

1 **Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development**

2

3 Victoria Honnell^{1,2}, Shannon Sweeney¹, Jackie Norrie¹, Cody Ramirez¹, Beisi Xu³,
4 Brett Teubner¹, Ah Young Lee⁴, Claire Bell⁴, and Michael A. Dyer¹

5

6 ¹Department of Developmental Neurobiology at St. Jude Children's Research Hospital,
7 Memphis, Tennessee 38105, USA

8 ²Graduate School of Biomedical Sciences at St. Jude Children's Research Hospital, Memphis,
9 Tennessee 38105, USA

10 ³Center for Applied Bioinformatics at St. Jude Children's Research Hospital, Memphis,
11 Tennessee 38105, USA

12 ⁴Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231,
13 USA

14

15

16

17

18

19

20

21

22 Correspondence and requests for materials should be addressed to:

23 Michael A. Dyer

24 Department of Developmental Neurobiology, MS 324

25 St. Jude Children's Research Hospital 262 Danny Thomas Place, Memphis, TN 38105-3678,
26 USA Phone: (901) 595-2257

27 FAX: (901) 595-3143

28 E-mail: michael.dyer@stjude.org

29

30

31 Key words: retina, super-enhancer, organoid, retinal development

32

Summary Statement

33

34 Herein, we describe how conserved modules within a single super-enhancer can regulate
35 *VSX2* gene expression across species in both mice and human retinal organoids.

36

37

Abstract

38

39 Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the
40 expression of genes involved in cell identity and cell fate. Recently, we found that distinct
41 modules within a murine SE regulate gene expression of master regulatory transcription factor
42 *Vsx2* in a developmental stage- and cell-type specific manner. *Vsx2* is expressed in retinal
43 progenitor cells as well as differentiated bipolar neurons and Müller glia. Mutations in *VSX2* in
44 humans and mice lead to microphthalmia due to a defect in retinal progenitor cell proliferation.
45 Deletion of a single module within the *Vsx2* SE leads to microphthalmia. Deletion of a separate
46 module within the SE leads to a complete loss of bipolar neurons, yet the remainder of the retina
47 develops normally. Furthermore, the *Vsx2* SE is evolutionarily conserved in vertebrates,
48 suggesting that these modules are important for retinal development across species. In the
49 present study, we examine the ability of these modules to drive retinal development between
50 species. By inserting the human build of one *Vsx2* SE module into a mouse with microphthalmia,
51 eye size was rescued. To understand the implications of these SE modules in a model of human
52 development, we generated human retinal organoids. Deleting one module results in small
53 organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion
54 of the other module leads to a complete loss of ON cone bipolar neurons. This prototypical SE
55 serves as a model for uncoupling developmental stage- and cell-type specific effects of
56 neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the
57 gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms
58 contributes to phenotypic diversity and disease.

59

60

61

62

Introduction

63

64 For proper retinal development to occur, thousands of genes must be turned on and
65 turned off in a precise spatiotemporal order (Livesey and Cepko, 2001). Many genes encoding
66 master regulatory transcription factors are expressed in retinal progenitor cells during early
67 stages of development and in a subset of differentiated cells at late stages of development
68 (Haubst et al., 2004, (Castro et al., 2011, (Nishida et al., 2003). For example, *Sox2* is expressed
69 in retinal progenitor cells and persists in differentiated Müller glia in the adult retina (Graham et
70 al., 2003). Likewise, *Pax6* is expressed in retinal progenitor cells at early stages of development
71 and persists in amacrine cells and Müller glia (Collinson et al., 2003, (Marquardt et al., 2001).
72 While these complex cell type-specific gene expression patterns have been well-characterized
73 during retinogenesis, the underlying molecular mechanisms by which these genes are regulated
74 is not well understood.

75 Prior studies have computationally identified hundreds of putative super-enhancers across
76 multiple stages of retinal development (Aldiri et al., 2017, (Marchal et al., 2022). A major
77 challenge in the field is correctly identifying enhancers and their target genes in a developmental
78 stage and cell-type specific manner. We recently identified a super-enhancer (SE) upstream of
79 the *Vsx2* gene that is necessary and sufficient for the complex expression pattern of *Vsx2* during
80 development (Honnel et al., 2022). *Vsx2* is expressed in retinal progenitor cells and maintained
81 in differentiated bipolar neurons and Müller glia (Liu et al., 1994, (Rowan and Cepko, 2004,
82 (Vitorino et al., 2009, (Buenaventura et al., 2018). *Vsx2* gene knockout mice (*OrJ*) are born with
83 microphthalmia, a very small eye, due to a defect in retinal progenitor cell proliferation
84 (Burmeister et al., 1996, (Ferda Percin et al., 2000, (Livne-Bar et al., 2006, (Truslove, 1962).
85 Thus, determining the precise role of *Vsx2* in differentiated bipolar neurons and Müller glia in
86 this model is difficult because normal retinal development does not occur.

87 We found that, in mice, the developmental stage-specific and cell-type specific
88 expression pattern of *Vsx2* is achieved by distinct enhancer modules within its adjacent SE
89 (Honnel et al., 2022). One module (Region 0) is responsible for retinal progenitor cell
90 proliferation. Deletion of this region leads to microphthalmia. A separate module (Region 3)
91 regulates bipolar cell genesis. Deletion of this region leads to complete loss of a single cell type,
92 the bipolar neurons. Bipolar neurons are present in the Region 0 deletion retina and the eye is of

93 a normal size in the Region 3 deletion retina demonstrating that the *Vsx2* gene is regulated by a
94 modular SE. Thus, by knocking out the enhancers *cis* to the *Vsx2* gene, we are able to control
95 *Vsx2* gene expression without perturbing the gene itself.

96 Considering that these sequences are evolutionarily conserved across vertebrates, we
97 hypothesize that they are necessary for normal human retinal development and interchangeable
98 between species. In the present study, we discovered that the human VSX2 enhancer modules are
99 sufficient for driving reporter expression in the mouse retina. We then assessed the ability of the
100 R0 human enhancer to function between species by replacing the mouse enhancer with the
101 human enhancer *in vivo*. Using the Region 0 deletion mouse, which has microphthalmia, we
102 knocked-in the human Region 0 enhancer and found that eye size and vision were rescued. To
103 understand how these enhancers may function in a model of human retinal development, we
104 generated Region 0 and Region 3 knockout retinal organoids from human embryonic stem cells
105 (hESCs). These data suggests that the *Vsx2* enhancer elements are functionally interchangeable
106 between humans and mice, and that both enhancers are necessary for normal human retinal
107 organoid development. This work further explores enhancer mechanisms regulating *Vsx2* gene
108 expression and could offer insights for previously unknown enhancer candidates contributing to
109 microphthalmia and blindness in humans.

110

111

112

113

114

115

116

117

118

Results

119

120 The *Vsx2* SE enhancer regions are evolutionarily conserved

121 Using integrated epigenetic analyses, we previously identified a 41kb SE upstream of the
122 *Vsx2* gene in mice (Norrie et al., 2019). Within the *Vsx2* super-enhancer are four evolutionarily
123 conserved regions, R0-37, R1-28, R2-22, and R3-17 located 37, 28, 22, and 17 kilobases from the
124 *Vsx2* mouse promoter, respectively (Honnell et al., 2022) (Fig. S1A). To determine whether these
125 regions are sufficient for driving reporter expression in mice, we subcloned them into a pP reporter
126 plasmid driven by a minimal promoter, as previously described (Kim et al., 2008). Mouse Regions
127 0-3 were individually co-electroporated into mouse retina at P0 *in vivo* with a constitutive H3.3
128 Scarlet reporter plasmid, labeling all electroporated cells. We scored the proportion of GFP+,
129 Scarlet+/Scarlet+ cells for each cell type for each reporter plasmid. R0-37 is sufficient for driving
130 reporter expression in Müller glia and R3-17 is sufficient for driving reporter expression in bipolar
131 neurons (Fig. S1B). Since the *Vsx2* SE extends into the neighboring *Lin52* gene, we also examined
132 evolutionarily conserved regions within this gene. However, no statistically significant reporter
133 expression was observed (Fig. S1C). Considering that conserved Regions 0-3 are several kilobases
134 in size, we refined them to sequences conserved only in distantly related species. Upon refining
135 Region 3, we found that Region 3-d exhibited robust transgene expression in the bipolar neurons
136 compared to Region 3-c (Fig. S1D). Notably, Region 3-d contains a 164 bp element that was
137 previously found to drive reporter expression in rat bipolar neurons by the Cepko laboratory (Kim
138 et al., 2008). Lastly, we combined each of the refined regions to create a “mini-enhancer” and
139 found that it recapitulates the cell-type specific expression inherent to its individual elements (Fig.
140 S1E).

141 Considering that there is strong evolutionary conservation of these genomic sequences
142 across vertebrates, we then examined the ability of these regions to drive reporter expression
143 between species. To determine if the human genomic sequences of Regions 0-3 (namely hR0-36,
144 hR1-25, hR2-20, and hR3-16) are sufficient for driving reporter expression in mice, we subcloned
145 them into the reporter plasmid described above, and electroporated them into mouse retina (Fig.
146 1A-B). When electroporated into a mouse, hR0-36 is sufficient for driving reporter expression in
147 Müller glia and hR3-16 is sufficient for driving reporter expression in bipolar neurons (Fig. 1C-

148 D). This is consistent with the results observed from electroporation of the ortholog mouse
149 enhancer sequences (Fig. 1E). Taken together, these results suggest that the VSX2 SE contains
150 evolutionarily conserved enhancer elements that are sufficient for driving cell-type specific
151 reporter expression between species.

152 **The Vsx2 SE Region 0 is functional between species**

153 Mutations in VSX2 lead to microphthalmia in humans and mice (*OrJ*) due to a defect in
154 retinal progenitor cell proliferation (Burmeister et al., 1996, (Livne-Bar et al., 2006, (Ferda
155 Percin et al., 2000, (Truslove, 1962). Our previous work found that microphthalmia also occurs
156 in Region 0 deletion mice (R0-37^{Δ/Δ}) (Honnell et al., 2022) (Fig. 2A-C). While the *OrJ* and R0-
157 37^{Δ/Δ} mice are blind, their ability to photoentrain has not been explored (Honnell et al., 2022).
158 We examined the ability of *OrJ* and R0-37^{Δ/Δ} mice to photoentrain by assessing running-wheel
159 activity accompanied by light schedule shifts over 36 days. Despite having photoreceptors,
160 melanopsin, and an optic nerve, the *OrJ* and R0-37^{Δ/Δ} mice do not photoentrain (Fig. S2 A-E).

161 Considering that R0-37 is necessary for normal eye size, we next examined how this
162 enhancer region may promote RPC proliferation during early periods of retinal development. By
163 integrating HiChIP and ChIP-seq. data for mark H3K27ac, we found a significant chromatin
164 interaction between R0-37 and the *Vsx2* promoter in E14.5 wildtype retina (Fig. 2A).

165 To examine functional capabilities of the Human R0 enhancer between species, we
166 knocked-in the Human R0 enhancer, hR0-36, into the R0-37 deletion mouse using CRISPR-
167 Cas9, thereby replacing the mouse enhancer sequence with the human ortholog (Fig. 2B). The
168 Human Region 0 insertion mouse (R0^{Hu/Δ}) displays a normal eye size as well as all three nuclei
169 layers as determined by morphological analysis (Fig. 2D). The R0^{Hu/Δ} retina also contains a
170 normal distribution of rod photoreceptors, cones, bipolar and amacrine neurons, and retinal
171 ganglion cells as observed by immunofluorescence (Fig. 2E). Furthermore, these mice have
172 normal visual acuity as determined by optometry (Fig. 2F). These datasets suggest that hR0-36 is
173 able to rescue mouse eye size and restore visual acuity, and is thus functional across murine
174 retinal development.

