

# 1 Biosynthesis of the azoxy compound

## 2 azodyrecin from *Streptomyces mirabilis* P8-A2

3 Matiss Maleckis<sup>1</sup>, Mario Wibowo<sup>2,3</sup>, Tetiana Gren<sup>1</sup>, Scott A. Jarmusch<sup>2</sup>, Eva B. Stern-  
4 dorff<sup>1</sup>, Thomas Booth<sup>1</sup>, Nathalie N. S. E. Henriksen<sup>2</sup>, Christopher M. Whitford<sup>1</sup>, Xinglin  
5 Jiang<sup>1</sup>, Tue S. Jørgensen<sup>1</sup>, Ling Ding<sup>2\*</sup>, Tilmann Weber<sup>1\*</sup>

6 <sup>1</sup> The Novo Nordisk Foundation Center for Biosustainability, Technical University of Den-  
7 mark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.

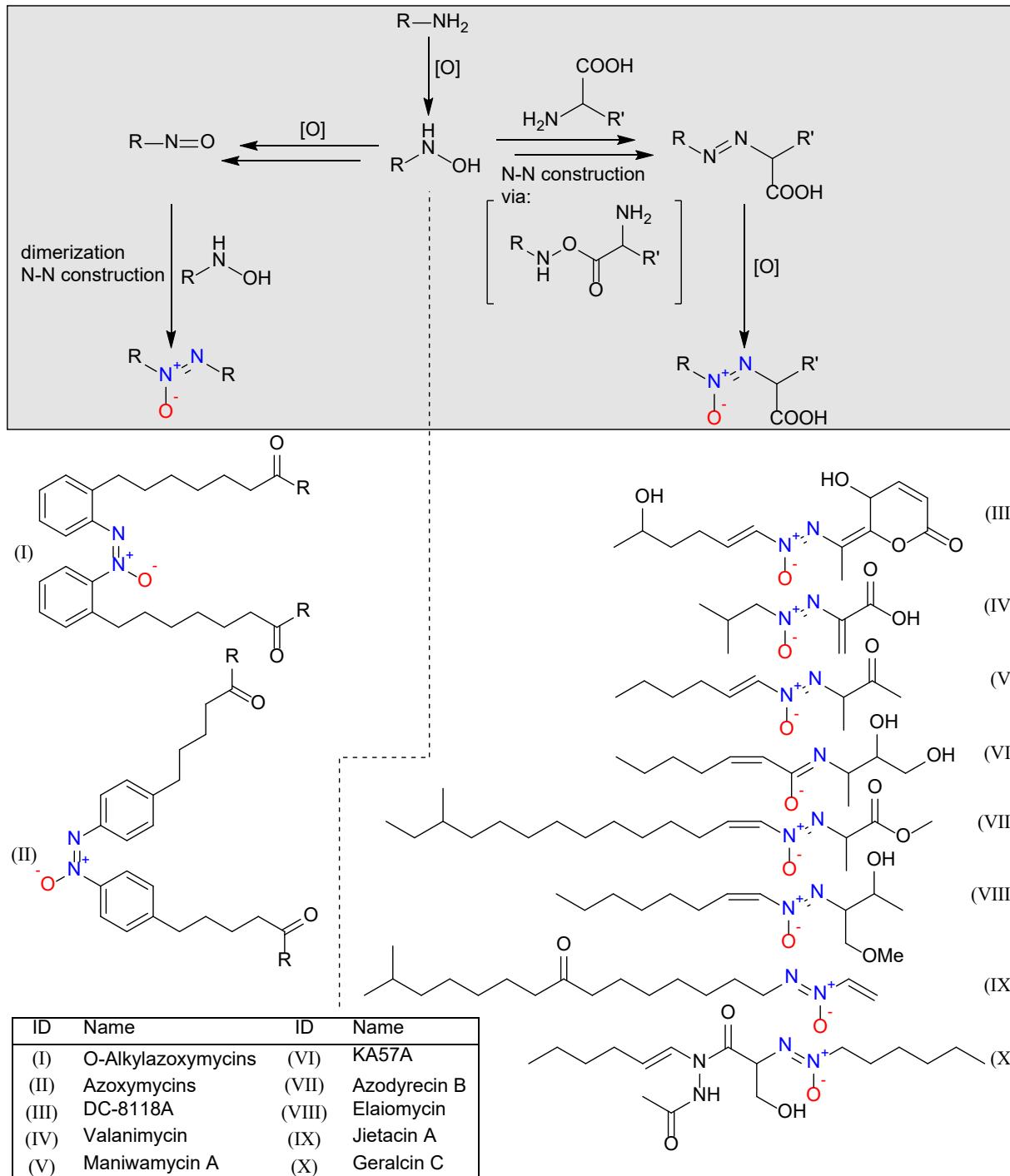
8 <sup>2</sup> Department of Biotechnology and Biomedicine, Technical University of Denmark,  
9 Kongens Lyngby, Denmark, Kemitorvet, Building 221, 2800 Kgs. Lyngby, Denmark.

10 <sup>3</sup> Current address: Singapore Institute of Food and Biotechnology Innovation (SIFBI),  
11 Agency for Science, Technology and Research (A\*STAR), 138669, Singapore

12

13 \*Correspondence can be addressed to Ling Ding ([lidi@dtu.dk](mailto:lidi@dtu.dk)) and Tilmann Weber  
14 ([tiwe@biosustain.dtu.dk](mailto:tiwe@biosustain.dtu.dk))

## 15 Abstract


16 Azoxy compounds are a distinctive group of bioactive secondary metabolites, character-  
17 ized by a unique  $\text{RN}=\text{N}^+(\text{O}^-)\text{R}$  moiety. The azoxy moiety is present in various classes of  
18 metabolites that exhibit various biological activities. The enzymatic mechanisms underly-  
19 ing azoxy bond formation remain enigmatic. Azodyrecins are cytotoxic azoxy metabolites  
20 produced by *Streptomyces mirabilis* P8-A2. Here we cloned and confirmed the putative  
21 *azd* biosynthetic gene cluster through CATCH cloning followed by expression and pro-  
22 duction of azodyrecins in two heterologous hosts, *S. albidoflavus* J1074 and *S. coelicolor*  
23 M1146, respectively. We explored the function of 14 enzymes in azodyrecin biosynthesis  
24 through gene knock-out using CRISPR-Cas9 base editing in the native producer, *S. mi-  
25 rabilis* P8-A2. The key intermediates were analyzed in the mutants through MS/MS frag-  
26 mentation studies, revealing azoxy bond formation via the conversion of hydrazine to azo  
27 compound; followed by further oxygenation. Additionally, *N*-oxygenase and dehydrogen-  
28 ase activities were confirmed among 8 core biosynthetic genes and five helper genes.  
29 Moreover, the distribution of the azoxy biosynthetic gene clusters across *Streptomyces*  
30 spp. genomes is explored, highlighting the presence of these clusters in over 20% of the  
31 *Streptomyces* spp. genomes and revealing that azoxymycin and valanimycin are scarce,  
32 while azodyrecin and KA57A like clusters are widely distributed across the phylogenetic  
33 tree.

## 34 Introduction

35 Azoxy compounds are a group of intriguing bioactive molecules sharing the azoxy moiety  
36 ( $\text{RN}=\text{N}^+(\text{O}^-)\text{R}$ )<sup>1</sup>. Their diverse biological activities and unique chemical structures position  
37 them as an important class of metabolites. *Streptomyces* are known to be prolific produc-  
38 ers of azoxy compounds, such as elaiomycins<sup>2-9</sup>, LL-BH872 $\alpha$ <sup>10</sup>, valanimycin<sup>11,12</sup>, KA57-  
39 A<sup>13</sup>, maniwamycins<sup>14-16</sup>, jietacins<sup>17</sup>, azodyrecins<sup>18,19</sup>, azoxymycins<sup>20</sup>, O-alkylazoxymy-  
40 cins<sup>21</sup>, DC-8118 A-B<sup>22</sup>, geraldin C<sup>23</sup> and an unnamed azoxy compound<sup>24</sup>. The latter azoxy  
41 compound was identified through heterologous expression of azoxy biosynthetic gene  
42 cluster (BGC) from *S. avermitilis* MA-4680 in *S. coelicolor* M1152 and *S. lividans* TK24.  
43 The new molecules were detected in the heterologous host and exact mass suggested  
44 them to be of azoxy origin, while the structure of the unnamed compound is yet to be  
45 elucidated. In view of the various biological activities of azoxyl compounds, such as anti-  
46 bacterial valanimycin and DC-8118, antifungal maniwamycins, KA57A and O-Alkyla-  
47 zoxymycins and cytotoxic azodyrecins, jietacins, elaiomycins and geraldin C, understand-  
48 ing the mechanism behind the biosynthesis of these compounds will unlock novel appli-  
49 cations in medical, agriculture, dye, and other industries<sup>25</sup>.

50 Comparative analysis of the structure of natural azoxy compounds has led to proposition  
51 of two distinct routes for the azoxy biosynthesis<sup>25</sup>. One route involves dimerization for  
52 assembly of azoxymycins and O-alkylazoxymycin. This was confirmed through pioneer-  
53 ing work into the azoxymycin's azoxy functional group formation through a radical-based  
54 coupling<sup>26</sup> and suggested a combination of enzymatic and non-enzymatic steps<sup>26</sup> in the  
55 azoxy bond assembly. The other proposed route links two different subunits such as two  
56 different amino acids, fatty acid and amino acid, or polyketide synthase derived subunit  
57 and amino acid and is the case for remaining of the known *Streptomyces* spp. azoxy  
58 compounds, Figure 1.

59 Previous *in vitro* enzymatic studies and feeding experiments<sup>27-37</sup> related to valanimycin  
60 biosynthesis have provided insights into the almost complete biosynthesis pathway, with  
61 established function of eleven out of fourteen genes responsible for the assembly of val-  
62 animycin<sup>29,34</sup>. Valanimycin is assembled from two amino acids, valine and serine. The  
63 valine gets decarboxylated<sup>34</sup> by VlmD and subsequently hydroxylated<sup>34</sup>, by VlmH and  
64 VlmR, and attached to serine<sup>36</sup> by VlmA, whereafter the molecule undergoes re-arrange-  
65 ment resulting in the formation of an azoxy bond through an unelucidated process. At  
66 the very end, the valanimycin hydrate is phosphorylated<sup>37</sup> followed by dehydration<sup>37</sup> by  
67 VlmJ and VlmK. The three genes<sup>34</sup>, *vlmB*, *vlmG* and *vlmO* remain enigmatic and are hy-  
68 pothesized to play a role in azoxy bond formation.



69

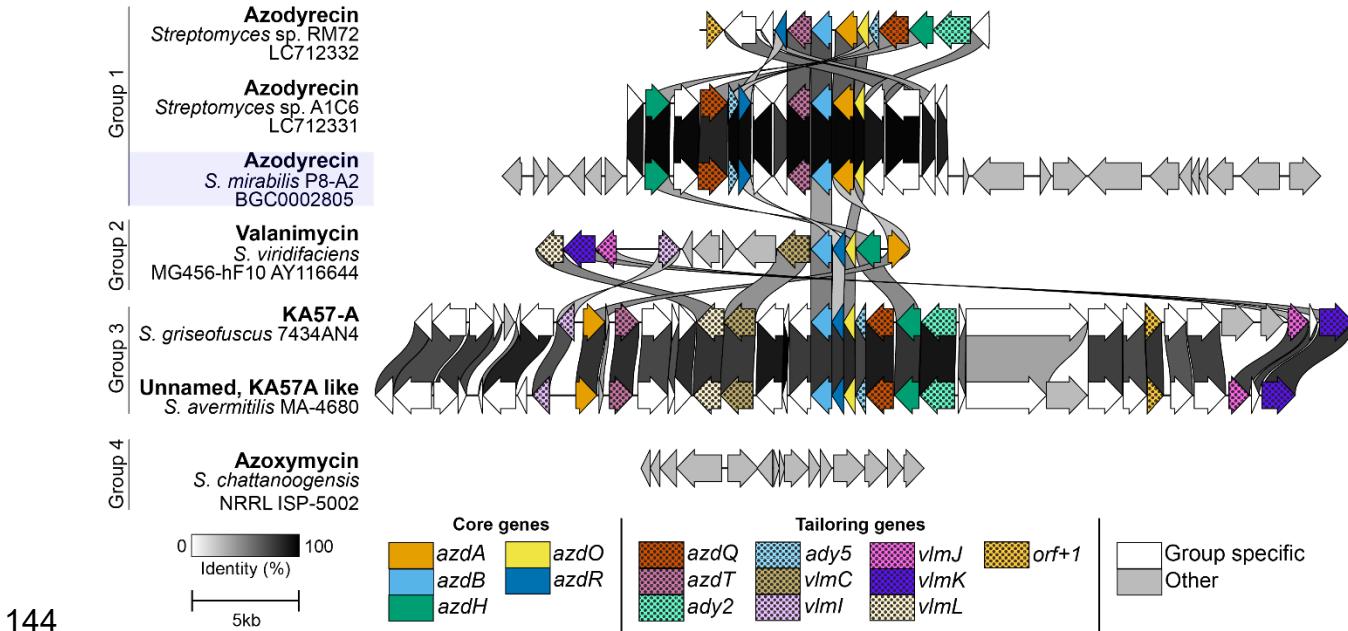
70 | Figure 1: Proposed two routes for azoxy compound biosynthesis adapted and modified  
 71 | from Wibowo, M and Ding, L, 2020<sup>25</sup>, where one assembly path utilizes dimerization,  
 72 | while the other one cross links with carboxylic group, followed by rearrangement. The  
 73 | assigned route for the biosynthesis of *Streptomyces* spp. azoxy compounds is proposed,  
 74 | where only O-alkylazoxymycins (I) and azoxymycins (II) belong to the first route.

