bioRxiv preprint doi: https://doi.org/10.1101/2023.10.16.562598; this version posted October 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

avail

%DU%‘
IRl Processing Socieny .

EMB Npes
el O finces sacaTs

e under aCC-BY-NC 4.0 International license.

Surface Generative Modelling of
Neurodevelopmental Trajectories
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Robinson

Abstract— Cortical neurodevelopment is sensitive to dis-
ruption following preterm birth, with lasting impact on
cognitive outcomes. The creation of generative models of
neurodevelopment could aid clinicians in identifying at-
risk subjects but is complicated by the degree of subject
variability in cortical folding, and significant heterogeneity
in the effect of preterm birth. In this work, we propose a
graph convolutional generative adversarial network (GAN)
and a training scheme to simulate neonatal cortical surface
developmental trajectories. The proposed model is used to
smoothly modify two cortical phenotypes: post-menstrual
age at scan (PMA) and gestational age at birth (GA) on data
from the developing Human Connectome Project (dHCP)
[1]- The synthetic images were validated with an indepen-
dently trained regression network, and compared against
follow up scans, indicating that the model can realistically
age individuals whilst preserving subject-specific cortical
morphology. Deviation between simulated ‘healthy’ scans,
and preterm follow up scans generated a metric of indi-
vidual atypicality, which improved prediction of 18-month
cognitive outcome over GA alone.

Index Terms— Graph Neural Network, GAN, cortical sur-
face, generative modelling, neurodevelopment

|. BACKGROUND

During the third trimester of pregnancy, the human brain
develops significantly in terms of microstructure and func-
tional organisation. This process is known to be sensitive
to factors such as preterm birth. Multiple studies have re-
ported significant changes in both cortical microstructure and
morphology, including changes to mean diffusivity [2]-[4],

A.F is supported by an Engineering and Physical Sciences Re-
search Council (EPSRC) United Kingdom Doctoral Training Partner-
ship (DTP) - EPSRC DTP 2018 [EP/R513064/1]. L.Z.J.W is supported
by funding from the Commonwealth Scholarship Commission, United
Kingdom. E.C.R is supported by an Academy of Medical Sciences/the
British Heart Foundation/the Government Department of Business, En-
ergy and Industrial Strategy/the Wellcome Trust Springboard Award
[SBF003/1116], a Wellcome Collaborative Award [215573/2/19/Z] and
an MRC Methodology grant MR/V03832X/1. A.D.E. receives support
from the Medical Research Council Centre for Neurodevelopmental
Disorders, King’s College London [grant MR/N026063/1].

A.F, SN.B.M, S.D, L.Z.J.W.,, and E.C.R are affiliated with Depart-
ment of Biomedical Engineering, School of Biomedical Engineering
and Imaging Sciences, King’s College London, UK. L.Z.J.W, E.C.R and
A.D.E. are also affiliated with Centre for the Developing Brain, School of
Biomedical Engineering and Imaging Sciences, King’s College London,
UK. A.D.E is affiliated with; the Department for Forensic and Neurode-
velopmental Sciences, and the MRC Centre for Neurodevelopmental
Disorders, King’s College London, UK.

For the purpose of open access, the author has applied a Cre-
ative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising.

cortical thickness and surface area [3], [5]-[7], and reduced
white and grey matter volumes [7]-[9]. Atypical cortical neu-
rodevelopment is known to be correlated to poorer cognitive
outcomes including Attention-Deficit Hyperactivity Disorder
(ADHD), Autism Spectrum Disorders (ASD) and cerebral
palsy [10]-[13].

Generative modelling of cortical neurodevelopment could
aid clinicians by improving mechanistic understanding of the
causes of disease, or be used to identify patients for early
clinical intervention. Computational modelling of cortical neu-
rodevelopment faces numerous challenges, particularly due to
heterogeneity of cortical organisation and folding patterns,
among even healthy subjects. This limits the accuracy of
population-based analyses based on diffeomorphic registration,
which is insufficient to normalise all sources of variability,
and so under which residual misalignments remain [14], [15].
Furthermore, the impact of preterm birth has itself been shown
to be heterogeneous [3] - meaning that neurodevelopmental
trajectories are unique to individuals.