175

176 **Vsx2 SE Region 0 is necessary for normal human retinal organoid development**

177 To understand the effect of the *Vsx2* SE in a model of human retinal development, we
178 generated human retinal organoids following an established protocol with three defined
179 developmental stages (Capowski et al., 2019) (Fig 3A). Using CRISPR-Cas9, we deleted hR0-36
180 ($R0-36^{\Delta/\Delta}$), hR3-16 ($R3-16^{\Delta/\Delta}$), and generated frameshift mutations in exon 2 for a VSX2 null
181 ($VSX2^{-/-}$) in human embryonic stem cells (hESCs) (Fig. 3B). Two sublines were created and
182 analyzed for each deletion. No differences in sublines were observed by RNA seq, qRT-PCR, or
183 morphological analysis by IHC (Supplemental Dataset 1). The parent cell line contains a dual
184 reporter that labels cells expressing *VSX2* and *CRX* (H9 *VSX2*-GFP/*CRX*-TdTomato) (Fig. 3C).
185 Retinal organoids were collected for analysis across the three developmental stages (Capowski et
186 al., 2019). At Stage 1, all retinal organoid lines express *CRX*-Tomato, marking photoreceptors.
187 Wildtype and R3-16 $^{\Delta/\Delta}$ retinal organoids expressed *VSX2*-GFP, marking retinal progenitor cells.
188 GFP was not visible by fluorescent light microscope in $VSX2^{-/-}$ and $hR0-36^{\Delta/\Delta}$ retinal organoids
189 (data not shown).

190 By the end of Stage 2, the majority of retinal progenitor cells are expected to have fully
191 differentiated, and all neuronal cell types are present (Capowski et al., 2019). We observed that
192 $VSX2^{-/-}$ and $hR0-36^{\Delta/\Delta}$ retinal organoids are significantly smaller compared to WT retinal
193 organoids, as assessed by measurements of 123 traced retinal organoids from photographs (Fig.
194 3D-E). To determine if there is any perturbation in retinal progenitor cell proliferation as a result
195 of the deletions, we performed EdU labeling during Stage 2 on day 90 . Retinal organoids
196 received EdU and 1 hour later they were harvested, stained for EdU and DAPI, and scored.
197 There is no significant difference in size or proportion of proliferating cells between WT and
198 $R3^{\Delta/\Delta}$ retinal organoids. However, there is a significant reduction in the proportion of EdU+ cells
199 in the outer layer of $VSX2^{-/-}$ and $R0^{\Delta/\Delta}$ retinal organoids compared to WT retinal organoids (Fig.
200 3F-G). To determine whether discrepancies in retinal organoid size was due to apoptotic retinal
201 neurons, we performed immunostaining for activated Caspase 3 and scored the proportion of
202 immunopositive cells. There was no significant difference in the proportion of outer layer
203 apoptotic cells between retinal organoid lines (Fig. 3H-I). Taken together, our data suggests that
204 the hR0-36 enhancer is necessary for retinal progenitor cell proliferation and that the $R0-36^{\Delta/\Delta}$
205 human retinal organoids recapitulate the small-eye phenotype observed in mice with
206 microphthalmia.

207

208 **R0^{Δ/Δ} human retinal organoids have aberrant gene expression across developmental stages**

209 During early development at Stage 1, there are no visible differences between R0-36^{Δ/Δ}
210 and WT retinal organoids (Fig. S3 A-B). To examine potential differences in gene expression,
211 we harvested multiple biological replicates for each organoid line across the three developmental
212 stages for bulk RNA-seq and qRT-PCR. At Stage 1 and Stage 2, principal component analysis
213 (PCA) plots display R0-36^{Δ/Δ} clustered with VSX2^{-/-} retinal organoids, and R3-16^{Δ/Δ} clustered
214 with WT organoids, suggestive of similarity in gene expression profiles (Fig. 4A-B). We then
215 compared R0-36^{Δ/Δ} to Vsx2^{-/-} retinal organoids, and found that the transcriptomic data is
216 positively correlated across stages (Fig. 4C-D).

217 Differential gene expression of R0-36^{Δ/Δ} and WT retinal organoids was then examined
218 across both stages. At Stage 1, R0-36^{Δ/Δ} retinal organoids display downregulated *VSX2* and
219 upregulated *Microphthalmia-associated Transcription Factor (MITF)*, a target of VSX2-
220 mediated gene repression (Horsford et al., 2005, (Rowan et al., 2004, (Bharti et al., 2008, (Zou
221 and Levine, 2012)(Fig. 4E). This data aligns with a previous study that found that human retinal
222 organoids derived from a patient with *VSX2*-mediated microphthalmia also exhibit upregulation
223 in *MITF* compared to a non-affected sibling (Phillips et al., 2014). Additional upregulated genes
224 include targets of *MITF*, namely *DCT* and *TYR* (*Kawakami and Fisher, 2017*) (Fig. 4E).
225 Considering that the R0-36^{Δ/Δ} retinal organoids are smaller in size, display a defect in
226 proliferation, and mirror the gene expression profile observed in VSX2^{-/-} organoids known to
227 recapitulate microphthalmia in humans, we then asked whether cell cycle genes are also affected.
228 Using four R0-36^{Δ/Δ} and four WT biological replicates, we examined genes involved in cell cycle
229 and proliferation. Overall, we observed a reduction in the average FPKM values of cell cycle
230 genes in R0-36^{Δ/Δ} retinal organoids compared to WT (Fig. 4F).

231 By Stage 2, R0-36^{Δ/Δ} retinal organoids exhibit downregulated photoreceptor genes
232 including cone genes *ARR3*, *RD3*, *RCVRN*, and *CRX* (Fig. 4F). *MITF* and its targets, *DCT* and
233 *TYR*, remained upregulated (Fig. 4G). Using three R0-36^{Δ/Δ} and three WT biological replicates,
234 we then examined the gene expression of differentiated retinal cell types. For all cell retinal types
235 except Müller glia, there is a reduction in the average FPKM value in R0-36^{Δ/Δ} organoids (Fig.
236 4H).

237 During Stage 3, human retinal organoids complete maturation by forming photoreceptor
238 outer segments (Phillips et al., 2014). To examine cell types present in mature retinal organoids,

239 we performed single cell RNA sequencing (scRNA-seq.) on two biological replicate R0-36^{Δ/Δ}
240 organoids, two R3-36^{Δ/Δ} organoids, and three WT organoids. Preliminary data suggests that R0-
241 36^{Δ/Δ} retinal organoids contain an unusually high proportion of Müller glial cells (Fig. 4I).
242 Taken together, these data suggest that R0-36^{Δ/Δ} organoids recapitulate microphthalmia, display
243 a defect in proliferation, and do not produce retinal cell types in normal proportions, indicating a
244 defect in RPC differentiation.

245

246 **There is a loss of ON cone bipolar neurons in the R3-16^{Δ/Δ} human retinal organoids**

247 Considering that our previous work found a complete loss of bipolar neurons in the *Vsx2*
248 R3^{Δ/Δ} mouse, and that this enhancer displays strong evolutionary conservation, we next wanted to
249 assess how deletion of hR3-16 affects bipolar neurons in a model of human development
250 (Honnell et al., 2022). The presence of all neural retinal cell types in R3-16^{Δ/Δ} retinal organoids
251 was first assessed by immunohistochemistry, RNA-seq, and qRT-PCR. Interestingly, each retinal
252 cell type is present, however aberrant bipolar neuron morphology and laminar position was
253 observed in organoids stained by G0α (Fig. 5A). Furthermore, these retinal organoids express
254 bipolar neuron genes *GRM6*, *PRKCA*, and *VSX2* as determined by qRT-PCR and bulk RNA-seq
255 (Fig. 5B, Supplemental Dataset 1). These data initially suggest that bipolar neurons are present in
256 R3-16^{Δ/Δ} organoids. However, considering that there was abnormal G0α staining, we decided to
257 further investigate this phenotype by scRNA-seq.

258 Recent studies have molecularly classified bipolar neurons to identify 15 subtypes which
259 broadly fall into the categories of ON cone bipolar, OFF cone bipolar, or rod bipolar (RB)
260 (Shekhar et al., 2016). To examine the presence of bipolar neuron subtypes in R3-16^{Δ/Δ} human
261 retinal organoids, we used scRNA-seq with two R3-16^{Δ/Δ} and three WT biological replicates.
262 Bipolar neurons from all five samples were isolated by computational analyses (Fig. 5C). The
263 bipolar neurons were further categorized by established ON, OFF, or RB molecular markers
264 (Haverkamp et al., 2003, (Shekhar et al., 2016). Interestingly, R3-16^{Δ/Δ} bipolar neurons do not
265 express the ON cone bipolar neuron markers *ISL1*, *VSX2*, and *PCP2*, and express *GRM6* at low
266 levels compared to bipolar neurons of WT samples (Fig. 5D-G). However, both samples express
267 RB marker, *CABP5*, and OFF cone bipolar neuron marker, *GRIK1* (Fig. 5H-1). These data
268 suggests that deletion of hR3-16 in human retinal organoids leads to a loss of ON cone bipolar
269 neurons. We further explored the possibility that this enhancer deletion is specific to a subtype(s)

270 of ON cone bipolar neurons by examining distinct markers of known subtypes, however further
271 orthogonal approaches and analyses are required (Fig. 5J-K).

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301
302

Discussion

303 Since their introduction a decade ago, super-enhancers have been of interest to
304 developmental biologists because of their ability drive expression of genes encoding master
305 regulatory transcription factors controlling cell identity and cell fate. Super-enhancers have been
306 found to be important for normal developmental processes, and have been implicated as drivers
307 of disease due to enrichment of disease-associated genetic variation (Hnisz et al., 2013). We
308 believe that the importance of super-enhancer function across development is underscored by
309 their characteristic evolutionary conservation in vertebrates (Zhang et al., 2022, (Khan et al.,
310 2018, (Pérez-Rico et al., 2017). That is, genomic sequences within SEs have remained largely
311 consistent over time, perhaps because they are critical for proper organogenesis and thus
312 continued survival. Indeed, in the case of *Vsx2* we have identified distinct conserved modules
313 within a SE that are necessary for normal retinal development in both mice and human-derived
314 retinal organoids. Remarkably, inserting the human Region 0 module into a mouse with
315 microphthalmia rescues eye size and vision, suggesting that this sequence is functionally
316 interchangeable between species. To our knowledge, this is the first example of a functional
317 interspecies enhancer rescue *in vivo*.

