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Abstract 

Although the hypothalamus plays a critical role in the regulation of puberty, more 

research is needed to identify the gene regulatory networks that control pubertal timing.  Here, 

we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across 

the pubertal transition. We used RNA-seq to profile hypothalamic gene expression in male and 

female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, 

and 37). By combining this data with hypothalamic scRNA-seq data of pre- and post-pubertal 

mice, we were able to assign gene expression changes to their cell types of origin. In our colony, 

pubertal onset occurs earlier in male mice allowing us to focus on genes whose expression is 

dynamic across ages and offset between sexes and to explore bases of sex effects. Our age-by-

sex pattern of expression enriched for biological pathways involved hormone production, 

neuronal activation, and glial maturation. Additionally, we found a dramatic expansion of 

oligodendrocytes precursor cells into mature oligodendrocytes spanning the pre-pubertal (PD12) 

to peri-pubertal (PD27) timepoints, and that genes driving this expansion enrich for genes 

involved in pubertal regulation. Together, by incorporating multiple biological timepoints with 

male and female mice simultaneously, our work furthers the understanding of gene and cell-type 

changes that accompany the development of secondary sex characteristics in both sexes.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.562121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.12.562121
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction 

Puberty is a fundamental period of mammalian development when individuals reach 

sexual maturity and can produce gametes. Despite being a nearly universal event,  pubertal 

timing within the population varies and is known to be influenced by genetic and environmental 

factors [1, 2], though much of its variation remains unexplained. Rare mutations in several genes 

lead to pubertal disorders such as central precocious puberty (CPP), defined as abnormally early 

pubertal initiation, and hypogonadotropic hypogonadism (HH), defined as delayed or absent 

puberty, due to misregulated or missing gonadotropic hormones [3, 4]. Recent genome-wide 

association studies (GWAS) investigating the age of menarche in females and age of voice 

breaking in males [1, 5] have identified common variants related to pubertal timing, which 

influence the timing of puberty in the general population and are associated with important 

health outcomes. Specifically, early puberty is associated with increased risk of later life health 

outcomes of such as cancer, diabetes, and cardiovascular disease, while late puberty is associated 

increased risk of osteoporosis and mental health disorders [1, 5–7]. Furthermore, environmental 

factors such as diet, body mass index (BMI), prenatal growth, and psychosocial experience are 

associated with differences in pubertal timing [7, 8]. 

Puberty is initiated in the hypothalamus by pulses of gonadotropin-releasing hormone 

(GnRH) that then stimulate the pituitary gland to increase secretion of luteinizing hormone (LH) 

and follicle stimulating hormone (FSH) increases in frequency and amplitude.  This cascade 

begins an organism-wide feedback loop involving many genes, cell types, and gene regulatory 

mechanisms [1, 9, 10]. Previous studies have investigated hypothalamic regulation during 

puberty and have discovered a growing list of gene-regulatory mechanisms that can directly 

regulate pubertal timing [2, 11–13]. These groundbreaking studies include the epigenetic 
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mechanisms activating and inhibiting pubertal onset and spatial transcriptomic programs 

associated with post-natal development in the female rat hypothalamus [9, 12, 14–16]. 

Puberty is an inherently sex-biased process as it results in the development of secondary 

sex characteristics, and males and females undergo pubertal timing at different ages. In humans, 

puberty occurs earlier in females, and in rodent models sex-differences are also seen, with male 

mice in our colony undergoing earlier development than females [10]. While the sex-specific 

physiological differences between males and females are different, many of the same gene 

regulatory mechanisms are likely present, but playing slightly different roles [5, 17, 18]. For 

example, in humans, the same variant in the LIN28B gene is associated with puberty-relevant 

phenotypes in both males and females [18]. However, mouse models of Lin28b and Lin28a 

knockouts revealed sexually dimorphic phenotypes related to body weight and pubertal 

development [17]. Accordingly, measuring genome-wide pubertal dynamics in the hypothalamus 

while accounting for multiple timepoints, sex, and cell types should yield greater insight into 

pubertal development and disease [2]. From the perspective of measuring hypothalamic gene 

expression across pubertal development, genes whose developmental trajectories are offset 

between male and female mice provide powerful candidates for differential pubertal regulation, 

making age and sex pertinent variables to study pubertal regulation.  

Only a few studies have characterized hypothalamic gene expression across the pubertal 

transition, and fewer have incorporated both age and sex into their design [10, 19]. Our lab 

previously utilized multiplexed qPCR to measure the expression of 178 candidate puberty 

GWAS and disease-related genes at PD12, 22, 27, 32, and 37 in many tissues, including the 

hypothalamus [10]. There, we found that most age-biased expression in the hypothalamus 

occurred before puberty, perhaps reflecting the cellular development occurring before puberty [2, 
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16, 20]. Our lab has also performed RNA-seq through 3’UTR profiling of these same mice in the 

pituitary gland, where we discovered cell-type specific expression and cellular trajectories that 

became increasingly sexually dimorphic through the pubertal transition [19]. Recently, Han et al. 

interrogated the premammillary nucleus and arcuate nucleus transcriptomes of female mice 

between postnatal day (PD) 20 and diestrus females (PD50-PD60), as well as a leptin-inducible 

model of puberty in adult mice, highlighting the importance of neuropil and somatodendritic 

organization [20]. These authors focused on how leptin may lead to puberty-relevant 

transcriptomic changes rather than investigating pubertal development over time or across sexes 

[20]. 

The above findings are consistent with recognition that cellular complexity of the 

hypothalamus plays an important role in its ability to regulate many biological processes. 

Accordingly, researchers have employed single-cell transcriptomics to profile the complexity of 

the hypothalamus at multiple pre-natal and post-natal developmental timepoints [16, 21–23]. In 

the mouse, Kim et al., 2020 used scRNA-seq to study embryonic and early postnatal 

hypothalamic development [23]. They included two timepoints surrounding puberty, PD14 and 

PD45, as developmental endpoints, which could be re-analyzed to study puberty [23]. 

Importantly, these scRNA-seq data can be integrated with bulk RNA-seq dataset to incorporate 

cell-type specificity into the study while maintaining multiple biological replicates across 

different ages and sexes in a single experimental batch [24–26]. 

Thus, in this study, we measured hypothalamic gene expression in male and female mice 

at five timepoints spanning pubertal transition. We identified age-biased genes primarily 

associated with cellular development and a smaller set involved in hormonal regulation. We also 

identified a key subset of genes whose expression is conditional on age and sex, but the observed 
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sex effects were not robust or plentiful, consistent with our previous work suggesting that the 

pituitary may have larger role in sex differences in pubertal timing than the hypothalamus. Using 

hypothalamic scRNA-seq (as above), we mapped the age and sex conditional genes to their most 

likely cell type of origin, including neurons and oligodendrocytes. We further integrated these 

data to discover that substantial oligodendrocyte expansion occurs before and during puberty in 

mice, which is interesting in that many identified genes associated with oligodendrocyte 

expansion have been previously implicated in modulation of pubertal timing in humans. Lastly, 

the gene expression distribution of all genes can be freely interacted with using our Shiny App 

(wilsonlab-sickkids-uoft.shinyapps.io/hypothalamus_gene_shiny/), so that researchers can 

identify the natural gene expression patterns of their genes of interest before perturbation. 

Overall, by analyzing the hypothalamic transcriptome during pubertal development in a manner 

that simultaneously incorporates age and sex, we identified novel genes involved in cellular 

composition and hormonal regulation in the pubertal hypothalamus. 
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Materials and Methods 

Animal and tissue collection. Tissue dissection and RNA extraction follow the protocol in Hou 

et al., 2017 as the same samples were utilized [10]. We collected the hypothami of 48 C57BL/6 

mice at PD12, 22, 27, 32, and 37 in males and females (4-5 mice per age/sex). 

