

1 **Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on**
2 **SARS-CoV-2 spike protein driving the genesis of Omicron variants**

3
4 Qihong Yan^{1,*}, Xijie Gao^{2,*}, Banghui Liu^{3,*}, Ruitian Hou⁴, Ping He⁵, Yong Ma³,
5 Yudi Zhang^{3,6}, Yanjun Zhang¹, Zimu Li³, Qiuluan Chen⁷, Jingjing Wang³,
6 Xiaohan Huang¹, Huan Liang¹, Xianying Chen¹, Xuefeng Niu¹, Jun He^{3,#}, Ling
7 Chen^{1,3,5,#}, Jincun Zhao^{1,5,#}, Xiaoli Xiong^{3,#}

8
9 ¹State Key Laboratory of Respiratory Disease, National Clinical Research
10 Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the
11 First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

12 ²Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation
13 of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of
14 Guangzhou Medical University, Guangzhou, China

15 ³State Key Laboratory of Respiratory Disease, CAS Key Laboratory of
16 Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and
17 Regenerative Medicine, Guangdong Provincial Key Laboratory of
18 Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese
19 Academy of Sciences, Guangzhou, China

20 ⁴Guangzhou Eighth People's Hospital, Guangzhou Medical University,
21 Guangzhou, China

22 ⁵Guangzhou National Laboratory, Guangzhou, China

23 ⁶University of Chinese Academy of Sciences, Beijing, China

24 ⁷Bioland Laboratory (Guangzhou Regenerative Medicine and Health -
25 Guangdong Laboratory), Guangzhou, China

26 *These authors contributed equally: Qihong Yan, Xijie Gao, Banghui Liu

27 #Correspondence: he_jun@gibh.ac.cn; chen_ling@gibh.ac.cn;

28 zhaojincun@gird.cn; xiong_xiaoli@gibh.ac.cn

29

30 **Abstract**

31 Continued evolution of SARS-CoV-2 generates variants to challenge antibody
32 immunity established by infection and vaccination. A connection between
33 population immunity and genesis of virus variants has long been suggested but
34 its molecular basis remains poorly understood. Here, we identify a class of
35 SARS-CoV-2 neutralising public antibodies defined by their shared usage of
36 VL6-57 light chains. Although heavy chains of diverse genotypes are utilized,
37 convergent HCDR3 rearrangements have been observed among these public
38 antibodies to cooperate with germline VL6-57 LCDRs to target a convergent
39 epitope defined by RBD residues S371-S373-S375. Antibody repertoire
40 analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-
41 2-naïve individuals and is clonally expanded in most COVID-19 patients. We
42 confirm that Omicron specific substitutions at S371, S373 and S375 mediate
43 escape of antibodies of the VL6-57 class. These findings support that this class
44 of public antibodies constitutes immune pressure promoting the introduction of
45 S371L/F-S373P-S375F in Omicron variants. The results provide further
46 molecular evidences to support that antigenic evolution of SARS-CoV-2 is
47 driven by antibody mediated population immunity.

48

49

50 **Introduction**

51 The SARS-CoV-2 pandemic offered an opportunity to interrogate immune
52 response towards an emergent virus infecting an immunologically naïve
53 population. During the first 3 years of the pandemic, the spike (S) protein on the
54 virus surface has been actively undergoing antigenic drift generating a large
55 number of variants ([Carabelli et al., 2023](#); [Harvey et al., 2021](#); [Markov et al.,](#)
56 [2023](#); [Volz, 2023](#)). In late 2021, the Omicron BA.1 variant emerged, its highly
57 mutated S protein renders most antibodies isolated earlier in the pandemic
58 ineffective, conferring the Omicron BA.1 variant with an extraordinary immune
59 evasion capability ([Dejnirattisai et al., 2022](#); [Liu et al., 2022](#)). Further antigenic
60 drift of S-protein had been observed and numerous Omicron subvariants
61 emerged, including BA.2-BA.5 ([Cao et al., 2022](#); [Tuekprakhon et al., 2022](#);
62 [Wang et al., 2022a](#)). Since late 2022, XBB and BQ.1 subvariant series have
63 emerged based on BA.2 and BA.5 respectively with further antigenic changes
64 on the S-protein ([Qu et al., 2023](#); [Wang et al., 2023](#)). As the pandemic
65 progresses, S-protein is drifting antigenically further generating new variants.
66

67 The emergence of Omicron variants marked great shifts in S protein
68 antigenicity and virological behaviours, sparking several theories on origins of
69 Omicron variants ([Mallapaty, 2022](#)). Several recurrent mutations observed in
70 earlier variants became fixed in the Omicron S-protein, most of these recurrent
71 mutations are located within the receptor binding domain (RBD) of the S-
72 protein, including K417N, L452R, T478K, E484A and N501Y. Earlier studies
73 have identified that some of these mutations are located in the epitopes of
74 several classes of germline antibodies that are widely induced within the
75 population. K417N is located in the epitope of VH3-53/3-66 encoded class 1
76 antibodies inhibiting ACE2 binding ([Yan et al., 2021](#); [Yuan et al., 2020a](#); [Zhang](#)
77 [et al., 2021b](#)); L452R is located in the epitope of VH1-69 encoded population
78 antibodies ([He et al., 2022](#); [Huo et al., 2022](#); [Yan et al., 2022](#)); E484A is located
79 in the epitope of VH1-2 encoded class 2 population antibodies ([Rapp et al.,](#)
80 [2021](#); [Yuan et al., 2021](#)). These mutations often confer viruses with
81 considerable antibody evading ability. While L452R and N501Y have also been
82 proposed to enhance or compensate fusogenic or receptor binding activity of S-
83 protein ([Deng et al., 2021](#); [Harvey et al., 2021](#); [Starr et al., 2022](#); [Tchesnokova](#)

84 [et al., 2021](#)), association of recurrent mutations to population antibody
85 responses strongly implies that antigenic drift of SARS-CoV-2 S-protein may
86 be driven by immune pressure at population level. Population immunity (or
87 herd immunity) has long been proposed to drive antigenic drift of influenza
88 virus haemagglutinin ([Boni, 2008](#)), despite molecular basis behind such driving
89 force remains poorly characterized. Apart from the above identified recurrent
90 mutations, several RBD mutations were first emerged with the highly mutated
91 Omicron BA.1 S protein, including S371L, S373P, S375F, N440K, G446S,
92 S477N, Q493R, G496S and Q498R, most of them have been fixed in the S-
93 protein of current circulating viruses. Among these, S371L (S371F in BA.2 -
94 BA.5), S373P and S375F are particularly interesting that they are close together
95 in sequence while located relatively far away from the receptor binding site.
96 The S371L/F-S373P-S375F mutations are considered as an important feature of
97 Omicron variants and they have been shown to alter S-protein functions likely
98 changing virus tissue tropism and disease severity ([Kimura et al., 2022a](#);
99 [Pastorio et al., 2022](#); [Willett et al., 2022](#)). However, the driving force behind the
100 genesis of the S371L/F-S373P-S375F mutations remains enigmatic. In this
101 study, we report that diverse antibodies utilizing IGLV6-57 (VL6-57) light
102 chains are widely induced within the population and they target a common
103 epitope defined by S371, S373 and S375 in the ancestral SARS-CoV-2 S-
104 protein. We provide evidences to suggest that the identified class of antibodies
105 is associated with immune pressure driving the genesis of S371L/F-S373P-
106 S375F mutations in Omicron variants.
107

108 **Identification of SARS-CoV-2 S-specific antibodies with VL6-57 encoded 109 light chains**

110 In an exercise to isolate SARS-CoV-2 S-specific antibodies from convalescent
111 patients infected at the beginning of the pandemic (early 2020), we identified 5
112 mAbs, namely R1-26, R1-30, R2-3, R2-6, and R2-7 by phage display using
113 SARS-CoV-2 RBD as the bait ([He et al., 2022](#)). The identified antibodies either
114 have zero or very low somatic hypermutation rates (**Fig. 1a**), suggesting that
115 they are germline antibodies. Interestingly, all these 5 antibodies utilize light
116 chains encoded by IGLV6-57, while their heavy chain genes are of different
117 genetic origins (**Fig. 1a**). 4 mAbs, namely R1-30, R2-3, R2-6, and R2-7 have a

118 shared “WLRG” motif in the middle of their HCDR3 (**Fig. 1a**). Different from
119 the other 4 isolated mAbs, R1-26 has a hydrophobic “LGPWV” motif in the
120 middle of HCDR3 (**Fig. 1a**). The five isolated antibodies with IGLV6-57 light
121 chains have affinities in the range of 3.8 - 62.2 nM towards the wildtype SARS-
122 CoV-2 RBD (**Fig. 1a**), with R1-26 being the strongest ($K_D = 3.8$ nM). In
123 binding competition assays, we found that all the 5 mAbs compete with ACE2
124 and with each other to bind RBD (**Fig. 1b**). These results suggest that all the 5
125 mAbs target overlapping epitopes. In pseudovirus neutralization assays, their
126 neutralization activities largely correlate with their affinities, the strongest
127 binder R1-26 has an IC_{50} as low as 2.7 nM (**Fig. 1a**). We studied the most
128 potent mAb - R1-26 in detail and we found that R1-26 is able to bind RBD of
129 SARS-CoV-2 variants emerged before the Omicron BA.1 variant (**Fig. 1c**,
130 **Table S1**). Consistently, R1-26 is able to bind the corresponding S-trimers
131 tightly without dissociating, likely through avidity (**Fig. 1d, Table S1**). We
132 further confirmed that R1-26 has neutralization activity towards wildtype,
133 Alpha, Beta and Delta SARS-CoV-2 authentic viruses in cell culture (**Fig. 1e**).
134

135 **Binding of R1-26 antibody to SARS-CoV-2 S-trimer**

136 To further understand neutralization activity of R1-26, we determined cryo-
137 electron microscopy (cryo-EM) structures of S-trimer:R1-26 Fab complexes in
138 two different stoichiometries (3:2, 3:3 S-protomer:R1-26 Fab) (**Figs. 2a, S1a**)
139 with upper resolutions in the range of 3.19 - 3.44 Å (**Fig. S2a-c**). An unusual
140 structure showing a head-to-head aggregate of two S-trimers each bound by 3
141 R1-26 Fabs was also determined at a lower resolution of 5.3 Å (**Figs. 2a, S1a**
142 **and S2a-c**), the aggregation is mediated by interactions between Fabs bound to
143 different S-trimers and a similar aggregate was observed for the S-trimer:Fab
144 complex of 6M6 (using IGHV3-91, IGLV3-21 genes) ([Wang et al., 2022b](#)). It is
145 not known whether the observed interactions could lead to aggregation of S-
146 trimers on virus surface.
147

148 Based on a locally refined RBD:Fab structure at ~ 3.5 Å resolution derived from
149 the 3:3 S-protomer:R1-26 Fab complex dataset (**Figs. S1a and S2a**), the
150 detailed R1-26 epitope is resolved (**Fig. 2b**). Buried surface area (BSA) analysis
151 reveals that HCDRs and LCDRs of R1-26 bury comparable RBD surface areas -

152 459.0 Å² and 385.7 Å² respectively. Among CDR loops, HCDR3 dominates the
153 contact with RBD, the hydrophobic HCDR3 loop, containing residues L101,
154 G102, P103 and W104, probes into a hydrophobic cavity formed by RBD
155 residues Y369, A372, F374, F377 and P384 (**Figs. 2b left panel, S2d**). This
156 hydrophobic contact is further stabilized by surrounding electrostatic and polar
157 interactions, distributed in two different patches: the larger interaction patch is
158 mediated by hydrogen bonds between backbone of RBD residues S375, F377
159 and LCDR1 residue N32 sidechain; a cation-π interaction between RBD residue
160 K378 and LCDR1 residue Y33; a charged hydrogen bond between RBD residue
161 T385 and LCDR2 residue E51; and finally a salt bridge between RBD residue
162 K378 and LCDR2 residue D52 (**Fig. 2b, right panel**). The second interaction
163 patch is mediated by a hydrogen bond between the glycan attached to RBD
164 residue N343 and HCDR2 residue K52; and a hydrogen bond between RBD
165 residue N370 and HCDR2 residue Q53 (**Fig. 2b, right panel**). Finally, RBD
166 residue A372 is contacted by LCDR3 residue Y94 (**Fig. 2b, right panel**).
167

168 The detailed R1-26 epitope structure confirms that the epitope is fully buried in
169 the previously determined RBD “down” closed and locked S-trimer structures
170 ([Qu et al., 2022](#); [Xiong et al., 2020](#); [Zhang et al., 2023](#)), therefore, the epitope is
171 fully cryptic in a S-trimer adopting 3-RBD “down” closed or locked
172 conformations (**Fig. S3a-h**). In the 1-RBD “up” S-trimer, this epitope on the
173 “up” RBD is also largely obstructed (**Fig. S3a**). Likely due to incompatibility
174 with 3-RBD “down” and 1-RBD “up” S-trimer conformations, at least 2 RBDs
175 are observed to adopt “up” position when R1-26 is bound to a S-trimer and only
176 3:2, 3:3 S-protomer:Fab structures are observed when R1-26 Fab was added in
177 excess (**Fig. 2a**). The detailed epitope structure also confirmed that the R1-26
178 epitope does not overlap with the ACE2 binding interface (**Fig. S3f and h**)
179 indicating that R1-26 Fab is a class 4 antibody (**Fig. S3f-h**). CR3022 is a well-
180 studied class 4 mAb which cross-reacts to RBDs of SARS-CoV-1 and SARS-
181 CoV-2 ([Yuan et al., 2020b](#)), we found that although the epitope of R1-26
182 appears to largely overlap with that of CR3022, R1-26 features a different
183 approach angle towards the RBD compared with CR3022 (**Fig. S3a, g and h**).
184 Notably, the canonical class 4 antibody CR3022 does not inhibit ACE2 binding
185 and is only weakly neutralizing, while strong ACE2 binding inhibition is

186 observed for R1-26 (**Fig. 1b**). By modelling, we found that the approach angle
187 of R1-26 is more tilted towards the modelled ACE2 bound to RBD (Compare
188 **Fig. 2c** and **Fig. S4**), while the approach angle of CR3022 is more tilted away
189 from it (**Fig. S4**). In addition, R1-26 and CR3022 adopt different orientations
190 when bound to RBD (compare **Fig. 2c** and **Fig. S4**). Due to the differences in
191 RBD binding, simultaneous binding of R1-26 and ACE2 to RBD would result
192 in steric clashes between R1-26 and the glycan chain attached to ACE2 residue
193 N322 (**Fig. 2c**). By contrast, simultaneous binding of CR3022 and ACE2 is
194 possible likely due to much weaker clash (**Fig. S4**), consistent with previous
195 results of competition assays ([Tian et al., 2020](#)). Differences in RBD binding by
196 R1-26 and CR3022 likely confer superior ACE2 blocking activity to R1-26.
197

198 We further found that fusogenic competent native S-R trimer (without proline
199 stabilization) incubated with R1-26 undergoes structural transition into a post-
200 fusion conformation (**Fig. 2d**). This analysis shows that R1-26 possesses an
201 activity to trigger fusogenic conformational change similar to class 1 mAbs
202 including B38 ([He et al., 2022](#)) and S230 ([Walls et al., 2019](#)) (**Fig. 2d**), it is
203 interesting that class 4 antibody CR3022 does not have this triggering activity
204 (**Fig. 2d**). Both ACE2 binding inhibition and premature triggering of spike
205 fusogenic change by R1-26 could lead to the inhibition effect observed in a S-
206 protein-ACE2 interaction mediated cell-cell membrane fusion assay by which
207 cell entry inhibition activity of antibody can be assessed ([Ma et al., 2023](#)) (**Fig.**
208 **2e**). Both activities likely contribute to the neutralization activity of R1-26.
209

210 **VL6-57 light chain can pair with diverse heavy chains to bind a convergent**
211 **epitope**

212 To further understand antigen binding by VL6-57 light chain utilizing mAbs,
213 we surveyed the Protein Data Bank (PDB) for structurally characterized VL6-57
214 light chain utilizing mAbs bound to SARS-CoV-2 S-protein or RBD. Among
215 376 structurally characterized SARS-CoV-2 S-specific mAbs, 12 mAbs utilize
216 VL6-57 encoded light chains, of note, among them, 10 belong to class 4
217 antibodies (see **Fig. S5** for a structure gallery of class 4 antibodies), these
218 account for more than a fourth of class 4 antibodies (n=35) found amongst the
219 376 structurally characterized SARS-CoV-2 S-specific mAbs (**Fig. S5**). Further,

220 germline usage analysis shows that VL6-57 is the most frequently used light-
221 chain germline gene among the class 4 antibodies (**Fig. S6a, left panel**). A
222 similar germline gene usage profile is observed for the F2 group antibodies
223 (equivalent to class 4 antibodies, as defined by deep mutational scanning) ([Cao
224 et al., 2022](#)) (**Fig. S6a, right panel**). We did not find evidence of preferential
225 VL6-57 gene usage in the global B cell repertoire data of SARS-CoV-2-naïve
226 individuals ([Robbiani et al., 2020](#)). The above analyses strongly suggest that
227 VL6-57 gene preferentially generates S-specific class 4 mAbs, leading to the
228 hypothesis that VL6-57 light chains may play an important role in antigen
229 binding.

230

231 We analyzed buried surface area (BSA) to further understand contribution of
232 VL6-57 light chains in epitope binding. Among the 376 structurally
233 characterized SARS-CoV-2 S-specific mAbs, heavy chains dominate epitope
234 interaction, burying significantly more surface areas than light chains (**Fig.**
235 **S7a**). Different from typical SARS-CoV-2 S-specific mAbs, the average BSA
236 of VL6-57 class 4 mAbs is comparable between heavy and light chains (**Fig.**
237 **S7b**). This analysis suggests that among VL6-57 class 4 mAbs, light chains are
238 at least equally important as heavy chains in epitope recognition. Further
239 analysis reveals that LCDR1 and HCDR3 contribute more than 60% of BSA
240 (**Fig. S7c**).

241

242 Superposition of the 10 VL6-57 class 4 Fab:RBD complex structures reveals
243 that apart from mAbs - 10-40 and 002-13 (**Fig. S5**), all the other 8 mAbs bind to
244 epitopes that are almost identical to the epitope of R1-26 (**Figs. 3a-k, S5**),
245 demonstrating clear epitope convergence among VL6-57 mAbs. Comparison of
246 light and heavy chain CDR sequences reveals that all these structurally
247 characterized mAbs share similar LCDR1-3 sequences (**Fig. S6c**). Interestingly,
248 structurally characterized S2A4, P5S-3B11, GH12 and 3D11 not only exhibit
249 high similarity in LCDR sequences (**Fig. S6c**) to the isolated R1-30, R2-3, R2-
250 6, and R2-7 mAbs, they also feature 12-residue long HCDR3s with either
251 “WLRG” or “WVRG” motif in the middle (**Fig. S6b**). Therefore, R1-30, R2-3,
252 R2-6, and R2-7 are likely to bind the same epitope as S2A4, P5S-3B11, GH12,
253 and 3D11, which is almost identical to that of R1-26, consistent with the result

254 that R1-26 competes with R1-30, R2-3, R2-6 and R2-7 in binding to spike RBD
255 (**Fig. 1b**). The sequence analysis also identifies that VL6-57 light chains can
256 also pair with heavy chains with HCDR3 loops rich in hydrophobic, particularly
257 aromatic amino acids. mAbs 553-15, 2-7, FP-12A and IY-2A feature “WYYY”,
258 “GYFY”, “YYYY”, and “LGIFG” motifs in the middle of HCDR3 respectively,
259 notably, the “LGIFG” in IY-2A is reminiscent of the “LGPWV” motif found in
260 R1-26 HCDR3. Analysis of their structures shows that these mAbs bind to the
261 same epitope as for S2A4, P5S-3B11, GH12 and 3D11 with “WLRG” or
262 “WVRG” HCDR3 motifs (**Figs. 3, S5, S6b**).

263

264 Detailed structural comparison of the identified VL6-57 mAb:RBD complexes
265 reveals that HCDR3s in R1-26, S2A4, 3D11, GH12, P5S-3B11, 553-15, 2-7,
266 FP-12A and IY-2A interact with almost identical RBD residues within the
267 convergent epitope with several modes of interactions (**Fig. 3a-j**). R1-26, FP-
268 12A and IY-2A (**Fig. 3a-c**) appear to bind the epitope using hydrophobic
269 contacts primarily from aromatic residues. 553-15 and 2-7 (**Fig. 3d,e**) bind the
270 epitope by π - π interactions (from the HCDR3 tyrosine) combined with
271 hydrophobic contacts. Finally, S2A4, P5S-3B11, GH12 and 3D11 (**Fig. 3f-i**)
272 binds the epitope with a combination of cation- π interactions (by the arginine in
273 HCDR3) and hydrophobic contacts (by the tryptophan in HCDR3). Different
274 binding modes give rise to variability among HCDR3 structures (**Fig. 3k**),
275 however, hydrophobic interactions are shared among these different interaction
276 modes reflecting the convergent epitope being hydrophobic, containing multiple
277 aromatic residues including Y369, F374 and F377 (**Fig. 3a-i**).

278

279 The comparison also identifies that the germline-encoded N32 and Y33 from
280 LCDR1 engage in conserved interaction to spike RBD among the 8 VL6-57
281 light chain utilizing R1-26-like mAbs (**Figs. 3a-i, S6c**) and LCDR1s show little
282 variability when binding to RBD (**Fig. 3k**). BSA analysis also confirms that
283 LCDR1s bury the largest surface areas among LCDRs (**Fig. S7c**), suggesting
284 that this germline encoded “NY” motif facilitates efficient RBD binding.
285 Collectively, our results demonstrate that the VL6-57 light chain likely serves
286 as an efficient framework for generation of class 4 SARS-CoV-2 S-specific
287 mAbs.

