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Abstract

In recent decades, field and semi-field studies of malaria transmission have gathered geographic-specific
information about mosquito ecology, behaviour and their sensitivity to interventions. Mathematical models
of malaria transmission can incorporate such data to infer the likely impact of vector control interventions
and hence guide malaria control strategies in various geographies. To facilitate this process and make
model predictions of intervention impact available for different geographical regions, we developed
AnophelesModel. AnophelesModel is an online, open-access, R package that directly allows
incorporating generated entomological data for adjustment of models to assess intervention scenarios
according to species and location-specific characteristics. In addition, it includes a previously published,
comprehensive, curated database of field entomological data from over 50 Anopheles species, field data
on mosquito and human behaviour, and on estimates of vector control effectiveness. Using the input
data, the package parameterizes a discrete-time, state transition model of the mosquito oviposition cycle
and infers species-specific impacts of various interventions on vectorial capacity. In addition, it offers
formatted outputs ready to use in downstream analyses and by other models of malaria transmission for
accurate representation of the vector-specific components. Using AnophelesModel, we show how the
key implications for intervention impact change for various vectors and locations. The package facilitates
quantitative comparisons of likely intervention impacts in different geographical settings varying in vector
compositions, and can thus guide towards more robust and efficient malaria control recommendations.
The  AnophelesModel R  package is available under a GPL-3.0 |license at

https://github.com/SwissTPH/AnophelesModel.
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Introduction

Vector control targeting Anopheles (An.) mosquitoes and protecting people from their dangerous,
malaria-infectious bites has been the predominant way of reducing the malaria burden worldwide (1).
Over 220 million insecticide-treated nets (ITNs), the most common vector control tool, were distributed in
2021 (2), but the impact of these and other vector control interventions varies geographically depending
on multiple factors. These factors include intra and inter-species heterogeneity in the characteristics of
the vectors and geographical variation in vector species composition. Anopheles mosquitoes have a
complex life-cycle, continuously adapting to and evolving with the surrounding environment. The species
native to Africa can be very different to those found elsewhere (3). The interactions of circadian mosquito
biting patterns and the behavioural patterns of humans are particularly relevant for the risk of human
exposure to mosquitoes. Recent studies have emphasized the importance of considering these factors
when estimating the geographic-specific impact of vector control interventions and for implementing
vector control strategies (4-8). Additionally, the physical and chemical properties of the various
interventions, such as the physical integrity and insecticide efficiency of ITNs and how each of these vary

over time, also strongly impact the effectiveness of vector control (9-11).

Mathematical models of malaria transmission are frequently used to integrate quantitative evidence about
the effects of malaria interventions to enhance prediction of impact and planning of interventions (12-14).
This type of modelling has become an important part of decision-making, in particular for guiding national
malaria strategic plans in malaria-endemic countries (15-17). For the models to accurately quantify the
impacts of interventions, data from experimental hut trials and cluster-randomized control trials (9, 18-
26) are generally used to parameterize their effects (12, 27-31). Nonetheless, model parameterizations
should also consider local variations in human behaviour and thus human exposure to mosquito bites.
Considering human behavioural data and setting-specific differences in mosquito biting and bionomics

can improve model predictions of intervention effectiveness (5).
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Integrating human activity, mosquito biting patterns and other entomological characteristics to adjust the
estimated impact of vector control interventions comes with its challenges. Many independent studies
with different experimental techniques and data recording approaches are involved. Comprehensive data
are rarely collected at the same location and time. Several existing models and studies account for the
life parameters of mosquitoes estimated from entomological data and have combined information on
mosquito biting and human activity (7, 8, 30, 32-34). However, these are only a few studies and have
been limited to a handful of locations. A comprehensive framework collating the different data types,
allowing for direct data integration and interfacing with models to estimate location-specific intervention

impact in a systematic way has been lacking.

Data ./ Model of the mosquito / Species-specific
|| feeding cycle | intervention impact
% Mosquito \
bionomics g Decay of
5 intervention
effects
|i| Mosquito and
@ human activity time
%Ig patterns
/
g Reduction in
: Effects of g vectorial
interventions | - capacity
/ . coverage , 4

Figure 1: Overview of the AnophelesModel R package and its components. The package integrates
several types of data (first panel) to estimate how vector control interventions affect transitions between
the different states of the mosquito feeding cycle (states of the cycle denoted with letters A — E in the
middle panel with transition probabilities P, — Pg). Within the package, an entomological model is
parameterised and used to infer the species-specific effects of vector control interventions, including their

decay over time as well as their impact on the vectorial capacity (third panel).
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Building on previous modelling of the mosquito feeding cycle (32) and of vector control impact (9, 28,
30), we have developed the AnophelesModel R package (Fig 1) to address these challenges.
AnophelesModel estimates the species and geographic-specific impact of vector control interventions by
allowing the user to directly integrate several layers of input data representing mosquito bionomic
characteristics, mosquito and human activity patterns, human exposure to mosquitoes, and the effects

of interventions.