One increasingly popular approach for modelling hetero-
geneous brain phenotypes is normative modelling, which at-
tempts to predict typical patterns of neurodevelopment which
then act as a reference to understand deviations from the norm.
Gaussian Process Regression normative models have found
some success in characterising the impact of prematurity on
cortical neurodevelopment [16], [17], but remain reliant on
image registration leading to high uncertainty at the cortex
where intersubject variability is highest [3].

Deep generative modelling has emerged as a powerful
tool in overcoming these challenges, leveraging the ability of
convolutional neural networks (CNNs) to model complex tasks
independent of image registration. Deep generative modelling
has already been used to simulate age-related disease progres-
sion on volumetric neuroimaging data [18]. For example, Bass,
Silva, Sudre, et al. [19], [20] used a VAE-GAN [21], with sep-
arate content and attribute encodings, to disentangle class spe-
cific features of disease, from class irrelevant features of cor-
tical shape variation, to map patterns of disease related brain
atrophy in individuals with mild cognitive impairment (MCI)
or Alzheimer’s disease (AD). Others models have sought to
improve interpretability by incorporating confounding factors,
such as age: for example, Ravi, Alexander, Oxtoby, et al.
[22] proposed a Degenerative Adversarial Neurolmage Net
(DaniNet) to simulate AD progression, conditioned on age,
disease state and a biological model of disease progression.
More recent developments include the use of latent diffusion


https://doi.org/10.1101/2023.10.16.562598
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.16.562598,; this version posted October 17, 2023. The copyright holder for this preprint
(WhICh was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

modelling, to generate age-conditioned brain images with
significantly higher perceptual quality than those produced
with GANs [23]. Other approaches have sought to go beyond
interpretation towards explanation through incorporation of
concepts from causal inference [24].

The closest related work to this paper is the age progres-
sion/regression model described in Xia, Chartsias, Tsaftaris,
et al. [25], which uses a GAN, directly conditioned on age
difference, to generate subject-specific brain age progression
maps (on 2D MRI slices) without the need for longitudinal
data. In followup work, the same authors extended their model
by further conditioning on health state, to simulate brain
ageing with and without MCI or AD [26].

The above models, whilst powerful, are suitable only for
2D images and/or 3D volumes of the brain, yet surface-based
analysis of the cortex has been shown to be advantageous
over volume-based due to its ability to more accurately encode
geodesic distances along the cortex, and hence model patterns
of cortical organisation [14], [27]. However, the application
of deep learning to surfaces is non-trivial, as surfaces belong
to a class of data domains that includes graphs, point clouds
and manifolds, which are mathematically inconsistent with
foundational aspects of traditional CNNs [28].

Geometric deep learning (gDL) is a nascent field gener-
alising deep learning to a range of non-Euclidean domains.
A thorough review of these methods and the theory behind
them can be found in the literature [29], but they have already
begun to find application on the cortical surface; for cortical
surface segmentation [30], [31], regression of phenotypes [32],
[33], and cortical surface registration [34], [35]. Comparative
studies of gDL. models on the cortical surface [33], [36] have
highlighted that these models often compromise on either
computational feasibility, network expressivity, or fidelity to
the symmetry of the underlying data [36]. Generative gDL
models have been proposed for drug discovery [37], 3D shape
manipulation [38] and point cloud generation [39], but to our
knowledge are yet to be applied to generative modelling of
cortical imaging features.

In this paper we propose an extension to our preliminary
work [40], which trained a CycleGAN to translate cortical
appearance of preterm scans to appear like healthy term
controls. As the model was conditioned purely on discrete
classes, it was was not able to continuously age brains. This
work therefore proposes a graph convolutional GAN, capable
of simulating neonatal cortical surface neurodevelopmental
trajectories, conditioned on continuous age phenotypes: post-
menstrual age at scan (PMA) and gestational age at birth (GA).
To achieve this, we take inspiration from existing work [25],
[26] and directly condition our generator on the desired age
difference to learn a cortical surface difference map. Our work
incorporates the following specific contributions:

o We describe a model that integrates graph convolutions
into a modified CycleGAN framework that can produce
fully controllable predictions across the entire neurode-
velopmental trajectory of the neonates. Model design is
validated through an ablation study, with hyperparameter
tuning.

« We perform experiments on the developing human con-

nectome project ({HCP) dataset [41] demonstrating the
utility of our model in generating realistic, age-accurate
and subject-specific predictions of cortical maturation and
the effect of changes in degree of prematurity.

« We demonstrate the utility of our method by identify-
ing biomarkers that correlate to improved predictions of
cognitive outcomes of preterm subjects.