75 Azoxymycins A-C are produced by *S. chattanoogensis* L10<sup>20</sup> and their biosynthesis was  
76 confirmed by gene deletion and verified by three mutants<sup>20</sup>  $\Delta$ azoFG,  $\Delta$ azoJ and  $\Delta$ azoC.  
77 Through in vitro characterization of AzoC<sup>26</sup>, the azoxy bond formation in azoxymycins is  
78 a combination of enzymatic and non-enzymatic coupling cascade reaction. AzoC en-  
79 codes nonheme diiron N-oxygenase that oxidizes the amine to a nitroso group, which  
80 allows for dimerization into azoxymycins through non-enzymatic reactions facilitated by  
81 redox coenzyme pairs<sup>26</sup>.

82 Recently isolated from *S. mirabilis* P8-A2, azodyrecins A-C<sup>18</sup> represent a set of aliphatic  
83 azoxy metabolites. In this study, we selected azodyrecins as the model to uncover the  
84 biosynthesis of aliphatic azoxy compounds. Here, we confirm the biosynthetic gene clus-  
85 ter (BGC) responsible for azodyrecin biosynthesis through cloning and heterologous ex-  
86 pression in *S. coelicolor* M1146<sup>38</sup> and *S. albidoflavus* J1074<sup>39</sup>. Furthermore, by construct-  
87 ing knock-out (KO) strains targeting fourteen genes within the BGC, we gained insights  
88 into essential genes for the azodyrecin biosynthesis. The KO in *S. mirabilis* P8-A2 was  
89 achieved using CRISPR-Cas9 base editing tool, CRISPR-BEST<sup>40,41</sup>, which was used to  
90 introduce a stop codon in the upstream region of target gene coding sequence without  
91 creation of double stranded break and risk of genome rearrangement. Through metabo-  
92 lomic guided analysis of resulting strains we were able to propose the function of certain  
93 genes within azodyrecin biosynthesis pathway. Lastly, our exploration of the prevalence  
94 of various azoxy biosynthetic gene clusters across the phylogenetic tree of medium- and  
95 high-quality *Streptomyces* spp. genomes offers valuable insights into the compounds' po-  
96 tential significance within the lifestyle of *Streptomyces*.

## 97 **Results and Discussion**

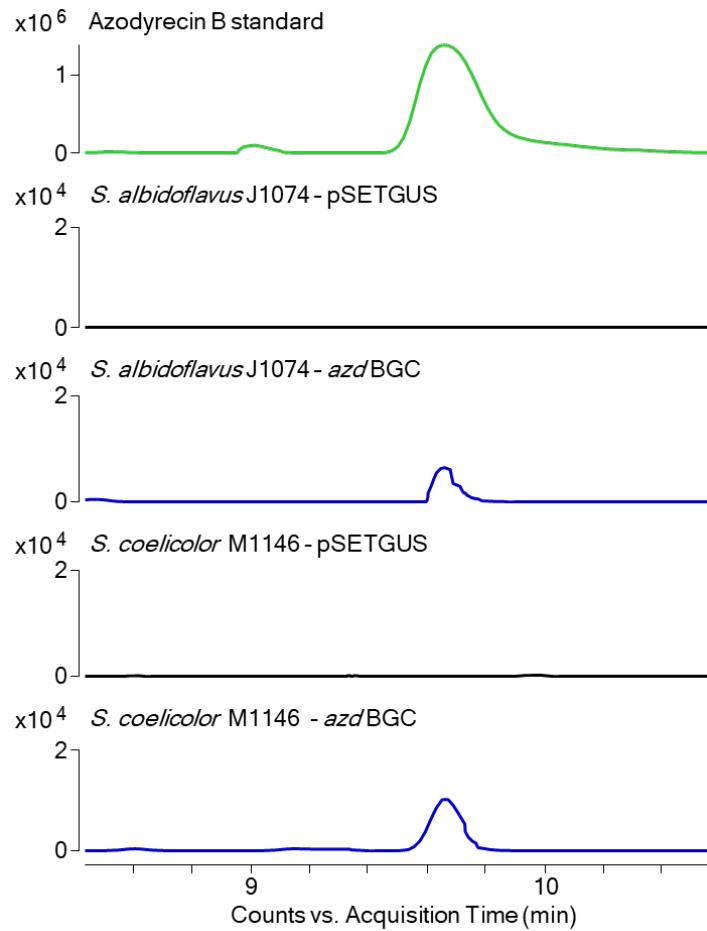
### 98 **Genome assembly of azodyrecin producer *Streptomyces* sp. P8-A2**


99 Whole genome sequencing of the azodyrecin-producing strain was performed using Ox-  
100 ford Nanopore and Illumina sequencing. The assembly revealed a chromosome of  
101 11.468.629 bp with a GC content of 70%. Five additional scaffolds were assembled, of  
102 which three contain *oriC* region, predicted using DoriC 12.0 database<sup>42</sup> search, indicating  
103 that they are separate entities of linear/circular plasmids. The assambled sequence was  
104 predicted to contain 40 biosynthetic gene clusters using antiSMASH 7.0.1<sup>43</sup>, relaxed de-  
105 tection strictness. The strain was identified as *Streptomyces mirabilis* by GTDB-Tk  
106 (v2.1.1) with an ANI% of 96.64 to GCF\_014650275.1<sup>44</sup>.

### 107 **Azodyrecin biosynthetic gene cluster of *Streptomyces mirabilis* P8-A2**

108 Production of azodyrecins have been reported in two other *Streptomyces* sp. by recent  
109 work of Choirunnisa, A. R. et al.<sup>19</sup>, where they elucidated tailoring step of methylation by  
110 S-adenosyl methionine (SAM) dependent methyltransferase, Ady1, in vitro and proposed  
111 BGC for azodyrecin biosynthesis in two azodyrecin producer strains. One of the reported

112 BGCs in *Streptomyces* sp. A1C6 (NCBI GenBank: LC712331) is highly similar to *S. mirabilis* P8-A2, sharing average nucleotide identity (ANI) of 95.7% and gene protein identities of 81 to 98 %. Interestingly, the BGC from *Streptomyces* sp. RM72 (NCBI GenBank: LC712332) is significantly distant from *S. mirabilis* P8-A2, ANI of 60 % and protein sequence similarity for 10/12 protein sequences between 32 and 75 %, while still producing azodyrecins A-F.

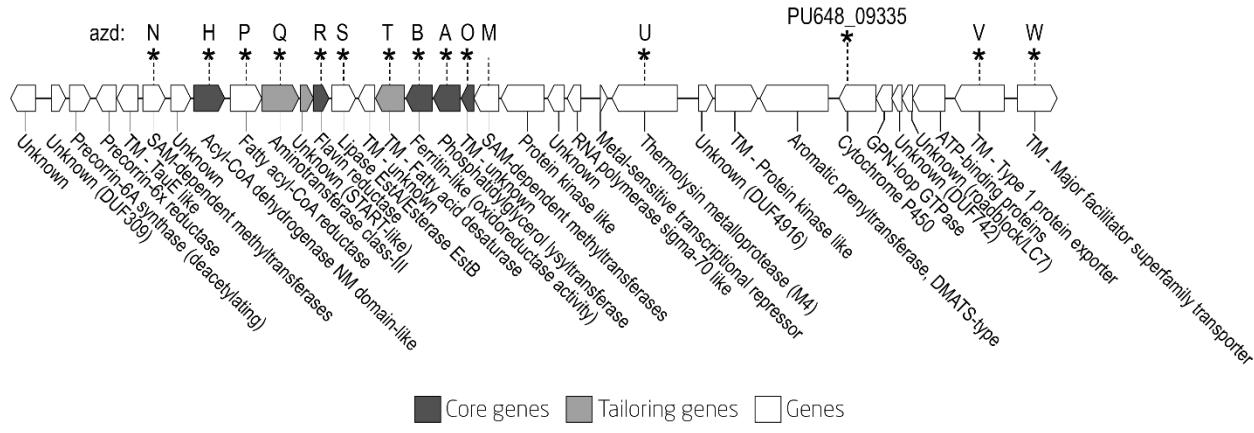

118 The proposed azodyrecin BGCs have not been experimentally validated and therefore  
119 we began our analysis by assessing the BGC boundaries. First, we compared the  
120 BGCs of all known producers of azoxy compounds in *Streptomyces* spp. (Table S.1)  
121 and thereafter analyzed antiSMASH<sup>43</sup> annotated gene function predictions to determine  
122 the BGC borders. BGCs encoding the biosynthesis of azoxy-compounds have been  
123 confirmed for azoxymycin<sup>26</sup>, valanimycin<sup>34</sup> and unnamed azoxy compounds of *S. aver-*  
124 *mitilis* MA-4680<sup>24</sup>. Furthermore, BGCs have been proposed for KA57-A<sup>45</sup> and azo-  
125 dyrecins without validation by KOs or heterologous expression. For azoxymycins, only  
126 biosynthetic gene sequences have been published. Searching for all of the described  
127 genes, we identified a closely related 14kb BGC region in the *S. chattanoogensis* NRRL  
128 ISP-5002 sharing 97.9 % - 99.6 % nucleotide and 96.2 % - 100.0 % amino acid identity  
129 (Table S.2). No genetic information is available for the remaining seven known azoxy  
130 compounds produced by *Streptomyces* spp. Using the genomic information, we gener-  
131 ated an alignment of BGCs and identified the genes shared between them using  
132 clinker<sup>46</sup> (Figure 2, characterized valanimycin gene functions:Table S.3). As already indi-  
133 cated by the overall ANI analysis, the azodyrecin BGCs of *S. mirabilis* P8-A2 and *S. sp.*  
134 A1C6 are highly similar and syntenic, whereas the BGC of *Streptomyces* sp. RM72  
135 shows lower similarities and a different gene organization. BGCs encoding other azoxy-  
136 compounds, i.e., valanimycin, KA57-A and azoxymycin share eight genes within the  
137 proposed azodyrecin BGC, five of which are shared across all azoxy BGCs, except for  
138 azoxymycin. As the upstream- and downstream regions of the proposed core biosynthe-  
139 sis genes encoded further transporters, regulators, cytochrome P450 and other activi-  
140 ties, we included seven additional genes upstream and thirteen downstream compared  
141 to already published BGCs, Figure 2 highlighted BGC. The sequence of the azodyrecin  
142 BGC from *S. mirabilis* P8-A2 is deposited in MiBIG database under accession number  
143 BGC0002805 and detailed overview is presented in Figure 4.



145 Figure 2: Gene cluster comparison using clinker<sup>46</sup> of known and proposed biosynthetic  
146 gene clusters (BGCs) for azoxy compounds of *Streptomyces* spp. The BGCs are grouped  
147 based on their cluster similarity. The colors reflect if the gene is group specific or shared  
148 with other groups. Tailoring genes are shared across two groups, while core genes are  
149 shared across all, except group 4. The *S. mirabilis* P8-A2 azodyrecin BGC is highlighted  
150 and visualized at proposed size.

## 151 Production of azodyrecin in heterologous hosts

152 To confirm the identity of the *azd* BGC, it was cloned and heterologously expressed in *S.*  
153 *albidoflavus* J1074<sup>39</sup> and *S. coelicolor* M1146<sup>38</sup>, using a modified version<sup>47</sup> of the CATCH-  
154 cloning<sup>45</sup> procedure. This method involves the targeted extraction of the predicted *azd*  
155 BGC using CRISPR-Cas9 and single guide RNAs (sgRNAs) in an in vitro system. The  
156 extracted *azd* BGC was subsequently inserted into the shuttle vector pXJ157 and then  
157 transferred into the heterologous host via biparental conjugation. Production of azo-  
158 dyrecin was confirmed by LC-MS analysis by comparison of azodyrecin B standard to  
159 culture extracts of the heterologous expression hosts (Figure 3). Production levels were  
160 similar with slightly higher production detected by *S. coelicolor* M1146. The products were  
161 verified by MS/MS spectra comparison, which confirmed their identity (Figure S.8). The  
162 successful detection of azodyrecin in heterologous hosts confirms that the candidate clus-  
163 ter contains all of the required genes for the azodyrecin biosynthesis.




164

165 | Figure 3: Extracted ion chromatogram (EIC) of azodyrecin B (m/z 341.2804 [M+H]<sup>+</sup>), in  
166 | standard and extracts from the heterologous expression host with *azd* BGC integrated  
167 | compared to negative control, pSETGUS<sup>48</sup>.