Design and Implementation

AnophelesModel uses the data provided by the user to parameterize a mathematical model describing
the mosquito feeding cycle (32) which infers how the state to state transitions within the feeding cycle are
affected by different interventions, considering their decay over time. Thus, the model estimates the
reduction in vectorial capacity for a given intervention. The package allows the user to run analyses for
interventions and species-bionomics with self-provided data. It can compare multiple interventions in
terms of their effect on vectorial capacity for various mosquito species across a range of geographical
settings. Furthermore, it produces ready-to-use outputs which can be plugged into established models of

malaria transmission dynamics such as OpenMalaria (35, 36).

Entomological model of the mosquito feeding cycle and vectorial
capacity

Mosquito feeding dynamics are represented through a previously described state-transition model (Fig

1, middle panel) that simulates the feeding behaviour of female mosquitoes from a population (32).
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Briefly, the model quantifies the probabilities of mosquito survival across five stages of the feeding cycle:
host seeking, feeding, searching for a resting place, resting, and ovipositing. The total numbers of host
seeking, infected and infectious (sporozoite positive) mosquitoes are modelled through a system of
difference equations with one-day time steps. In the absence of intervention pressure, the stage-specific
survival probabilities are assigned the values derived in Chitnis et al. (32). Intervention effects are
modelled through reductions in these probabilities. The vectorial capacity, defined as the total number of
subsequent infectious mosquito bites originating from each mosquito biting a human infected with
malaria, is calculated analytically using the formulation derived in Chitnis et al. (32) and constitutes a

proxy for the intervention impact.

Mosquito bionomics data

The feeding cycle model relies on quantified ecological and bionomic characteristics of the mosquitoes,
including the parous rate, the human blood index, the sac rate, their endophily and endophagy.
AnophelesModel allows the user to input their own data and tailor the entomological model to the vector
species of interest. Additionally, it also harbours an extensive database of relevant parameters collated
from published literature and publicly available sources. Using a Bayesian hierarchical model applied to
previously-published entomological data (30, 37, 38), mosquito bionomic parameters were derived for 57

Anopheles species and 17 complexes (groupings of sibling species) and included in the package.

Modelling the effects of vector control interventions on the

mosquito feeding cycle

The protective effects of vector control interventions used in the AnophelesModel package are defined
in terms of the reduction in the proportion of mosquitoes reaching each stage in the feeding cycle (Fig 1

middle panel). There are three main effects modelled:


https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

127

128

129

130

131

132
133
134
135
136
137

138

139
140
141
142
143
144

145

146
147
148
149
150

151

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.17.562838; this version posted October 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

o Deterrency: the reduction in the availability rate of humans to mosquitoes per day, estimated
based on the proportion of mosquitoes that fail to reach a protected human or are deterred from
biting due to intervention

e Pre-prandial killing: the proportion of mosquitoes that are killed before feeding

e Post-prandial killing: the proportion of mosquitoes that are killed after feeding

The user can directly input these effects and use the package to conduct impact analysis for the
interventions of their choice. In addition, a couple of parameterisations for intervention effects are already
available in the package for long-lasting insecticide-treated nets (LLINS), indoor residual spraying (IRS)
and house screening. These effects have been estimated using previously published intervention models
(Table S1). Accordingly, they have been parameterised with data generated from experimental hut trials
and adjusted according to the intervention-specific temporal decay functions, measuring attrition, change

in use, insecticide decay and physical deterioration for LLINs, and insecticide decay for IRS (9, 28, 30).

Each intervention is assigned a duration corresponding to the time between consecutive deployments
(e.g., 3 years for LLINs and 0.5 years for IRS). The effects and the resulting reduction in vectorial capacity
are calculated for a finite number of equally spaced time points throughout this duration (denoted as
interpolation points in the package). All intervention effects are adjusted for the exposure of humans to

mosquitoes as described in the section below.

Modelled effects of LLINs included in the package

A previously published system of logistic regression models (9, 30) can be used with the package to
estimate the effects of LLINs deployments (cf. Supplementary Material). The decay of physical properties
of mosquito nets in terms of attrition, use, physical and chemical integrity has been estimated using the
data from the President Malaria Initiative (PMI) net durability studies (39), and on data from Morgan et
al. (40) as described in Briet et al. (9) (cf. Supplementary Material). These datasets, containing properties

of various net types in different countries, are also included in the package.
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Modelled effects of IRS included in the package

The package includes several parameterisations of IRS effects for different insecticide and vector species
combinations (cf. Supplementary Material) derived using experimental data from previous studies (23-

26, 41).

Effects of house screening included in the package

The effect of house screening interventions available in the package is assumed to be a linear relationship
with the availability of humans to mosquitoes, with a 59% reduction as estimated in (30) based on data

from Belize (42) and Ghana (43).

