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Abstract

Although the hypothalamus plays a critical role in the regulation of puberty, more
research is needed to identify the gene regulatory networks that control pubertal timing. Here,
we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across
the pubertal transition. We used RNA-seq to profile hypothalamic gene expression in male and
female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32,
and 37). By combining this data with hypothalamic sScRNA-seq data of pre- and post-pubertal
mice, we were able to assign gene expression changes to their cell types of origin. In our colony,
pubertal onset occurs earlier in male mice allowing us to focus on genes whose expression is
dynamic across ages and offset between sexes and to explore bases of sex effects. Our age-by-
sex pattern of expression enriched for biological pathways involved hormone production,
neuronal activation, and glial maturation. Additionally, we found a dramatic expansion of
oligodendrocytes precursor cells into mature oligodendrocytes spanning the pre-pubertal (PD12)
to peri-pubertal (PD27) timepoints, and that genes driving this expansion enrich for genes
involved in pubertal regulation. Together, by incorporating multiple biological timepoints with
male and female mice simultaneously, our work furthers the understanding of gene and cell-type

changes that accompany the development of secondary sex characteristics in both sexes.
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Introduction

Puberty is a fundamental period of mammalian development when individuals reach
sexual maturity and can produce gametes. Despite being a nearly universal event, pubertal
timing within the population varies and is known to be influenced by genetic and environmental
factors [1, 2], though much of its variation remains unexplained. Rare mutations in several genes
lead to pubertal disorders such as central precocious puberty (CPP), defined as abnormally early
pubertal initiation, and hypogonadotropic hypogonadism (HH), defined as delayed or absent
puberty, due to misregulated or missing gonadotropic hormones [3, 4]. Recent genome-wide
association studies (GWAS) investigating the age of menarche in females and age of voice
breaking in males [1, 5] have identified common variants related to pubertal timing, which
influence the timing of puberty in the general population and are associated with important
health outcomes. Specifically, early puberty is associated with increased risk of later life health
outcomes of such as cancer, diabetes, and cardiovascular disease, while late puberty is associated
increased risk of osteoporosis and mental health disorders [1, 5-7]. Furthermore, environmental
factors such as diet, body mass index (BMI), prenatal growth, and psychosocial experience are
associated with differences in pubertal timing [7, 8].

Puberty is initiated in the hypothalamus by pulses of gonadotropin-releasing hormone
(GnRH) that then stimulate the pituitary gland to increase secretion of luteinizing hormone (LH)
and follicle stimulating hormone (FSH) increases in frequency and amplitude. This cascade
begins an organism-wide feedback loop involving many genes, cell types, and gene regulatory
mechanisms [1, 9, 10]. Previous studies have investigated hypothalamic regulation during
puberty and have discovered a growing list of gene-regulatory mechanisms that can directly

regulate pubertal timing [2, 11-13]. These groundbreaking studies include the epigenetic
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mechanisms activating and inhibiting pubertal onset and spatial transcriptomic programs
associated with post-natal development in the female rat hypothalamus [9, 12, 14-16].

Puberty is an inherently sex-biased process as it results in the development of secondary
sex characteristics, and males and females undergo pubertal timing at different ages. In humans,
puberty occurs earlier in females, and in rodent models sex-differences are also seen, with male
mice in our colony undergoing earlier development than females [10]. While the sex-specific
physiological differences between males and females are different, many of the same gene
regulatory mechanisms are likely present, but playing slightly different roles [5, 17, 18]. For
example, in humans, the same variant in the LIN28B gene is associated with puberty-relevant
phenotypes in both males and females [18]. However, mouse models of Lin28b and Lin28a
knockouts revealed sexually dimorphic phenotypes related to body weight and pubertal
development [17]. Accordingly, measuring genome-wide pubertal dynamics in the hypothalamus
while accounting for multiple timepoints, sex, and cell types should yield greater insight into
pubertal development and disease [2]. From the perspective of measuring hypothalamic gene
expression across pubertal development, genes whose developmental trajectories are offset
between male and female mice provide powerful candidates for differential pubertal regulation,
making age and sex pertinent variables to study pubertal regulation.

Only a few studies have characterized hypothalamic gene expression across the pubertal
transition, and fewer have incorporated both age and sex into their design [10, 19]. Our lab
previously utilized multiplexed gPCR to measure the expression of 178 candidate puberty
GWAS and disease-related genes at PD12, 22, 27, 32, and 37 in many tissues, including the
hypothalamus [10]. There, we found that most age-biased expression in the hypothalamus

occurred before puberty, perhaps reflecting the cellular development occurring before puberty [2,
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16, 20]. Our lab has also performed RNA-seq through 3’UTR profiling of these same mice in the
pituitary gland, where we discovered cell-type specific expression and cellular trajectories that
became increasingly sexually dimorphic through the pubertal transition [19]. Recently, Han et al.
interrogated the premammillary nucleus and arcuate nucleus transcriptomes of female mice
between postnatal day (PD) 20 and diestrus females (PD50-PD60), as well as a leptin-inducible
model of puberty in adult mice, highlighting the importance of neuropil and somatodendritic
organization [20]. These authors focused on how leptin may lead to puberty-relevant
transcriptomic changes rather than investigating pubertal development over time or across sexes
[20].

The above findings are consistent with recognition that cellular complexity of the
hypothalamus plays an important role in its ability to regulate many biological processes.
Accordingly, researchers have employed single-cell transcriptomics to profile the complexity of
the hypothalamus at multiple pre-natal and post-natal developmental timepoints [16, 21-23]. In
the mouse, Kim et al., 2020 used scRNA-seq to study embryonic and early postnatal
hypothalamic development [23]. They included two timepoints surrounding puberty, PD14 and
PD45, as developmental endpoints, which could be re-analyzed to study puberty [23].
Importantly, these SCRNA-seq data can be integrated with bulk RNA-seq dataset to incorporate
cell-type specificity into the study while maintaining multiple biological replicates across
different ages and sexes in a single experimental batch [24-26].

Thus, in this study, we measured hypothalamic gene expression in male and female mice
at five timepoints spanning pubertal transition. We identified age-biased genes primarily
associated with cellular development and a smaller set involved in hormonal regulation. We also

identified a key subset of genes whose expression is conditional on age and sex, but the observed
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sex effects were not robust or plentiful, consistent with our previous work suggesting that the
pituitary may have larger role in sex differences in pubertal timing than the hypothalamus. Using
hypothalamic scRNA-seq (as above), we mapped the age and sex conditional genes to their most
likely cell type of origin, including neurons and oligodendrocytes. We further integrated these
data to discover that substantial oligodendrocyte expansion occurs before and during puberty in
mice, which is interesting in that many identified genes associated with oligodendrocyte
expansion have been previously implicated in modulation of pubertal timing in humans. Lastly,
the gene expression distribution of all genes can be freely interacted with using our Shiny App

(wilsonlab-sickkids-uoft.shinyapps.io/hypothalamus gene shiny/), so that researchers can

identify the natural gene expression patterns of their genes of interest before perturbation.
Overall, by analyzing the hypothalamic transcriptome during pubertal development in a manner
that simultaneously incorporates age and sex, we identified novel genes involved in cellular

composition and hormonal regulation in the pubertal hypothalamus.
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Materials and Methods

Animal and tissue collection. Tissue dissection and RNA extraction follow the protocol in Hou
et al., 2017 as the same samples were utilized [10]. We collected the hypothami of 48 C57BL/6

mice at PD12, 22, 27, 32, and 37 in males and females (4-5 mice per age/sex).

