA 22101 USA.

438 39. President Malaria Initiative. LLIN Durability Monitoring 2023 [cited 2023 17 October]. Available
439 from: <https://www.durabilitymonitoring.org/>.

440 40. Morgan J, Abilio AP, do Rosario Pondja M, Marrenjo D, Luciano J, Fernandes G, et al. Physical
441 durability of two types of long-lasting insecticidal nets (LLINs) three years after a mass LLIN distribution
442 campaign in Mozambique, 2008-2011. *Am J Trop Med Hyg*. 2015;92(2):286-93.

443 41. Kuhlow F. Field experiments on the behaviour of malaria vectors in an unsprayed hut and in a
444 hut sprayed with DDT in Northern Nigeria. *Bulletin of the World Health Organization*. 1962;26(1):93.

445 42. Wagman JM, Grieco JP, Bautista K, Polanco J, Briceño I, King R, et al. The field evaluation of a
446 push-pull system to control malaria vectors in Northern Belize, Central America. *Malaria journal*.
447 2015;14(1):1-11.

448 43. Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different
449 house screening interventions on exposure to malaria vectors and on anaemia in children in The
450 Gambia: a randomised controlled trial. *The Lancet*. 2009;374(9694):998-1009.

451 44. Rithison W, Tainchum K, Manguin S, Bangs MJ, Chareonviriyaphap T. Biting patterns and host
452 preference of *Anopheles epiroticus* in Chang Island, Trat Province, eastern Thailand. *J Vector Ecol*.
453 2014;39(2):361-71.

454 45. Ndoen E, Wild C, Dale P, Sipe N, Dale M. Dusk to dawn activity patterns of anopheline
455 mosquitoes in West Timor and Java, Indonesia. *Southeast Asian J Trop Med Public Health*.
456 2011;42(3):550-61.

457 46. Dev V. *Anopheles minimus*: Its bionomics and role in the transmission of malaria in Assam,
458 India. *Bulletin of the World Health Organization*. 1996;74(1):61-6.

459 47. Manh CD, Beebe NW, Van VN, Quang TL, Lein CT, Nguyen DV, et al. Vectors and malaria
460 transmission in deforested, rural communities in north-central Vietnam. *Malar J*. 2010;9:259.

461 48. Singh N, Mishra AK, Chand SK, Sharma VP. Population dynamics of *Anopheles culicifacies* and
462 malaria in the tribal area of central India. *J Am Mosq Control Assoc*. 1999;15(3):283-90.

463 49. Hii JL, Smith T, Mai A, Ibam E, Alpers MP. Comparison between anopheline mosquitoes
464 (Diptera: Culicidae) caught using different methods in a malaria endemic area of Papua New Guinea.
465 *Bull Entomol Res*. 2000;90(3):211-9.

466 50. Desenfant P. Rôle et bioécologie de *A. albimanus* (Wiedemann, 1820) vecteur du paludisme en
467 Haïti: Université de Paris-Sud; 1988.

468 51. Taylor RT. The ecology of *Anopheles albimanus* (Wied.) in Haïti. *Mosquito News*.
469 1966;26(3):393-7.

470 52. Hobbs JH, Sexton JD, St JY, Jacques JR. The biting and resting behavior of *Anopheles albimanus*
471 in northern Haïti. *J Am Mosq Control Assoc*. 1986;2(2):150-3.

472 53. Molez JF, Desenfant P, Jacques JR. Bio-ecology of *Anopheles albimanus* Wiedeman, 1820
473 (Diptera : Culicidae) in Haïti (Hispaniola). *Bulletin de la Societe de Pathologie Exotique*. 1998;91(4):334-
474 9.

475 54. Reiker T, Golumbeanu M, Shattock A, Burgert L, Smith TA, Filippi S, et al. Emulator-based
476 Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria.
477 *Nature Communications*. 2021;12(1):1-11.

478 55. Lindsay SW, Davies M, Alabaster G, Altamirano H, Jatta E, Jawara M, et al. Recommendations
479 for building out mosquito-transmitted diseases in sub-Saharan Africa: the DELIVER mnemonic.
480 *Philosophical Transactions of the Royal Society B*. 2021;376(1818):20190814.