Library preparation and sequencing. RNA-seq libraries were prepared using an automated -

QuantSeq 3'mRNA-seq (Lexogen GmbH, Vienna) and Agilent NGS Workstation (Agilent 

Technologies, Santa Clara) at The Centre for Applied Genomics (TCAG) (Toronto, Canada) as 

per the manufacturer's protocol (UTRSeq). The automated QuantSeq 3’mRNA-seq library 

construction was described in detail in Hou et al., 2022 [19]. Briefly, 250 ng of total RNA 

spiked-in with ERCC Spike-In Control Mix 1 (Ambion) as per the manufacturer’s protocol was 

used to generate cDNA. cDNA was amplified with 17 PCR cycles as determined by qPCR 

analysis using the PCR Add-on kit (Lexogen). The resulting libraries were quantified with Qubit 

DNA High Sensitivity assay (ThermoFisher). Fragment sizes were analyzed on the Agilent 

Bioanalyzer using the High Sensitivity DNA assay prior to sequencing. Single-read 50-bp 

sequencing was performed at TCAG on an Illumina HiSeq2500 Rapid Run or V4 flowcell 

(Illumina, San Diego) with cycles extended to 68 bp. 
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Read processing. Reads from technical replicates were merged prior to downstream analyses. 

Fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to examine the 

quality of sequenced reads. A customized script to trim both the polyAs and adapters at the end 

of the reads [19] was used. The script implemented a “back search” strategy to account for cases 

where a mixture of adapters and polyAs were seen at the end of the reads. In addition, the first 12 

nucleotides were trimmed with Cutadapt [27] based on the manufacturer’s recommendations.  

Only reads longer than 36 bp after trimming were used for future analyses. After trimming, 

Fastqc was performed again to examine read quality, and over-represented reads, namely reads 

mapping to BC1 (brain cytoplasmic 1), were removed. Trimmed and filtered reads were aligned 

to the genome using a splice-aware aligner, STAR (version 2.5.1b), with default settings except 

“--outFilterMismatchNoverLmax 0.05” for QuantSeq [28]. Quality control (QC) of mapped 

RNA-seq reads was performed using Qualimap version 2.2.1 (Supplementary Table S1). Read 

signal was visualized with the UCSC genome browser [29, 30]. Reads were assigned to genes 

using featureCounts (version 1.5.3) [31] with parameters “ -s 1 -Q 255 -t exon -O”. Gene models 

were obtained from GENCODE M11 [32, 33]. 
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Count processing and evaluation. Counts successfully aligned to GENCODE M11 [33] were 

normalized based on ERCC spike-ins using RUVseq [34]. Genes with fewer than 5 reads were 

removed before upper-quartile normalization was completed with the 

betweenLaneNormalization() function [34]. Finally, ERCC spike-ins were used to normalize 

counts using the RUVg(), yielding the final normalized count matrix [34]. All samples were 

correlated to one another using Pearson’s correlation of all genes before being plotted with the 

ComplexHeatmap package [35]. Genes overlapping the RNA-seq and qPCR data of the same 

samples [10] were correlated using Pearson’s correlation analysis. Principal component analysis 

(PCA) of samples was performed with the “prcomp()” function [36] before being plotted with 

ggplot2 [37]. 

Differential expression analysis. Pairwise differential gene expression analysis was completed 

across ages and sexes. Differentially expressed genes were calculated using the DESeq2 R 

package [38]. Genes were considered differentially expressed if they had a false discovery rate 

(FDR)-adjusted p-value < 0.05 and an absolute-value fold-change 1.5. Sex comparisons were 

completed at each timepoint, while age comparisons within each sex were completed between 

days 12 and 22, 22 and 27, 27 and 32, and 32 and 37. 

Varimax rotation principal component analysis. Principal component analysis (PCA) is a 

dimensionality reduction technique used to reduce every individual mouse's global gene 

expression pattern into a smaller set of orthogonal vectors [36] (Ncomponents = Nmice = 48). 

Varimax rotation decreases the distance between PCs and mice by adjusting the PC axes such 

that samples will more closely align with one varimax rotated PC (vrPC) [39]. By leveraging 

vrPC scores, defined by the location of a sample of a PC axis, we identified which vrPCs are 
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associated with age, sex, and an age-by-sex interaction by completing a two-way ANOVA of 

timepoint and sex on vrPC scores. By leveraging vrPC loadings, defined by the association 

between a gene and PC, we measured which genes are represented by individual vrPCs.  

Normalized count data and PC scores were used to generate varimax-rotated PCs with the 

“varimax” function in R [39, 40]. Varimax-rotated PC loadings and scores were acquired using 

pracma [41]. A loading is a gene’s coefficient to the vrPC, while the score is a sample’s 

coefficient to a rotated vrPC [39, 40]. The association between scores, age, and sex was 

measured using two-way ANOVA. Multiple-test correction using the FDR was applied using the 

p.adjust() function in R [42]. The FDRs of the vrPCs with an associated main effect or 

interaction were plotted with ggplot2 [37]. We designated that genes with loading greater than 

three standard deviations from the mean loading are associated with a vrPC. We picked three 

standard deviations by inspecting a qqplot of loadings with the qqnorm function. Genes 

associated with a vrPC were re-ordered by the loading magnitude for downstream analysis. 
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Pathway and human RNA-seq enrichment analysis. Pathway enrichment of fused gene lists 

(e.g., PD12 vs. PD22, males and females) was completed using the ActivePathways R package 

[43]. Briefly, ActivePathways takes the p-values from different related gene lists (e.g., PD12 vs. 

PD22 - males, PD12 vs. PD22 - females) and fuses them using Brown’s extension of Fisher’s 

method [43]. Then, it computes pathway enrichment of each individual gene list and the fused 

gene list using a p-value-ranked Hypergeometric test. The resulting statistics provide pathway 

enrichments annotated to each DEG list and their integrated p-values [43]. We used the 

“Mouse_GO_AllPathways_no_GO_iea_September_01_2022_symbol.gmt” gene set database 

from (http://download.baderlab.org/EM_Genesets/), which systematically curates a gene set list 

from multiple sources (Gene Ontology, Reactome, Panther, etc.) as our pathway enrichment 

database [44]. 

Pathway enrichment for gene lists without p-values following a multivariate normal 

distribution (i.e., vrPC-associated genes, oligodendrocyte-pseudotime associated genes) was 

completed using the g:ProfileR R package using an FDR correction, with genes detected in the 

RNA-seq dataset as the custom background and with GO:BP, GO:MF, and GO:CC being 

queried [44, 45]. Here, “genes” represent oligodendrocyte-pseudotime associated genes or 

associated loadings ordered by FDR-adjusted p-value or vrPC loading, respectively. Biological 

pathways identified by integrating developmental changes across sexes were completed with 

ActivePathways [43]. 

We used the Differential Expression Enrichment Tool (DEET) to compare our age-biased 

DEGs and vrPC-associated genes to 3162 consistently reprocessed sets of DEGs derived from 

The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Consortium (GTEx), and from 

various studies within the Sequencing Read Archive (SRA) [46–50]. To test the human RNA-seq 
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DEG-set enrichment of fused gene lists (i.e., PD12 vs. PD22 male, PD12 vs. PD22 female) We 

extracted their “DEET_gmt_DE” object, which stores their DEG sets as a generic pathway-

enrichment database. We used this gene set as the pathway enrichment database using 

ActivePathways, using the same parameters as in our fused pathway enrichment. Next, we ran 

the “DEET_enrich()” function to measure which of our age-biased DEG lists and vrPC-

associated genes enriched for publicly available human DEG sets. DEET_enrich() also identifies 

DEG comparisons whose overlapping DEGS also has a correlated fold-change, suggesting that 

the shared DEGs and pathways may be under shared regulation [44]. Correlation plots were 

generated using the “DEET_enrichment_plot” with default parameters. Lastly, we enriched our 

neuron-neuroendocrine mapping age-by-sex associated genes with LepRb+ cells in the 

hypothalamus by overlapping Trap-seq+ genes from Alison et al. [51] and testing for over-

representation with a Fisher’s exact test. Pathway enrichment plots for ActivePathways, 

traditional pathway enrichment, and DEET, were completed using the “DEET_enrichment_plot” 

and “process_and_plot_DEET_enrich” functions. 

Processing of public hypothalamic scRNA-seq data. Filtered gene-barcode matrix files for the 

PD14 and two PD45 samples were downloaded from the Gene Expression Omnibus (GEO) 

series GSE132355 (P14: GSM3860745, P45-rep1: GSM3860746, P45-rep2: GSM3860747) [23]. 