288 **VL6-57 antibodies paired with HCDR3 “WLRG” motif are widely induced**
289 **in the population and clonally expanded upon SARS-CoV-2 infection**

290 The presence of considerable amount of VL6-57 antibodies among the
291 structurally characterized class 4 mAbs prompted us to further search CoV-
292 AbDab (the Coronavirus Antibody Database) ([Raybould et al., 2021](#)) for
293 additional VL6-57 mAbs to investigate their features (**Fig 4a, see method**). The
294 search obtained 290 mAbs utilizing VL6-57 light chains from 49 independent
295 studies. A total of 36 different heavy-chain germline genes are observed to pair
296 with VL6-57 to generate S-specific mAbs (**Fig. S8a**). Notably, we found that
297 there is an enrichment of mAbs with 12-AA long HCDR3s and 9~10-AA long
298 LCDR3s, accounting for 34% (99/290) of the curated VL6-57 mAbs (**Fig. S8b-d**). Moreover, those VL6-57 mAbs with 12-AA long HCDR3s appear to be
300 preferentially derived from heavy chain genes IGHV3-7, IGHV4-39, and
301 IGHV4-59 (**Fig. 4b**). HCDR3 sequence analysis shows that there is a strong
302 preference for a 12-AA long HCDR3 containing the “WLRG” motif (68/99
303 mAbs) as observed in S2A4, P5S-3B11, 3D11, R1-30, R2-3, R2-6 and R2-7
304 (**Figs. 4b, S6b**). We also found a small percentage of mAbs (7/99) containing a
305 12-AA long HCDR3 with the “YYY” motif observed in 553-15 (**Figs. 4b logo**
306 **plot, S6b**). However, we failed to identify consensus HCDR3 sequences among
307 VL6-57 mAbs with 11-, 13-, 14-, or 15-AA long HCDR3s (**Fig. S8e**). V(D)J
308 rearrangement analysis suggests that the W, L, and R residues within the
309 HCDR3 “WLRG” motif are most likely encoded by IGHD5-12 gene when its
310 2nd reading frame is used (**Fig. S8f**), the last AA residue G within the motif is
311 located at the DJ junction and is most likely a result of an insertion at the C-
312 terminal side of the D segment (**Fig. S8f**), these findings explain the genetic
313 origin of the HCDR3 “WLRG” motif. LCDR3 sequence analysis shows that a
314 “QSYDSS” motif is enriched (**Fig. S8d**), although BSA analysis shows that
315 LCDR3s in VL6-57 mAbs play an auxiliary role in antigen binding burying
316 smaller areas compared with LCDR1s (**Fig. S7c**), we found that the tyrosine
317 (Y94 in R1-26, **Fig. 2b**) residue within the “QSYDSS” motif is engaging in
318 specific interactions with critical antigen binding residues in HCDR3. In R1-26,
319 FP-12A, IY-2A, 553-15 and 2-7 the LCDR3 tyrosine is interacting with antigen
320 contacting HCDR3 residue W104, Y106, V104, Y103 or Y105, respectively, by
321 hydrophobic contacts (**Fig. 3a-e, LCDR interaction panels**). In S2A4, P5S-

322 3B11, GH12 and 3D11, the LCDR3 tyrosine is interacting with the R in the
323 HCDR3 “WLRG” motif by cation- π interactions (**Fig. 3f-i, LCDR interaction**
324 **panels**). These specific interactions suggest LCDR3 supports HCDR3 in
325 antigen binding.

326

327 The above analysis suggests that the “WLRG” motif within the 12-AA long
328 HCDR3 and the “QSYDSS” motif within the LCDR3 are the convergent
329 signatures of the SARS-CoV-2 RBD-specific VL6-57 mAbs, which may be
330 widely induced in the COVID-19 population. To verify this, we next searched
331 our previously published bulk antibody repertoires from 24 healthy donors and
332 33 COVID-19 convalescents ([Niu et al., 2020](#); [Yan et al., 2021](#); [Zhang et al.., 2022](#)) (**Fig. 4a, see method**). The COVID-19 donors PtZ and PtK, from whom
333 R1-26, R1-30, R2-3, R2-6 and R2-7 have been isolated, are also included in this
334 analysis. In addition to IgH and IgL sequences identical to the 5 isolated mAbs,
335 similar “WLRG” motif containing IgH sequences and “QSYDSS” motif
336 containing VL6-57 IgL sequences can be readily detected in the repertoires of
337 PtZ and PtK (**Fig. S9**). The search shows that “WLRG” motif containing IgH
338 sequences can be detected in 29/33 COVID-19 convalescents and 10/24 healthy
339 donors (**Fig. 4c**). Following SARS-CoV-2 exposure, there was a remarkable
340 enrichment of “WLRG” motif containing IgH sequences (**Fig. 4d**). We
341 observed clonal expansion of the “WLRG” motif containing IgH sequences in
342 COVID-19 patients by tracking the longitudinal samples collected from 4-28
343 days post symptom onset (**Fig. 4e and f**). It is worth mentioning that the
344 “WLRG” motif containing IgH sequences present in the SARS-CoV-2-exposed
345 antibody repertoires are mainly IgG isotype (encoded by IGHG, 79.3%).
346 However, 65.2% of the “WLRG” motif containing IgH sequences detected in
347 the SARS-CoV-2-naïve antibody repertoires are IgM isotype (encoded by
348 IGHM) that is usually expressed by naïve B cells (**Fig. 4g and h**). Unlike heavy
349 chains, the “QSYDSS” motif containing VL6-57 light chains can be readily
350 detected in both the healthy and SARS-CoV-2-exposed IgL repertoires,
351 highlighting abundance of VL6-57 transcripts in human B cell repertoires even
352 under resting state (**Fig. 4i**).

354

355 To further determine the abundance of B cells expressing mAbs of VL6-57 light
356 chains paired with the HCDR3 “WLRG” motif, we analyzed published single-B
357 V(D)J sequences from SARS-CoV-2-exposed and -naïve individuals ([Barmada](#)
358 [et al., 2023](#); [Dugan et al., 2021](#); [Ferreira-Gomes et al., 2021](#); [Ren et al., 2021](#);
359 [Zhang et al., 2020](#)) and our previously reported FACS-sorted RBD-reactive
360 single-B memory cell sequences from COVID-19 convalescents ([Yu et al.,](#)
361 [2023](#)) (**Fig. 4a, see method**). Interestingly, only two VL6-57 B cells with paired
362 “WLRG” motif (2 IGHM) were detected among 87808 B cells (0.02‰) from
363 SARS-CoV-2-naïve donors (**Fig. 4j**). Following SARS-CoV-2 vaccination or
364 infection, there is a remarkable expansion of B cells expressing VL6-57
365 antibodies with paired “WLRG” motif. We identified 20 VL6-57 B cells with
366 paired “WLRG” motif (15 IGHG, 4 IGHM, and 1 IGHA) among 396211 B
367 cells (0.05‰) from COVID-19 patients, while 14 (12 IGHG, 1 IGHM, and 1
368 IGHA) were identified among 29838 B cells (0.47‰) from COVID-19
369 vaccinees. Furthermore, 14 (13 IGHG and 1 IGHM) were found among the
370 4642 FACS-sorted RBD-reactive B cells (3.0‰) from COVID-19
371 convalescents (**Fig. 4j**). After FACS sorting, there is an approximately 60-fold
372 (3‰/0.05‰) enrichment of VL6-57 B cells with paired “WLRG” motif among
373 the RBD-reactive B cells compared with the unsorted single B cell sequencing
374 data (**Fig. 4j**). Consistently, the VL6-57 B cells with paired “WLRG” motif
375 identified from SARS-CoV-2-naïve individuals are mostly expressing IgM,
376 while those from COVID-19 patients and vaccinees are predominantly
377 expressing IgG (**Fig. 4j**). In summary, the above observations indicate that
378 naïve B-cells expressing VL6-57 antibodies with paired “WLRG” motif were
379 activated after SARS-CoV-2 exposure and underwent class switching and
380 clonal expansion.

381

382 **Antibodies utilizing VL6-57 light chains identified from SARS-CoV-2 383 unexposed individuals bind to SARS-CoV-2 RBD**

384 To confirm whether the VL6-57 light chain (IgL) sequences identified from
385 bulk antibody repertoires of SARS-CoV-2-naïve individuals (**Fig. 4c**) are able
386 to react with SARS-CoV-2 RBD, five different “WLRG” motif-containing
387 heavy chains encoded by IGHV3-7, IGHV3-11, IGHV4-31, IGHV4-39 and
388 IGHV4-61 respectively from 5 different healthy donors are selected to pair with

389 a common VL6-57 light chain shared by the 5 healthy donors to generate 5
390 recombinational mAbs (namely H4, H5, H14, H16 and H18) (**Fig. S10a-c**). The
391 selected heavy chains are predicted to bind SARS-CoV-2 RBD based on their
392 HCDR3 sequences. All these heavy chains have none or only a few somatic
393 mutations (**Fig. S10**). BLI assays confirmed that all of the 5 recombinational
394 mAbs are able to bind to wildtype SARS-CoV-2 RBD with affinities (K_D) in the
395 range of 30-1504 nM (**Fig. 5a, Table S3**). Among of them, H18 exhibits
396 detectable cross reactivities with RBDs of SARS-CoV-1, Bat CoV RaTG13,
397 and Pangolin CoV GD1, with affinities ranging between 134-332 nM (**Figs. 5b,**
398 **S11, Table S3**). H18 has mild neutralization activity towards wildtype, Alpha,
399 Beta and Delta SARS-CoV-2 authentic viruses (**Fig. 5c**), it also possesses
400 activity to trigger conformational change of SARS-CoV-2 S and exhibits
401 inhibition activity in the S-protein-ACE2 interaction mediated cell-cell
402 membrane fusion assay (**Fig. 2d-e**).
403

404 To confirm whether H18 recognizes the same epitope with other VL6-57 mAbs,
405 we obtained cryo-EM structures of wildtype SARS-CoV-2 S-trimer bound to
406 H18 Fab (**Figs. 5d, S1b, S2a-c**). Similar to cryo-EM structures of SARS-CoV-2
407 S-trimer:R1-26 complexes (**Fig. 2a**), we observed 3:2, 3:3 (S-protomer:Fab)
408 SARS-CoV-2 S-trimer:H18 complexes and head-to-head aggregate of two S-
409 trimers each bound by 3 H18 Fabs. Unfortunately, we were not able to uncover
410 high resolution information of the H18 epitope from these structures. To
411 characterize fine characteristics of the H18 epitope, we generated a ternary
412 complex sample consisting of wildtype SARS-CoV-2 S-trimer, H18 Fab and
413 R1-32 Fab ([He et al., 2022](#)) (**Figs. 5e, S1c, S2a-c**). In the ternary complex
414 sample, most S-trimer particles are bound by three H18 Fabs and three R1-32
415 Fabs in a 3-RBD “up” conformation (**Figs. 5e and S1c**). Although the cryo-EM
416 sample was generated using a H18 concentration the same as that of R1-26 in
417 the S-GSAS/6P:R1-26 sample, we observed a greater degree of S-trimer
418 disintegration likely due to ternary complex formation by the addition of extra
419 R1-32 Fab, structures of S1 bound to both H18 and R1-32 Fabs and dimers of
420 S1 bound to both H18 and R1-32 Fabs were observed (**Fig. 5e**). Similar S-
421 trimer disintegration has been observed previously in the presence of mAb R1-
422 32 ([He et al., 2022](#); [Yu et al., 2023](#)).

423

424 A 3.5 Å resolution structure of the H18 binding interface is derived from a
425 focused refinement of the S1:H18:R1-32 Fab complex (**Figs. 5f, S2d**). Although
426 the heavy chain genes are different between H18 (VH4-61) and R1-26 (VH3-7),
427 H18 binds the identified convergent epitope with HCDR3 residues W102 and
428 R104 via hydrophobic contact and cation-π interaction respectively. Consistent
429 with our expectation, the R104 residue within the “WLRG” motif is interacting
430 with Y94 within the LCDR3 “QSYDSS” motif via a cation-π interaction.
431 Antigen binding by H18 HCDR3 is further stabilized by hydrogen bonds from
432 LCDR1 similar to R1-26 (**Figs. 5f, S2d**). These observations confirm that VL6-
433 57 light chain can pair with multiple heavy chains to target the identified
434 convergent epitope on SARS-CoV-2 spike RBD.

435

436 **Molecular basis of evasion from the shared VL6-57 antibody response by**
437 **SARS-CoV-2 Omicron variants**

438 During the structural analysis of VL6-57 antibodies we noticed that residues
439 S371, S373 and S375 are within the convergent epitope in the ancestral SARS-
440 CoV-2 spike RBD (**Figs. 3, S5**), these residues have been considered as a
441 feature of Omicron variants and shown to alter virological behaviour of the
442 virus ([Kimura et al., 2022a](#); [Pastorio et al., 2022](#)). We also noted that among the
443 26 RBD substitutions observed in SARS-CoV-2 so far (**Fig. 6a**), 18 substitution
444 positions are shared among SARS-related-CoVs (**Fig. 6b**) and among the other
445 8 substituted positions, S371, S375, T376, and R408 fall within the epitope of
446 the VL6-57 class 4 public antibodies (**Fig. 6a-b**). Mapping of substituted RBD
447 positions and VL6-57 antibody epitope areas indicates that the epitope is
448 relatively conserved among SARS-related-CoVs. Although R1-26 and H18
449 could bind and neutralize SARS-CoV-2 WT and early VOCs, both of them fully
450 lose binding and neutralization abilities towards Omicron BA.1 (**Figs. 1d and e**,
451 **5c**). BLI assays show that simultaneous rescue mutations at 371, 373 and 375
452 on Omicron BA.1 RBD (Omicron-(L371S+P373S+F375S)) are able to
453 completely recover binding by VL6-57 mAbs R1-26 and H18 (**Fig. 6c, Table**
454 **S4**). This result indicates that the evasion of VL6-57 mAb neutralization is
455 specifically mediated by substitutions at S371, S373, and S375. BLI assays
456 using a series of RBD mutants revealed that single S371L, S373P or S375F

457 mutation greatly reduces binding by R1-26 and H18. Combinations of any two
458 simultaneous mutations (S373P/S375F, S371L/S375F, S371L/S373P) are able
459 to almost completely abolish R1-26 and H18 binding (**Fig. 6c, Table S4**).
460 Structural comparison of WT, Omicron BA.1 and BA.2 RBDs reveals that
461 backbone conformations at residues 373 to 375 are affected by the S373P
462 introduced proline and the phenylalanine sidechain introduced by S375F (**Fig.**
463 **6d**), these epitope structural changes likely abolish binding by the VL6-57
464 mAbs.
465

466 **Discussion**

467 We identify a class of VL6-57 light chain utilizing antibodies with the ability to
468 pair with diverse heavy chains to target a convergent epitope defined by
469 featured Omicron mutations - S371L/F, S373P, S375F. The identified epitope is
470 cryptic in “down” RBD and strongly hydrophobic, consistent with that HCDR3s
471 of VL6-57 mAbs share hydrophobic residues to interact with the epitope.
472 Notably, within the epitope, residues S371-S373-S375 are located at the
473 entrance to the identified fatty acid binding pocket of sarbecovirus spike RBD.
474 Binding of linoleic acid within the pocket has been associated with “locked”
475 spike conformation with potential functions in virus assembly ([Qu et al., 2022](#);
476 [Toelzer et al., 2020](#); [Toelzer et al., 2022](#); [Xiong et al., 2020](#); [Zhang et al., 2023](#)).
477 Being a highly dynamic protein, SARS-CoV-2 S-protein has been observed to
478 adopt RBD “up” and “down” conformations. D614G substitution became fixed
479 in the spike protein shortly after the SARS-CoV-2 pandemic ([Grubaugh et al.,](#)
480 [2020](#); [Qu et al., 2022](#); [Yurkovetskiy et al., 2020](#); [Zhang et al., 2021a](#)), it has
481 been shown that this substitution increased spike stability and a shift towards
482 more RBD “up” open S-trimer has been observed by multiple studies ([Qu et al.,](#)
483 [2022](#); [Yang et al., 2021](#); [Zhang et al., 2021a](#)). We speculate that the change in
484 spike dynamics may have increased immune pressure posed by mAbs targeting
485 cryptic epitopes. Indeed, we find that binding of R1-26, H18 and possibly other
486 VL6-57 mAbs to the convergent cryptic epitope not only blocks ACE2 binding
487 ([Piccoli et al., 2020](#)), but also prematurely triggers spike conformational change
488 resulting in spike destruction. When paired with other RBD-specific antibodies,
489 binding of antibodies to cryptic epitopes may also promote spike disintegration
490 ([He et al., 2022](#); [Yu et al., 2023](#)). The increased immune pressure may promote

491 the introduction of S371L/F-S373P-S375F in Omicron variants. The identified
492 cryptic epitope of VL6-57 mAbs is relatively conserved among S-proteins of
493 sarbecoviruses. Before the emergence of Omicron variants, the VL6-57
494 antibody epitope remains unchanged in early SARS-CoV-2 VOCs or VOIs. We
495 and others also found that some of the VL6-57 mAbs including H18 and many
496 others ([Cao et al., 2023](#)) are able to cross-react with SARS-CoV-1 RBD,
497 suggesting that the VL6-57 epitope is relatively conserved among
498 sarbecoviruses, therefore, the introduction of S371L/F-S373P-S375F
499 demonstrates an extraordinary adaptability of SARS-CoV-2, providing a piece
500 of evidence to suggest that unusual changes of a pandemic virus can occur in
501 response to strong population immune pressures including those posed by
502 population antibodies. Studies have shown that single mutation of S371F/L,
503 S373P or S375F strongly impairs spike processing and spike mediated virus
504 entry ([Pastorio et al., 2022](#); [Saito et al., 2022](#)). Among them, S375F has the
505 most detrimental effect ([Kimura et al., 2022b](#)), and notably, mutation at this
506 position has not been observed among animal sarbecovirus S-proteins (**Fig. 6b**).
507 When the 3 serine substitutions are combined the ability of the S-protein to
508 mediate virus-cell entry is altered and it has been proposed that such change is
509 associated with change of tissue tropism by Omicron variants and their
510 attenuation ([Pastorio et al., 2022](#); [Willett et al., 2022](#)). The above observations
511 highlight the likely necessity of the S371-S373-S375 mutations for SARS-CoV-
512 2 immune evasion even at the expense of drastic S-protein function change with
513 associated impact on virus behaviour. It has been shown that antigenic changes
514 can alter SARS-CoV-2 receptor binding ([Niu et al., 2021](#)), for other viruses,
515 antigenic evolution of the pandemic H3N2 virus was found to significantly
516 weaken hemagglutinin (HA) sialic acid binding affecting virological phenotypes
517 ([Lin et al., 2012](#)). Therefore, antigenic change of viral surface protein can have
518 complex consequences and a delicate balance between antibody evasion and
519 transmissibility is pursued by circulating viruses ([Carabelli et al., 2023](#)).
520
521 It has been reported that SARS-CoV-2 infections induce several classes of
522 germline antibodies of specific VH genes. Due to similarity of equivalent
523 germline antibody genes among humans, induced classes of germline antibodies
524 are widely present in the population. Certain germline antibodies of the same

525 VH gene can bind a convergent spike epitope with similar molecular
526 interactions mediated by antibody residues encoded by germline sequences
527 ([Chen et al., 2021](#); [Nielsen et al., 2020](#); [Robbiani et al., 2020](#); [Zhang et al., 2022](#)). Similar phenomena have also been observed for mAbs induced by
528 infections of other viruses ([Ehrhardt et al., 2019](#); [Jackson et al., 2014](#);
529 [Parameswaran et al., 2013](#)). A common feature of these germline antibodies is
530 that essential paratope interactions are primarily mediated by antibody heavy
531 chains, such feature has been observed for VH3-53 ([Yuan et al., 2020](#)), VH1-58
532 ([Dong et al., 2021](#)), VH1-2 ([Rapp et al., 2021](#); [Yuan et al., 2021](#)), VH1-69 ([He
533 et al., 2022](#)), and VH1-24 ([Cerutti et al., 2021](#)) SARS-CoV-2 S-specific
534 antibodies. These heavy chain mediated shared antibody responses have been
535 thought to be a key driving force of SARS-CoV-2 antigenic drift ([Clark et al., 2021](#);
536 [Patel et al., 2023](#); [Yan et al., 2022](#)). In this study, by contrast, the
537 identified population antibody response is mediated by antibodies with shared
538 usage of VL6-57 light chain gene. Generally, heavy chains dominate
539 interactions in antibody-antigen complexes, while light chains help modulating
540 heavy chain conformation ([Xiao et al., 2019](#)). It has been shown that antibodies
541 of VH1-69 heavy chains can pair with irrelevant light chains to bind influenza
542 HAs ([Pappas et al., 2014](#); [Sui et al., 2009](#)). Our structural study reveals that
543 interactions between the VL6-57-encoded mAbs and RBD are mainly mediated
544 by germline gene encoded residues in HCDR3 and LCDR1, while germline
545 gene encoded LCDR3 residues support HCDR3 in antigen binding. Although
546 VL6-57 is most frequently observed to pair with VH3-7, VH4-39, and VH4-59
547 we provide evidence that many other heavy chains can also pair with VL6-57 to
548 bind SARS-CoV-2 RBD. Therefore, VL6-57 germline sequence provides an
549 efficient framework to allow pairing with diverse heavy chains to generate
550 SARS-CoV-2 RBD-targeting antibodies, such unique property of VL6-57 gene
551 increases the probability of VL6-57 class of public antibodies being induced
552 across a broad population. This study provides a rare example that a light chain
553 paired with various heavy chains can largely dictate the binding mode of a class
554 of antiviral antibodies.

556

557 Given the epitope of the VL6-57 mAbs is largely conserved among animal
558 sarbecoviruses, we speculate that the versatility of VL6-57 in generating SARS-

559 CoV-2 RBD antibodies may be unique within the human population. Wide
560 induction of this class of antibodies contribute to selection pressure on SARS-
561 CoV-2 within the human population, but similar response may be absent in
562 other species. Therefore, S371L/F-S373P-S375F represents a specific
563 constellation of immune escape mutations for SARS-CoV-2 adaptation and
564 transmission within the human population. However, it is worth noting that
565 there is still VL6-57 mAb that is resistant to Omicron variants ([Huang et al.,](#)
566 [2023](#)), implying adaptation of antibody immunity to viral mutations. Therefore,
567 exploring the co-evolution of virus and antibody immunity in future works
568 should be beneficial to understanding co-adaptability between virus and host
569 ([Wu et al., 2015](#)). Overall, this study provides a fresh example of light-chain
570 mediated populational antibody immune pressure against SARS-CoV-2 at
571 molecular level. Our findings further support the hypothesis that convergent
572 antibody responses within the population drive viral antigenic drift leading to
573 emergence of new SARS-CoV-2 variants.

