

1 **A human prenatal skin cell atlas reveals immune cell regulation of skin morphogenesis**

2 Nusayhah Huda Gopee^{1,2*}, Ni Huang^{3*}, Bayanne Olabi^{1,2*}, Chloe Admane^{1,3}, Rachel A.
3 Botting¹, April Rose Foster³, Fereshteh Torabi³, Elena Winheim³, Dinithi Sumanaweera³, Issac
4 Goh^{1,3}, Mohi Miah¹, Emily Stephenson^{1,3}, Win Min Tun^{1,3}, Pejvak Moghimi³, Ben Rumney³,
5 Peng He³, Sid Lawrence³, Kenny Roberts³, Keval Sidhpura¹, Justin Englebert¹, Laura Jardine¹,
6 Gary Reynolds¹, Antony Rose¹, Clarisse Ganier⁴, Vicky Rowe³, Sophie Pritchard³, Ilaria
7 Mulas³, James Fletcher¹, Dorin-Mirel Popescu¹, Elizabeth Poyner^{1,2}, Anna Dubois², Andrew
8 Filby¹, Steven Liso¹, Roger A. Barker⁵, Jong-Eun Park³, Roser Vento-Tormo³, Phuong Ahn
9 Le^{6,7,8}, Sara Serdy^{6,7,8}, Jin Kim^{6,7,8}, CiCi Deakin^{6,7,8}, Jiyoon Lee^{6,7,8}, Marina Nikolova⁹, Neil
10 Rajan^{1,2}, Stephane Ballereau³, Tong Li³, Josh Moore¹⁰, David Horsfall¹, Daniela Basurto
11 Lozada¹, Edel A. O'Toole¹¹, Barbara Treutlein⁹, Omer Bayraktar³, Maria Kasper¹², Pavel
12 Mazin³, Laure Gambardella³, Karl Koehler^{6,7,8#}, Sarah A. Teichmann^{3#}, Muzlifah Haniffa^{3,1,2#}

13 **Affiliations**

14 ¹Biosciences Institute, Newcastle University, Newcastle, NE2 4HH, UK

15 ²Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle
16 Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK

17 ³Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA,
18 UK

19 ⁴Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital,
20 London, SE1 9RT, United Kingdom

21 ⁵Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Cell Institute,
22 University of Cambridge, Cambridge, CB2 0AW, UK

23 ⁶Department of Otolaryngology, ⁷Plastic and Oral Surgery, and ⁸F.M. Kirby Neurobiology
24 Center, Boston Children's Hospital, Boston, MA, USA

25 ⁹Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland

26 ¹⁰German BioImaging, Gesellschaft für Mikroskopie und Bildanalyse e.V., Konstanz,
27 Germany

28 ¹¹Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University
29 of London, London, UK

30 ¹²Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden

31

32 *These authors contributed equally to this work

33 [#]Co-corresponding authors

34

35 Correspondence to: Karl.Koehler@childrens.harvard.edu, st9@sanger.ac.uk;

36 mh32@sanger.ac.uk

37 **Summary**

38 Human prenatal skin is populated by innate immune cells including macrophages, and whether
39 they act solely in immunity or have additional functions in morphogenesis is unclear. We
40 assembled the first comprehensive multi-omic reference atlas of prenatal human skin (7-16
41 post-conception weeks), combining single cell and spatial transcriptomic data, to characterise
42 the skin's microenvironmental cellular organisation. This revealed that crosstalk between non-
43 immune and immune cells underpins formation of hair follicles, has implications for scarless
44 wound healing, and is critical for skin angiogenesis. We benchmarked a skin organoid model,
45 derived from human embryonic stem (ES) and induced pluripotent stem (iPS) cells, against
46 prenatal and adult skin, demonstrating close recapitulation of the epidermal and dermal skin
47 components during hair follicle development. Notably, the skin organoid lacked immune cells
48 and had markedly diminished endothelial cell heterogeneity and quantity. From our *in vivo* skin
49 cell atlas data, we found that macrophages and macrophage-derived growth factors play a key
50 role in driving endothelial development prenatally. Indeed, vascular network formation was
51 enhanced following transfer of autologous iPS-derived macrophages into both endothelial cell
52 angiogenesis assays and skin organoid cultures. In summary, innate immune cells moonlight
53 as key players in skin morphogenesis beyond their conventional immune roles, a function they
54 achieve via extensive crosstalk with non-immune cells. Finally, we leveraged our human
55 prenatal skin cell atlas to further our understanding of the pathogenesis of genetic hair and skin
56 disorders.

57 **Introduction**

58 Human skin organogenesis begins after gastrulation from two primary germ layers. The
59 epidermis, the most superficial layer of the skin, melanocytes and neuronal cells arise from
60 ectodermal differentiation. The dermis, which lies just deep to the epidermis and is separated
61 by the basement membrane, and the endothelial and mural cells it contains, differentiate from
62 the embryonic mesoderm across most anatomical sites, except in facial and cranial skin where
63 dermal cells arise from ectoderm-derived neural crest cells^{1,2}. The epidermis is initially
64 composed of a single layer of ectodermal cells³. By 4 post conception weeks (PCW), two layers
65 can be observed: a basal cell layer and an outer layer known as the periderm that represents the
66 first permeability barrier⁴. Cells from the periderm are shed into the amniotic fluid during the
67 second trimester when the basal layer begins stratification⁵.

68 The skin appendages, which include hair follicles and sebaceous glands, form in a cephalo-
69 caudal direction during prenatal life^{6,7}. Hair follicle morphogenesis is initiated by the
70 interaction between epidermal placodes (focal sites of epidermal layer thickening) and dermal
71 condensates (aggregates of dermal fibroblasts). With these interactions, the prenatal hair
72 follicle develops from the epidermal placode that penetrates the dermis around 11-14 PCW^{4,6}.
73 Subsequently, the keratinised hair shaft forms within the centre of the hair follicle, which is
74 surrounded by an epidermal hair sheath and a dermal root sheath¹. Sebaceous glands, the sebum
75 secreting glands of the hair follicle, start forming from around 16 PCW, and prenatal hair that
76 protrudes from the skin is observed around 18 PCW⁶. There is, however, a paucity of
77 information about the precise cellular composition of human prenatal skin over these
78 developmental periods and whether cells interact in functional microanatomical niches that
79 support skin morphogenesis.

80 The skin performs key immune functions as a barrier organ after birth. Unlike postnatal skin
81 that is exposed to air and a microbial rich environment, prenatal skin interfaces with the
82 amniotic fluid in a sterile environment⁸. However, immune cells such as macrophages seed the
83 skin as early as 6 PCW⁵ and express a range of pro-inflammatory genes, although the
84 expression of major histocompatibility complex class II (MHC-II) genes, relating to antigen
85 presentation, is only upregulated after 11 PCW⁹. Macrophages are elsewhere known to regulate
86 various aspects of tissue homeostasis, contributing to angiogenesis in disease setting^{8,10}, murine
87 hair follicle development and cycling¹¹ and cutaneous wound repair^{5,12}. The decoupling of
88 expression of pro-inflammatory genes from MHC-II genes before 11 PCW⁹ suggests that
89 antigen presentation may not be a key function of human macrophages during early gestation.
90 Together with evidence for their role in tissue homeostasis and healing in murine models, this
91 raises the question as to whether macrophages in fact contribute to human early skin
92 morphogenesis.

93 Our study is the first comprehensive multi-omic cell atlas of 7-16 PCW human prenatal skin.
94 We profiled human prenatal skin using single-cell RNA sequencing (scRNA-seq), spatial
95 transcriptomics and multiplex RNA *in situ* hybridisation to decode the dynamic cellular and
96 molecular changes across gestation that regulate human skin and hair follicle morphogenesis.
97 We leveraged adult healthy skin and hair follicle datasets^{13,14} for comparison with prenatal skin
98 to assess developmental specific features contributing to scarless skin healing and cues guiding
99 *de novo* hair follicle formation. We also performed comparative analyses with a hair-bearing
100 skin organoid model¹⁵ to establish the faithfulness of skin organoids in recapitulating human
101 skin development and identify molecular mechanisms that can further enhance skin organoid
102 models in future experimental settings. We uncovered an important role for macrophages in
103 prenatal skin vascular network formation, which we functionally validated *in vitro*.

104 **Results**

105 ***A single cell atlas of human prenatal skin***

106 To characterise the role of distinct lineages and cell states in the development of human prenatal
107 skin, we obtained single cell suspensions of skin from 7 to 16 PCW, spanning the first and
108 second trimesters, during which skin architecture matures and hair follicles first develop (**Fig.**
109 **1a**). Prenatal skin cells were isolated by fluorescence-activated cell sorting (FACS) into CD45⁺
110 and CD45⁻ fractions, allowing the selection of live, single immune and non-immune
111 populations respectively, for scRNA-seq profiling (10X Genomics) (**Extended Data Fig. 1a**,
112 **Supplementary Table 1**). In addition, to enhance keratinocyte and endothelial cell capture,
113 we isolated all cells that were not within the CD34⁺CD14⁻ fraction from two prenatal skin
114 samples (**Extended Data Fig. 1a, Supplementary Table 1**). Single-cell T-cell receptor alpha
115 and beta sequencing (abTCR-seq) data was also generated to accurately resolve T-cell subsets.
116 Spatial validation was carried out using multiplex RNA *in situ* hybridisation (RNAScope),
117 newly generated spatial transcriptomic (Visium) data from embryonic facial and abdominal
118 skin, and published Visium data from embryonic limb from which only skin areas were
119 analysed¹⁶ (**Fig. 1a**). In addition, we integrated new and published single-cell datasets of a hair-
120 bearing skin organoid model, derived from human embryonic stem (ES) and induced
121 pluripotent stem (iPS) cells¹⁵, and adult skin¹³ for comparative analysis (**Fig. 1a**). We also
122 compared *in vivo* prenatal and organoid hair follicle cells with scRNA-seq data of adult hair
123 follicles¹⁴. Our data can be explored interactively through our web portal which leverages
124 WebAtlas¹⁷ for intuitive visualisation and query (cell type and gene expression) of our single-
125 cell, spatial and integrated datasets (<https://developmental.cellatlas.io/fetal-skin>; password:
126 fs2023). The analysis software for this study is archived at Zenodo
127 (<https://doi.org/10.5281/zenodo.8164271>).

128 Our prenatal skin scRNA-seq dataset comprised 235,201 cells of which 186,582 cells passed
129 quality control and doublet exclusion (**Extended Data Fig. 1b**). Maternal cell contamination
130 was removed using Souporcell (49 cells). Broad cell labels (epidermis, dermal stroma, immune
131 and endothelium) were assigned following dimensionality reduction analysis and batch
132 correction (see Methods) (**Fig. 1b, Extended Data Fig. 1c**). Further dimensionality reduction
133 and clustering was performed on the broad cell clusters prior to fine-grained manual annotation
134 of cell states (**Supplementary Table 2**). Graph-based differential abundance analysis using
135 Milo¹⁸ was performed to test changes in cellular composition across gestation. The enrichment
136 of different cell populations varied with gestational stages. Amongst ectoderm-derived cells,
137 neuronal cells and periderm were enriched in early gestation whilst suprabasal and hair follicle
138 epidermal cells were mainly observed in later gestation (**Fig. 1c, Extended Data Fig. 1d,**
139 **Supplementary Table 3**). Mesoderm-derived cells, including skin fibroblasts and endothelial
140 cells, and immune cells were present throughout gestation (**Fig. 1c, Extended Data Fig. 1d,**
141 **Supplementary Table 3**). Innate immune cells, such as macrophages and innate lymphoid
142 cells (ILCs), were present from early gestation whilst B- and T- cells emerged later,
143 accompanying thymus, bone marrow and spleen formation from around 10 PCW (**Fig. 1c,**
144 **Extended Data Fig. 1d, Supplementary Table 3**). Some subsets of macrophages, innate
145 lymphoid cells (ILCs) and fibroblasts, exhibited distinct gene expression profiles between early
146 and late gestation, suggesting functional evolution during development or dual waves of
147 production (**Fig. 1c, Extended Data Fig. 1d, Supplementary Table 3**).

148 To locate cells identified from scRNA-seq *in situ*, we performed Cell2location¹⁹ analysis using
149 spatial transcriptomic data from facial and abdominal skin (10 PCW) and embryonic lower
150 limb skin (6-8 PCW)¹⁶. We assessed if specific cell types were more likely to be co-located
151 within microanatomical tissue niches (microenvironments) using non-negative matrix

152 factorisation and correlation analyses (see methods). Co-location was indicated by a high
153 proportion of two or more cell types sharing a microenvironment (**Fig. 1d**) and/or by positive
154 correlation coefficient between cell pairs (**Fig. 1e, Extended Data Fig. 1e**). Indeed, we found
155 that prenatal skin was made up of several microenvironments comprising epidermal, dermal,
156 vascular, and neuronal cells (**Fig. 1d, e, Extended Data Fig. 1e**). Each of these
157 microenvironments included specific types of immune cells (**Fig. 1d**). For example, pre-dermal
158 condensate (pre-Dc) co-located with dendritic cells and lymphoid cells in an ‘early hair follicle
159 microenvironment’, while macrophages co-located with endothelial and neuronal cells in a
160 ‘neurovascular microenvironment’ (**Fig. 1d, e, Extended Data Fig. 1e**). These observations
161 led us to question whether immune cells occupy distinct microanatomical niches where they
162 undertake a moonlighting function distinct from their role in immunity during early
163 development. We hypothesised a role for immune cells in supporting human skin
164 morphogenesis and specifically macrophages in skin vascular network formation, akin to the
165 role of zebrafish macrophages in guiding haematopoietic stem and progenitor cells in vascular
166 niches¹⁰.

167 We next integrated and compared our human prenatal and adult skin data¹³ with the skin
168 organoid model¹⁵ to determine faithfulness of the organoid model to *in vivo* skin and its
169 potential utility to functionally assess the role of immune cells in skin morphogenesis
170 (**Extended Data Fig. 2a, b**). Using the same approach as for prenatal skin, the skin organoid
171 data was analysed and assigned broad (epidermis, dermal stroma and endothelium) and refined
172 cell annotations. Skin organoid had the same ectoderm-derived cell types as observed in
173 prenatal skin with basal cells emerging prior to suprabasal cells (**Fig. 1f, Extended Data Fig.**
174 **2a, b**). However, skin organoid had a more restricted mesoderm-derived cellular repertoire

175 with a paucity of endothelial cells and absent immune cells, in keeping with most iPS-derived
176 peripheral tissue organoid models (**Fig. 1f, Extended Data Fig. 2a, b**).

177 To determine to what extent the skin organoid recapitulates human skin differentiation at a
178 molecular level, we assessed similarity between prenatal skin, adult skin, and skin organoid for
179 broad cell categories, based on transformed gene expression levels and logistic regression
180 analyses (see methods) (**Extended Data Fig. 2c, d, Supplementary Table 4**). Broadly, cell
181 states were conserved between skin organoid, prenatal and adult skin, but skin organoid cell
182 states matched prenatal skin more closely than adult skin by gene expression profile across
183 culture duration (**Extended Data Fig. 2c, d, Supplementary Table 4**). However, the tempo of
184 differentiation varied across the skin cell lineages. 12-week-old organoid fibroblasts most
185 closely aligned to 7-8 PCW skin fibroblasts, and even after 19 weeks of culture, fibroblasts,
186 mural and Schwann cells had a low probability of correspondence to adult skin cell states
187 (**Extended Data Fig. 2d, Supplementary Table 4**). In contrast, accelerated differentiation was
188 observed in keratinocytes and melanocytes, with alignment to adult cell states seen as early as
189 4 weeks of organoid culture (**Extended Data Fig. 2d, Supplementary Table 4**). The ES/iPS-
190 derived skin organoid model recapitulated the different components of prenatal skin hair
191 follicle, interfollicular epidermis, neuronal cells, and dermal fibroblasts but immune cells were
192 not represented, and endothelial cells were markedly diminished.