Integrating mosquito and human activity patterns, estimating

human exposure to mosquitoes

AnophelesModel implements a novel approach which allows using input data on biting rhythms and
human activity to adjust the effects of vector control interventions depending on the exposure of humans
to mosquito biting, endophily (the proportion of indoor resting mosquitoes) and endophagy (the proportion
of indoor feeding mosquitoes). Precisely, the deterrency, pre-prandial and post-prandial killing effects of
the interventions are adjusted by multiplying them by the corresponding setting-specific exposure
coefficient. A detailed description of this approach is provided in the Supplementary Material.
AnophelesModel also includes ready-to-use data on biting rhythms and human activity recently compiled
by Sherrard-Smith et al. (7). In addition, the package database contains entries from a non-systematic

sample of publications (44-53).

Interfacing with models of malaria transmission dynamics
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In addition to providing estimates of intervention effects on vectorial capacity, the AnophelesModel
package estimates the decay of intervention effects over time and generates parameterizations of vector
control components which may be used for running simulations with the OpenMalaria model.
OpenMalaria is an agent-based, stochastic model of malaria transmission dynamics and it has been
extensively described in previous publications (13, 35, 36, 54). It can be used to simulate malaria
transmission within a population of individuals, deploy interventions and estimate their impact on malaria

burden over time.

OpenMalaria requires a configuration file in XML format which includes all the specifications of a
simulation. The objects required for modelling vector characteristics and the effects of vector control
interventions in OpenMalaria are XML snippets for inclusion in the scenario XML. Entomological
characteristics are defined through an entomology XML snippet and intervention effects can be defined
through the “generic vector intervention” (GVI) XML snippet (further information about OpenMalaria XML

definitions is provided at https://github.com/SwissTPH/openmalaria/wiki). The GVI snippet includes the

definition of decay and initial effect parameters for deterrency, pre- and post-prandial killing effects of
interventions. In OpenMalaria, the intervention effects modelled through GVI components can be
associated one of seven possible decay functions. AnophelesModel uses nonlinear least squares (R
package minpack.Im version 1.2-2) to fit in turn each of the seven decay functions to the time series of
estimated intervention effects and chooses the decay with the best fit (smallest residual sum of squares).
The XML components needed for OpenMalaria simulation specifications can then be generated with the

package.

Results

To illustrate the functionalities of the package, we provide examples using the data included in the

package for two mosquito species, namely Anopheles farauti and Anopheles gambiae and compare the
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effects of LLINs deployments. All the code used in the analysis presented in this paper is included in the

package GitHub repository (see section Availability and Future Directions).

Visualising human, mosquito and intervention characteristics

The AnophelesModel package can provide visualisations of the entomological characteristics of mosquito
species at different locations and model how these impact various vector control interventions. One
resource included in the package is a readily available database encompassing human activity patterns,
mosquito biting patterns, mosquito entomological characteristics and intervention characteristics. The
user can directly access the various data types through dedicated data objects. A detailed description of

these data objects is provided in the package documentation.

10
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Figure 2: Examples of the key types of data available within the AnophelesModel database which

can be used to estimate the impact of vector control interventions. In the package, entomological

parameters (A), mosquito biting patterns (B), human activity patterns (C) and intervention properties (D)

are provided and can be used to parameterise an entomological model of the mosquito feeding cycle.

Examples are provided for An. gambiae and An. farautiin Kenya and Papua New Guinea (PNG) settings,

respectively. In panel (A), the arrows indicate the bars corresponding to the two mosquito species. In

panel (B), the grey area highlights the time when people sleep under a net. Panel (D) summarizes the

observed variation in physical properties of LLINs in a Kenya-like setting (9). Data sources of all data

types are specified in the “Design and Implementation” section.
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The package database can be queried, for example to analyse how An. gambiae, among the dominant
malaria vectors in sub-Saharan Africa (55), differs from An. farauti, a major vector in Papua New Guinea
(PNG) (Fig 2). The two species are different not only in their bionomics, but also in terms of their biting
patterns. An. gambiae has higher parous rates, sac rates, and human blood index, and is more
endophagic than An. farauti (Fig 2A). Furthermore, An. gambiae preferentially bites indoors during the
night, while An. farauti also bites outdoors, especially in the early evening (Fig 2B). These differences all
affect the modelled impacts of interventions such as LLINs. In the following example, we demonstrate
how AnophelesModel can be used to compare the impacts of LLINs for these two species in their
respective settings mainly relying on the data present in the package database, and incorporating new,

recently published data on human behaviour for a PNG-like setting (56) (Fig 2C).

Quantifying and comparing the species-specific impact of vector

control interventions

We used AnophelesModel to incorporate the different mosquito, human and intervention data (Fig 2) and
to model the effects of LLINs for the two species using distinct values for deterrency, pre- and post-
prandial killing effects for the two settings. We estimated higher effects of LLINs for An. gambiae in the
Kenyan-like setting compared to An. farautiin the PNG-like setting (Fig 3A), and a correspondingly higher

reduction in vectorial capacity for An. gambiae in the Kenyan setting (Fig 3B).