574

575

576 **Methods**

577 **Cells and viruses**

578 Expi293F cells (Thermo Fisher Scientific, A14527) were maintained in
579 Expi293F Expression medium (Thermo Fisher Scientific, A1435101) at 37 °C
580 by shaking at 120 rpm under a humidified atmosphere with 8% CO₂. The
581 human embryonic kidney (HEK) 293T (ATCC, CRL-3216) and Vero E6
582 (ATCC, CRL-1586) were maintained in Dulbecco's Modified Eagle's Medium
583 (DMEM) supplemented with 10% FBS. The authentic SARS-CoV-2 viruses,
584 including WT (Wuhan-Hu-1), Alpha (B.1.1.7), Beta (B.1.351), Delta
585 (B.1.617.2), and Omicron (BA.1) were isolated from COVID-19 patients and
586 preserved in Guangzhou Customs District Technology Center BSL-3
587 Laboratory. The SARS-CoV-2 Delta strain was a gift from Guangdong
588 Provincial Center for Disease Control and Prevention, China. Experiments
589 related to authentic SARS-CoV-2 viruses were conducted in Guangzhou
590 Customs District Technology Center BSL-3 Laboratory.

591

592 **Expression of monoclonal antibody**

593 The antibody heavy- and light-V genes (VH/VL) were cloned into human IgG1
594 expression vectors using Clone Express II One Step Cloning Kit (Vazyme,
595 China). When density of HEK293F cells reached 1×10^6 cells/mL, equal
596 amounts of heavy- and light-chain plasmids were transfected into HEK293F
597 cells using EZ cell transfection reagent (Life-iLab Biotech, China). Following
598 transfection, HEK293F cells were cultured in CD 293 TGE medium (ACRO,
599 China) containing 10% CD Feed X supplement (ACRO, China) at 37 °C in a
600 humidified atmosphere with 5% CO₂ and shaking at 120 rpm. 6 days post
601 transfection, supernatants were harvested and clarified by centrifugation.
602 Supernatants were filtered through 0.22-µm filters (Merck Millipore, Germany)
603 before incubation with Protein A Resin (Genscript, China) at room temperature
604 for 2 h for antibody affinity purification. After washing, antibodies were eluted
605 from the Protein A Resin using 0.1 M Na-Citrate (pH 3.25) and eluents were
606 neutralized immediately with 1 M Tris-HCl (pH 8.8). Antibodies were

607 concentrated in PBS using Amicon Ultrafilter devices (Merck Millipore, USA)
608 and stored at -80 °C.

609

610 **Inhibition of SARS-CoV-2 S-mediated cell-cell fusion**

611 As previously described ([Ma et al., 2023](#)), we utilized a real-time, quantitative
612 live cell split-GFP fluorescence complementation phenotypic assay to analyze the
613 fusion inhibition activity of antibodies. Briefly, effector cells (HEK293T cells
614 expressing SARS-CoV-2 S and GFP1-10 proteins) were seeded into 96-well-
615 plate (5×10^4 cells per well in DMEM). Each well was cultured in the presence
616 or absence of a test mAb at the indicated concentrations for 2 h at 37 °C.
617 Subsequently, target cells (hACE2-293T cells expressing GFP11 protein, 5×10^4
618 cells per well in DMEM) were added uniformly to each well and fluorescence
619 images were taken 2 h after the addition of target cells using a Nikon fluorescence
620 microscope or a Keyence BZ-X800 all-in-one fluorescence microscope. The GFP
621 area in each well was quantified on Image J, and percentage inhibition of cell-
622 cell fusion was calculated using the following formula: $(1 - (E - N) / (P - N)) \times$
623 100%. “E” represents the GFP area in the experimental group. “P” represents the
624 GFP area in the positive control group, where no mAb was added. “N” is the GFP
625 area in the negative control group, where effector HEK293T cells only expressing
626 GFP1-10. Samples were tested in triplicate, and experiments were repeated at
627 least twice.

628

629 **Protein expression and purification**

630 The extracellular domain of SARS-CoV-2 spike (S) protein (residues 14-1211)
631 with an N-terminal mu-phosphatase signal peptide, a “R” substitution at the
632 multibasic furin cleavage site (R682-R685), and a C-terminal TEV protease
633 cleavage site followed by a T4 fibritin trimerization motif and a His₆ tag was
634 cloned into the mammalian expression vector pCDNA3.1(+), named “S-R”, as
635 previously described ([Walls et al., 2019](#)). To generate the stabilized S-protein

636 for cryo-EM sample preparation, the sequence of S protein was modified with
637 six prolines at residues 817, 892, 899, 942, 986, and 987 and the furin cleavage
638 site was changed to “GSAS” ([Hsieh et al., 2020](#)), named “S-GSAS/6P”. To
639 express the SARS-CoV-2 RBD, residues 319-541 of S-protein were fused with
640 an N-terminal mu-phosphatase signal peptide and a C-terminal 6×His tag before
641 the sequence was inserted into the pCDNA3.1(+) vector. S-protein or RBD
642 expression vector was transiently transfected into Expi293F using
643 polyethylenimine. Proteins were purified using IMAC (immobilized metal
644 affinity chromatography) following previously described protocols ([He et al.,](#)
645 [2022](#); [Xiong et al., 2020](#); [Yu et al., 2023](#)). All proteins were aliquoted, flash-
646 frozen in liquid nitrogen and stored at -80 °C.

647

648 **Biolayer interferometry**

649 Binding assays were carried out on an Octet RED96 instrument (Sartorius)
650 using a previously established protocol ([He et al., 2022](#)). Briefly, each Protein A
651 biosensors (Sartorius) was pre-equilibrated in PBST buffer (PBS, pH 7.4,
652 0.02% Tween-20, 1 mg/ml BSA) for 10 min. Subsequently, IgG at 11 µg/ml
653 was loaded onto each biosensor to a response level between 1.6-1.8 nm. The
654 IgG immobilized biosensors were submerged into twofold serially diluted (200-
655 3.125 nM) RBD or S-protein solutions for 300 s to record association. The
656 biosensors were subsequently submerged into PBST buffer for 600 s to record
657 dissociation. For IgG binding to the generated RBD mutants, biosensors
658 immobilized with IgGs were monitored for association (300 s) in RBD solutions
659 at a fixed concentration of 200 nM before the sensors were submerged into
660 PBST to monitor dissociation (600 s). IgG immobilized sensors were also
661 submerged into PBST buffer to record references. Data were reference-
662 subtracted and analyzed using Data Analysis HT v12.0.2.59 software (Sartorius)
663 with a 1:1 fitting model for binding to RBDs and 2:1 fitting model for binding
664 to S-trimers. Raw data and fits were plotted in GraphPad Prism v8.0.

665 Competition assays were performed on a Gator label-free bioanalysis system
666 (GatorBio). 2 µg/ml of SARS-CoV-2 RBD (Sino Biological, Cat# 40592-
667 V08B) was immobilized onto the pre-equilibrated Anti-His biosensors
668 (GatorBio). Biosensors were staturated with the first antibody for 300 s before
669 submerging into the second antibody or ACE2 solutions for 200 s. Data were
670 analyzed by the Gator data analysis software (GatorBio) and plotted in
671 GraphPad Prism v8.0.

672

673 **Ligand-induced conformational change of spike protein**

674 S-R diluted to 1 mg/ml (7.09 µM) was incubated with ACE2-Fc or antibodies in
675 IgG or Fab form at a 1:1.1 molar ratio at room temperature for 1 h. The samples
676 were subsequently treated with 50 µg/ml proteinase K at 4 °C for 30 min. Each
677 sample was boiled in 5 × non-reducing SDS loading buffer at 98 °C for 5 min to
678 stop the reaction. Samples were separated by SDS-PAGE on 4-12% gradient
679 gels, before protein bands were transferred onto a polyvinylidene difluoride
680 membrane using a semi-dry blotting system. The membrane was blocked with
681 5% milk in PBST before the membrane was incubated with a primary antibody
682 (rabbit anti-SARS-CoV-2 S2 polyclonal antibody, Sino Biological, Cat# 40590-
683 T62, 1:2500 dilution) in PBST. After extensive washing, the membrane was
684 incubated with the secondary antibody (horseradish peroxidase-conjugated goat
685 anti-rabbit IgG, Beyotime, Cat# A0208, 1:2500 dilution) in PBST. Finally,
686 protein blots were visualized by chemiluminescence using a Pierce ECL
687 Western Blotting Substrate (Thermo Fisher Scientific, Cat# 32106).

688

689 **Cryo-EM sample preparation and data collection**

690 To generate S-GSAS/6P:R1-26 Fab, S-GSAS/6P:H18 Fab complexes, S-
691 GSAS/6P at 4.43 mg/ml was incubated with R1-26 Fab or H18 Fab at a 1:1
692 molar ratio. To generate S-GSAS/6P:H18 Fab:R1-32 Fab complex, S-GSAS/6P
693 at 4.43 mg/ml was incubated with H18 and R1-32 Fabs at a 1:1:1 molar ratio.

694 After 1 min incubation at room temperature, each 3 μ l sample was
695 supplemented with 0.1% octyl-glucoside (Sigma-Aldrich, Cat# V900365)
696 before it was applied onto a 300-mesh holey carbon-coated copper grid
697 (Quantifoil, Cu R1.2/R1.3) pre-treated by glow-discharging at 15 mA for 30 s.
698 Each grid was blotted for 2.5 s with a blot force of 4 at 22 °C and 100%
699 humidity before plunge-freezing in liquid ethane using a Vitrobot Mark IV
700 (Thermo Fisher Scientific). The S-GSAS/6P:R1-26 complex cryo-grid was
701 imaged in a Titan Krios electron microscope (Thermo Fisher Scientific)
702 operating at 300 kV and equipped with Gatan BioQuantum energy filter (slit
703 width 20 eV) and Post-GIF Gatan K3 Summit direct detection camera. Movie
704 stacks were automatically recorded using EPU at a nominal magnification of
705 \times 81,000 in super-resolution mode with a calibrated pixel size of 0.5475 Å and
706 nominal defocus values ranged between -0.8 to -2.0 μ m. Each stack was
707 fractionated into 38 frames and exposed at a dose rate of 25 e⁻/pixel/s for 2.4 s
708 resulting in a total dose of \sim 50 e⁻/Å². The S-GSAS/6P:H18 complex cryo-grid
709 was imaged in a Talos Arctica electron microscope (Thermo Fisher Scientific)
710 operating at 200 kV. Using the SerialEM v3.8.7 software, movie stacks were
711 recorded at a nominal magnification of \times 45,000 on a K3 direct detection camera
712 (Gatan) in super-resolution mode with a calibrated pixel size of 0.44 Å with
713 nominal defocus values ranged between -0.8 to -2.5 μ m. Each stack was
714 fractionated into 27 frames and exposed at a dose rate of 24.4 e⁻/pixel/s for 1.89
715 s, resulting in a total dose of \sim 60 e⁻/Å². The S-GSAS/6P:H18:R1-32 complex
716 cryo-grid was imaged in a 300 kV Titan Krios electron microscope (Thermo
717 Fisher Scientific) equipped with a SelectrisX energy filter (slit width 10 eV) and
718 a Falcon 4 direct electron detector. Movie stacks were automated collected
719 using EPU software with the electron event representation (EER) mode at a
720 nominal magnification of \times 130,000 with a pixel size of 0.93 Å and nominal
721 defocus values ranged between -0.6 to -2.0 μ m. Each stack was recorded and
722 exposed at a dose rate of 7.51 e⁻/pixel/s for 5.79 s resulting a total dose of \sim 50

723 $e^-/\text{\AA}^2$. These settings yielded EER stacks consisting of 199 frames. All movie
724 stacks were imported into cryoSPARC live (v3.3.2) ([Kucukelbir et al., 2014](#)) for
725 pre-processing, which includes patched motion correction, contrast transfer
726 function (CTF) estimation and bad images rejection. Movie stacks of S-
727 GSAS/6P:R1-26 complex and S-GSAS/6P:H18 complex datasets were binned
728 2 \times resulting in pixel sizes of 1.095 \AA and 0.88 \AA , respectively.

729

730 **Cryo-EM data processing**

731 Data processing was carried out using cryoSPARC v3.3.2/v4.2.0. After bad
732 image removal, particles were picked by blob-picking on 4343 S-GSAS/6P:R1-
733 26, 4822 S-GSAS/6P:H18 and 9861 S-GSAS/6P:H18:R1-32 images. After 2D
734 Classification, several good 2D classes were selected as the templates for
735 template-picking, resulting in initial datasets of 2,359,986 particles for S-
736 GSAS/6P:R1-26; 2,357,740 particles for S-GSAS/6P:H18; and 3,335,676
737 particles for S-GSAS/6P:H18:R1-32. Template-picked particles were extracted
738 for two or more rounds of 2D Classification to remove contaminants and low-
739 quality particles. For S-GSAS/6P:H18:R1-32, particles with intact S-trimers
740 were re-extracted with a larger box size before the last round of 2D
741 Classification. After several rounds of 2D Classification, well-aligned particles
742 with intact S-protein features were selected and subjected to Ab-initio
743 Reconstruction to generate 3D models. Particles of initial models with complete
744 S2 but incomplete S1 were further classified using Ab-initio Reconstruction
745 with class similarity value 0.3 for the S-GSAS/6P:R1-26 dataset, 0.7 for the S-
746 GSAS/6P:H18 and S-GSAS/6P:H18:R1-32 datasets to separate different
747 conformations.

748

749 3:2 and 3:3 S-protomer:Fab structures were observed in both S-GSAS/6P:R1-26
750 and S-GSAS/6P:H18 datasets. Head-to-head aggregates of 2 S-trimers bound by
751 3 Fabs, giving S-protomer:Fab stoichiometry of 6:6, were observed in 2D

752 Classifications and Ab-Initio Reconstructions of both S-GSAS/6P:R1-26 and S-
753 GSAS/6P:H18 datasets. Particles of aggregate classes were selected and
754 combined before particles were re-extracted with a larger box size. A S-trimer
755 aggregate structure from the S-GSAS/6P:R1-26 dataset was obtained by a round
756 of 2D Classification followed by Ab-Initio Reconstruction. Similarly, 2 S-trimer
757 aggregate structures were obtained from the S-GSAS/6P:H18 dataset. To obtain
758 a higher resolution structure of the interface between RBD and R1-26 Fab,
759 particles of the 3:3 S-GSAS/6P:R1-26 structure were refined again with applied
760 C3 symmetry by Non-uniform Refinement. Refined particles were subjected to
761 Symmetry Expansion and Density Subtraction before a Local Refinement was
762 carried out focusing on a region containing RBD and Fab-V.

763

764 For the S-GSAS/6P:H18:R1-32 dataset, one 3:2:2 and two 3:3:3 structures were
765 observed. In the S-GSAS/6P:H18:R1-32 dataset, many well-defined 2D classes
766 showing incomplete S-protein features were selected for additional Ab-Initio
767 Reconstruction. One 1:1:1 S1:H18:R1-32 structure and one 2:2:2 S1:H18:R1-32
768 structure consisting of two head-to-head 1:1:1 S1:H18:R1-32 complexes were
769 observed. Particles of these two structures were re-extracted with a smaller box
770 size. Final maps of differently conformations were reconstructed using Non-
771 uniform Refinement. All maps with resolutions higher than 4 Å were processed
772 by a second round of Non-uniform Refinement with defocus refinement and
773 global CTF refinement to improve map quality. All resolutions were estimated
774 at the 0.143 criterion of the phase-randomization-corrected Fourier shell
775 correlation (FSC) curve calculated between two independently refined half-
776 maps multiplied by a soft-edged solvent mask in RELION v4.0 ([Kucukelbir et](#)
777 [al., 2014](#)). Additional data processing details are summarized in **Figs. S1 and**
778 **S2, and Table S2.**

779

780 **Model building and analysis**

781 A previously determined structure of SARS-CoV-2 S-trimer in complex with 3
782 R1-32 Fabs and 3 ACE2s (PDB: 7YEG) ([He et al., 2022](#)) or a structure of
783 SARS-CoV-2 S1 in complex with a YB9-258 Fab and an R1-32 Fab (PDB:
784 8HC5) ([Yu et al., 2023](#)) was used as starting model. An antibody light chain
785 (PDB: 7D6I) was used as the starting model for R1-26 and H18 Fab light
786 chains. Starting models for R1-26 and H18 Fab heavy chains were generated
787 from heavy chain structures in PDBs - 5X8M and 7VSU respectively. Starting
788 models were fitted into final refined maps in UCSF Chimera v1.14 ([Pettersen et](#)
789 [al., 2004](#)). Iterative model building and real space refinement were carried out
790 in Coot v0.9.6 ([Emsley et al., 2010](#)) and PHENIX v1.20.1-4487 ([Afonine et al.,](#)
791 [2018](#)). Model refinement statistics are summarized in **Tables S2**. Interface
792 analyses were performed in QtPISA v2.1.0 ([Krissinel, 2015](#)). Structure figures
793 were generated in UCSF Chimera v1.14.

794

795 **SARS-CoV-2 authentic virus neutralization assay**

796 Antibodies were serially diluted with DMEM and mixed with 200 focus forming
797 unit (FFU) Wuhan-Hu-1 (wildtype), Alpha, Beta, Delta, or Omicron BA.1
798 authentic SARS-CoV-2 viruses. After incubation at 37 °C for 1 h, antibody-
799 virus mixtures were added to a 96-well plate cultured with Vero E6 cells and
800 incubated at 37 °C in 5% CO₂ for 1 h. After removing the inoculum, each well
801 was overlaid with 100 µL 1.6% carboxymethylcellulose warmed to 37 °C. After
802 culturing for 24 h, overlays were removed and the cells were fixed with 4%
803 paraformaldehyde (Biosharp, China) and permeabilized with 0.2% Triton X-100
804 (Sigma, USA). Cells were incubated with a human anti-SARS-CoV-2
805 nucleocapsid protein monoclonal antibody (obtained by laboratory screening) at
806 37 °C for 1 h. After washing with 0.15% PBST three times, cells were
807 incubated with an HRP-labeled goat anti-human secondary antibody (Cat. No.:
808 609-035-213, Jackson ImmunoResearch Laboratories) at 37 °C for 1 h. Plates
809 were washed with 0.15% PBST three times before the foci were visualized by

810 TrueBlue Peroxidase Substrate (KPL, Gaithersburg, MD), and counted with an
811 ELISPOT reader (Cellular Technology Ltd. Cleveland, OH). The foci reduction
812 neutralization test titre (FRNT50) was calculated by the Spearman-Karber
813 method.

814

815 **Analysis of the structurally characterized SARS-CoV-2 S-specific mAbs**

816 A total of 376 antibody:RBD/S-protein complex structures were curated from
817 the PDB (<https://www.rcsb.org/>) before May 18, 2023. Epitope residues,
818 paratope residues, and buried surface area (BSA) were determined or calculated
819 using the PDBe PISA server (https://www.ebi.ac.uk/msd-srv/prot_int/). BSA for
820 each epitope residue is assigned as a feature of a certain antibody and used to
821 construct a feature matrix M_{AxB} for downstream analysis, where A is the
822 number of antibodies and B is the number of features (amino acid length of
823 spike: 1273). Therefore, a 376×1273 BSA matrix was obtained, which was
824 subsequently used as input for epitope classification with the R package UMAP
825 (v0.2.9.0). Uniform Manifold Approximation and Projection (UMAP) is an
826 algorithm for dimensional reduction. After the reduction analysis, clustering
827 was performed using the K-means algorithm. UMAP and K-means clusterings
828 were conducted independently. Antibodies clustered into the same cluster as the
829 well-documented mAb CR3022 are defined as class 4 antibodies. After this
830 workflow, 35 class 4 mAbs were identified among the 376 structurally
831 characterized S-specific mAbs (Fig. S5). In addition, we found that class 4
832 epitope is largely overlapping with the F2 epitope which was previously defined
833 by deep mutational scanning (Cao et al., 2022). Thus, a total of 69 F2 epitope
834 mAbs were also included for germline gene usage analysis. Germline gene
835 usages of these structurally characterized S-specific mAbs were inferred using
836 IMGT/V-QUEST (<https://www.imgt.org/>). Visualization of the germline heavy
837 and light gene usage and pairing among the 35 class 4 and the 69 F2 antibodies

838 were performed in R platform v4.2 using the R package circlize v0.4.10 ([Gu et
839 al., 2014](#)).