Library preparation and sequencing. RNA-seq libraries were prepared using an automated -
QuantSeq 3'mRNA-seq (Lexogen GmbH, Vienna) and Agilent NGS Workstation (Agilent
Technologies, Santa Clara) at The Centre for Applied Genomics (TCAG) (Toronto, Canada) as
per the manufacturer's protocol (UTRSeq). The automated QuantSeq 3’'mRNA-seq library
construction was described in detail in Hou et al., 2022 [19]. Briefly, 250 ng of total RNA
spiked-in with ERCC Spike-In Control Mix 1 (Ambion) as per the manufacturer’s protocol was
used to generate cDNA. cDNA was amplified with 17 PCR cycles as determined by gPCR
analysis using the PCR Add-on kit (Lexogen). The resulting libraries were quantified with Qubit
DNA High Sensitivity assay (ThermoFisher). Fragment sizes were analyzed on the Agilent
Bioanalyzer using the High Sensitivity DNA assay prior to sequencing. Single-read 50-bp
sequencing was performed at TCAG on an lllumina HiSeq2500 Rapid Run or V4 flowcell

(Mumina, San Diego) with cycles extended to 68 bp.
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Read processing. Reads from technical replicates were merged prior to downstream analyses.

Fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to examine the

quality of sequenced reads. A customized script to trim both the polyAs and adapters at the end
of the reads [19] was used. The script implemented a “back search” strategy to account for cases
where a mixture of adapters and polyAs were seen at the end of the reads. In addition, the first 12
nucleotides were trimmed with Cutadapt [27] based on the manufacturer’s recommendations.
Only reads longer than 36 bp after trimming were used for future analyses. After trimming,
Fastqc was performed again to examine read quality, and over-represented reads, namely reads
mapping to BC1 (brain cytoplasmic 1), were removed. Trimmed and filtered reads were aligned
to the genome using a splice-aware aligner, STAR (version 2.5.1b), with default settings except
“--outFilterMismatchNoverLmax 0.05” for QuantSeq [28]. Quality control (QC) of mapped
RNA-seq reads was performed using Qualimap version 2.2.1 (Supplementary Table S1). Read
signal was visualized with the UCSC genome browser [29, 30]. Reads were assigned to genes
using featureCounts (version 1.5.3) [31] with parameters ““ -s 1 -Q 255 -t exon -O”. Gene models

were obtained from GENCODE M11 [32, 33].
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Count processing and evaluation. Counts successfully aligned to GENCODE M11 [33] were
normalized based on ERCC spike-ins using RUVseq [34]. Genes with fewer than 5 reads were
removed before upper-quartile normalization was completed with the
betweenLaneNormalization() function [34]. Finally, ERCC spike-ins were used to normalize
counts using the RUV((), yielding the final normalized count matrix [34]. All samples were
correlated to one another using Pearson’s correlation of all genes before being plotted with the
ComplexHeatmap package [35]. Genes overlapping the RNA-seq and gPCR data of the same
samples [10] were correlated using Pearson’s correlation analysis. Principal component analysis
(PCA) of samples was performed with the “prcomp()” function [36] before being plotted with

ggplot2 [37].

Differential expression analysis. Pairwise differential gene expression analysis was completed
across ages and sexes. Differentially expressed genes were calculated using the DESeq2 R
package [38]. Genes were considered differentially expressed if they had a false discovery rate
(FDR)-adjusted p-value < 0.05 and an absolute-value fold-change 1.5. Sex comparisons were
completed at each timepoint, while age comparisons within each sex were completed between

days 12 and 22, 22 and 27, 27 and 32, and 32 and 37.

Varimax rotation principal component analysis. Principal component analysis (PCA) is a
dimensionality reduction technique used to reduce every individual mouse's global gene
expression pattern into a smaller set of orthogonal vectors [36] (Ncomponents = Nmice = 48).
Varimax rotation decreases the distance between PCs and mice by adjusting the PC axes such
that samples will more closely align with one varimax rotated PC (vrPC) [39]. By leveraging

vrPC scores, defined by the location of a sample of a PC axis, we identified which vrPCs are
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associated with age, sex, and an age-by-sex interaction by completing a two-way ANOVA of
timepoint and sex on vrPC scores. By leveraging vrPC loadings, defined by the association

between a gene and PC, we measured which genes are represented by individual vrPCs.

Normalized count data and PC scores were used to generate varimax-rotated PCs with the
“varimax” function in R [39, 40]. Varimax-rotated PC loadings and scores were acquired using
pracma [41]. A loading is a gene’s coefficient to the vrPC, while the score is a sample’s
coefficient to a rotated vrPC [39, 40]. The association between scores, age, and sex was
measured using two-way ANOVA. Multiple-test correction using the FDR was applied using the
p.adjust() function in R [42]. The FDRs of the vrPCs with an associated main effect or
interaction were plotted with ggplot2 [37]. We designated that genes with loading greater than
three standard deviations from the mean loading are associated with a vrPC. We picked three
standard deviations by inspecting a qgplot of loadings with the qgnorm function. Genes

associated with a vrPC were re-ordered by the loading magnitude for downstream analysis.
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Pathway and human RNA-seg enrichment analysis. Pathway enrichment of fused gene lists
(e.g., PD12 vs. PD22, males and females) was completed using the ActivePathways R package
[43]. Briefly, ActivePathways takes the p-values from different related gene lists (e.g., PD12 vs.
PD22 - males, PD12 vs. PD22 - females) and fuses them using Brown’s extension of Fisher’s
method [43]. Then, it computes pathway enrichment of each individual gene list and the fused
gene list using a p-value-ranked Hypergeometric test. The resulting statistics provide pathway
enrichments annotated to each DEG list and their integrated p-values [43]. We used the
“Mouse_GO_AllPathways no GO iea September 01 2022 symbol.gmt” gene set database

from (http://download.baderlab.org/EM_Genesets/), which systematically curates a gene set list

from multiple sources (Gene Ontology, Reactome, Panther, etc.) as our pathway enrichment

database [44].

Pathway enrichment for gene lists without p-values following a multivariate normal
distribution (i.e., vrPC-associated genes, oligodendrocyte-pseudotime associated genes) was
completed using the g:ProfileR R package using an FDR correction, with genes detected in the
RNA-seq dataset as the custom background and with GO:BP, GO:MF, and GO:CC being
queried [44, 45]. Here, “genes” represent oligodendrocyte-pseudotime associated genes or
associated loadings ordered by FDR-adjusted p-value or vrPC loading, respectively. Biological
pathways identified by integrating developmental changes across sexes were completed with

ActivePathways [43].

We used the Differential Expression Enrichment Tool (DEET) to compare our age-biased
DEGs and vrPC-associated genes to 3162 consistently reprocessed sets of DEGs derived from
The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Consortium (GTEX), and from
various studies within the Sequencing Read Archive (SRA) [46-50]. To test the human RNA-seq

11
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DEG-set enrichment of fused gene lists (i.e., PD12 vs. PD22 male, PD12 vs. PD22 female) We
extracted their “DEET gmt DE” object, which stores their DEG sets as a generic pathway-
enrichment database. We used this gene set as the pathway enrichment database using
ActivePathways, using the same parameters as in our fused pathway enrichment. Next, we ran
the “DEET enrich()” function to measure which of our age-biased DEG lists and vrPC-
associated genes enriched for publicly available human DEG sets. DEET _enrich() also identifies
DEG comparisons whose overlapping DEGS also has a correlated fold-change, suggesting that
the shared DEGs and pathways may be under shared regulation [44]. Correlation plots were
generated using the “DEET _enrichment_plot” with default parameters. Lastly, we enriched our
neuron-neuroendocrine mapping age-by-sex associated genes with LepRb+ cells in the
hypothalamus by overlapping Trap-seq+ genes from Alison et al. [51] and testing for over-
representation with a Fisher’s exact test. Pathway enrichment plots for ActivePathways,
traditional pathway enrichment, and DEET, were completed using the “DEET enrichment_plot”

and “process_and plot DEET enrich” functions.