318

319 **Identification of *Vsx2* SE modules**

320 Four *Vsx2* SE regions of interest were initially identified by inspecting evolutionarily
321 conserved sequences on the UCSC genome browser (Kent et al., 2002, (Raney et al., 2013).
322 Boundaries were determined by visual examination and used for all plasmid and CRISPR-Cas9
323 knockout designs. Previous studies have identified enhancers fundamental in development by
324 inserting conserved human sequences into mouse and examining their ability to drive reporter
325 expression (Pennacchio et al., 2006). We used this approach with the *Vsx2* SE regions of interest
326 to examine the ability of the human ortholog to drive reporter expression in mouse retinal cell
327 types. Region 0 and Region 3 had cell-type specific reporter expression and the results were
328 consistent regardless of genome build. To understand the degree of similarity between genome
329 builds, we aligned and compared the mouse sequences to the human orthologs using the National
330 Library of Medicine Nucleotide BLAST tool (Altschul et al., 1990, (Morgulis et al., 2008). For
331 Region 0, BLAST identified one highly similar (89%) sequence spanning 584 bp. For Region 3,

332 BLAST identified two sequences with that are 91% and 89% similar. Upon further analysis,
333 these sequences are Region 3-c and Region 3-d, respectively. However, as described above,
334 Region 3-d electroprorated samples displayed more GFP+ bipolar neurons in comparison to
335 Region 3-c (Fig S1C). Our previous ChIP-seq and scATAC data characterized Region 3 is an
336 enhancer, however, these methods do not have the resolution to identify adjacent enhancer
337 candidates. These results nod to the limitations of relying solely on integrated epigenetic
338 analyses to identify enhancer elements. Furthermore, while highly conserved sequences are
339 suggestive of regulatory regions, functional analyses are still necessary.

340

341 **Vsx2 enhancer involvement in environmental adaptation**

342 Super-enhancers are implicated in driving normal development as well as disease (Hnisz
343 et al., 2013, (Whyte et al., 2013, (Parker et al., 2013). However, their contribution to phenotypic
344 diversity among species is still being explored. A previous study by the Clark Lab examined the
345 evolutionary rate of subterranean mammalian enhancers implicated in eye development (Partha
346 et al., 2017). This was guided by the premise that despite not being related, many subterranean
347 mammals have poor eyesight, thus unique pressures of the underground environment may
348 promote convergent evolution. They identified 17 eye-specific enhancers in the mole that
349 mutated at significantly accelerated rates. Strikingly, upon mining the data, two of these
350 enhancers are Region 0 and Region 3. We propose that the *Vsx2* SE may be a driver of
351 phenotypic diversity in evolving species. There are other species with unusual eyes, such as the
352 “owl” monkey (*Aotus*) which in contrast to the mole or shrew, has extremely large eyes (Dyer et
353 al., 2009). The development of large eyes is believed to aid foraging at night, however the
354 molecular mechanisms conferring this trait are unknown. Future studies examining evolutionary
355 rate of super-enhancers in this species may resolve the origin of this phenotype.

356

357 **Vsx2 SE function in human retinal organoids**

358 Retinal organoids serve as a powerful tool for modeling human retinal development and
359 disease (Foltz and Clegg, 2019, (Kruczak and Swaroop, 2020, (Wahle et al., 2023, (Ludwig et
360 al., 2023, (Saha et al., 2022, (Phillips et al., 2014). To understand the role of the *Vsx2* SE
361 modules in human retinal organoids, we individually deleted Region 0 or Region 3 and assessed
362 their growth and development over three established developmental stages (Capowski et al.,

363 2019). One observed strength of this model is that we were able to generate hundreds of retinal
364 organoids for each deletion line. Furthermore, the double reporter line served as an indicator of
365 achieving a retinal lineage. However, we did observe some variation in organoid structure across
366 biological replicates. Notably, some organoids contained a dense cellular core, while others had a
367 hollow core. This was a limitation when scoring the proportion of apoptotic cells and instead,
368 we scored only the outer layer which exhibited structural consistency. In this case, we cannot
369 make definitive conclusions about the differences in overall cell death between retinal organoid
370 lines. Instead, our interpretation is that there is no difference in cell death in the outer layer,
371 which contains photoreceptors, bipolar neurons, amacrine cells, and horizontal cells.

372 Interestingly, deleting hR3-16 in human retinal organoids does not eliminate bipolar
373 neurons as previously observed in the mouse, but instead may eliminate a sub type of bipolar
374 cell, ON cone bipolar neurons (ON BCs). Initially, we overlooked this observation because
375 neither IHC markers used, Vsx2 and G0α, are specific to ON BCs. However, scRNA-seq
376 analyses later revealed a distinct absence of this cell type. Rigorous analyses are ongoing to
377 further examine and validate this phenotype, as well as assess the subtypes of ON BCs affected.
378 This result suggests that development of rod and OFF bipolar neurons is evolutionarily
379 conserved, but the mechanisms by which ON BCs develop in humans is unclear.

380 To our knowledge, mutations in these regions have not been examined in individuals with
381 microphthalmia or blindness. Considering that SEs harbor an increase in disease-associated risk
382 variants, and that these regions are known to mutate at accelerated rates in low vision species, we
383 propose that Region 0 and Region 3 could be novel drivers of microphthalmia or blindness in
384 humans.

385

386

387

388

389

390

391

Materials and Methods

392 **Mouse Strains**

393 All animal procedures and protocols were approved by the St. Jude Laboratory Animal
394 Care and Use Committee under protocol number 393-100500. All studies conform to federal and
395 local regulatory standards. Mice were housed on ventilated racks on a standard 12 hour light-
396 dark cycle. Wild-type C57BL/6J mice were purchased from the Jackson Laboratory (Bar Harbor,
397 ME, #000664). For timed pregnancy, individual male mice were housed with 3 females in a
398 single cage. Plugged/pregnant females (identified by visual examination), were isolated and
399 embryos or pups were harvested at the appropriate time. Both males and females were combined
400 for this study. Conserved regions within the *Vsx2* SE were identified by examination of
401 evolutionary conservation in the UCSC mm10 genome build. Human Region 0 Enhancer mouse
402 models were created using CRISPR-Cas9 technology.

403 **RNA isolation**

404 RNA was extracted from individual TRIzol (Life Technologies) preparations via a
405 phenol-chloroform extraction. Samples were first dissociated by pipetting retina and TRIzol
406 vigorously. A 1:4 volume of chloroform (Sigma) was then added to each sample and incubated
407 at room temperature for 3 min followed centrifugation at 12,000 3 g at 4C for 15 min. The
408 aqueous layer was then transferred to a siliconized Eppendorf tube followed by the addition of
409 2.0 mL glycogen (Roche) and 500 mL isopropanol (Fisher Scientific). Samples were incubated at
410 room temperature for 10 min followed by centrifugation at 12,000 3 g at 4C for 15 min. Samples
411 were then washed twice with ice-cold 80% EtOH (Fisher) to remove salts, resuspended in DEPC
412 H2O, and the concentration was determined with a NanoDrop (Thermoscientific).

413 Libraries were prepared from 500 ng total RNA with the TruSeq Stranded Total RNA
414 Library Prep Kit according to the manufacturer's directions (Illumina). Paired-end 100-cycle
415 sequencing was performed on HiSeq 2000 or HiSeq 2500 sequencers according to the
416 manufacturer's directions (Illumina).

417 **qRT-PCR**

418 cDNA was made from 200 ng of RNA from H9, JHDR, 1B6, 1C9, 5D2, 8H6, 8E10, 5B2,
419 1C2, 4F9 organoid lines (Applied Biosystems 4387406). cDNA was loaded onto a Custom

420 TaqMan Array Card (Applied Biosystems 4342249) run on a QuantStudio 7 Flex
421 (ThermoScientific) system. “Undetermined” values were set to a Ct of 40 as the limit of
422 detection of the assay.

423 **RNA-seq**

424 RNA was quantified using the Quant-iT RiboGreen assay (Life Technologies) and quality
425 checked by 2100 Bioanalyzer RNA 6000 Nano assay (Agilent,) 4200 TapeStation High
426 Sensitivity RNA ScreenTape assay (Agilent,) or LabChip RNA Pico Sensitivity assay
427 (PerkinElmer) prior to library generation. Libraries were prepared from total RNA with the
428 TruSeq Stranded Total RNA Library Prep Kit according to the manufacturer’s instructions
429 (Illumina, PN 20020599). Libraries were analyzed for insert size distribution on a 2100
430 BioAnalyzer High Sensitivity kit (Agilent Technologies,) 4200 TapeStation D1000 ScreenTape
431 assay (Agilent Technologies,) or Caliper LabChip GX DNA High Sensitivity Reagent Kit
432 (PerkinElmer.) Libraries were quantified using the Quant-iT PicoGreen ds DNA assay (Life
433 Technologies) or low pass sequencing with a MiSeq nano kit (Illumina) Paired end 100 cycle
434 sequencing was performed on a NovaSeq 6000 (Illumina). For PCA analysis, only protein-
435 coding genes with the annotation level (https://www.gencodegenes.org/pages/data_format.html)
436 in 1 (verified loci) and 2 (manually annotated loci) were included in the analysis. With input of
437 read counts for all samples, counts per million mapped reads (CPMs) were obtained by using the
438 function *cpm* in the edgeR package. Genes were removed when the corresponding CPMs for all
439 samples were smaller than the CPM whose corresponding raw read count is 10. Then, the top
440 3000 most variable genes were selected by ranking the mean absolute deviation (MAD) of the
441 log₂-transformed CPMs in descending order. Based on these most variable genes, the PCA
442 analysis was performed on the log₂-transformed CPMs by using the *prcomp* function available in
443 the standard R language. The top two principal components (PCs) were used to draw the PCA
444 figures.

445 **Vision Testing**

446 The OptoMotry system from CerebralMechanics was used to measure the optomotor
447 response of the CRISPR gene-edited mice. Briefly, a rotating cylinder covered with a vertical
448 sine wave grating was calculated and drawn in virtual three-dimensional (3-D) space on four
449 computer monitors facing to form a square. CRISPR gene-edited mice standing unrestrained on a

450 platform in the center of the square tracked the grating with reflexive head and neck movements.
451 The spatial frequency of the grating was clamped at the viewing position by repeatedly
452 recentering the cylinder on the head. Acuity was quantified by increasing the spatial frequency of
453 the grating until an optomotor response could not be elicited. Contrast sensitivity was measured
454 at spatial frequencies between 0.1 and 0.45 cyc/deg. The tester was blinded to genotype until
455 after testing was complete. Bar plot displays mean with SEM.

456 **GFP Reporter Assay**

457 0.5 uL of plasmid mixture (2 ug/uL of enhancer plasmid and 0.5 ug/uL of a pCig2-H3.3-
458 scarlet plasmid, a normalization control generously gifted to us from the Solecki Lab,
459 resuspended in HBSS (Corning, 21-022-CV)) was co-electroporated into the sub retinal space of
460 C57/BL6 mice at P0. Mouse retinae were harvested at P21 for GFP amplification
461 immunostaining. Experiments were performed in biological triplicates for each enhancer
462 plasmid. One 40X confocal image from three retina were scored for each construct. GFP+,
463 Scarlet+ cell types were counted and divided by Scarlet+ (electroporation control) cells to
464 calculate the percentage of GFP+ cells for each cell type. Cells were assigned to specific cell
465 types based on their location and morphology. Bar plot displays mean and SD for each cell type
466 for each construct.

467 **Organoid EdU Labeling and Scoring**

468 EdU labeling was performed per manufacturer's instructions (Click-iT EdU imaging kit,
469 Invitrogen, catalog C10340), and DNA was stained with 0.2 μ g/ml DAPI (Sigma-Aldrich).
470 Briefly, retinal organoids in individual wells containing 1 mL of 3D-RDM were given 1 uL of
471 EdU 1-hour prior to fixing and cryoembedding. Organoids were then fixed by 4% PFA
472 overnight, embedded by O.C.T. Compound (Scigen 4583), and cryosectioned at 10 um. Sections
473 were fixed by 4% PFA, washed with 3% BSA-PBS, incubated with 0.5% Triton X-100 in PBS
474 (Sigma T9284), and washed again. Cryosections were imaged using a Zeiss LSM 700 confocal
475 microscope using a 40X lens. Three images containing at least two biological replicates were
476 scored for each cell line. Bar plots display the mean and SD of manual scoring.