840

841 **Bioinformatic analysis**

842 To investigate features of VL6-57 utilizing mAbs, a total of 290 VL6-57
843 utilizing mAbs were extracted from the CoV-AbDab database ([Raybould et al.,
844 2021](#)) for downstream analysis. Analysis of germline gene usage and CDR3
845 length were performed using the built-in function in R platform v4.2. CDR3
846 amino acid composition analysis was performed using the R package ggseqlogo
847 ([Wagih, 2017](#)). VL6-57 utilizing mAbs with 12-AA length HCDR3 were used
848 for lineage structure reconstruction. R package igraph was employed for
849 visualization of the lineage structure of VL6-57 utilizing mAbs with 12-AA
850 length HCDR3s. After the above workflow, the results showed that WLRG
851 motif within 12-AA long HCDR3 and QSYDSS motif within LCDR3 are the
852 convergent signatures of the VL6-57 mAbs. To determine the occurrence of
853 VL6-57 mAbs with paired HCDR3 “WLRG” motif, we analysed nearly 2
854 billion IgH and IgL sequences from 3 previously described datasets ([Niu et al.,
855 2020; Yan et al., 2021; Zhang et al., 2022](#)). These datasets have been deposited
856 by us in the National Genomics Data Center (<https://bigd.big.ac.cn/>), China
857 National Center for Bioinformation (CNCB) under accession numbers
858 PRJCA003775, PRJCA007067, and PRJCA017560. HCDR3 “WLRG” motif-
859 containing IgH sequences were defined as those sequences which have 12-AA
860 long HCDR3s with a “WLRG” motif. VL6-57 IgL sequences were defined as
861 those sequences that use the germline gene VL6-57 with 9 to 10-AA long
862 LCDR3s, and encoding a “QSYDSS” motif within LCDR3 region. The
863 abundance of “WLRG” motif-containing IgH sequences or VL6-57 IgL
864 sequences were normalized by counts per million. The clonal expansion of B
865 cells expressing “WLRG” motif-containing IgH or VL6-57 IgL sequences in
866 COVID-19 patients after SARS-CoV-2 infection were tracked. The divergence

867 from germline genes of all IgH or IgL sequences was equal to somatic
868 hypermutations, and sequence identity to queried sequence was calculated using
869 the R package Biostrings v2.60.2
870 (<http://bioconductor.org/packages/release/bioc/html/Biostrings.html>). All IgH or
871 IgL sequences were plotted as a function of sequence somatic hypermutations
872 (x axis) and sequence identity (y axis) to heavy or light chains of R1-26, R1-30,
873 R2-3, R2-6 or R2-7 with a colour gradient indicating sequence density. To
874 determine the frequency of B cells expressing VL6-57 mAbs with paired
875 HCDR3 “WLRG” motif, we analysis the single-B V(D)J sequences from
876 SARS-CoV-2-exposed and -unexposed individuals ([Barmada et al., 2023](#);
877 [Dugan et al., 2021](#); [Ferreira-Gomes et al., 2021](#); [Ren et al., 2021](#); [Zhang et al.,](#)
878 [2020](#)) and FACS-sorted RBD+ B cells from COVID-19 convalescents ([Yu et](#)
879 [al., 2023](#)). These datasets are available from the Gene Expression Omnibus
880 (GEO) database under accession numbers: GSE230227, GSE171703,
881 GSE158038, GSE158055; <http://www.microbiome-bigdata.com/project/SARS-CoV-2/>; and National Genomics Data Center (<https://bigd.big.ac.cn/>) under the
882 accession number: PRJCA012020. B cells expressing VL6-57 mAbs with
883 paired HCDR3 “WLRG” motif were defined as those B cells expressing heavy
884 chains with a 12-AA long HCDR3 containing a “WLRG” motif and VL6-57
885 light chains with a “QSYDSS” motif in LCDR3.
886

887

888 **Data availability**

889 Cryo-EM density maps for the structures of R1-26 or H18 Fab in complex with
890 S-trimer or S1 fragment have been deposited in the Electron Microscopy Data
891 Bank (EMDB) with accession codes XXXX. Related atomic models have been
892 deposited in the Protein Data Bank (PDB) under accession codes XXXX,
893 respectively.

894

895 **Acknowledgements**

896 We thank the staffs at cryo-EM Facilities of GIBH-CAS, Guangzhou

897 Laboratory Bio-imaging Technology Platform and SUSTech for help on cryo-
898 EM sample preparation and data collection. This study was supported by the
899 National Natural Science Foundation of China (82201932 to Q.Y., 92269201 to
900 L.C.), the Emergency Key Program of Guangzhou Laboratory (EKGPG21-06 to
901 X.X.), the R&D Program of Guangzhou Laboratory (SRPG22-002 to X.X.), the
902 Natural Science Fund of Guangdong Province (2021A1515011289 to X.X.),
903 China Postdoctoral Science Foundation (2022M710891 to Q.Y.), State Key
904 Laboratory of Respiratory Disease (SKLRD-Z-202324 to Q.Y.), X.X.
905 acknowledges start-up grants from the Chinese Academy of Sciences.
906

907 **Contributions**

908 Q.Y. and X.X. conceived the study. Q.Y., R.H. and P.H. conceived and initiated
909 the antibody isolation; X.X. conceived and initiated the structural studies; R.H.
910 and P.H. isolated antibodies with assistance from X.H., H.L., X.C. and X.N.;
911 P.H. and R.H. expressed and purified antibodies; P.H., B.L., R.H. and Q.C.
912 performed BLI assays; Y.M. performed the SARS-CoV-2 S-mediated cell-cell
913 fusion assays; YZ performed authentic virus neutralization assays; B.L. and
914 Q.C. purified spikes for cryo-EM and other experiments using constructs and
915 protocols developed by X.X.; B.L. performed western blots to assay spike
916 structural change; Q.Y. performed the bioinformatics analysis with assistance
917 from X.X. and Y.Z.; B.L. and X.G. collected cryo-EM data under the
918 supervision of J.H. and X.X.; X.G., Z.L. and J.W. processed cryo-EM data
919 under the supervision of J.H. and X.X.; X.X., X.G., Q.Y. and J.H. analysed
920 cryo-EM structures with assistance from B.L. and J.W.; Q.Y., B.L., X.G., R.H.
921 and Y.M. prepared the figures under the supervision of X.X.; X.X. and Q.Y.
922 wrote the paper with input from all co-authors; X.X., Z.J., J.H. and L.C.
923 acquired funding and supervised the research.

924 **Competing interests**

925 The authors declare no competing interests.
926

927 **Reference**

928 Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and
929 Adams, P.D. (2018). Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta
930 Crystallogr D Struct Biol* **74**, 531-544.

931 Barmada, A., Klein, J., Ramaswamy, A., Brodsky, N.N., Jaycox, J.R., Sheikha, H., Jones, K.M.,
932 Habet, V., Campbell, M., Sumida, T.S., *et al.* (2023). Cytokinopathy with aberrant cytotoxic
933 lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated
934 myocarditis. *Science Immunology* **8**.

935 Boni, M.F. (2008). Vaccination and antigenic drift in influenza. *Vaccine* **26 Suppl 3**, C8-14.

936 Cao, Y., Jian, F., Wang, J., Yu, Y., Song, W., Yisimayi, A., Wang, J., An, R., Chen, X., Zhang, N.,
937 *et al.* (2023). Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD
938 evolution. *Nature* **614**, 521-529.

939 Cao, Y., Yisimayi, A., Jian, F., Song, W., Xiao, T., Wang, L., Du, S., Wang, J., Li, Q., Chen, X., *et
940 al.* (2022). BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. *Nature*.

941 Carabelli, A.M., Peacock, T.P., Thorne, L.G., Harvey, W.T., Hughes, J., Consortium, C.-G.U.,
942 Peacock, S.J., Barclay, W.S., de Silva, T.I., Towers, G.J., *et al.* (2023). SARS-CoV-2 variant
943 biology: immune escape, transmission and fitness. *Nat Rev Microbiol* **21**, 162-177.

944 Cerutti, G., Guo, Y., Zhou, T., Gorman, J., Lee, M., Rapp, M., Reddem, E.R., Yu, J., Bahna, F.,
945 Bimela, J., *et al.* (2021). Potent SARS-CoV-2 neutralizing antibodies directed against spike N-
946 terminal domain target a single supersite. *Cell Host Microbe* **29**, 819-833 e817.

947 Chen, E.C., Gilchuk, P., Zost, S.J., Suryadevara, N., Winkler, E.S., Cabel, C.R., Binshtain, E.,
948 Chen, R.E., Sutton, R.E., Rodriguez, J., *et al.* (2021). Convergent antibody responses to the
949 SARS-CoV-2 spike protein in convalescent and vaccinated individuals. *Cell Rep* **36**, 109604.

950 Clark, S.A., Clark, L.E., Pan, J., Coscia, A., McKay, L.G.A., Shankar, S., Johnson, R.I., Brusic, V.,
951 Choudhary, M.C., Regan, J., *et al.* (2021). SARS-CoV-2 evolution in an immunocompromised
952 host reveals shared neutralization escape mechanisms. *Cell*.

953 Dejnirattisai, W., Huo, J., Zhou, D., Zahradnik, J., Supasa, P., Liu, C., Duyvesteyn, H.M.E.,
954 Ginn, H.M., Mentzer, A.J., Tuekprakhon, A., *et al.* (2022). SARS-CoV-2 Omicron-B.1.1.529
955 leads to widespread escape from neutralizing antibody responses. *Cell* **185**, 467-484 e415.

956 Deng, X., Garcia-Knight, M.A., Khalid, M.M., Servellita, V., Wang, C., Morris, M.K.,
957 Sotomayor-González, A., Glasner, D.R., Reyes, K.R., Gliwa, A.S., *et al.* (2021). Transmission,
958 infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. *Cell* **184**, 3426-
959 3437.e3428.

960 Dong, J., Zost, S., Greaney, A., Starr, T.N., Dingens, A.S., Chen, E.C., Chen, R., Case, B., Sutton,
961 R., Gilchuk, P., *et al.* (2021). Genetic and structural basis for recognition of SARS-CoV-2 spike
962 protein by a two-antibody cocktail. *bioRxiv*.

963 Dugan, H.L., Stamper, C.T., Li, L., Changrob, S., Asby, N.W., Halfmann, P.J., Zheng, N.Y.,
964 Huang, M., Shaw, D.G., Cobb, M.S., *et al.* (2021). Profiling B cell immunodominance after
965 SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. *Immunity*
966 54, 1290-1303 e1297.

967 Ehrhardt, S.A., Zehner, M., Krahling, V., Cohen-Dvashi, H., Kreer, C., Elad, N., Gruell, H.,
968 Ercanoglu, M.S., Schommers, P., Gieselmann, L., *et al.* (2019). Polyclonal and convergent
969 antibody response to Ebola virus vaccine rVSV-ZEBOV. *Nat Med* 25, 1589-1600.

970 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of
971 Coot. *Acta Crystallogr D Biol Crystallogr* 66, 486-501.

972 Ferreira-Gomes, M., Kruglov, A., Durek, P., Heinrich, F., Tizian, C., Heinz, G.A., Pascual-
973 Reguant, A., Du, W., Mothes, R., Fan, C., *et al.* (2021). SARS-CoV-2 in severe COVID-19
974 induces a TGF-beta-dominated chronic immune response that does not target itself. *Nat*
975 *Commun* 12, 1961.

976 Grubaugh, N.D., Hanage, W.P., and Rasmussen, A.L. (2020). Making Sense of Mutation:
977 What D614G Means for the COVID-19 Pandemic Remains Unclear. *Cell* 182, 794-795.

978 Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize Implements and enhances
979 circular visualization in R. *Bioinformatics* 30, 2811-2812.

980 Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C., Harrison, E.M.,
981 Ludden, C., Reeve, R., Rambaut, A., Peacock, S.J., *et al.* (2021). SARS-CoV-2 variants, spike
982 mutations and immune escape. *Nature Reviews Microbiology* 19, 409-424.

983 He, P., Liu, B., Gao, X., Yan, Q., Pei, R., Sun, J., Chen, Q., Hou, R., Li, Z., Zhang, Y., *et al.* (2022).
984 SARS-CoV-2 Delta and Omicron variants evade population antibody response by mutations
985 in a single spike epitope. *Nat Microbiol* 7, 1635-1649.

986 Hsieh, C.L., Goldsmith, J.A., Schaub, J.M., DiVenere, A.M., Kuo, H.C., Javanmardi, K., Le, K.C.,
987 Wrapp, D., Lee, A.G., Liu, Y., *et al.* (2020). Structure-based design of prefusion-stabilized
988 SARS-CoV-2 spikes. *Science* 369, 1501-1505.

989 Huang, K.A., Chen, X., Mohapatra, A., Nguyen, H.T.V., Schimanski, L., Tan, T.K., Rijal, P.,
990 Vester, S.K., Hills, R.A., Howarth, M., *et al.* (2023). Structural basis for a conserved
991 neutralization epitope on the receptor-binding domain of SARS-CoV-2. *Nat Commun* 14,
992 311.

993 Huo, J., Dijokait-Guraliuc, A., Nutalai, R., Das, R., Zhou, D., Mentzer, A.J., Fry, E.E.,
994 Mongkolsapaya, J., Ren, J., Stuart, D.I., *et al.* (2022). Humoral responses against SARS-CoV-2
995 Omicron BA.2.11, BA.2.12.1 and BA.2.13 from vaccine and BA.1 serum. *Cell Discovery* 8, 1-4.

996 Jackson, K.J., Liu, Y., Roskin, K.M., Glanville, J., Hoh, R.A., Seo, K., Marshall, E.L., Gurley, T.C.,
997 Moody, M.A., Haynes, B.F., *et al.* (2014). Human responses to influenza vaccination show
998 seroconversion signatures and convergent antibody rearrangements. *Cell Host Microbe* 16,
999 105-114.

1000 Kimura, I., Yamasoba, D., Nasser, H., Zahradnik, J., Kosugi, Y., Wu, J., Nagata, K., Uriu, K.,
1001 Tanaka, Y.L., Ito, J., *et al.* (2022a). The SARS-CoV-2 spike S375F mutation characterizes the
1002 Omicron BA.1 variant. *iScience* 25, 105720.

1003 Kimura, I., Yamasoba, D., Tamura, T., Nao, N., Suzuki, T., Oda, Y., Mitoma, S., Ito, J., Nasser,
1004 H., Zahradnik, J., *et al.* (2022b). Virological characteristics of the SARS-CoV-2 Omicron BA.2
1005 subvariants, including BA.4 and BA.5. *Cell* 185, 3992-4007 e3916.

1006 Krissinel, E. (2015). Stock-based detection of protein oligomeric states in jsPISA. *Nucleic
1007 Acids Res* 43, W314-319.

1008 Kucukelbir, A., Sigworth, F.J., and Tagare, H.D. (2014). Quantifying the local resolution of
1009 cryo-EM density maps. *Nature Methods* 11, 63-65.

1010 Lin, Y.P., Xiong, X., Wharton, S.A., Martin, S.R., Coombs, P.J., Vachieri, S.G., Christodoulou,
1011 E., Walker, P.A., Liu, J., Skehel, J.J., *et al.* (2012). Evolution of the receptor binding properties
1012 of the influenza A(H3N2) hemagglutinin. *Proc Natl Acad Sci U S A* 109, 21474-21479.

1013 Liu, L., Iketani, S., Guo, Y., Chan, J.F., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M.S.,
1014 *et al.* (2022). Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2.
1015 *Nature* 602, 676-681.

1016 Ma, Y., Li, P., Hu, Y., Qiu, T., Wang, L., Lu, H., Lv, K., Xu, M., Zhuang, J., Liu, X., *et al.* (2023).
1017 Spike substitution T813S increases Sarbecovirus fusogenicity by enhancing the usage of
1018 TMPRSS2. *PLoS Pathog* 19, e1011123.

1019 Mallapaty, S. (2022). Where did Omicron come from? Three key theories. *Nature* 602, 26-
1020 28.

1021 Markov, P.V., Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N.I., and
1022 Katzourakis, A. (2023). The evolution of SARS-CoV-2. *Nature Reviews Microbiology* 21, 361-
1023 379.

1024 Nielsen, S.C.A., Yang, F., Jackson, K.J.L., Hoh, R.A., Roltgen, K., Jean, G.H., Stevens, B.A., Lee,
1025 J.Y., Rustagi, A., Rogers, A.J., *et al.* (2020). Human B Cell Clonal Expansion and Convergent
1026 Antibody Responses to SARS-CoV-2. *Cell Host Microbe* 28, 516-525 e515.

1027 Niu, X., Li, S., Li, P., Pan, W., Wang, Q., Feng, Y., Mo, X., Yan, Q., Ye, X., Luo, J., *et al.* (2020).
1028 Longitudinal Analysis of T and B Cell Receptor Repertoire Transcripts Reveal Dynamic
1029 Immune Response in COVID-19 Patients. *Front Immunol* 11, 582010.

1030 Niu, Z., Zhang, Z., Gao, X., Du, P., Lu, J., Yan, B., Wang, C., Zheng, Y., Huang, H., and Sun, Q.
1031 (2021). N501Y mutation imparts cross-species transmission of SARS-CoV-2 to mice by
1032 enhancing receptor binding. *Signal Transduction and Targeted Therapy* 6.

1033 Pappas, L., Foglierini, M., Piccoli, L., Kallewaard, N.L., Turrini, F., Silacci, C., Fernandez-
1034 Rodriguez, B., Agatic, G., Giacchetto-Sasselli, I., Pellicciotta, G., *et al.* (2014). Rapid
1035 development of broadly influenza neutralizing antibodies through redundant mutations.
1036 *Nature* 516, 418-422.

1037 Parameswaran, P., Liu, Y., Roskin, K.M., Jackson, K.K., Dixit, V.P., Lee, J.Y., Artiles, K.L.,
1038 Zompi, S., Vargas, M.J., Simen, B.B., *et al.* (2013). Convergent antibody signatures in human
1039 dengue. *Cell Host Microbe* 13, 691-700.

1040 Pastorio, C., Zech, F., Noettger, S., Jung, C., Jacob, T., Sanderson, T., Sparrer, K.M.J., and
1041 Kirchhoff, F. (2022). Determinants of Spike infectivity, processing, and neutralization in
1042 SARS-CoV-2 Omicron subvariants BA.1 and BA.2. *Cell Host Microbe* 30, 1255-1268 e1255.

1043 Patel, A., Kumar, S., Lai, L., Chakravarthy, C., Valanparambil, R., Reddy, E.S., Gottimukkala,
1044 K., Bajpai, P., Raju, D.R., Edara, V.V., *et al.* (2023). Molecular basis of SARS-CoV-2 Omicron
1045 variant evasion from shared neutralizing antibody response. *Structure*.

1046 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and
1047 Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and
1048 analysis. *J Comput Chem* 25, 1605-1612.

1049 Piccoli, L., Park, Y.J., Tortorici, M.A., Czudnochowski, N., Walls, A.C., Beltramello, M., Silacci-
1050 Fregni, C., Pinto, D., Rosen, L.E., Bowen, J.E., *et al.* (2020). Mapping Neutralizing and
1051 Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-
1052 Guided High-Resolution Serology. *Cell* 183, 1024-1042 e1021.

1053 Qu, K., Chen, Q., Ciazenska, K.A., Liu, B., Zhang, X., Wang, J., He, Y., Guan, J., He, J., Liu, T., *et*
1054 *al.* (2022). Engineered disulfide reveals structural dynamics of locked SARS-CoV-2 spike.
1055 *PLoS Pathog* 18, e1010583.

1056 Qu, P., Evans, J.P., Faraone, J.N., Zheng, Y.M., Carlin, C., Anghelina, M., Stevens, P.,
1057 Fernandez, S., Jones, D., Lozanski, G., *et al.* (2023). Enhanced neutralization resistance of
1058 SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. *Cell Host*
1059 *Microbe* 31, 9-17 e13.

1060 Rapp, M., Guo, Y., Reddem, E.R., Yu, J., Liu, L., Wang, P., Cerutti, G., Katsamba, P., Bimela,
1061 J.S., Bahna, F.A., *et al.* (2021). Modular basis for potent SARS-CoV-2 neutralization by a
1062 prevalent VH1-2-derived antibody class. *Cell Reports* 35, 108950.

1063 Raybould, M.I.J., Kovaltsuk, A., Marks, C., and Deane, C.M. (2021). CoV-AbDab: the
1064 coronavirus antibody database. *Bioinformatics* 37, 734-735.

1065 Ren, X., Wen, W., Fan, X., Hou, W., Su, B., Cai, P., Li, J., Liu, Y., Tang, F., Zhang, F., *et al.*
1066 (2021). COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas.
1067 *Cell* 184, 1895-1913 e1819.

1068 Robbiani, D.F., Gaebler, C., Muecksch, F., Lorenzi, J.C.C., Wang, Z., Cho, A., Agudelo, M.,
1069 Barnes, C.O., Gazumyan, A., Finkin, S., *et al.* (2020). Convergent antibody responses to SARS-
1070 CoV-2 in convalescent individuals. *Nature* 584, 437-442.

1071 Saito, A., Tamura, T., Zahradnik, J., Deguchi, S., Tabata, K., Anraku, Y., Kimura, I., Ito, J.,
1072 Yamasoba, D., Nasser, H., *et al.* (2022). Virological characteristics of the SARS-CoV-2
1073 Omicron BA.2.75 variant. *Cell Host Microbe* 30, 1540-1555 e1515.

1074 Starr, T.N., Greaney, A.J., Hannon, W.W., Loes, A.N., Hauser, K., Dillen, J.R., Ferri, E., Farrell,
1075 A.G., Dadonaite, B., McCallum, M., *et al.* (2022). Shifting mutational constraints in the SARS-
1076 CoV-2 receptor-binding domain during viral evolution. *Science* **377**, 420-424.

1077 Sui, J., Hwang, W.C., Perez, S., Wei, G., Aird, D., Chen, L.M., Santelli, E., Stec, B., Cadwell, G.,
1078 Ali, M., *et al.* (2009). Structural and functional bases for broad-spectrum neutralization of
1079 avian and human influenza A viruses. *Nat Struct Mol Biol* **16**, 265-273.

1080 Tchesnokova, V., Kulasekara, H., Larson, L., Bowers, V., Rechkina, E., Kisiela, D., Sledneva, Y.,
1081 Choudhury, D., Maslova, I., Deng, K., *et al.* (2021). Acquisition of the L452R Mutation in the
1082 ACE2-Binding Interface of Spike Protein Triggers Recent Massive Expansion of SARS-CoV-2
1083 Variants. *Journal of clinical microbiology* **59**, e0092121.

1084 Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., *et al.* (2020).
1085 Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific
1086 human monoclonal antibody. *Emerging Microbes & Infections* **9**, 382-385.

1087 Toelzer, C., Gupta, K., Yadav, S.K.N., Borucu, U., Davidson, A.D., Kavanagh Williamson, M.,
1088 Shoemark, D.K., Garzoni, F., Staufer, O., Milligan, R., *et al.* (2020). Free fatty acid binding
1089 pocket in the locked structure of SARS-CoV-2 spike protein. *Science* **370**, 725-730.

1090 Toelzer, C., Gupta, K., Yadav, S.K.N., Hodgson, L., Williamson, M.K., Buzas, D., Borucu, U.,
1091 Powers, K., Stenner, R., Vasileiou, K., *et al.* (2022). The free fatty acid-binding pocket is a
1092 conserved hallmark in pathogenic beta-coronavirus spike proteins from SARS-CoV to
1093 Omicron. *Sci Adv* **8**, eadc9179.

1094 Tuekprakhon, A., Nutalai, R., Dijokait-Guraliuc, A., Zhou, D., Ginn, H.M., Selvaraj, M., Liu, C.,
1095 Mentzer, A.J., Supasa, P., Duyvesteyn, H.M.E., *et al.* (2022). Antibody escape of SARS-CoV-2
1096 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. *Cell* **185**, 2422-2433.e2413.

1097 Volz, E. (2023). Fitness, growth and transmissibility of SARS-CoV-2 genetic variants. *Nature*
1098 *Reviews Genetics*.

1099 Wagih, O. (2017). ggseqlogo: a versatile R package for drawing sequence logos.
1100 *Bioinformatics* **33**, 3645-3647.