Processing of public hypothalamic scRNA-seq data. Filtered gene-barcode matrix files for the
PD14 and two PD45 samples were downloaded from the Gene Expression Omnibus (GEO)
series GSE132355 (P14: GSM3860745, P45-repl: GSM3860746, P45-rep2: GSM3860747) [23].
Counts were processed and integrated using the “process_dgTmatrix lists” function in scMappR
[24], including all genes and scTransform [52] as options. Briefly, “process _dgTmatrix_lists” is
a wrapper for Seurat V4 and scTransform [52, 53] before cell-type labeling with cell-type
enrichment of the CellMarker [54] and Panglao [55] databases. In our preprocessing of these
data, we used the Integration Anchors with Canonical Correlation Analysis, a rigorous

recommended batch correction method [52, 56] because the PD14 mice were from the CD1
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strain and the PD45 mice were from the C57BL/6J mice. While we may have lost some
developmental signal through this rigorous batch correction [57], the major cell-type markers
and developmental trajectories we observed would be more reliable and translatable to our bulk

RNA-seq.

Cells were first labeled with the cell types provided by the original authors [23]. we
further applied the cluster labels and cell-type markers generated from
“process_dgTmatrix_lists” [24] to provide further specificity to these cell-types. For example,
“oligodendrocytes” contained clusters “4”, “24”, “17” and “24” which could be annotated to
“oligodendrocyte precursors”, “developing oligodendrocytes”, and “mature oligodendrocytes”.
Cells with a different major cell-type label (i.e., neuron vs. glia) between the original author and
this analysis and cell-types whose markers were primarily mitochondrial genes were discarded

for differential, proportion, and trajectory analyses.

Age-biased cell type-specific gene expression and cell-type proportion in scRNA-seq data.
Age-biased cell-type proportion changes were measured with Fisher’s exact-test [58]. Age-
biased genes within each cell type were measured using the Model-Based Analysis of Single-cell
Transcriptomics (MAST) within the “FindMarkers” wrapper in Seurat [53, 59]. We filtered
genes with an FDR-adjusted p-value < 0.05 and required the gene to be expressed in >25% of the

cells in either age group.
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Cell-type deconvolution. All defined cell types and all samples were used in cell-type
deconvolution analysis. We completed RNA-seq deconvolution with DeconRNA-seq [60],
Digital Cell Quantification (DCQ) [61], Whole Gene Correlation Network Analysis (WGCNA)
[62], Cibersort and CibersortX [63, 64], and Cell population mapping (CPM) [65], MuSiC R
package [26], and BayesPrism [25]. For all methods, the bulk RNA-seq dataset were the same
RUV-seq normalized counts [34] and the sScRNA-seq data were the SCTransform-normalized
counts [52]. Cell-type proportions from the MuSic and MuSiC-NNLS methods were computed
simultaneously with the “music_prop” function, using default parameters [26]. We then
correlated the predicted cell-type proportion at PND12 with the cell-type proportions of SCRNA-
seq data at PND14 and the predicted cell-type proportion at PND37 to the cell-type proportions
of scRNA-seq data at PND45. We used the tool with the highest correlation to the SCRNA-seq
data, Music-NNLS, for downstream analysis [26]. For all downstream analyses, we estimated
cell-type proportions with sScRNA-seq PD14 and PD45 timepoints combined. We used
DeconRNA-seq to calculate cwFold-changes in scMappR because it had the strongest correlation
between predicted cell-type proportions and scRNA-seq cell-type proportions of the three
allowed RNA-seq deconvolution methods for the scMappR tool, namely DeconRNA-seq,
WGCNA, and DCQ [24, 60-62, 66]. We then used the cell-type proportions estimated by
MuSiC-NNLS to assign genes to cell types because the cell-type proportion filter of gene—cell-
type assignment can use any deconvolution method [24, 26, 60]. The association between cell-

type proportion, sex, and age was measured with two-way ANOVA.
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Cell-type specificity of bulk differentially expressed genes. We used scMappR [24] to generate
a signature matrix from the scRNA-seq data in Kim et al., 2020 [23] by using the
“generes to heatmap” function in conjunction with our previously labeled cell types. We then
calculated cell-weighted Fold-Changes (cwFCs) for genes associated with varimax-rotated PC 16
with the “scMappR _and pathway analysis” function before sorting each DEG into the cell type

driving it with the “cwFoldChange evaluate” function [24].

We next used scMappR to assign genes to their cell type of origin based on the
differential expression of the genes between the conditions of interest in a specific cell-type. To
calculate the cell-weighted fold-change statistic, we inputted the bulk fold-change from PD12

and PD32, as these timepoints have the largest distance in the varimax-rotated PC 16.
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Cell-type trajectories of sScRNA-seq data. Cell-type trajectories were measured in
oligodendrocytes (oligodendrocyte precursors [OPCs], developing oligodendrocytes [DOs], and
mature oligodendrocytes [MOs]) using the “slingshot” R package [67] with default parameters
other than setting the “extension” parameter to “n”. The starting cell type in each trajectory was
set as the most “PD14-biased” cluster, namely the “Oligodendrocyte precursor”. We analyzed
which genes had expression patterns associated with pseudotime trajectories using the
“tradeSeq” [68] R package. We used the minimum number of allowable knots from the
“evaluateK” function to fit the negative-binomial generalized additive model with the “fitGAM”
function [68]. Then, we tested the association between genes and trajectories with the
“associationTest” function [68], and corrected p-values with the “fdr” correction. Genes with an
FDR-adjusted p-value < 0.05 and a fold-change > 1.5 remained for downstream analysis. We
used the “predictSmooth” [68] function paired with the scale function to generate columns for
heatmaps. We identified genes based on their overlap with mouse TFs from ENCODE [69],

puberty GWAS genes [1], and genes associated with varimax-rotated PC 16. We plotted the

expression of these genes along pseudotime with the Pheatmap function.
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Results

Global transcriptomic view of the postnatal mouse hypothalamus across the pubertal
transition in males and females. To track the transcriptomic dynamics of the postnatal mouse
hypothalamus, we measured genome-wide gene expression using 3’UTR profiling in male and
female C57BL/6J mouse hypothalamus samples collected at five post-natal days (PDs)
corresponding to early development (day 12), pre-pubertal (day 22), pubertal (day 27 in males,
and day 32 in females), and post-pubertal (day 37) stages (N = 4-5 per sex/age) (Figure 1A).
Specially, we applied an automated, high-throughput RNA-seq platform to complete 3’UTR

sequencing of all mice in a single experimental batch.

We first investigated the gene expression of four genes whose gene expression and
expression patterns are well characterized in the hypothalamus, namely Mkrn3, Cartpt, DIk1, and
Pomc, and verified that our analyses captured these previously reported expression dynamics in
the hypothalamus [13, 70-73] (Figure 1B, C). We next leveraged 183 genes where we completed
gPCR in the same mice [10] as in our RNA-seq data to correlate the gene expression of every
gene in each sample between the two technologies. Samples were highly correlated between the
RNA-seq and qPCR data based on these 183 overlapping genes (R?> mean = 0.698, sd = 0.0270)
(Supplementary Figure S1A). As previously shown with gPCR of selected puberty-related genes,
PCA of the RNA-seq data revealed the greatest overall change in gene expression between PD12
and all other timepoints in both male and female hypothalamus samples (Figure 1C). Lastly, we
demonstrated that every sample in our 3'UTR-seq data is highly correlated to one another, with
Pearson's correlation coefficient ranging from 0.89 to 0.99 between samples (0.98-0.99 between

replicates) (Supplementary Figure S1B).
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Pairwise differential gene expression across pubertal development reflects the
hypothalamic cellular composition dynamics and puberty-relevant transcriptional control.
To investigate the transcriptomic dynamics in the hypothalamus throughout pubertal
development, we identified DEGs between the studied age groups in male and female mice
separately, as well as DEGs between sexes at each timepoint (FDR adjusted p-value < 0.05 and
absolute fold-change > 1.5). We denoted age-biased DEGs with a positive fold-change to have
higher expression in the later timepoint in development (e.g., PD12 vs. PD22, PD22 is greater).
When comparing sexes, we denoted DEGs with a positive fold-change to have higher expression
in females than males. Our RNA-seq data and results of differential analysis can be visualized

and downloaded interactively using our Shiny App (https://wilsonlab-sickkids-

uoft.shinyapps.io/hypothalamus gene shiny/).