The effectiveness of a vector control intervention is influenced by both its chemical and physical
properties, and by the alignment of its temporal effects with the circadian rhythms of human behaviour
and the mosquito biting patterns. With human presence indoors and in bed exhibiting the patterns shown
in Fig 2C, a substantial proportion of the bites from An. farauti occur in the early evening when people
are not yet sleeping under a net, in contrast to An. gambiae, which mostly bites at night. Thus, as found

in previous analyses of the African data (7), the mosquito and human activity patterns strongly affect the

12
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estimated impact of vector control interventions, even when the physical and chemical durability of the

mosquito nets are uniform (Fig 2D).

A

Effect (%)

Mean reduction in

Mosquito species An. gambiae — An. farauti
Pre—prandial Post—prandial
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Figure 3: Estimated effects of LLINs deployment for An. gambiae and An. farauti. Mosquito, human

and intervention data are combined in the AnophelesModel package to estimate the different types of

intervention decay throughout time (A), as well as the resulting mean reduction in vectorial capacity for

varying LLINs deployment coverages (here equivalent to LLINs usage) (B). The time units in panel (A)

are defined by 100 equally distanced interpolation points across the duration of the interventions (i.e., 3

years for LLINs). The ribbons in panel (B) correspond to the variation of the vectorial capacity estimated

13
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based on the confidence intervals of the mosquito bionomics parameters (details on uncertainty

propagation provided in the Supplementary Material).

Similar to the examples provided for An. gambiae and An. farauti, the AnophelesModel package can be
used to estimate and compare how the effects of interventions vary for other mosquito species and
geographical locations. The user is not limited to the package database, but can input new data and use
these in the modelling. The package documentation provides further examples illustrating the use of new
data and also reproducing previously published analyses comparing An. gambiae and An. albimanus

(30).
Interfacing AnophelesModel with models of intervention impact

and malaria transmission

The estimated, exposure-adjusted effects of interventions (Fig 3) can be further incorporated in
downstream analyses and models of malaria transmission dynamics. In particular, AnophelesModel

contains functions for producing formatted entomology and intervention input for the OpenMalaria model.

14
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Figure 4: Simulation of the impact of LLINs deployment in OpenMalaria. XML snippets produced by

AnophelesModel were used in OpenMalaria to model the entomology and effects of LLINs deployments

in Kenyan-like and PNG-like settings and to simulate all-age prevalence. One deployment of LLINs was

simulated in January 2023 (dashed line).

For illustrating using OpenMalaria the example considering the Kenyan-like and PNG-like settings
described before (Fig 2-3), we informed the model parameters regarding seasonality of transmission,
entomological, and vector control interventions with geographic-specific values. To do so, we estimated
the geographic-specific entomological parameters (Fig 2A) and intervention effects decays (Fig 3A) of
LLINs deployment using AnophelesModel and further incorporated them in OpenMalaria simulations of
malaria dynamics. OpenMalaria version 44 was used for this analysis. Populations of 10,000 people in
each setting were simulated starting January 1999, with a single LLINs deployment in January 2023 at
60% coverage. Case management was the only other intervention present in the simulation, deployed
from the beginning, and was set to 50% effective coverage for both settings. Coverage of an intervention

was defined as the proportion of people protected against malaria infection by that intervention.
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For simplicity, in this simulation example, malaria transmission was treated as proportional to monthly
rainfall, an assumption that is not implicit in real-world settings. Rainfall data was extracted from
WorldClim (57) and shifted by a lag period of 30 days to consider the delay in mosquito density,
emergence and infection. The Kenyan-like simulation used the rainfall profile of the Kisumu region, and
the PNG-like simulation that of the Momase region. For the sake of comparison, the transmission intensity
prior to start of the interventions deployment was considered similar in both settings by choosing an initial

annual entomological inoculation rate of 15 infective bites per person per year for both simulated settings.

Plasmodium falciparum prevalence in all ages over time was simulated for the two settings (Fig 4). As
expected, the impact in reducing prevalence by LLINs deployment was lower in the PNG-like setting
compared to the Kenya-like setting. By allowing accurate incorporation of intervention effects in models
of malaria transmission such as OpenMalaria, AnophelesModel facilitates exploring further, more
complex intervention scenarios, such as combining vector control with drug interventions or

supplementing the LLINs deployments with other interventions potentially targeting outdoor biting in PNG.