Counts were processed and integrated using the “process_dgTmatrix_lists” function in scMappR 

[24], including all genes and scTransform [52] as options. Briefly, “process_dgTmatrix_lists” is 

a wrapper for Seurat V4 and scTransform [52, 53] before cell-type labeling with cell-type 

enrichment of the CellMarker [54] and Panglao [55] databases. In our preprocessing of these 

data, we used the Integration Anchors with Canonical Correlation Analysis, a rigorous 

recommended batch correction method [52, 56] because the PD14 mice were from the CD1 
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strain and the PD45 mice were from the C57BL/6J mice. While we may have lost some 

developmental signal through this rigorous batch correction [57], the major cell-type markers 

and developmental trajectories we observed would be more reliable and translatable to our bulk 

RNA-seq. 

Cells were first labeled with the cell types provided by the original authors [23]. we 

further applied the cluster labels and cell-type markers generated from 

“process_dgTmatrix_lists” [24] to provide further specificity to these cell-types. For example, 

“oligodendrocytes” contained clusters “4”, “24”, “17” and “24” which could be annotated to 

“oligodendrocyte precursors”, “developing oligodendrocytes”, and “mature oligodendrocytes”. 

Cells with a different major cell-type label (i.e., neuron vs. glia) between the original author and 

this analysis and cell-types whose markers were primarily mitochondrial genes were discarded 

for differential, proportion, and trajectory analyses. 

Age-biased cell type-specific gene expression and cell-type proportion in scRNA-seq data. 

Age-biased cell-type proportion changes were measured with Fisher’s exact-test [58]. Age-

biased genes within each cell type were measured using the Model-Based Analysis of Single-cell 

Transcriptomics (MAST) within the “FindMarkers” wrapper in Seurat [53, 59]. We filtered 

genes with an FDR-adjusted p-value < 0.05 and required the gene to be expressed in >25% of the 

cells in either age group. 
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Cell-type deconvolution. All defined cell types and all samples were used in cell-type 

deconvolution analysis. We completed RNA-seq deconvolution with DeconRNA-seq [60], 

Digital Cell Quantification (DCQ) [61], Whole Gene Correlation Network Analysis (WGCNA) 

[62], Cibersort and CibersortX [63, 64], and Cell population mapping (CPM) [65], MuSiC R 

package [26], and BayesPrism [25]. For all methods, the bulk RNA-seq dataset were the same 

RUV-seq normalized counts [34] and the scRNA-seq data were the SCTransform-normalized 

counts [52]. Cell-type proportions from the MuSic and MuSiC-NNLS methods were computed 

simultaneously with the “music_prop” function, using default parameters [26]. We then 

correlated the predicted cell-type proportion at PND12 with the cell-type proportions of scRNA-

seq data at PND14 and the predicted cell-type proportion at PND37 to the cell-type proportions 

of scRNA-seq data at PND45. We used the tool with the highest correlation to the scRNA-seq 

data, Music-NNLS, for downstream analysis [26]. For all downstream analyses, we estimated 

cell-type proportions with scRNA-seq PD14 and PD45 timepoints combined. We used 

DeconRNA-seq to calculate cwFold-changes in scMappR because it had the strongest correlation 

between predicted cell-type proportions and scRNA-seq cell-type proportions of the three 

allowed RNA-seq deconvolution methods for the scMappR tool, namely DeconRNA-seq, 

WGCNA, and DCQ [24, 60–62, 66]. We then used the cell-type proportions estimated by 

MuSiC-NNLS to assign genes to cell types because the cell-type proportion filter of gene–cell-

type assignment can use any deconvolution method [24, 26, 60]. The association between cell-

type proportion, sex, and age was measured with two-way ANOVA. 
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Cell-type specificity of bulk differentially expressed genes. We used scMappR [24] to generate 

a signature matrix from the scRNA-seq data in Kim et al., 2020 [23] by using the 

“generes_to_heatmap” function in conjunction with our previously labeled cell types. We then 

calculated cell-weighted Fold-Changes (cwFCs) for genes associated with varimax-rotated PC 16 

with the “scMappR_and_pathway_analysis” function before sorting each DEG into the cell type 

driving it with the “cwFoldChange_evaluate” function [24]. 

We next used scMappR to assign genes to their cell type of origin based on the 

differential expression of the genes between the conditions of interest in a specific cell-type. To 

calculate the cell-weighted fold-change statistic, we inputted the bulk fold-change from PD12 

and PD32, as these timepoints have the largest distance in the varimax-rotated PC 16.   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.562121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.12.562121
http://creativecommons.org/licenses/by/4.0/


16 
 

Cell-type trajectories of scRNA-seq data. Cell-type trajectories were measured in 

oligodendrocytes (oligodendrocyte precursors [OPCs], developing oligodendrocytes [DOs], and 

mature oligodendrocytes [MOs]) using the “slingshot” R package [67] with default parameters 

other than setting the “extension” parameter to “n”. The starting cell type in each trajectory was 

set as the most “PD14-biased” cluster, namely the “Oligodendrocyte precursor”. We analyzed 

which genes had expression patterns associated with pseudotime trajectories using the 

“tradeSeq” [68] R package. We used the minimum number of allowable knots from the 

“evaluateK” function to fit the negative-binomial generalized additive model with the “fitGAM” 

function [68]. Then, we tested the association between genes and trajectories with the 

“associationTest” function [68], and corrected p-values with the “fdr” correction. Genes with an 

FDR-adjusted p-value < 0.05 and a fold-change > 1.5 remained for downstream analysis. We 

used the “predictSmooth” [68] function paired with the scale function to generate columns for 

heatmaps. We identified genes based on their overlap with mouse TFs from ENCODE [69], 

puberty GWAS genes [1], and genes associated with varimax-rotated PC 16. We plotted the 

expression of these genes along pseudotime with the Pheatmap function.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.562121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.12.562121
http://creativecommons.org/licenses/by/4.0/


17 
 

Results 

Global transcriptomic view of the postnatal mouse hypothalamus across the pubertal 

transition in males and females. To track the transcriptomic dynamics of the postnatal mouse 

hypothalamus, we measured genome-wide gene expression using 3’UTR profiling in male and 

female C57BL/6J mouse hypothalamus samples collected at five post-natal days (PDs) 

corresponding to early development (day 12), pre-pubertal (day 22), pubertal (day 27 in males, 

and day 32 in females), and post-pubertal (day 37) stages (N = 4-5 per sex/age) (Figure 1A). 

Specially, we applied an automated, high-throughput RNA-seq platform to complete 3’UTR 

sequencing of all mice in a single experimental batch.  

We first investigated the gene expression of four genes whose gene expression and 

expression patterns are well characterized in the hypothalamus, namely Mkrn3, Cartpt, Dlk1, and 

Pomc, and verified that our analyses captured these previously reported expression dynamics in 

the hypothalamus [13, 70–73] (Figure 1B, C). We next leveraged 183 genes where we completed 

qPCR in the same mice [10] as in our RNA-seq data to correlate the gene expression of every 

gene in each sample between the two technologies. Samples were highly correlated between the 

RNA-seq and qPCR data based on these 183 overlapping genes (R2
 mean = 0.698, sd = 0.0270) 

(Supplementary Figure S1A). As previously shown with qPCR of selected puberty-related genes, 

PCA of the RNA-seq data revealed the greatest overall change in gene expression between PD12 

and all other timepoints in both male and female hypothalamus samples (Figure 1C). Lastly, we 

demonstrated that every sample in our 3'UTR-seq data is highly correlated to one another, with 

Pearson's correlation coefficient ranging from 0.89 to 0.99 between samples (0.98-0.99 between 

replicates) (Supplementary Figure S1B).  
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Pairwise differential gene expression across pubertal development reflects the 

hypothalamic cellular composition dynamics and puberty-relevant transcriptional control. 