We found that most DEGs are established before the physical signs of pubertal onset (i.e.,
vaginal opening in females, between separation in males) between PD12 and PD22, with 32%
(511/1560) of DEGs overlapping between sexes (Figure 2A), with the fold-changes of all 1560
genes being highly correlated (R? =0.905). Accordingly, we considered the transcriptomic
differences between PD12 and PD22 to be conserved across sexes. We interrogated these DEGs
using ActivePathways, a method that integrates the p-values of DEGs in males and females to
identify enriched pathways in a sex-aware manner [43]. Upregulated DEGs enriched for
pathways related to glial-cell development, particularly myelination in males (Figure 2B). While
the transition from oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (MOSs)
has been characterized in post-pubertal mice [74], oligodendrocyte development before and
during puberty is not well characterized. Downregulated DEGs tended to enrich pathways

involved in cell differentiation, cell morphogenesis, and proliferation (Figure 2B), likely
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reflecting how the brain, including the hypothalamus, doubles in volume between PD12 and

PD20 [75].

We detected 317 DEGs in post-pubertal female timepoints, however this transcriptomic
signature was not found in males (PD32 vs. PD37) (Figure 2A). We identified several
downregulated puberty-relevant neuropeptides, including Tacrl [76] and Sst [77]. Upregulated
DEGs included genes encoding transcriptional regulators that regulate genes involved in the
hypothalamus-pituitary-gonadal axis (e.g., GnRh, Lhb, Ar, and Pgr) such as Cited2 [78], Fgfr2
[79], Lcor [80], and Sp1 [81] (Supplementary Figure S2A, B). We reasoned that the increase in
the expression of transcriptional regulators paired with a decrease in neuropeptide expression
after puberty might reflect the well-documented release and return of transcriptional repression
upon activation of pubertal development [12]. Interestingly, female DEGs that decrease in
expression before vaginal opening (PD12 vs. PD22) are overrepresented in female DEGs that
increase after puberty (PD32 vs. PD37; 23 genes, FDR-adjusted p-value = 5.06 x 101?). Pathway
analysis of these overlapping genes enriched for “transcriptional co-repression activity” (Skil,
Wwtrl, Cited2) (3 genes, FDR-adjusted p-value = 0.044) and pathways involved in cell and
tissue development (Supplementary Figure S2C, Supplementary Figure S3). Consistent with the
hypothesis of female release of hormonal repression, females contained 8 upregulated DEGs
before puberty (PD12 vs. PD22) mapping to the “response to peptide hormone” gene ontology (8
genes, FDR-adjusted p-value < 0.01), including Th, which expresses thyroid hormone and
regulates the hypothalamus-pituitary-adrenal axis, and Agrp, which modulates puberty with

leptin (Supplementary Figure S3) [82].

We identified a relatively small group of DEGs spanning the ages when physical signs of
puberty emerge (PD22 vs PD27: number of DEGs in males (Nmaie) = 2, number of DEGs in
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females (Nfemale)=12 and PD27 vs PD32: Nmale = 6, Ntemale = 22). Strikingly, 5 of the 6 DEGs
found in males between PD27 and PD32 were puberty-relevant neuropeptides, including
downregulated Cholecystokinin (Cck) [83], and upregulated CART peptidase (Cartpt) [71], Pro-
melanin concentrating hormone (Pmch) [84], Orexin (Hcrt) [85, 86], and Proopiomelanocortin
(Pomc) genes [73] were upregulated (Figure 1C, Figure 2C, D). Hcrt [85, 86], Oxytocin (Oxt)
[87], and Axl [88], whose knockout leads to pubertal delay in mice, are all differentially
expressed during puberty in female mice and peak in expression at PD27 upon vaginal opening
(PD22 < PD27, PD27 > PD32; Figure 2). Accordingly, the relatively few DEGs in this age
window (PD22 vs PD27, PD27 vs PD32) consist of puberty-relevant neuropeptides that peak in

expression during the average age of pubertal onset in both males and females.

Lastly, unlike the PD12 to PD22 age window, we found relatively few sex differences at
any timepoint (Nmaie=41, Nfemale=22), with almost half of all sex-biased DEGs at any timepoint
mapping to a sex chromosome (chrX=5, chrY=21) (Supplementary Figure S4A,B). While there
are fewer sex differences than DEGs across timepoints, four puberty-relevant genes are sex-
biased. Specifically, Tcf712 [89] is female-biased at PD27, and Etnppl, Cryab [20], and Hcrt [85,

86] are male-biased at PD32 (Supplementary Figure S4C).

Age-biased differentially expressed genes compared to human RNA-seq identifies
conserved modules of development and post-natal cellular growth. We then tested whether
the one-to-one orthologs these up- and down-regulated DEGs between PD12 and PD22 related to
comparable DEGs in human RNA-seq datasets using the Differential Expression Enrichment
Tool (DEET) [46]. Briefly, DEET stores the DEGs from 3162 uniformly processed and analyzed

comparisons from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Consortium
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(GTEX), and 142 studies within SRA, including hundreds of brain-related comparisons [46-48,

90].

Upregulated DEGs between PD12 and PD22 enriched for comparisons related to cellular
composition, glioma development, and comparisons investigating biological processes regulated
by the hypothalamus (e.g., Body-mass-index, body temperature, blood pressure) in the pituitary
gland in GTEXx (Supplementary Figure S5A) [47, 48]. In accordance with the traditional pathway
enrichment, we found that many of the genes driving the enrichment of the GBM and pituitary
studies are related to myelination (Supplementary Figure S5B-D). Similarly, gene expression
differences between oligodendrogliomas vs. astrocytomas [91] were strongly correlated DEGs
(up- and down-regulated) to our PD12 vs. PD22 comparison in males (R? = 0.400, FDR = 9.07 x
1071%) (Supplementary Figure S6), consistent with our observation of the activation of
oligodendrocyte-growth genes. Downregulated DEGs show strong enrichment of studies related
to cellular growth and differentiation and drug treatments of neuronal stem cell lines, which may
also be related to the substantial growth of the mouse brain between PD12 and PD22

(Supplementary Figure S5E).

DEET also identified that the PD12 vs. PD22 age-biased DEGs in our mice were
significantly associated with DEGs comparing infant and child males in the pre-frontal cortex
(PFC), suggesting that our study in mice captured a set of genes related more generally to
mammalian postnatal brain development (119 genes, FDR = 8.87 x 108, R =0.723, FDR =
1.42 x 10'Y") [92] (Figure 2E-G, Supplementary Figure S6B). Enriched biological pathways for
genes overlapping with infant vs. child in the PFC were primarily related to neuron
differentiation (Supplementary Figure S6B). Additionally, we found that transcription factors
and chromatin regulators (e.g., DNMT3A, YBX1, SOX11, SOX4, TOP2A, and TOP2B) were
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younger-biased in both species, while MAL had the strongest shared increase in expression in
both mice and humans. The conserved increase in MAL may also reflect the sex-biased increase
in white matter found in humans during postnatal development and adolescence [93]. In contrast,
the 30 shared DEGs between Adolescent vs. adult males in the PFC were also highly associated
to our PD12 vs. PD22 comparison (R? = 0.878, FDR = 1.38 x 10°%6) [92] (Supplementary Figure
S6C) were involved in calmodulin binding and chemical synaptic transmission (Supplementary
Figure S6C). Together, these results show that a substantial proportion (140/1171) of the genes
involved in early postnatal developmental programming in the mouse hypothalamus is conserved