193 ***Hair follicle - epidermal placode and matrix formation***

194 Hair follicle formation is initiated by interactions between dermal (mesenchymal) and
195 epidermal (epithelial) compartments which result in the formation of the epidermal-derived
196 hair placode and matrix and in the differentiation of hair-specialised fibroblasts^{20,21}. The precise
197 mechanisms of *de novo* hair follicle formation in human embryonic development are poorly
198 understood and are largely inferred from murine studies²². Human studies have mainly been

199 limited to morphological descriptions during development²³⁻²⁶ or focused on adult skin where
200 established hair follicles cycle through the distinct phases of hair growth (anagen), regression
201 (catagen) and resting (telogen)^{27,28}. Our single cell dataset captures the onset of hair follicle
202 formation enabling direct comparison between prenatal developing and adult cycling hair
203 follicles.

204 Prenatal skin up to 8 PCW consisted of a layer of epidermal cells overlying the dermal stroma
205 and an outer epithelial periderm was observed to slough from the prenatal skin as early as 11
206 PCW (**Fig. 2a**). At 14-15 PCW, budding of basal cells (hair placodes/germs) and elongation of
207 hair follicles (hair pegs) were observed, some of which were seen as circular structures in
208 transverse cross section of the prenatal hair follicles (**Fig. 2a**). Representative skin section at
209 17 PCW showed longitudinally sectioned, elongated hair follicle structures beneath a stratified
210 epidermal layer (**Fig. 2a**)^{7,26}.

211 To delineate early hair follicle development in human prenatal skin, we first sub-clustered and
212 annotated all epidermal and dermal cells (**Extended Data Fig. 2b, Supplementary Table 2**).
213 Consistent with our histological observations, we identified hair follicle cells present from 14
214 PCW, comprising placode/matrix (SHH^+), outer root sheath (ORS) ($SLC26A7^+$), companion
215 layer (CL), inner root sheath (IRS), and cuticle/cortex cells (part of the inner layers of the hair
216 follicle) (**Fig. 2a-c, Extended Data Fig. 3a, Supplementary Table 5**). In addition, we
217 observed immature and mature interfollicular epidermal (IFE) cells. Immature IFE cells
218 included periderm, immature basal and immature suprabasal cells, which were present from 7
219 PCW and disappeared after 11 PCW, during the transition from embryonic to fetal skin (**Fig.**
220 **2c**). Mature basal ($POSTN^+$ and $DPYSL2^+$) and suprabasal IFE cells emerged after 11 PCW
221 (**Fig. 2c, Extended Data Fig. 3a**). Sebaceous gland and apocrine gland cells, which mature
222 after 16 PCW^{29,30}, were not captured at these stages. Within the dermal compartment, we

223 observed specialised fibroblasts related to hair follicles, the dermal condensate (Dc) and dermal
224 papilla (Dp), from 12 PCW (**Fig. 2b, Extended Data Fig. 3b**).

225 Next, we evaluated the epidermal placode, a prenatal-specific cell state that gives rise to the
226 hair matrix and which is absent in established adult hair follicles³¹. Accordingly, the adult hair
227 follicle in growth (anagen) phase¹⁴ comprised cell states which transcriptionally aligned to the
228 prenatal hair follicle, except for placode cells (**Extended Data Fig. 3c, d**). Adult matrix cells
229 expressed genes associated with mature hair structural components (*KRT85*) and regulation of
230 cell proliferation (*LGALS1*), related to their role in hair shaft formation in the growing hair
231 (**Extended Data Fig. 3e**). Conversely, prenatal and skin organoid placode/matrix cells had a
232 higher expression of genes involved in chemotaxis, such as *CXCL14*, a chemokine previously
233 reported to recruit regulatory T-cells (Tregs)³², and in control of autoimmunity (*CD24*)^{33–35},
234 signifying the potential role of Treg accumulation and immune protection in the early stages of
235 placode/matrix differentiation (**Extended Data Fig. 3e**). Tregs have been reported to localise
236 around the hair follicle in late second trimester (23 PCW) and in postnatal skin^{36,37}. We
237 identified *FOXP3*⁺ Tregs primarily within and around hair follicles, as well as the
238 interfollicular epidermis, from as early as 15 PCW by RNAScope staining (**Fig. 2d**).

239 To infer the differentiation trajectory of epidermal cells, we performed inferred trajectory and
240 pseudotime analysis (CellRank) using skin organoid data to ensure adequate cell numbers. This
241 predicted the differentiation of *POSTN*⁺ basal epidermal cells into *DPYSL2*⁺ basal cells, prior
242 to bifurcation into the placode/matrix and IRS along one arm ('IRS trajectory'), and the ORS
243 together with the CL along another arm ('ORS/CL trajectory') (**Fig. 2e, Extended Data Fig.**
244 **3f, Supplementary Table 6**). Along the 'ORS/CL trajectory', we identified new genes
245 upregulated by *DPYSL2*⁺ basal cells, such as *SPON2* and *AGR2*, in addition to previously
246 reported genes related to ORS differentiation (*BARX2* and *SOX9*)^{21,38,39} (**Extended Data Fig.**

247 **3g, h, Supplementary Table 6).** *DPYSL2⁺* basal cells which were predicted to differentiate
248 into placode/matrix and IRS, upregulated known matrix markers, *SHH* and *WNT10B*^{21,38}, and
249 downregulated *SPON2* and *AGR2* (**Extended Data Fig. 3g, h, Supplementary Table 6**).
250 *SPON2* encodes the integrin ligand mindin and is involved in cellular adhesion and immune
251 response^{40,41}. Loss of *AGR2*, a molecular chaperone involved in the assembly of cysteine-rich
252 receptors enriched in hair follicles, has been shown to promote cell migration^{42,43}. Our findings
253 suggest that decreased adhesion and increased cellular migration properties in *DPYSL2⁺* basal
254 cells may be involved in matrix specification and dermal invagination.

255 ***Hair follicle - dermal condensate and dermal papilla differentiation***

256 Next, we delineated the dermal cell types that are involved in crosstalk with epidermal cells
257 during early hair follicle development. We captured the mesenchymal cells of the developing
258 hair follicle and identified for the first time the human pre-Dc (**Extended Data Fig. 2b, 3b**), a
259 transitional fibroblast state that, in mice, is involved in embryonic hair follicle formation⁴⁴⁻⁴⁶.
260 Pre-Dc cells aggregate to form the Dc, which abuts the placode, and highly expressed *CPZ*, a
261 modulator of the Wnt signalling pathway⁴⁷ (**Supplementary Table 2**). Following invagination
262 of the hair follicle, the Dc becomes encapsulated at its base as the Dp (*NDP⁺*)^{21,44} (**Fig. 2d**).
263 Notably, the pre-Dc and Dc are only present in prenatal skin and not in human and mouse adult
264 skin⁴⁴, with self-renewing dermal cells maintaining the Dp during adult hair follicle
265 cycling^{48,49}. These self-renewing dermal cells are located within the dermal sheath, a structure
266 of layered connective tissue surrounding the hair follicle⁵⁰. We did not detect a distinct cluster
267 of dermal sheath cells in 7-16 PCW prenatal skin, although this has been identified in a previous
268 single cell analysis of human fetal scalp from 16 and 17 PCW⁵¹. This is consistent with the
269 earlier development of hair follicles in the scalp compared to trunk skin^{6,31}.

270 To infer the origin of the pre-Dc, Dc and Dp in human prenatal skin, we performed trajectory
271 analysis (CellRank) of the different fibroblast clusters (**Fig. 2f, Extended Data Fig. 4a,**
272 **Supplementary Table 6**). *FRZB*⁺ fibroblasts were excluded from this analysis as they are
273 primarily observed in one sample from the earliest gestation stage (7 PCW) (**Extended Data**
274 **Fig. 3b**). Although rare in prenatal skin, *FRZB*-expressing fibroblasts are present in several
275 other developing organs, including the yolk sac, spleen, and gut (**Extended Data Fig. 4b**).
276 Inferred trajectory analysis predicted that *HOXC5*⁺ early fibroblasts (located in the upper
277 dermis (**Fig. 2g**) and absent after 11 PCW (**Extended Data Fig. 3b**)) differentiated along two
278 paths. The first path along ‘hair fibroblast trajectory’ formed hair-specialised fibroblasts (pre-
279 Dc, Dc and Dp) and the second path along ‘dermal fibroblast trajectory’ formed into *WNT2*⁺
280 fibroblasts and *PEAR1*⁺ fibroblasts (more abundant after 11 PCW) (**Fig. 2f, Extended Data**
281 **Fig. 3b, 4a, Supplementary Table 6**).

282 Analysis of genes differentially expressed along the ‘hair fibroblast’ pseudotime (**Extended**
283 **Data Fig. 4c, Supplementary Table 6**) provided further insights into the processes involved
284 during fibroblast differentiation into the Dp. Genes involved in regulation of cell adhesion
285 (*ADAMST1*), maintenance of cell-cell contact (*CLDN11*), and directed migration (*CXCL12*)
286 were upregulated as the pre-Dc cells migrated towards the epidermis, suggesting a process of
287 collective migration^{52–55} (**Extended Data Fig. 4c, Supplementary Table 6**). Genes implicated
288 in collagen fibril formation and cell adhesion (*COL6A3*, *MFAP4*, *PTK7*) were expressed as the
289 pre-Dc aggregated into the Dc (**Extended Data Fig. 4c, Supplementary Table 6**). Formation
290 of the Dp was characterised by genes such as *RSPO3* and *WNT5A* (**Extended Data Fig. 4c,**
291 **Supplementary Table 6**). These genes are involved in co-ordinating the differentiation and
292 proliferation of the adjacent hair matrix epithelial cells^{56,57}.

293 We next interrogated the mesenchymal-epithelial interactions that instruct early hair follicle
294 formation. Receptor-ligand analysis using CellPhoneDB predicted an interaction between
295 *CXCL12* (ligand), expressed by pre-Dc cells, with *ACKR3* (receptor) from epidermal basal cells
296 up to 11 PCW (**Fig. 2h, Supplementary Table 7**). *CXCL12* expression by hair follicle dermal
297 cells was accordingly downregulated after 12 PCW (**Extended Data Fig. 4d, e**), suggesting
298 that *CXCL12* interacts with the receptor on epithelial cells to mediate migration of pre-Dc to
299 form the Dc^{53,58}. Interestingly, lymphoid tissue inducer (LTi) and Type 3 innate lymphoid
300 (ILC3) cells, which co-located with the pre-Dc ('early hair follicle microenvironment')
301 (**Extended Data Fig. 1e**), also appeared to interact with pre-Dc cells via ligand-receptor signals
302 that are implicated in regulation of cellular adhesion and migration (*CXCL12-*
303 *CXCR4/DPP4*)^{58,59} (**Extended Data Fig. 4f, Supplementary Table 7**). This suggests that
304 innate immune cells potentially support pre-Dc migration during early hair follicle
305 development. The Dc, whose formation is accompanied by dermal invagination of the
306 placode/matrix, expressed *FAM3C* and *EFNB1*, which were predicted to interact with
307 *LAMP1/CXADR* and *EPHB6* respectively on the placode/matrix, and have been reported to
308 promote cellular migration and invasion⁶⁰⁻⁶² (**Fig. 2h, i, Supplementary Table 7**). Finally,
309 *RSPO3* from the Dp was predicted to interact with *LGR4/6* (**Fig. 2h, i, Supplementary Table**
310 **7**) in overlying matrix cells (**Fig. 2d**) to contribute to proliferation of hair follicle epidermal
311 cells⁵⁶. Notably, the highlighted interactions were conserved between the mesenchymal and
312 epithelial cells of the skin organoid for corresponding stages during hair follicle formation (**Fig.**
313 **2h, Extended Data Fig. 4g, Supplementary Table 7**), providing orthogonal validation of our
314 findings and reinforcing the utility of the skin organoid as an accurate model of prenatal skin
315 development.

316 We further evaluated the differentiation trajectory alignment between prenatal skin and skin
317 organoid using the Genes2Genes analysis framework⁶³ to compare the expression of
318 transcription factors (TFs) along the ‘hair fibroblast’ trajectory (*HOXC5*⁺ early fibroblast to
319 dermal papilla). Alignment was computed at both TF level and cell level (aggregated TF-level
320 alignments) (see methods). Overall, the skin organoid closely recapitulated *in vivo*
321 differentiation of hair follicle dermal cells. We observed an average alignment path of 100%
322 match between pseudotime points at cell level and 95% mean alignment similarity at TF level,
323 signifying strong matching of activated gene regulatory programs between prenatal skin and
324 skin organoid during differentiation from *HOXC5*⁺ early fibroblasts to Dp (**Fig. 2j**,
325 **Supplementary Table 8**). The limited TFs that were mismatched were attributable to the
326 different origins of dermal cells between prenatal skin and skin organoid. Mammalian
327 patterning homeobox (HOX) genes governing trunk and limb development (*HOXC6*, *HOXA7*,
328 *HOXA10*) were upregulated in prenatal skin^{64–66} (**Extended Data Fig. 4h, i, Supplementary**
329 **Table 8**). In contrast, neuronal and craniofacial development genes (*SIX2*, *LHX6*, *POU3F3*,
330 *HMX1*) were upregulated in skin organoids where dermal cells were derived from cranial
331 neural crest differentiation¹⁵ (**Extended Data Fig. 4h, i, Supplementary Table 8**).

332 We also assessed the expression profiles of genes previously reported in mouse hair follicle
333 formation in human prenatal hair follicle epidermal and dermal cells. We identified
334 upregulation of similar signalling pathways, including Wnt/Eda in the initial stages of hair
335 placode specification, fibroblast growth factor 20 (*FGF20*) from the placode contributing to
336 fate-determination of the pre-Dc, mesenchymal expression of bone morphogenetic protein
337 (*BMP4*) and noggin (*NOG*) to inhibit hair formation in IFE cells, and PDGFA/TGF β signalling
338 for hair follicle downgrowth²¹ (**Extended Data Fig. 4j**). Additionally, similar to fibroblast
339 differentiation in murine skin, the pre-Dc, Dc, Dp and dermal fibroblasts in human prenatal

340 skin also originated from a common fibroblast progenitor (*HOXC5*⁺ early fibroblast) (**Fig. 2f**).
341 However, dermal fibroblast differentiation into histologically defined subsets (papillary and
342 reticular) appears to occur earlier in mice (~E12.5)⁶⁷. Our human prenatal skin fibroblasts did
343 not significantly express known markers of adult human papillary fibroblasts (*COL13A1*,
344 *COL23A1*, *PTGDS*, *ENTPD1*)^{68–70} (**Extended Data Fig. 4k**), suggesting that the distinction
345 between papillary and reticular fibroblasts emerges after 16 PCW. This may be attributed to
346 differences in gestation lengths and tempo of differentiation between human and mouse.
347 Cellular differentiation to form different tissues during development occurs at a quicker pace
348 in mice compared to humans^{71–73} but the longer human gestation permits more advanced
349 maturation to take place *in utero*. In keeping with this, mouse organs are less mature at birth
350 and newborn mouse skin, which lacks hair, physically resembles early second trimester human
351 skin.

352 ***Genetic hair and skin disorders***

353 Having mapped the formation and differentiation of human prenatal skin and skin organoid
354 hair follicles, we leveraged this information to gain insights into genetic hair disorders, and to
355 understand the extent to which hair and skin diseases have their roots *in utero*. Mutations in
356 genes known to cause reduced hair growth (hypotrichosis) or abnormally-shaped hair (pili torti,
357 woolly and uncombable hair syndromes) (**Supplementary Table 9**) were found to be
358 expressed along the ‘ORS/CL’, ‘IRS’ and ‘hair fibroblast’ trajectory pseudotimes (**Extended**
359 **Data Fig. 4b, 5a, b**) and in prenatal hair follicle cell states (**Extended Data Fig. 5c**), suggesting
360 that these disorders result from dysfunctional hair follicle development.