To investigate the transcriptomic dynamics in the hypothalamus throughout pubertal 

development, we identified DEGs between the studied age groups in male and female mice 

separately, as well as DEGs between sexes at each timepoint (FDR adjusted p-value < 0.05 and 

absolute fold-change > 1.5). We denoted age-biased DEGs with a positive fold-change to have 

higher expression in the later timepoint in development (e.g., PD12 vs. PD22, PD22 is greater). 

When comparing sexes, we denoted DEGs with a positive fold-change to have higher expression 

in females than males. Our RNA-seq data and results of differential analysis can be visualized 

and downloaded interactively using our Shiny App (https://wilsonlab-sickkids-

uoft.shinyapps.io/hypothalamus_gene_shiny/). 

We found that most DEGs are established before the physical signs of pubertal onset (i.e., 

vaginal opening in females, between separation in males) between PD12 and PD22, with 32% 

(511/1560) of DEGs overlapping between sexes (Figure 2A), with the fold-changes of all 1560 

genes being highly correlated (R2 =0.905). Accordingly, we considered the transcriptomic 

differences between PD12 and PD22 to be conserved across sexes. We interrogated these DEGs 

using ActivePathways, a method that integrates the p-values of DEGs in males and females to 

identify enriched pathways in a sex-aware manner [43]. Upregulated DEGs enriched for 

pathways related to glial-cell development, particularly myelination in males (Figure 2B). While 

the transition from oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (MOs) 

has been characterized in post-pubertal mice [74], oligodendrocyte development before and 

during puberty is not well characterized. Downregulated DEGs tended to enrich pathways 

involved in cell differentiation, cell morphogenesis, and proliferation (Figure 2B), likely 
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reflecting how the brain, including the hypothalamus, doubles in volume between PD12 and 

PD20 [75]. 

We detected 317 DEGs in post-pubertal female timepoints, however this transcriptomic 

signature was not found in males (PD32 vs. PD37) (Figure 2A). We identified several 

downregulated puberty-relevant neuropeptides, including Tacr1 [76] and Sst [77]. Upregulated 

DEGs included genes encoding transcriptional regulators that regulate genes involved in the 

hypothalamus-pituitary-gonadal axis (e.g., GnRh, Lhb, Ar, and Pgr) such as Cited2 [78], Fgfr2 

[79], Lcor [80], and Sp1 [81] (Supplementary Figure S2A, B). We reasoned that the increase in 

the expression of transcriptional regulators paired with a decrease in neuropeptide expression 

after puberty might reflect the well-documented release and return of transcriptional repression 

upon activation of pubertal development [12]. Interestingly, female DEGs that decrease in 

expression before vaginal opening (PD12 vs. PD22) are overrepresented in female DEGs that 

increase after puberty (PD32 vs. PD37; 23 genes, FDR-adjusted p-value = 5.06 x 10-12). Pathway 

analysis of these overlapping genes enriched for “transcriptional co-repression activity” (Skil, 

Wwtr1, Cited2) (3 genes, FDR-adjusted p-value = 0.044) and pathways involved in cell and 

tissue development (Supplementary Figure S2C, Supplementary Figure S3). Consistent with the 

hypothesis of female release of hormonal repression, females contained 8 upregulated DEGs 

before puberty (PD12 vs. PD22) mapping to the “response to peptide hormone” gene ontology (8 

genes, FDR-adjusted p-value < 0.01), including Th, which expresses thyroid hormone and 

regulates the hypothalamus-pituitary-adrenal axis, and Agrp, which modulates puberty with 

leptin (Supplementary Figure S3) [82].  

We identified a relatively small group of DEGs spanning the ages when physical signs of 

puberty emerge (PD22 vs PD27: number of DEGs in males (Nmale) = 2, number of DEGs in 
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females (Nfemale)=12 and PD27 vs PD32: Nmale = 6, Nfemale = 22). Strikingly, 5 of the 6 DEGs 

found in males between PD27 and PD32 were puberty-relevant neuropeptides, including 

downregulated Cholecystokinin (Cck) [83], and upregulated CART peptidase (Cartpt) [71], Pro-

melanin concentrating hormone (Pmch) [84], Orexin (Hcrt) [85, 86], and Proopiomelanocortin 

(Pomc) genes [73] were upregulated (Figure 1C, Figure 2C, D). Hcrt [85, 86], Oxytocin (Oxt) 

[87], and Axl [88], whose knockout leads to pubertal delay in mice, are all differentially 

expressed during puberty in female mice and peak in expression at PD27 upon vaginal opening 

(PD22 < PD27, PD27 > PD32; Figure 2). Accordingly, the relatively few DEGs in this age 

window (PD22 vs PD27, PD27 vs PD32) consist of puberty-relevant neuropeptides that peak in 

expression during the average age of pubertal onset in both males and females. 

Lastly, unlike the PD12 to PD22 age window, we found relatively few sex differences at 

any timepoint (Nmale=41, Nfemale=22), with almost half of all sex-biased DEGs at any timepoint 

mapping to a sex chromosome (chrX=5, chrY=21) (Supplementary Figure S4A,B). While there 

are fewer sex differences than DEGs across timepoints, four puberty-relevant genes are sex-

biased. Specifically, Tcf7l2 [89] is female-biased at PD27, and Etnppl, Cryab [20], and Hcrt [85, 

86] are male-biased at PD32 (Supplementary Figure S4C).  

Age-biased differentially expressed genes compared to human RNA-seq identifies 

conserved modules of development and post-natal cellular growth. We then tested whether 

the one-to-one orthologs these up- and down-regulated DEGs between PD12 and PD22 related to 

comparable DEGs in human RNA-seq datasets using the Differential Expression Enrichment 

Tool (DEET) [46]. Briefly, DEET stores the DEGs from 3162 uniformly processed and analyzed 

comparisons from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Consortium 
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(GTEx), and 142 studies within SRA, including hundreds of brain-related comparisons  [46–48, 

90].  

Upregulated DEGs between PD12 and PD22 enriched for comparisons related to cellular 

composition, glioma development, and comparisons investigating biological processes regulated 

by the hypothalamus (e.g., Body-mass-index, body temperature, blood pressure) in the pituitary 

gland in GTEx (Supplementary Figure S5A) [47, 48]. In accordance with the traditional pathway 

enrichment, we found that many of the genes driving the enrichment of the GBM and pituitary 

studies are related to myelination (Supplementary Figure S5B-D). Similarly, gene expression 

differences between oligodendrogliomas vs. astrocytomas [91] were strongly correlated DEGs 

(up- and down-regulated) to our PD12 vs. PD22 comparison in males (R2 = 0.400, FDR = 9.07 x 

10-16) (Supplementary Figure S6), consistent with our observation of the activation of 

oligodendrocyte-growth genes. Downregulated DEGs show strong enrichment of studies related 

to cellular growth and differentiation and drug treatments of neuronal stem cell lines, which may 

also be related to the substantial growth of the mouse brain between PD12 and PD22 

(Supplementary Figure S5E).  

DEET also identified that the PD12 vs. PD22 age-biased DEGs in our mice were 

significantly associated with DEGs comparing infant and child males in the pre-frontal cortex 

(PFC), suggesting that our study in mice captured a set of genes related more generally to 

mammalian postnatal brain development (119 genes, FDR = 8.87 x 10-18, R2 = 0.723, FDR = 

1.42 x 10-17) [92] (Figure 2E-G, Supplementary Figure S6B). Enriched biological pathways for 

genes overlapping with infant vs. child in the PFC were primarily related to neuron 

differentiation (Supplementary Figure S6B). Additionally, we found that transcription factors 

and chromatin regulators (e.g., DNMT3A, YBX1, SOX11, SOX4, TOP2A, and TOP2B) were 
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younger-biased in both species, while MAL had the strongest shared increase in expression in 

both mice and humans. The conserved increase in MAL may also reflect the sex-biased increase 

in white matter found in humans during postnatal development and adolescence [93]. In contrast, 

the 30 shared DEGs between Adolescent vs. adult males in the PFC were also highly associated 

to our PD12 vs. PD22 comparison (R2 = 0.878, FDR = 1.38 x 10-16) [92] (Supplementary Figure 

S6C) were involved in calmodulin binding and chemical synaptic transmission (Supplementary 