[I. METHODS
A. Problem Statement

We denote a neonatal cortical surface feature map as x p,
for a subject with PMA = s, and GA = b. We define cortical
neurodevelopment as an additive process, and model changes
in s and b separately:

Ls+As,b = Lsb + dm,As (1)
TsbrAb = Tsp + da Ab (2)

where, d A is a difference map on « due to a As change in s.
We use bold notation to denote vectors throughout. The aim of
our model is to learn d from x, by conditioning the generator
and discriminator on age values (s,b) and age difference
values (As, Ab) as detailed in section II-D. Learning age
difference maps, over directly aging images, was found to
be advantageous as it helps to preserve subject identity, since
intrasubject differences, due to age, are expected to be much
smaller than intersubject variation due to different cortical
folding patterns. This was verified this through ablation (Sec
IV-A).

B. Graph Convolutional Networks (GCNSs)

The traditional form of convolution used in 2D and 3D
imaging is invalid on cortical surface meshes due to their
irregular local structure and the need for rotational, not transla-
tional, equivariance to correctly represent positional variation
of features. In this paper we propose to use a form of graph
convolutional operator which is invariant to the numbering and
ordering of vertices [42]:

yo=Waa' + Wy Y e jal 3)
JEN(E)

Here, e; ; is the adjacency matrix, Wy, W5 are learned filter
weights, 2% denotes the ith vertex of x, and y is the output of
the convolutional operation. Since the sum operation is applied
over all the neighbours of point ¢ before a single learned
weight (W5) is applied, the output of the network is unchanged
by variation in either the number or ordering of the neighbours.

C. Proposed Model

Continuous modelling of neurodevelopmental phenotypes is
implemented through the training of an n-step cycle GAN.
At each step (Fig 1A) two operations are implemented: 1)
an age transformation operation (blue arrow) that uses the
generator to age the input image by a specified age difference;
and 2) an image discrimination operation (red arrow) that
evaluates the accuracy of the simulated ageing through a
binary cross entropy loss (Lagg) estimating the probability
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that the synthetic image is a realistic image of the target age.
The network uses a closed cycle of n of these operations,
where the image is transformed to a number of intermediate
ages before closing the cycle, by transforming the image
back to the original age and evaluating a reconstruction loss
Lrrcon that enforces cycle consistency i.e that the final
image x, is equivalent to the initial image xo. This takes
the form of a smooth L1 loss:

0.5(x, — x9)?  if |z, — x| < 1

|&n — x| = 0.5 otherwise

Lrecon = { €]

Examples of 2, 3 and n-cycle cases are shown in Fig 1B.

D. Architecture

The architecture of the model is shown in Fig 2. In each
case, the conditional generator and discriminator are graph
convolutional networks (GCNs), with convolutions imple-
mented using Eq 3 and convolutional layers interleaved with
ReLu activation functions. The input data are sphericalised
icosahedral cortical feature maps of resolution 40962 vertices
(see section III-A). These are downsampled between convo-
lutional layers, to lower resolution icospheres of resolution
10242, 2562 and 642 vertices, using an efficient hexagonal
pooling scheme [36]. Upsampling of the decoder network is
implemented using bilinear interpolation.

The generator is composed of an encoder, age modifier
component, and a decoder. The encoder extracts latent fea-
tures, which the age modifier transforms according to the
conditioned age difference (Ab or As), and the decoder
generates an age difference map.

The discriminator takes the form of a GCN classifier, which
is conditioned on a target age (s, or b) as shown in Fig 2.
The output is a probability representing the confidence that
the input image is a realistic image of that specific target
age. In both the generator and discriminator, the conditioned
variables, age difference and target age, are represented as
floats, in contrast to the discrete ordinal encodings approach
of prior methods [25], [26]. This allows our model to perform
age progression or age regression depending on the sign of the
age difference, and is intuitive as neural networks are known to
(mostly) approximate smooth continuous functions [43], where
we expect the modification of the image encoding to smoothly
vary with age.

I1l. EXPERIMENTAL SETUP
A. Data and Augmentations

1) Dataset: All experiments were run using neuroimaging
data from the publicly available dHCP dataset” [1], [44]-
[48]. The dataset comprises preterm and term subjects, cross-
sectionally scanned between 24-45 weeks post menstrual age
(PMA), and gestational ages at birth (GA) between 21-40
weeks. Table I describes the dataset and the subsets used in
this paper. In the dHCP, the preterm group typically undergo a
scan either shortly after birth, or at term-equivalent age, but a

“http://www.developingconnectome.org

subset of 45 subjects are scanned twice for which longitudinal
data is available.