361 We assessed the expression of genes causing epidermolysis bullosa (EB), an inherited
362 blistering skin disorder that presents at birth or during early infancy, reflecting *in utero* onset
363 of the disease⁷⁴. In keeping with the clinical features of skin fragility secondary to structural

364 defects in the epidermis and adjacent dermoepidermal junction, we observed higher expression
365 of genes implicated in EB in epidermal compared to dermal prenatal skin cells (**Extended Data**
366 **Fig. 5d**). Gene therapy studies for dystrophic EB have identified fibroblasts expressing
367 *COL7A1* as a promising therapeutic strategy^{75,76}. We observed *COL7A1* expression across
368 several fibroblast subsets within the dermal compartment of prenatal tissue and skin organoids,
369 lending support to gene therapy approaches. The expression of genes implicated in congenital
370 ichthyoses, a group of disorders due to abnormal epidermal differentiation⁷⁷, were primarily
371 confined to keratinocytes (**Extended Data Fig. 5e**).

372 We observed similar expression patterns across prenatal skin and skin organoid for the above
373 genetic hair and skin disorders (**Extended Data Fig. 5c-e**), supporting the value of skin
374 organoids as a model to study congenital diseases. Although the expression of genes implicated
375 in these disorders are confined to structural cells, disease manifestations are often associated
376 with immune infiltration, implicating skin-immune crosstalk during pathogenesis^{78,79}.

377 ***Early dermal fibroblasts and macrophages protect skin against scarring***

378 Prenatal human skin is uniquely able to heal without scarring but loses this capacity after 24
379 PCW^{80,81}. Scars result from aggregation of collagen produced by dermal fibroblasts and failure
380 of the overlying epidermis to completely regenerate⁸². To identify the cellular and molecular
381 mechanisms that may endow early prenatal skin with scarless healing properties, we
382 investigated the temporal changes in composition and transcriptional profile of the dermal
383 fibroblast subsets (*FRZB*⁺, *HOXC5*⁺, *WNT2*⁺, *PEAR1*⁺ fibroblasts) (**Extended Data Fig. 3b**,
384 **6a**). We first compared prenatal skin dermal fibroblasts with healthy adult skin fibroblasts
385 (annotated F1-F3 as in published data)¹³. All adult fibroblast subsets expressed higher levels of
386 inflammatory cytokines (*IL-6*, *IL32*) and receptors (*IL1R1*, *IFNGR1*, *IL15RA*, *OSMR*),
387 interferon-induced genes (*IFITM1*) and genes involved in antigen presentation (*HLA-B*, *HLA-*

388 *E*), complement pathway and innate immune response (*C1R*, *C1S*, *CD55*), inflammatory
389 response (*PTGES*, *SQSTM1*), lipid metabolism (*APOD*, *ARID5B*) and cellular senescence
390 (*CDKN1A*) (**Fig. 3a**). In contrast, prenatal skin fibroblasts upregulated genes involved in
391 immune suppression (*CD200*), tissue remodelling (*FAP*) and immune evasion, which are also
392 expressed by cancer-associated fibroblasts (*THY1*, *CXCL12*, *TGFB1*)^{83–86} (**Fig. 3a**).

393 The adult fibroblast gene expression profile ('immune activation') was increased in *WNT2*⁺
394 and *PEAR1*⁺ dermal fibroblasts, which were abundant in later gestation, compared to *FRZB*⁺
395 and *HOXC5*⁺ fibroblasts found in earlier gestation (**Fig. 3a, Extended Data Fig. 3b, 6b**).
396 Genes associated with a pro-inflammatory fibroblast phenotype (*APOE*, *IGFBP7*, *ITM2A*)^{69,87}
397 were also upregulated during the transition from *HOXC5*⁺ fibroblasts into *PEAR1*⁺ fibroblasts
398 in prenatal skin as seen along the 'dermal fibroblast' pseudotime (**Fig. 3b**). In addition to
399 transcriptomic heterogeneity between fibroblast subsets enriched in early versus late gestation,
400 Milo¹⁸ analysis also revealed differences within the *WNT2*⁺ fibroblast population across
401 gestation time (**Extended Data Fig. 1d**). Late gestation *WNT2*⁺ fibroblasts upregulated
402 function-defining genes related to extracellular matrix and collagen deposition (e.g., *COL1A1*,
403 *MFAP2*, *POSTN*), while early *WNT2*⁺ fibroblasts differentially expressed regulators of
404 transcription (*EGR1*, *IRF1*) and cellular proliferation (*SFRP1*, *SOX11*) (**Fig. 3c, Extended**
405 **Data Fig. 6c, Supplementary Tables 10-12**).

406 Notably, expression levels of several genes involved in cellular senescence (*CDKN1A*),
407 cytokine pathways (*IL1R1*, *IL32*), and collagen deposition (*COL1A1*, *COL5A1*, *POSTN*),
408 which were upregulated in *WNT2*⁺ and *PEAR1*⁺ prenatal fibroblasts (**Fig. 3a-c**), are also
409 increased in pathogenic fibroblasts of fibrotic skin disorders, such as systemic sclerosis and
410 keloid scars^{88–90}. This further supports our finding of progressive acquisition of scar-promoting

411 genes in later gestation, consistent with the clinical observation of scarring in third trimester
412 skin^{91,92}.

413 The role of macrophages in promoting wound healing has been described in postnatal murine
414 and adult human skin^{93–95}. In prenatal skin, we observed macrophage subsets (**Extended Data**
415 **Fig. 6d, e**) co-locating with fibroblasts, neuronal and vascular cells in distinct tissue
416 microenvironments in early gestation (**Fig. 1d, e**). Specifically, *LYVE1*⁺ macrophages co-
417 located with *WNT2*⁺ fibroblasts and were predicted to interact through platelet-derived growth
418 factors (PDGF) with corresponding receptors (PDGFR α /PDGFR β) expressed on fibroblasts
419 (**Fig. 3d, Extended Data Fig. 6f, Supplementary Table 7**). Interactions between macrophages
420 and fibroblasts maintain tissue homeostasis in diverse organs such as spleen, peritoneum and
421 heart⁹⁶. Our identification of additional growth factor interactions (*IGF1-IGF1R*, *GRN-EGFR*)
422 (**Extended Data Fig. 6f, Supplementary Table 7**) suggests a role of *LYVE1*⁺ macrophages in
423 maintenance of prenatal skin dermal fibroblasts.

424 We recently identified yolk-sac derived *TREM2*⁺ macrophages that share an expression profile
425 with microglia-like macrophages from other developing organs, such as the brain, prenatal skin
426 and gonads^{97–99}. *TREM2*⁺ microglia-like macrophages (TMLM), including those in prenatal
427 skin, expressed *P2RY12*, *CX3CR1*, *TMEM119*, *OLFML3*, *C3* (**Extended Data Fig. 6d, e**).
428 Prenatal skin TMLM were highly correlated with embryonic brain microglia⁹⁷ (**Extended Data**
429 **Fig. 7a, b**) and co-expressed immunomodulatory genes, including immune-inhibitory receptors
430 (*LILRB4*, *SIGLEC10*, *CX3CR1*) and regulators of IL-6 production (*SYT11*, *GHRL*)^{100–102} (**Fig.**
431 **3e, Extended Data Fig. 7c, Supplementary Tables 13–17**). Downregulation of inflammation
432 and IL-6, secreted paracrinally by macrophages and autocrinally by fibroblasts⁹⁶, has been
433 reported to confer anti-fibrogenic properties in mouse skin transplants and fetal wounds^{103,104}.
434 Furthermore, blocking of IL-6 receptor resulted in decreased production of pro-fibrotic

435 molecules, such as collagen alpha 1, by explant dermal fibroblasts from systemic sclerosis
436 patients¹⁰⁵. TMLM co-located with *WNT2*⁺ fibroblasts in early prenatal skin (6-8 PCW) (**Fig.**
437 **3d**) and *WNT2*⁺ fibroblasts downregulated *IL6* expression compared to adult fibroblasts (**Fig.**
438 **3a**). This suggests a potential contribution to scarless healing in prenatal skin by TMLM
439 through interactions with *WNT2*⁺ fibroblasts. Accordingly, *GAS6*, expressed by TMLM, was
440 predicted to interact with *TYRO3/AXL* receptors on *WNT2*⁺ fibroblasts (**Extended Data Fig.**
441 **6f**, **Supplementary Table 7**) and these interactions have been shown to induce
442 immunosuppression, resolution of inflammation, and tissue repair in the synovium, lung, and
443 liver¹⁰⁶⁻¹⁰⁸.

444 Collectively, our findings suggest that the composition and gene expression profile of prenatal
445 skin fibroblasts in early gestation favour tissue remodelling over extracellular matrix formation
446 and collagen deposition. Our data also suggests a role for TMLM, which express
447 immunoregulatory gene profile and co-locate with *WNT2*⁺ fibroblasts, in conferring the unique
448 property of scarless healing observed in early prenatal skin.

449 ***Macrophages in cutaneous neuronal differentiation***

450 TMLM in prenatal skin are also co-located with neuronal Schwann cells ('neurovascular
451 microenvironment') (**Fig. 1d, 3f**) and expressed genes related to cell migration and neuronal
452 development (**Fig. 3e, Extended Data Fig. 7c, Supplementary Tables 13, 14**), mirroring the
453 functions of brain microglia and peripheral nerve-associated macrophages in mouse skin¹⁰⁹⁻¹¹².
454 TMLM were predicted to interact with Schwann cells (CellPhoneDB), contributing to synapse
455 formation and axon guidance (*VEGFA-NRP1/2*, *SEMA3C-NRP2*, *SEMA3E-PLXND1*)
456 (**Extended Data Fig. 7d, Supplementary Table 7**)¹¹³⁻¹¹⁵. These findings suggest that dermal
457 macrophages may support neuronal development in prenatal skin, including a specific

458 contribution of TMLM to the establishment of the skin peripheral nervous system during early
459 gestation as previously reported in murine skin^{110,111,116}.

460 ***Macrophages support prenatal skin angiogenesis***

461 Macrophages have been implicated in angiogenesis during prenatal organ development
462 including the heart, aorta-gonad-mesonephros and brain, as well as in the post-natal setting
463 such as cancer-related angiogenesis^{9,117-119}. Blood vessel formation is critical for nutrient and
464 oxygen support during tissue morphogenesis. Tissue primary vascular beds arise following the
465 differentiation of primitive mesoderm cells into endothelial progenitors which migrate and
466 coalesce (vasculogenesis)¹²⁰. Endothelial cells can proliferate or acquire a specialised ‘tip’
467 phenotype to guide blood vessel branching and network formation (sprouting angiogenesis) in
468 response to pro-angiogenic signals¹²¹.

469 We observed close proximity of all four prenatal skin macrophage subsets (iron-recycling,
470 *LYVE1*⁺, MHC-II⁺ and TMLM) to endothelial cells by Visium deconvolution analysis
471 (‘neurovascular microenvironment’) (**Fig. 1d, e**), which was further validated by multiplex
472 RNAScope staining (**Fig. 4a**). The four macrophage subsets expressed gene programmes
473 driving angiogenesis (**Extended Data Fig. 7c, Supplementary Tables 13-17**). We sought to
474 investigate if these macrophage subsets contribute to distinct angiogenic processes using
475 module scoring of reference angiogenesis gene sets^{122,123} and cell-cell interaction analysis
476 (**Extended Data Fig. 7e, 8a, Supplementary Tables 18, 19**). Gene module expression profiles
477 suggested that sprouting angiogenesis (growth of new vessels) was promoted by *LYVE1*⁺ and
478 MHC-II⁺ macrophages, endothelial cell chemotaxis by iron-recycling macrophages, and
479 endothelial cell proliferation and blood vessel morphogenesis by *LYVE1*⁺ macrophages
480 (**Extended Data Fig. 7e, Supplementary Table 18**). Predicted ligand-receptor interactions
481 showed the reciprocal communication between macrophages and endothelial cells supporting

482 angiogenesis, chemotaxis, and cell migration (**Extended Data Fig. 8a, Supplementary Table**
483 **19**). We identified *CXCL8* and *CCL8* on *LYVE1*⁺ macrophages, interacting with *ACKR1* on
484 vascular endothelial cells to regulate angiogenesis, as previously reported (**Extended Data Fig.**
485 **8a, Supplementary Table 19**)^{13,124}.

486 Our data suggested macrophages contribute to prenatal skin angiogenesis. Consistent with this
487 observation, in skin organoids which lacked immune cells, vascularisation was poor despite
488 formation of well-developed hair follicles, epidermis and neuronal cells (**Fig. 4b**). Furthermore,
489 almost all endothelial cells in the skin organoid only expressed markers of capillary arterioles
490 over the developmental time course¹²⁵⁻¹²⁷ (**Fig. 4b, Extended Data Fig. 8b, Supplementary**
491 **Table 20**). In contrast, prenatal skin was populated by heterogeneous endothelial cells,
492 including early endothelial cells before 9 PCW, followed by a predominance of capillaries,
493 post-capillary venule and lymphatic endothelial cells after 9 PCW (**Fig. 4 b-c**).

494 Inferred trajectory analysis of prenatal skin vascular endothelium showed that early endothelial
495 cells differentiated into either an arteriolar (capillaries, capillary arterioles, arterioles) or
496 venular (postcapillary venules and venules) pathway (**Fig. 4d, Extended Data Fig. 9a**). This
497 was supported by the differential expression across pseudotime of known genes characterising
498 arteriolar (*AQP1*, *GJA5*, *FBLN5*, *CXCL12*) and venular (*ACKR1*, *PLVAP*, *CLU*) endothelial
499 cells¹²⁵⁻¹²⁷ (**Extended Data Fig. 9b, c**). Our trajectory analysis suggested that prenatal skin
500 capillary arteriole cells possessed the capacity to differentiate further into arterioles (**Fig. 4d**,
501 **Extended Data Fig. 9a**), unlike organoid capillary arteriole cells. Additional comparison of
502 prenatal skin with a human ES/iPS-derived blood vessel organoid¹²⁸, which also lacked
503 immune cells, predicted endothelial cells from this model to be early endothelial, capillary
504 arteriole, or arteriole cells by logistic regression analysis (**Extended Data Fig. 9d**). This
505 demonstrates limited vasculature differentiation even in a mesoderm/geared blood vessel

506 organoid model and is consistent with a requirement for immune cells to fully recapitulate the
507 endothelial cell development observed in prenatal skin.

508 We investigated additional potential mechanisms for failed expansion and differentiation of
509 skin organoid endothelial cells. We considered whether recognised drivers of angiogenesis¹²⁹
510 were absent, including laminar blood flow, hypoxia, and the sprouting angiogenesis potential
511 of capillary arteriole cells. Indeed, genes activated by blood flow were upregulated in capillary
512 arteriole cells in prenatal skin but not in the skin organoid (**Extended Data Fig. 9e**). However,
513 the gene module scores of hypoxia-related genes (**Supplementary Table 20**) were reduced in
514 the skin organoid relative to prenatal skin for corresponding cell categories (**Extended Data**
515 **Fig. 9f**). The potential for sprouting angiogenesis (characterised by the ‘tip’ cell state) was
516 assessed using the ‘tip’ score for each of the endothelial cell subsets in prenatal skin and skin
517 organoid¹³⁰. Prenatal skin arteriole, capillary arteriole, and capillary cells, as well as organoid
518 capillary arteriole cells had increased ‘tip’ scores, reflecting a high sprouting angiogenesis
519 capability (**Extended Data Fig. 9g, h**). This suggests that despite strong expression of the
520 sprouting angiogenesis gene signature, organoid capillary arteriole cells were unable to guide
521 stalk cells for new blood vessel formation.