1101 Walls, A.C., Xiong, X., Park, Y.J., Tortorici, M.A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R.,
1102 Dai, M., Lanzavecchia, A., *et al.* (2019). Unexpected Receptor Functional Mimicry Elucidates
1103 Activation of Coronavirus Fusion. *Cell* **176**, 1026-1039 e1015.

1104 Wang, Q., Guo, Y., Iketani, S., Nair, M.S., Li, Z., Mohri, H., Wang, M., Yu, J., Bowen, A.D.,
1105 Chang, J.Y., *et al.* (2022a). Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1,
1106 BA.4 and BA.5. *Nature*.

1107 Wang, Q., Iketani, S., Li, Z., Liu, L., Guo, Y., Huang, Y., Bowen, A.D., Liu, M., Wang, M., Yu, J.,
1108 *et al.* (2023). Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB
1109 subvariants. *Cell* **186**, 279-286 e278.

1110 Wang, Y., Zhan, W., Liu, J., Wang, Y., Zhang, X., Zhang, M., Han, L., Ma, Y., Lu, L., Wen, Y., *et al.* (2022b). A broadly neutralizing antibody against SARS-CoV-2 Omicron variant infection
1111 exhibiting a novel trimer dimer conformation in spike protein binding. *Cell Res* 32, 862-865.

1113 Willett, B.J., Grove, J., MacLean, O.A., Wilkie, C., De Lorenzo, G., Furnon, W., Cantoni, D.,
1114 Scott, S., Logan, N., Ashraf, S., *et al.* (2022). SARS-CoV-2 Omicron is an immune escape
1115 variant with an altered cell entry pathway. *Nature Microbiology* 7, 1161-1179.

1116 Wu, X., Zhang, Z., Schramm, C.A., Joyce, M.G., Kwon, Y.D., Zhou, T., Sheng, Z., Zhang, B.,
1117 O'Dell, S., McKee, K., *et al.* (2015). Maturation and Diversity of the VRC01-Antibody Lineage
1118 over 15 Years of Chronic HIV-1 Infection. *Cell* 161, 470-485.

1119 Xiao, H., Guo, T., Yang, M., Qi, J., Huang, C., Hong, Y., Gu, J., Pang, X., Liu, W.J., Peng, R., *et al.*
1120 (2019). Light chain modulates heavy chain conformation to change protection profile of
1121 monoclonal antibodies against influenza A viruses. *Cell Discovery* 5.

1122 Xiong, X., Qu, K., Ciazynska, K.A., Hosmillo, M., Carter, A.P., Ebrahimi, S., Ke, Z., Scheres,
1123 S.H.W., Bergamaschi, L., Grice, G.L., *et al.* (2020). A thermostable, closed SARS-CoV-2 spike
1124 protein trimer. *Nature Structural & Molecular Biology* 27, 934-941.

1125 Yan, Q., He, P., Huang, X., Luo, K., Zhang, Y., Yi, H., Wang, Q., Li, F., Hou, R., Fan, X., *et al.*
1126 (2021). Germline IGHV3-53-encoded RBD-targeting neutralizing antibodies are commonly
1127 present in the antibody repertoires of COVID-19 patients. *Emerg Microbes Infect* 10, 1097-
1128 1111.

1129 Yan, Q., Hou, R., Huang, X., Zhang, Y., He, P., Zhang, Y., Liu, B., Wang, Q., Rao, H., Chen, X., *et al.*
1130 (2022). Shared IGHV1-69-encoded neutralizing antibodies contribute to the emergence
1131 of L452R substitution in SARS-CoV-2 variants. *Emerg Microbes Infect* 11, 2749-2761.

1132 Yang, T.-J., Yu, P.-Y., Chang, Y.-C., and Hsu, S.-T.D. (2021). D614G mutation in the SARS-CoV-
1133 2 spike protein enhances viral fitness by desensitizing it to temperature-dependent
1134 denaturation. *Journal of Biological Chemistry* 297, 101238.

1135 Yu, H., Liu, B., Zhang, Y., Gao, X., Wang, Q., Xiang, H., Peng, X., Xie, C., Wang, Y., Hu, P., *et al.*
1136 (2023). Somatically hypermutated antibodies isolated from SARS-CoV-2 Delta infected
1137 patients cross-neutralize heterologous variants. *Nat Commun* 14, 1058.

1138 Yuan, M., Huang, D., Lee, C.-C.D., Wu, N.C., Jackson, A.M., Zhu, X., Liu, H., Peng, L., Gils,
1139 M.J.v., Sanders, R.W., *et al.* (2021). Structural and functional ramifications of antigenic drift
1140 in recent SARS-CoV-2 variants. *Science* 373, 818-823.

1141 Yuan, M., Liu, H., Wu, N.C., Lee, C.C.D., Zhu, X., Zhao, F., Huang, D., Yu, W., Hua, Y., Tien, H.,
1142 *et al.* (2020a). Structural basis of a shared antibody response to SARS-CoV-2. *Science* 369,
1143 1119-1123.

1144 Yuan, M., Wu, N.C., Zhu, X., Lee, C.-C.D.C.D., So, R.T.Y.Y., Lv, H., Mok, C.K.P.P., and Wilson,
1145 I.A. (2020b). A highly conserved cryptic epitope in the receptor binding domains of SARS-
1146 CoV-2 and SARS-CoV. *Science* 368, 630-633.

1147 Yurkovetskiy, L., Wang, X., Pascal, K.E., Tomkins-Tinch, C., Nyalile, T.P., Wang, Y., Baum, A.,
1148 Diehl, W.E., Dauphin, A., Carbone, C., *et al.* (2020). Structural and Functional Analysis of the
1149 D614G SARS-CoV-2 Spike Protein Variant. *Cell* 183, 739-751.e738.

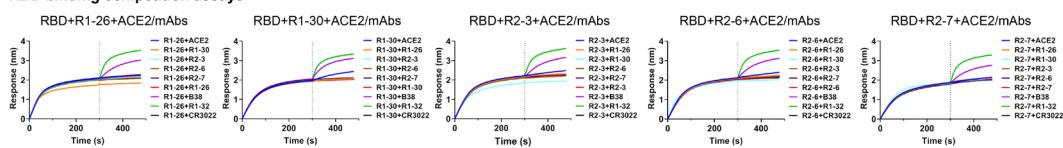
1150 Zhang, F., Gan, R., Zhen, Z., Hu, X., Li, X., Zhou, F., Liu, Y., Chen, C., Xie, S., Zhang, B., *et al.*
1151 (2020). Adaptive immune responses to SARS-CoV-2 infection in severe versus mild
1152 individuals. *Signal Transduct Target Ther* 5, 156.

1153 Zhang, J., Cai, Y., Xiao, T., Lu, J., Peng, H., Sterling, S.M., Walsh, R.M., Rits-Volloch, S., Zhu, H.,
1154 Woosley, A.N., *et al.* (2021a). Structural impact on SARS-CoV-2 spike protein by D614G
1155 substitution. *Science* 372, 525-530.

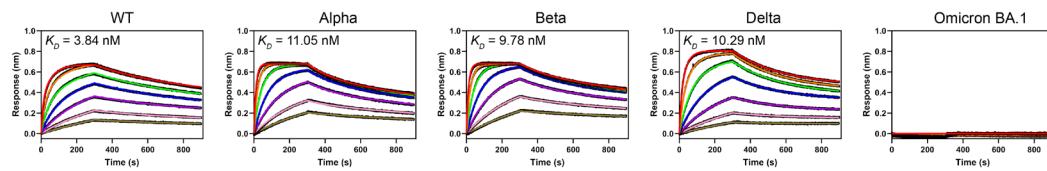
1156 Zhang, Q., Ju, B., Ge, J., Chan, J.F., Cheng, L., Wang, R., Huang, W., Fang, M., Chen, P., Zhou,
1157 B., *et al.* (2021b). Potent and protective IGHV3-53/3-66 public antibodies and their shared
1158 escape mutant on the spike of SARS-CoV-2. *Nat Commun* 12, 4210.

1159 Zhang, X., Li, Z., Zhang, Y., Liu, Y., Wang, J., Liu, B., Chen, Q., Wang, Q., Fu, L., Wang, P., *et al.*
1160 (2023). Disulfide stabilization reveals conserved dynamic features between SARS-CoV-1 and
1161 SARS-CoV-2 spikes. *Life Sci Alliance* 6.

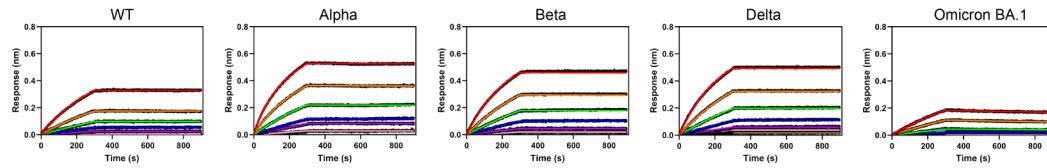
1162 Zhang, Y., Yan, Q., Luo, K., He, P., Hou, R., Zhao, X., Wang, Q., Yi, H., Liang, H., Deng, Y., *et al.*
1163 (2022). Analysis of B Cell Receptor Repertoires Reveals Key Signatures of the Systemic B Cell
1164 Response after SARS-CoV-2 Infection. *Journal of Virology* 96, 1-23.

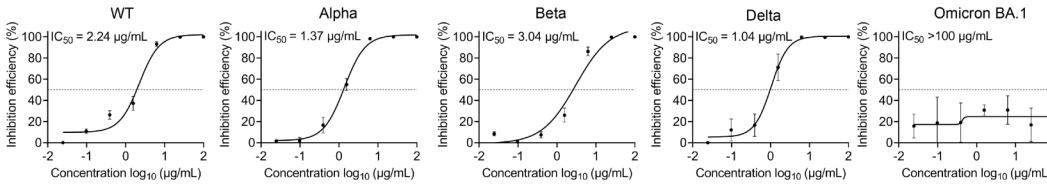

1165

1166


a Features of isolated VL6-57 (VL6-57) light chain utilizing mAbs

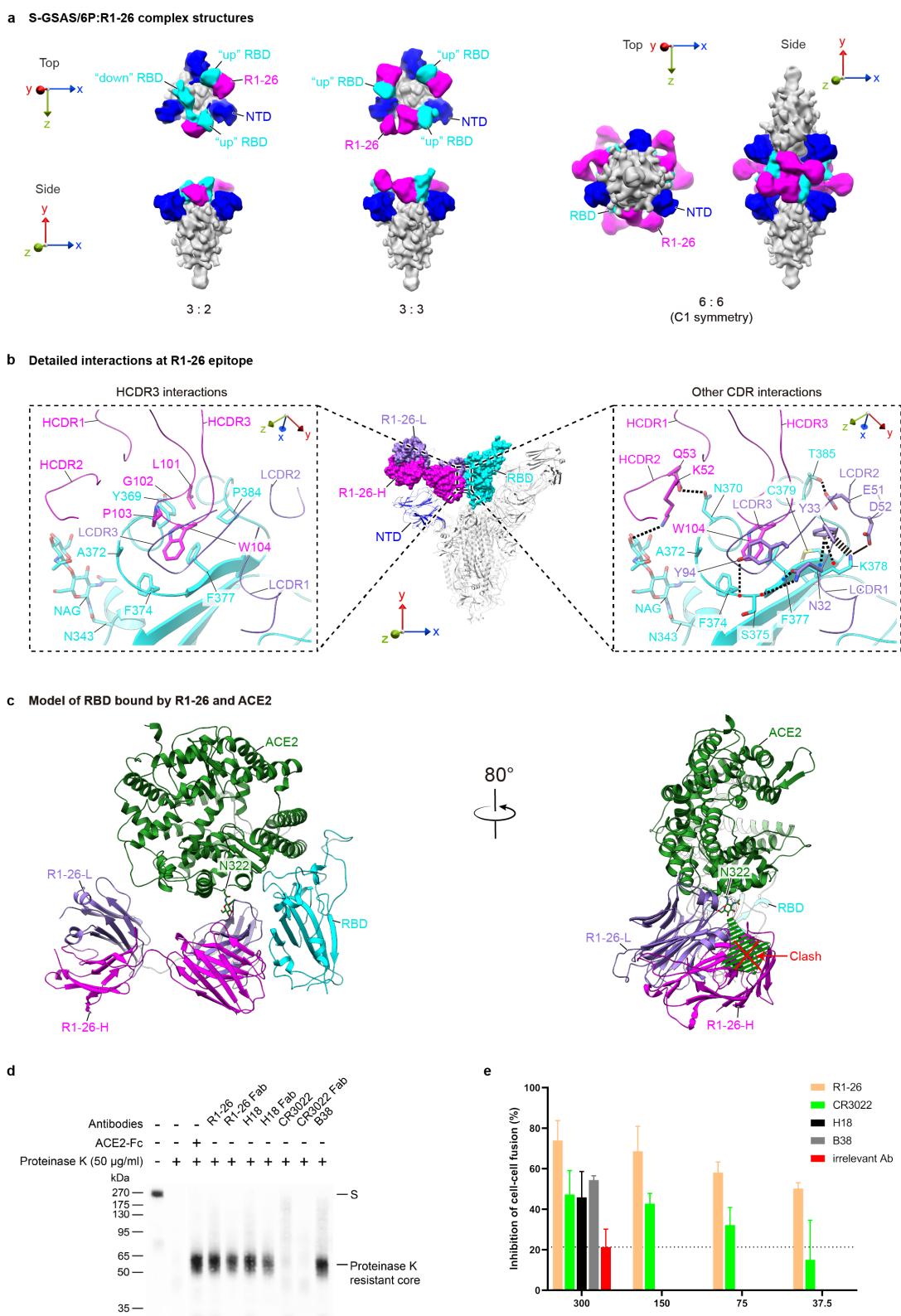
Donor	mAb	Gene analysis						Binding of mAb to RBD	Pseudovirus neutralization			
		IGHV	IGHD	IGHU	CDR3	SHM%	IGLV	IGLJ	LCDR3	SHM%	K_D (nM)	IC_{50} (nM)
PTK	R1-26	IGHV3-7	IGHD6-6	IGHU4	ARGQLGPWVGVDY	0	IGLV6-57	IGLJ3	QSYDSSNNWV	0	3.84	2.71
PTK	R1-30	IGHV4-59	IGHD4-23	IGHU4	ARQGWLRGNFDY	0	IGLV6-57	IGLJ2	QSYDSSHIHV	0	35.38	4.06
PTZ	R2-3	IGHV3-7	IGHD5-18	IGHU3	ASQLWLRLGAFDI	2.78	IGLV6-57	IGLJ3	QSYDSSNPWV	1.72	13.28	3.46
PTZ	R2-6	IGHV4-31	IGHD5-24	IGHU3	ARKGWLRLGAFDI	1.37	IGLV6-57	IGLJ2	QSYDSGVV	0.69	22.8	13.91
PTZ	R2-7	IGHV4-31	IGHD5-24	IGHU3	ARKGWLRLGAFDI	1.37	IGLV6-57	IGLJ2	QSYDSSNHLVV	0	62.2	>333


b RBD binding competition assays


c RBD binding by R1-26

d S-trimer binding by R1-26

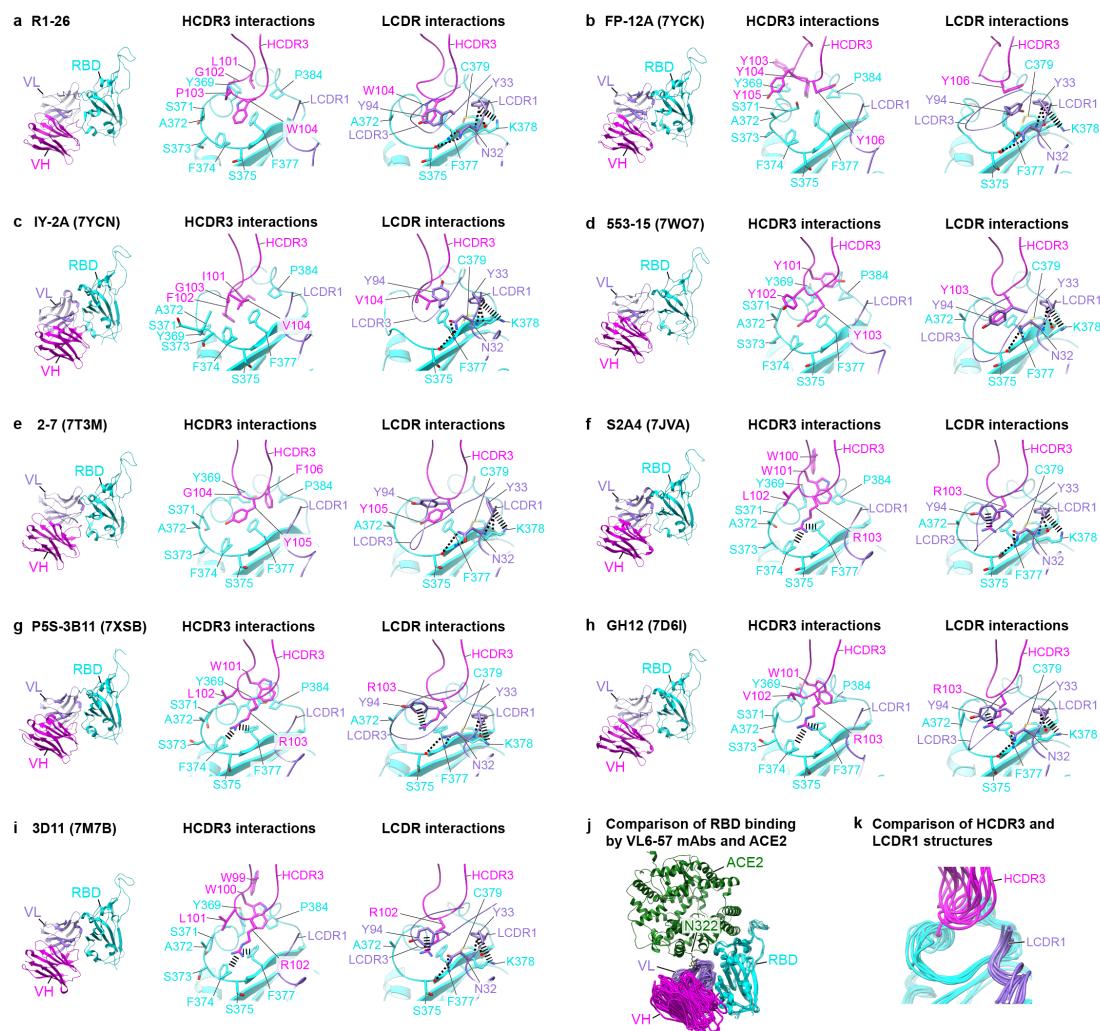
e Authentic virus neutralization by R1-26



1167

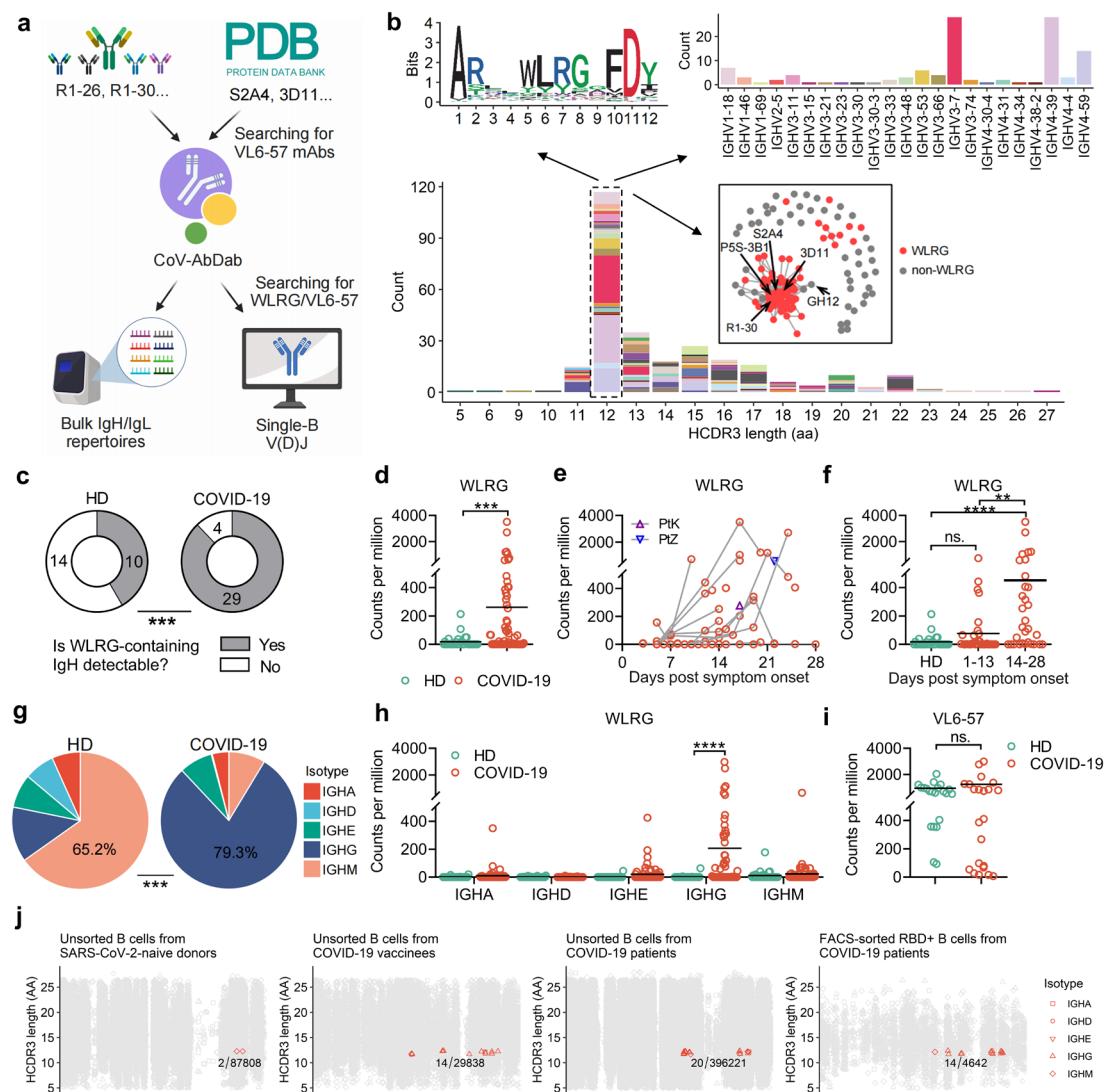
Fig. 1 | Characteristics of the 5 VL6-57 light chain utilizing antibodies. a,