across species and tissue.
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Human puberty genome-wide association study candidate genes are differentially
expressed before and after puberty in the hypothalamus. We investigated if the DEGs we
measured before and after pubertal development overlapped with a set of candidate human genes
associated with the age of menarche in females and voice breaking in males (i.e., pubertal
timing) from GWAS analysis of the U.K. Biobank [1, 5, 10] to further link our transcriptional
dynamics to puberty in humans (Supplementary Figure S7). Interestingly, we found that DEGs
detected before and after the physical onsets of puberty in males and females and after the onset
of puberty in females, but not during puberty in either sex were overrepresented within these
GWAS genes (PD37-female > PD32-female: FDR = 0.00520, and odds-ratio = 2.88, PD12-
female > PD22-female: FDR = 0.0423 and odds ratio 1.72, PD12-male > PD22-male: FDR =
0.0685 and odds ratio 1.54) (Supplementary Figure S7). Moving from GWAS genes, rare-disease
genes that lead to precocious or delayed puberty, we found that three genes implicated in
hypogonadotropic hypogonadism (HH) [4] were differentially expressed between PD12-PD22.
Specifically, 1117rd is downregulated in males and females (PD12 vs. PD22), Sema3e is
downregulated in females but not males, and Rab3gap1 is upregulated in males and females
(PD12 vs. PD22) (Supplementary Figure S7). Briefly, 1117rd is a member of the interleukin-17
receptor protein family and is important in regulating growth through fibroblast growth factor
and MAPK/ERK signaling [94]. Sema3e is a semaphorin, which acts as axon guidance ligands
and organogenesis [95]. Rab3gapl is a member of the Rab3 protein family where it’s involved in
endoplasmic reticulum structure and has also been implicated in the proper development and
migration of neurons [96]. 1117rd, Sema3e, and Rab3gapl were not differentially expressed at
other timepoints. Together, our overrepresentation of pre- and post-pubertal DEGs with human

puberty-GWAS genes, as well as our overlap of pre-pubertal DEGs with HH disease genes,
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suggests that the DEGs detected before and after puberty may be indirectly involved in pubertal

regulation in both mice and humans.

Genes expressing metabolic and reproductive neuropeptides display an age-by-sex
interaction in gene expression along the pubertal transition. To identify genes whose
expression is conditional on both age and sex, we leveraged the varimax rotated principal
component analysis (viPCA) (Figure 3A, See Materials and Methods for details). We were
particularly interested in vrPCs associated with an age-by-sex interaction because of the known
sex bias in pubertal onset and development in both mice and humans. As such, puberty-relevant
genes and pathways would have slightly offset or divergent age-biased gene expression patterns.
Accordingly, four vrPCs were associated with age, one with sex, and one with an age-by-sex
interaction (Figure 3A). The scores of the vrPC conditional on age and sex, vrPC 16, were
dynamic between PD12 and PD27 and showed sex bias at PD32 (Figure 3B, C). For simplicity,

we denote the genes associated with vrPC16 as age-by-sex associated genes.

In total, we identified 129 age-by-sex associated genes, 66 of which were differentially
expressed between PD12 and PD22 in males or females (Figure 3). Interestingly, the four genes
with the strongest association with an age-by-sex interaction based on their vrPC loading are all
hormone-producing genes that have been linked to pubertal regulation or dynamics: Pmch, Hcrt,
Oxt, and Trf [84, 85, 97, 98] (Figure 3D). While these genes with top loadings shared similar
expression patterns (i.e., a secular increase in gene expression from PD12-PD27 before diverging
by sex), 21 genes, including puberty-regulating Cbx6 [12], a member of the Polycomb repressive
complex, decrease in gene expression before diverging by sex (Figure 3D). Pathway enrichment

of age-by-sex associated genes were enriched for hormone activity (precision = 0.100, FDR =
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1.60 x 104, negative regulation and transmission of nerve impulse (precision = 0.167, FDR =
0.0248), and neuron and oligodendrocyte development pathways, including “neuron part”
(precision = 0.339, FDR = 2.99 x 10°) and “myelin sheath” (precision = 0.132, FDR = 8.82 x 10-

8 (Figure 3E).

Likewise, DEET analysis of age-by-sex associated genes most strongly enriched for
human DEG comparisons influencing glial cell growth, namely comparing glioblastoma
subtypes and LGG drug treatments in the TCGA database, and neuronal-controlled disorders in
relevant tissues, namely sporadic amyotrophic lateral sclerosis in motor neurons and individuals
with schizophrenia in the adrenal glands from the GTEXx database (Supplementary Figure S8A).
Interestingly, unlike in PD12 vs. PD22 comparisons, these age-by-sex associated genes also
enriched for many relevant comparisons in the hypothalamus, including age and body mass
index (BMI) from the GTEXx database (Supplementary Figure S8B). The genes driving the
enrichment of these hypothalamus comparisons were predominantly puberty-relevant hormonal
neuropeptides with a high vrPC16 loading, namely OXT, AVP, HCRT, and PMCH

(Supplementary Figure S8C,D).

Recently, spatially resolved single-cell transcriptomics have been performed along the
pubertal transition of the female rat arcuate nucleus [16]. They identified three gene-expression
modules associated with the pubertal transition. Broadly, they categorized genes associated with
these modules as: module 1) glial cell enhancement and neuron proliferation in response to
estradiol, module 2) hormone secretion, and module 3) neuronal differentiation and signal
transmission [16]. The age-by-sex associated genes we identified were over-represented in all
three modules (module 1: p-value = 2.23 x 1013, odds-ratio = 6.80, genes = 29; module 2: p-
value = 0.0506, odds-ratio = 1.97, genes = 11; module 3: p = 4.11 x 10", odds-ratio = 4.22,
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genes = 38). Together, genes associated with an age-by-sex interaction across puberty are
involved in hypothalamic hormonal activity, neuronal development, and oligodendrocyte

development.

Cellular composition of the postnatal hypothalamus. The hypothalamus exhibits considerable
cellular heterogeneity reflecting its multimodal functions [21, 23]. To characterize the cell type-
specific underpinnings of pubertal development in the hypothalamus, we integrated SCRNA-seq
in the hypothalamus with our temporal bulk RNA-seq. We leveraged data from Kim et al., 2020,
which contained scRNA-seq from the mouse hypothalamus before and after puberty (PD14 and
PDA45) [23]. We incorporated the cell-type labels provided by Kim et al., 2020 (hypothalamic
neurons, oligodendrocytes, tanycytes, ependymal cells, astrocytes, microglia, and endothelial
cells) [23] with cell-type identification analysis of clusters measured with Seurat [53] (see
Materials and Methods for Details). Our cluster analysis further subdivided oligodendrocytes
into OPCs, DOs, and MOs. It also subdivided neurons into neurons and neuroendocrine cells

(Figure 4).

We first investigated hypothalamic cell-type proportion dynamics across pubertal
timepoints. When investigating the sScRNA-seq data alone, we found that oligodendrocytes were
the most dynamic cell types across puberty (Figure 4B), with MOs increasing in proportion over
time (PD14 < PD45) (Bonferroni-adjusted p-value = 1.90 x 1071%, fold-change = 8.43), and
OPCs (Bonferroni-adjusted p-value = 3.94 x 10", fold-change = -3.07) and DOs (Bonferroni
adjusted p-value = 8.18 x 10, fold-change = -4.65) decreasing in proportion over time (PD14 >

PDA45). There was also a lesser but significant increase in endothelial (Bonferroni-adjusted p-
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value = 1.09 x 10°%*, fold-change = 1.856) and neuroendocrine cell (Bonferroni adjusted p-value

=4.81 x 107, fold-change = 1.52) proportions over time.