Two different cognitive outcome measures were available
for each subject, measured at around 18 months (592+74 days
at assessment): QChat [49] and Bayley-III [50]. QChat is a
self-reported questionnaire based metric that assesses Autism
Spectrum Disorder risk, whereas Bayley-III is a composite
metric of language and motor development, derived from
behavioural observations. These are also shown in table 1.

2) Preprocessing: The full details of image reconstruction
and preprocessing pipelines are described in [1], [47] and
references therein. In brief, motion corrected and reconstructed
T2w and T1lw sMRI images were passed through the dHCP
structural pipeline’ [47], which performed Draw-EM tissue
segmentation [51], surface extraction [48] and inflation [27]
to return vertex-matched inner (white matter), outer (pial),
midthickness, inflated and spherical surfaces. This process
generated a number of univariate surface feature maps of
which we use sulcal depth and cortical myelination defined
as T1w/T2w ratio maps [52]. Individual sphericalised maps
were then registered to the dHCP 40-week neonatal symmet-
ric cortical surface template [53] using multimodal surface
matching (MSM) [54], [55], driven by sulcal depth features.
Aligned features were then resampled to a regular 40, 962-
vertex icosphere using barycentric interpolation, implemented
using Human Connectome Project (HCP) workbench software
[56].

B. Implementation

The data were augmented offline with non-linear warps to
produce realistic variations in the data and improve network
generalisation. These were produced by the scheme described
in Fawaz, Williams, Alansary, et al. [36]. We used the myeli-
nation and sulcal depth features maps as our input channels.
These were normalised to a mean of 0 and a standard deviation
of 1. Train, validation and test sets were split evenly between
preterms and terms, with ratios 0.8:0.1:0.1. Target ages for
simulation were sampled at random from between 28 and 45
weeks. Graph convolutions were implemented using PyTorch
Geometric [57]. Models were trained with an Adam Optimiser
with learning rate of 0.001 for 100 epochs. Our code can
be found at https://github.com/Abdulah-Fawaz/
continuous_cGAN.

C. Experiments

In this paper, we evaluate our proposed model through
two experiments. The first to simulate changes with respect
to healthy cortical maturation during the third trimester, and
the second reflects the impact of prematurity on cortical
neurodevelopment.

1) Simulating Healthy Cortical Neurodevelopment: In our
first experiment we make the simplifying assumption that
scans acquired from preterm neonates, shortly after birth, are
approximately healthy. We then model the effect of increasing
PMA by training on cross-sectional data acquired from all

Thttps://github.com/BioMedIA/dhcp-structural-pipeline
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Fig. 1: The proposed model consists of a n-step closed training cycle (B) of image operations (A) regularised by a cycle loss.
During each step in a closed cycle, an input image is transformed to a new age (blue arrow) and an age loss is evaluated
(red arrow) to measure the accuracy of the new image to the target age. The number of transformations, n, in a cycle is a
hyperparameter. Training cycles of lengths 2, 3 and n are shown.
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Fig. 2: The generator consists of three sections: an encoder (yellow), an age modifier (green) and a decoder (red). The encoder
performs feature extraction on an input image. The age modifier takes in the desired age difference and transforms the latent
vector to one of the desired age. Original and transformed feature vectors are then combined by concatenation and passed to
the decoder, which generates a difference map, adding this to the original image to obtain the transformed image. The aim of
the discriminator is to determine if the input image is a realistic image of a specific target age. It takes the form of a GCN

conditioned on a specific target age, that generates a probability that the input image corresponds to a real image of the target
age.
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preterm neonates’ first scans, and all scans from term controls. PMA~GA; thus, GA need not be modelled explicitly, and
For this dataset (described in table I), it is assumed that Ab can be set to zero in Eq (1). To train the model on this
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Preterms Terms
Dataset Count PMA GA QChat Bayley Count PMA GA QChat Bayley
Full 161 37.0£4.0 31.9+£35 31.0£10.2 99.7 £12.2 419 41.1+1.7 40.0+12 30.4+89 100.4+£10.9
Expl 111 33.96 £ 2.27 31.7£3.37 32.0£9.7 99.4 £11.9 ” ? ” ” ”
Exp2 95 40.75 + 2.08 32.06 £3.65 29.8+10.7 100.1+12.6
Longitudinal | 45 338£20 (firstscan) 306433 307193 9974108 | NA N/A N/A N/A N/A

41.2 4+ 1.4 (second scan)

TABLE I: Breakdown of the datasets used in this paper. GA and PMA measured in weeks. Figures show mean and standard

deviation.
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Fig. 3: A plot to show the distribution of images in our dataset.

dataset, the generator and discriminator are conditioned on As
and s respectively.