## 168 | Insights into the azodyrecin biosynthesis through knockout strain analysis

169 | The pathway for biosynthesis of azodyrecins is largely unknown. Only the methylation of  
170 | the carboxylic group by *azdM* has been experimentally confirmed<sup>19</sup>. To investigate the  
171 | role of the individual key biosynthetic genes in the *azd* BGC, we established CRISPR-  
172 | BEST<sup>40</sup> base editing in *S. mirabilis* P8-A2. We successfully generated fourteen KO strains  
173 | by introducing a stop codon in the N-terminal region of the CDS, which prevents the syn-  
174 | thesis of mature protein (Figure 4; Table S.5). The targets for KO study were selected  
175 | based on their conservation across azoxy BGCs (Figure 4 core and tailoring genes) and  
176 | genes encoding predicted function that might be involved in upregulation azodyrecins  
177 | precursor availability, dehydration of fatty acid, transport, or other aspects of biosynthesis,  
178 | but are not shared across other known azoxy BGCs.



179

■ Core genes ■ Tailoring genes □ Genes

180 | Figure 4: Overview of *azd* biosynthetic gene cluster. Genes that were studied in this work are  
181 | labelled with a star and their assigned gene names. The putative functions were predicted with  
182 | InterPro<sup>49</sup> scan v. 5.63-95.0. TM: transmembrane.

We applied a feature based molecular network (FBMN)<sup>50</sup> to analyze the untargeted metabolomic data and map precursors and intermediates in the different KO strains. Through network analysis, we compared the presence and abundance of ionized masses of WT culture extracts to the mutant. This way the data allowed us to propose 11 intermediates and to which we proposed their structures based on exact mass and fragmentation analysis (Figure 5. A, Figure S.9 – Figure S.15). Comparison of LC-MS data showed that compounds **13-17** were not detected in the WT strain, but could be seen in *azdT*<sup>STOP</sup>, *azdB*<sup>STOP</sup>, *azdH*<sup>STOP</sup>, *azdR*<sup>STOP</sup> and *azdS*<sup>STOP</sup> mutants, respectively (Figure 5.B, Figure S.16 – Figure S.21). Production of azodyrecins A-C (**1-3**) was abolished in *azdT*<sup>STOP</sup>, *azdB*<sup>STOP</sup> and *azdH*<sup>STOP</sup> mutants, although they still produced several intermediates, **4-15**, **10-15** and **16-17**, respectively. Azodyrecins were still produced in *azdR*<sup>STOP</sup>, *azdS*<sup>STOP</sup>, *azdU*<sup>STOP</sup>, *azdN*<sup>STOP</sup> and *azdW*<sup>STOP</sup> mutants, however, intermediate compounds were detected at different relative abundances compared to the WT, suggesting that they are involved as helper genes but are not required for the biosynthesis of azodyrecins. The *PU648\_09335*<sup>STOP</sup> mutant, in which a putative cytochrome P450 was inactivated, still produced azodyrecin and thus seems not to be involved in azodyrecin biosynthesis. In all other mutants we did not detect any of the compounds (**1-17**) in the LC-MS analyses.

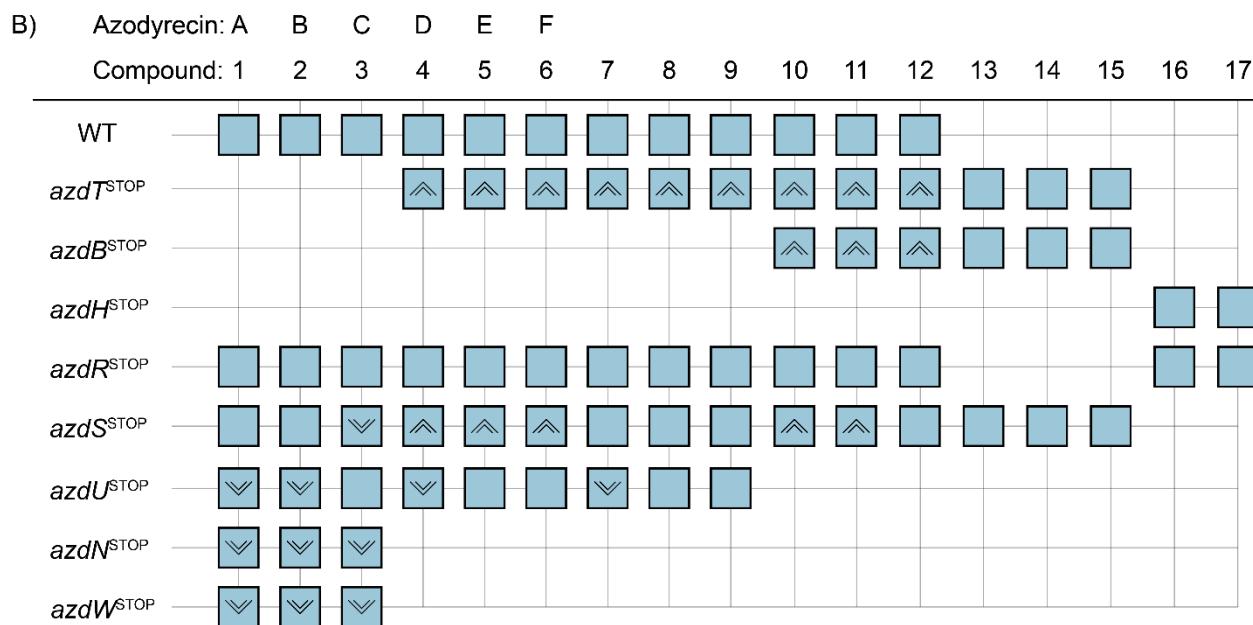
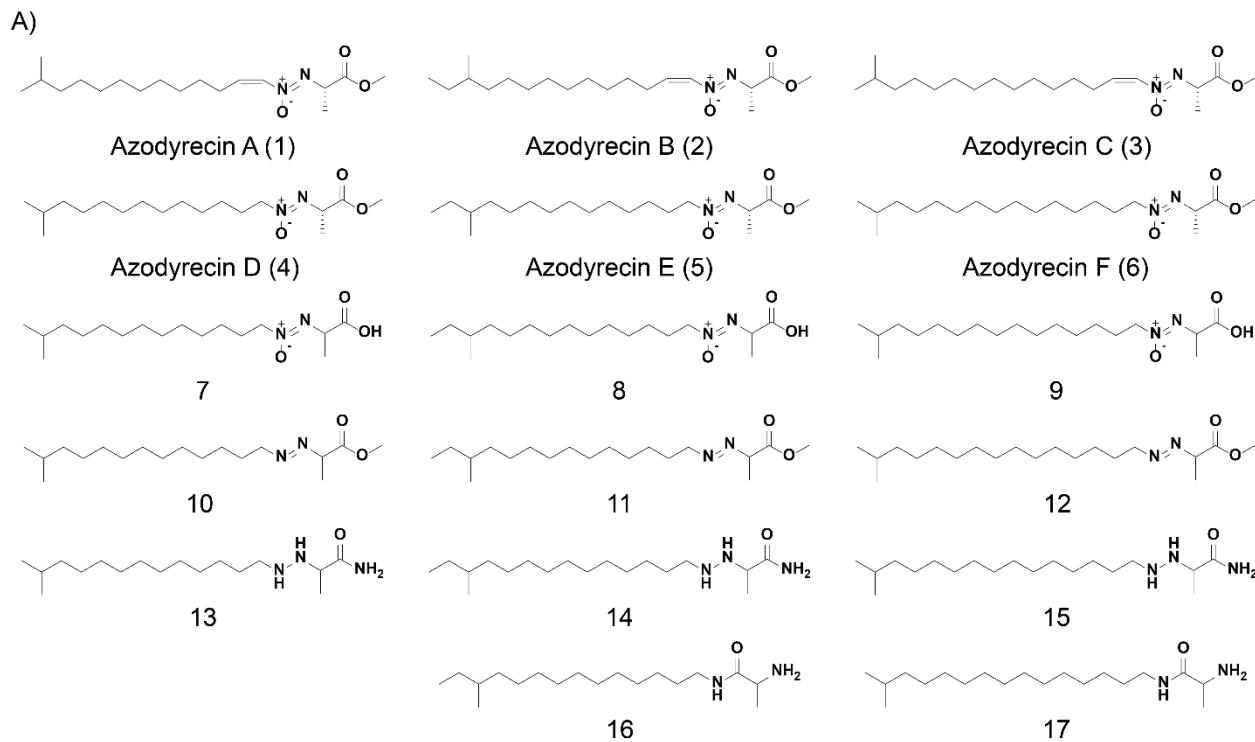
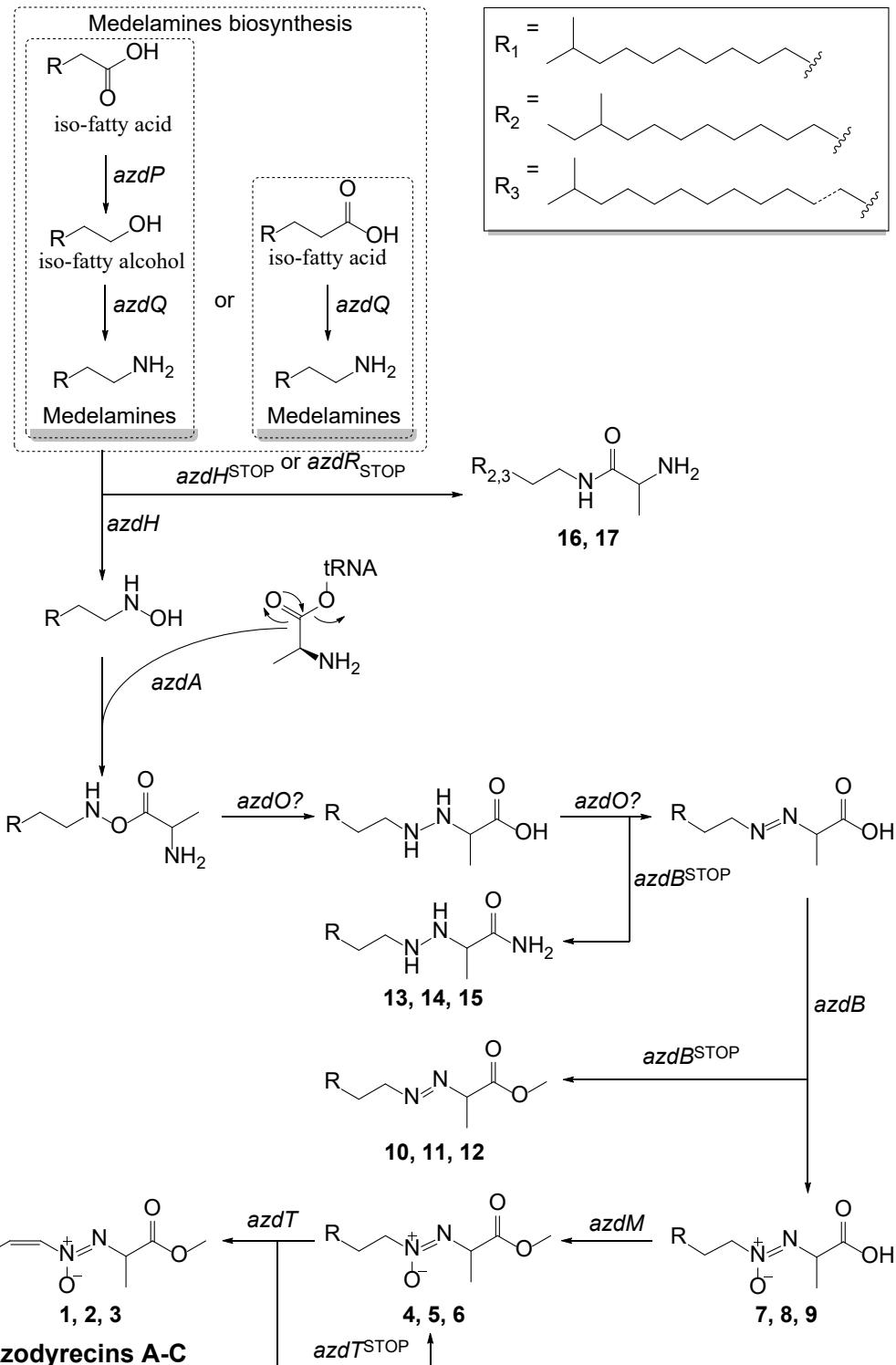




Figure 5: **A)** Overview of compounds 1-17 detected in the metabolomics data of the WT and/or knock out strains. Azodyrecins A-F (1-6) are known structures, while 7-17 are proposed structures based on exact mass, MS/MS studies, and comparison with the known compounds 1-6 that were found in the azodyrecin knockout strains. **B)** Presence/absence matrix of LC-MS detected compounds in specific strains is indicated with a square; arrows indicate relative amount compared to the wild type strain, four times higher or lower.