Figure S6C). Together, these results show that a substantial proportion (140/1171) of the genes 

involved in early postnatal developmental programming in the mouse hypothalamus is conserved 

across species and tissue. 
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Human puberty genome-wide association study candidate genes are differentially 

expressed before and after puberty in the hypothalamus. We investigated if the DEGs we 

measured before and after pubertal development overlapped with a set of candidate human genes 

associated with the age of menarche in females and voice breaking in males (i.e., pubertal 

timing) from GWAS analysis of the U.K. Biobank [1, 5, 10] to further link our transcriptional 

dynamics to puberty in humans (Supplementary Figure S7). Interestingly, we found that DEGs 

detected before and after the physical onsets of puberty in males and females and after the onset 

of puberty in females, but not during puberty in either sex were overrepresented within these 

GWAS genes (PD37-female > PD32-female: FDR = 0.00520, and odds-ratio = 2.88, PD12-

female > PD22-female: FDR = 0.0423 and odds ratio 1.72, PD12-male > PD22-male: FDR = 

0.0685 and odds ratio 1.54) (Supplementary Figure S7). Moving from GWAS genes, rare-disease 

genes that lead to precocious or delayed puberty, we found that three genes implicated in 

hypogonadotropic hypogonadism (HH) [4] were differentially expressed between PD12-PD22. 

Specifically, Il17rd is downregulated in males and females (PD12 vs. PD22), Sema3e is 

downregulated in females but not males, and Rab3gap1 is upregulated in males and females 

(PD12 vs. PD22) (Supplementary Figure S7). Briefly, Il17rd is a member of the interleukin-17 

receptor protein family and is important in regulating growth through fibroblast growth factor 

and MAPK/ERK signaling [94]. Sema3e is a semaphorin, which acts as axon guidance ligands 

and organogenesis [95]. Rab3gap1 is a member of the Rab3 protein family where it’s involved in 

endoplasmic reticulum structure and has also been implicated in the proper development and 

migration of neurons [96]. Il17rd, Sema3e, and Rab3gap1 were not differentially expressed at 

other timepoints. Together, our overrepresentation of pre- and post-pubertal DEGs with human 

puberty-GWAS genes, as well as our overlap of pre-pubertal DEGs with HH disease genes, 
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suggests that the DEGs detected before and after puberty may be indirectly involved in pubertal 

regulation in both mice and humans.  

Genes expressing metabolic and reproductive neuropeptides display an age-by-sex 

interaction in gene expression along the pubertal transition. To identify genes whose 

expression is conditional on both age and sex, we leveraged the varimax rotated principal 

component analysis (vrPCA) (Figure 3A, See Materials and Methods for details). We were 

particularly interested in vrPCs associated with an age-by-sex interaction because of the known 

sex bias in pubertal onset and development in both mice and humans. As such, puberty-relevant 

genes and pathways would have slightly offset or divergent age-biased gene expression patterns. 

Accordingly, four vrPCs were associated with age, one with sex, and one with an age-by-sex 

interaction (Figure 3A). The scores of the vrPC conditional on age and sex, vrPC 16, were 

dynamic between PD12 and PD27 and showed sex bias at PD32 (Figure 3B, C). For simplicity, 

we denote the genes associated with vrPC16 as age-by-sex associated genes. 

In total, we identified 129 age-by-sex associated genes, 66 of which were differentially 

expressed between PD12 and PD22 in males or females (Figure 3). Interestingly, the four genes 

with the strongest association with an age-by-sex interaction based on their vrPC loading are all 

hormone-producing genes that have been linked to pubertal regulation or dynamics: Pmch, Hcrt, 

Oxt, and Trf [84, 85, 97, 98] (Figure 3D). While these genes with top loadings shared similar 

expression patterns (i.e., a secular increase in gene expression from PD12-PD27 before diverging 

by sex), 21 genes, including puberty-regulating Cbx6 [12], a member of the Polycomb repressive 

complex, decrease in gene expression before diverging by sex (Figure 3D). Pathway enrichment 

of age-by-sex associated genes were enriched for hormone activity (precision = 0.100, FDR = 
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1.60 x 10-4), negative regulation and transmission of nerve impulse (precision = 0.167, FDR = 

0.0248), and neuron and oligodendrocyte development pathways, including “neuron part” 

(precision = 0.339, FDR = 2.99 x 10-9) and “myelin sheath” (precision = 0.132, FDR = 8.82 x 10-

8) (Figure 3E).  

Likewise, DEET analysis of age-by-sex associated genes most strongly enriched for 

human DEG comparisons influencing glial cell growth, namely comparing glioblastoma 

subtypes and LGG drug treatments in the TCGA database, and neuronal-controlled disorders in 

relevant tissues, namely sporadic amyotrophic lateral sclerosis in motor neurons and individuals 

with schizophrenia in the adrenal glands from the GTEx database (Supplementary Figure S8A). 

Interestingly, unlike in PD12 vs. PD22 comparisons, these age-by-sex associated genes also 

enriched for many relevant comparisons in the hypothalamus, including age and body mass 

index (BMI) from the GTEx database (Supplementary Figure S8B). The genes driving the 

enrichment of these hypothalamus comparisons were predominantly puberty-relevant hormonal 

neuropeptides with a high vrPC16 loading, namely OXT, AVP, HCRT, and PMCH 

(Supplementary Figure S8C,D).  

Recently, spatially resolved single-cell transcriptomics have been performed along the 

pubertal transition of the female rat arcuate nucleus [16]. They identified three gene-expression 

modules associated with the pubertal transition. Broadly, they categorized genes associated with 

these modules as: module 1) glial cell enhancement and neuron proliferation in response to 

estradiol, module 2) hormone secretion, and module 3) neuronal differentiation and signal 

transmission [16]. The age-by-sex associated genes we identified were over-represented in all 

three modules (module 1:  p-value = 2.23 x 10-13, odds-ratio = 6.80, genes = 29; module 2: p-

value = 0.0506, odds-ratio = 1.97, genes = 11; module 3: p = 4.11 x 10-11, odds-ratio = 4.22, 
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genes = 38). Together, genes associated with an age-by-sex interaction across puberty are 

involved in hypothalamic hormonal activity, neuronal development, and oligodendrocyte 

development. 

Cellular composition of the postnatal hypothalamus. The hypothalamus exhibits considerable 

cellular heterogeneity reflecting its multimodal functions [21, 23]. To characterize the cell type-

specific underpinnings of pubertal development in the hypothalamus, we integrated scRNA-seq 

in the hypothalamus with our temporal bulk RNA-seq. We leveraged data from Kim et al., 2020, 

which contained scRNA-seq from the mouse hypothalamus before and after puberty (PD14 and 

PD45) [23]. We incorporated the cell-type labels provided by Kim et al., 2020 (hypothalamic 

neurons, oligodendrocytes, tanycytes, ependymal cells, astrocytes, microglia, and endothelial 

cells) [23] with cell-type identification analysis of clusters measured with Seurat [53] (see 

Materials and Methods for Details). Our cluster analysis further subdivided oligodendrocytes 

into OPCs, DOs, and MOs. It also subdivided neurons into neurons and neuroendocrine cells 

(Figure 4). 

We first investigated hypothalamic cell-type proportion dynamics across pubertal 

timepoints. When investigating the scRNA-seq data alone, we found that oligodendrocytes were 

the most dynamic cell types across puberty (Figure 4B), with MOs increasing in proportion over 

time (PD14 < PD45) (Bonferroni-adjusted p-value = 1.90 x 10-106, fold-change = 8.43), and 

OPCs (Bonferroni-adjusted p-value = 3.94 x 10-99, fold-change = -3.07) and DOs (Bonferroni 

adjusted p-value = 8.18 x 10-56, fold-change = -4.65) decreasing in proportion over time (PD14 > 

PD45). There was also a lesser but significant increase in endothelial (Bonferroni-adjusted p-
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value = 1.09 x 10-54, fold-change = 1.856) and neuroendocrine cell (Bonferroni adjusted p-value 

= 4.81 x 10-7, fold-change = 1.52) proportions over time. 