Availability and Future Directions

The AnophelesModel R package source code and data are publicly available onlinein a dedicated GitHub

repository at https://github.com/SwissTPH/AnophelesModel. A user-friendly website available at

https://swisstph.qgithub.io/AnophelesModel/index.html  provides package installation instructions,

comprehensive descriptions of functions, parameters and data, and detailed examples of use-cases. A
systematic tutorial and documentation of the different package functions are provided at

https://swisstph.qgithub.io/AnophelesModel/articles/AnophelesModel.html. Furthermore, all code used for

the examples presented in this paper and for generating the corresponding figures is available at

https://github.com/SwissTPH/AnophelesModel/tree/main/extdata. This include the XML files and scripts

used for OpenMalaria simulations.
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Patterns of human exposure to mosquitoes alongside mosquito bionomics should always be considered
when using impact modelling to make decisions about vector control options in different geographical
settings (4, 5, 7). For this purpose, the AnophelesModel package combines these different types of data
to provide inputs into malaria models. In this paper, we have provided an example describing how to use
the package outputs with the OpenMalaria model (35, 36). In the presented analysis, following inclusion
of the exposure-adjusted intervention effects in OpenMalaria, we observed a clear difference in public
health impact of LLINs deployment between the Kenya-like and PNG-like settings with similar pre-

intervention transmission prevalence.

The value and usability of the package, as well as its interfacing with other models, have been already
demonstrated in other published applications. For example, in a recently published study,
AnophelesModel was used to inform the impact of vector control in a compartmental model of
Plasmodium vivax malaria dynamics applied to identify malaria transmission hotspots in Panama (58).
Furthermore, the package has been incorporated in a mathematical modelling framework to quantify the

country-specific impact of interventions against Plasmodium vivax malaria (59).

The AnophelesModel package is flexible beyond the provided database, allowing the user to plug in new
data and parameters and model intervention effects for a custom setting. The package database is not
exhaustive and does not account for seasonal variation or variation by human age or occupational group.
The package is a powerful tool for exploring how the impact of vector control interventions changes

following the observed variation in input mosquito biting and human behaviour patterns.

Planned developments of the AnophelesModel package include extension of the database of mosquito,
human behaviour and intervention characteristics through systematic reviews, including more recently-
generated data and intervention models. Currently three interventions are modelled within the package,
namely IRS, LLINs and house screening, but other interventions such as spatial repellents and attractive

toxic sugar baits will be added in the future.

17


https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.17.562838; this version posted October 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria
control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207.

2. World Health Organization. World malaria report 2022 2022 [Available from:
https://apps.who.int/iris/rest/bitstreams/1484818/retrieve.

3. Sinka ME. Global distribution of the dominant vector species of malaria. Anopheles
mosquitoes-New insights into malaria vectors: IntechOpen; 2013.

4, Monroe A, Moore S, Olapeju B, Merritt AP, Okumu F. Unlocking the human factor to increase
effectiveness and sustainability of malaria vector control. Malaria Journal. 2021;20(1):1-6.

5. Monroe A, Moore S, Okumu F, Kiware S, Lobo NF, Koenker H, et al. Methods and indicators for
measuring patterns of human exposure to malaria vectors. Malaria journal. 2020;19(1):1-14.

6. Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor
biting Anopheline malaria vector communities. Parasites & Vectors. 2020;13(1):1-15.

7. Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding
behavior and how it influences residual malaria transmission across Africa. Proceedings of the National
Academy of Sciences. 2019;116(30):15086-95.

8. Fernandez Montoya L, Alafo C, Marti-Soler H, Maquina M, Comiche K, Cuamba |, et al.
Overlaying human and mosquito behavioral data to estimate residual exposure to host-seeking
mosquitoes and the protection of bednets in a malaria elimination setting where indoor residual
spraying and nets were deployed together. PloS one. 2022;17(9):e0270882.

9. Briet O, Koenker H, Norris L, Wiegand R, Vanden Eng J, Thackeray A, et al. Attrition, physical
integrity and insecticidal activity of long-lasting insecticidal nets in sub-Saharan Africa and modelling of
their impact on vectorial capacity. Malaria journal. 2020;19(1):1-15.

10. Ahogni IB, Salako AS, Akinro B, Sovi A, Gnanguenon V, Azondekon R, et al. Physical integrity and
survivorship of long-lasting insecticidal nets distributed to households of the same socio-cultural
community in Benin, West Africa. Malaria journal. 2020;19:1-13.

11. Lindsay SW, Thomas MB, Kleinschmidt I. Threats to the effectiveness of insecticide-treated
bednets for malaria control: thinking beyond insecticide resistance. The Lancet Global Health.
2021;9(9):e1325-e31.

12. Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, et al.
Optimising the deployment of vector control tools against malaria: a data-informed modelling study.
The Lancet Planetary Health. 2022;6(2):e100-e9.

13. Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, et al. Public health impact
and cost-effectiveness of the RTS,5/AS01 malaria vaccine: a systematic comparison of predictions from
four mathematical models. The Lancet. 2016;387(10016):367-75.

14. Runge M, Mapua S, Nambunga |, Smith TA, Chitnis N, Okumu F, et al. Evaluation of different
deployment strategies for larviciding to control malaria: a simulation study. Malaria journal.
2021;20(1):1-14.