208 *azdH* and *azdR* exhibited similarity to *vlmH*<sup>28,34</sup> and *vlmR*<sup>27,34</sup>, which are responsible for  
209 the *N*-hydroxylation of isobutylamine<sup>34</sup> in valanimycin biosynthesis (Table S.2). Inactivation  
210 of either of these genes results in the formation of compounds **16-17**, with an amide  
211 bond formed through linkage of fatty-amine to the activated alanine. In the *azdH*<sup>STOP</sup> mu-  
212 tant we did not detect downstream intermediates, only compound **16-17**. The *azdR*<sup>STOP</sup>  
213 mutant produced same compounds as the WT strain and additionally compounds **16-17**  
214 (Figure S.21). Based on these findings we suggest that *azdH* is responsible for *N*-hydroxy-  
215 ylation of the fatty amine, while *azdR* inhibits formation of this off-product and directs flux  
216 towards *N*-hydroxylation. It is likely that the formation of compounds **16-17** is due to un-  
217 specificity of AzdA in absence of AzdR, allowing to deliver alanine to amine. *azdA* encodes  
218 a putative phosphatidylglycerol lysyltransferase, a family of enzymes, which are known  
219 to facilitate transfer of an amino acid from AA-tRNA to a membrane bound substrate. It  
220 has been discovered in pathogens such as *Staphylococcus aureus* where the enzyme  
221 modifies phosphatidylglycerol into lysylphosphatidylglycerol to modify membrane charge  
222 and avoid detection by defensins. In the biosynthesis of azodyrecin, we propose that  
223 AzdA, in the presence of AzdR, specifically transfers alanine from tRNA<sup>Ala</sup> to a hydrox-  
224 ylated fatty amine. Conversely, in the absence of AzdR, AzdA is also capable of transfer-  
225 ring alanine from tRNA<sup>Ala</sup> to a non-hydroxylated fatty amine. The *azdO* gene encodes a  
226 155 AA transmembrane protein with three predicted transmembrane helices according to  
227 InterPro<sup>49</sup> scan v. 5.63-95.0. The gene does not have any characterized homologues and  
228 therefore function cannot be predicted. No intermediates could be detected in the *azdA*<sup>S-</sup>  
229 *STOP* and *azdO*<sup>STOP</sup> mutants, which could be due to the instability of the intermediates.  
230 AzdO might facilitate recruitment of the substrate and other catalytic enzymes, or even  
231 be responsible for rearrangement and formation of hydrazine and azo bond in the pro-  
232 posed intermediates, however it is unclear which reactions are spontaneous and which  
233 are catalyzed by enzymes at this stage.

234 The key finding was the function of AzdB, that we identified to be responsible for azoxy  
235 bound formation. The *azdB*<sup>STOP</sup> mutant produced hydrazine **13-15** and azo compounds  
236 **10-12**. We did not observe oxidation of these hydrazine and azo compounds in the mu-  
237 tant, suggesting that the AzdB is required to produce the azoxy group and carries out  
238 oxidation reaction of hydrazine/azo group. This evidence confirmed that *azdA*, *azdB*,  
239 *azdH* and *azdO* code for the enzymes carrying out the essential functions for the azoxy  
240 bond formation. These genes are conserved in a group of azoxy compounds where azoxy  
241 bound is formed through N-N constitution followed by nitrogen oxidation, i.e., azodyrecins,  
242 KA57A, maniwamycins, valanimycin, eliomycins and others.

243 We also targeted other genes that might be involved in the biosynthesis of azodyrecins,  
244 their transport and other aspects of biosynthesis. The production of azodyrecins A-C was  
245 inhibited in the *azdT*<sup>STOP</sup> mutant, while intermediates **4-12** were produced at higher abun-  
246 dances compared to the WT. This indicates that AzdT is a fatty acid desaturase and is  
247 responsible for double bond formation in the fatty chain moiety of azodyrecins. Desatura-  
248 tion of the fatty amine was only observed in the final products of the pathway, post meth-  
249 ylation, suggesting that AzdT performs the final reaction converting azodyrecin D-F (**4-6**)

250 into azodyrecin A-C (**1-3**). All of the intermediates were produced in higher abundance in  
251 the *azdT*<sup>STOP</sup> compared to the WT and a similar increase was also observed in the  
252 *azdS*<sup>STOP</sup> mutant. However, the *azdS*<sup>STOP</sup> mutant was still able to produce azodyrecin A-  
253 C (**1-3**). According to the ESTHER database<sup>51</sup>, *azdS* encodes a putative alpha/beta fold  
254 hydrolase with predicted activity belonging to lipase class 2<sup>50</sup> and it is unclear what role  
255 this gene has in resulting in relatively high levels of intermediates (**4-6**).

256 The fatty acid moiety in azodyrecins is an iso-fatty acid, synthesized using a variety of  
257 different amino acid as starter units. Starter units must be deaminated and prolonged by  
258 malonate chain extension, by a fatty acid synthase not encoded in the BGC.<sup>52</sup> Therefore  
259 the azodyrecin B (**2**) starter unit is isoleucine, while for azodyrecin A and C (**1, 3**) the  
260 starter unit should be valine with difference of one malonate chain extension. These iso-  
261 fatty acids could originate from primary metabolism and used in biosynthesis, as they help  
262 to control membrane fluidity in bacteria<sup>52</sup> and their abundances are species specific<sup>53-</sup>  
263<sup>55</sup>. The *azdQ* gene encodes a putative aminotransferase, which could both aminate the  
264 fatty acid. It is unclear whether the fatty acid is aminated following decarboxylation or  
265 reduction of the carboxy group into an alcohol. It is likely that the latter hypothesis is true,  
266 as *azdP* encodes a putative alcohol forming fatty acid reductase, which could be respon-  
267 sible for the formation of an iso-fatty alcohol, which thereafter is aminated by *azdQ*. Such  
268 iso-fatty amines have previously been described in *Streptomyces* sp. NK14819 strain and  
269 were named medelamines A and B<sup>56</sup> and could serve as the precursors in the biosynthe-  
270 sis of azodyrecins A-B (**1-2**). The ABC-transporter, AzdV, appeared to be essential for  
271 biosynthesis, as none of the compounds **1-17** were detected in the KO mutant. Its role  
272 might be transport of biosynthetic enzymes to the periplasmic space where azodyrecins  
273 might be synthesized, however it could also be toxicity requiring the cell to stop its pro-  
274 duction of azodyrecins. A mutant in *azdW* encoding a major facilitator superfamily trans-  
275 porter KO mutant produced only azodyrecins A-C and at low levels. The M4 metallopro-  
276 teases, *azdU*<sup>STOP</sup>, and methyltransferase, *azdN*<sup>STOP</sup>, mutants also produced azodyrecins  
277 A-C at reduced amounts, but it is not clear what exact function these genes have in the  
278 pathway. Using the acquired data from the KO mutants we can propose an azodyrecin  
279 biosynthesis pathway (Figure 6).

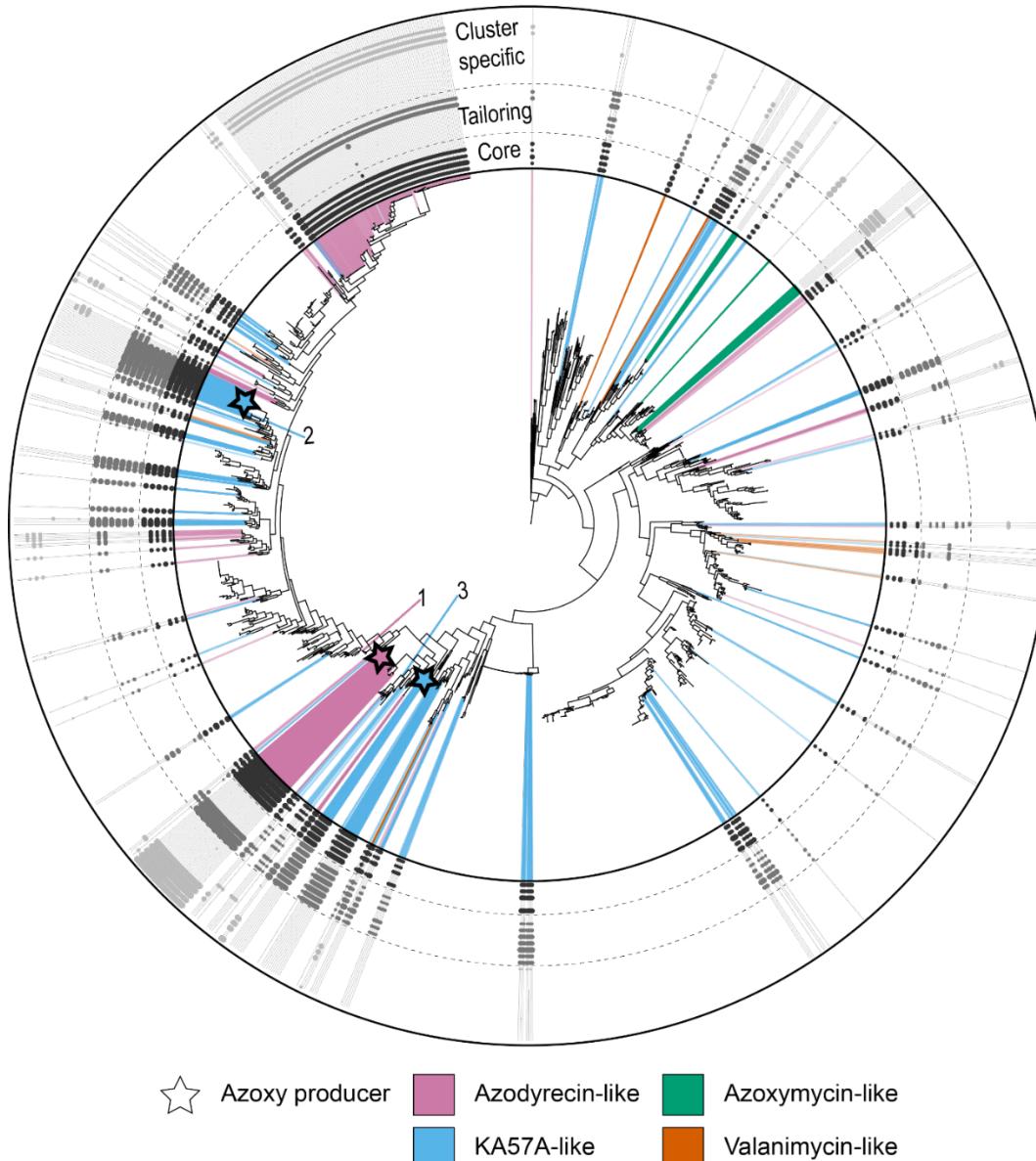


280

281

282 | Figure 6: Hypothetical pathway for azodyrecin biosynthesis where the intermediates de-  
 283 | tected in the KO mutants are indicated with numbers.

284 **Distribution and abundance of azoxy biosynthetic gene clusters across phylogeny**  
285 **of *Streptomyces* sp.**


286 With new knowledge about azoxy compound biosynthesis, we investigated the distribution  
287 of such pathways in the *Streptomyces* genus. We mapped known BGCs of azoxy  
288 compounds to a genome scale phylogenetic tree of 1528 *Streptomyces* medium/high  
289 quality genomic sequences (Figure 7) acquired from NCBI. We identified that large number  
290 of sequenced *Streptomyces* spp. to contain azoxy BGC, 351 out of the 1535 (22 %)  
291 genomes, while only 16 (1 %) of the genomes contained more than one azoxy BGC.

292 To have a closer look into distribution of different azoxy BGC types, we created four  
293 groups, azodyrecin-like, valanimycin-like, KA57A-like and azoxymycin-like. The grouping  
294 reflected on the BGC similarity and their chemical structure moiety differences. Azo-  
295 dyrecin-like compounds are composed of iso-fatty and amino acid moieties, valanimycin-  
296 like from two amino acids, KA57A-like from short chain fatty and amino acid, and the  
297 azoxymycin-like compounds by dimerization of phenolic monomers. The grouping is vis-  
298 ualized in Figure 2 where shared genes between the different groups are highlighted.

299 The results showed that the valanimycin-like and the azoxymycin-like BGCs were identi-  
300 fied in 14 and 12 genomes respectively. The azoxymycin-like BGCs appear to be clade  
301 specific while valanimycin-like BGCs are identified in distant clades across the tree. BGCs  
302 encoding azodyrecin-like and KA57A-like compounds are most abundant, detected in 191  
303 (12 %) and 136 (9 %) genomes respectively. While azodyrecin-like BGCs were the most  
304 abundant, many originate from closely related strains indicating a sampling bias in our  
305 dataset. Interestingly, we detected an azodyrecin-like BGC in the model streptomycetes  
306 *S. coelicolor*A3, although no azoxy compounds were reported in this strain. We compared  
307 this and other randomly selected azodyrecin-like BGCs using clinker<sup>46</sup> and could verify  
308 that the genes are clustered in all the BGCs (Figure S.22). These BGCs likely encode  
309 new undiscovered azoxy compounds that bear similarity to azodyrecins.

310 The detection of KA57A-like BGCs showed slightly lower numbers, however it appears  
311 that this group is most spread across different clades. The distribution of KA57A-like  
312 BGCs could relate to higher diversity in this group of compounds. Previously structure  
313 similar azoxy compounds such as elaiomycins and maniwamycins have been discovered  
314 and there is potentially larger chemical structure variance for this group compared to azo-  
315 dyrecin like compounds. In recent work by Tanaka et al. 2023, they discovered analogues  
316 of KA57A in the same producer strain. These compounds were biosynthesized using dif-  
317 ferent amino acids, valine and isoleucine instead of serine, however, they were azides  
318 and not azoxy compounds. Considering that the BGC is scattered across many clades  
319 and the relative size of the BGC, it is likely that similar compounds to KA57-A will be  
320 discovered in *Streptomyces* sp. For the strains in which we found azoxy BGC, we plotted  
321 the genes that were identified to be contained within the cluster, to have a better under-  
322 standing of what is contained within the cluster and if the cluster is a hybrid of two.