481 56. Rodríguez-Rodríguez D, Katusele M, Auwun A, Marem M, Robinson LJ, Laman M, et al. Human
482 behavior, livelihood, and malaria transmission in two sites of Papua New Guinea. *The Journal of
483 Infectious Diseases*. 2021;223(Supplement_2):S171-S86.

484 57. WorldClim. Historical climate data — WorldClim documentation 2022 [cited 2023 October].
485 Available from: <https://www.worldclim.org/data/worldclim21.html>.

486 58. Champagne C, Gerhards M, Lana J, Espinosa BG, Bradley C, González O, et al. Using observed
487 incidence to calibrate the transmission level of a mathematical model for *Plasmodium vivax* dynamics
488 including case management and importation. *Mathematical Biosciences*. 2022;343:108750.

489 59. Champagne C, Gerhards M, Lana J, Le Menach A, Pothin E. Quantifying the impact of
490 interventions against *Plasmodium vivax* malaria: a model for country-specific use. *medRxiv*.
491 2023:2023.02. 10.23285652.

492

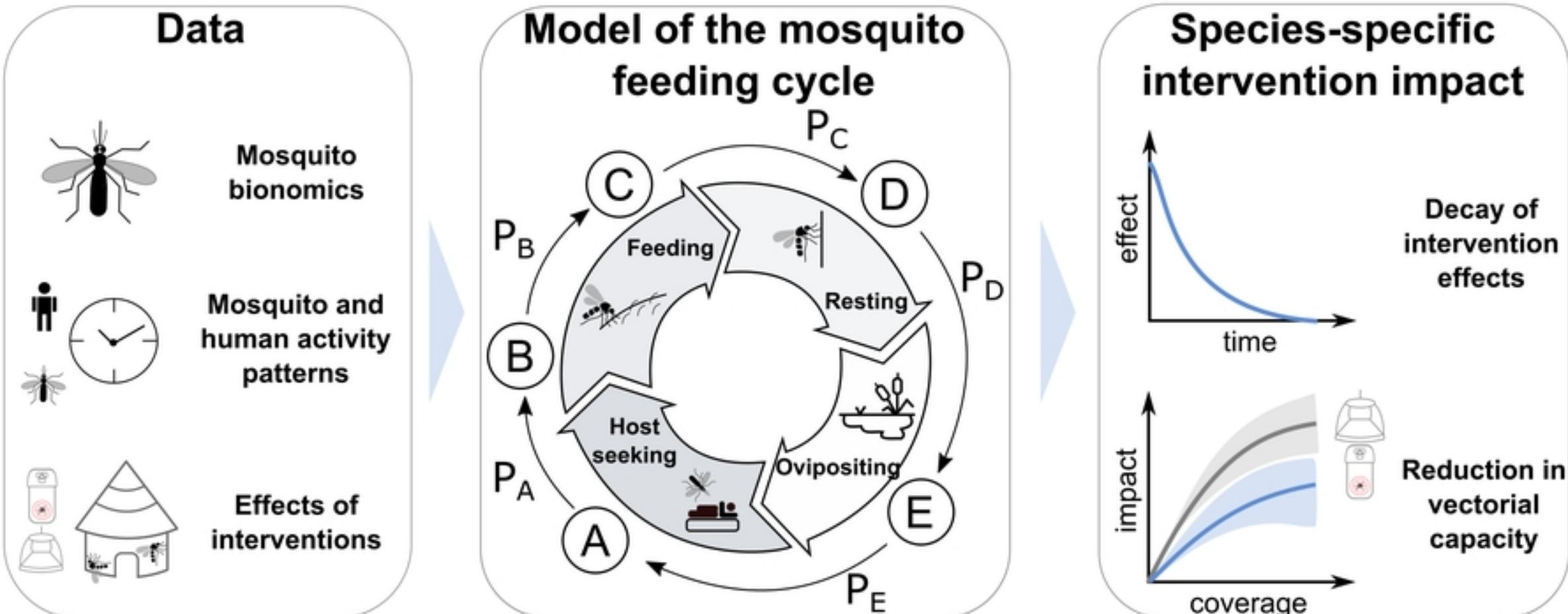
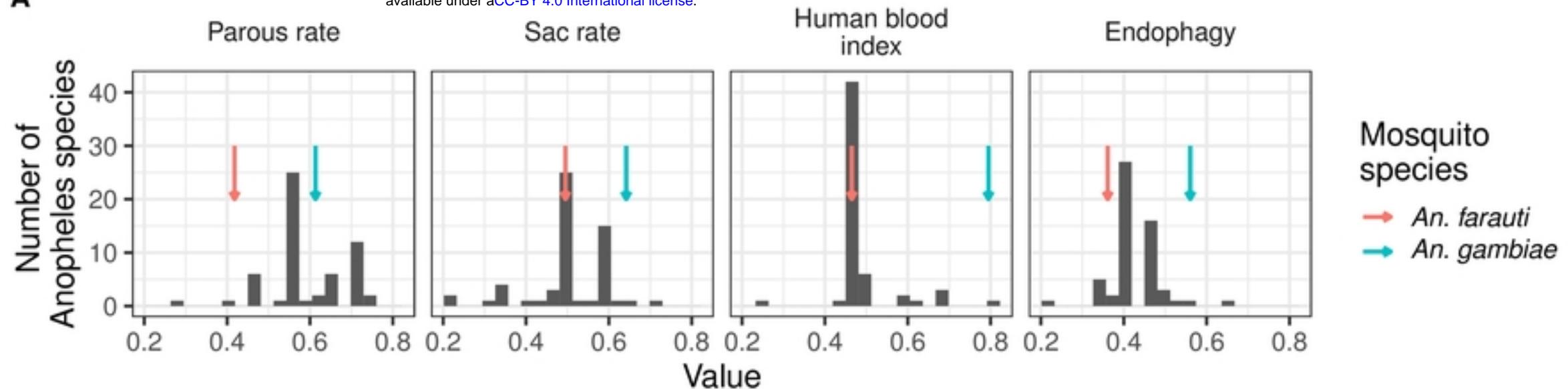
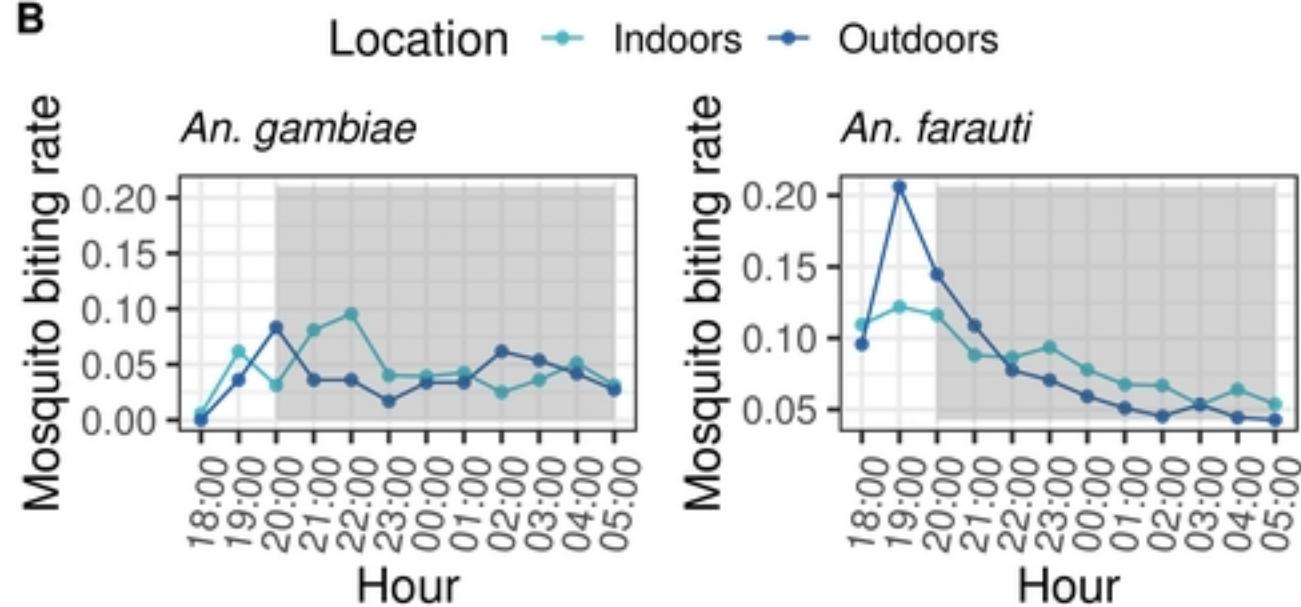