Next, we used estimated hypothalamic cell-type proportions in our bulk RNA-seq data 

and RNA-seq deconvolution, mapping cell-type proportion changes across our developmental 

trajectory. Benchmarking RNA-seq deconvolution in the hypothalamus is important because it 

has both highly similar cell types (e.g., neuron vs. neuroendocrine) and highly distinct cell types 

(neuron vs. endothelial cell) amongst its many total cell types. To find the most reliable RNA-

seq deconvolution tool in our system, we compared the cell-type proportions of nine different 

RNA-seq deconvolution tools [25, 26, 60–65] to the scRNA-seq data (See Materials and 

Methods for Details), where we found that the NNLS-MuSiC tool was the most accurate method, 

a method that has previously performed well on brain tissue [99] (Supplementary Table S2). As 

in the scRNA-seq data, we found that MOs increase in cell-type proportion until puberty, and 

OPCs (p-value = 3.68 x 10-11) and DOs decrease in cell-type proportion until puberty (Figure 4C, 

Supplementary Figure S9). These results show that oligodendrocytes expand from OPCs into 

MOs during puberty. 

Age-by-sex associated transcriptional dynamics map to genes involved in neuropeptide 

activation and oligodendrocyte maturation. We next used these scRNA-seq data to assign 

age-by-sex associated genes to their cell type of origin using scMappR [24], using both the PD14 

and PD45 timepoints in the scRNA-seq data [23]. Overlapping the 129 cell type-specific age-by-

sex associated genes with cell type-specific DEGs from the scRNA-seq data [59] (PD14 vs. 

PD45) yielded a set of high-confidence cell-type specific genes (n=67), whose gene expression 

patterns are conditional on both age and sex (Figure 4D). Four high-confidence genes with the 

top age-by-sex loadings mapped to neurons, namely Pmch, Hcrt, and Oxt, while Trf mapped to 
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oligodendrocytes [74] where it may act as a cofactor for iron in myelination [100]. Dlk1 and 

Gria1, which have previously been implicated in pubertal disease and ovulation rate respectively 

[101, 102], mapped to neuroendocrine cells and neurons (Figure 4D, Supplementary Figure S10). 

Next, we investigated whether the neuron- and neuroendocrine-mapping age-by-sex associated 

genes overlapped with translated mRNA in lepRb+ neurons in the hypothalamus [51] using 

Trap-Seq because leptin is a functional activator of pubertal initiation [20, 71, 82, 103, 104]. 

Interestingly, 21 of our neuron- and -neuroendocrine-mapping genes were enriched in lepRb+ 

neurons (p-value = 4.33 x 10-9, odds ratio = 5.96) (Supplementary Figure S11). These genes 

included Cartpt, Dlk1, and Sod1, which can all influence pubertal timing or fertility [71, 101, 

105, 106], showing that many of our neuronal-mapping genes containing puberty-relevant 

transcriptional dynamics are expressed in cell-types that are responsive to known pubertal 

activators. Overall, genes with transcriptional dynamics conditional on age and sex were cell 

type-specific, puberty-relevant, and often related to neuron and oligodendrocyte development.  
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Lineage reconstruction of oligodendrocytes links pubertal genes to cellular 

development. We observed an active transition of oligodendrocytes from OPCs into MOs in the 

postnatal hypothalamus (Figure 2B, D, Figure 4), and detected clear manifold from OPCs to DOs 

and MOs in the reprocessed scRNA-seq data (Figure 4A). We next set to investigate 

transcription factors (TFs), age-by-sex associated genes, and puberty-GWAS genes that map to 

oligodendrocyte expansion. By using Slingshot, a bioinformatic package that identifies cellular 

lineages across cell types [67], we measured a pseudotime trajectory from OPCs to MOs (Figure 

5A). We then applied the tradeSeq [68] pipeline and the “Association Test” to identify genes that 

are associated with this trajectory (FDR < 0.05, fold-change > 1.5). 

Overall, we found 1294 genes to be associated with pseudotime and found that these 

oligodendrocyte-pseudotime genes overrepresented puberty-GWAS genes (FDR = 4.6 x 10-3
, 27 

genes). Oligodendrocyte-pseudotime TFs and puberty-GWAS genes whose expression peaks in 

in DOs include genes involved in thyroid hormone response (Nkx2-1 and Thra) and cell 

differentiation and development (Sox2, Tcf7l2, Egr1, Hes1) (Figure 5B,C). Interestingly, thyroid 

hormone, which can impact pubertal timing and function [14], also plays a direct role in OPCs 

expanding into MOs [107], which may explain the transcriptional activity of Thra in DOs. Most 

TFs and candidate GWAS-associated genes peaked in expression in OPCs. These genes, while 

potentially involved in puberty, may be involved in the differentiation of many cell types 

including those in the hypothalamus. For example, Sox2 peaks in expression at OPCs and 

functions as a key marker for cellular differentiation in general [108, 109], and mutations in Sox2 

lead to developmental abnormalities throughout the entire body, including HH [110–112]. 

Accordingly, we hypothesize that many of these TFs and puberty-GWAS genes would be 
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expressed during the differentiation of many cell types, not just in hypothalamic oligodendrocyte 

expansion. 

We next overlapped the age-by-sex associated genes that mapped to oligodendrocytes 

with the 1294 oligodendrocyte-pseudotime genes and found that the gene lists significantly 

overlapped (FDR = 4.6 x 10-3, 58 genes). Of the 58 overlapping genes, we found an even 

distribution of genes mapping to OPCs, DOs, and MOs (Figure 5D). These genes included core 

oligodendrocyte stage-specific regulated proteins such as Mbp, Mobp, Mal, and Olig1 [113], 

puberty and HPA-linked Thra, melatonin receptors Mt1 and Mt2, and Pmch (Figure 5D). Three 

of these genes, namely Sox2, Chd7, and Stub1, can lead to HH in humans [4]. Chd7 works with 

Sox10 to promote myelination by co-occupying and promoting the expression of myelinogenic 

genes [114], and Stub1 has a less studied role in oligodendrocytes. Two transcriptional regulators 

whose mutations lead to both HH and hypomyelination are Polr3a and Polr3b [115]. We found 

that other members of the polymerase 3 complex, namely Polr3e and Polr3h, were identified as 

oligodendrocyte-pseudotime genes (Supplementary Figure S12). Together, oligodendrocyte-

pseudotime genes previously detected as puberty-GWAS genes tend to be involved in the 

differentiation of many cell types, while oligodendrocyte-pseudotime genes overlapping with 

age-by-sex associated genes suggest a more varied relationship between oligodendrocyte 

expansion and puberty. 
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Discussion 

The hypothalamus is responsible for pubertal initiation and is a component of the 

network that modulates pubertal timing. The regulation of puberty (onset and progression) is a 

dynamic, non-linear process, making it imperative to examine multiple timepoints before, 

during, and after puberty. Puberty is also inherently sex-biased in initiation, regulation, and 

manifestation, resulting in sex also being an important variable to include when studying 

puberty. Combining our bulk RNA-seq spanning of 5 timepoints in male and female mice with 

publicly available data from GWAS of pubertal timing; lists of genes that, when mutated, cause 

absent, delayed or precocious puberty; and hypothalamic scRNA-seq of pre- (PD14) and post-

pubertal (PD45) mice [23] enabled us to replicate previous findings and identify new genes and 

cell-types involved in hypothalamic regulation of puberty. 