1168 The genetic and functional properties of the 5 isolated VL6-57 light chain
 1169 utilizing antibodies (He et al., 2022). Neutralization titres (IC_{50}) of antibodies
 1170 were determined against a pseudovirus displaying WT SARS-CoV-2 S-protein.
 1171 Binding affinities (K_D) of antibodies to SARS-CoV-2 WT RBD were
 1172 determined by biolayer interferometry (BLI) assays. Germline usage and
 1173 somatic hypermutation (SHM) analysis of antibodies were performed using
 1174 IMGT/V-QUEST. **b**, Pairwise binding competition to SARS-CoV-2 RBD was
 1175 assessed by BLI. A biosensor immobilized with WT SARS-CoV-2 RBD was
 1176 first saturated with one of the VL6-57 utilizing mAbs until the dashed line
 1177 before submerging into a solution of another mAb or ACE2 to assess
 1178 competition. An ACE2 competing antibody B38 (purple) and two non-ACE2
 1179 competing antibodies recognizing different RBD epitopes, CR3022 (black)
 1180 (Yuan et al., 2020b) and R1-32 (green) (He et al., 2022) were used as controls.
 1181 **c-d**, BLI binding curves of R1-26 to 2-fold serially diluted RBD (**c**) or S-protein


1183 (d) solutions of WT SARS-CoV-2 and VOCs. The black lines represent the
1184 experimentally recorded sensorgram traces, the colored lines represent
1185 corresponding fits. Detailed binding kinetics parameters are summarized in
1186 **Supplementary Table 1.** e, Neutralization activities of R1-26 towards SARS-
1187 CoV-2 WT and VOC authentic viruses in cell culture (data are presented as
1188 mean values \pm SD).
1189

1190

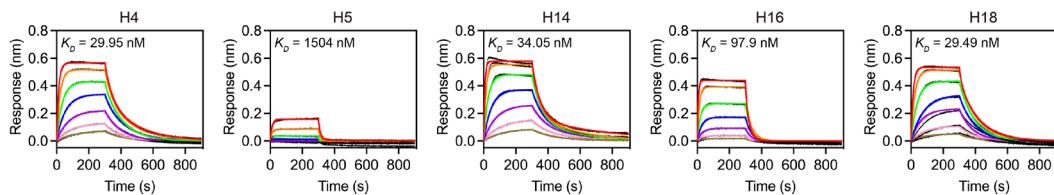
1191 **Fig. 2 | Structural analysis of R1-26 epitope binding and biochemical**
 1192 **activities of R1-26. a, Structures (low-pass filtered to 12 Å) of S-GSAS/6P S-**
 1193 **trimers in complex with R1-26 Fabs in different stoichiometries. R1-26 Fab,**
 1194 **NTD and RBD are highlighted in magenta, blue and cyan, respectively; the rest**


1195 of the S-trimer is colored gray. **b**, Epitope of R1-26 on spike RBD. R1-26-H
1196 and R1-26-L chains are colored in magenta and purple. Detailed interactions
1197 between R1-26 and RBD are shown in the dashed boxes. CDR loops are
1198 indicated, selected interacting residues in antibody-RBD interface are shown.
1199 Thick and thin dashed lines indicate cation- π and hydrogen bond interactions;
1200 The solid line represents a salt bridge. **c**, A hypothetical model showing
1201 simultaneous RBD binding by R1-26 and ACE2 (also see **Fig. S4** for
1202 comparison with simultaneous RBD binding by CR3022 and ACE2). The
1203 model is based on RBD complex structures of R1-26 and ACE2 (PDB: 7YDI).
1204 The glycan attached to ACE2 residue N322 is labelled and the green dashed
1205 arrow indicates a possible direction of glycan chain extension. **d**, Ligand-
1206 induced conformational change assays to probe the induction of post-fusion
1207 structures, presence of proteinase K resistance core is indicative of post-fusion
1208 structure ([He et al., 2022](#); [Matsuyama and Taguchi, 2009](#); [Walls et al., 2019](#)). **e**,
1209 R1-26 inhibits spike-ACE2 interaction mediated cell-cell membrane fusion.
1210

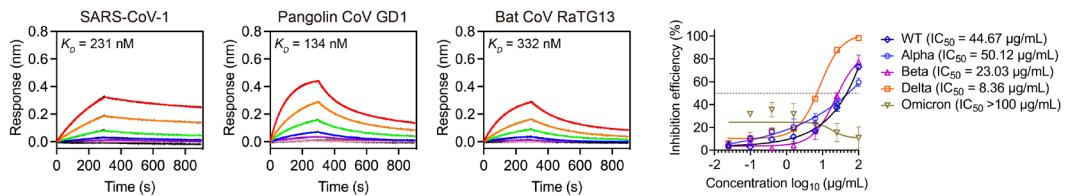
1211

1212 **Fig. 3 | Epitopes and binding modes of VL6-57 antibodies. a-i,** Structures of
 1213 R1-26 (**a**), FP-12A (**b**), IY-2A (**c**), 553-15 (**d**), 2-7 (**e**), S2A4 (**f**), P5S-3B11 (**g**),
 1214 GH12 (**h**), and 3D11 (**i**) bound to their epitopes. Fab-VH, Fab-VL and RBD are
 1215 colored in magenta, purple and cyan, respectively. Selected interactions
 1216 engaged by HCDR3, LCDR1 and LCDR3 are shown. All shown antibodies
 1217 bind almost the same surface area on RBD, hydrophobic, particularly aromatic
 1218 amino acid residues are found in all the HCDR3 loops of the shown VL6-57
 1219 antibodies for epitope recognition. All LCDR1 loops have the same interactions
 1220 with RBD. **j**, Comparison of RBD binding by the shown VL6-57 mAbs and
 1221 ACE2. **k**, Superposition of HCDR3 and LCDR1 loops of the shown VL6-57
 1222 mAbs. Variability is observed for the HCDR3 loops while the LCDR1 loops
 1223 show high similarity.

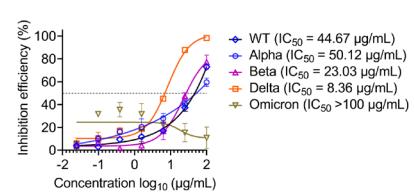
1224

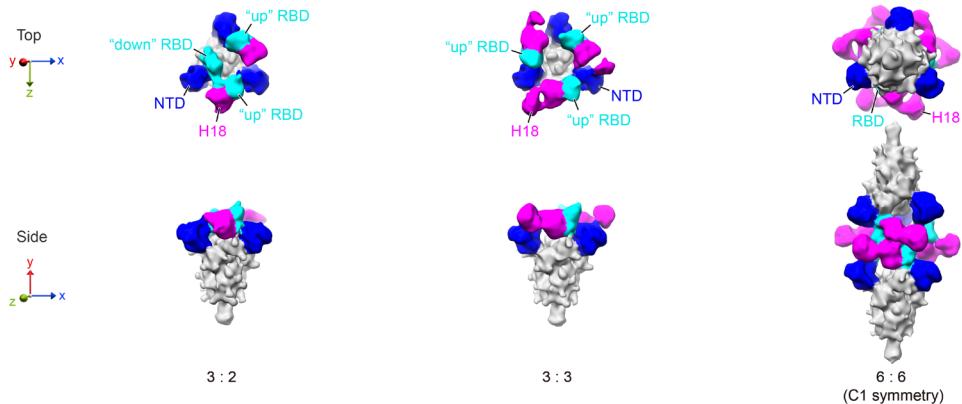


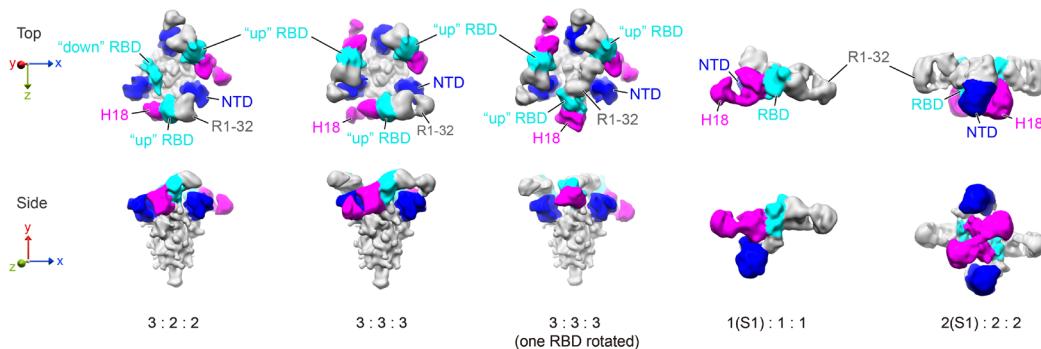
1225

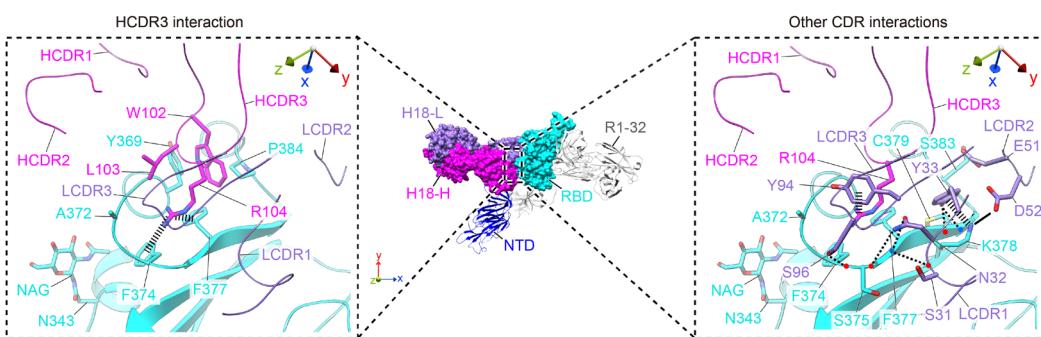

1226 **Fig. 4 | Analysis of VL6-57 light chain sequences and associated heavy**
 1227 **chain sequences in antibody repertoires. a**, A schematic diagram showing the
 1228 search workflow for VL6-57 light chain and the associated “WLRG” motif
 1229 containing heavy chain sequences from CoV-AbDab or published antibody
 1230 repertoire datasets. Created with BioRender.com. **b**, Heavy chain sequence
 1231 analysis of the 290 VL6-57 utilizing mAbs identified from the CoV-AbDab. A
 1232 histogram showing the HCDR3 length distribution among the 290 mAbs
 1233 (bottom). Sequence logo plot showing consensus HCDR3 amino acids of the
 1234 VL6-57 utilizing mAbs with 12-AA long HCDR3s (top left). A histogram
 1235 showing the heavy chain germline gene usage among the VL6-57 utilizing
 1236 mAbs with 12-AA long HCDR3s (top right). Lineage structure of the VL6-57
 1237 utilizing mAbs with 12-AA long HCDR3s based on similarity of HCDR3
 1238 sequences (boxed). When similarity of any two mAbs’ HCDR3s is $\geq 80\%$, they

1239 are linked by a line. mAbs containing the HCDR3 “WLRG” motif are colored
1240 red. **c**, Pie chart showing the occurrence of “WLRG” motif containing IgH
1241 sequences in a cohort of 33 COVID-19 convalescents and 24 healthy donors. **d**,
1242 Read-count comparison of “WLRG” motif containing IgH sequences in the IgH
1243 repertoires of COVID-19 convalescents and healthy donors. **e**, Read-count
1244 dynamics of “WLRG” motif containing IgH sequences in the IgH repertoires of
1245 COVID-19 convalescents, each line connects data of different timepoints from
1246 the same patient. **f**, Read-count comparison of “WLRG” motif containing IgH
1247 sequences in the IgH repertoires of COVID-19 convalescents and healthy
1248 donors across different timepoints. **g**, Pie chart showing the isotype distribution
1249 of “WLRG” motif containing IgH sequences in COVID-19 patients and healthy
1250 donors. **h**, Read-count comparison of “WLRG” motif containing IgH sequences
1251 between COVID-19 convalescents and healthy donors across different isotypes.
1252 **i**, Read-count comparison of “QSYDSS” containing VL6-57 light chain
1253 sequences in the IgL repertoires of COVID-19 convalescents and healthy
1254 donors. Antibody sequence analyses in panels **c-i** used published bulk
1255 sequencing datasets ([Niu et al., 2020](#); [Yan et al., 2021](#); [Zhang et al., 2022](#)). **j**,
1256 The occurrence of VL6-57 mAbs with paired heavy chains containing the
1257 HCDR3 “WLRG” motif in the single-B V(D)J repertoires of COVID-19
1258 patients, vaccinees and healthy donors ([Barmada et al., 2023](#); [Dugan et al.,](#)
1259 [2021](#); [Ferreira-Gomes et al., 2021](#); [Ren et al., 2021](#); [Yu et al., 2023](#); [Zhang et](#)
1260 [al., 2020](#)). The two-sided chi-square test was performed in panels (**c**) and (**g**).
1261 Student’s t test was performed in panels (**d**), (**f**), (**h**), and (**i**). (**** $p < 0.001$,
1262 *** $p < 0.001$, ** $p < 0.01$, ns. $p \geq 0.05$).
1263

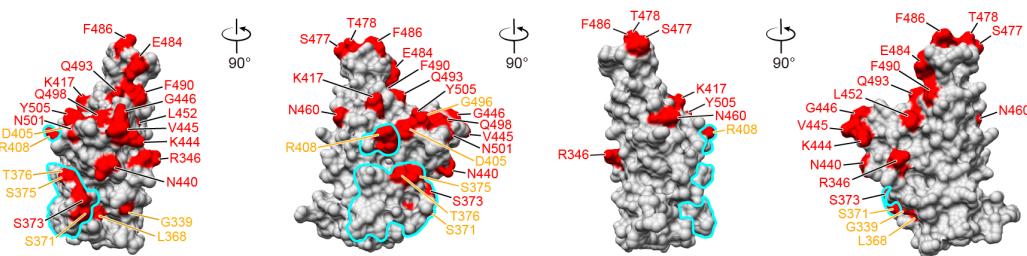

a WT SARS-CoV-2 RBD binding by recombinational mAbs


b SARS-related-CoV RBD binding by mAb H18

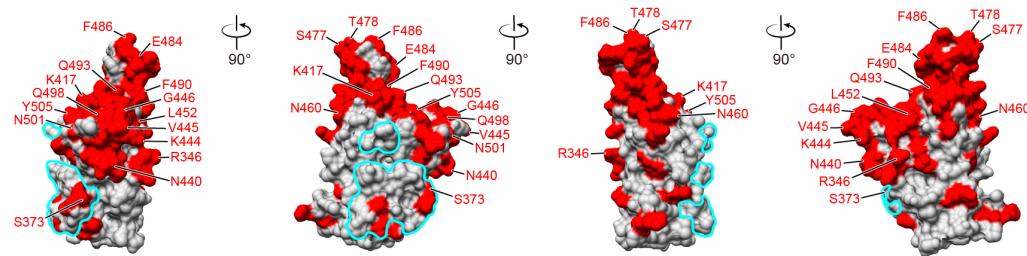

c Authentic virus neutralization by H18


d S-GSAS/6P:H18 complex structures

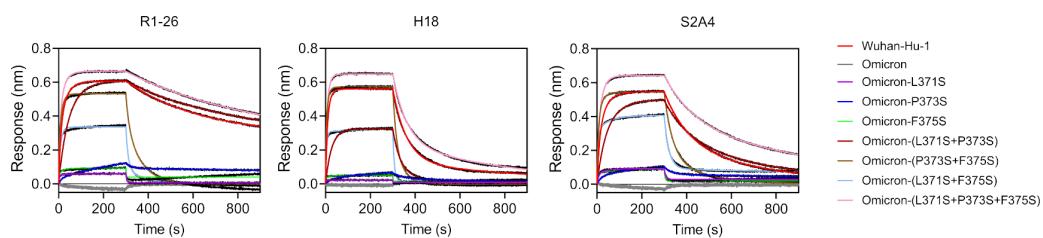
e S-GSAS/6P:H18:R1-32 complex structures

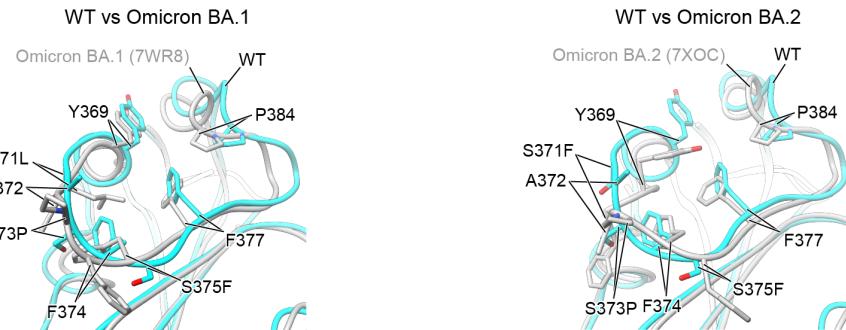


f Detailed interactions at H18 epitope

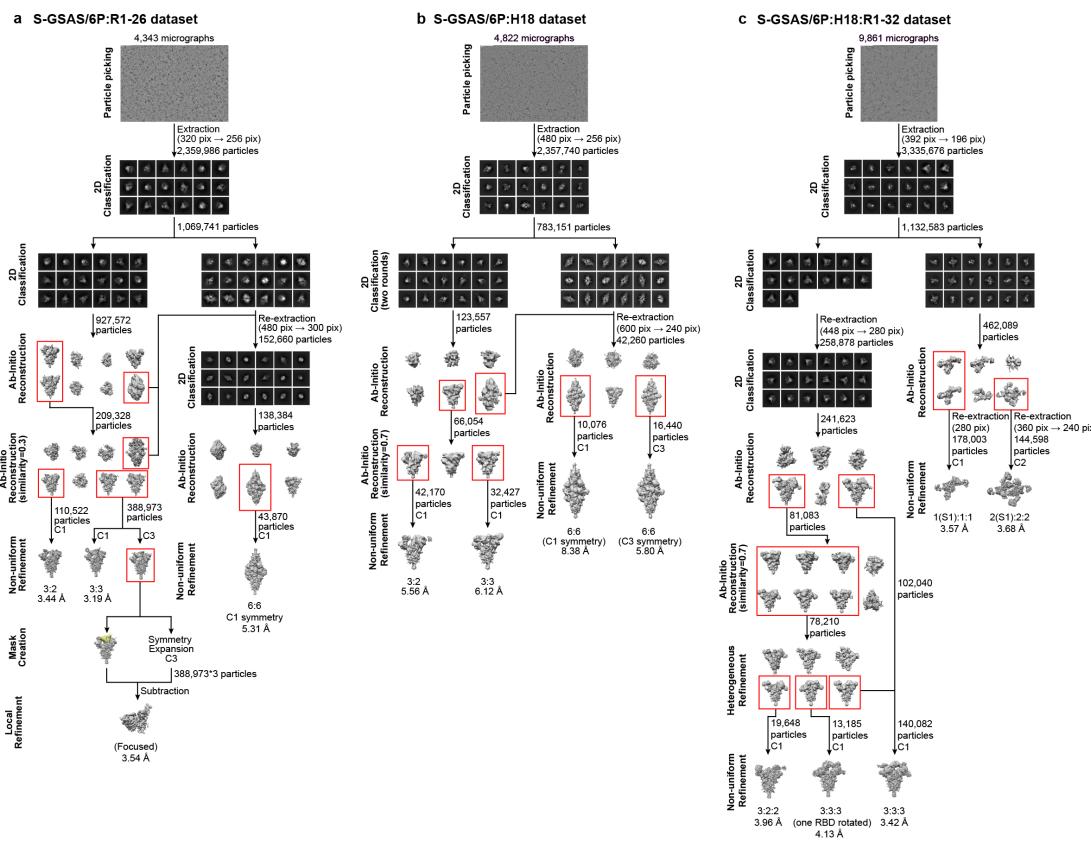


1265 **Fig. 5 | Characteristics of recombinational mAbs derived from healthy**
1266 **donors. a**, WT SARS-CoV-2 RBD binding by five recombinational mAbs were
1267 assessed by BLI. Black and colored lines represent experimentally recorded
1268 sensorgram traces and corresponding fits. 2-fold serially diluted RBD solutions
1269 (200 nM to 3.125 nM) were used in the BLI assays. **b**, Binding of mAb H18 to
1270 SARS-CoV-1, Pangolin CoV GD1 and Bat CoV RaTG13 RBDs were measured
1271 by BLI. Kinetic parameters for panels **(a)** and **(b)** are summarized in
1272 **Supplementary Table 3**. **c**, Neutralization activities (mean \pm SD) of mAb H18
1273 towards SARS-CoV-2 authentic viruses in cell culture. **d**, Structures of S-
1274 GSAS/6P S-trimmers in complex with H18 Fabs in different stoichiometries and
1275 conformations. **e**, Structures of S-GSAS/6P S-trimmers or S1s in complex with
1276 H18 Fabs and R1-32 Fabs. Structures in **d-e** are low-pass filtered to 12 Å to
1277 reveal flexible regions (**also see Fig. S2**). H18 Fab, NTD, and RBD are
1278 highlighted in magenta, blue, cyan, respectively; other structures are colored
1279 gray. **f**, Detailed H18 epitope structure. H18-H and H18-L chains are colored in
1280 magenta and purple; CDR loops are indicated, selected interacting residues
1281 between RBD and H18 are shown and indicated; thick and thin dashed lines
1282 indicate cation-π interactions and hydrogen bonds.
1283