323 The rules used to identify the four types of azoxy BGCs have been wrapped into  
324 antiSMASH rules allowing everyone to detect azoxy clusters in the future release.



325

326 Figure 7: *Streptomyces* spp. azoxy BGC distribution across WGS phylogenetic tree of  
327 *Streptomyces* spp. generated using autoMLST<sup>57</sup>, including presence absence matrix of  
328 key biosynthetic genes for these compounds. The inner circle contains phylogenetic tree  
329 highlighting genomes containing BGCs similar to one of the four input clusters and are  
330 colored based on similarity to the known azoxy BGCs, while the intensity of the color  
331 reflects on the similarity the linked BGC. The WGS nodes of known producers are high-  
332 lighted with a star: (1) *S. mirabilis*, (2) *S. griseofuscus* and (3) *S. avermitilis*. The outer  
333 circle shows presence/absence matrix of defined core, tailoring and cluster specific pro-  
334 teins. The size of the dots in the outer circle represents gene AA-identity to the input  
335 cluster protein sequence.

## 336 Methods

### 337 Bacterial cultures and cultivation

338 Microorganisms used in the study were *Escherichia coli* ET12567/pUZ8002<sup>58,59</sup>, *Esche-*  
339 *richia coli* ET12567/pUB307<sup>58,60</sup>, *Escherichia coli* Mach1 (Thermo Fisher Scientific;  
340 C862003) and *Escherichia coli* BAC-Optimized Replicator v2.0 (Lucigen; 60210-1),  
341 *Streptomyces mirabilis* P8-A2<sup>18</sup>, *Streptomyces coelicolor* M1146<sup>38</sup> and *Streptomyces al-*  
342 *bidoflavus* J1074<sup>39</sup>.

343 Cultivation of *E. coli* strains was performed at 37 °C in LB (20g/L LB Broth (Lennox))  
344 (Sigma-Aldrich; L3022), 2xYT (tryptone 16g/L (Millipore; T9410), yeast extract 10g/L  
345 (Thermo Fisher Scientific; LP0021B), sodium chloride 5g/L(VWR; 470302)) or S.O.C.  
346 (tryptone 20g/L (Millipore; T9410), yeast extract 5g/L (Thermo Fisher Scientific;  
347 LP0021B), sodium chloride 0.5g/L(VWR; 470302)) medium. *Streptomyces* spp. were cul-  
348 tured at 30 °C in SFM<sup>61</sup> (soya flour 20g/L (fettreduziert Bio Sojamehl; Hensel, Germany)),  
349 D-mannitol (Sigma-Aldrich; M4125) or ISP2 (yeast extract 4g/L (Thermo Fisher Scientific;  
350 212750), malt extract 10g/L (Sigma-Aldrich; 70167), glucose 4g/L (Sigma-Aldrich;  
351 G7021)). For agar plates the media was prepared with 2% w/v of agar (Sigma-Aldrich;  
352 05040). For conjugations, SFM media was supplemented to contain final concentration  
353 of 10 mM MgCl<sub>2</sub> (Sigma-Aldrich; M1028). When selection was required, the medium was  
354 supplemented with following antibiotics and their final concentrations: 100 µg/mL apra-  
355 mycin sulfate (Sigma-Aldrich; A2024), 25 µg/mL chloramphenicol (Sigma-Aldrich; C0378),  
356 50 µg/mL kanamycin sulphate (Sigma-Aldrich; K1377) and/or 25 µg/mL nalidixic acid  
357 (Sigma-Aldrich; N8878).

### 358 DNA isolation and sequencing of *Streptomyces mirabilis* P8-A2 genome

359 Sequencing of *Streptomyces* sp. P8-A2 was performed using both Oxford Nanopore and  
360 Illumina. The DNA extraction for Oxford Nanopore sequencing was done according to  
361 protocol by Alvarez-Arevalo et al. 2023<sup>62</sup> with altered library preparation using the SQK-  
362 RBK004 rapid barcoding kit. The data was demultiplexed using Deepbinner (v0.2.0)<sup>63</sup> and  
363 basecalled using Guppy (v3.6.0).

364 For Illumina whole genome sequencing, DNA was extracted from a 10 mL culture using  
365 the QIAGEN® Genomic DNA Buffer Set and Genomic-tips™ 100/G set (midi-prep) (QI-  
366 AGEN, Hilden, Germany). This procedure adhered to the Sample Preparation and Lysis  
367 Protocol for Bacteria as outlined in the QIAGEN® Genomic DNA Handbook, with the ad-  
368 dition of a preliminary step involving freezing at -20°C. DNA was eluted in 10 mM Tris-HCl  
369 (pH 8.5) and stored at -20°C until further processing. Concentrations and quality of the  
370 DNA was determined by fluorescence spectroscopy (Qubit™ dsDNA HS assay; Invitro-  
371 gen by Thermo Fisher Scientific Inc., Eugene, OR, USA) and absorption (DeNovix 439  
372 DS-11+, DeNovix Inc., Wilmington, DE, USA), respectively. The KAPA HYPRplus kit was  
373 used to generate illumina libraries which were sequenced at The Novo Nordisk

374 Foundation Center for Biosustainability (Technical University of Denmark, Kgs. Lyngby,  
375 Denmark) on the Illumina Miseq 2x300nt PE platform.

376 The genome assembly was performed by adaptor trimming from the Nanopore data using  
377 Porechop (v0.2.4)<sup>64</sup> and reads smaller than 1,000nt were removed using Filtlong  
378 (v0.2.0)<sup>65</sup> resulting in a total of 1,101,671,292nt in reads with an N50 of 18,196nt, which  
379 were assembled de novo with Flye (v2.8-b1674) with the nano-raw setting and 5 polishing  
380 iterations<sup>66</sup> resulting in a 13Mb assembly. Illumina reads were trimmed using Trim Galore  
381 with Cutadapt (v2.10)<sup>67</sup> using setting --length 100 and --quality 20. An alignment of Na-  
382nopore and Illumina data was created using Bowtie-2 (v.2.3.4.1)<sup>68</sup> with an overall align-  
383 ment rate of 98.55%. The Nanopore-only assembly was polished using Illumina data with  
384 Unicycler (v0.4.8)<sup>69</sup> resulting in a chromosome of 11,468,629bp, a mean Nanopore cov-  
385 erage of 70 and a<sup>42</sup> benchmarking BUSCO (v4.0.5)<sup>70</sup> score of 99.7% complete genes  
386 with 4 duplicate genes using the actinobacteria\_class ODB10 database. Taxonomical  
387 classification was done using GTDB-Tk [67]

## 388 **Metabolomic sample preparation**

389 For metabolomic analysis, the *Streptomyces* spp. were incubated in dark for 7 days at  
390 30°C on 90 mm agar plates containing 20 mL SFM or ISP2 media plus agar. The samples  
391 were prepared by taking three plugs of 5.5mm diameter and transferring them to a 2mL  
392 Eppendorf tube (VWR Chemicals; 211-2120). The plugs were then submerged in 1mL  
393 ethyl acetate (VWR Chemicals; 34858) and exposed to ultrasonication for 60 minutes.  
394 The mixture was then transferred to a clean Eppendorf tube (VWR Chemicals; 211-2120)  
395 and evaporated under nitrogen. Samples were redissolved into 200µL of methanol  
396 (Sigma-Aldrich; 34860) and ultrasonicated for 15 minutes. The mixture was then centri-  
397 fuged at 14000 RCF for 3 minutes and the supernatant transferred to HPLC vials (Thermo  
398 Fisher Scientific; C4000-12) and sealed with a cap (Thermo Fisher Scientific; 9-SCKG-  
399 ST1) and subjected to ultrahigh-performance liquid chromatography-high resolution elec-  
400 trospray ionization mass spectrometry (UHPLC-HRESIMS) analysis.

## 401 **Identification and cloning of the putative azodyrecin biosynthetic gene 402 cluster**

403 The putative azodyrecin BGC was identified by alignment of known azoxy producing  
404 BGCs, or their whole genome sequences (WGS) to the *S. mirabilis* P8-A2 WGS using  
405 LASTZ<sup>71</sup>. The query sequences were: valanimycin BGC (NCBI: AY116644.1), *S. griseo-*  
406 *fuscus* 7434AN4 WGS (NCBI: GCF\_008064995.1) and azodyrecin BGCs from *Strepto-*  
407 *myces* sp. A1C6 (NCBI: LC712331) and *Streptomyces* sp. RM72 (NCBI: LC712332). The  
408 identified regions were verified using antiSMASH 7.0<sup>43</sup> that finds *azdB* and classifies clus-  
409 ter in “Other” group. The identified region was compared to other azoxy producers using  
410 clinker<sup>46</sup>. The gene functions were predicted using InterPro<sup>49</sup> scan v. 5.63-95.0 for final  
411 insights in candidate cluster and decision on cluster borders.

412 The putative azodyrecin BGC was cloned according to modified<sup>47</sup> CATCH-cloning<sup>72</sup> pro-  
413 cedure. To capture the azodyrecin BGC, Cas9 protospacer sequences were designed  
414 using Geneious Prime to find sgRNA binding sites and score them based on their spec-  
415 ificity<sup>73</sup> and activity<sup>74</sup>. The sgRNAs were ordered as 2 nmol Alt-R CRISPR-Cas9 lyophil-  
416 ised and ready-to-dissolve fragments from Integrated DNA Technologies. The sgRNAs  
417 contained following protospacer sequences, sgRNA001: “GCGCATCCGTGACAC-  
418 CACCG” and sgRNA002: “ACGCTGGCGTCACCAACGCG”. The primer extension PCR  
419 of pXJ157 plasmid was performed using matmal0031 “TTCTTCCAGGAGCAC-  
420 GCTGGCGTCACCAACAATTGTTATCCGCTCACATTCC” and matmal0032  
421 “CGTTCACCGGCATGCGCATCCGTGACACCCTTAAGAAGGAGATATAC-  
422 CATGAGC” primers. Plasmid assemblies were verified by restriction enzyme mapping  
423 using PstI and SspI (Figure S.6, Figure S.7) and whole plasmid sequencing using Oxford  
424 Nanopore Flow Cell (R9.4.1) and mapping to reference plasmid using minimap2<sup>75</sup>. The  
425 generated plasmids IDs are pAzd (pXJ157-Azodyrecin\_BGC) (Figure S.1) and pAzd-  
426 ΦC31 (pXJ157-apr-attp-int-Azodyrecin\_BGC) (Figure S.2).

## 427 Knock-out strain construction

428 Gene knockouts in *S. mirabilis* P8-A2 were performed by introduction of stop codons near  
429 the N-terminus of the target coding sequence using CRISPR-cBEST base editing<sup>40</sup>. The  
430 *S. mirabilis* P8-A2 KO strains were generated as previously described<sup>41</sup> with the following  
431 alterations. Instead of pCRISPR-cBEST (RRID: [Addgene 125689](#)) we created a new set  
432 of plasmids containing dual restriction sites in the protospacer cloning site and with either  
433 ermEP\*, kasOP\*, or SF14P promoters driving sgRNA transcription. Using Ncol and Nhel  
434 instead of only Ncol reduces the number of negative colonies and greatly simplifies the  
435 cloning of many base editing plasmids. The new plasmids were named pCRISPR-cBEST-  
436 v2-PermE\* (pCW135, Addgene ID: 209446) (Figure S.3), pCRISPR-cBEST-v2-kasOP\*  
437 (pCW136, Addgene ID: 209447) (Figure S.4) and pCRISPR-cBEST-v2-SF14P (pCW137,  
438 Addgene ID: 209448) (Figure S.5). The pCW135 and pCW136 plasmids were constructed  
439 by primer extension PCR using original the original pCRISPR-cBEST plasmid as back-  
440 bone. pCW137 was constructed based on pCW135 using a gBlock from IDT containing  
441 the SF14P promoter sequence. All PCRs were performed using Q5 High-Fidelity DNA  
442 Polymerase (NEB; M0491). The PCR products were assembled using NEBuilder HiFi  
443 DNA Assembly (NEB; E2621) following the suppliers' specifications. The assembled plas-  
444 mids were transformed into *E. coli* Mach1 for plasmid propagation. The plasmids were  
445 verified by Sanger sequencing (Eurofins Genomics). The backbone for pCW135 and  
446 pCW136 was acquired by digestion of pCRISPR-cBEST using BstBI and Ncol. The back-  
447 bone for construction of pCW137 was obtained through digestion of pCW135 with HindIII  
448 and Nhel.