477 **Organoid Caspase-3 Scoring**

478 For each genotype or human retinal organoids, 3 images from at least 2 biological
479 replicates were collected. The fields were selected randomly using the DAPI channel in order to
480 minimize bias in the Caspase channel. Images were collected and then total nuclei and Caspase+
481 nuclei were scored. Nuclear fragments were not scored. The number of Caspase + nuclei across
482 the 3 images on a given section were combined and the total number of nuclei were combined
483 and the ratio and percentage were calculated. The data for the two sections were averaged and
484 the standard deviation was calculated. The individual datapoints from independent sections were
485 plotted along with mean and SD.

486 **Imaging**

487 Images were taken with the Zeiss LSM 700 confocal microscope using the 40X lens.
488 Brightness and contrast were modified for images presented in the figures for the IF studies. Raw
489 original data are available for all datasets and probes.

490 **Statistics and Reproducibility**

491 Mice of both sexes were randomly selected for analyses. Investigators were blinded to
492 cell line when handling human retinal organoids. Investigators were blinded when scoring
493 images. No statistical method was used to predetermine sample size. There were no instances in
494 which repeat experiments yielded conflicting results, suggesting reproducibility of our
495 experiments. GraphPad Prism 8 software was used to calculate statistical measures. No data were
496 excluded from the analyses.

497 **Note: Roles of Manuscript Authors**

498 V.H. and M.A.D. conceived and designed the study, V.H., S.S., B.T. and M.A.D. collected the
499 data, V.H., J.L.N., and C.R. performed computational analysis, A.L. and C.B. created the hESC
500 double reporter cell line, V.H. and M.A.D., analyzed and interpreted the data., V.H. and M.A.D.
501 drafted the manuscript.

502 **Acknowledgements**

503 We thank Shondra Pruett-Miller and Jonathon Klein of the Center of Advanced Genome
504 Engineering and Valerie Stewart of the Neuroembryology Core for aiding with the creation of the

505 genetically modified mouse models and cell lines, Everest Ouyang for maintaining the mouse
506 colony and performing vision testing, Abbas Shirinifard of the Neuroimaging Analysis Lab for
507 developing a program to measure organoid photographs, and Xitiz Chamling and Donald J. Zack
508 for helping generate and generously sharing their transgenic hESC double reporter line. Figures
509 were created using BioRender.com.

510 **Competing Interests**

511 No competing interests declared.

512 **Funding**

513 This research was supported by grants from the National Institutes of Health [R01EY030180 to
514 M.A.D. and F99NS125819 to V.H.]. The content is solely the responsibility of the authors and
515 does not necessarily represent the official views of the National Institutes of Health. The research
516 was also supported by American Lebanese Syrian Associates Charities. M.A.D. was also
517 supported by Alex's Lemonade Stand, and Tully Family and Peterson Foundations.

518 **Data Availability**

519 The raw sequencing data generated in this study will be publicly available in the GEO database
520 upon publishing. All other relevant data supporting the key findings of this study can be found
521 within the article and its Supplementary Information files or from the corresponding author upon
522 reasonable request.

523

524

525

526

References

528 Aldiri, I., Xu, B., Wang, L., Chen, X., Hiler, D., Griffiths, L., Valentine, M., Shirinifard, A.,
529 Thiagarajan, S., Sablauer, A., Barabas, M. E., Zhang, J., Johnson, D., Frase, S., Zhou, X.,
530 Easton, J., Zhang, J., Mardis, E. R., Wilson, R. K., Downing, J. R. & Dyer, M. A. 2017.
531 The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming,
532 and Tumorigenesis. *Neuron*, 94, 550-568.e10.

533 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. 1990. Basic local alignment
534 search tool. *Journal of Molecular Biology*, 215, 403-410.

535 Bharti, K., Liu, W., Csermely, T., Bertuzzi, S. & Arnheiter, H. 2008. Alternative promoter use in
536 eye development: the complex role and regulation of the transcription factor MITF.
537 *Development*, 135, 1169-78.

538 Buenaventura, D. F., Ghinia-Tegla, M. G. & Emerson, M. M. 2018. Fate-restricted retinal
539 progenitor cells adopt a molecular profile and spatial position distinct from multipotent
540 progenitor cells. *Developmental Biology*, 443, 35-49.

541 Burmeister, M., Novak, J., Liang, M. Y., Basu, S., Ploder, L., Hawes, N. L., Vidgen, D., Hoover,
542 F., Goldman, D., Kalnins, V. I., Roderick, T. H., Taylor, B. A., Hankin, M. H. & McInnes,
543 R. R. 1996. Ocular retardation mouse caused by Chx10 homeobox null allele: impaired
544 retinal progenitor proliferation and bipolar cell differentiation. *Nat Genet*, 12, 376-84.

545 Capowski, E. E., Samimi, K., Mayerl, S. J., Phillips, M. J., Pinilla, I., Howden, S. E., Saha, J.,
546 Jansen, A. D., Edwards, K. L., Jager, L. D., Barlow, K., Valiauga, R., Erlichman, Z.,
547 Hagstrom, A., Sinha, D., Sluch, V. M., Chamling, X., Zack, D. J., Skala, M. C. & Gamm,
548 D. M. 2019. Reproducibility and staging of 3D human retinal organoids across multiple
549 pluripotent stem cell lines. *Development*, 146.

550 Castro, D. S., Martynoga, B., Parras, C., Ramesh, V., Pacary, E., Johnston, C., Drechsel, D.,
551 Lebel-Potter, M., Garcia, L. G. & Hunt, C. 2011. A novel function of the proneural factor
552 Ascl1 in progenitor proliferation identified by genome-wide characterization of its
553 targets. *Genes & development*, 25, 930-945.

554 Collinson, J. M., Quinn, J. C., Hill, R. E. & West, J. D. 2003. The roles of Pax6 in the cornea,
555 retina, and olfactory epithelium of the developing mouse embryo. *Dev Biol*, 255, 303-12.

556 Dyer, M. A., Martins, R., Da Silva Filho, M., Muniz, J. A., Silveira, L. C., Cepko, C. L. & Finlay,
557 B. L. 2009. Developmental sources of conservation and variation in the evolution of the
558 primate eye. *Proc Natl Acad Sci U S A*, 106, 8963-8.

559 Ferda Percin, E., Ploder, L. A., Yu, J. J., Arici, K., Horsford, D. J., Rutherford, A., Bapat, B.,
560 Cox, D. W., Duncan, A. M., Kalnins, V. I., Kocak-Altintas, A., Sowden, J. C., Traboulisi,

561 E., Sarfarazi, M. & McInnes, R. R. 2000. Human microphthalmia associated with
562 mutations in the retinal homeobox gene CHX10. *Nat Genet*, 25, 397-401.

563 Foltz, L. P. & Clegg, D. O. 2019. Patient-derived induced pluripotent stem cells for modelling
564 genetic retinal dystrophies. *Progress in Retinal and Eye Research*, 68, 54-66.

565 Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. 2003. SOX2 functions to maintain neural
566 progenitor identity. *Neuron*, 39, 749-65.

567 Haubst, N., Berger, J., Radjendirane, V., Graw, J., Favor, J., Saunders, G. F., Stoykova, A. &
568 Götz, M. 2004. Molecular dissection of Pax6 function: the specific roles of the paired
569 domain and homeodomain in brain development. *Development*, 131, 6131-40.

570 Haverkamp, S., Haeseler, F. & Hendrickson, A. 2003. A comparison of immunocytochemical
571 markers to identify bipolar cell types in human and monkey retina. *Visual neuroscience*,
572 20, 589-600.

573 Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., Hoke, H. A. &
574 Young, R. A. 2013. Super-enhancers in the control of cell identity and disease. *Cell*, 155,
575 934-47.

576 Honnella, V., Norrie, J. L., Patel, A. G., Ramirez, C., Zhang, J., Lai, Y.-H., Wan, S. & Dyer, M. A.
577 2022. Identification of a modular super-enhancer in murine retinal development. *Nature
578 Communications*, 13, 253.

579 Horsford, D. J., Nguyen, M. T., Sellar, G. C., Kothary, R., Arnheiter, H. & McInnes, R. R. 2005.
580 Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal
581 identity. *Development*, 132, 177-87.

582 Kawakami, A. & Fisher, D. E. 2017. The master role of microphthalmia-associated transcription
583 factor in melanocyte and melanoma biology. *Laboratory Investigation*, 97, 649-656.

584 Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M. & Haussler,
585 D. 2002. The human genome browser at UCSC. *Genome Res*, 12, 996-1006.

586 Khan, A., Mathelier, A. & Zhang, X. 2018. Super-enhancers are transcriptionally more active and
587 cell type-specific than stretch enhancers. *Epigenetics*, 13, 910-922.

588 Kim, D. S., Matsuda, T. & Cepko, C. L. 2008. A core paired-type and POU homeodomain-
589 containing transcription factor program drives retinal bipolar cell gene expression. *J
590 Neurosci*, 28, 7748-64.

591 Kruczak, K. & Swaroop, A. 2020. Pluripotent stem cell-derived retinal organoids for disease
592 modeling and development of therapies. *Stem Cells*, 38, 1206-1215.

593 Liu, I. S., Chen, J. D., Ploder, L., Vidgen, D., Van Der Kooy, D., Kalnins, V. I. & McInnes, R. R.
594 1994. Developmental expression of a novel murine homeobox gene (Chx10): evidence
595 for roles in determination of the neuroretina and inner nuclear layer. *Neuron*, 13, 377-93.

596 Livesey, F. & Cepko, C. 2001. Vertebrate neural cell-fate determination: lessons from the retina.
597 *Nature Reviews Neuroscience*, 2, 109-118.

598 Livne-Bar, I., Pacal, M., Cheung, M. C., Hankin, M., Trogadis, J., Chen, D., Dorval, K. M. &
599 Bremner, R. 2006. Chx10 is required to block photoreceptor differentiation but is
600 dispensable for progenitor proliferation in the postnatal retina. *Proc Natl Acad Sci U S A*,
601 103, 4988-93.

602 Ludwig, A. L., Mayerl, S. J., Gao, Y., Banghart, M., Bacig, C., Fernandez Zepeda, M. A., Zhao,
603 X. & Gamm, D. M. 2023. Re-formation of synaptic connectivity in dissociated human
604 stem cell-derived retinal organoid cultures. *Proc Natl Acad Sci U S A*, 120, e2213418120.

605 Marchal, C., Singh, N., Batz, Z., Advani, J., Jaeger, C., Corso-Díaz, X. & Swaroop, A. 2022.
606 High-resolution genome topology of human retina uncovers super enhancer-promoter
607 interactions at tissue-specific and multifactorial disease loci. *Nature Communications*, 13,
608 5827.

609 Marquardt, T., Ashery-Padan, R., Andrejewski, N., Scardigli, R., Guillemot, F. & Gruss, P. 2001.
610 Pax6 is required for the multipotent state of retinal progenitor cells. *Cell*, 105, 43-55.

611 Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R. & Schäffer, A. A. 2008.
612 Database indexing for production MegabLAST searches. *Bioinformatics*, 24, 1757-64.

613 Nishida, A., Furukawa, A., Koike, C., Tano, Y., Aizawa, S., Matsuo, I. & Furukawa, T. 2003.
614 Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland
615 development. *Nature neuroscience*, 6, 1255-1263.

616 Norrie, J. L., Lupo, M. S., Xu, B., Al Diri, I., Valentine, M., Putnam, D., Griffiths, L., Zhang, J.,
617 Johnson, D., Easton, J., Shao, Y., Honnella, V., Frase, S., Miller, S., Stewart, V., Zhou, X.,
618 Chen, X. & Dyer, M. A. 2019. Nucleome Dynamics during Retinal Development.
619 *Neuron*, 104, 512-528.e11.