Next, we used estimated hypothalamic cell-type proportions in our bulk RNA-seq data
and RNA-seq deconvolution, mapping cell-type proportion changes across our developmental
trajectory. Benchmarking RNA-seq deconvolution in the hypothalamus is important because it
has both highly similar cell types (e.g., neuron vs. neuroendocrine) and highly distinct cell types
(neuron vs. endothelial cell) amongst its many total cell types. To find the most reliable RNA-
seq deconvolution tool in our system, we compared the cell-type proportions of nine different
RNA-seq deconvolution tools [25, 26, 60-65] to the sScRNA-seq data (See Materials and
Methods for Details), where we found that the NNLS-MuSiC tool was the most accurate method,
a method that has previously performed well on brain tissue [99] (Supplementary Table S2). As
in the scRNA-seq data, we found that MOs increase in cell-type proportion until puberty, and
OPCs (p-value = 3.68 x 10'!) and DOs decrease in cell-type proportion until puberty (Figure 4C,
Supplementary Figure S9). These results show that oligodendrocytes expand from OPCs into

MOs during puberty.

Age-by-sex associated transcriptional dynamics map to genes involved in neuropeptide
activation and oligodendrocyte maturation. We next used these scRNA-seq data to assign
age-by-sex associated genes to their cell type of origin using scMappR [24], using both the PD14
and PD45 timepoints in the SCRNA-seq data [23]. Overlapping the 129 cell type-specific age-by-
sex associated genes with cell type-specific DEGs from the scRNA-seq data [59] (PD14 vs.
PDA45) yielded a set of high-confidence cell-type specific genes (n=67), whose gene expression
patterns are conditional on both age and sex (Figure 4D). Four high-confidence genes with the
top age-by-sex loadings mapped to neurons, namely Pmch, Hcrt, and Oxt, while Trf mapped to
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oligodendrocytes [74] where it may act as a cofactor for iron in myelination [100]. DIk1 and
Grial, which have previously been implicated in pubertal disease and ovulation rate respectively
[101, 102], mapped to neuroendocrine cells and neurons (Figure 4D, Supplementary Figure S10).
Next, we investigated whether the neuron- and neuroendocrine-mapping age-by-sex associated
genes overlapped with translated mMRNA in lepRb+ neurons in the hypothalamus [51] using
Trap-Seq because leptin is a functional activator of pubertal initiation [20, 71, 82, 103, 104].
Interestingly, 21 of our neuron- and -neuroendocrine-mapping genes were enriched in lepRb+
neurons (p-value = 4.33 x 10°°, odds ratio = 5.96) (Supplementary Figure S11). These genes
included Cartpt, DIk1, and Sod1, which can all influence pubertal timing or fertility [71, 101,
105, 106], showing that many of our neuronal-mapping genes containing puberty-relevant
transcriptional dynamics are expressed in cell-types that are responsive to known pubertal
activators. Overall, genes with transcriptional dynamics conditional on age and sex were cell

type-specific, puberty-relevant, and often related to neuron and oligodendrocyte development.
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Lineage reconstruction of oligodendrocytes links pubertal genes to cellular
development. We observed an active transition of oligodendrocytes from OPCs into MOs in the
postnatal hypothalamus (Figure 2B, D, Figure 4), and detected clear manifold from OPCs to DOs
and MOs in the reprocessed sScCRNA-seq data (Figure 4A). We next set to investigate
transcription factors (TFs), age-by-sex associated genes, and puberty-GWAS genes that map to
oligodendrocyte expansion. By using Slingshot, a bioinformatic package that identifies cellular
lineages across cell types [67], we measured a pseudotime trajectory from OPCs to MOs (Figure
5A). We then applied the tradeSeq [68] pipeline and the “Association Test” to identify genes that

are associated with this trajectory (FDR < 0.05, fold-change > 1.5).

Overall, we found 1294 genes to be associated with pseudotime and found that these
oligodendrocyte-pseudotime genes overrepresented puberty-GWAS genes (FDR = 4.6 x 102 27
genes). Oligodendrocyte-pseudotime TFs and puberty-GWAS genes whose expression peaks in
in DOs include genes involved in thyroid hormone response (Nkx2-1 and Thra) and cell
differentiation and development (Sox2, Tcf712, Egrl, Hesl) (Figure 5B,C). Interestingly, thyroid
hormone, which can impact pubertal timing and function [14], also plays a direct role in OPCs
expanding into MOs [107], which may explain the transcriptional activity of Thra in DOs. Most
TFs and candidate GWAS-associated genes peaked in expression in OPCs. These genes, while
potentially involved in puberty, may be involved in the differentiation of many cell types
including those in the hypothalamus. For example, Sox2 peaks in expression at OPCs and
functions as a key marker for cellular differentiation in general [108, 109], and mutations in Sox2
lead to developmental abnormalities throughout the entire body, including HH [110-112].

Accordingly, we hypothesize that many of these TFs and puberty-GWAS genes would be
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expressed during the differentiation of many cell types, not just in hypothalamic oligodendrocyte

expansion.

We next overlapped the age-by-sex associated genes that mapped to oligodendrocytes
with the 1294 oligodendrocyte-pseudotime genes and found that the gene lists significantly
overlapped (FDR = 4.6 x 103, 58 genes). Of the 58 overlapping genes, we found an even
distribution of genes mapping to OPCs, DOs, and MOs (Figure 5D). These genes included core
oligodendrocyte stage-specific regulated proteins such as Mbp, Mobp, Mal, and Oligl [113],
puberty and HPA-linked Thra, melatonin receptors Mt1 and Mt2, and Pmch (Figure 5D). Three
of these genes, namely Sox2, Chd7, and Stubl, can lead to HH in humans [4]. Chd7 works with
Sox10 to promote myelination by co-occupying and promoting the expression of myelinogenic
genes [114], and Stubl has a less studied role in oligodendrocytes. Two transcriptional regulators
whose mutations lead to both HH and hypomyelination are Polr3a and Polr3b [115]. We found
that other members of the polymerase 3 complex, namely Polr3e and Polr3h, were identified as
oligodendrocyte-pseudotime genes (Supplementary Figure S12). Together, oligodendrocyte-
pseudotime genes previously detected as puberty-GWAS genes tend to be involved in the
differentiation of many cell types, while oligodendrocyte-pseudotime genes overlapping with
age-by-sex associated genes suggest a more varied relationship between oligodendrocyte

expansion and puberty.
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Discussion

The hypothalamus is responsible for pubertal initiation and is a component of the
network that modulates pubertal timing. The regulation of puberty (onset and progression) is a
dynamic, non-linear process, making it imperative to examine multiple timepoints before,
during, and after puberty. Puberty is also inherently sex-biased in initiation, regulation, and
manifestation, resulting in sex also being an important variable to include when studying
puberty. Combining our bulk RNA-seq spanning of 5 timepoints in male and female mice with
publicly available data from GWAS of pubertal timing; lists of genes that, when mutated, cause
absent, delayed or precocious puberty; and hypothalamic scRNA-seq of pre- (PD14) and post-
pubertal (PD45) mice [23] enabled us to replicate previous findings and identify new genes and

cell-types involved in hypothalamic regulation of puberty.