522 We next compared the expression profile of angiogenesis-related genes in prenatal skin and
523 skin organoid. Several pro-angiogenic genes (*CXCL8*, *TNF*, *ADM*), and corresponding
524 receptors, were upregulated in prenatal skin compared to the skin organoid and were primarily
525 expressed by macrophages (**Extended Data Fig. 10a, Supplementary Tables 21-25**).
526 Conversely, skin organoid cells, such as the Dp, expressed high levels of anti-angiogenic genes,
527 including *WNT5A* and *RSPO3*, with matching receptors on capillary arteriole cells (**Extended**
528 **Data Fig. 10a, Supplementary Tables 21-25**). Vascular endothelial growth factors (VEGF),
529 *VEGFA* and *VEGFB*, were however highly expressed in several skin organoid cells (**Fig. 4e**),

530 but their receptors (*KDR*, *FLT1*) on capillary arterioles were downregulated in the organoid
531 compared to prenatal skin (**Extended Data Fig. 10b**). Regulon analysis (pySCENIC¹³¹)
532 showed downregulated *GATA2* and its target regulons (*MECOM*, *BCL6B*, *SOX7* and *ELF4*) in
533 skin organoid capillary arterioles compared to prenatal skin (**Fig. 4f, Extended Data Fig. 10c**).
534 *GATA2* plays a key role in angiogenesis during development and has been shown to regulate
535 VEGF-induced endothelial cell migration and sprouting *in vitro*^{132–134}. Several target genes of
536 *GATA2* and *SOX7* (*APLNR*, *AQPI*, *CAV1*, *VWF*) (**Extended Data Fig. 10d**) were expressed
537 across the ‘arteriolar’ and ‘venular’ trajectory pseudotimes in prenatal skin (**Extended Data**
538 **Fig. 9b, c**) and are involved in endothelial cell differentiation¹²⁵. These genes were
539 downregulated in the skin organoid capillary arterioles compared to prenatal skin (**Extended**
540 **Data Fig. 10b**). VEGF receptors (*KDR* and *FLT1*), which were downregulated in the skin
541 organoid, were also inferred to be downstream targets of *GATA2* as previously reported^{133,135}
542 (**Extended Data Fig. 10d**). An orthogonal approach using NicheNet¹³⁶ identified similar
543 macrophage-expressed pro-angiogenic factors, such as *TNF*, as driving differential gene
544 expression between prenatal skin and skin organoid endothelial cells (**Supplementary Tables**
545 **26-28**). This also identified *VEGFA* as one of the top upstream ligands regulating differences
546 in *GATA2* expression (**Extended Data Fig. 10e, Supplementary Tables 26-28**). These
547 findings suggest that high VEGF signalling in the skin organoid cannot compensate for missing
548 macrophage-related factors in driving *GATA2* activity and downstream VEGF receptor
549 expression (**Fig. 4g**).

550 The above data implicates prenatal skin macrophages as key players in angiogenesis,
551 supporting our earlier observation of pro-angiogenic gene module expression in TMLM in the
552 human yolk sac⁹⁹. We next set out to validate our findings using two distinct cell culture assays.
553 We performed an angiogenesis assay by co-culturing iPS-derived endothelial cells with and

554 without iPS-derived macrophages (both differentiated from the iPS cell line Kolf2.1S)
555 (**Extended Data Fig. 10f**). The macrophage differentiation method used here has been shown
556 to recapitulate features of primitive and definitive hematopoiesis¹³⁷. Endothelial cells,
557 generated according to a previously published protocol¹³⁸, were cultured alone or in co-culture
558 with macrophages and began network formation with similar numbers of branching points
559 measured at 4 hours of culture (**Fig. 4h, i**). The number of branches dropped significantly in
560 the endothelial-only culture by 24 hours but was maintained in the presence of macrophages
561 up to 72 hours (**Fig. 4h, i**).

562 We then tested whether the limited angiogenesis observed in skin organoids could be rescued
563 by supplying missing immune cells. We introduced iPS-derived macrophages in the early
564 stages of the skin organoid differentiation and assessed the endothelial network in skin
565 organoid by whole mount immunofluorescence imaging on day 35 of co-culture, using CD206
566 to identify mature macrophages and CD31 for endothelial cells. Macrophages co-localised with
567 blood vessels, even after 5 weeks of culture (**Fig. 4j, Extended Data Fig. 10g**). We observed
568 a more elaborate and developed vascular network in skin organoids co-cultured with
569 macrophages compared to control organoids without macrophages (**Fig. 4j, Extended Data**
570 **Fig. 10g**). These *in vitro* findings in a 2D angiogenesis assay and 3D skin organoid culture
571 model demonstrate that cell-cell interactions between macrophages and endothelial cells
572 provide the necessary cues to support angiogenesis and improve blood vessel expansion.

573 **Discussion**

574 In this study, we characterise the dynamic composition of human prenatal skin during the early
575 stages of *de novo* hair follicle formation and highlight the critical skin immune and non-
576 immune crosstalk contributing to skin morphogenesis. We provide evidence for the
577 contributions of immune cells to human prenatal skin development, in line with emerging

578 evidence from tissue morphogenesis in animal studies¹³⁹. Notably, macrophage subsets appear
579 to play distinct roles in scarless skin repair, fibroblast homeostasis and neurovascular
580 development. This is in part contributed to by yolk-sac derived TMLM^{99,140}, which have also
581 been reported in human prenatal testicular cords, suggesting there is a broader tissue
582 distribution in early gestation than previously thought and functions outside of the central
583 nervous system.

584 We identified a critical role of macrophages in angiogenesis which could not be compensated
585 for by culture conditions or exogenous growth factors *in vitro*. Adding macrophages to
586 endothelial cell cultures and hair-bearing iPS-derived skin organoids enhanced endothelial cell
587 numbers and vascular network formation. Notably, iPS-derived macrophages survived at least
588 five weeks in the skin organoid, in contrast to 1-2 weeks in liquid culture supplemented with
589 macrophage colony-stimulating factor (M-CSF)¹³⁷, highlighting the importance of tissue
590 microenvironment in sustaining macrophage residency and longevity. The development of
591 other structures such as hair follicles, melanocytes, neuronal and interfollicular epidermal and
592 dermal cells in the skin organoid were unaffected by the absence of immune cells. This is likely
593 due to the specific timing and supplementation of growth factors to promote skin and hair
594 follicle differentiation in the hair-bearing skin organoid model. Indeed, the requirement for
595 macrophages for adequate development of both ectoderm and mesoderm-derived structures,
596 including peripheral neuronal cells and blood vessels, has been demonstrated in mouse models
597 of macrophage depletion¹⁴¹⁻¹⁴⁴.

598 Our study provides further insights into human hair follicle formation and the origin of the
599 companion layer, which appears to develop along the same trajectory as the outer root sheath,
600 and not from the hair matrix, as previously reported^{21,145,146}. A recent murine fate-mapping
601 study also showed that the CL develops prior to hair matrix formation and in the absence of

602 matrix cells¹⁴⁶. In addition, a recent single cell analysis of mouse hair follicles identified greater
603 transcriptional similarity of CL cells to ORS cells³⁸, consistent with our findings in human
604 prenatal skin.

605 A combination of fibroblast and macrophage associated molecular features, including the
606 presence of fibroblast progenitors, a down-regulated immune milieu and reduced collagen
607 expression, are likely to contribute to the ability of prenatal skin to heal without scarring.
608 However, although skin fibroblast differentiation is incomplete by 16 PCW, progressive
609 ‘ageing’ is already evident with gradual acquisition of the pro-inflammatory phenotype,
610 characteristic of adult fibroblasts^{69,87}, beginning *in utero* from as early as 9 PCW. Future studies
611 on how the microbiota colonisation and environmental exposure after birth affects skin across
612 the human lifespan are required.

613 A hugely valuable utility of our prenatal human skin single cell atlas is the ability to identify
614 expression of genes known to cause congenital hair and skin disorders, which we provide as a
615 resource with the accompanying web portal for our study
616 (<https://developmental.cellatlas.io/fetal-skin>; password: fs2023). We find that implicated genes
617 are indeed expressed in prenatal skin, supporting an *in utero* origin for these disorders. Notably,
618 structural cells express disease causing genes suggesting that the accompanying immune
619 infiltration observed in these diseases results from defects in structural cells. Our study on
620 human prenatal skin development is a valuable blueprint to guide more faithful *in vitro* skin
621 organoid generation, which can enable future studies on interactions with the microbiota, the
622 pathogenesis of congenital skin disorders, and hair and skin engineering for therapeutic
623 applications, including hair regeneration and skin transplant.

624 **Main references**

625 1. Sadler, T. W. & Langman, J. *Langman's Medical Embryology*. (Lippincott Raven,
626 2000).

627 2. Carlson, B. M. *Human Embryology and Developmental Biology*. (Elsevier Health
628 Sciences, 2013).

629 3. Coolen, N. A., Schouten, K. C. W., Middelkoop, E. & Ulrich, M. M. W. Comparison
630 between human fetal and adult skin. *Archives of Dermatological Research* **302**, 47–55
631 (2010).

632 4. King, A., Balaji, S. & Keswani, S. G. Biology and Function of Fetal and Pediatric Skin.
633 *Facial Plastic Surgery Clinics of North America* **21**, 1–6 (2013).

634 5. Botting, R. A. & Haniffa, M. The developing immune network in human prenatal skin.
635 *Immunology* **160**, 149–156 (2020).

636 6. Muller, M., Jasmin, J. R., Monteil, R. A. & Loubiere, R. Embryology of the hair follicle.
637 *Early Human Development* **26**, 159–166 (1991).

638 7. Holbrook, K. A. & Odland, G. F. Structure of the human fetal hair canal and initial hair
639 eruption. *J. Invest. Dermatol.* **71**, 385–390 (1978).

640 8. Kennedy, K. M. *et al.* Questioning the fetal microbiome illustrates pitfalls of low-
641 biomass microbial studies. *Nature* **613**, 639–649 (2023).

642 9. Suo, C. *et al.* Mapping the developing human immune system across organs. *Science*
643 **376**, eab0510 (2022).

644 10. Li, D. *et al.* VCAM-1 macrophages guide the homing of HSPCs to a vascular niche.
645 *Nature* **564**, 119–124 (2018).

646 11. Yanez, D. A., Lacher, R. K., Vidyarthi, A. & Colegio, O. R. The role of macrophages in
647 skin homeostasis. *Pflugers Arch.* **469**, 455–463 (2017).

648 12. Xu, Y. *et al.* Single-cell transcriptome analysis reveals the dynamics of human immune
649 cells during early fetal skin development. *Cell Rep.* **36**, 109524 (2021).

650 13. Reynolds, G. *et al.* Developmental cell programs are co-opted in inflammatory skin
651 disease. *Science* **371**, (2021).

652 14. Takahashi, R. *et al.* Defining Transcriptional Signatures of Human Hair Follicle Cell
653 States. *J. Invest. Dermatol.* **140**, 764–773.e4 (2020).

654 15. Lee, J. *et al.* Hair-bearing human skin generated entirely from pluripotent stem cells.
655 *Nature* **582**, 399–404 (2020).

656 16. Zhang, B. *et al.* A human embryonic limb cell atlas resolved in space and time. Preprint
657 at <https://www.biorxiv.org/content/10.1101/2022.04.27.489800v1> (2022).

658 17. Li, T. *et al.* WebAtlas pipeline for integrated single cell and spatial transcriptomic data.
659 Preprint at <https://www.biorxiv.org/content/10.1101/2023.05.19.541329v1> (2023).

660 18. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C.
661 Differential abundance testing on single-cell data using k-nearest neighbor graphs. *Nat.*
662 *Biotechnol.* **40**, 245–253 (2022).

663 19. Kleshchevnikov, V. *et al.* Cell2location maps fine-grained cell types in spatial
664 transcriptomics. *Nat. Biotechnol.* **40**, 661–671 (2022).

665 20. Sennett, R. & Rendl, M. Mesenchymal-epithelial interactions during hair follicle
666 morphogenesis and cycling. *Semin. Cell Dev. Biol.* **23**, 917–927 (2012).

667 21. Saxena, N., Mok, K.-W. & Rendl, M. An updated classification of hair follicle
668 morphogenesis. *Exp. Dermatol.* **28**, 332–344 (2019).

669 22. de Groot, S. C., Ulrich, M. M. W., Gho, C. G. & Huisman, M. A. Back to the Future:
670 From Appendage Development Toward Future Human Hair Follicle Neogenesis. *Front*
671 *Cell Dev Biol* **9**, 661787 (2021).

672 23. Ersch, J. & Stallmach, T. Assessing gestational age from histology of fetal skin: an

673 autopsy study of 379 fetuses. *Obstet. Gynecol.* **94**, 753–757 (1999).

674 24. Breathnach, A. S. & Smith, J. Fine structure of the early hair germ and dermal papilla in
675 the human foetus. *J. Anat.* **102**, 511–526 (1968).

676 25. Robins, E. J. & Breathnach, A. S. Fine structure of the human foetal hair follicle at hair-
677 peg and early bulbous-peg stages of development. *J. Anat.* **104**, 553–569 (1969).

678 26. Robins, E. J. & Breathnach, A. S. Fine structure of bulbar end of human foetal hair
679 follicle at stage of differentiation of inner root sheath. *J. Anat.* **107**, 131–146 (1970).

680 27. Randall, V. A. & Botchkareva, N. V. The biology of hair growth. in *Cosmetics*
681 *Applications of Laser & Light-Based Systems* 3–35 (Elsevier, 2009).

682 28. Hsu, Y.-C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny
683 in the hair follicle. *Cell* **144**, 92–105 (2011).

684 29. Fu, X., Li, J., Sun, X., Sun, T. & Sheng, Z. Epidermal stem cells are the source of sweat
685 glands in human fetal skin: evidence of synergetic development of stem cells, sweat
686 glands, growth factors, and matrix metalloproteinases. *Wound Repair Regen.* **13**, 102–
687 108 (2005).

688 30. Shamloul, G. & Khachemoune, A. An updated review of the sebaceous gland and its
689 role in health and diseases Part 1: Embryology, evolution, structure, and function of
690 sebaceous glands. *Dermatol. Ther.* **34**, e14695 (2021).

691 31. Grubbs, H., Nassereddin, A. & Morrison, M. Embryology, Hair. *StatPearls [Internet]*
692 <https://www.ncbi.nlm.nih.gov/books/NBK534794/> (2022).

693 32. Lee, H.-T. *et al.* A Crucial Role of CXCL14 for Promoting Regulatory T Cells
694 Activation in Stroke. *Theranostics* **7**, 855–875 (2017).

695 33. Bai, X.-F. *et al.* CD24 controls expansion and persistence of autoreactive T cells in the
696 central nervous system during experimental autoimmune encephalomyelitis. *J. Exp.*
697 *Med.* **200**, 447–458 (2004).

698 34. Zheng, C., Yin, S., Yang, Y., Yu, Y. & Xie, X. CD24 aggravates acute liver injury in
699 autoimmune hepatitis by promoting IFN- γ production by CD4 T cells. *Cell. Mol.*
700 *Immunol.* **15**, 260–271 (2018).

701 35. Westrich, J. A., Vermeer, D. W., Colbert, P. L., Spanos, W. C. & Pyeon, D. The
702 multifarious roles of the chemokine CXCL14 in cancer progression and immune
703 responses. *Mol. Carcinog.* **59**, 794–806 (2020).

704 36. Ali, N. *et al.* Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.
705 *Cell* **169**, 1119–1129.e11 (2017).

706 37. Dhariwala, M. O. *et al.* Developing Human Skin Contains Lymphocytes Demonstrating
707 a Memory Signature. *Cell Rep Med* **1**, 100132 (2020).

708 38. Joost, S. *et al.* The Molecular Anatomy of Mouse Skin during Hair Growth and Rest.
709 *Cell Stem Cell* **26**, 441–457.e7 (2020).