Figure 1

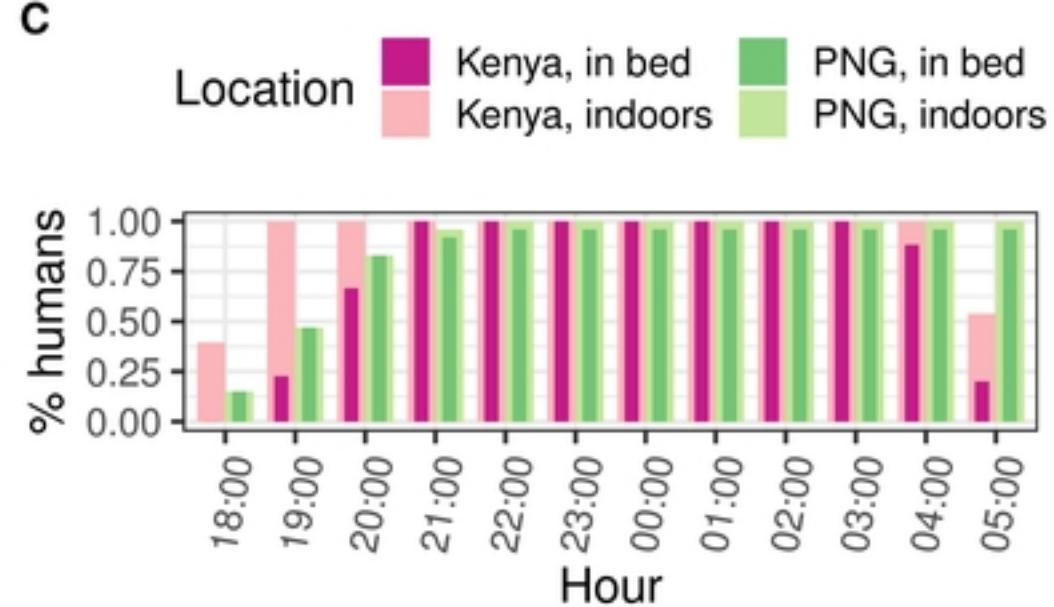
A



B



C



D

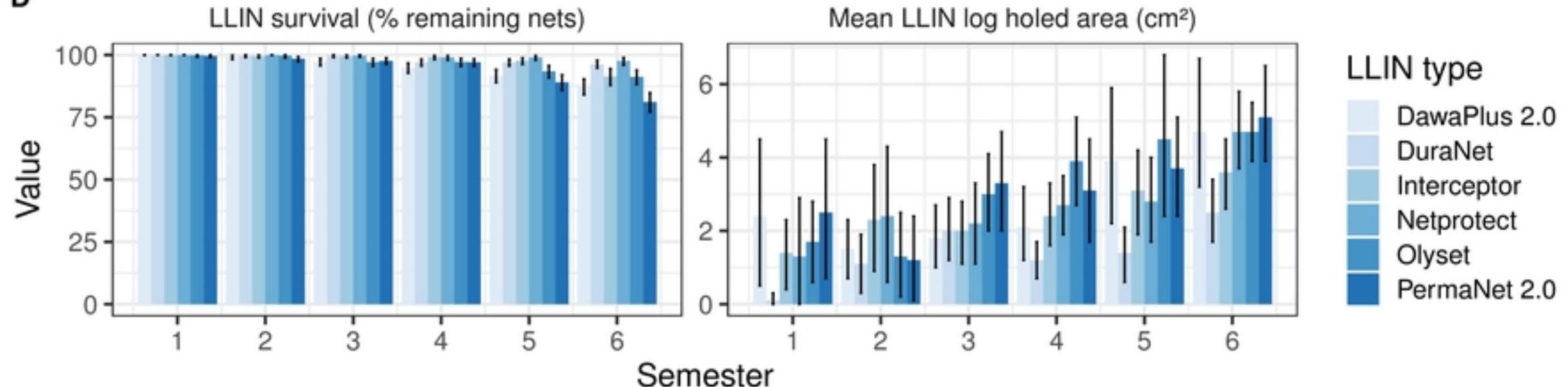


Figure 2

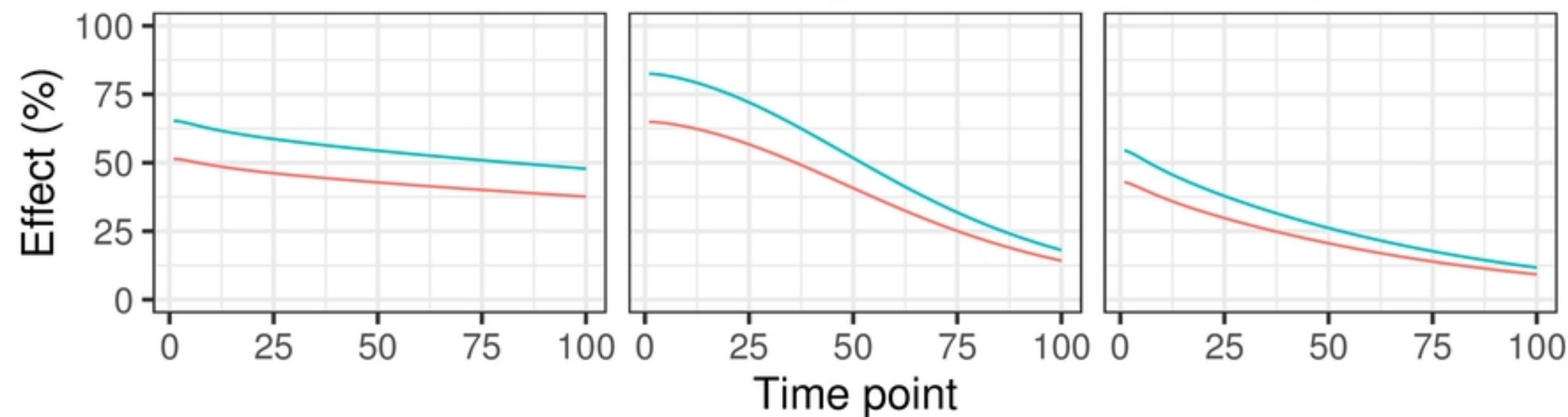
A

Mosquito species — *An. gambiae* — *An. farauti*
bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.17.562838>; this version posted October 19, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Deterency