620 Parker, S. C., Stitzel, M. L., Taylor, D. L., Orozco, J. M., Erdos, M. R., Akiyama, J. A., Van
621 Bueren, K. L., Chines, P. S., Narisu, N., Black, B. L., Visel, A., Pennacchio, L. A. &
622 Collins, F. S. 2013. Chromatin stretch enhancer states drive cell-specific gene regulation
623 and harbor human disease risk variants. *Proc Natl Acad Sci U S A*, 110, 17921-6.

624 Partha, R., Chauhan, B. K., Ferreira, Z., Robinson, J. D., Lathrop, K., Nischal, K. K., Chikina,
625 M. & Clark, N. L. 2017. Subterranean mammals show convergent regression in ocular
626 genes and enhancers, along with adaptation to tunneling. *eLife*, 6, e25884.

627 Pennacchio, L. A., Ahituv, N., Moses, A. M., Prabhakar, S., Nobrega, M. A., Shoukry, M.,
628 Minovitsky, S., Dubchak, I., Holt, A., Lewis, K. D., Plajzer-Frick, I., Akiyama, J., De Val,
629 S., Afzal, V., Black, B. L., Couronne, O., Eisen, M. B., Visel, A. & Rubin, E. M. 2006. In
630 vivo enhancer analysis of human conserved non-coding sequences. *Nature*, 444, 499-502.

631 Pérez-Rico, Y. A., Boeva, V., Mallory, A. C., Bitetti, A., Majello, S., Barillot, E. & Shkumatava,
632 A. 2017. Comparative analyses of super-enhancers reveal conserved elements in
633 vertebrate genomes. *Genome Res*, 27, 259-268.

634 Phillips, M. J., Perez, E. T., Martin, J. M., Reshel, S. T., Wallace, K. A., Capowski, E. E., Singh,
635 R., Wright, L. S., Clark, E. M., Barney, P. M., Stewart, R., Dickerson, S. J., Miller, M. J.,
636 Percin, E. F., Thomson, J. A. & Gamm, D. M. 2014. Modeling human retinal
637 development with patient-specific induced pluripotent stem cells reveals multiple roles
638 for visual system homeobox 2. *Stem Cells*, 32, 1480-92.

639 Raney, B. J., Dreszer, T. R., Barber, G. P., Clawson, H., Fujita, P. A., Wang, T., Nguyen, N.,
640 Paten, B., Zweig, A. S., Karolchik, D. & Kent, W. J. 2013. Track data hubs enable
641 visualization of user-defined genome-wide annotations on the UCSC Genome Browser.
642 *Bioinformatics*, 30, 1003-1005.

643 Rowan, S. & Cepko, C. L. 2004. Genetic analysis of the homeodomain transcription factor
644 Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. *Dev
645 Biol*, 271, 388-402.

646 Rowan, S., Chen, C. M., Young, T. L., Fisher, D. E. & Cepko, C. L. 2004. Transdifferentiation of
647 the retina into pigmented cells in ocular retardation mice defines a new function of the
648 homeodomain gene Chx10. *Development*, 131, 5139-52.

649 Saha, A., Capowski, E., Fernandez Zepeda, M. A., Nelson, E. C., Gamm, D. M. & Sinha, R.
650 2022. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate
651 intrinsic light responses that mimic those of primate fovea. *Cell Stem Cell*, 29, 460-
652 471.e3.

653 Shekhar, K., Lapan, S. W., Whitney, I. E., Tran, N. M., Macosko, E. Z., Kowalczyk, M.,
654 Adiconis, X., Levin, J. Z., Nemesh, J., Goldman, M., Mccarroll, S. A., Cepko, C. L.,
655 Regev, A. & Sanes, J. R. 2016. Comprehensive Classification of Retinal Bipolar Neurons
656 by Single-Cell Transcriptomics. *Cell*, 166, 1308-1323.e30.

657 Truslove, G. M. 1962. A Gene causing Ocular Retardation in the Mouse. *Journal of Embryology
658 and Experimental Morphology*, 10, 652-660.

659 Vitorino, M., Jusuf, P. R., Maurus, D., Kimura, Y., Higashijima, S. & Harris, W. A. 2009. Vsx2 in
660 the zebrafish retina: restricted lineages through derepression. *Neural Dev*, 4, 14.

661 Wahle, P., Brancati, G., Harmel, C., He, Z., Gut, G., Del Castillo, J. S., Xavier Da Silveira Dos
662 Santos, A., Yu, Q., Noser, P., Fleck, J. S., Gjeta, B., Pavlinić, D., Picelli, S., Hess, M.,

663 Schmidt, G. W., Lummen, T. T. A., Hou, Y., Galliker, P., Goldblum, D., Balogh, M.,
664 Cowan, C. S., Scholl, H. P. N., Roska, B., Renner, M., Pelkmans, L., Treutlein, B. &
665 Camp, J. G. 2023. Multimodal spatiotemporal phenotyping of human retinal organoid
666 development. *Nature Biotechnology*.

667 Whyte, W. A., Orlando, D. A., Hnisz, D., Abraham, B. J., Lin, C. Y., Kagey, M. H., Rahl, P. B.,
668 Lee, T. I. & Young, R. A. 2013. Master transcription factors and mediator establish super-
669 enhancers at key cell identity genes. *Cell*, 153, 307-19.

670 Zhang, J., Zhou, Y., Yue, W., Zhu, Z., Wu, X., Yu, S., Shen, Q., Pan, Q., Xu, W., Zhang, R., Wu,
671 X., Li, X., Li, Y., Li, Y., Wang, Y., Peng, S., Zhang, S., Lei, A., Ding, X., Yang, F., Chen,
672 X., Li, N., Liao, M., Wang, W. & Hua, J. 2022. Super-enhancers conserved within
673 placental mammals maintain stem cell pluripotency. *Proc Natl Acad Sci U S A*, 119,
674 e2204716119.

675 Zou, C. & Levine, E. M. 2012. Vsx2 controls eye organogenesis and retinal progenitor identity
676 via homeodomain and non-homeodomain residues required for high affinity DNA
677 binding. *PLoS Genet*, 8, e1002924.

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

705 **Figure Legends**
706

707 **Figure 1| The VSX2- SE contains evolutionarily conserved enhancer elements that are**
708 **sufficient for driving reporter expression between species.** **A** Drawing of the original *Vsx2* SE
709 identified by H3K27Ac ChIP-seq (black bar) and the original deletions with coordinates in
710 mm10. Evolutionarily conserved sequences across vertebrates are displayed below each Region
711 deletion (black segments). **B** Drawing of plasmids used for reporter assays for in vivo square
712 wave electroporation at P0 in mice and harvested at P21. A minimal promoter (P_{MIN}) that is not
713 sufficient for high-level expression is upstream of GFP and a strong constitutive promoter (P_{CMV})
714 is used for the Scarlet reporter. **C** Micrographs of GFP (green) and Scarlet (red) expression at
715 P21 from square wave electroporation of P0 mice. Arrows indicate Müller glia for the R0
716 fragment and bipolar neurons for the R3 fragment. Scale bar: 25 μ M. **D** Bar plot showing mean
717 and standard deviation of three biological replicates for each human reporter construct. The
718 negative control is the minimal promoter without a subcloned Region and has very little
719 expression **E** Bar plot showing mean and standard deviation of three biological replicates for
720 each mouse reporter construct. The positive control has a previously identified bipolar-specific
721 element. Abbreviations: ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell
722 layer.

723 **Figure 2| Human enhancer rescues eye size and vision in the R0 deletion mouse.** **A** Drawing
724 of the *Vsx2* SE (black bar) containing evolutionarily conserved Regions 0-3 in mm10. There is a
725 significant chromatin interaction between R0-37 and the *Vsx2* promoter (red arc) as determined
726 by integration of HiChIP and ChIP-seq. H3K27ac data. Heat map displaying chromatin
727 interactions within the *Vsx2* SE of E14.5 retina determined by HiChIP (below). **B** The three
728 mouse lines examined and their respective mutations. **C** Photograph of eyes and micrograph of
729 retina for *orJ* and $R0-37^{\Delta/\Delta}$ adult mice as a reference for microphthalmia. **D** Photograph of eyes
730 and micrograph of retina for $R0^{\text{Hu}/\Delta}$ mice. **E** Images of retinal cell types at 40X. **F** Bar plot of
731 mean with standard deviation of photopic vision (cycles/degree). $n= 3$ biologically independent
732 mice for each mouse strain. Scale bars: 25 μ M.

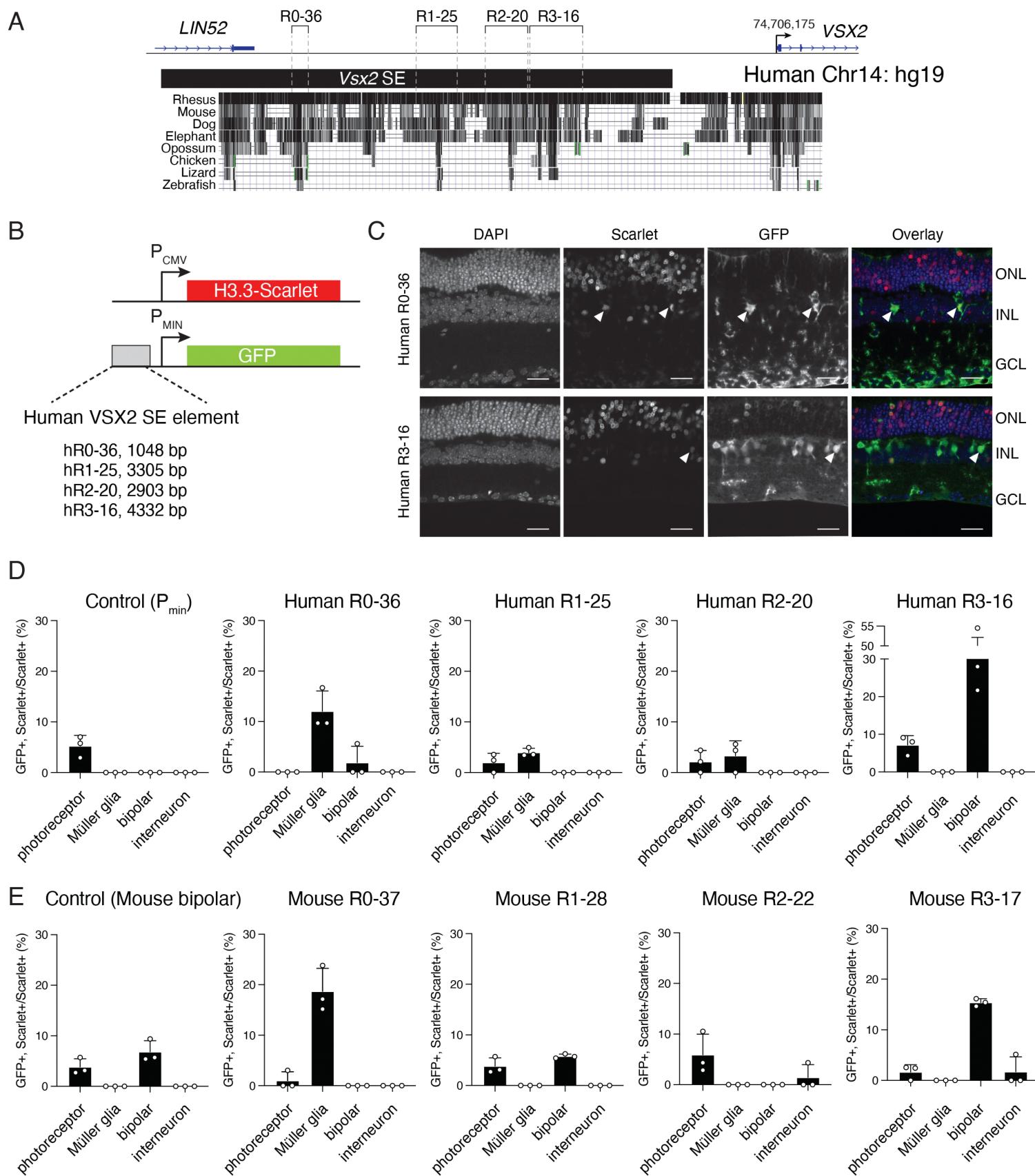
733

734 **Figure 3| Region 0 of the VSX2-SE is necessary for normal human retinal organoid**
735 **development.** **A** Timeline of retinal organoid generation. Stage 1 organoids contain retinal