Transcriptome-wide gene expression dynamics in the hypothalamus reflect hormonal 

activation and epigenetic control. Our neuron- and neuroendocrine-mapping transcriptomic 

dynamics reflected previously reported mechanisms of pubertal regulation while implicating new 

genes involved in puberty. Differential gene expression in male and female mice during puberty 

(i.e., PD22-PD27, PD27-PD32) primarily displayed differences in genes coding for pubertal and 

metabolic hormones and neuropeptides, namely Oxt, Hcrt, Cartpt, Avp, Cck, Pmch, and Pomc 

[71, 73, 83–85, 87, 116], with all these genes other than Cck and Pomc also displaying an age-

by-sex interaction. Transcriptional regulators in females decrease in expression before puberty 

and increase in expression afterward while peptide hormone-producing genes such as Hcrt, Oxt, 

and Th, peak in expression at PD27 in females. In males, the decrease in transcriptional 

repression is less pronounced and these genes peak in expression at PD32.  
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Inactivating mutations in Hcrt leads to narcolepsy type-one, which has a high association 

with precocious puberty in both male and female humans [86, 117]. Orexin, produced by Hcrt, 

has been shown to have an inhibitory effect on Gnrh in ovariectomized female mice [118]. In 

male rats, orexin injections are associated with a decrease in Gnrh, Kiss1, NPy expression paired 

with a decrease in reproductive behaviors [119]. Despite these findings, the mechanistic and 

potentially sex-specific role of orexin on pubertal inhibition remains unclear [120]. Oxt encodes 

oxytocin and plays an important role in parturition, lactation, social behavior, and parental 

behavior. Oxytocin may influence pubertal activation in a number of ways, such as influencing 

the estrogen receptor in female mice [121], interacting with Prostaglandin E2 in astrocytes to 

stimulate GnRH neuron in female mice [87], and through direct stimulation of spermatogenesis 

in the mouse testes. This mechanism is also bi-directional, as oxytocin levels during puberty 

influence adult behavior in a sex-specific manner [121]. 

 The inverse relationship between epigenetic repressors and hormonal activation during 

puberty in females is consistent with the epigenetic regulation of hypothalamic hormones during 

puberty, which is known to be driven by the release of transcriptional repression in female rats 

[9, 12]. Interestingly, we did not find this pattern in males, however given the peak of Oxt, Hcrt, 

and Th were found at PD32, perhaps these genes would have increased in expression at a later 

timepoint in males (e.g., PD42). Lastly, we found that neuron- and neuroendocrine-mapping 

genes associated with an age-by-sex interaction tended to be previously implicated in puberty 

(Figure 4, Figure 5D). These findings provide further support to previously implicated pubertal 

regulators and suggest that lesser-known candidate genes identified using the same approaches 

are involved in same regulatory network [122]. 
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Three puberty-relevant, neuronally-mapped age-by-sex associated genes highlighted in 

this study that have been not as thoroughly studied as the neuropeptide producing genes 

mentioned above were Gria1, Dlk1, and Cartpt. Gria1 is a primary receptor of glutamate, a 

neurotransmitter that directly messages GnRH neurons [2, 102]. Recent studies in female rats 

show that Gria1, along with a network of genes implicated in the epigenetic control of puberty, 

is under the shared regulation of Kdm6b at puberty in the hypothalamus [11]. Genetic variants in 

Dlk1 are associated with CPP and Dlk1 is highly associated with age of menarche through 

GWAS [1, 72, 105, 123]. While not evaluated experimentally, Dlk1’s ability to regulate Notch 

signaling has been a proposed mechanism to control pubertal timing. Our lab previously 

completed Dlk1 expression dynamics with the same RNA using qPCR [10] in multiple different 

tissues, finding the same pattern of age-biased gene expression between PD12 vs. PD22 

expression in the male and female, sex bias across puberty in the pituitary gland, and a decrease 

in expression over time in the testis and ovaries [10], further suggesting the cell- and tissue- 

specific roles of Dlk1 in pubertal regulation. Lastly, Cartpt plays a core role in the function of 

CART neurons, a neuronal subtype that receives signals from leptin and alters pubertal timing in 

female mice [71]. These genes’ influence on pubertal timing and regulation in the hypothalamus, 

as well as their impact of sexual differentiation in the rest of the HPG axis could increase our 

understanding of the mechanisms of development and sex differences. 

Hypothalamic expansion of oligodendrocytes across puberty may be an important 

precursor to pubertal initiation. Previous studies have reported that oligodendrocyte 

maturation and myelination can continue into adolescence [124]. However, this expansion has 

not previously been observed in the hypothalamus specifically. Furthermore, the functional role 

of oligodendrocytes in regulating hypothalamic hormones involved in pubertal regulation 
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remains an open question [2].  When we integrated our bulk RNA-seq data with publicly 

available scRNA-seq data [23] in the hypothalamus to estimate cell-type proportions in our 

samples, we discovered a substantial expansion of OPCs into MOs before and during puberty 

(Figure 4B, C). Puberty-GWAS genes and oligodendrocyte-mapping age-by-sex-associated 

genes were overrepresented in oligodendrocyte-pseudotime genes (Figure 5C, D), linking 

oligodendrocyte development to pubertal regulation in both sexes. Many GWAS hits were 

enriched in OPCs and are involved in stem-cell differentiation in many cell types [125, 126]. In 

contrast, age-by-sex and oligodendrocyte-pseudotime associated genes were expressed at all 

stages of pseudotime expansion and included hormone receptors, core oligodendrocyte markers, 

and HH disease genes (Figure 5D). For example, Thra (thyroid hormone receptor alpha) was 

primarily expressed in DOs. Th also regulated oligodendrocyte expansion in other models [107] 

and in our bulk RNA-seq, Th increases in gene expression before puberty (PD12 < PD22) in 

female mice. Recently, oligodendrocytes were suggested to be regulated by the HPA axis to 

facilitate neuroplasticity in major depressive disorder [127], and perhaps a similar phenomena is 

occurring to facilitate enhanced pubertal neuroplasticity [128]. The identified age-by-sex pattern 

of Th gene expression associated with oligodendrocyte expansion may reflect that 

oligodendrocytes are highly responsive to sex hormones in a sex-specific manner [129]. For 

example, progesterone or dihydrotestosterone treated oligodendrocytes increased and decreased 

proliferation respectively in both male and female mice, however the effect was more extreme in 

females [129]. Additionally, OPCs show substantial sexual dimorphism in neonatal rats, where 

female OPCs have stronger transcriptomic responses involved proliferation and migration, while 

male OPCs have a stronger transcriptomic response involved in differentiation and myelination 

[130]. Although we identified an enrichment of age-by-sex associated genes mapping to 
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oligodendrocyte development (above and Figures 4, 5), we did not observe sexual dimorphism in 

oligodendrocyte proportions with RNA-seq deconvolution. Thus, our data lead us to question if 

proper oligodendrocyte development influences pubertal development by providing the 

necessary support for the hypothalamic increase in synaptic density and neuronal activation [125, 

126] in both sexes.  

Future Directions. Future functional work can be separated into expanding our findings into 

other tissues, investigating the role of pubertal candidate genes identified in this study, and 

elucidating whether oligodendrocyte expansion plays an active role in influencing pubertal 

initiation. Firstly, while puberty is initiated in the hypothalamus, it’s crosstalk between other 

organs, particularly the pituitary gland and gonads, are key to understanding pubertal regulation 

overall. We previously investigated sexual dimorphisms across the pubertal transition within the 

same mice in the pituitary gland and found more evidence of sex-biased gene expression in the 

pituitary than the hypothalamus, suggesting that the pituitary may have key role in sex 

differences in puberty [19]. Integrating our current RNA-seq data with that from the pituitary 

gland and gene expression patterns in the gonads may elucidate regulatory crosstalk between 

organs [131]. Secondly, investigating differences in transcriptional dynamics, chromatin 

accessibility, and cell-type composition in mouse models of puberty-relevant candidate genes 

such as Hcrt, Oxt, Dlk1, Cartpt, or Gria1 across ages and sexes may elucidate what aspects of 

pubertal control these candidates may regulate. Lastly, mouse models inhibiting oligodendrocyte 

expansion could be leveraged to study the pubertal transition further. For example, myelin 

regulatory factor (Mrf) blocks the expansion of OPCs into MOs; however, mice with an Mrf 

knockout die in their third postnatal week, at the same time as we detected OPC expansion in the 

hypothalamus [132]. Recently, Steadman et al., 2020 developed an inducible Mrf knockout that 
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blocks OPC expansion into MOs [133]. Adapting this model to pre-pubertal mice may elucidate 

if oligodendrocyte expansion influences pubertal initiation. However, this model would not be 

hypothalamus-specific [133]. To our knowledge, no inducible, hypothalamus specific Mrf 

knockout exists. 