15. Runge M, Snow RW, Molteni F, Thawer S, Mohamed A, Mandike R, et al. Simulating the council-
specific impact of anti-malaria interventions: a tool to support malaria strategic planning in Tanzania.
PloS one. 2020;15(2):e0228469.

18


https://apps.who.int/iris/rest/bitstreams/1484818/retrieve
https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.17.562838; this version posted October 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

16. Runge M, Molteni F, Mandike R, Snow RW, Lengeler C, Mohamed A, et al. Applied
mathematical modelling to inform national malaria policies, strategies and operations in Tanzania.
Malaria journal. 2020;19(1):1-10.

17. Ozodiegwu ID, Ambrose M, Galatas B, Runge M, Nandi A, Okuneye K, et al. Application of
mathematical modelling to inform national malaria intervention planning in Nigeria. Malaria journal.
2023;22(1):1-19.

18. Mosha JF, Kulkarni MA, Lukole E, Matowo NS, Pitt C, Messenger LA, et al. Effectiveness and
cost-effectiveness against malaria of three types of dual-active-ingredient long-lasting insecticidal nets
(LLINS) compared with pyrethroid-only LLINs in Tanzania: a four-arm, cluster-randomised trial. The
Lancet. 2022;399(10331):1227-41.

19. Sangoro O, Turner E, Simfukwe E, Miller JE, Moore SJ. A cluster-randomized controlled trial to
assess the effectiveness of using 15% DEET topical repellent with long-lasting insecticidal nets (LLINs)
compared to a placebo lotion on malaria transmission. Malaria journal. 2014;13(1):1-15.

20. Nash RK, Lambert B, N'Guessan R, Ngufor C, Rowland M, Oxborough R, et al. Systematic review
of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in
Africa. Current research in parasitology & vector-borne diseases. 2021;1:100047.

21. Bayili K, Ki HD, Bayili B, Sow B, Ouattara A, Small G, et al. Laboratory and experimental hut trial
evaluation of VECTRON™ T500 for indoor residual spraying (IRS) against insecticide resistant malaria
vectors in Burkina Faso. Gates Open Research. 2022;6(57):57.

22. Yewhalaw D, Balkew M, Zemene E, Chibsa S, Mumba P, Flatley C, et al. An experimental hut
study evaluating the impact of pyrethroid-only and PBO nets alone and in combination with
pirimiphos-methyl-based IRS in Ethiopia. Malaria Journal. 2022;21(1):1-11.

23. Bown DN, Rodriguez M, Arredondo-Jimenez JI, Loyola E, Rodriguez MdC. Age structure and
abundance levels in the entomological evaluation of an insecticide used in the control of Anopheles
albimanus in southern Mexico. J Am Mosqg Control Assoc. 1991;7(2):180-7.

24. Agossa FR, Aikpon R, Azondékon R, Govoetchan R, Padonou GG, Oussou O, et al. Efficacy of
various insecticides recommended for indoor residual spraying: pirimiphos methyl, potential
alternative to bendiocarb for pyrethroid resistance management in Benin, West Africa. Transactions of
the Royal Society of Tropical Medicine and Hygiene. 2014;108(2):84-91.

25. Tchicaya ES, Nsanzabana C, Smith TA, Donzé J, de Hipsl ML, Tano Y, et al. Micro-encapsulated
pirimiphos-methyl shows high insecticidal efficacy and long residual activity against pyrethroid-
resistant malaria vectors in central Céte d’lvoire. Malaria journal. 2014;13:1-13.

26. Bangs MJ. The susceptibility and behavioral response of Anopheles albimanus Weidemann and
Anopheles vestitipennis Dyar and Knap (Diptera: Culicidae) to insecticides in northern Belize, Central
America: Uniformed Services University of the Health Sciences; 1999.

27. Briét OJ, Penny MA. Repeated mass distributions and continuous distribution of long-lasting
insecticidal nets: modelling sustainability of health benefits from mosquito nets, depending on case
management. Malaria journal. 2013;12(1):1-19.

28. Briét OJ, Hardy D, Smith TA. Importance of factors determining the effective lifetime of a mass,
long-lasting, insecticidal net distribution: a sensitivity analysis. Malaria journal. 2012;11(1):1-27.

29. Sherrard-Smith E, Ngufor C, Sanou A, Guelbeogo MW, N’'Guessan R, Elobolobo E, et al. Inferring
the epidemiological benefit of indoor vector control interventions against malaria from mosquito data.
Nature communications. 2022;13(1):3862.

19


https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.17.562838; this version posted October 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

30. Briét OJ, Impoinvil DE, Chitnis N, Pothin E, Lemoine JF, Frederic J, et al. Models of effectiveness
of interventions against malaria transmitted by Anopheles albimanus. Malaria journal. 2019;18(1):1-12.
31. Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid resistance
on the efficacy and effectiveness of bednets for malaria control in Africa. Elife. 2016;5:e16090.