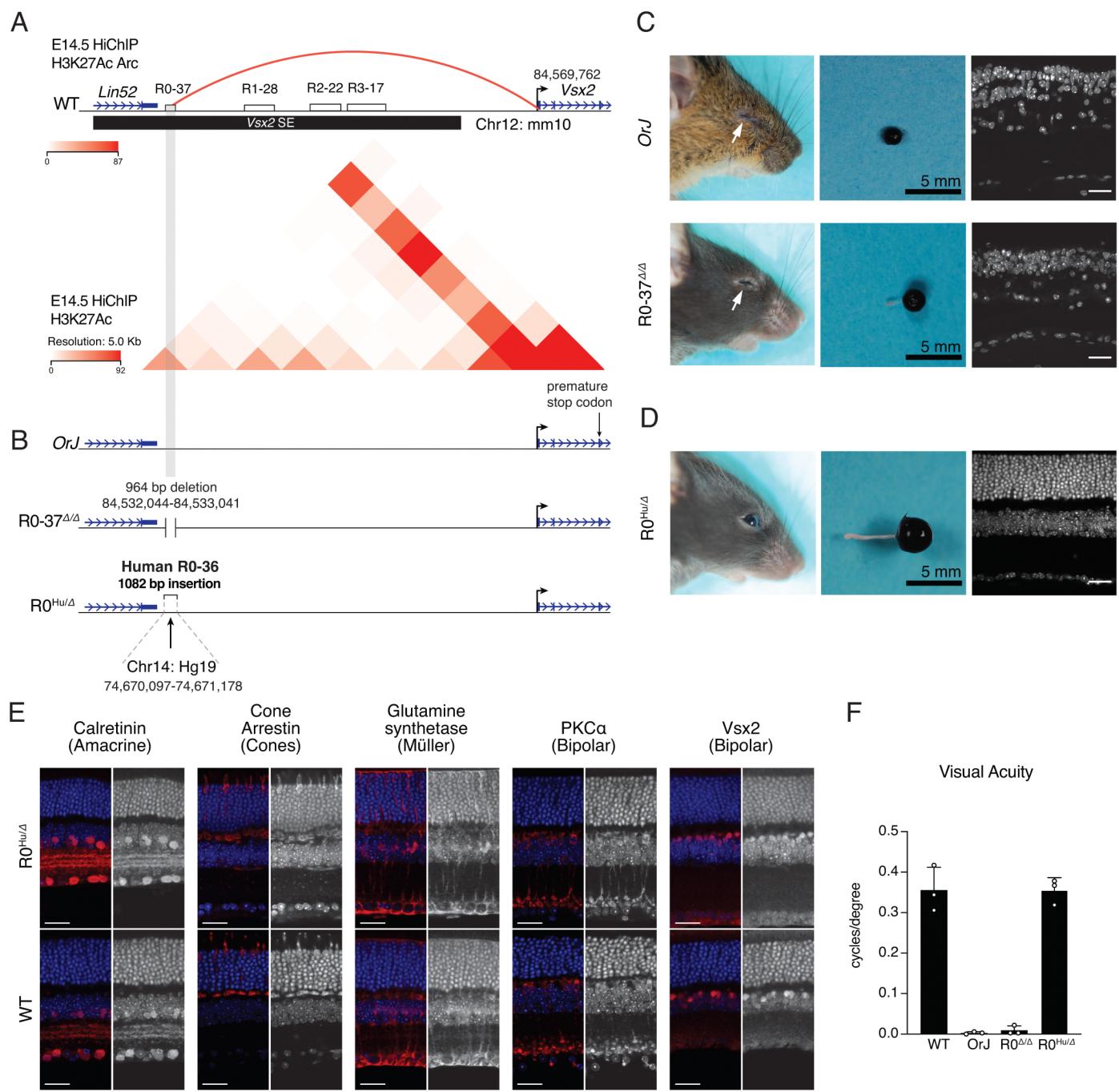
736 progenitor cells (RPC), retinal ganglion cells (RGC), and photoreceptors (PR). Stage 2 organoids
737 contain amacrine cells (AC), horizontal cells (HC), and bipolar cells (BC). Stage 3 organoids
738 contain Müler glia (MG) and developed PR outer segments. **B** Drawing of the VSX2 SE (black
739 bar) containing evolutionarily conserved Regions 0-3 in genome build hg19. hR0-36 (R0^{Δ/Δ}) and
740 hR0-36 (R3^{Δ/Δ}) were deleted using CRISPR-Cas9 in hESCs (location in bold). A VSX2 knock-
741 out cell line was generated by creating frameshift mutations in the gene. **C** Stage 1 photographs
742 of wildtype organoids taken on a widefield microscope. GFP expression is observed in WT and
743 R3^{Δ/Δ} organoids. TdTomato is expressed across organoid lines. Scale bar: 0.5 mm. **D** Stage 2
744 photographs of retinal organoid lines. The core has darkened for most lines, indicative of Stage
745 2. **E** Scatter dot plot of organoid area in mm². Each dot represents a single retinal organoid.
746 VSX2^{-/-} and R0^{Δ/Δ} retinal organoids are significantly smaller than wildtype retinal organoids
747 (unpaired two-tailed t-test, **** p < 0.0001). There is no significant difference observed between
748 R3^{Δ/Δ} and WT retinal organoid area (unpaired two-tailed t-test, p = 0.7811). **F** Micrograph of
749 retinal organoids from each line showing EdU labeling (magenta) and DAPI (blue). **G** Bar plot
750 showing the mean and standard deviation of the proportion of EdU+ cells scored from
751 micrographs of retinal organoid sections. VSX2^{-/-} and R0-36^{Δ/Δ} retinal organoids display a
752 significant reduction in proliferation compared wildtype retinal organoids (unpaired two-tailed t-
753 test, ** p < 0.008). **H** Micrograph of DAPI (blue) and activated caspase three (magenta)
754 immunostaining of Stage 2 sections from a WT retinal organoid. Scale bar: 10 uM. **I** A bar plot
755 showing the scoring for the proportion of caspase three across retinal organoid lines (n.s., not
756 significant). Mean and standard deviation are shown.

757 **Figure 4| Region 0 is necessary for normal human retinal organoid development. A,B** Stage
758 1 and 2 principal component analysis (PCA) of bulk RNA-seq for each retinal organoid line. R3-
759 16^{Δ/Δ} and WT retinal organoids cluster together on the right. R0-36^{Δ/Δ} and VSX2^{-/-} retinal
760 organoids cluster to the left. **C, D** Scatterplot displaying genes from RNA-seq. Stage 1 retinal
761 organoids have a correlation coefficient of 0.954. Stage 2 retinal organoids have a correlation
762 coefficient of 0.976. Two biological replicates from each line were used. **E, G** Volcano plot
763 showing differentially expressed genes of R0-16^{Δ/Δ} vs WT Stage 1 or Stage 2 retinal organoids.
764 Downregulated genes are shown in blue. Upregulated genes are shown in red. Two biological
765 replicates were used for each organoid line, except for Stage 2 WT which consists of three

766 biological replicates. **F, H** Bar plot of the average FPKM at Stage 1 and Stage 2 for cell cycle or
767 retinal differentiation genes, respectively. **I** UMAPs displaying cell types and their proportions of
768 Stage 3 human retinal organoids for all samples (left). Displayed are three WT (middle left), two
769 R0-36^{Δ/Δ} (middle right), and two R3-16^{Δ/Δ} (right) samples.


770 **Figure 5| Region 3 Human retinal organoids display a loss of ON cone bipolar neurons. A**
771 Micrograph of WT and R3-16^{Δ/Δ} retinal organoids showing immunofluorescence of DAPI (blue),
772 TdTomato marking photoreceptors (red), and G0α marking bipolar neurons (green). Scale bar:
773 25 uM **B** qRT-PCR of genes expressed in bipolar neurons. **C** UMAP of Stage 3 WT (grey) and
774 R3-16^{Δ/Δ} (black) retinal organoids. There are three WT biological replicates and two R3-16^{Δ/Δ}
775 biological replicates. **D-L** UMAPs comprising bipolar neurons for specific genes. Heatmap
776 displaying enrichment of gene expression (cool tones: lower expression, warm tones: high
777 expression). Barplots displaying the proportion of cells from each sample expressing a particular
778 gene.

779 **Figure S1| Mouse Vsx2-SE elements drive reporter expression in a cell type-specific**
780 **manner. A** Drawing of the original Vsx2 SE identified by H3K27Ac ChIP-seq (black bar) and
781 the original mouse deletions with coordinates in mm10. Within these regions are additional
782 refined subregions used for cloning. Evolutionarily conserved sequences across vertebrates are
783 displayed below each Region deletion (black segments). **B** Micrographs of GFP (green) and
784 Scarlet (red) reporter expression at P21 from square wave electroporation of P0 mice. Reporters
785 containin mouse R0-37 and R3-17 subcloned upstream. Arrows indicate Müller glia for the R0-
786 37 fragment and bipolar neurons for the R3-17 fragment. Scale bar: 25 uM **C-E** Bar plot
787 showing mean and standard deviation of three biological replicates for each mouse reporter
788 construct. Abbreviations: RL, RegionLin52.


789
790 **Figure S2| *OrJ* and R0-37^{Δ/Δ} mice do not photoentrain. A** Period length of the 10 mouse
791 strains tested. n= 3 biologically independent mice for each mouse strain. **B-E** Representative
792 actograms of WT, Opn4^{-/-};rd, *OrJ*, and R0-37^{Δ/Δ} adult mice over 36 days. Lights turned off at
793 12PM and on at 12AM days 1-17. Lights tuned off at 6PM and on at 6AM days 18-36. Running
794 wheel activity is displayed by peak amplitude.

795 **Figure S3| Stage 1 human retinal organoid size.** **A** Stage 1 photographs of retinal organoid
796 lines. Organoids display a phase-bright outer rim, consistent with morphological labeling at
797 Stage 1. Scale bar: 0.5 mm. **B** Scatter dot plot of organoid area in mm². Each dot represents a
798 single retinal organoid. 190 retinal organoids were scored.