Transcriptome-wide gene expression dynamics in the hypothalamus reflect hormonal
activation and epigenetic control. Our neuron- and neuroendocrine-mapping transcriptomic
dynamics reflected previously reported mechanisms of pubertal regulation while implicating new
genes involved in puberty. Differential gene expression in male and female mice during puberty
(i.e., PD22-PD27, PD27-PD32) primarily displayed differences in genes coding for pubertal and
metabolic hormones and neuropeptides, namely Oxt, Hcrt, Cartpt, Avp, Cck, Pmch, and Pomc
[71, 73, 83-85, 87, 116], with all these genes other than Cck and Pomc also displaying an age-
by-sex interaction. Transcriptional regulators in females decrease in expression before puberty
and increase in expression afterward while peptide hormone-producing genes such as Hcrt, Oxt,
and Th, peak in expression at PD27 in females. In males, the decrease in transcriptional

repression is less pronounced and these genes peak in expression at PD32.
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Inactivating mutations in Hcrt leads to narcolepsy type-one, which has a high association
with precocious puberty in both male and female humans [86, 117]. Orexin, produced by Hcrt,
has been shown to have an inhibitory effect on Gnrh in ovariectomized female mice [118]. In
male rats, orexin injections are associated with a decrease in Gnrh, Kiss1, NPy expression paired
with a decrease in reproductive behaviors [119]. Despite these findings, the mechanistic and
potentially sex-specific role of orexin on pubertal inhibition remains unclear [120]. Oxt encodes
oxytocin and plays an important role in parturition, lactation, social behavior, and parental
behavior. Oxytocin may influence pubertal activation in a number of ways, such as influencing
the estrogen receptor in female mice [121], interacting with Prostaglandin E2 in astrocytes to
stimulate GnRH neuron in female mice [87], and through direct stimulation of spermatogenesis
in the mouse testes. This mechanism is also bi-directional, as oxytocin levels during puberty
influence adult behavior in a sex-specific manner [121].

The inverse relationship between epigenetic repressors and hormonal activation during
puberty in females is consistent with the epigenetic regulation of hypothalamic hormones during
puberty, which is known to be driven by the release of transcriptional repression in female rats
[9, 12]. Interestingly, we did not find this pattern in males, however given the peak of Oxt, Hcrt,
and Th were found at PD32, perhaps these genes would have increased in expression at a later
timepoint in males (e.g., PD42). Lastly, we found that neuron- and neuroendocrine-mapping
genes associated with an age-by-sex interaction tended to be previously implicated in puberty
(Figure 4, Figure 5D). These findings provide further support to previously implicated pubertal
regulators and suggest that lesser-known candidate genes identified using the same approaches

are involved in same regulatory network [122].
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Three puberty-relevant, neuronally-mapped age-by-sex associated genes highlighted in
this study that have been not as thoroughly studied as the neuropeptide producing genes
mentioned above were Grial, DIk1, and Cartpt. Grial is a primary receptor of glutamate, a
neurotransmitter that directly messages GnRH neurons [2, 102]. Recent studies in female rats
show that Grial, along with a network of genes implicated in the epigenetic control of puberty,
is under the shared regulation of Kdméb at puberty in the hypothalamus [11]. Genetic variants in
DIk1 are associated with CPP and DIK1 is highly associated with age of menarche through
GWAS [1, 72, 105, 123]. While not evaluated experimentally, DIk1’s ability to regulate Notch
signaling has been a proposed mechanism to control pubertal timing. Our lab previously
completed DIk1 expression dynamics with the same RNA using gPCR [10] in multiple different
tissues, finding the same pattern of age-biased gene expression between PD12 vs. PD22
expression in the male and female, sex bias across puberty in the pituitary gland, and a decrease
in expression over time in the testis and ovaries [10], further suggesting the cell- and tissue-
specific roles of DIk1 in pubertal regulation. Lastly, Cartpt plays a core role in the function of
CART neurons, a neuronal subtype that receives signals from leptin and alters pubertal timing in
female mice [71]. These genes’ influence on pubertal timing and regulation in the hypothalamus,
as well as their impact of sexual differentiation in the rest of the HPG axis could increase our
understanding of the mechanisms of development and sex differences.

Hypothalamic expansion of oligodendrocytes across puberty may be an important
precursor to pubertal initiation. Previous studies have reported that oligodendrocyte
maturation and myelination can continue into adolescence [124]. However, this expansion has
not previously been observed in the hypothalamus specifically. Furthermore, the functional role

of oligodendrocytes in regulating hypothalamic hormones involved in pubertal regulation
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remains an open question [2]. When we integrated our bulk RNA-seq data with publicly
available sScRNA-seq data [23] in the hypothalamus to estimate cell-type proportions in our
samples, we discovered a substantial expansion of OPCs into MOs before and during puberty
(Figure 4B, C). Puberty-GWAS genes and oligodendrocyte-mapping age-by-sex-associated
genes were overrepresented in oligodendrocyte-pseudotime genes (Figure 5C, D), linking
oligodendrocyte development to pubertal regulation in both sexes. Many GWAS hits were
enriched in OPCs and are involved in stem-cell differentiation in many cell types [125, 126]. In
contrast, age-by-sex and oligodendrocyte-pseudotime associated genes were expressed at all
stages of pseudotime expansion and included hormone receptors, core oligodendrocyte markers,
and HH disease genes (Figure 5D). For example, Thra (thyroid hormone receptor alpha) was
primarily expressed in DOs. Th also regulated oligodendrocyte expansion in other models [107]
and in our bulk RNA-seq, Th increases in gene expression before puberty (PD12 < PD22) in
female mice. Recently, oligodendrocytes were suggested to be regulated by the HPA axis to
facilitate neuroplasticity in major depressive disorder [127], and perhaps a similar phenomena is
occurring to facilitate enhanced pubertal neuroplasticity [128]. The identified age-by-sex pattern
of Th gene expression associated with oligodendrocyte expansion may reflect that
oligodendrocytes are highly responsive to sex hormones in a sex-specific manner [129]. For
example, progesterone or dihydrotestosterone treated oligodendrocytes increased and decreased
proliferation respectively in both male and female mice, however the effect was more extreme in
females [129]. Additionally, OPCs show substantial sexual dimorphism in neonatal rats, where
female OPCs have stronger transcriptomic responses involved proliferation and migration, while
male OPCs have a stronger transcriptomic response involved in differentiation and myelination

[130]. Although we identified an enrichment of age-by-sex associated genes mapping to
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oligodendrocyte development (above and Figures 4, 5), we did not observe sexual dimorphism in
oligodendrocyte proportions with RNA-seq deconvolution. Thus, our data lead us to question if
proper oligodendrocyte development influences pubertal development by providing the
necessary support for the hypothalamic increase in synaptic density and neuronal activation [125,
126] in both sexes.

Future Directions. Future functional work can be separated into expanding our findings into
other tissues, investigating the role of pubertal candidate genes identified in this study, and
elucidating whether oligodendrocyte expansion plays an active role in influencing pubertal
initiation. Firstly, while puberty is initiated in the hypothalamus, it’s crosstalk between other
organs, particularly the pituitary gland and gonads, are key to understanding pubertal regulation
overall. We previously investigated sexual dimorphisms across the pubertal transition within the
same mice in the pituitary gland and found more evidence of sex-biased gene expression in the
pituitary than the hypothalamus, suggesting that the pituitary may have key role in sex
differences in puberty [19]. Integrating our current RNA-seq data with that from the pituitary
gland and gene expression patterns in the gonads may elucidate regulatory crosstalk between
organs [131]. Secondly, investigating differences in transcriptional dynamics, chromatin
accessibility, and cell-type composition in mouse models of puberty-relevant candidate genes
such as Hcrt, Oxt, DIk1, Cartpt, or Grial across ages and sexes may elucidate what aspects of
pubertal control these candidates may regulate. Lastly, mouse models inhibiting oligodendrocyte
expansion could be leveraged to study the pubertal transition further. For example, myelin
regulatory factor (Mrf) blocks the expansion of OPCs into MOs; however, mice with an Mrf
knockout die in their third postnatal week, at the same time as we detected OPC expansion in the

hypothalamus [132]. Recently, Steadman et al., 2020 developed an inducible Mrf knockout that
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blocks OPC expansion into MOs [133]. Adapting this model to pre-pubertal mice may elucidate
if oligodendrocyte expansion influences pubertal initiation. However, this model would not be
hypothalamus-specific [133]. To our knowledge, no inducible, hypothalamus specific Mrf
knockout exists.