2) Simulating the Impact of Preterm Birth: The aim of the
second experiment was to simulate the impact of GA, and
therefore degree of prematurity, from scans acquired around
term-equivalent age. Preterm neonates first scans were ex-
cluded from the data, resulting in the dataset shown in table
I. While changes with respect to healthy cortical maturation
are known to be relatively stark and well-characterised in
the literature [3], [6], the effect of preterm birth is relatively
subtle and heterogeneous [17]. Further, the effect observed
in the dHCP data set is confounded by individual’s PMA
at scan. To account for both varying GA and PMA, the
experiment is therefore modified to add PMA to both the
generator and discriminator as a confound (concatenated as a
float). Training is then conditioned on b, and Ab. Additionally,
a final information preservation loss L;p is applied between
successive images to encourage the network to learn changes
that are proportional to the difference in GA:

LIP(meanH) = |90n - $n+1| 'exp(—\bnﬂ - bn\) &)

where image x; has GA of b;. This is to reflect that the effect
of preterm birth on the brain (varying GA at birth whilst
holding PMA constant) is smaller than the variation due to
changes in PMA at scan for constant GA.

D. Evaluation

For quantitative evaluation, three different metrics were used:

(A) ‘Age MAE’ - or the mean absolute error (MAE) between
the apparent age of a synthetic image and the targeted age.
Here apparent age was determined from an independently
trained gDL regression model, implemented with 4 layers
of MoNet [58] convolutions, ReLLU activations and a
final fully connected layer (previously described in [36]).
Training was performed on the same train/val/test splits as
for the proposed image generation model. This returned a
baseline age MAE (for ground truth data) of 0.68 +0.19
for PMA and 1.5 0.38 weeks on the more difficult task
of predicting GA.

‘Subject specificity’ - this evaluates the similarity be-

tween an original input scan and synthetic (aged) im-

ages. This was measured from three similarity metrics:

the peak signal-to-noise ratio (PSNR), the mean square
error (MSE), and the structural similarity index measure

(SSIM). Note that SSIM was modified to function on the

icosahedron by adapting the requisite Gaussian filtering

operations to the surface.

(C) Prediction of preterm outcome - clinical utility of the
model of healthy cortical ageing was validated for pre-
diction of cognitive outcome at 18 months. Here, a
metric summarising deviation from typical development
was derived by estimating the mean square error (MSE)
between each individual’s ground truth follow up scan,
and a simulated ’healthy’ scan at the same age. This was
compared against QChat and Bayley-III test scores. Since
GA alone is already correlated with cognitive outcomes
for preterm subjects, we measure the changes in this
correlation from a GA-only baseline, to linear regression
of these scores, estimated from a combination of GA +
deviation metric.

(B)

E. Ablation

Prior to running all experiments we ran ablation analyses,
on the task of simulating healthy cortical neurodevelopment.
Experimental design was validated against a baseline Cy-
cleGAN, trained to translate examples between two discrete
classes: term (PMA > 37 weeks) and preterm (PMA <
37 weeks) [40]. Model parameters were then evaluated by
investigating the impact of changing training cycle length
(from n = [2,3,4,5]), and evaluating how well the model
performed when trained to learn images directly instead of age
difference maps - to test the hypothesis that learning difference
maps improves subject specificity (run for the n=3 cycle only).

V. RESULTS
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Model Age Accuracy Subject Specificity
(MAE / weeks) | SSIM | PSNR | MSE
CycleGAN [40] 7.66 + 2.11 0.80 25.6 177
2-cycle 2.70 £ 0.70 0.74 17.3 203
3-cycle 1.02 £ 0.2 0.82 17.9 167
3-cycle w/o diff maps | 1.14 + 0.46 0.66 13.2 251
4-cycle 0.8 = 0.38 0.70 16.1 231
S-cycle 1.55 + 0.50 0.74 16.1 208
TABLE II: A table comparing the performance of differ-

ent generative models on the simulation of typical cortical
developmental trajectories, as measured by the accuracy of
synthesised images to target PMA and subject specificity.