449 The Cas9 sgRNA protospacer sequences were designed using CRISPy-web<sup>76</sup>. Selection  
450 criteria were the absence of 0 bp mismatches, and a location close to the start codon to  
451 result in the most truncated protein. A list of protospacer sequences and vector IDs are  
452 presented in Table S.4. The oligonucleotides containing 20nt protospacer sequence and

453 20nt overlaps to the backbone in either side and verification primers were ordered from  
454 Integrated DNA Technologies. The assembled CRISPR-cBEST plasmids were verified by  
455 Sanger sequencing (Eurofins Genomics) of colony PCR products using primers  
456 matmal0137 (TGTGTGGAATTGTGAGCGGATA) and matmal0138 (CCCATTCAA-  
457 GAACAGCAAGCAG). Verification of introduced stop codons in *S. mirabilis* P8-A2 excon-  
458 jugants that showed resistance to apramycin were performed by PCR amplification of the  
459 target site and subsequent Sanger sequencing using verification primers presented in  
460 Table S.5. After the removal of CRISPR-cBEST plasmids from the strains, the PCR and  
461 subsequent Sanger sequencing (Eurofins Genomics) was repeated to ensure mainte-  
462 nance of the installed mutations.

#### 463 **Phylogenetic distribution of azoxy BGCs**

464 1528 genomic sequences of *Streptomyces* spp. were acquired from NCBI on 16.02.2023,  
465 which were selected with requirement to contain up to 100 contigs. Additionally, 30 differ-  
466 ent genomes from *Actinomycetia* class not belonging to *Streptomycetales* were included  
467 to be used as outgroup for rooting of the phylogenetic tree. The resulting dataset had  
468 average N50 of 4.5 Mb, and the lowest quality genome had N50 of 109 Kb. We used  
469 BGCflow<sup>77</sup> to systematically acquire nucleotide fasta files from NCBI using ncbi-genome-  
470 download (v.0.3.1)<sup>78</sup> followed by annotation using prokka (v.1.14.5)<sup>79</sup>, with database of  
471 HQ manually annotated genomes as described in Gren et al. 2020<sup>80</sup>, including addition-  
472 ally *Streptomyces lividans* TK24 (GCA\_000739105.1).

473 The phylogenetic tree was inferred using autoMLST<sup>57</sup> as implemented in the autoMLST  
474 wrapper<sup>81</sup>. Diamond database was created using cblaster<sup>82</sup>. The resulting phylogenetic  
475 tree was uploaded to iTOL<sup>83</sup>.

476 To map the clusters onto the phylogenetic tree we wrote a Jupyter notebook, GeneClus-  
477 terPhyloMapper, that processes input files through clinker<sup>46</sup> and cblaster<sup>82</sup> and formats  
478 the data for visualization with iTOL<sup>83</sup>. The notebook and documentation is available at:  
479 <https://github.com/MatissMaleckis/GeneClusterPhyloMapper>.

480 GeneClusterPhyloMapper is implemented using python 3.10.9 Jupiter notebook. The  
481 notebook requires installation of os, pandas, numpy and Bio packages. Within the note-  
482 book bash scripts of clinker (v.0.0.28)<sup>46</sup> and cblaster (v.1.3.18)<sup>82</sup> are executed, thus envi-  
483 ronments must be set up prior use. The notebook starts the analysis of user provided  
484 input files to find protein similarities between the input BGCs. The notebook compares  
485 provided BGC GenBank files using clinker<sup>46</sup> and shared proteins are grouped. The user  
486 is asked to define required number of proteins in a group for BGC to be considered as  
487 core (usually same number as input BGCs, thus proteins shared across all BGCs are  
488 core). The protein group list is then populated with experimentally validated proteins in-  
489 volved in biosynthesis and not already detected by clinker. The notebook creates input  
490 file for cblaster<sup>82</sup> analysis by extracting protein sequences from the input GenBank files  
491 and merge them into single file. The file is then processed by cblaster analysis in local

492 mode using a previously created diamond database. For each cblaster output genome,  
493 the notebook calculates how many core protein groups are identified and how many pro-  
494 teins belong to specific BGC. The notebook is then filtered to contain user specified min-  
495 imum number of core proteins and total proteins detected. Finally, the BGC is assigned  
496 based on the ratio between proteins detected belonging to specific BGC and number of  
497 BGC specific proteins in the protein group list. If any of the genome has more than one  
498 hit, only best hit is kept for further analysis, while excluded hits are saved in separate file  
499 for later inspection. Finally, the data is used to generate tables that can be directly im-  
500 ported into iTOL annotation editor. The user has to provide color for each of the input  
501 BGC, whereafter notebook creates a table that can be imported in iTOL as color gradient.  
502 The notebook also generates a table for shape plot mapping in iTOL. This data maps for  
503 each genome the presence absence matrix of each protein group. The data is color coded  
504 based on number of records in specific group, while the size of nodes in iTOL represents  
505 highest protein identity hit within the group. The generated tables can directly be used in  
506 iTOL annotation editor v1.8 for Excel to annotate the phylogenetic tree.

507 In this study we applied GeneClusterPhyloMapper notebook onto valanimycin (NCBI:  
508 AY116644.1), azodyrecin (MiBIG: BGC0002805), proposed KA57A BGC (NCBI:  
509 GCF\_008064995.1 [NZ\_AP018517.1 [2,049,086:2,106,642]]) and azoxymycin BGC of *S.*  
510 *chattanoogensis* NRRL ISP-5002 (NCBI: GCF\_001294335.1 [NZ\_LGKG01000136  
511 [21,828:35,070]]). We provided a list of experimentally validated protein sequences in-  
512 volved in azoxy compound biosynthesis (NCBI: AN10236.1, AAN10237.1, AAN10239.1,  
513 AAN10241.1, AAN10242.1, AAN10243.1, AAN10244.1, AAN10246.1, AAN10247.1,  
514 AAN10248.1, AAN10249.1, PU648\_09290, PU648\_09235, PU648\_09240,  
515 PU648\_09245, PU648\_09255, PU648\_09260, PU648\_09270, PU648\_09275,  
516 PU648\_09280, PU648\_09285, PU648\_09325, PU648\_09360, KP687735.1,  
517 KP687738.1, KP687739.1, KP687742.1). We defined cluster detection requirements as  
518 follows: proteins shared to be core = 3, minimum core proteins = 4

## 519 **Data availability statement**

520 The data underlying this study is openly available. The genomic data has been deposited  
521 in the NCBI and MiBIG database under accession number JARAKF000000000 and  
522 BGC0002805 respectively. The metabolomic data has been deposited in MassIVE under  
523 ID MSV000092718. The notebook for mapping of clusters onto iTOL phylogenetic tree is  
524 available on GitHub [<https://github.com/MatissMaleckis/GeneClusterPhyloMapper>]. The  
525 iTOL phylogenetic tree (named: Azoxy-like BGC Distribution) can be explored under user  
526 ID matmal [<https://itol.embl.de/shared/matmal>].

## 527 **Acknowledgment**

528 This study was supported by the Danish National Research Foundation (DNRF137) as  
529 part of the Center for Microbial Secondary Metabolites (CeMiSt). T.W. would furthermore

530 acknowledge funding by the Novo Nordisk Foundation (NNF20CC0035580,  
531 NNF16OC0021746).

532 The metabolomic data was generated at DTU Metabolomics Core facilities with help of  
533 Aaron J. C. Andersen. For the technical advice with metabolomic analysis we would like  
534 to thank Eftychia E. Kontou, for sequencing assistance Alexandra Hoffmeyer and Oliwia  
535 Vuksanovic, for assistance with genome mining and data treatment Matin Nuhamunada,  
536 Omkar Mohite, Simon Shaw and Kai Blin and with genome engineering of *Streptomyces*  
537 spp. Renata Sigrist, Zhijie Yang, Subhasish Saha and Peter Gockel.

## 538 **Bibliography**

539 (1) Moss, G. P.; Smith, P. A. S.; Tavernier, D. Glossary of Class Names of Organic  
540 Compounds and Reactivity Intermediates Based on Structure (IUPAC Recom-  
541 mendations 1995). *Pure and Applied Chemistry* **1995**, *67* (8–9), 1307–1375.  
542 <https://doi.org/10.1351/pac199567081307>.

543 (2) Stevens, C. L.; Gillis, B. T.; French, J. C.; Haskell, T. H. The Structure of Elaiomy-  
544 cin, a Tuberculostatic Antibiotic. *J Am Chem Soc* **1956**, *78* (13), 3229–3230.

545 (3) Helaly, S. E.; Pesic, A.; Fiedler, H. P.; Süssmuth, R. D. Elaiomycins B and C: Al-  
546 kylhydrazide Antibiotics from *Streptomyces* Sp. BK 190. *Org Lett* **2011**, *13* (5),  
547 1052–1055.

548 (4) Kim, B. Y.; Willbold, S.; Kulik, A.; Helaly, S. E.; Zinecker, H.; Wiese, J.; Imhoff, J.  
549 F.; Goodfellow, M.; Süssmuth, R. D.; Fiedler, H. P. Elaiomycins B and C, Novel Al-  
550 kylhydrazides Produced by *Streptomyces* Sp. BK 190. *The Journal of Antibiotics*  
551 **2011** *64*:8 **2011**, *64* (8), 595–597. <https://doi.org/10.1038/ja.2011.53>.

552 (5) Ding, L.; Ndejouong, B. L. S. T.; Maier, A.; Fiebig, H. H.; Hertweck, C. Elaiomycins  
553 D-F, Antimicrobial and Cytotoxic Azoxides from *Streptomyces* Sp. Strain HKI0708.  
554 *J Nat Prod* **2012**, *75* (10), 1729–1734.

555 (6) Manderscheid, N.; Helaly, S. E.; Kulik, A.; Wiese, J.; Imhoff, J. F.; Fiedler, H. P.;  
556 Süssmuth, R. D. Elaiomycins K and L, New Azoxy Antibiotics from *Streptomyces*  
557 Sp. Tü 6399\*. *The Journal of Antibiotics* **2013** *66*:2 **2012**, *66* (2), 85–88.  
558 <https://doi.org/10.1038/ja.2012.99>.

559 (7) Ehrlich, J.; Anderson, L. E.; Coffey, G. L.; Feldman, W. H.; Fisher, M. W.; Hillegas,  
560 A. B.; Karlson, A. G.; Knudsen, M. P.; Weston, J. K.; Youmans, A. S.; Youmans, G.  
561 P. Elaiomycin, a New Tuberculostatic Antibiotic; Biologic Studies. *Antibiot  
562 Chemother (Northfield)* **1954**, *4* (3), 338–342.

563 (8) Haskell, T. H.; Ryder, A.; Bartz, Q. R. Elaiomycin, a New Tuberculostatic Antibiotic;  
564 Isolation and Chemical Characterization. *Antibiot Chemother (1971)* **1954**, *4* (2).

565 (9) Anderson, L. E.; Ehrlich, J.; Sun, S. H.; Burkholder, P. R. Strains of *Streptomyces*,  
566 the Sources of Azaserine, Elaiomycin, Griseoviridin, and Viridogrisein. *Antibiot  
567 Chemother (Northfield)* **1956**, 6 (2), 100–115.

568 (10) McGahren, W. J.; Kunstmann, M. P. Novel  $\alpha,\beta$ -Unsaturated Azoxy-Containing An-  
569 tibiotic. *J Am Chem Soc* **1969**, 91 (10), 2808–2810.  
570 <https://doi.org/10.1021/ja01038a081>.

571 (11) Yamato, M.; Iinuma, H.; Naganawa, H.; Yamagishi, Y.; Hamada, M.; Masuda, T.;  
572 Umezawa, H.; Abe, Y.; Hori, M. Isolation and Properties of Valanimycin, a New  
573 Azoxy Antibiotic. *J Antibiot (Tokyo)* **1986**, 39 (2), 184–191.  
574 <https://doi.org/10.7164/ANTIBIOTICS.39.184>.

575 (12) Yamato, M.; Takeuchi, T.; Umezawa, H.; Sakata, N.; Hayashi, H.; Hori, M. Biosyn-  
576 thesis of Valanimycin. *J Antibiot (Tokyo)* **1986**, 39 (9). <https://doi.org/10.7164/anti->  
577 [biotics.39.1263](https://doi.org/10.7164/antibiotics.39.1263).

578 (13) Kunitake, H.; Hiramatsu, T.; Kinashi, H.; Arakawa, K. Isolation and Biosynthesis of  
579 an Azoxyalkene Compound Produced by a Multiple Gene Disruptant of *Strepto-*  
580 *m*yces Rochei. *ChemBioChem* **2015**, 16 (15), 2237–2243.  
581 <https://doi.org/10.1002/CBIC.201500393>.

582 (14) Tatsukawa, A.; Tanaka, Y.; Nagano, H.; Fukumoto, A.; Anzai, Y.; Arakawa, K. Isola-  
583 tion, Biosynthetic Investigation, and Biological Evaluation of Maniwamycin G, an  
584 Azoxyalkene Compound from *Streptomyces* Sp. TOHO-M025. *J Nat Prod* **2022**,  
585 85 (7), 1867–1871. <https://doi.org/10.1021/acs.jnatprod.2c00131>.

586 (15) Nakayama, M.; Takahashi, Y.; Itoh, H.; Kamiya, K.; Shiratsuchi, M.; Otani, G.  
587 Novel Antifungal Antibiotics Maniwamycins A and B. I. Taxonomy of the Producing  
588 Organism, Fermentation, Isolation, Physico-Chemical Properties and Biological  
589 Properties. *J Antibiot (Tokyo)* **1989**, 42 (11), 1535–1540.  
590 <https://doi.org/10.7164/ANTIBIOTICS.42.1535>.