Pre-prandial
killing effect

Post-prandial
killing effect

**B**

Mosquito species — *An. gambiae* — *An. farauti*

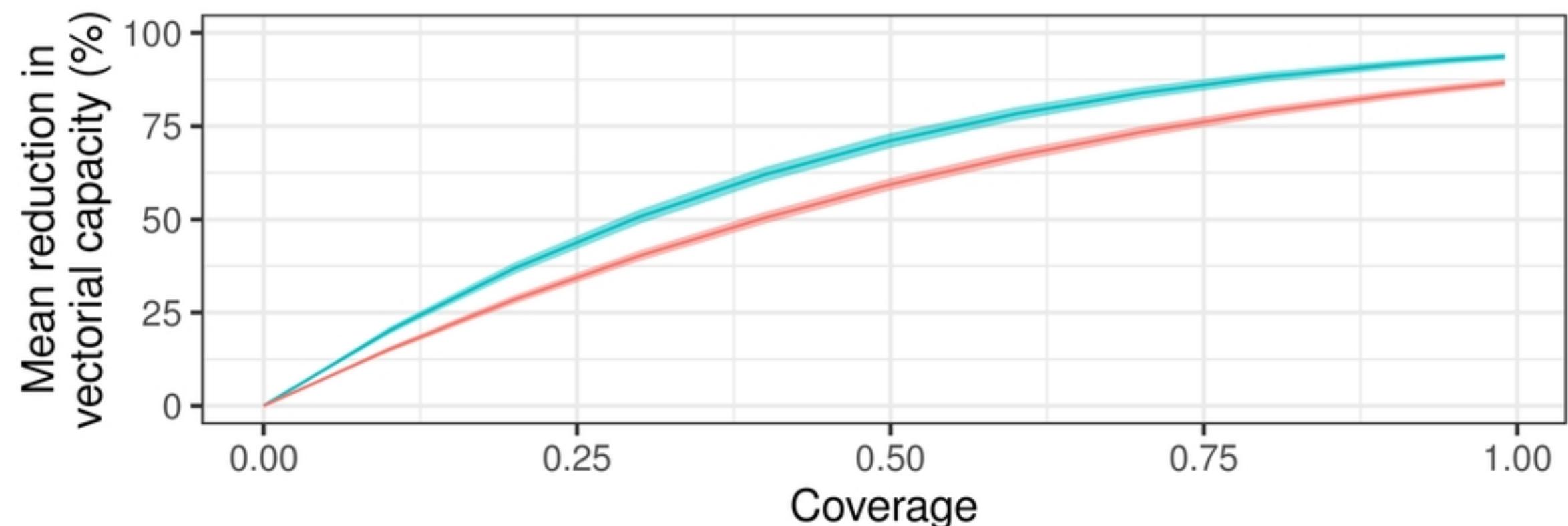


Figure 3

Setting — Papua New Guinea — Kenya

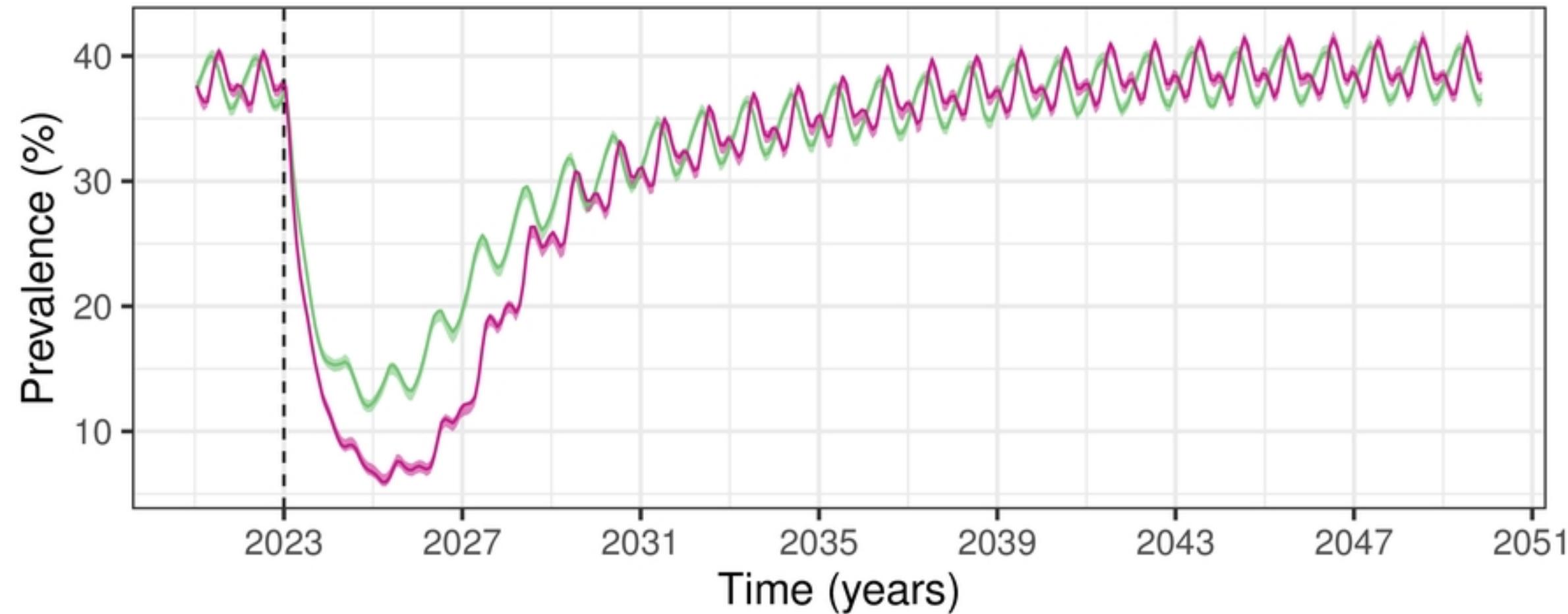


Figure 4