A. Ablation Study

The results of the ablation study are shown in table II.
The CycleGAN baseline produced a high subject specificity,
but a very poor age accuracy (7.66 weeks MAE) which is
expected due to the discrete nature of the image condition-
ing. The model with the highest age accuracy (0.8 weeks
MAE) was the 4-cycle model, but it also demonstrated the
lowest subject specificity. The n = 3 model gave the next
best performance in age accuracy (1.0 weeks MAE) whilst
retaining the overall highest subject specificity, and thus was
the best performing model overall. The same model, without
difference maps, witnessed a large drop in subject specificity,
confirming the hypothesis that generating translations using
difference maps significantly preserves individual’s cortical
morphology without compromising on the precision of the age
generation. Going forward all experiments therefore use the 3-
cycle network and generate difference maps.

B. Simulating Healthy Cortical Development

On simulation of healthy cortical neurodevelopment, data
generated from the network returned an age MAE of 1.02+£0.2
weeks. This compares well against the performance of the
baseline regression network on ground truth data (Fig. 4) with
some greater error at the extremes of the distribution, where
fewer data samples were available.

Examples of the images generated by the model across time
are shown in Fig. 5 for two example preterm individuals. It can
be seen, through comparisons to population average templates
[53], [59], that changes in myelination (top) and sulcal depth
(bottom) follow expected neurodevelopmental trends. Myeli-
nation increases most strongly along the central sulcus and
major sulci deepen and grow as PMA increases. More subtle
features, such as myelination of the middle temporal (MT)
area, and the emergence and growth of smaller sulci along
the temporal lobe are present. However, this cannot simply
be explained as the network generating a population average
model of development. Visual inspection of the cortical folding
patterns for each subject show highly divergent patterns of
folding in the frontal lobe which are preserved during sim-
ulated ageing. Follow up scans are shown for reference, but
these are not expected to match precisely as our model is only
simulating healthy cortical neurodevelopment without taking
into account the impact of preterm birth. This property of
identity preservation was further investigated through statis-
tical comparison of each preterm individual’s follow up scan
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Fig. 4: A comparison of age MAE for simulated and ground
truth cortical feature maps. Here the X-axis reports target (or
ground truth) PMA and the Y-axis reports PMA predicted from
the baseline regressor. Performance on generated images is
shown with a solid line, compared to ground truth (dashed).
The grey region indicates the uncertainty in the age accuracy
of the GCN model on generated images, and the red dashed
lines show the 90% confidence interval of the regressor.

with their simulated images. The mean square error (MSE)
difference between the sulcal depth feature maps of a subject’s
follow up scan and its own simulated image was lower than
any other subject (aged to the same PMA) for 42 of the 45
subjects for which longitudinal data was available (93.3%).
The average margin between the correct subject’s generated
image and the next-closest subject was 18.4 + 13.3 MSE.
Sulcal depth features maps were used because they contain an
individual’s unique folding pattern, and are therefore a good
marker of subject preservation.

Further, we find that the proposed biomarker (MSE devi-
ation between ground truth and simulated follow up scans)
increases the 72 correlation between predicted and ground
truth 18-month cognitive test scores (for the same 45 left out
individuals) with QChat correlation increasing slightly from
0.30 to 0.32, and the Bayley-III correlation increasing more
substantially from 0.41 to 0.53. Poorer performance on the
Qchat may be explained by the fact that it is primarily used
for screening ASD, but there are no-known individuals at high
risk of ASD in the dHCP dataset [1].

C. Simulating the Impact of Preterm Birth

Age MAE for the second experiment was 1.3 £ 0.8 weeks.
While this is larger than for the PMA experiment, it remains
close to the 1.5 + 0.38 obtained from ground truth data (Fig
7) indicating that the performance of the regressor is likely
a limiting factor in evaluating the true performance of the
generative model. Nevertheless, there is a clear trend that
points to our model being able to monotonically alter the
apparent GA with target GA.