591 (16) Fukumoto, A.; Murakami, C.; Anzai, Y.; Kato, F. Maniwamycins: New Quorum-  
592 Sensing Inhibitors against *Chromobacterium Violaceum* CV026 Were Isolated  
593 from *Streptomyces* Sp. TOHO-M025. *The Journal of Antibiotics* **2016** 69:5 **2015**,  
594 69 (5), 395–399. <https://doi.org/10.1038/ja.2015.126>.

595 (17) Otoguro, K.; Imamura, N.; Kuga, H.; Takahashi, Y.; Masuma, R.; Tanaka, Y.;  
596 Tanaka, H.; En-tai, Y. Jietacins A and B, New Nematocidal Antibiotics from a  
597 *Streptomyces* Sp. Taxonomy, Isolation, and Physico-Chemical and Biological  
598 Properties. *J Antibiot (Tokyo)* **1987**, 40 (5), 623–629. <https://doi.org/10.7164/ANTI->  
599 [BIOTICS.40.623](https://doi.org/10.7164/ANTIBIOTICS.40.623).

600 (18) Wibowo, M.; Gotfredsen, C. H.; Sasetti, E.; Melchiorsen, J.; Clausen, M. H.;  
601 Gram, L.; Ding, L. Azodyrecins A-C: Azoxides from a Soil-Derived *Streptomyces*

602 Species. *J Nat Prod* **2020**, *83* (12), 3519–3525.  
 603 <https://doi.org/10.1021/acs.jnatprod.0c00339>.

604 (19) Choirunnisa, A. R.; Arima, K.; Abe, Y.; Kagaya, N.; Kudo, K.; Suenaga, H.; Hash-  
 605 imoto, J.; Fujie, M.; Satoh, N.; Shin-Ya, K.; Matsuda, K.; Wakimoto, T. New Azo-  
 606 dyrecins Identified by a Genome Mining-Directed Reactivity-Based Screening.  
 607 *Beilstein Journal of Organic Chemistry* **18:102** **2022**, *18* (1), 1017–1025.  
 608 <https://doi.org/10.3762/BJOC.18.102>.

609 (20) Guo, Y. Y.; Li, H.; Zhou, Z. X.; Mao, X. M.; Tang, Y.; Chen, X.; Jiang, X. H.; Liu, Y.;  
 610 Jiang, H.; Li, Y. Q. Identification and Biosynthetic Characterization of Natural Aro-  
 611 matic Azoxy Products from *Streptomyces Chattanoogensis* L10. *Org. Lett.* **2015**,  
 612 *17* (24), 6114–6117. <https://doi.org/10.1021/acs.orglett.5b03137>.

613 (21) He, X.; Peng, G.; Luo, J.; Huang, J. P.; Yang, J.; Yan, Y.; Gu, Y. C.; Wang, L.;  
 614 Huang, S. X. O-Alkylazoxymycins A-F, Naturally Occurring Azoxy-Aromatic Com-  
 615 pounds from *Streptomyces* Sp. Py50. *J Nat Prod* **2022**, *86*, 181.  
 616 <https://doi.org/10.1021/acs.jnatprod.2c00892>.

617 (22) Hirofumi Nakano; Mitsunobu Hara; Toshiyuki Katsuyama; Yoichi Uosaki; Katsunari  
 618 Gomi. Patent: JPH05125071A - Dc 8118 Compound, November 5, 1991.

619 (23) Goff, G. Le; Martin, M. T.; Iorga, B. I.; Adelin, E.; Servy, C.; Cortial, S.; Ouazzani,  
 620 J. Isolation and Characterization of Unusual Hydrazides from *Streptomyces* Sp.  
 621 Impact of the Cultivation Support and Extraction Procedure. *J Nat Prod* **2013**, *76*  
 622 (2), 142–149. <https://doi.org/10.1021/np300527p>.

623 (24) Poon, V. Analysis and Exploitation of AHFCA-Dependent Signalling Systems in  
 624 *Streptomyces* Bacteria, 2015. <http://webcat.warwick.ac.uk/record=b2870443~S1>  
 625 (accessed 2023-07-12).

626 (25) Wibowo, M.; Ding, L. Chemistry and Biology of Natural Azoxy Compounds. *J Nat*  
 627 *Prod* **2020**, *83* (11), 3482–3491. <https://doi.org/10.1021/acs.jnatprod.0c00725>.

628 (26) Guo, Y. Y.; Li, Z. H.; Xia, T. Y.; Du, Y. L.; Mao, X. M.; Li, Y. Q. Molecular Mecha-  
 629 nism of Azoxy Bond Formation for Azoxymycins Biosynthesis. *Nature Communi-*  
 630 *cations* **2019** *10:1* **2019**, *10* (1), 1–9. <https://doi.org/10.1038/s41467-019-12250-1>.

631 (27) Parry, R. J.; Li, W. An NADPH:FAD Oxidoreductase from the Valanimycin Pro-  
 632 ducer, *Streptomyces Viridifaciens*: CLONING, ANALYSIS, AND OVEREXPRES-  
 633 SION. *Journal of Biological Chemistry* **1997**, *272* (37), 23303–23311.  
 634 <https://doi.org/10.1074/JBC.272.37.23303>.

635 (28) Parry, R. J.; Li, W. Purification and Characterization of Isobutylamine N-Hydrox-  
 636 ylase from the Valanimycin Producer *Streptomyces Viridifaciens* MG456-HF10.  
 637 *Arch Biochem Biophys* **1997**, *339* (1), 47–54.  
 638 <https://doi.org/10.1006/ABBI.1996.9857>.

639 (29) Garg, R. P.; Parry, R. J. Regulation of Valanimycin Biosynthesis in *Streptomyces*  
640 *Viridifaciens*: Characterization of VImI as a *Streptomyces* Antibiotic Regulatory  
641 Protein (SARP). *Microbiology (N Y)* **2010**, *156* (2), 472–483.  
642 <https://doi.org/10.1099/mic.0.033167-0>.

643 (30) Ma, Y.; Patel, J.; Parry, R. J. A Novel Valanimycin-Resistance Determinant (VImF)  
644 from *Streptomyces Viridifaciens* MG456-HF10. *Microbiology (N Y)* **2000**, *146*,  
645 345–352. <https://doi.org/10.1099/00221287-146-2-345>.

646 (31) Tao, T.; Alemany, L. B.; Parry, R. J. Valanimycin Biosynthesis: Investigations of the  
647 Mechanism of Isobutylhydroxylamine Incorporation. *Org Lett* **2003**, *5* (8), 1213–  
648 1215. <https://doi.org/10.1021/o10340989>.

649 (32) Parry, R. J.; Li, Y.; Lii, F. L. Biosynthesis of Azoxy Compounds. Investigations of  
650 Valanimycin Biosynthesis. *J Am Chem Soc* **1992**, *114* (25), 10062–10064.  
651 <https://doi.org/10.1021/JA00051A049>.

652 (33) Parry, R. J.; Li, W.; Cooper, H. N. Cloning, Analysis, and Overexpression of the  
653 Gene Encoding Isobutylamine N-Hydroxylase from the Valanimycin Producer,  
654 *Streptomyces Viridifaciens*. *J Bacteriol* **1997**, *179* (2), 409–416.  
655 <https://doi.org/10.1128/JB.179.2.409-416.1997>.

656 (34) Garg, P.; Ma, Y.; Hoyt, J. C.; Parry, R. J.; Garg, R. P.; Ma, Y.; Hoyt, J. C.; Parry, R.  
657 J. Molecular Characterization and Analysis of the Biosynthetic Gene Cluster for  
658 the Azoxy Antibiotic Valanimycin. *Mol Microbiol* **2002**, *46* (2), 505–517.  
659 <https://doi.org/10.1046/J.1365-2958.2002.03169.X>.

660 (35) Garg, R. P.; Gonzalez, J. M.; Parry, R. J. Biochemical Characterization of VImL, a  
661 Seryl-tRNA Synthetase Encoded by the Valanimycin Biosynthetic Gene Cluster.  
662 *Journal of Biological Chemistry* **2006**, *281* (37), 26785–26791.  
663 <https://doi.org/10.1074/JBC.M603675200>.

664 (36) Garg, R. P.; Qian, X. L.; Alemany, L. B.; Moran, S.; Parry, R. J. Investigations of  
665 Valanimycin Biosynthesis: Elucidation of the Role of Seryl-tRNA. *Proc Natl Acad  
666 Sci U S A* **2008**, *105* (18), 6543–6547. <https://doi.org/10.1073/pnas.0708957105>.

667 (37) Garg, R. P.; Alemany, L. B.; Moran, S.; Parry, R. J. Identification, Characterization,  
668 and Bioconversion of a New Intermediate in Valanimycin Biosynthesis. *J Am  
669 Chem Soc* **2009**, *131* (28), 9608–9609. <https://doi.org/10.1021/JA901243P>.

670 (38) Gomez-Escribano, J. P.; Bibb, M. J. Engineering *Streptomyces Coelicolor* for Het-  
671 erologous Expression of Secondary Metabolite Gene Clusters. *Microb Biotechnol*  
672 **2011**, *4* (2), 207. <https://doi.org/10.1111/J.1751-7915.2010.00219.X>.

673 (39) Chater, K. F.; Wilde, L. C. Restriction of a Bacteriophage of *Streptomyces Albus* G  
674 Involving Endonuclease Sall. *J Bacteriol* **1976**, *128* (2), 644–650.  
675 <https://doi.org/10.1128/JB.128.2.644-650.1976>.

676 (40) Tong, Y.; Whitford, C. M.; Robertsen, H. L.; Blin, K.; Jørgensen, T. S.; Klitgaard, A.  
677 K.; Gren, T.; Jiang, X.; Weber, T.; Lee, S. Y. Highly Efficient DSB-Free Base Edit-  
678 ing for Streptomycetes with CRISPR-BEST. *Proc Natl Acad Sci U S A* **2019**, *116*  
679 (41), 20366–20375. <https://doi.org/10.1073/pnas.1913493116>.

680 (41) Tong, Y.; Whitford, C. M.; Blin, K.; Jørgensen, T. S.; Weber, T.; Lee, S. Y.  
681 CRISPR–Cas9, CRISPRi and CRISPR-BEST-Mediated Genetic Manipulation in  
682 Streptomycetes. *Nature Protocols* **2020** *15*:8 **2020**, *15* (8), 2470–2502.  
683 <https://doi.org/10.1038/s41596-020-0339-z>.

684 (42) Dong, M. J.; Luo, H.; Gao, F. DoriC 12.0: An Updated Database of Replication Or-  
685 igins in Both Complete and Draft Prokaryotic Genomes. *Nucleic Acids Res* **2023**,  
686 *51* (D1), D117–D120. <https://doi.org/10.1093/NAR/GKAC964>.

687 (43) Blin, K.; Shaw, S.; Augustijn, H. E.; Reitz, Z. L.; Biermann, F.; Alanjary, M.; Fetter,  
688 A.; Terlouw, B. R.; Metcalf, W. W.; Helfrich, E. J. N.; van Wezel, G. P.; Medema,  
689 M. H.; Weber, T. AntiSMASH 7.0: New and Improved Predictions for Detection,  
690 Regulation, Chemical Structures and Visualisation. *Nucleic Acids Res* **2023**, *51*  
691 (W1), W46–W50. <https://doi.org/10.1093/NAR/GKAD344>.

692 (44) Chaumeil, P. A.; Mussig, A. J.; Hugenholtz, P.; Parks, D. H. GTDB-Tk: A Toolkit to  
693 Classify Genomes with the Genome Taxonomy Database. *Bioinformatics* **2020**, *36*  
694 (6), 1925–1927. <https://doi.org/10.1093/BIOINFORMATICS/BTZ848>.

695 (45) Nindita, Y.; Cao, Z.; Fauzi, A. A.; Teshima, A.; Misaki, Y.; Muslimin, R.; Yang, Y.;  
696 Shiwa, Y.; Yoshikawa, H.; Tagami, M.; Lezhava, A.; Ishikawa, J.; Kuroda, M.; Seki-  
697 zuka, T.; Inada, K.; Kinashi, H.; Arakawa, K. The Genome Sequence of Strepto-  
698 myces Rochei 7434AN4, Which Carries a Linear Chromosome and Three Char-  
699 acteristic Linear Plasmids. *Scientific Reports* **2019** *9*:1 **2019**, *9* (1), 1–11.  
700 <https://doi.org/10.1038/s41598-019-47406-y>.

701 (46) Gilchrist, C. L. M.; Chooi, Y. H. Clinker & Clustermap.Js: Automatic Generation of  
702 Gene Cluster Comparison Figures. *Bioinformatics* **2021**, *37* (16), 2473–2475.  
703 <https://doi.org/10.1093/BIOINFORMATICS/BTAB007>.

704 (47) Oves-Costales, D.; Gren, T.; Sterndorff, E. B.; Martín, J.; Ortiz-López, F. J.;  
705 Jørgensen, T. S.; Jiang, X.; Román-Hurtado, F.; Reyes, F.; Genilloud, O.; Weber,  
706 T. Identification and Heterologous Expression of the Globomycin Biosynthetic  
707 Gene Cluster. *Synth Syst Biotechnol* **2023**, *8* (2), 206–212.  
708 <https://doi.org/10.1016/J.SYNBIO.2023.02.001>.