710 39. Krah1, D. & Sellheyer, K. Sox9, more than a marker of the outer root sheath:
711 spatiotemporal expression pattern during human cutaneous embryogenesis. *J. Cutan.*
712 *Pathol.* **37**, 350–356 (2010).

713 40. Feinstein, Y. *et al.* F-spondin and mindin: two structurally and functionally related genes
714 expressed in the hippocampus that promote outgrowth of embryonic hippocampal
715 neurons. *Development* **126**, 3637–3648 (1999).

716 41. Jia, W., Li, H. & He, Y.-W. The extracellular matrix protein mindin serves as an integrin
717 ligand and is critical for inflammatory cell recruitment. *Blood* **106**, 3854–3859 (2005).

718 42. Martisova, A. *et al.* Identification of AGR2 Gene-Specific Expression Patterns
719 Associated with Epithelial-Mesenchymal Transition. *Int. J. Mol. Sci.* **23**, (2022).

720 43. Delom, F., Mohtar, M. A., Hupp, T. & Fessart, D. The anterior gradient-2 interactome.
721 *Am. J. Physiol. Cell Physiol.* **318**, C40–C47 (2020).

722 44. Mok, K.-W. *et al.* Dermal Condensate Niche Fate Specification Occurs Prior to

723 Formation and Is Placode Progenitor Dependent. *Dev. Cell* **48**, 32–48.e5 (2019).

724 45. Ma, Y., Lin, Y., Huang, W. & Wang, X. Direct Reprograming of Mouse Fibroblasts into
725 Dermal Papilla Cells via Small Molecules. *Int. J. Mol. Sci.* **23**, (2022).

726 46. Abbasi, S. *et al.* Distinct Regulatory Programs Control the Latent Regenerative Potential
727 of Dermal Fibroblasts during Wound Healing. *Cell Stem Cell* **28**, 581–583 (2021).

728 47. Umeda-Ikawa, A., Shimokawa, I. & Doi, K. Time-course expression profiles of hair
729 cycle-associated genes in male mini rats after depilation of telogen-phase hairs. *Int. J.*
730 *Mol. Sci.* **10**, 1967–1977 (2009).

731 48. Rahmani, W. *et al.* Hair follicle dermal stem cells regenerate the dermal sheath,
732 repopulate the dermal papilla, and modulate hair type. *Dev. Cell* **31**, 543–558 (2014).

733 49. Wang, B. *et al.* Human hair follicle-derived mesenchymal stem cells: Isolation,
734 expansion, and differentiation. *World J. Stem Cells* **12**, 462–470 (2020).

735 50. Martino, P. A., Heitman, N. & Rendl, M. The dermal sheath: An emerging component
736 of the hair follicle stem cell niche. *Exp. Dermatol.* **30**, 512–521 (2021).

737 51. Weber, E. L., Lai, Y.-C., Lei, M., Jiang, T.-X. & Chuong, C.-M. Human Fetal Scalp
738 Dermal Papilla Enriched Genes and the Role of R-Spondin-1 in the Restoration of Hair
739 Neogenesis in Adult Mouse Cells. *Front Cell Dev Biol* **8**, 583434 (2020).

740 52. Li, C.-F. *et al.* Snail-induced claudin-11 prompts collective migration for tumour
741 progression. *Nat. Cell Biol.* **21**, 251–262 (2019).

742 53. Dillenburg-Pilla, P. *et al.* SDF-1/CXCL12 induces directional cell migration and
743 spontaneous metastasis via a CXCR4/Gαi/mTORC1 axis. *FASEB J.* **29**, 1056–1068
744 (2015).

745 54. Biggs, L. C. *et al.* Hair follicle dermal condensation forms via Fgf20 primed cell cycle
746 exit, cell motility, and aggregation. *Elife* **7**, (2018).

747 55. Krampert, M. *et al.* ADAMTS1 proteinase is up-regulated in wounded skin and

748 regulates migration of fibroblasts and endothelial cells. *J. Biol. Chem.* **280**, 23844–
749 23852 (2005).

750 56. Hagner, A. *et al.* Transcriptional Profiling of the Adult Hair Follicle Mesenchyme
751 Reveals R-spondin as a Novel Regulator of Dermal Progenitor Function. *iScience* **23**,
752 101019 (2020).

753 57. Hu, B. *et al.* Control of hair follicle cell fate by underlying mesenchyme through a CSL-
754 Wnt5a-FoxN1 regulatory axis. *Genes Dev.* **24**, 1519–1532 (2010).

755 58. Belmadani, A., Jung, H., Ren, D. & Miller, R. J. The chemokine SDF-1/CXCL12
756 regulates the migration of melanocyte progenitors in mouse hair follicles. *Differentiation*
757 **77**, 395–411 (2009).

758 59. Ghersi, G. *et al.* The protease complex consisting of dipeptidyl peptidase IV and seprase
759 plays a role in the migration and invasion of human endothelial cells in collagenous
760 matrices. *Cancer Res.* **66**, 4652–4661 (2006).

761 60. Kral, M. *et al.* Covalent dimerization of interleukin-like epithelial-to-mesenchymal
762 transition (EMT) inducer (ILEI) facilitates EMT, invasion, and late aspects of
763 metastasis. *FEBS J.* **284**, 3484–3505 (2017).

764 61. Yin, S., Chen, F., Ye, P. & Yang, G. Overexpression of FAM3C protein as a novel
765 biomarker for epithelial-mesenchymal transition and poor outcome in gastric cancer. *Int.*
766 *J. Clin. Exp. Pathol.* **11**, 4247–4256 (2018).

767 62. Nunan, R. *et al.* Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber
768 Disassembly to Enable Wound Re-epithelialization. *Cell Rep.* **13**, 1380–1395 (2015).

769 63. Sumanaweera, D. *et al.* Gene-level alignment of single cell trajectories informs the
770 progression of in vitro T cell differentiation. Preprint at
771 <https://www.biorxiv.org/content/10.1101/2023.03.08.531713v1> (2023).

772 64. Goodman, F. R. Limb malformations and the human HOX genes. *Am. J. Med. Genet.*

773 112, 256–265 (2002).

774 65. Quinonez, S. C. & Innis, J. W. Human HOX gene disorders. *Mol. Genet. Metab.* **111**, 4–
775 15 (2014).

776 66. Mark, M., Rijli, F. M. & Chambon, P. Homeobox genes in embryogenesis and
777 pathogenesis. *Pediatr. Res.* **42**, 421–429 (1997).

778 67. Driskell, R. R. *et al.* Distinct fibroblast lineages determine dermal architecture in skin
779 development and repair. *Nature* **504**, 277–281 (2013).

780 68. Philippeos, C. *et al.* Spatial and Single-Cell Transcriptional Profiling Identifies
781 Functionally Distinct Human Dermal Fibroblast Subpopulations. *J. Invest. Dermatol.*
782 **138**, 811–825 (2018).

783 69. Solé-Boldo, L. *et al.* Single-cell transcriptomes of the human skin reveal age-related loss
784 of fibroblast priming. *Commun Biol* **3**, 188 (2020).

785 70. Tabib, T., Morse, C., Wang, T., Chen, W. & Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1
786 Define Major Fibroblast Populations in Human Skin. *J. Invest. Dermatol.* **138**, 802–810
787 (2018).

788 71. Iwata, R. & Vanderhaeghen, P. Tempus fugit: How time flies during development.
789 *Science* **369**, 1431–1432 (2020).

790 72. Carter, A. M. Animal models of human pregnancy and placentation: alternatives to the
791 mouse. *Reproduction* **160**, R129–R143 (2020).

792 73. Halley, A. C. The Tempo of Mammalian Embryogenesis: Variation in the Pace of Brain
793 and Body Development. *Brain Behav. Evol.* **97**, 96–107 (2022).

794 74. Has, C. *et al.* Consensus reclassification of inherited epidermolysis bullosa and other
795 disorders with skin fragility. *Br. J. Dermatol.* **183**, 614–627 (2020).

796 75. Goto, M. *et al.* Fibroblasts show more potential as target cells than keratinocytes in
797 COL7A1 gene therapy of dystrophic epidermolysis bullosa. *J. Invest. Dermatol.* **126**,

798 766–772 (2006).

799 76. Varki, R., Sadowski, S., Uitto, J. & Pfendner, E. Epidermolysis bullosa. II. Type VII
800 collagen mutations and phenotype–genotype correlations in the dystrophic subtypes. *J.
801 Med. Genet.* **44**, 181–192 (2007).

802 77. Vahlquist, A., Gånemo, A. & Virtanen, M. Congenital ichthyosis: an overview of
803 current and emerging therapies. *Acta Derm. Venereol.* **88**, 4–14 (2008).

804 78. Huitema, L., Phillips, T., Alexeev, V. & Igoucheva, O. Immunological mechanisms
805 underlying progression of chronic wounds in recessive dystrophic epidermolysis bullosa.
806 *Exp. Dermatol.* **30**, 1724–1733 (2021).

807 79. Akiyama, M. Understanding immune profiles in ichthyosis may lead to novel
808 therapeutic targets. *J. Allergy Clin. Immunol.* **149**, 1210–1212 (2022).

809 80. Lorenz, H. P., Lin, R. Y., Longaker, M. T., Whitby, D. J. & Adzick, N. S. The fetal
810 fibroblast: the effector cell of scarless fetal skin repair. *Plast. Reconstr. Surg.* **96**, 1251–
811 1259 (1995).

812 81. Larson, B. J., Longaker, M. T. & Lorenz, H. P. Scarless fetal wound healing: a basic
813 science review. *Plast. Reconstr. Surg.* **126**, 1172–1180 (2010).

814 82. Darby, I. A. & Desmoulière, A. Scar Formation: Cellular Mechanisms. in *Textbook on
815 Scar Management: State of the Art Management and Emerging Technologies* (eds. Téot,
816 L., Mustoe, T. A., Middelkoop, E. & Gauglitz, G. G.) (Springer, 2020).

817 83. Choueiry, F. *et al.* CD200 promotes immunosuppression in the pancreatic tumor
818 microenvironment. *J Immunother Cancer* **8**, (2020).

819 84. Liu, T. *et al.* Cancer-associated fibroblasts: an emerging target of anti-cancer
820 immunotherapy. *J. Hematol. Oncol.* **12**, 86 (2019).

821 85. Érsek, B. *et al.* Melanoma-associated fibroblasts impair CD8+ T cell function and
822 modify expression of immune checkpoint regulators via increased arginase activity.

823 *Cell. Mol. Life Sci.* **78**, 661–673 (2021).

824 86. Mao, X. *et al.* Crosstalk between cancer-associated fibroblasts and immune cells in the
825 tumor microenvironment: new findings and future perspectives. *Mol. Cancer* **20**, 131
826 (2021).

827 87. Ascensión, A. M., Fuertes-Álvarez, S., Ibañez-Solé, O., Izeta, A. & Araúzo-Bravo, M. J.
828 Human Dermal Fibroblast Subpopulations Are Conserved across Single-Cell RNA
829 Sequencing Studies. *J. Invest. Dermatol.* **141**, 1735–1744.e35 (2021).

830 88. Gur, C. *et al.* LGR5 expressing skin fibroblasts define a major cellular hub perturbed in
831 scleroderma. *Cell* **185**, 1373–1388.e20 (2022).

832 89. Deng, C.-C. *et al.* Single-cell RNA-seq reveals fibroblast heterogeneity and increased
833 mesenchymal fibroblasts in human fibrotic skin diseases. *Nat. Commun.* **12**, 3709
834 (2021).

835 90. Tabib, T. *et al.* Myofibroblast transcriptome indicates SFRP2 fibroblast progenitors in
836 systemic sclerosis skin. *Nat. Commun.* **12**, 4384 (2021).

837 91. Harrison, M. R. *et al.* Successful repair in utero of a fetal diaphragmatic hernia after
838 removal of herniated viscera from the left thorax. *N. Engl. J. Med.* **322**, 1582–1584
839 (1990).

840 92. Longaker, M. T. & Adzick, N. S. The biology of fetal wound healing: a review. *Plast.*
841 *Reconstr. Surg.* **87**, 788–798 (1991).

842 93. Davis, F. M. *et al.* Epigenetic regulation of the PGE2 pathway modulates macrophage
843 phenotype in normal and pathologic wound repair. *JCI Insight* **5**, (2020).

844 94. Wynn, T. A. & Vannella, K. M. Macrophages in Tissue Repair, Regeneration, and
845 Fibrosis. *Immunity* **44**, 450–462 (2016).

846 95. Hu, M. S. *et al.* Delivery of monocyte lineage cells in a biomimetic scaffold enhances
847 tissue repair. *JCI Insight* **2**, (2017).

848 96. Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast-macrophage reciprocal interactions in
849 health, fibrosis, and cancer. *Immunity* **54**, 903–915 (2021).

850 97. Bian, Z. *et al.* Deciphering human macrophage development at single-cell resolution.
851 *Nature* **582**, 571–576 (2020).

852 98. Jurga, A. M., Paleczna, M. & Kuter, K. Z. Overview of General and Discriminating
853 Markers of Differential Microglia Phenotypes. *Front. Cell. Neurosci.* **14**, 198 (2020).

854 99. Botting, R. A. *et al.* Multi-organ functions of yolk sac during human early development.
855 Preprint at <https://www.biorxiv.org/content/10.1101/2022.08.03.502475v1> (2022).

856 100. Du, C. *et al.* Synaptotagmin-11 inhibits cytokine secretion and phagocytosis in
857 microglia. *Glia* **65**, 1656–1667 (2017).

858 101. Mathur, N. *et al.* Ghrelin as an Anti-Sepsis Peptide: Review. *Front. Immunol.* **11**,
859 610363 (2020).

860 102. Waseem, T., Duxbury, M., Ito, H., Ashley, S. W. & Robinson, M. K. Exogenous ghrelin
861 modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-
862 stimulated macrophages through distinct signaling pathways. *Surgery* **143**, 334–342
863 (2008).

864 103. Henn, D. *et al.* Xenogeneic skin transplantation promotes angiogenesis and tissue
865 regeneration through activated Trem2 macrophages. *Sci Adv* **7**, eabi4528 (2021).

866 104. Liechty, K. W., Adzick, N. S. & Crombleholme, T. M. Diminished interleukin 6 (IL-6)
867 production during scarless human fetal wound repair. *Cytokine* **12**, 671–676 (2000).

868 105. Denton, C. P. *et al.* Therapeutic interleukin-6 blockade reverses transforming growth
869 factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate
870 clinical trial in systemic sclerosis. *Ann. Rheum. Dis.* **77**, 1362–1371 (2018).

871 106. Alivernini, S. *et al.* Distinct synovial tissue macrophage subsets regulate inflammation
872 and remission in rheumatoid arthritis. *Nat. Med.* **26**, 1295–1306 (2020).

873 107. Peng, C.-K. *et al.* Gas6/Axl signaling attenuates alveolar inflammation in ischemia-
874 reperfusion-induced acute lung injury by up-regulating SOCS3-mediated pathway. *PLoS*
875 *One* **14**, e0219788 (2019).

876 108. Ortmayr, G. *et al.* Immunological Aspects of AXL/GAS-6 in the Context of Human
877 Liver Regeneration. *Hepatol Commun* **6**, 576–592 (2022).

878 109. Szepesi, Z., Manouchehrian, O., Bachiller, S. & Deierborg, T. Bidirectional Microglia-
879 Neuron Communication in Health and Disease. *Front. Cell. Neurosci.* **12**, 323 (2018).

880 110. Kolter, J., Kierdorf, K. & Henneke, P. Origin and Differentiation of Nerve-Associated
881 Macrophages. *J. Immunol.* **204**, 271–279 (2020).

882 111. Wang, P. L. *et al.* Peripheral nerve resident macrophages share tissue-specific
883 programming and features of activated microglia. *Nat. Commun.* **11**, 2552 (2020).

884 112. Ding, Z. *et al.* Emerging Roles of Microglia in Neuro-vascular Unit: Implications of
885 Microglia-Neurons Interactions. *Front. Cell. Neurosci.* **15**, 706025 (2021).