Figure 1

Figure 2

Figure 3

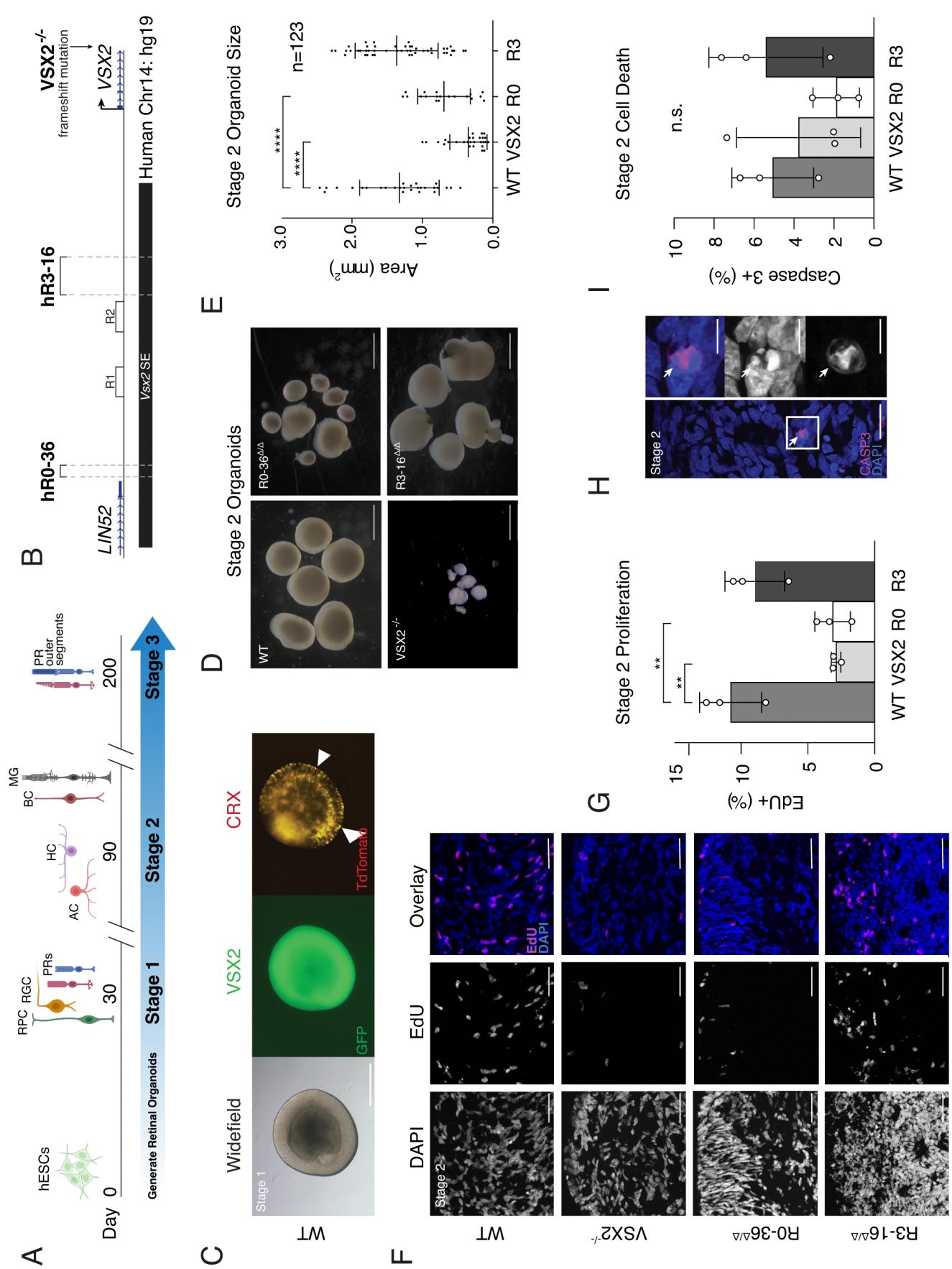


Figure 4

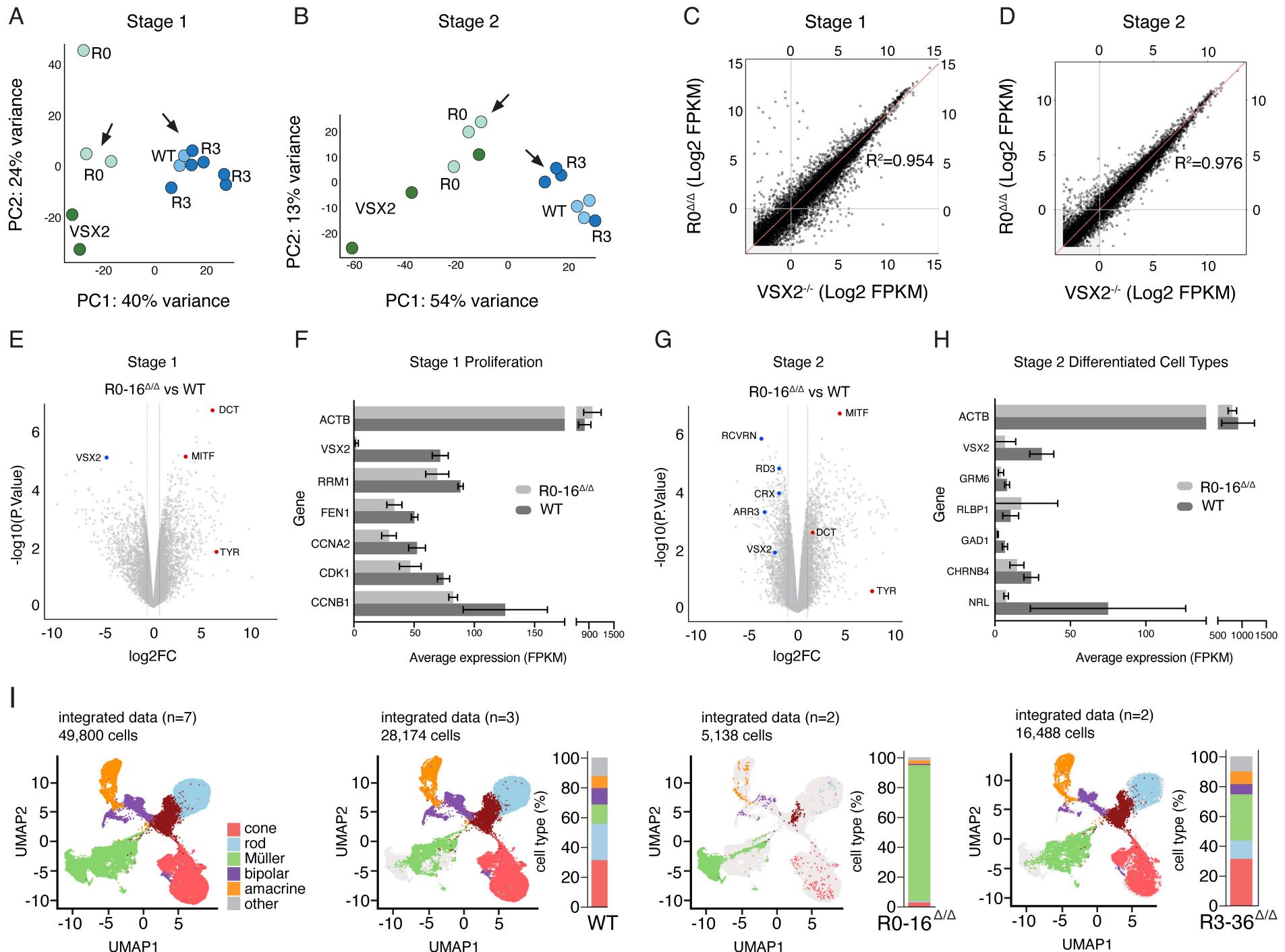
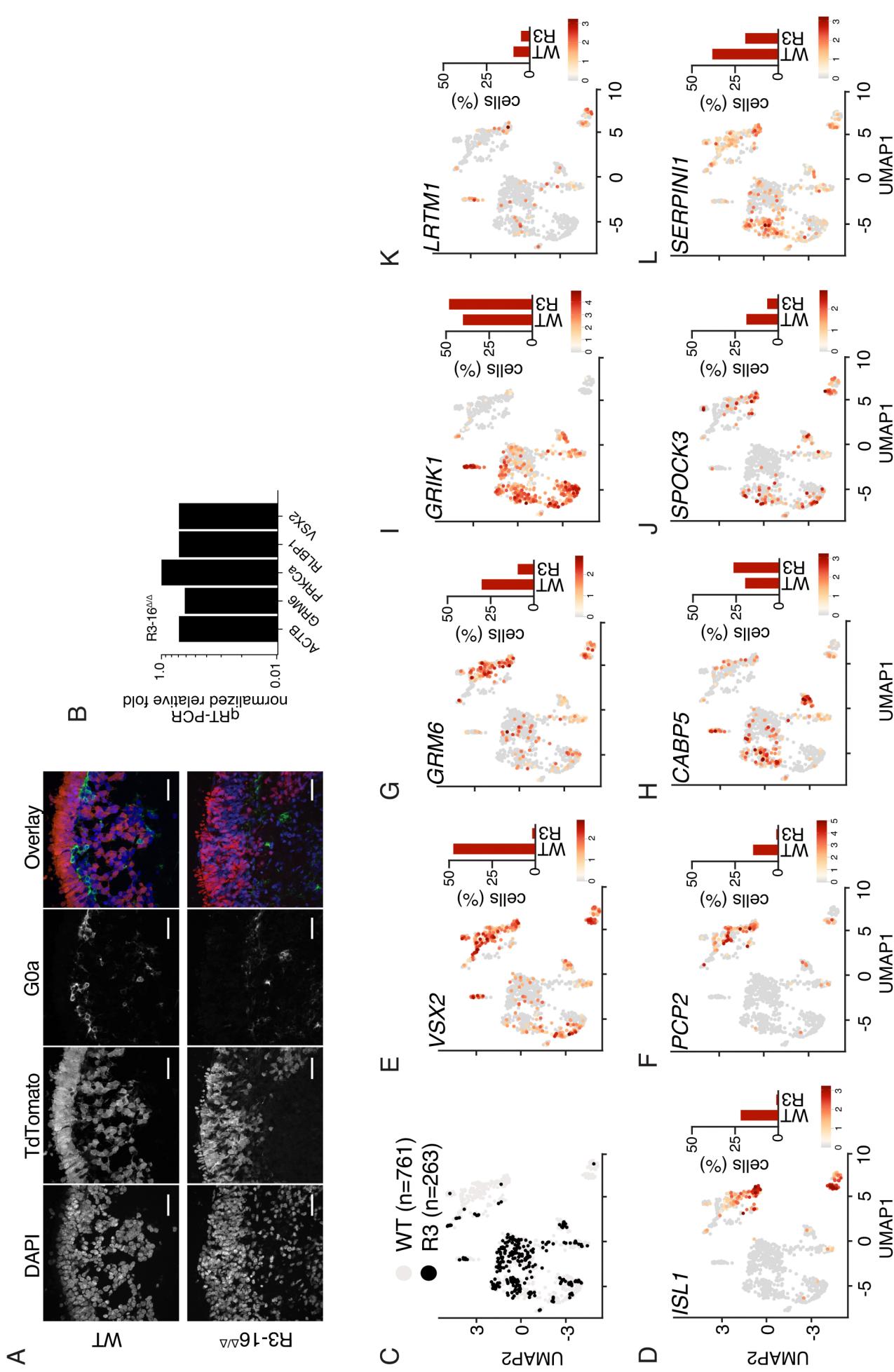
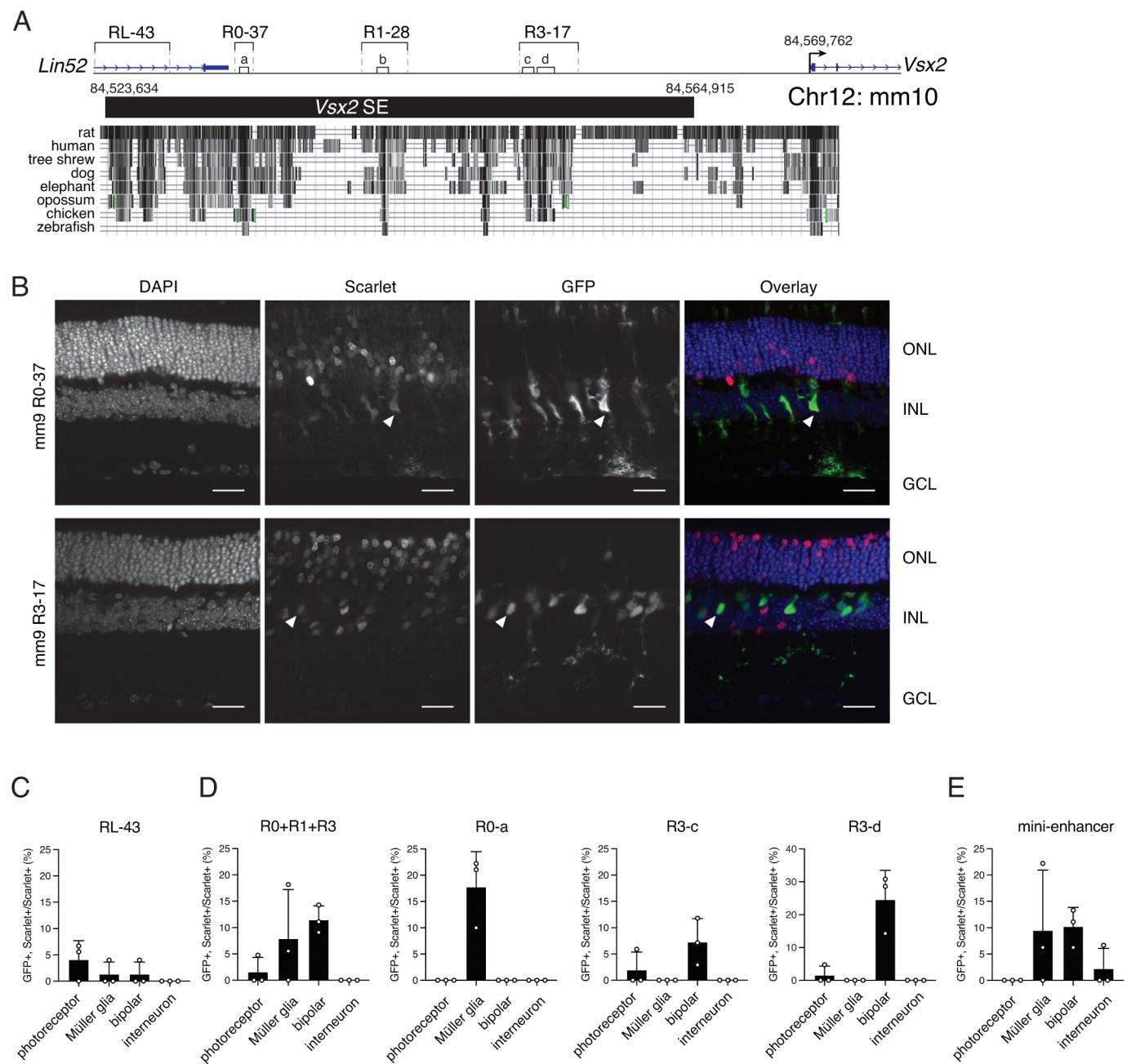
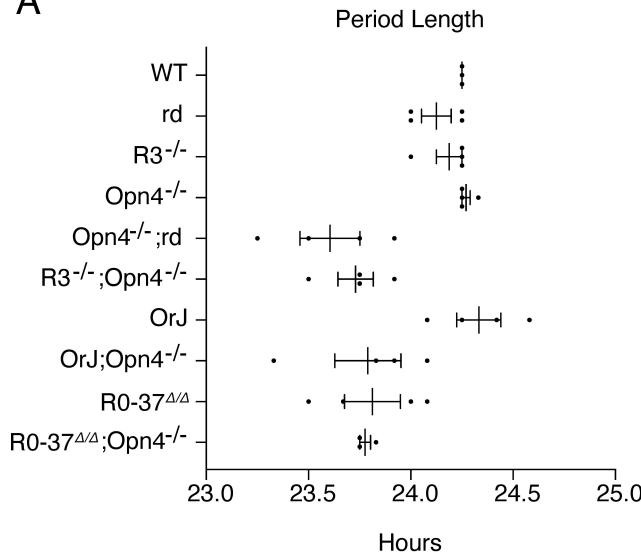
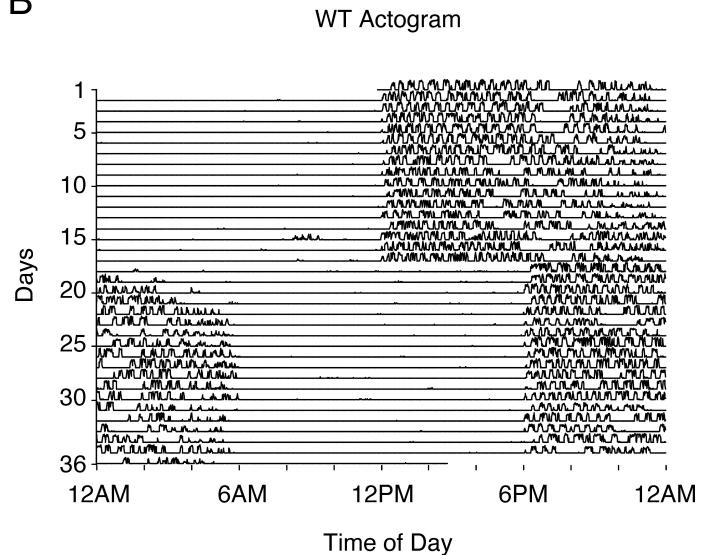
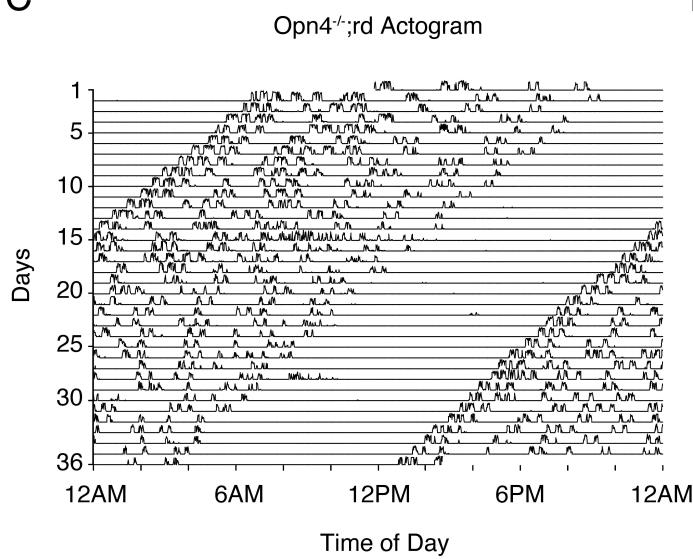