709 (48) Myronovskiy, M.; Welle, E.; Fedorenko, V.; Luzhetskyy, A.  $\beta$ -Glucuronidase as a  
710 Sensitive and Versatile Reporter in Actinomycetes. *Appl Environ Microbiol* **2011**,  
711 *77* (15), 5370–5383. <https://doi.org/10.1128/AEM.00434-11>.

712 (49) Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B. L.; Salazar,  
713 G. A.; Bileschi, M. L.; Bork, P.; Bridge, A.; Colwell, L.; Gough, J.; Haft, D. H.;

714 Letunić, I.; Marchler-Bauer, A.; Mi, H.; Natale, D. A.; Orengo, C. A.; Pandurangan,  
715 A. P.; Rivoire, C.; Sigrist, C. J. A.; Sillitoe, I.; Thanki, N.; Thomas, P. D.; Tosatto, S.  
716 C. E.; Wu, C. H.; Bateman, A. InterPro in 2022. *Nucleic Acids Res* **2023**, *51* (D1),  
717 D418–D427. <https://doi.org/10.1093/NAR/GKAC993>.

718 (50) Nothias, L. F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Prot-  
719 syuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; Aicheler, F.; Aksenov, A. A.; Alka,  
720 O.; Allard, P. M.; Barsch, A.; Cachet, X.; Caraballo-Rodriguez, A. M.; Da Silva, R.  
721 R.; Dang, T.; Garg, N.; Gauglitz, J. M.; Gurevich, A.; Isaac, G.; Jarmusch, A. K.;  
722 Kameník, Z.; Kang, K. Bin; Kessler, N.; Koester, I.; Korf, A.; Le Gouellec, A.; Lud-  
723 wig, M.; Martin H, C.; McCall, L. I.; McSayles, J.; Meyer, S. W.; Mohimani, H.;  
724 Morsy, M.; Moyne, O.; Neumann, S.; Neuweger, H.; Nguyen, N. H.; Nothias-Es-  
725 posito, M.; Paolini, J.; Phelan, V. V.; Pluskal, T.; Quinn, R. A.; Rogers, S.;  
726 Shrestha, B.; Tripathi, A.; van der Hooft, J. J. J.; Vargas, F.; Weldon, K. C.; Wit-  
727 ting, M.; Yang, H.; Zhang, Z.; Zubeil, F.; Kohlbacher, O.; Böcker, S.; Alexandrov,  
728 T.; Bandeira, N.; Wang, M.; Dorrestein, P. C. Feature-Based Molecular Networking  
729 in the GNPS Analysis Environment. *Nature Methods* **2020** *17*:9 **2020**, *17* (9), 905–  
730 908. <https://doi.org/10.1038/s41592-020-0933-6>.

731 (51) Lenfant, N.; Hotelier, T.; Velluet, E.; Bourne, Y.; Marchot, P.; Chatonnet, A. ES-  
732 THER, the Database of the  $\alpha/\beta$ -Hydrolase Fold Superfamily of Proteins: Tools to  
733 Explore Diversity of Functions. *Nucleic Acids Res* **2013**, *41* (D1).  
734 <https://doi.org/10.1093/nar/gks1154>.

735 (52) Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach: Third Edition.  
736 *Medicinal Natural Products: A Biosynthetic Approach: Third Edition* **2009**, 1–539.  
737 <https://doi.org/10.1002/9780470742761>.

738 (53) Pospíšil, S.; Řezanka, T.; Víden, I.; Krumphanzl, V.; Vaněk, Z. Altered Fatty Acid  
739 Composition in Regulatory Mutants of *Streptomyces Cinnamomensis*. *FEMS Mi-  
740 crobiol Lett* **1985**, *27* (1), 41–43. <https://doi.org/10.1111/J.1574-6968.1985.TB01634.X>.

742 (54) Gesheva, V.; Rachev, R.; Bojkova, S. Fatty Acid Composition of *Streptomyces Hy-*  
743 *groscopicus* Strains Producing Antibiotics. *Lett Appl Microbiol* **1997**, *24* (2), 109–  
744 112. <https://doi.org/10.1046/J.1472-765X.1997.00359.X>.

745 (55) Gesheva, V. J.; Tewfike, T. A.; Rachev, R. Fatty Acid Composition of *Streptomyces*  
746 *Fulvoviolaceus* 818, A Producer of Antibiotic Complex. *Pakistan Journal of Biologi-  
747 cal Sciences* **1998**, *1* (4), 346–347. <https://doi.org/10.3923/PJBS.1998.346.347>.

748 (56) Morino, T.; Shimada, K. ichi; Nakatani, A.; Nishikawa, K.; Saito, S.; Harada, T.  
749 Medelamines, Novel Anticancer Agents Which Cancel RAS2va119 Induced Heat  
750 Shock Sensitivity of Yeast. *J Antibiot (Tokyo)* **1995**, *48* (8), 904–906.  
751 <https://doi.org/10.7164/ANTIBIOTICS.48.904>.

752 (57) Alanjary, M.; Steinke, K.; Ziemert, N. AutoMLST: An Automated Web Server for  
753 Generating Multi-Locus Species Trees Highlighting Natural Product Potential. *Nu-  
754 cleic Acids Res* **2019**, *47* (W1), W276–W282.  
755 <https://doi.org/10.1093/NAR/GKZ282>.

756 (58) MacNeil, D. J.; Gewain, K. M.; Ruby, C. L.; Dezeny, G.; Gibbons, P. H.; MacNeil,  
757 T. Analysis of *Streptomyces avermitilis* Genes Required for Avermectin Biosynthe-  
758 sis Utilizing a Novel Integration Vector. *Gene* **1992**, *111* (1), 61–68.  
759 [https://doi.org/10.1016/0378-1119\(92\)90603-M](https://doi.org/10.1016/0378-1119(92)90603-M).

760 (59) Paget, M. S. B.; Chamberlin, L.; Atri, A.; Foster, S. J.; Buttner, M. J. Evidence  
761 That the Extracytoplasmic Function Sigma Factor  $\sigma(E)$  Is Required for Normal  
762 Cell Wall Structure in *Streptomyces coelicolor* A3(2). *J Bacteriol* **1999**, *181* (1),  
763 204–211. <https://doi.org/10.1128/jb.181.1.204-211.1999>.

764 (60) Bennett, P. M.; Grinsted, J.; Richmond, M. H. Transposition of TnA Does Not Gen-  
765 erate Deletions. *MGG Molecular & General Genetics* **1977**, *154* (2), 205–211.  
766 <https://doi.org/10.1007/BF00330839>.

767 (61) Kieser, T.; Bibb, M.; Buttner, M.; Chater, K.; Hopwood, D. *Practical Streptomyces  
768 Genetics*; 2000.

769 (62) Alvarez-Arevalo, M.; Sterndorff, E. B.; Faurod, D.; Jørgensen, T. S.; Mourched, A.  
770 S.; Vuksanovic, O.; Saha, S.; Weber, T. Extraction and Oxford Nanopore Se-  
771 quencing of Genomic DNA from Filamentous Actinobacteria. *STAR Protoc* **2023**, *4*  
772 (1), 101955. <https://doi.org/10.1016/J.XPRO.2022.101955>.

773 (63) Wick, R. R.; Judd, L. M.; Holt, K. E. Deepbinner: Demultiplexing Barcoded Oxford  
774 Nanopore Reads with Deep Convolutional Neural Networks. *PLoS Comput Biol*  
775 **2018**, *14* (11). <https://doi.org/10.1371/JOURNAL.PCBI.1006583>.

776 (64) Wick, R.; Volkening, J. Porechop. GitHub October 19, 2018.

777 (65) Wick, R.; Menzel, P. Filtlong. GitHub January 4, 2018.

778 (66) Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P. A. Assembly of Long, Error-Prone  
779 Reads Using Repeat Graphs. *Nature Biotechnology* **2019** *37*:5 **2019**, *37* (5), 540–  
780 546. <https://doi.org/10.1038/s41587-019-0072-8>.

781 (67) Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Se-  
782 quencing Reads. *EMBnet J* **2011**, *17* (1), 10–12.

783 (68) Langmead, B.; Salzberg, S. L. Fast Gapped-Read Alignment with Bowtie 2. *Na-  
784 ture Methods* **2012** *9*:4 **2012**, *9* (4), 357–359. <https://doi.org/10.1038/nmeth.1923>.

785 (69) Wick, R. R.; Judd, L. M.; Gorrie, C. L.; Holt, K. E. Unicycler: Resolving Bacterial  
786 Genome Assemblies from Short and Long Sequencing Reads. *PLoS Comput Biol*  
787 **2017**, *13* (6), e1005595. <https://doi.org/10.1371/JOURNAL.PCBI.1005595>.

788 (70) Manni, M.; Berkeley, M. R.; Seppey, M.; Simão, F. A.; Zdobnov, E. M. BUSCO Up-  
789 date: Novel and Streamlined Workflows along with Broader and Deeper Phyloge-  
790 netic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. *Mol*  
791 *Biol Evol* **2021**, *38* (10), 4647–4654. <https://doi.org/10.1093/MOLBEV/MSAB199>.

792 (71) Harris, R. S. Improved Pairwise Alignmnet of Genomic DNA, The Pennsylvania  
793 State University, 2007.

794 (72) Jiang, W.; Zhao, X.; Gabrieli, T.; Lou, C.; Ebenstein, Y.; Zhu, T. F. Cas9-Assisted  
795 Targeting of CHromosome Segments CATCH Enables One-Step Targeted Clon-  
796 ing of Large Gene Clusters. *Nature Communications* **2015** *6*:1 **2015**, *6* (1), 1–8.  
797 <https://doi.org/10.1038/ncomms9101>.

798 (73) Hsu, P. D.; Scott, D. A.; Weinstein, J. A.; Ran, F. A.; Konermann, S.; Agarwala, V.;  
799 Li, Y.; Fine, E. J.; Wu, X.; Shalem, O.; Cradick, T. J.; Marraffini, L. A.; Bao, G.;  
800 Zhang, F. DNA Targeting Specificity of RNA-Guided Cas9 Nucleases. *Nature Bio-  
801 technology* **2013** *31*:9 **2013**, *31* (9), 827–832. <https://doi.org/10.1038/nbt.2647>.

802 (74) Doench, J. G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E. W.; Donovan, K.  
803 F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; Virgin, H. W.; Listgarten, J.; Root,  
804 D. E. Optimized SgRNA Design to Maximize Activity and Minimize Off-Target Ef-  
805 fects of CRISPR-Cas9. *Nature Biotechnology* **2015** *34*:2 **2016**, *34* (2), 184–191.  
806 <https://doi.org/10.1038/nbt.3437>.

807 (75) Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. *Bioinformatics*  
808 **2018**, *34* (18), 3094–3100. <https://doi.org/10.1093/BIOINFORMATICS/BTY191>.

809 (76) Blin, K.; Pedersen, L. E.; Weber, T.; Lee, S. Y. CRISPy-Web: An Online Resource  
810 to Design SgRNAs for CRISPR Applications. *Synth Syst Biotechnol* **2016**, *1* (2),  
811 118. <https://doi.org/10.1016/J.SYNBIO.2016.01.003>.

812 (77) Nuhamunada, M.; Mohite, O. S.; Phaneuf, P. V.; Palsson, B. O.; Weber, T.  
813 BGCFlow: Systematic Pangenome Workflow for the Analysis of Biosynthetic Gene  
814 Clusters across Large Genomic Datasets. *bioRxiv* **2023**, 2023.06.14.545018.  
815 <https://doi.org/10.1101/2023.06.14.545018>.

816 (78) Blin, K. Ncbi-Genome-Download. GitHub 2021. [https://github.com/kblin/ncbi-ge-  
nome-download](https://github.com/kblin/ncbi-ge-<br/>817 nome-download) (accessed 2023-01-15).

818 (79) Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. *Bioinformatics* **2014**,  
819 *30* (14), 2068–2069. <https://doi.org/10.1093/BIOINFORMATICS/BTU153>.

820 (80) Gren, T.; Jørgensen, T. S.; Whitford, C. M.; Weber, T. High-Quality Sequencing,  
821 Assembly, and Annotation of the Streptomyces Griseofuscus DSM 40191 Ge-  
822 nome. *Microbiol Resour Announc* **2020**, *9* (47).  
823 <https://doi.org/10.1128/MRA.01100-20>.

824 (81) Steinke, K. Automlst-Simplified-Wrapper. GitHub 2020.

825 (82) Gilchrist, C. L. M.; Booth, T. J.; van Wersch, B.; van Grieken, L.; Medema, M. H.;  
826 Chooi, Y.-H. Cblaster: A Remote Search Tool for Rapid Identification and Visuali-  
827 zation of Homologous Gene Clusters. *Bioinformatics Advances* **2021**, 1 (1).  
828 <https://doi.org/10.1093/BIOADV/VBAB016>.

829 (83) Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An Online Tool for Phyloge-  
830 netic Tree Display and Annotation. *Nucleic Acids Res* **2021**, 49 (W1), W293–  
831 W296. <https://doi.org/10.1093/nar/gkab301>.

832