32. Chitnis N, Smith T, Steketee R. A mathematical model for the dynamics of malaria in
mosquitoes feeding on a heterogeneous host population. Journal of Biological Dynamics.
2008;2(3):259-85.

33. Guglielmo F, Sanou A, Churcher T, Ferguson HM, Ranson H, Sherrard-Smith E. Quantifying
individual variability in exposure risk to mosquito bites in the Cascades region, Burkina Faso. Malaria
Journal. 2021;20(1):1-14.

34. Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking human behaviours
and malaria vector biting risk in south-eastern Tanzania. PloS one. 2019;14(6):e0217414.

35. Smith T, Killeen GF, Maire N, Ross A, Molineaux L, Tediosi F, et al. Mathematical modeling of
the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium
falciparum malaria: Overview. The American journal of tropical medicine and hygiene.
2006;75(2_suppl):1-10.

36. Smith T, Ross A, Maire N, Chitnis N, Studer A, Hardy D, et al. Ensemble Modeling of the Likely
Public Health Impact of a Pre-Erythrocytic Malaria Vaccine. PLOS Medicine. 2012;9(1):e1001157.

37. Massey NC, Garrod G, Wiebe A, Henry AJ, Huang Z, Moyes CL, et al. A global bionomic database
for the dominant vectors of human malaria. Scientific Data. 2016;3(1):1-13.

38. Lemant J, Zogo B, Smith TA, Champagne C, Golumbeanu M, Pothin E, editors. Estimating the
variability of Anopheles bionomics and its impact on transmission with a hierarchical Bayesian model.
American Journal of Tropical Medicine and Hygiene; 2021: Amer Soc Trop Med & Hygiene 8000
Westpark DR, STE 130, McLean, VA 22101 USA.

39. President Malaria Initiative. LLIN Durability Monitoring 2023 [cited 2023 17 October]. Available
from: https://www.durabilitymonitoring.org/.

40. Morgan J, Abilio AP, do Rosario Pondja M, Marrenjo D, Luciano J, Fernandes G, et al. Physical
durability of two types of long-lasting insecticidal nets (LLINs) three years after a mass LLIN distribution
campaign in Mozambique, 2008-2011. Am J Trop Med Hyg. 2015;92(2):286-93.

41. Kuhlow F. Field experiments on the behaviour of malaria vectors in an unsprayed hut and in a
hut sprayed with DDT in Northern Nigeria. Bulletin of the World Health Organization. 1962;26(1):93.
42. Wagman JM, Grieco JP, Bautista K, Polanco J, Bricefio |, King R, et al. The field evaluation of a

push-pull system to control malaria vectors in Northern Belize, Central America. Malaria journal.
2015;14(1):1-11.

43. Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different
house screening interventions on exposure to malaria vectors and on anaemia in children in The
Gambia: a randomised controlled trial. The Lancet. 2009;374(9694):998-1009.

44, Ritthison W, Tainchum K, Manguin S, Bangs MJ, Chareonviriyaphap T. Biting patterns and host
preference of Anopheles epiroticus in Chang Island, Trat Province, eastern Thailand. J Vector Ecol.
2014;39(2):361-71.

45. Ndoen E, Wild C, Dale P, Sipe N, Dale M. Dusk to dawn activity patterns of anopheline
mosquitoes in West Timor and Java, Indonesia. Southeast Asian J Trop Med Public Health.
2011;42(3):550-61.

20


https://www.durabilitymonitoring.org/
https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.17.562838; this version posted October 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

46. Dev V. Anopheles minimus: Its bionomics and role in the transmission of malaria in Assam,
India. Bulletin of the World Health Organization. 1996;74(1):61-6.

47. Manh CD, Beebe NW, Van VN, Quang TL, Lein CT, Nguyen DV, et al. Vectors and malaria
transmission in deforested, rural communities in north-central Vietham. Malar J. 2010;9:259.

48. Singh N, Mishra AK, Chand SK, Sharma VP. Population dynamics of Anopheles culicifacies and
malaria in the tribal area of central India. ] Am Mosq Control Assoc. 1999;15(3):283-90.

49. Hii JL, Smith T, Mai A, Ibam E, Alpers MP. Comparison between anopheline mosquitoes
(Diptera: Culicidae) caught using different methods in a malaria endemic area of Papua New Guinea.
Bull Entomol Res. 2000;90(3):211-9.

50. Desenfant P. ROle et bioécologie de A. albimanus (Wiedemann, 1820) vecteur du paludisme en
Haiti: Université de Paris-Sud; 1988.

51. Taylor RT. The ecology of Anopheles albimanus (Wied.) in Haiti. Mosquito News.
1966;26(3):393-7.

52. Hobbs JH, Sexton JD, St JY, Jacques JR. The biting and resting behavior of Anopheles albimanus
in northern Haiti. ] Am Mosq Control Assoc. 1986;2(2):150-3.