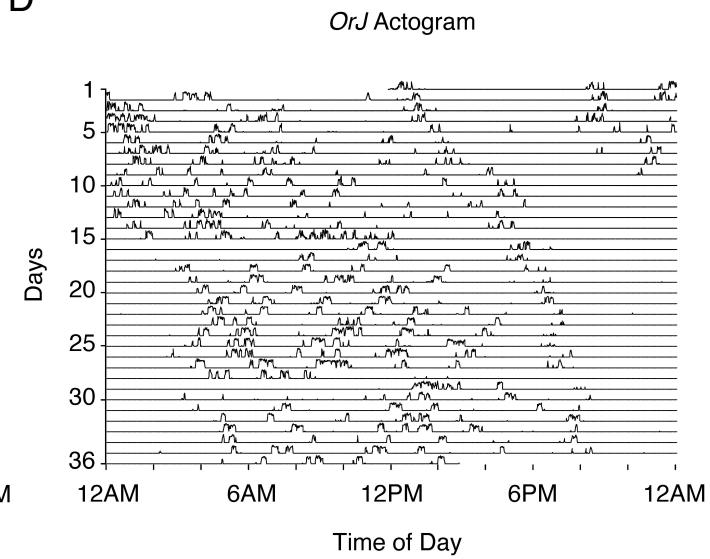
Figure 5

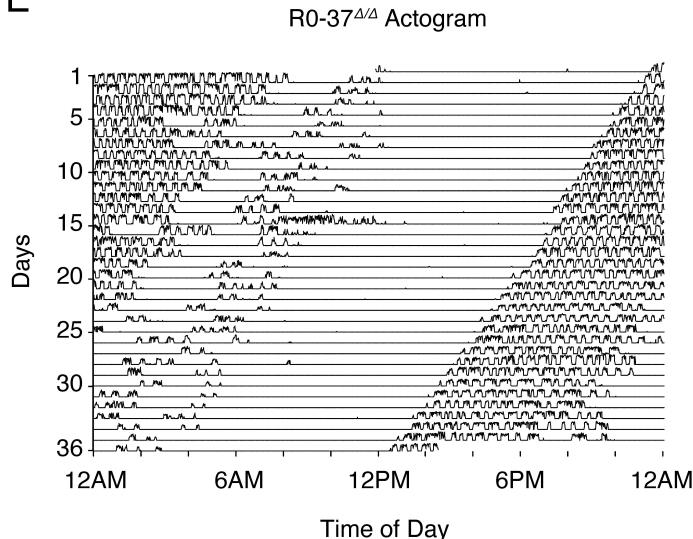

Supplementary Figure 1

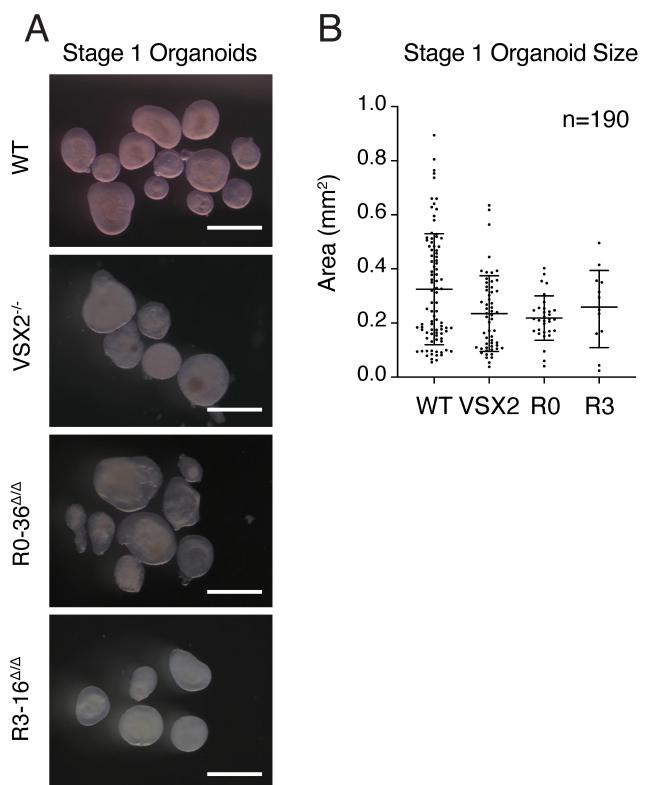

Supplementary Figure 2

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.17.562742>; this version posted October 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.


A


B


C


D

E

Supplemental Figure 3