Examples of the images generated by the model for different
GA are shown in Fig 6. The first row shows an example
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Fig. 5: Group average templates for the dHCP dataset (top), a subject of GA 34.2 weeks, and scans at PMA 35.4 weeks and
41.5 weeks (middle, left) and a second subject of GA 34.1 weeks and PMA 35.1 weeks and 41.1 weeks (bottom, left)
alongside a set of sample synthetic images of (columns 2-6) generated by the model to represent the same subjects at PMA
32, 35, 38, 41 and 44 weeks respectively. The model predicts an increase in myelination and a change in sulci depth
consistent with those seen in the group average templates, while preserving individual cortical folding patterns.
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Fig. 6: (Top) A subject of original GA 40.8 weeks and PMA 41.0 weeks with simulated decrease of GA to 40, 36 and 32
weeks. (Bottom) A preterm subject of original GA 28.7 weeks and PMA 43.7 weeks aged up to a GA of 40 weeks. Images
in the final column show difference maps between the original images and the final synthetic images.
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Fig. 7: A plot showing the predicted gestational age (GA) vs
input target age of our GCN model (solid) compared against
the baseline regressor accuracy (dashed). The grey region
indicates the standard error of the GCN model predictions,
and the red dashed line shows the ground truth.

term-control subject with GA 40.8 weeks (PMA at scan 41.0
weeks) as the model simulates decreasing GA to 32 weeks.
Conversely, the second example shows a preterm subject with
GA 28.7 weeks and PMA at scan of 43.7 weeks, altered so
that their GA appears 40 weeks.

In contrast to the rapid changes that occur as PMA is
increased from 32 to 44 weeks, differences in GA are associ-
ated with more subtle changes. To aid interpretation, the final
column shows difference maps between the original images
and the final synthetic images. These show a global reduction
in myelination across most of the cortical surface as GA
decreases - in line with a large body of existing research that
links preterm birth with delayed myelination [47], [60], [61].
The decrease in myelination is not total, however, and certain
regions of the preterm brain are known to display higher levels
of myelination suspected to be due to early exposure to stimuli
[62], and these too are present in our difference maps.

The impact of decreasing GA on sulcal depth is less
well-documented, but is known to impact shallowing of the
sulci and gyri [6] and this is reflected in the correspondence
between the folding pattern and the difference maps. Regional
analysis [3], [6] of the cortical surface of preterms identified
relatively shallow temporal and cingulate sulci as regions most
consistently affected by preterm birth - the two regions most
strongly highlighted by our model.

V. CONCLUSION

Deep generative modelling on surfaces presents challenges
on two fronts. Modelling of surfaces is complicated by the
lack of a global coordinate system over the surface on which
to define convolutions [63], and difficulty defining regular

up/down sampling [29]. Deep generative models must con-
tend with the limited availability of paired data in medical
imaging, retaining subject identity during image generation,
whilst simultaneously modelling cortical heterogeneity across
populations.

In this paper, we have presented a novel deep generative
model of neonatal cortical surface neurodevelopment that
solves both sets of challenges by integrating state of the
art methods from geometric deep learning and Euclidean
generative modelling. The model was thoroughly validated
through quantitative and qualitative assessments, focusing on
the accuracy of age prediction for generated images, and the
preservation of subject identity. Our results demonstrate the
success of our model in predicting changes associated with
cortical maturation and degree of prematurity. Furthermore, the
model was used to propose a novel biomarker that improved
the accuracy with which it is possible to predict cognitive
outcomes of at risk individuals. Longterm, such an approach
could be utilised in a clinical environment to identify subjects
for clinical intervention.

Moving forward, there are several opportunities for further
exploration and improvement. Our model could be applied to
other forms of MRI surface data beyond sMRI, e.g. diffusion-
weighted imaging or functional MRI. Additionally, conducting
studies incorporating larger datasets would allow us to vali-
date our findings across diverse populations and improve the
generalisability of our model, particularly as it was observed
that our model accuracy decreased in regions of lower data
availability.

More fundamentally, there was an underlying assumption
that scans acquired from preterm births near the time of birth
were healthy. This is highly unlikely to be satisfied in practice
since underlying risk factors, genetic and environmental, are
likely to be implicated in the occurrence of preterm birth. In
future, this assumption could be relaxed with the use of fetal
scans to represent healthy subjects at lower PMA. Another
avenue of further work, inspired by Xia, Chartsias, Wang,
et al. [26], would be to condition the model on additional
discrete factors such as disease state, sex, or birth weight,
to further disentangle how demographic and clinical factors
impact neurodevelopment.
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