886 113. Caruso, F. P. *et al.* A map of tumor-host interactions in glioma at single-cell resolution.
887 *Gigascience* **9**, (2020).

888 114. Cariboni, A. *et al.* Neuropilins and their ligands are important in the migration of
889 gonadotropin-releasing hormone neurons. *J. Neurosci.* **27**, 2387–2395 (2007).

890 115. Cattin, A.-L. *et al.* Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated
891 Regeneration of Peripheral Nerves. *Cell* **162**, 1127–1139 (2015).

892 116. Stratton, J. A. *et al.* Macrophages Regulate Schwann Cell Maturation after Nerve Injury.
893 *Cell Rep.* **24**, 2561–2572.e6 (2018).

894 117. Gu, X., Li, S.-Y. & DeFalco, T. Immune and vascular contributions to organogenesis of
895 the testis and ovary. *FEBS J.* **289**, 2386–2408 (2022).

896 118. Gurevich, D. B. *et al.* Live imaging of wound angiogenesis reveals macrophage
897 orchestrated vessel sprouting and regression. *EMBO J.* **37**, (2018).

898 119. Fantin, A. *et al.* Tissue macrophages act as cellular chaperones for vascular anastomosis
899 downstream of VEGF-mediated endothelial tip cell induction. *Blood* **116**, 829–840
900 (2010).

901 120. Heinke, J., Patterson, C. & Moser, M. Life is a pattern: vascular assembly within the
902 embryo. *Front. Biosci.* **4**, 2269–2288 (2012).

903 121. Chen, W. *et al.* The endothelial tip-stalk cell selection and shuffling during
904 angiogenesis. *J. Cell Commun. Signal.* **13**, 291–301 (2019).

905 122. Chen, E. Y. *et al.* Enrichr: interactive and collaborative HTML5 gene list enrichment
906 analysis tool. *BMC Bioinformatics* **14**, 128 (2013).

907 123. Gene-set Library. *Enrichr* <https://maayanlab.cloud/Enrichr/#libraries>.

908 124. Shen, H., Schuster, R., Stringer, K. F., Waltz, S. E. & Lentsch, A. B. The Duffy
909 antigen/receptor for chemokines (DARC) regulates prostate tumor growth. *FASEB J.* **20**,
910 59–64 (2006).

911 125. Li, Q. *et al.* Single-cell transcriptome profiling reveals vascular endothelial cell
912 heterogeneity in human skin. *Theranostics* **11**, 6461–6476 (2021).

913 126. He, Y. *et al.* Novel Blood Vascular Endothelial Subtype-Specific Markers in Human
914 Skin Unearthed by Single-Cell Transcriptomic Profiling. *Cells* **11**, (2022).

915 127. Schupp, J. C. *et al.* Integrated Single-Cell Atlas of Endothelial Cells of the Human
916 Lung. *Circulation* **144**, 286–302 (2021).

917 128. Nikolova, M. T. *et al.* Fate and state transitions during human blood vessel organoid
918 development. Preprint at <https://www.biorxiv.org/content/10.1101/2022.03.23.485329v1>
919 (2022).

920 129. Marziano, C., Genet, G. & Hirschi, K. K. Vascular endothelial cell specification in
921 health and disease. *Angiogenesis* **24**, 213–236 (2021).

922 130. Zhao, Q. *et al.* Single-Cell Transcriptome Analyses Reveal Endothelial Cell

923 Heterogeneity in Tumors and Changes following Antiangiogenic Treatment. *Cancer*
924 *Res.* **78**, 2370–2382 (2018).

925 131. Van de Sande, B. *et al.* A scalable SCENIC workflow for single-cell gene regulatory
926 network analysis. *Nat. Protoc.* **15**, 2247–2276 (2020).

927 132. De Val, S. & Black, B. L. Transcriptional control of endothelial cell development. *Dev.*
928 *Cell* **16**, 180–195 (2009).

929 133. Coma, S. *et al.* GATA2 and Lmo2 control angiogenesis and lymphangiogenesis via
930 direct transcriptional regulation of neuropilin-2. *Angiogenesis* **16**, 939–952 (2013).

931 134. Khandekar, M. *et al.* A Gata2 intronic enhancer confers its pan-endothelia-specific
932 regulation. *Development* **134**, 1703–1712 (2007).

933 135. Mammoto, A. *et al.* A mechanosensitive transcriptional mechanism that controls
934 angiogenesis. *Nature* **457**, 1103–1108 (2009).

935 136. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular
936 communication by linking ligands to target genes. *Nat. Methods* **17**, 159–162 (2020).

937 137. Alsinet, C. *et al.* Robust temporal map of human in vitro myelopoiesis using single-cell
938 genomics. *Nat. Commun.* **13**, 2885 (2022).

939 138. Patsch, C. *et al.* Generation of vascular endothelial and smooth muscle cells from human
940 pluripotent stem cells. *Nat. Cell Biol.* **17**, 994–1003 (2015).

941 139. Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages:
942 how they develop and choreograph tissue biology. *Nat. Rev. Immunol.* 1–17 (2023).

943 140. Garcia-Alonso, L. *et al.* Single-cell roadmap of human gonadal development. *Nature*
944 **607**, 540–547 (2022).

945 141. Angelim, M. K. S. C. *et al.* Embryonic macrophages and microglia ablation alter the
946 development of dorsal root ganglion sensory neurons in mouse embryos. *Glia* **66**, 2470–
947 2486 (2018).

948 142. DeFalco, T., Bhattacharya, I., Williams, A. V., Sams, D. M. & Capel, B. Yolk-sac-
949 derived macrophages regulate fetal testis vascularization and morphogenesis. *Proc. Natl.*
950 *Acad. Sci. U. S. A.* **111**, E2384–93 (2014).

951 143. Kubota, Y. *et al.* M-CSF inhibition selectively targets pathological angiogenesis and
952 lymphangiogenesis. *J. Exp. Med.* **206**, 1089–1102 (2009).

953 144. Martin, P. & Gurevich, D. B. Macrophage regulation of angiogenesis in health and
954 disease. *Semin. Cell Dev. Biol.* **119**, 101–110 (2021).

955 145. Morita, R. *et al.* Tracing the origin of hair follicle stem cells. *Nature* **594**, 547–552
956 (2021).

957 146. Mesler, A. L., Veniaminova, N. A., Lull, M. V. & Wong, S. Y. Hair Follicle Terminal
958 Differentiation Is Orchestrated by Distinct Early and Late Matrix Progenitors. *Cell Rep.*
959 **19**, 809–821 (2017).

960 **Methods**

961 ***Tissue acquisition and processing***

962 Human developmental tissue samples used for this study were obtained from the MRC–
963 Wellcome Trust-funded Human Developmental Biology Resource (HDBR;
964 <http://www.hdbr.org>) with written consent and approval from the Newcastle and North
965 Tyneside NHS Health Authority Joint Ethics Committee (08/H0906/21+5) and Cambridge
966 University Hospitals NHS Foundation Trust (NHS REC 96/085).

967 Tissues were processed into single cell suspensions immediately upon receipt for single cell
968 transcriptomic profiling. Tissue was first transferred to a sterile 10 mm² tissue culture dish and
969 cut in <1 mm³ segments using scalpel. It was then digested with type IV collagenase (final
970 concentration of 1.6 mg/ml; Worthington) in RPMI (Sigma-Aldrich) supplemented with 10%
971 heat-inactivated fetal bovine serum (FBS; Gibco), at 37°C for 30 min with intermittent
972 agitation. Digested tissue was then passed through a 100 µm cell strainer and cells were
973 collected by centrifugation (500 g for 5 min at 4°C). Cells were treated with 1× RBC lysis
974 buffer (eBioscience) for 5 min at room temperature and washed once with Flow Buffer (PBS
975 containing 5% (v/v) FBS and 2 mM EDTA) prior to cell counting and antibody staining. Single
976 cell suspensions were generated from skin of 15 donors with ages spanning from 7 PCW to 16
977 PCW.

978 ***Single-cell RNA sequencing experiment***

979 Dissociated cells were stained with anti-CD45 antibody (3 µL CD45 BUV395, clone: HI30,
980 BD Biosciences) on ice in the dark for 30 min. For F69 and F71, additional staining with anti-
981 CD34 (4 µL CD34 APC/Cy7, clone: 581, Biolegend) and anti-CD14 antibodies (3 µL CD14
982 PE-CF594, clone: MφP9, BD Biosciences) was also performed to improve capture of less

983 abundant cell populations from the CD45⁻ fraction, such as keratinocytes and endothelial cells,
984 by separating them from the abundant CD34⁺CD14⁻ stromal cells. Immediately prior to sorting,
985 cells were passed through a 35 μ m filter (Falcon) and DAPI (Sigma-Aldrich) was added at a
986 final concentration of 3 μ M. Sorting by flow cytometry was performed with BD FACS Aria
987 Fusion Flow Cytometer. CD45 positive fraction was sorted from DAPI-CD45⁺ gate, and CD45
988 negative fraction was sorted from DAPI-CD45⁻ gate. CD45 gating was contiguous so that no
989 live cells were lost in sorting. Live CD45⁺ and CD45⁻ cells were sorted into separate chilled
990 FACS tubes coated with FBS. For F69 and F71, in addition to the live CD45⁺ and CD45⁻ cells,
991 we isolated all cells from the CD45⁻ fraction that were not within the CD34⁺CD14⁻ gate and
992 collected them into a separate chilled FACS tubes coated with FBS (**Extended Data Fig. 1a**).

993 FACS sorted cell suspensions were counted and loaded onto the 10x Genomics Chromium
994 Controller to achieve a maximum yield of 10,000 cells per reaction. Either Chromium single
995 cell 3' reagent kit (v2) or Chromium single cell V(D)J kits from 10x Genomics were used.
996 DAPI-CD45⁺ or DAPI-CD45⁻ FACS- isolated cells were loaded onto each channel of the
997 Chromium chip following the manufacturer's instructions before droplet encapsulation on the
998 Chromium controller. Gene expression (GEX) and T cell receptor (TCR) libraries were
999 generated according to the manufacturer's instructions. The GEX libraries were sequenced to
1000 achieve a minimum target depth of 20,000 reads per cell and the TCR libraries were sequenced
1001 to achieve a minimum target depth of 5,000 reads per cell using Illumina sequencing
1002 instruments.

1003 ***Endothelial cell and skin organoid co-culture with macrophages***

1004 Endothelial cells were derived from Kolf2.1S iPSCs cultured on matrigel coated
1005 plates in mTeSR1 medium with ROCK inhibitor at 4.5x10⁴ cells per cm². iPSCs were
1006 differentiated through lateral mesoderm into CD144 positive endothelial cells as previously

1007 published¹³⁸. Macrophages and skin organoids were also derived from Kolf2.1S iPSCs
1008 according to previously published methods^{15,137}. The angiogenesis assay was carried out by
1009 culturing iPS-derived endothelial cells and macrophages separately or in co-culture in 15-well
1010 3D chambered μ -slide (ibidi GmbH, cat. no. 81506). This was done using a three-layered
1011 sandwich method where layer one was 10 μ l matrigel (Corning, cat. no. 354230), layer two was
1012 supplemented StemPro medium (Gibco, cat no. 10639011) + 10% matrigel with and without
1013 the endothelial cells and layer three was supplemented StemPro medium with and without
1014 macrophages. The endothelial cells were left to settle for 4 hours at 37°C before addition of
1015 macrophages. The assay was imaged 2 hours after initial culture and then 24-hourly for three
1016 days using the Olympus IX83 inverted microscope and images were analysed using ImageJ2
1017 (v2.14.0)¹⁴⁷. Prior to co-culture, iPS-derived macrophages were phenotyped using flow
1018 cytometry (**Extended Data Fig. 10f**). Macrophages were harvested using TrypLE (Gibco) at
1019 37°C, 5% CO₂ for 5 min and cells were collected by centrifugation (500 g for 6 min). Cells
1020 were washed once with Cell Staining Buffer (Biolegend) prior to cell counting and antibody
1021 staining. Dead cells were stained with Live/Dead fixable blue (ThermoFisher Scientific) for 30
1022 min on ice in the dark. Non-specific bindings were blocked using Human TruStain FcX (Fc
1023 Receptor Blocking Solution, BioLegend) for 10 min on ice in the dark. Cells were washed
1024 twice with Cell Staining Buffer. Single-staining was performed on cells with anti-CD206
1025 antibody (1:20 CD206 PE, clone 19.2, ThermoFisher Scientific), anti-CD16 antibody (1:20
1026 CD16 PE-Cyanine7, clone eBioCB16, ThermoFisher Scientific), anti-CD14 antibody (1:20
1027 CD14 PerCP-Cyanine5.5, clone 61D3, ThermoFisher Scientific) and anti-CD1c antibody (1:25
1028 CD1c Pacific Blue, clone L161, BioLegend) on ice in the dark for 30 min. Prior to acquiring
1029 on analyzer, cells were washed once in Cell Strained Buffer and passed through a 35 μ m filter
1030 (Falcon). Acquisition by flow cytometry was performed with BD LS1Fortessa Cell Analyzer.
1031 Live single CD16⁺, CD14⁺, CD206⁺ and CD1c⁺ cells were analysed using FlowJo (version

1032 10.9.0). The co-culture was performed by adding the macrophages to the skin organoids on day
1033 12 of culture, with a 1:5 ratio. Skin organoids were transferred to a low attachment 96-well
1034 plate (Nunclon Sphera, Life Technologies) in skin organoid maturation medium¹⁵ containing
1035 10% or 20% matrigel (Corning). 2000 macrophages were added to the skin organoids and the
1036 co-culture was centrifuged at 100g for 3 min 1acc, 0dec. Medium was changed every other
1037 day. On day 8 of co-culture, the cells were transferred to a low attachment 24-well plate and
1038 matrigel was diluted with fresh skin organoid maturation medium. On day 35 of co-culture, the
1039 cells were fixed in 2ml tube with 4% PFA overnight. The co-culture was then permeabilized
1040 in blocking buffer (0.3% (vol/vol) Triton X-100, 1% (vol/vol) normal goat serum based on the
1041 antibodies and 1% BSA (vol/vol) dissolved in 1× PBS) for 4 hours at RT. Cells were then
1042 incubated overnight at 4°C on a shaker (65 rpm) with primary antibodies as follows: anti-
1043 CD206 (Abcam) for macrophages and anti-CD31 (Dako) for endothelial cells. The morning
1044 after, cells were washed and then incubated with secondary antibodies and DAPI for 4 hours
1045 on a shaker at RT as follows: goat anti-rabbit IgG, Alexa Fluor Plus 488 and goat anti-mouse
1046 IgG1, Alexa Fluor 568 (ThermoFisher). Cells were washed and placed in 50% glycerol for 30
1047 minutes on a shaker at RT. Cells were then transferred to 70% glycerol overnight on a shaker
1048 at RT. The following morning, the co-culture was mounted and imaged using the Leica SP8
1049 microscope.

1050 ***Visium spatial data generation***

1051 Prenatal facial (n=1, replicate=2) and abdominal skin (n=1, replicate=2) samples from a single
1052 donor at 10 post conception weeks (PCW) were embedded in optimal cutting temperature
1053 (OCT) medium and flash-frozen in isopentane cooled with dry-ice. 10µm cryosections from
1054 the OCT blocks were cut onto 10x Genomics Visium slides. Sections were stained with
1055 hematoxylin and eosin and imaged at 20X magnification on a Hamamatsu Nanozoomer. These

1056 sections were then processed according to the 10x Genomics Visium protocol, using a
1057 permeabilization time of 12 min found through a prior tissue optimization step. Dual-indexed
1058 libraries were prepared as per manufacturer's protocol, pooled at 2.8 nM and sequenced in 8
1059 samples per Illumina Novaseq S4 flow cell with the following run parameters: read 1: 28
1060 cycles; i7 index: 10 cycles; i5 index: 10 cycles; read 2: 90 cycles.