Limitations. One of the limitations of our study is that we investigated the entire hypothalamus
rather than sorting the hypothalamus into the paraventricular and arcuate nucleus. Although this
is a limitation, the study design allowed us to maximize the number of timepoints and biological
replicates while including both sexes. In addition, the scRNA-seq utilized from Kim et al., 2020
contained two timepoints close to puberty, PD14 and PD45 [23]. However, their mice were from
two different strains: PD14 mice were CD1 (male and female) and PD45 mice were C57B1/6J
(male) [23]. As such, we integrated these datasets using stringent batch correction [56].
Additionally spatial resolution is important to understand hypothalamic resolution [16, 134],
however neither of the bulk RNA-seq or scRNA-seq data in this study is spatially resolved.
Conclusion. In conclusion, we found that cell type- and sex-aware transcriptomic dynamics in
the pubertal hypothalamus are associated with well-established neuropeptide activation and
regulation, with the additional highlight of potentially relevant genes including Hert, Oxt, DIK1,
Grial, and Cartpt. We discovered that oligodendrocyte expansion occurs in the hypothalamus
before and in parallel with early pubertal initiation and that many genes associated with
oligodendrocyte expansion relate to pubertal timing and regulation. Our data and interactive
Shiny App will allow researchers to visualize the transcriptionally dynamic genes in the
hypothalamus and pituitary gland, providing a baseline in postnatal gene expression for the
broader scientific community. Together, these data support known mechanisms in pubertal

control, provide further insights into sex effects on puberty and suggest novel genes and
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mechanisms involved in the development of secondary sex characteristics and regulation by the

hypothalamus.

Data availability

RNA-seq data generated for this chapter is available at ArrayExpress (E-MTAB-12340).
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Figure 1. Overview of the hypothalamic mouse transcriptome at five timepoints across
pubertal development in males and females. A) Schematic of samples taken across pubertal
development. Whole mice hypothalami were dissected at postnatal days (PD) 12, 22, 27, 32, and
37 in both male and female C57BL6/J mice. Arrows dictate the average age of puberty in males
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and females, respectively. Extracted hypothalamus samples underwent 3’UTR RNA-seq. B)
Genome browser of the Hcrt (top) and Pmch (bottom) 3’UTR at PD12 and PD22 in males and
females. C) Distribution of normalized counts of Pmch, Hcrt, DIk1, and Mkr3 at every age and
timepoint. The X-axis is age, and the Y-axis is log2-transformed RUVseq and ERCC-spike in
normalized counts. Red lines and circles represent female samples, while blue lines and triangles
represent male samples. D) Principal component analysis (PCA) of normalized gene expression
across all samples and ages. The first two PCs are plotted with sexes designated with colour and

ages designated by shape.
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Figure 2. Differentially expressed genes (DEGSs) across postnatal development in the mouse
hypothalamus. A) Volcano plot of differentially expressed genes in each pairwise timepoint.
The X-axis is the log2(fold-change) of the DEG, and the Y-axis is the -log10 (FDR-adjusted P-
value) of the DEG as identified by DESeq2. Genes in grey are not detected as DE (FDR-adjusted
P-value < 0.05, absolute fold-change > 1.5). Genes in blue are DE in males, genes in red are DE
in females, and genes in purple are DE at the same timepoint in both males and females. B)
Barplot of enriched pathways derived from DEGs between PD12 and PD22 in male and female
mice. Genes are separated by upregulated and downregulated DEGs. Barplots show the -
log10(FDR-adjusted P-value) of enrichment. Green bars represent pathways detected in both
sexes, orange bars represent pathways detected by integrating sexes, blue bars represent male-
driven pathways, and pink bars represent female-driven pathways. C) Expression profile of the
four remaining DEGs. D) Barplot summarizing the number and major theme of pairwise DEGs
across each timepoint. The X-axis is each timepoint, and the Y-axis is the number of DEGs.
Positive genes were older-biased, and negative genes were younger-biased. D) Expression
profile of DEGs involved in hypogonadotropic hypogonadism. The X-axis is age, and the Y-axis
is log2-transformed RUVseq and ERCC-spike in normalized counts. Red lines and circles
represent female samples, while blue lines and triangles represent male samples. Expression
profile of differentially expressed GWAS genes (right). Row-normalized heatmap of GWAS-
associated genes that were also detected as differentially expressed in our RNA-seq data Rows

are genes, and columns are samples.
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Figure 3. Evaluation of varimax-rotated principal component analysis revealed genes
involved in sex-by-age interactions. A) Schematic of how varimax rotated PCA is applied to
our data. B) Distribution of scores for enriched vrPCs. Male samples are triangles and blue lines,
and female samples are circles and red lines. vrPC16 is highlighted because the genes associated
with this vrPC are focused on for the rest of this study. C) Barplot showing the association
between each significant varimax rotated PC (vrPC), age, and sex. The X-axis shows vrPCs
whose scores are associated with age, sex, or an age-by-sex interaction (7/48 total vrPCs). Red
bars show the significance of sex, blue bars show the significance of age, and purple bars show
the significance of an age-by-sex interaction. D) Heatmap of the gene expression patterns of
genes associated with vrPC16. Each row is a gene, and each column is a sample. The heatmap is
populated by the log2-RUV-seq normalized gene expression of each gene. Rows are annotated
by whether the gene displays pairwise expression in at least one pairwise timepoint. Columns are
annotated by age and sex. E) Barplot of enriched pathways derived from genes strongly
associated with rotated PC 16. Barplots show the -log10(FDR-adjusted P-value) of enrichment.
Green bars represent pathways deriving from gene-ontology biology pathways, red bars
represent pathways deriving from gene-ontology cellular components, and blue bars represent

pathways deriving from gene-ontology molecular functions.
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Figure 4. Cell-type specific gene expression across the developing hypothalamus. A) Lower-

dimension representation of SCRNA-seq data in the PD14 and PD45 mouse hypothalamus with

the Uniform Manifold Approximation and Projection (UMAP). Cell labels were identified using

a mixture of labels provided by Kim et al., 2020 and unsupervised clustering. B) Distribution of
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cell proportions estimated from RNA-seq deconvolution at each age and time-point. The X-axis
is age, and the Y-axis is estimated cell-type proportions. Red lines and circles represent female
samples, while blue lines and triangles represent male samples. Letters represent significance
using a Tukey post hoc test after identifying differences in cell-type proportion with ANOVA. C)
Barplot of cell-type proportion differences within each cluster (Fisher’s exact-test). Red bars
designate a fold-change of two between ages. Each column is a cell-type with the number of
DEGs mapping to that cell-type in brackets. D) Heatmap of gene-normalized cell-weighted fold-
changes (cwFold-changes) of the 129 age-by-sex associated genes and are DE in the

complementary direction in the SSCRNA-seq data.
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Figure 5. Pseudotime of hypothalamic oligodendrocyte development. A) Lower-dimension
representation of oligodendrocyte scRNA-seq data in the PD14 and PD45 mouse hypothalamus
with the Uniform Manifold Approximation and Projection (UMAP) overlaid with the
pseudotime trajectory identified with Slingshot. Points are cells coloured by cell-type. and the
line is the plotted pseudotime trajectory measured with Slingshot, starting with OPCs and plotted
with the tradeSeq R package. B) Heatmap of transcription factors associated with pseudotime. C)
Heatmap of puberty-associated GWAS genes associated with pseudotime. D) Heatmap of
oligodendrocyte-mapped age-by-sex associated genes associated with pseudotime. For a gene to
be included, it must be associated with an age-by-sex interaction (i.e., varimax 16), mapping to
oligodendrocyte precursor cells, developing oligodendrocytes, or mature oligodendrocytes with
scMappR, and associate with pseudotime. For B-D, rows are genes associated with pseudotime.
Columns are portions of the pseudotime trajectory blocked into 200 smoothers using tradeSeq.

Heat is measured by scaling the predicted smoothers with the scale function in R.
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