a Substitutions on SARS-CoV-2 RBDs

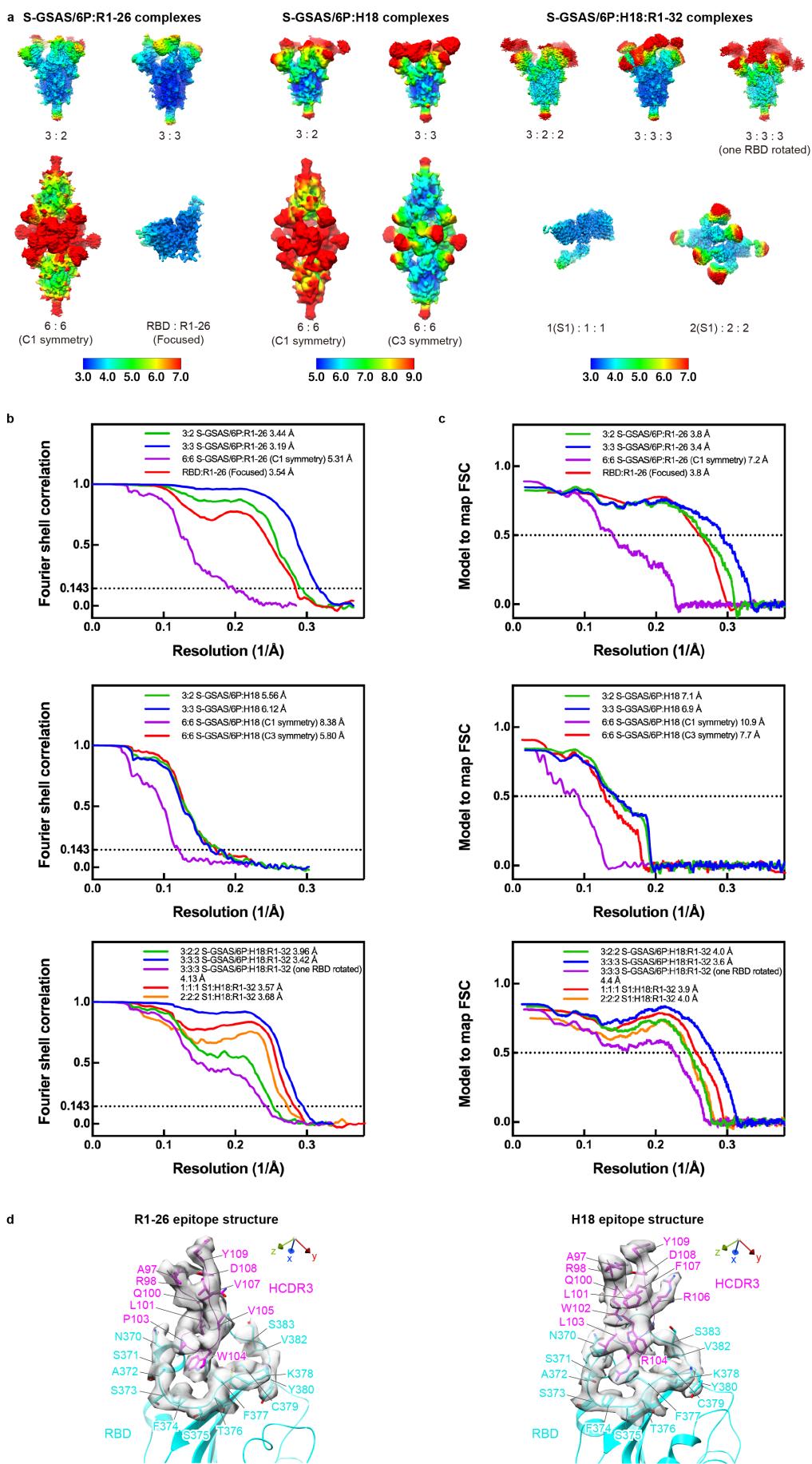

b Substitutions on SARS-related-CoV RBDs

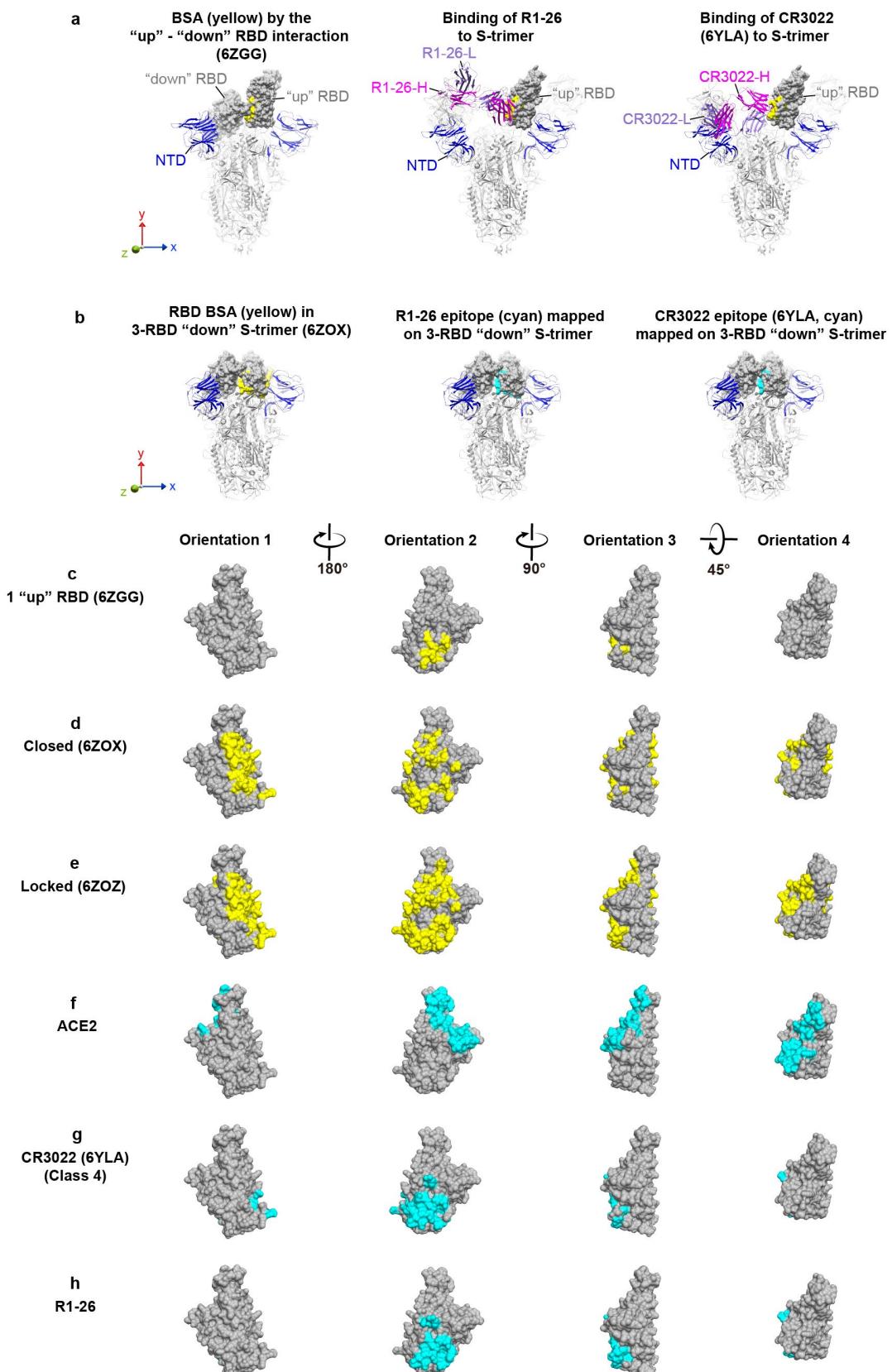
c Binding of Omicron BA.1 RBDs with rescue mutations by VL6-57 mAbs


d Comparison of VL6-57 mAb epitope structures

1284

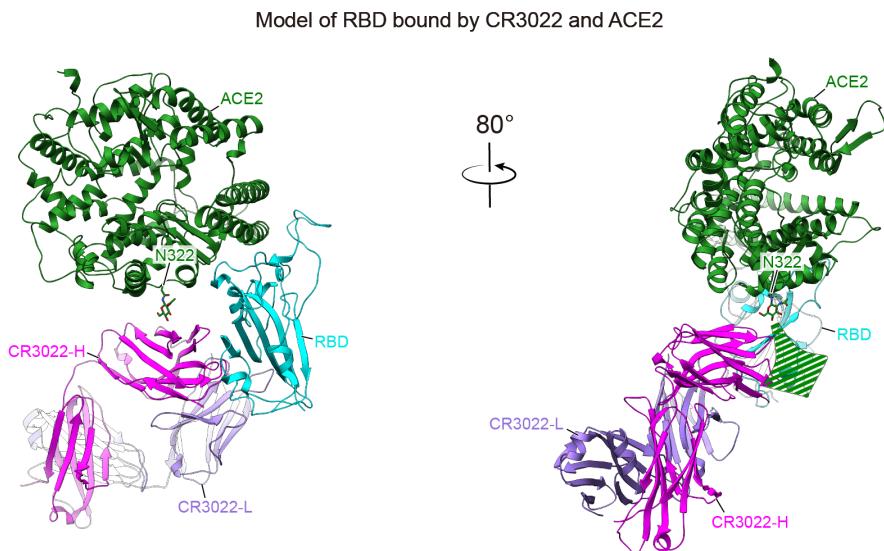
1285 **Fig. 6 | SARS-CoV-2 Omicron variants evade VL6-57 antibodies by**
 1286 **mutations at residues S371-S373-S375. a, Substituted residues among SARS-**
 1287 **CoV-2 variants are highlighted in red on the surface of SARS-CoV-2 RBD.**
 1288 **Among the 26 substitutions, 18 are shared among SARS-related-CoVs and are**
 1289 **labeled in red, the other 8 substitutions are labeled in orange. b, Substituted**
 1290 **residues among RBDs of SARS-related-CoVs are highlighted in red. Among**
 1291 **the 72 substitutions, 18 are shared with SARS-CoV-2 variants and are labeled in**
 1292 **red. Epitope of R1-26 on RBD is encircled by cyan outlines in panels (a) and**


1293 (b). **c**, Binding of R1-26, H18 and S2A4 to a series of Omicron BA.1 RBD
1294 mutants carrying 1-3 rescue mutations at S371, S373, and S375. BLI binding
1295 kinetic parameters are summarized in **Supplementary Table 4**. **d**, Comparison
1296 of the VL6-57 mAb epitope structures on WT and Omicron BA.1 (left) or BA.2
1297 (right) RBDs. Superposition shows differences in amino-acid sidechain
1298 orientations and main chain backbone structures.
1299


1300

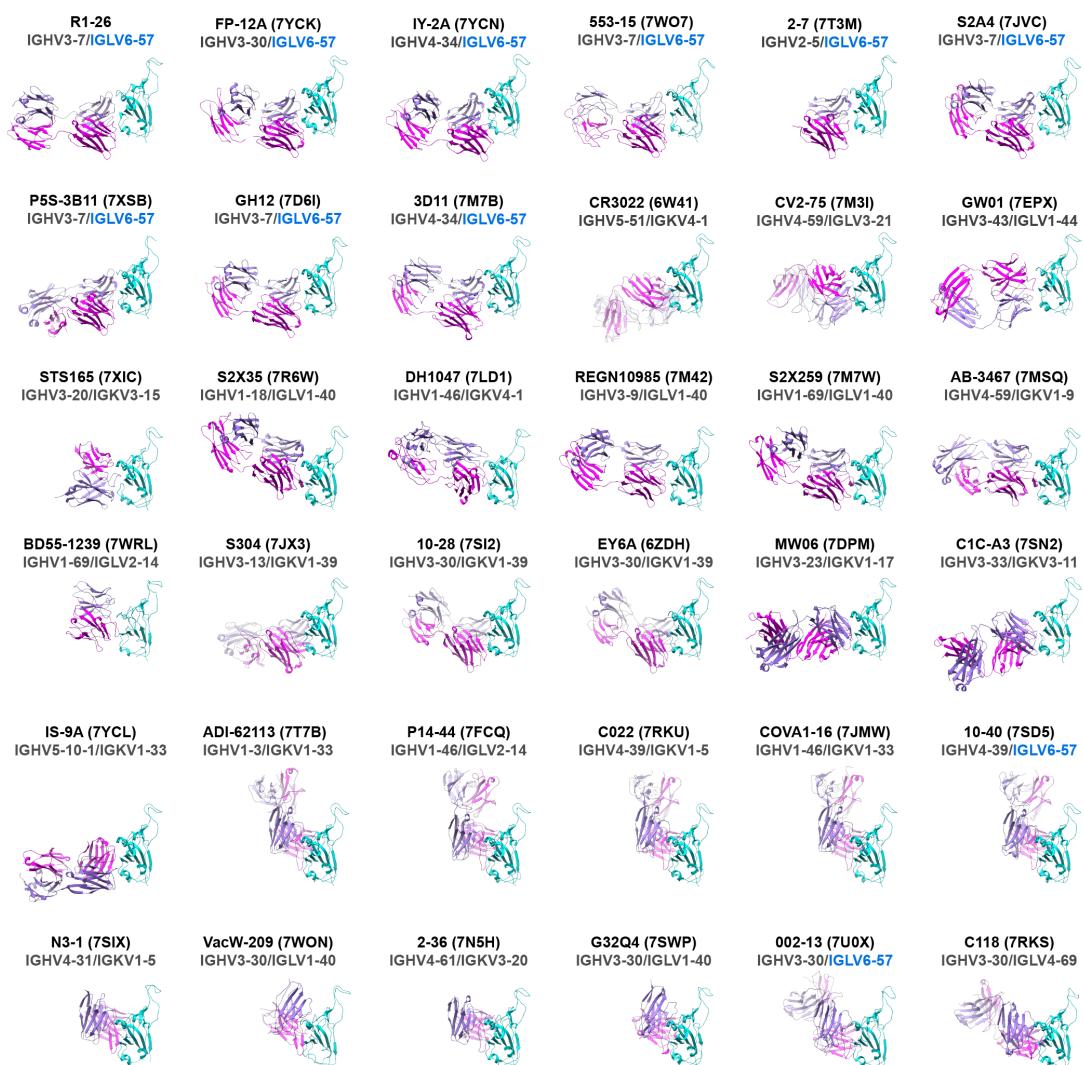
1301 **Fig. S1 | Cryo-EM data processing pipelines. a**, Data processing pipeline for
1302 the S-GSAS/6P:R1-26 complex dataset, the mask for subtraction is colored in
1303 yellow. **b**, Data processing pipeline for the S-GSAS/6P:H18 complex dataset. **c**,
1304 Data processing pipeline for the S-GSAS/6P:H18:R1-32 complex dataset. Red
1305 boxes indicate selected classes.

1306

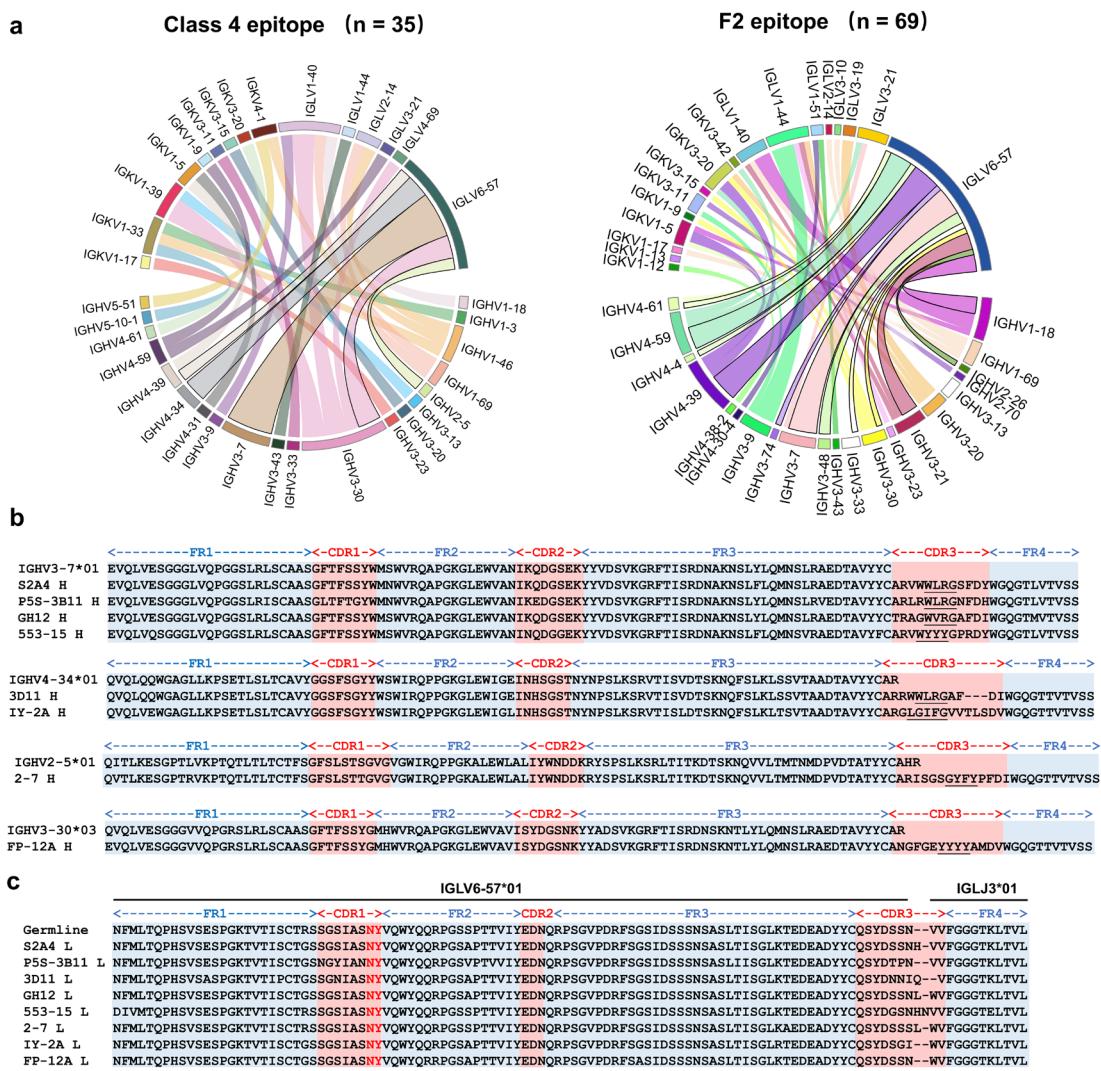

1308 **Fig. S2 | Resolution assessment of cryo-EM structures.** **a**, Local resolution
1309 assessment for the complex structures determined from S-GSAS/6P:R1-26, S-
1310 GSAS/6P:H18 and S-GSAS/6P:H18:R1-32 datasets. **b**, Global resolution
1311 assessment by Fourier shell correlation (FSC) at the 0.143 criterion. **c**,
1312 Correlations of model vs map by FSC at the 0.5 criterion. **d**, Representative
1313 cryo-EM densities around antibody-RBD binding interfaces. HCDR3 loops of
1314 R1-26 or H18 are colored magenta and RBD is colored cyan.
1315