1061 ***Multiplex RNAScope staining and imaging***

1062 Prenatal skin tissue (8 and 15 PCW) was frozen in OCT compound (Tissue-Tek O.C.T). 4-plex
1063 smFISH was performed using the RNAscope Multiplex Fluorescent Detection Kit v2
1064 (ACDBio, Newark, California, USA, cat. no. 323100) according to the manufacturer's
1065 instructions using the standard pre-treatment for fresh frozen sections of 10-20 μ m and
1066 permeabilized with Protease IV, for 30 mins at room temperature.

1067 Human probes against FOXP3, SHH, SLC26A7, NDP, CDH5, CD68, P2RY12 mRNA
1068 molecules were used (all from ACDBio catalogue probes, Newark, California, USA). Opal
1069 dyes (Akoya Biosciences, Marlborough, Massachusetts, USA) were used at a dilution of
1070 1:1,000 for the fluorophore step to develop each channel: Opal 520 Reagent Pack
1071 (FP1487001KT), Opal 570 Reagent Pack (FP1488001KT) and Opal 650 Reagent Pack
1072 (FP1496001KT) and Atto-425. Finally, the slides were counterstained with DAPI and
1073 coverslipped for imaging with ProLong Gold Antifade Mountant (ThermoFisher, Canoga Park,
1074 California, cat. no. P36930).

1075 Confocal imaging was performed on a Perkin Elmer Opera Phenix Plus High-Content
1076 Screening System using a 40X (NA 1.1, 0.149 μ m/pixel) water-immersion objective with a
1077 2 μ m z-step. Channels: DAPI (excitation 375 nm, emission 435-480 nm), Atto 425 (ex. 425 nm,
1078 em. 463-501 nm), Opal 520 (ex. 488 nm, em. 500-550 nm), Opal 570 (ex. 561 nm, em. 570-

1079 630 nm), Opal 650 (ex. 640 nm, em. 650-760 nm). Confocal image stacks were stitched as two-
1080 dimensional maximum intensity projections using proprietary Acapella scripts provided by
1081 Perkin Elmer and visualised using OMERO Plus (Glencoe Software).

1082 ***scRNA-seq data analysis***

1083 *Alignment, quality control, clustering and annotation of prenatal skin dataset*

1084 The gene expression data were mapped with CellRanger 2.1.1 and 2.0.2 to an Ensembl 84–
1085 based GRCh38 reference (10X Genomics–distributed 1.2.0 version). The python package
1086 emptydrops (v0.0.5) was used to detect cells in each sample. Potential doublets were flagged
1087 by Scrublet (v0.2.1)¹⁴⁸ as previously implemented¹⁴⁹. Low-quality cells were filtered out
1088 [minimum number of genes = 100, maximum number of UMIs = 45000, maximum
1089 mitochondrial UMI fraction = 0.15]. Possible maternal contamination was identified using the
1090 souporcell pipeline (v2.4.0)¹⁵⁰ as previously described⁹. Data pre-processing was performed
1091 using scanpy (v1.4.3)¹⁵¹. After pooling data from all samples, genes detected in fewer than 3
1092 cells were removed, and data was normalised to 1e4 UMI per cell and log1p transformed.

1093 Highly variable genes were selected based on normalised dispersion
1094 (scanpy.pp.highly_variable_genes with flavor = "seurat", min_mean = 0.0125, max_mean = 3,
1095 min_dispersion = 0.5). Dimensionality reduction was done by Principal Component Analysis
1096 (PCA) and the first 50 principal components (PCs) were used to compute the nearest-neighbour
1097 graph (scanpy.pp.neighbors with n_neighbors = 15). BBKNN (v1.3.3)¹⁵² was used to generate
1098 a batch-corrected nearest-neighbour graph considering each donor as a separate batch. Leiden
1099 algorithm was used to cluster cells based on the corrected graph with a relatively low resolution
1100 (scanpy.tl.leiden with resolution = 0.3) into coarse clusters which were manually annotated into
1101 broad lineages using known marker genes.

1102 For each broad lineage, the data was re-processed starting from highly variable gene selection
1103 to better reveal the finer heterogeneity. At this level, we used Harmony (v0.0.5)¹⁵³ and BBKNN
1104 (v1.3.3)¹⁵² in parallel for batch correction (again treating each donor as a separate batch and
1105 with batches under 10 cells removed) for every broad lineage and observed highly consistent
1106 embedding and clustering (data provided on portal). For fibroblasts, we continued our analysis
1107 with embedding and clustering downstream of BBKNN and for all other broad lineages, we
1108 continued with Harmony. Leiden clusters at the highest resolution were annotated manually
1109 using marker genes identified through literature search and their alignment with differentially
1110 expressed genes (DEGs) in each cluster (**Supplementary Table 2**). DEGs were calculated
1111 using the sctk (Single Cell analysis Tool Kit) package (<https://github.com/Teichlab/sctk>),
1112 where filtering is carried out followed by a two-sided Wilcoxon rank-sum test using pass-filter
1113 genes only in a one-vs-all fashion. The sctk package also carries out comparisons between the
1114 group of interest (one with highest expression) and the next group (second highly expressed),
1115 where the maximum proportion of cells expressing the gene in question in the second most
1116 highly expressed group was 0.2. For epidermal annotations, we created a combined embedding
1117 of prenatal skin and skin organoid data¹⁵, integrated using the Harmony pipeline, as described
1118 below. Harmony corrected PCs were used to compute the batch-corrected nearest
1119 neighbourhood graph, and the Leiden algorithm was used to cluster the integrated data. The
1120 sctk package was then used to derive marker genes for derived Leiden clusters. Annotation was
1121 carried out on the clusters based on marker genes and refined annotations in the skin organoid
1122 data¹⁵.

1123 Clusters of doublets were manually flagged and removed taking into account markers genes
1124 and previously calculated scrublet scores. To have a final global visualisation of the atlas, a
1125 doublet-free UMAP was generated (**Fig. 1b**).

1126 *Processing, clustering and annotation of skin organoid dataset*

1127 Organoid data was pre-processed, filtered, clustered, and annotated separately before
1128 integration with prenatal skin. Briefly, cells filtered by CellRanger (CellRanger 2.1.0 with
1129 GRCh38-1.2.0 and CellRanger 3.0.2 with GRCh38-3.0.0) from skin organoid samples (2
1130 strains, each with four time points) were pooled and quality control (QC) thresholds for UMI
1131 counts, gene counts, percentage of mitochondrial (MT) genes and top 50 highly expressed
1132 genes were established by fitting Gaussian mixture models to the distribution of each metric
1133 respectively. The thresholds used were: minimum number of genes = 450, maximum number
1134 of genes = 5731, minimum number of UMIs = 1063, maximum number of UMIs = 25559,
1135 maximum mitochondrial UMI fraction = 0.133, minimum cumulative percentage of counts for
1136 50 most expressed genes in a cell = 23.7%, maximum cumulative percentage of counts for 50
1137 most expressed genes in a cell = 56.6%. Highly variable genes selection, dimensionality
1138 reduction and KNN graph construction were done using the same method and parameters as
1139 prenatal skin. BBKNN (v1.3.3)¹⁵² was again used for batch-correction treating combinations
1140 of strains and 10X kit versions as batches. Broad lineages were annotated based on known
1141 markers. Each broad lineage was then re-processed in the same way as prenatal skin to annotate
1142 cell types at higher resolution (**Supplementary Table 2**).

1143 *Integration of prenatal skin and skin organoid datasets*

1144 To integrate prenatal skin cells with organoid cells, the datasets were downsampled for each
1145 broad lineage to have roughly balanced cell counts per cell type before integration with
1146 Harmony (v0.0.5)¹⁵³, treating datasets as batches (prenatal skin or organoid) and within dataset
1147 batches as covariates (donor for prenatal skin and strain:10X kit version for organoid). Leiden
1148 clusters were annotated using known markers.

1149 *Comparison of prenatal skin, adult skin and skin organoid datasets: distance-based analysis*

1150 To integrate prenatal skin, adult skin and skin organoid cells, all datasets were downsampled
1151 (max 500 cells per broad cell type) to have roughly balanced cell counts per broad lineage
1152 before integration with Harmony (v0.0.5)¹⁵³, treating datasets as batches and within-dataset
1153 batches as covariates (donor for prenatal and adult skin and strain for organoid). The principal
1154 component vectors of the downsampled Harmony-integrated object were then used to
1155 transform the gene expression matrix (NumPy (v1.23.4) function ‘linalg.lstsq’, rcond = ‘warn’)
1156 of all cells in the non-downsampled pooled data and project for UMAP-visualisation (**Fig. 1f**,
1157 **Extended Data Fig. 2a**). The median transformed gene expression was used to compute the
1158 Euclidean distance between prenatal skin, adult skin and skin organoid for each broad cell
1159 cluster, using ‘spatial.distance_matrix’ function in SciPy (v1.9.3), which was then plotted as
1160 heatmap (**Extended Data Fig. 2c**).

1161 *Time-encoded cell state predictions: prenatal skin, adult skin and skin organoid datasets*

1162 Median probability of class correspondence between gene expression matrices in single cell
1163 datasets were carried out using a logistic regression (LR) framework previously described¹⁵⁴,
1164 based on a similar workflow to CellTypist tool¹⁵⁵. Annotated raw scRNA-seq datasets (prenatal
1165 skin, adult skin and skin organoid) were first concatenated, normalised, and log-transformed.
1166 Linear variational autoencoder (VAE) latent representations were computed using the LDVAE
1167 module within scvi-tools (hidden layers=256, dropout-rate=0.2, reconstruction-loss=negative
1168 binomial) with dataset and chemistry information taken as technical covariates. ElasticNet LR
1169 models were built utilising the linear_model.LogisticRegression module in the sklearn package
1170 (v0.22). The models were trained on SCVI batch-corrected low-dimensional LDVAE
1171 representation of the training data (prenatal and adult skin) using time-encoded labels (age_cell
1172 category). Regularisation parameters (L1-ratio and alpha) were tuned using the GridSearchCV

1173 function in sklearn (v1.1.3). The test grid was designed with five l1_ratio intervals (0.05, 0.2,
1174 0.4, 0.6, 0.8), five alpha (inverse of regularisation strength) intervals (0.05, 0.2, 0.4, 0.6, 0.8) at
1175 five train-test splits and three repeats for cross-validation. The unweighted mean over the
1176 weighted mean squared errors (MSEs) of each test fold (the cross-validated MSE) was used to
1177 determine the optimal model. The resultant model was used to predict the probability of
1178 correspondence between trained time-encoded labels and pre-annotated time_encoded clusters
1179 (week of culture_cell category) in the target dataset (skin organoid). The median probability of
1180 training label assignments per predesignated class overall (all cell groups) and for individual
1181 broad cell categories were computed (**Supplementary Table 4**). For visualisation, the adult
1182 skin dataset was randomly downsampled to 10% (overall or by cell lineage) and resultant LR
1183 probabilistic relationship between labels of the training and target datasets were plotted as
1184 heatmaps (**Extended Data Fig. 2d**).

1185 *Differential abundance analysis*

1186 Differences in cell abundance associated with gestational age were tested using Milo (v1.0.0)¹⁸,
1187 correcting for CD45+ and CD45- FACS isolation strategies. We first re-embedded cells into a
1188 batch-corrected latent space with a dimension of 30 using scVI model as implemented in scvi-
1189 tools considering donor and chemistry as batches. The model was trained using the 10000 most
1190 highly variable genes which were selected based on dispersion (min_mean=0.001,
1191 max_mean=10) as previously described⁹⁹. Where FACS correction was applied, we calculated
1192 a FACS isolation correction factor for each sample s sorted with gate i as ($f_s = \log(piS/Si)$)
1193 where pi is the true proportion of cells from gate i and S represents the total number of cells
1194 from both gates⁹⁹. A KNN graph of cells was constructed based on distances in the latent space
1195 and cells assigned to neighbourhoods using the milopy.core.make_nhoods function (prop=0.1).
1196 The number of cells of each cell type was then counted in each neighbourhood

1197 (milopy.core.count_nhoods). Labels were assigned to each neighbourhood based on majority
1198 voting (milopy.utils.annotate_nhoods) of cell labels by frequency (>50%). To test for
1199 differential abundance across gestational age, prenatal skin data was split into 4 age bins (7-8
1200 PCW, 9-10 PCW, 11-13 PCW, 15-16 PCW), and cell counts were modelled using a negative
1201 binomial generalised model, with Benjamini-Hochberg weighted correction as previously
1202 described^{9,99}, to test the effects of age (age bins) together with cell sorting correction
1203 (milopy.core.DA_nhoods). Significantly differentially abundant neighborhoods were detected
1204 by (SpatialFDR<0.1, logFC <0) for early enriched neighborhoods and (SpatialFDR<0.1, logFC
1205 >0) for late neighborhoods (**Supplementary Table 3**).

1206 *Cell state predictions: adult hair follicles, embryonic macrophages, blood vessel organoid*
1207 To compare prenatal skin cells with external datasets (adult hair follicle, embryonic
1208 macrophages, blood vessel organoid)^{14,97,128}, the datasets were down-sampled to have roughly
1209 balanced cell counts per annotated cell type before integration with Harmony (v0.0.5)¹⁵³,
1210 treating datasets as batches and within dataset batches as covariates (donor for prenatal skin,
1211 site for embryonic macrophages and group (cell line: day of culture) for blood vessel organoid).
1212 Comparison of cell type correspondence between datasets and probability prediction was
1213 carried out using a LR framework similar to CellTypist package¹⁵⁵. A model was built using
1214 the implementation of the linear_model.LogisticRegression module from sklearn package
1215 (v1.1.3) (parameters: penalty: L2, solver: saga, regularisation strength C=0.1) and trained on
1216 the gene expression matrix of the training dataset using all genes that passed QC. The resulting
1217 model was used to predict the labels in the target dataset. The correspondence between
1218 predicted and original labels in target dataset was computed as Jaccard index and visualised as
1219 heatmaps. For comparison of the prenatal skin macrophages with embryonic macrophages, the
1220 embryonic macrophage dataset was used as training data and prenatal skin macrophages as

1221 query; for comparison of the blood vessel organoid with prenatal skin, the prenatal skin dataset
1222 (down-sampled to max 500 cells per cell type) was used as training data and the blood vessel
1223 organoid data as query; for comparison of hair follicle data, merged prenatal and organoid data
1224 was used as training data and adult dataset as query.

1225 *FRZB comparison across developing organs*

1226 To compare gene expression of *FRZB* in fibroblasts across developing organs, a scRNA-seq
1227 stromal dataset from multiple developing organs⁹ (available from:
1228 <https://developmental.cellatlas.io/fetal-immune>) was used, which also includes our prenatal
1229 skin scRNA-seq data. The data was normalised to 1e4 counts per cell
1230 (scanpy.pp.normalize_total), log1p transformed (scanpy.pp.log1p) and subsetted to fibroblast
1231 cell types only to plot expression of *FRZB* by organ across gestation time.

1232 *Trajectory analysis*

1233 The CellRank package (v1.5.2) was used to define cell transition matrices, lineage drivers and
1234 rank fate probabilities of terminal state transitions across annotated lineages in prenatal skin
1235 for endothelial cells and fibroblasts and in the skin organoid for keratinocytes. Using
1236 pp.moments (n_pcs=10, n_neighbours=30) from the scVelo package (v0.3.0), first order
1237 kinetics matrices were imputed. Using the palantir kernel and the velocity kernel in CellRank,
1238 a mixed probability transition matrix was computed with each kernel weighing 50 %. Schur
1239 matrix Eigen decomposition (n_components=25, method='brandts') identified macrostates,
1240 terminal stages and initial stages. Lineage drivers were then computed for each state using
1241 compute_lineage_drivers from CellRank and pseudotime and latent time computed in scVelo
1242 (**Supplementary Table 6**).