53. Molez JF, Desenfant P, Jacques JR. Bio-ecology of Anopheles albimanus Wiedeman, 1820
(Diptera : Culicidae) in Haiti (Hispaniola). Bulletin de la Societe de Pathologie Exotique. 1998;91(4):334-
9.

54. Reiker T, Golumbeanu M, Shattock A, Burgert L, Smith TA, Filippi S, et al. Emulator-based
Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria.
Nature Communications. 2021;12(1):1-11.

55. Lindsay SW, Davies M, Alabaster G, Altamirano H, Jatta E, Jawara M, et al. Recommendations
for building out mosquito-transmitted diseases in sub-Saharan Africa: the DELIVER mnemonic.
Philosophical Transactions of the Royal Society B. 2021;376(1818):20190814.

56. Rodriguez-Rodriguez D, Katusele M, Auwun A, Marem M, Robinson LJ, Laman M, et al. Human
behavior, livelihood, and malaria transmission in two sites of Papua New Guinea. The Journal of
Infectious Diseases. 2021;223(Supplement_2):5171-586.

57. WorldClim. Historical climate data — WorldClim documentation 2022 [cited 2023 October].
Available from: https://www.worldclim.org/data/worldclim21.html.

58. Champagne C, Gerhards M, Lana J, Espinosa BG, Bradley C, Gonzdlez O, et al. Using observed
incidence to calibrate the transmission level of a mathematical model for Plasmodium vivax dynamics
including case management and importation. Mathematical Biosciences. 2022;343:108750.

59. Champagne C, Gerhards M, Lana J, Le Menach A, Pothin E. Quantifying the impact of
interventions against Plasmodium vivax malaria: a model for country-specific use. medRxiv.
2023:2023.02. 10.23285652.

21


https://www.worldclim.org/data/worldclim21.html
https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

Data
Mosquito
bionomics
& "
“I Mosquito and
@ human activity
n patterns
é Effects of

n interventions
Figure 1

Model of the mosquito
feeding cycle

Species-specific
intervention impact

o
=

D

time
A

[%]

[13]

[
E

coverage

-

Decay of
intervention
effects

Reduction in
vectorial
capacity


https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

A (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.
Human blood

., Parous rate Sac rate i Endophagy
@ 404
2 40 |
S & 30 Mosquito
E - 5 l l l l l l species
= % —+  An. farauti
§ -é_ 10 - l I —+ An. gambiae
& 04 = = l m A - - e 0 . - -
02 04 06 0802 0.4 06 0.8 0.2 0.4 06 0802 04 06 08
Value
B Location -+ Indoors - Outdoors C . .
Location B Kenya,inbed | PNG, in bed
% An. gambiae % An. farauti Kenya, indoors PNG, indoors
- 20 =
20.20 E_-D 0 @ 1.00-
g 0157 £ 0.151 & 0.75 1
o 0-101 & i E 0.50-
5 0.051 = < 0.25+ II I
H D'ﬁﬂ = L] 1l I ] ] 1] ] ] || ] ] L] E D.'DE i ] ] L] 1] I I ] ] ] ] || ] E""- D'DD a II I ] || 1] I ] ] L| ] ] ||
2 SSS8SSSSSSSS =2 SSSSESESSESS S§8§88§88§88§88¢9
R2ENNGSS8838 RP2ENNNSS8838 228§ aNg§8s588IS
Hour Hour Hour
D
LLIN survival (% remaining nets) Mean LLIN log holed area (cm?)
1001 g T il L T I|l i LLIN type
75 - DawaPlus 2.0
% 4 DuraNet
= 201 Interceptor
> 5 H‘ ‘ I ‘ | Netprotect
25 I ” | l W Olyset
o o B PermaNet 2.0
1 2 3 4 5 6 1 2 9 4 5 6
Semester

Figure 2


https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

A

Effect (%)

Mean reduction in
vectorial capacity (%)

bioRxiv preprint doi: https://doi.org/lo.1101/2023.M.Q§Qigllgos§ Rggl ggfhe c;yright hgldqeﬂF thgpéprq?bfae - An' fara un

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Post-prandial
Killing effect

Pre—prandial

Deterrency killing effect

100 A
75
50 -
25

25 50 75
Time point

100 O

Mosquito species -~ An.gambiae -~ An. farauti

-
-
X

-..Hl
n
1

N
O
1

Mo
n
1

-
1

Figure 3

1
0.50
Coverage


https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

Setting — Papua New Guinea — Kenya

R, A AW
391 | (ks
E 205 !
a |
10 4 |
2 []=23 EGTE i 2 UIB 1 2{}13 D 2 UlS 9 2(;4 3 2 Ul47 2[}'5 1

Time (years)

Figure 4


https://doi.org/10.1101/2023.10.17.562838
http://creativecommons.org/licenses/by/4.0/