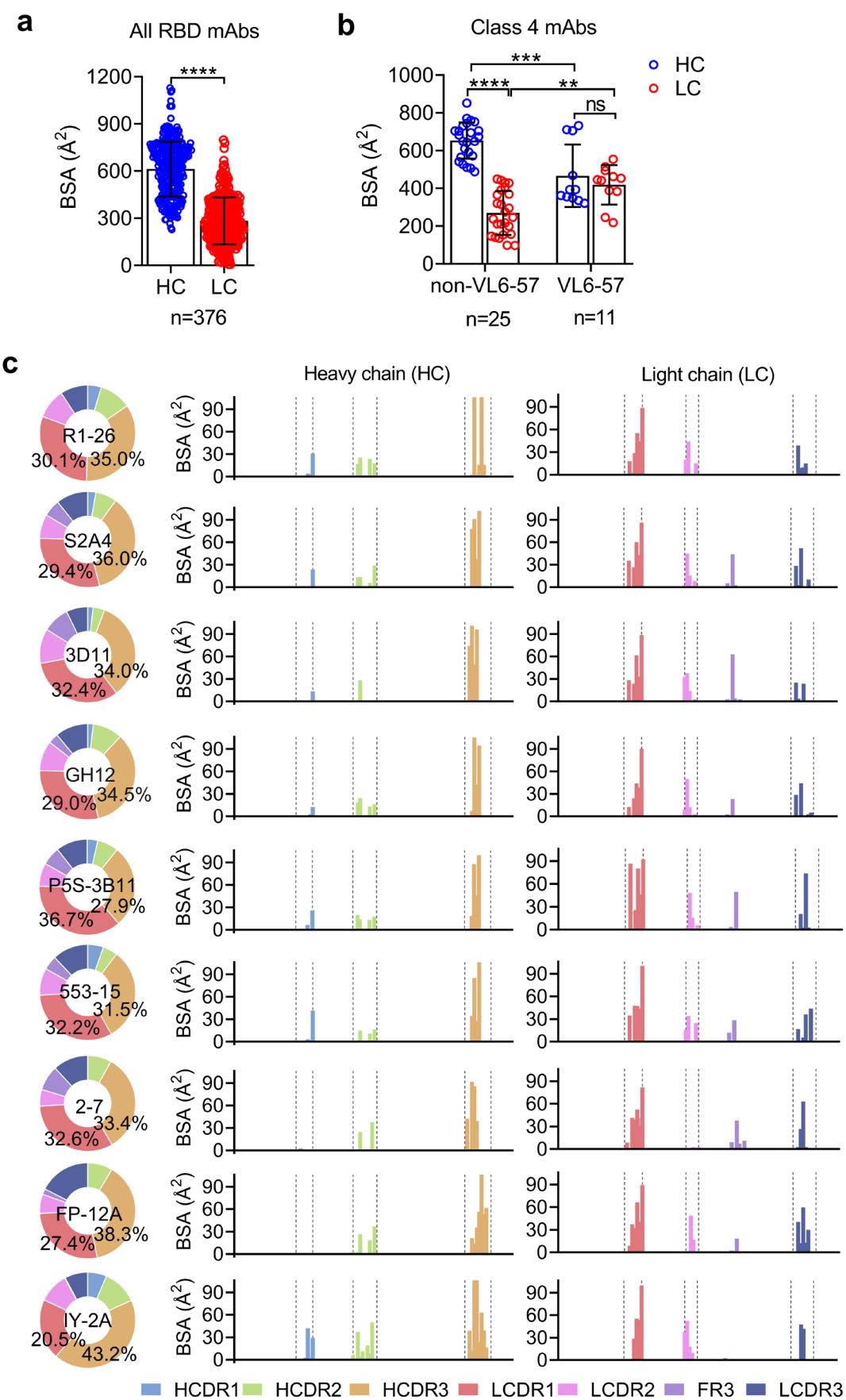
1316

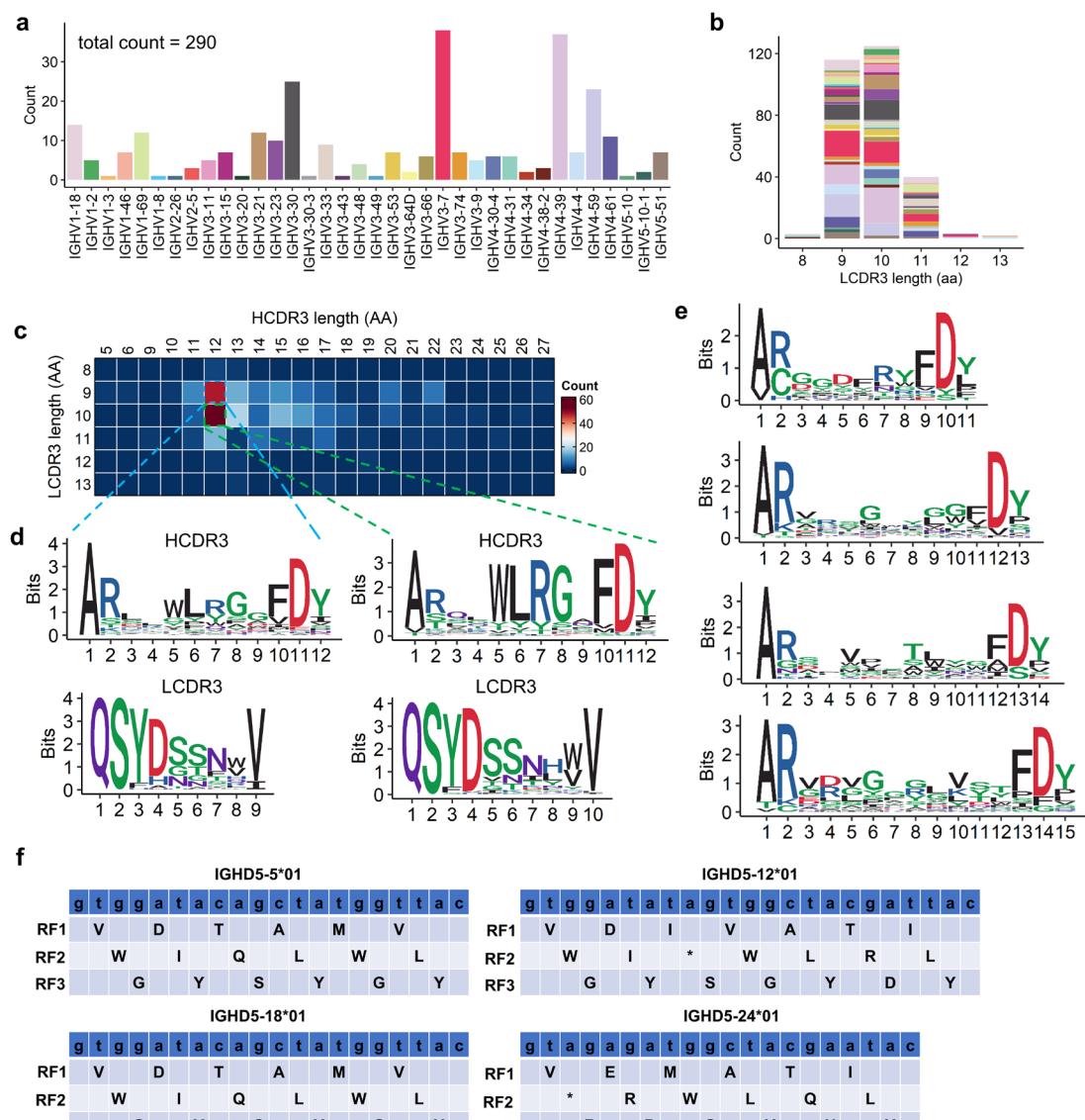
1317 **Fig. S3 | Epitope of R1-26 in the context of different S-trimer**
1318 **conformations and compared to other buried surface areas (BSAs) on**


1319 **RBD.** RBD molecular surfaces are colored in gray, BSAs in different S-trimer
1320 conformations are highlighted in yellow, BSAs by ACE2 or antibodies are
1321 highlighted in cyan. **a**, In each of the shown 1 RBD “up” S-trimers ([Wrobel et](#)
1322 [al., 2020](#)), buried surface area on the “up” RBD buried by the adjacent “down”
1323 RBD is colored yellow (also shown in **c**). Binding of R1-26 (middle) or
1324 CR3022 (right) ([Yuan et al., 2020a](#)) is shown and compared with the buried
1325 surface area by the “down” RBD. **b**, In each of the shown 3 RBD “down”
1326 closed S-trimer structures ([Xiong et al., 2020](#)), buried RBD surface area (left,
1327 colored yellow, also shown in **d**) or epitope of R1-26 (middle, cyan, also shown
1328 in **h**) or CR3022 (right, cyan, also shown in **g**) is shown to illustrate R1-26 and
1329 CR3022 epitopes being cryptic. **e**, RBD buried surface area in the 3 RBD
1330 “down” locked S-trimer structure ([Xiong et al., 2020](#)). **f-h**, Binding surface of
1331 ACE2 (**f**) ([Lan et al., 2020](#)) and epitope of CR3022 (**g**) or R1-26 (**h**).
1332

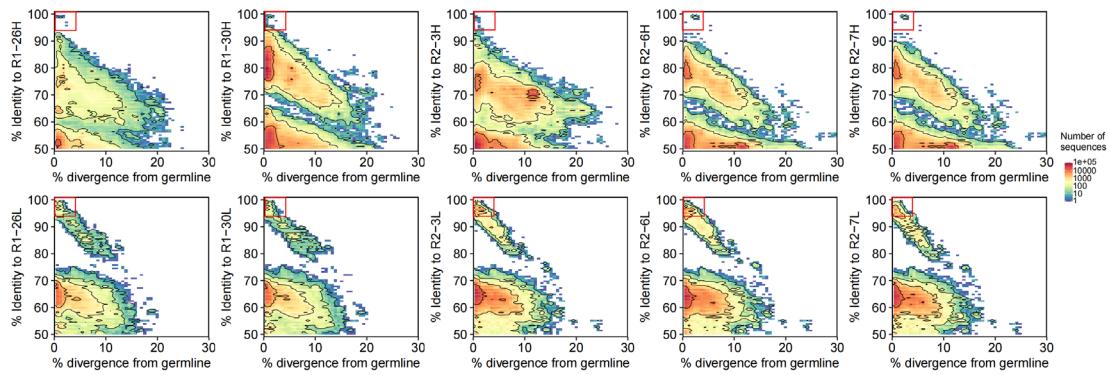
1333


1334 **Fig. S4 | A hypothetical model showing simultaneous RBD binding by**
1335 **CR3022 and ACE2.** The model is based on RBD complex structures of
1336 CR3022 (PDB: 6W41) and ACE2 (PDB: 7YDI). The glycan attached to ACE2
1337 residue N322 is labelled and the green dashed arrow indicates a possible
1338 direction of glycan chain extension. Also see **Fig. 2c** for comparison with
1339 simultaneous RBD binding by R1-26 and ACE2.


1340


1341

1342 **Fig. S5 | Structure gallery of class 4 antibodies in complex with RBD.**
1343 Antibody H chains and L chains are colored in magenta and purple. RBDs are
1344 colored in cyan. Antibody heavy and light chain V genes encoding each
1345 antibody are shown under each antibody name with corresponding PDB code in
1346 bracket. IGLV6-57 encoded antibody structures are highlighted by their light
1347 chain V genes shown in blue. Structures are arranged by similarity of their
1348 binding modes.
1349



1365 **Fig. S7 | Buried surface area (BSA) analysis of the structurally**
1366 **characterized spike-specific mAbs. a,** Comparison of BSAs by heavy (HC)
1367 and light chains (LC) of the 376 structurally characterized spike-specific mAbs
1368 available in the PDB. **b,** Differences in BSAs by heavy (HC) and light chain
1369 (LC) are compared between VL6-57 (R1-26 is included in this analysis) and
1370 non-VL6-57 class 4 mAbs. **c,** Per-site BSA analysis on heavy chains (HC) and
1371 light chains (LC) of R1-26 and the other 8 VL6-57 mAbs. Student's t test was
1372 performed in panels **(a)** and **(b)**. (**** $p < 0.0001$, *** $p < 0.001$, ** $p < 0.01$,
1373 ns. $p \geq 0.05$).
1374

1376 **Fig. S8 | Sequence analysis of VL6-57 utilizing mAbs from the CoV-AbDab.**

1377 **a**, A histogram showing the heavy chain germline gene usage of the 290 VL6-
 1378 57 utilizing mAbs curated from the CoV-AbDab. **b**, A histogram showing the
 1379 LCDR3 length distribution of the 290 VL6-57 utilizing mAbs. **c**, A heatmap
 1380 showing the HCDR3 and LCDR3 length pairing and distribution among the 290
 1381 VL6-57 utilizing mAbs. **d**, Sequence logo plots showing consensus amino acids
 1382 within 12-aa length HCDR3 loops and their paired 9-aa (left) or 10-aa (right)
 1383 length LCDR3 loops of VL6-57 mAbs. **e**, Sequence logo plots showing
 1384 consensus amino acids of HCDR3 loops of 11-, 13-, 14-, or 15-aa length among
 1385 the 290 VL6-57 utilizing mAbs. **f**, Three reading frames (RF1-3) of IGHD5-
 1386 germline genes are shown. The “WLR” sequence is encoded by RF2 of IGHD5-
 1387 12 (top right).

1388

1389 **Fig. S9 | Identity-divergence plots showing the presence of R1-26, R1-30,**
1390 **R2-3, R2-6, or R2-7-like IgH or IgL lineages in the repertoires of their**
1391 **donors.** All sequences in the repertoires are plotted as a function of sequence

1392 divergence from their germline genes (x axis) and sequence identity to heavy

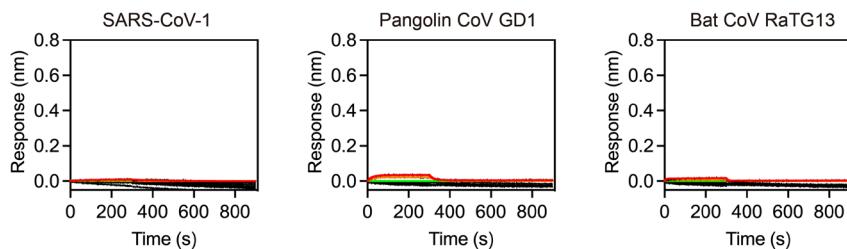
1393 chain or light chain of R1-26, R1-30, R2-3, R2-6, or R2-7 (y axis). Color

1394 gradient indicates sequence density. Red boxes indicate peaks containing IgH or

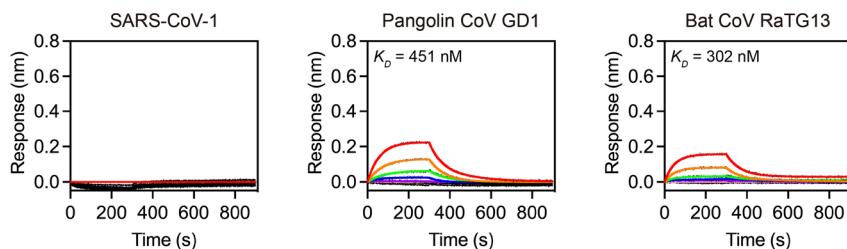
1395 IgL sequences highly similar to those of R1-26, R1-30, R2-3, R2-6, or R2-7.

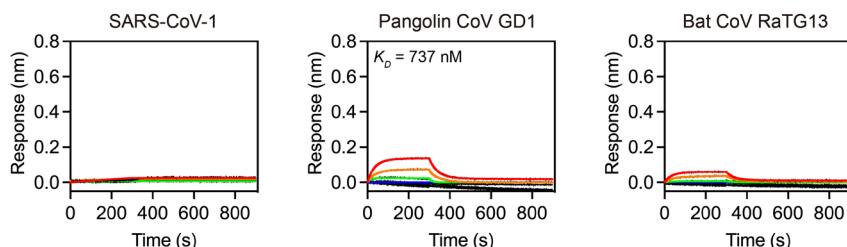
1396

mAb Id	Heavy chain					Light chain					Origin of donor	
	IGHV	IGHD	IGHJ	HCDR3	HCDR3 length	SHM%	IGLV	IGLJ	LCDR3	LCDR3 length	SHM%	
H4	IGHV3-7	IGHD5-18	IGHJ3	ASQLWLRGAFDI	12	0						Healthy donor H4
H5	IGHV3-11	IGHD5-18	IGHJ4	ARAKWLRGHFDY	12	0						Healthy donor H5
H14	IGHV4-31	IGHD5-18	IGHJ3	ARKGWLRGAFDI	12	0	IGLV6-57	IGLJ3	QSYDSSNVV	9	0	Healthy donor H14
H16	IGHV4-39	IGHD5-12	IGHJ4	ARREWLRGPFDY	12	0						Healthy donor H16
H18	IGHV4-61	IGHD5-18	IGHJ4	ARQLWLRGRFDY	12	1.3						Healthy donor H18
							IGHV3-7*01					IGHD5-18*01 IGHJ3*02
Germline H4 H	EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMWSVRQAPGKGLRWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVVYCARQLWL--AFDIWGGQTMVTVSS											S...RG...
						IGHV3-11*01					
Germline H5 H	QVQLVESGGGLVKPQGGLRLSCAASGFTFSYDYYMSWIRQAPGKGLRWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVVYCAR--WL--HFDYWGQGTLVTVSS											.AK...RG...
						IGHV4-31*01					
Germline H14 H	QVQLQESGPGLVVKPQTLSSLTCTVSGGSISSSGGYYWSWIRQPPGKGLRWIGIYIYSGSTYNNPSLKSRTVISVDTSKNQFSLKLSSVTAAADTAVVYCAR--WL--AFDIWGGQTMVTVSS											KG...RG...
						IGHV4-39*01					
Germline H16 H	QQLQESGPGLVVKPSETLSSLTCTVSGGSISSSGGYYWGWRQPPGKGLRWIGIYIYSGSTYNNPSLKSRTVISVDTSKNQFSLKLSSVTAAADTAVVYCAR--WL--HFDYWGQGTLVTVSS											.RE...GP...
						IGHV4-61*08					
Germline H18 H	QVQLQESGPGLVVKPSETLSSLTCTVSGGSISSSGGYYWSWIRQPPGKGLRWIGIYIYSGSTYNNPSLKSRTVISVDTSKNQFSLKLSSVTAAADTAVVYCARQLWL--FDYWGQGTLVTVSS											.RGR...
						IGLV6-57*02					
Germline Common L	<-----FR1-----><--CDR1--><-----FR2-----><CDR2><-----FR3-----><--CDR3--><-----FR4-->											IGLJ3*01
	NFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSSPTTVIYEDNQRPGSGVDRFSGSIDSSNSASLTISGLKTEDEADYQCSYDSSNVFGGGTKLTVL											


1397

1398 **Fig. S10 | Characteristics of the recombinational mAbs derived from**
 1399 **healthy donors. a, Summary of genetic features of the 5 recombinational mAbs**
 1400 **derived from healthy donors. Sequence analysis of the mAbs was performed**
 1401 **using IMGT/V-QUEST. b, Heavy chain sequence alignments of the 5**
 1402 **recombinational mAbs with their germline gene sequences. Amino acid residues**
 1403 **identical to their germline sequence are dotted. c, Sequence alignment of the**
 1404 **common light chain shared by the 5 recombinational mAbs with its germline**
 1405 **gene sequence.**
 1406


a Binding of SARS-related-CoV RBDs by H4


b Binding of SARS-related-CoV RBDs by H5

c Binding of SARS-related-CoV RBDs by H14

d Binding of SARS-related-CoV RBDs by H16

1407

1408 **Fig. S11 | SARS-related-CoV RBD binding by the recombinational mAbs.**

1409 **a-d**, Binding of H4 (a), H5 (b), H14 (c) and H16 (d) to SARS-CoV-1, Pangolin
1410 CoV GD1, and Bat CoV RaTG13 RBDs were measured by BLI. 2-fold serially
1411 diluted RBD solutions (200 nM to 3.125 nM) were used in the BLI assays.

1412 Kinetic parameters are summarized in **Supplementary Table 3**.

1413

1414 Barmada, A., Klein, J., Ramaswamy, A., Brodsky, N.N., Jaycox, J.R., Sheikha, H., Jones, K.M.,
1415 Habet, V., Campbell, M., Sumida, T.S., et al. (2023). Cytokinopathy with aberrant cytotoxic
1416 lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated
1417 myocarditis. *Science Immunology* 8.

1418 Dugan, H.L., Stamper, C.T., Li, L., Changrob, S., Asby, N.W., Halfmann, P.J., Zheng, N.Y.,
1419 Huang, M., Shaw, D.G., Cobb, M.S., et al. (2021). Profiling B cell immunodominance after
1420 SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. *Immunity*
1421 54, 1290-1303 e1297. 10.1016/j.jimmuni.2021.05.001.

1422 Ferreira-Gomes, M., Kruglov, A., Durek, P., Heinrich, F., Tizian, C., Heinz, G.A., Pascual-
1423 Reguant, A., Du, W., Mothes, R., Fan, C., et al. (2021). SARS-CoV-2 in severe COVID-19
1424 induces a TGF-beta-dominated chronic immune response that does not target itself. *Nat*
1425 *Commun* 12, 1961. 10.1038/s41467-021-22210-3.

1426 He, P., Liu, B., Gao, X., Yan, Q., Pei, R., Sun, J., Chen, Q., Hou, R., Li, Z., Zhang, Y., et al. (2022).
1427 SARS-CoV-2 Delta and Omicron variants evade population antibody response by mutations
1428 in a single spike epitope. *Nat Microbiol* 7, 1635-1649. 10.1038/s41564-022-01235-4.

1429 Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., and
1430 Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the
1431 ACE2 receptor. *Nature* 581, 215-220. 10.1038/s41586-020-2180-5.

1432 Matsuyama, S., and Taguchi, F. (2009). Two-Step Conformational Changes in a Coronavirus
1433 Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis. *Journal of Virology*.

1434 Niu, X., Li, S., Li, P., Pan, W., Wang, Q., Feng, Y., Mo, X., Yan, Q., Ye, X., Luo, J., et al. (2020).
1435 Longitudinal Analysis of T and B Cell Receptor Repertoire Transcripts Reveal Dynamic
1436 Immune Response in COVID-19 Patients. *Front Immunol* 11, 582010.
1437 10.3389/fimmu.2020.582010.

1438 Ren, X., Wen, W., Fan, X., Hou, W., Su, B., Cai, P., Li, J., Liu, Y., Tang, F., Zhang, F., et al.
1439 (2021). COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas.
1440 *Cell* 184, 1895-1913 e1819. 10.1016/j.cell.2021.01.053.

1441 Walls, A.C., Xiong, X., Park, Y.J., Tortorici, M.A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R.,
1442 Dai, M., Lanzavecchia, A., et al. (2019). Unexpected Receptor Functional Mimicry Elucidates
1443 Activation of Coronavirus Fusion. *Cell* 176, 1026-1039 e1015. 10.1016/j.cell.2018.12.028.

1444 Wrobel, A.G., Benton, D.J., Xu, P., Roustan, C., Martin, S.R., Rosenthal, P.B., Skehel, J.J., and
1445 Gamblin, S.J. (2020). SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on
1446 virus evolution and furin-cleavage effects. *Nat Struct Mol Biol* 27, 763-767. 10.1038/s41594-
1447 020-0468-7.

1448 Xiong, X., Qu, K., Ciazynska, K.A., Hosmillo, M., Carter, A.P., Ebrahimi, S., Ke, Z., Scheres,
1449 S.H.W., Bergamaschi, L., Grice, G.L., et al. (2020). A thermostable, closed SARS-CoV-2 spike
1450 protein trimer. *Nat Struct Mol Biol* 27, 934-941. 10.1038/s41594-020-0478-5.

1451 Yan, Q., He, P., Huang, X., Luo, K., Zhang, Y., Yi, H., Wang, Q., Li, F., Hou, R., Fan, X., et al.
1452 (2021). Germline IGHV3-53-encoded RBD-targeting neutralizing antibodies are commonly
1453 present in the antibody repertoires of COVID-19 patients. *Emerg Microbes Infect* 10, 1097-
1454 1111. 10.1080/22221751.2021.1925594.

1455 Yu, H., Liu, B., Zhang, Y., Gao, X., Wang, Q., Xiang, H., Peng, X., Xie, C., Wang, Y., Hu, P., et al.
1456 (2023). Somatically hypermutated antibodies isolated from SARS-CoV-2 Delta infected
1457 patients cross-neutralize heterologous variants. *Nat Commun* 14, 1058. 10.1038/s41467-
1458 023-36761-0.

1459 Yuan, M., Wu, N.C., Zhu, X., Lee, C.-C.D., So, R.T.Y., Lv, H., Mok, C.K.P., and Wilson, I.A.
1460 (2020a). A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2
1461 and SARS-CoV. *Science*, 630-633.
1462 Yuan, M., Wu, N.C., Zhu, X., Lee, C.-C.D.C.D., So, R.T.Y.Y., Lv, H., Mok, C.K.P.P., and Wilson,
1463 I.A. (2020b). A highly conserved cryptic epitope in the receptor binding domains of SARS-
1464 CoV-2 and SARS-CoV. *Science*.
1465 Zhang, F., Gan, R., Zhen, Z., Hu, X., Li, X., Zhou, F., Liu, Y., Chen, C., Xie, S., Zhang, B., et al.
1466 (2020). Adaptive immune responses to SARS-CoV-2 infection in severe versus mild
1467 individuals. *Signal Transduct Target Ther* 5, 156. 10.1038/s41392-020-00263-y.
1468 Zhang, Y., Yan, Q., Luo, K., He, P., Hou, R., Zhao, X., Wang, Q., Yi, H., Liang, H., Deng, Y., et al.
1469 (2022). Analysis of B Cell Receptor Repertoires Reveals Key Signatures of the Systemic B Cell
1470 Response after SARS-CoV-2 Infection. *Journal of Virology* 96, 1-23.
1471
1472