Limitations. One of the limitations of our study is that we investigated the entire hypothalamus 

rather than sorting the hypothalamus into the paraventricular and arcuate nucleus.  Although this 

is a limitation, the study design allowed us to maximize the number of timepoints and biological 

replicates while including both sexes. In addition, the scRNA-seq utilized from Kim et al., 2020 

contained two timepoints close to puberty, PD14 and PD45 [23]. However, their mice were from 

two different strains: PD14 mice were CD1 (male and female) and PD45 mice were C57Bl/6J 

(male) [23]. As such, we integrated these datasets using stringent batch correction [56]. 

Additionally spatial resolution is important to understand hypothalamic resolution [16, 134], 

however neither of the bulk RNA-seq or scRNA-seq data in this study is spatially resolved. 

Conclusion. In conclusion, we found that cell type- and sex-aware transcriptomic dynamics in 

the pubertal hypothalamus are associated with well-established neuropeptide activation and 

regulation, with the additional highlight of potentially relevant genes including Hcrt, Oxt, Dlk1, 

Gria1, and Cartpt. We discovered that oligodendrocyte expansion occurs in the hypothalamus 

before and in parallel with early pubertal initiation and that many genes associated with 

oligodendrocyte expansion relate to pubertal timing and regulation. Our data and interactive 

Shiny App will allow researchers to visualize the transcriptionally dynamic genes in the 

hypothalamus and pituitary gland, providing a baseline in postnatal gene expression for the 

broader scientific community. Together, these data support known mechanisms in pubertal 

control, provide further insights into sex effects on puberty and suggest novel genes and 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.562121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.12.562121
http://creativecommons.org/licenses/by/4.0/


37 
 

mechanisms involved in the development of secondary sex characteristics and regulation by the 

hypothalamus. 

Data availability 

 RNA-seq data generated for this chapter is available at ArrayExpress (E-MTAB-12340).  
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Figures and Tables 

 

Figure 1. Overview of the hypothalamic mouse transcriptome at five timepoints across 

pubertal development in males and females. A) Schematic of samples taken across pubertal 

development. Whole mice hypothalami were dissected at postnatal days (PD) 12, 22, 27, 32, and 

37 in both male and female C57BL6/J mice. Arrows dictate the average age of puberty in males 
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and females, respectively. Extracted hypothalamus samples underwent 3’UTR RNA-seq. B) 

Genome browser of the Hcrt (top) and Pmch (bottom) 3’UTR at PD12 and PD22 in males and 

females. C) Distribution of normalized counts of Pmch, Hcrt, Dlk1, and Mkr3 at every age and 

timepoint. The X-axis is age, and the Y-axis is log2-transformed RUVseq and ERCC-spike in 

normalized counts. Red lines and circles represent female samples, while blue lines and triangles 

represent male samples. D) Principal component analysis (PCA) of normalized gene expression 

across all samples and ages. The first two PCs are plotted with sexes designated with colour and 

ages designated by shape. 
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Figure 2. Differentially expressed genes (DEGs) across postnatal development in the mouse 

hypothalamus. A) Volcano plot of differentially expressed genes in each pairwise timepoint. 

The X-axis is the log2(fold-change) of the DEG, and the Y-axis is the -log10 (FDR-adjusted P-

value) of the DEG as identified by DESeq2. Genes in grey are not detected as DE (FDR-adjusted 

P-value < 0.05, absolute fold-change > 1.5). Genes in blue are DE in males, genes in red are DE 

in females, and genes in purple are DE at the same timepoint in both males and females. B) 

Barplot of enriched pathways derived from DEGs between PD12 and PD22 in male and female 

mice. Genes are separated by upregulated and downregulated DEGs. Barplots show the -

log10(FDR-adjusted P-value) of enrichment. Green bars represent pathways detected in both 

sexes, orange bars represent pathways detected by integrating sexes, blue bars represent male-

driven pathways, and pink bars represent female-driven pathways. C) Expression profile of the 

four remaining DEGs. D) Barplot summarizing the number and major theme of pairwise DEGs 

across each timepoint. The X-axis is each timepoint, and the Y-axis is the number of DEGs. 

Positive genes were older-biased, and negative genes were younger-biased. D) Expression 

profile of DEGs involved in hypogonadotropic hypogonadism. The X-axis is age, and the Y-axis 

is log2-transformed RUVseq and ERCC-spike in normalized counts. Red lines and circles 

represent female samples, while blue lines and triangles represent male samples. Expression 

profile of differentially expressed GWAS genes (right). Row-normalized heatmap of GWAS-

associated genes that were also detected as differentially expressed in our RNA-seq data Rows 

are genes, and columns are samples. 
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Figure 3. Evaluation of varimax-rotated principal component analysis revealed genes 

involved in sex-by-age interactions. A) Schematic of how varimax rotated PCA is applied to 

our data. B) Distribution of scores for enriched vrPCs. Male samples are triangles and blue lines, 

and female samples are circles and red lines. vrPC16 is highlighted because the genes associated 

with this vrPC are focused on for the rest of this study. C) Barplot showing the association 

between each significant varimax rotated PC (vrPC), age, and sex. The X-axis shows vrPCs 

whose scores are associated with age, sex, or an age-by-sex interaction (7/48 total vrPCs). Red 

bars show the significance of sex, blue bars show the significance of age, and purple bars show 

the significance of an age-by-sex interaction. D) Heatmap of the gene expression patterns of 

genes associated with vrPC16. Each row is a gene, and each column is a sample. The heatmap is 

populated by the log2-RUV-seq normalized gene expression of each gene. Rows are annotated 

by whether the gene displays pairwise expression in at least one pairwise timepoint. Columns are 

annotated by age and sex. E) Barplot of enriched pathways derived from genes strongly 

associated with rotated PC 16. Barplots show the -log10(FDR-adjusted P-value) of enrichment. 

Green bars represent pathways deriving from gene-ontology biology pathways, red bars 

represent pathways deriving from gene-ontology cellular components, and blue bars represent 

pathways deriving from gene-ontology molecular functions. 
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Figure 4. Cell-type specific gene expression across the developing hypothalamus. A) Lower-

dimension representation of scRNA-seq data in the PD14 and PD45 mouse hypothalamus with 

the Uniform Manifold Approximation and Projection (UMAP). Cell labels were identified using 

a mixture of labels provided by Kim et al., 2020 and unsupervised clustering. B) Distribution of 
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cell proportions estimated from RNA-seq deconvolution at each age and time-point. The X-axis 

is age, and the Y-axis is estimated cell-type proportions. Red lines and circles represent female 

samples, while blue lines and triangles represent male samples. Letters represent significance 

using a Tukey post hoc test after identifying differences in cell-type proportion with ANOVA. C) 

Barplot of cell-type proportion differences within each cluster (Fisher’s exact-test). Red bars 

designate a fold-change of two between ages. Each column is a cell-type with the number of 

DEGs mapping to that cell-type in brackets. D) Heatmap of gene-normalized cell-weighted fold-

changes (cwFold-changes) of the 129 age-by-sex associated genes and are DE in the 

complementary direction in the scRNA-seq data. 
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Figure 5. Pseudotime of hypothalamic oligodendrocyte development. A) Lower-dimension 

representation of oligodendrocyte scRNA-seq data in the PD14 and PD45 mouse hypothalamus 

with the Uniform Manifold Approximation and Projection (UMAP) overlaid with the 

pseudotime trajectory identified with Slingshot. Points are cells coloured by cell-type. and the 

line is the plotted pseudotime trajectory measured with Slingshot, starting with OPCs and plotted 

with the tradeSeq R package. B) Heatmap of transcription factors associated with pseudotime. C) 

Heatmap of puberty-associated GWAS genes associated with pseudotime. D) Heatmap of 

oligodendrocyte-mapped age-by-sex associated genes associated with pseudotime. For a gene to 

be included, it must be associated with an age-by-sex interaction (i.e., varimax 16), mapping to 

oligodendrocyte precursor cells, developing oligodendrocytes, or mature oligodendrocytes with 

scMappR, and associate with pseudotime. For B-D, rows are genes associated with pseudotime. 

Columns are portions of the pseudotime trajectory blocked into 200 smoothers using tradeSeq. 

Heat is measured by scaling the predicted smoothers with the scale function in R.  
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