1243 *In vivo-in vitro trajectory alignment analysis*

1244 We used Dynamic Programming (DP) based alignment to evaluate agreement between the
1245 single-cell trajectories of prenatal skin and skin organoid fibroblasts which describe the *in vivo*
1246 and *in vitro* differentiation lineages from *HOXC5*⁺ early fibroblasts to dermal papilla.
1247 Genes2Genes (G2G)⁶³ is a Bayesian Information-theoretic DP framework that consistently
1248 captures matches and mismatches between two trajectories at both gene-level and cell-level.
1249 G2G outputs an optimal trajectory alignment which describes a non-linear mapping of *in vivo*
1250 and *in vitro* pseudotime points in sequential order. This is based on the cost of matching or
1251 mismatching the gene expression distributions of each pair of organoid-reference time points,
1252 computed as a statistic of entropy difference between the two hypotheses under the Minimum
1253 Message Length¹⁵⁶ criterion. This statistic is a Shannon Information distance, calculated in the
1254 unit of information, *nits*. Given any gene set, G2G runs DP alignment for each gene, outputting
1255 a 5-state alignment string over matches (one-to-one/one-to-many/many-to-one) and
1256 mismatches (insertions and deletions – gaps) between the *in vivo* and *in vitro* pseudotime points
1257 in sequential order, which is analogous to a DNA/protein alignment output. It then computes
1258 an alignment similarity measure (i.e., the percentage of matches across the alignment string)
1259 for each gene (**Supplementary Table 8**). G2G also generates an aggregated cell-level
1260 alignment by averaging across all gene-level alignments, resulting in an overall alignment
1261 similarity measure as well.

1262 Using G2G, we examined the *in vivo* reference versus *in vitro* query alignment in terms of 1363
1263 human transcription factors¹⁵⁷. These TFs were taken after filtering zero expressed genes and
1264 genes expressed in less than 10 cells. Given the reference and organoid log1p normalised gene
1265 expression matrices of cells and their pseudotime estimates computed using CellRank¹⁵⁸, G2G
1266 generated fully descriptive TF-level alignments, as well as an aggregated cell-level alignment
1267 across those TF-level alignments. Prior to alignment, the optimal pseudotime binnings of

1268 reference and organoid were determined using the *OptBinning*¹⁵⁹ python package, based on the
1269 given pseudotime estimates distribution, resulting in 13 optimal bins for each. Next the DP
1270 alignment was run for each TF, and the TF clusters of different alignment patterns (i.e. early
1271 mismatches, mid mismatches, late mismatches and complete mismatches) were identified
1272 using the G2G function that runs agglomerative hierarchical clustering over the TF-level
1273 alignment outputs.

1274 *Cell-cell interaction analysis*

1275 CellPhoneDB (v3.0.0) package¹⁶⁰ was used to infer cell-cell interactions within the prenatal
1276 skin scRNA-seq dataset overall and in early/late gestation and within the skin organoid scRNA-
1277 seq dataset overall. In the overall analysis, we randomly subsampled each cell type into no
1278 more than 200 cells. The subsampled dataset was analysed using the permutation-based method
1279 to establish statistical significance (p-value cut-off = 0.05). For the analysis by early/late
1280 gestation, the prenatal skin scRNA-seq dataset was first split into early (≤ 11 PCW) and late (\geq
1281 12 PCW) gestation datasets which were then subsampled (no more than 200 cells per cell type)
1282 and analysed individually (p-value cut-off = 0.05). A summary output file was created for each
1283 analysis run, compiling the interactions for each cell pair ($p < 0.05$) and adjusting p-values for
1284 multiple testing (FDR set at 0.05) (**Supplementary Tables 7, 19**). Circos plots (Circlize
1285 package (v 0.4.15)¹⁶¹) were used for downstream visualisations of selected significant (adjusted
1286 p-value < 0.05) interactions between co-locating cell types.

1287 To explore inferred interactions between macrophage subsets and endothelial cells (**Extended**
1288 **Data Fig. 8a**), we aggregated the interactions predicted for each macrophage subset and the
1289 different subtypes of endothelial cells (early endothelial cells, arterioles, capillary arterioles,
1290 capillaries, postcapillary venules, venules) by averaging the means and using the minimum of
1291 the adjusted p-values as previously described⁹. A curated list of aggregated interactions were

1292 plotted for visualisation using ggplot2 (v 3.3.6). A similar approach was adopted for assessing
1293 interactions between hair follicle dermal and epidermal cells in prenatal skin: for each subset
1294 of hair follicle dermal cells, the interactions with early epithelial cells (≤ 11 PCW; Immature
1295 basal) or late epithelial cells (≥ 12 PCW; *DPYSL2*⁺ basal, *POSTN*⁺ basal, Placode/matrix, Outer
1296 root sheath, Companion layer, Inner root sheath, Cuticle/Cortex) were aggregated and the top
1297 10 interactions per cell pair visualised using heatmap (**Fig. 2i**). The same analysis was
1298 performed to obtain the top 10 interactions in skin organoid hair follicles (**Extended Data Fig.**
1299 **4g**), defining early/late to match corresponding cell states as in prenatal skin. The top 10
1300 interactions identified in prenatal skin hair follicles were also plotted within the skin organoid
1301 data to highlight similarities and differences between the two (**Fig. 2i**).

1302 *Comparison with adult fibroblasts*

1303 scRNA-seq data from prenatal skin and adult healthy skin (with original annotations)¹³ were
1304 pooled, retaining only genes expressed in at least 1 cell for each dataset, and subsetted to the
1305 cell group of interest (fibroblasts). Differentially expressed genes between the adult and
1306 prenatal skin fibroblasts were derived using the Wilcoxon rank-sum test implementation in
1307 scanpy and adjusted for multiple testing using the Benjamini–Hochberg method
1308 (scanpy.tl.rank_genes_groups, method = "wilcoxon", corr_method="benjamini-hochberg"). A
1309 selected list of genes was plotted to highlight differences between prenatal and adult skin
1310 fibroblasts.

1311 *Gene set enrichment analysis*

1312 Gene set enrichment analysis was performed using the implementation of the Enrichr
1313 workflow¹²² in the python package GSEAp (https://gseapy.readthedocs.io/) with Gene
1314 Ontology (GO) Biological Process (2021) and Molecular Signatures Database (MSigDB)

1315 Hallmark (2020) as query databases. To determine the significantly overexpressed genes for
1316 gene set enrichment analysis, we first identified the differentially expressed genes between cell
1317 types for each cell group of interest (macrophages) using the Wilcoxon rank-sum test
1318 implementation in Scanpy (scanpy.tl.rank_genes_groups, method = "wilcoxon"). Genes with
1319 differential expression $\log FC > 2$ and adjusted p -value < 0.01 were considered as significantly
1320 overexpressed.

1321 For comparison between early and late cell states, for cell types of interest ($WNT2^+$ fibroblast),
1322 we first identified the index cells belonging to early neighbourhoods (SpatialFDR < 0.1 , $\log FC$
1323 < 0) and late neighbourhoods (SpatialFDR < 0.1 , $\log FC > 0$) based on Milo¹⁸ differential
1324 abundance testing as described above (**Supplementary Table 3**). Differentially expressed
1325 genes between early and late cell states were computed using the Wilcoxon rank-sum test
1326 implementation in scanpy (scanpy.tl.rank_genes_groups, method = "wilcoxon"). Genes
1327 expressed in less than around 10% cells were excluded. Genes with differential expression
1328 $\log FC > 1$ and adjusted p -value < 0.01 were considered as significantly overexpressed for gene
1329 set enrichment analysis using GSEAp (https://gseapy.readthedocs.io/), with Gene Ontology
1330 (GO) Biological Process (2021) as query database. The list of significantly over-expressed
1331 genes for each cell type/state where differential expression testing and gene set enrichment
1332 analysis were carried out can be found in **Supplementary Tables 11, 12**.

1333 *Gene module scoring*

1334 Gene module scoring was performed using the sc.tl.score_genes function in scanpy. For
1335 angiogenesis gene modules, pre-defined gene sets from the Gene Ontology Biological Process
1336 Database (2021) in Enrichr libraries¹²³ were used (downloaded from:
1337 <https://maayanlab.cloud/Enrichr/#libraries>). For endothelial cell modules, gene sets defining
1338 tip, stalk, arteriole, venule, lymphatic, capillary and hypoxia scores (**Extended data Fig. 9g**,

1339 **h)** were derived from published literature^{125–127}. The list of genes for each gene module is
1340 provided in **Supplementary Tables 18, 20**. The score for each module is the average
1341 expression of the gene set provided subtracted with the average expression of a reference set
1342 of genes. The reference set comprised 100 genes (ctrl_size=100) which were randomly sampled
1343 from all genes in the dataset (default gene_pool) with 25 expression level bins (n_bins=25)
1344 used for sampling. For angiogenesis modules, the mean module scores were computed for each
1345 cell type of interest (e.g., *LYVE1*⁺ macrophage) and z-score normalised for visualisation.

1346 *Gene regulatory network analysis*

1347 The PySCENIC package (v0.11.2) and pipeline were used to identify transcription factors and
1348 their target genes in the combined prenatal skin and skin organoid scRNA-seq datasets. The
1349 ranking database (hg38_refseq-r80_500bp_up_and_100bp_down_tss.mc9nr.feather), motif
1350 annotation database (motifs-v9-nr.hgnc-m0.001-o0.0.tbl) were downloaded from the Aert's
1351 laboratory github page. The tool was run 10 times, with a data set comprising at most 200 cells
1352 per cell type x tissue pair (where tissue is prenatal skin or skin organoid). For each run an
1353 adjacency matrix of transcription factors and their targets was generated and pruned using the
1354 Aert's group suggested parameters. Only regulons present in at least 8 out of 10 runs were used
1355 in the analysis. PySCENIC was used to calculate the Regulon Specificity Score for each cell
1356 type x tissue pair using *aucell* function. An average was computed over the multiple runs. These
1357 average scores were used to compare regulon activity between prenatal skin and skin organoid.
1358 A gene interaction network was first built by querying the STRING database with GATA2
1359 target genes, then pruned to only keep genes reported as associated with GATA2. The list was
1360 further truncated to 12 genes, by keeping genes that were 1) transcription factors in the five
1361 most active regulons detected in fetal skin and/or 2) organoid capillary arterioles, and/or 3)
1362 associated with pseudotime (i.e., in trajectories) and/or 4) VEGF receptors and/or 5) in the

1363 selected GO terms chose for their role in angiogenesis, extracellular matrix organization, or
1364 cell migration, communication, proliferation, or death ('GO:0045765', 'GO:0001568',
1365 'GO:0030334', 'GO:0010646', 'GO:0001936', 'GO:0045446', 'GO:0002040', 'GO:0030155',
1366 'GO:0010941', 'GO:0030198').

1367 *Comparison of pro- and anti-angiogenic genes between prenatal skin and skin organoid*

1368 The prenatal skin and skin organoid data sets were integrated with Harmony (v0.0.5)¹⁵³ as
1369 described above. Differential expression analysis was performed between prenatal skin and
1370 skin organoid cells (all cell types) using the standard scanpy workflow
1371 (scanpy.tl.rank_genes_groups, method = "wilcoxon"). Identified DEGs were filtered to only
1372 retain those coding for secreted proteins (**Supplementary Table 29**)¹⁶². Gene set enrichment
1373 analysis was performed on downregulated and upregulated genes separately, using the
1374 implementation of the Enrichr workflow¹²² in the python package GSEApY
1375 (<https://gseapy.readthedocs.io/>) with Gene Ontology (GO) Biological Process (2021) as query
1376 database. Significant GO terms (adjusted p-value < 0.05) (**Supplementary Tables 24, 25**) were
1377 filtered based on their relevance to vasculature. Only DEGs involved in pathways thereby
1378 selected were chosen and their role in prenatal skin angiogenesis checked in the literature.

1379 *NicheNet analysis*

1380 We used NicheNet¹³⁶ (v.1.1.1) to infer ligand-target gene links by combining scRNA-seq data
1381 (prenatal skin and skin organoid) of interacting cells (sender and receiver cells) with existing
1382 knowledge on signalling and gene regulatory networks. An open-source R implementation
1383 including integrated data sources used in the analysis are available at GitHub
1384 (<https://github.com/saeyslab/nichennetr>). Nichenet's ligand-activity analysis first assesses and
1385 ranks ligands in the sender cell type (macrophage subsets) which best predict observed changes

1386 in expression of target genes of interest in the receiver cell types (endothelial cells) compared
1387 to background genes. Potential ligands were defined as all ligands in the NicheNet model which
1388 were expressed in at least 10% of cells in each macrophage (sender) cluster and which had at
1389 least one specific receptor expressed in at least 10% of endothelial (receiver) cells. Target genes
1390 of interest were identified as differentially expressed genes between conditions (prenatal skin
1391 vs skin organoid) in receiver cells using FindMarkers function in NicheNet (adjusted p-value
1392 ≤ 0.05 and average log2 fold change >0.25 , expressed in at least 10% of endothelial cells).
1393 Background genes were all genes in the NicheNet model which were expressed in at least 10%
1394 of receiver cells.

1395 Ligands were prioritised based on ligand activity scores, calculated as the Pearson correlation
1396 coefficient between a ligand's target predictions and the observed target gene expression
1397 (**Supplementary Table 26**). The top 20 ligands were used to predict active target genes (top
1398 200 overall) and construct the active ligand-target links (**Supplementary Table 27**). Receptors
1399 of the top-ranked ligands were identified from the NicheNet model, filtering for only bona-fide
1400 ligand-receptor interactions documented in the literature and publicly available databases
1401 (**Supplementary Table 28**). To infer signalling paths, we defined our ligand (*VEGFA*, in red)
1402 and target genes (*GATA2*, in blue) of interest. NicheNet identifies which transcription factors
1403 best regulate the target genes and are most closely downstream of the ligand based on weights
1404 of the edges in its integrated ligand-signalling and gene regulatory networks. The shortest paths
1405 between these transcription factors and the defined ligand are selected and genes along these
1406 paths are considered as relevant signalling mediators (in grey). Signalling mediators are
1407 prioritised by cross-checking the interactions between the defined ligand, target genes and
1408 identified transcription factors and signalling mediators across the different integrated data
1409 sources in NicheNet.

1410 ***Spatial data analysis***

1411 Spatial transcriptomics data was mapped using Space Ranger v.2.0.1 using GRCh38-1.2.0
1412 reference. In parallel, we manually selected skin-overlapping spots in embryonic limb data¹⁶,
1413 comprising samples from the following ages: 6 PCW (n=2, replicate=2 each) and 8 PCW (n=1,
1414 replicate=3). To map cell types identified by scRNA-seq in the profiled spatial transcriptomics
1415 slides, we used the Cell2location (v0.1) method¹⁹. Firstly, we trained a negative binomial
1416 regression model to estimate reference transcriptomic profiles for all the cell types profiled
1417 with scRNA-seq in the organ. We excluded very lowly expressed genes using the filtering
1418 strategy recommended by Cell2location authors (cell_count_cutoff=5,
1419 cell_percentage_cutoff2=0.03, nonz_mean_cutoff=1.12). Cell types where less than 20 cells
1420 were identified in samples \leq 10 PCW were excluded from the reference. Individual 10x samples
1421 were considered as a batch, donor and chemistry type information was included as categorical
1422 covariate. Training was performed for 250 epochs and reached convergence according to
1423 manual inspection. Next, we estimated the abundance of cell types in the spatial transcriptomics
1424 slides using reference transcriptomic profiles of different cell types. All slides were analysed
1425 jointly. The following Cell2location hyperparameters were used: (1) expected cell abundance
1426 (N_cells_per_location) = 30; (2) regularisation strength of detection efficiency effect
1427 (detection_alpha) = 20. The training was stopped after 50,000 iterations. All other parameters
1428 were used at default settings. Cell2location estimates the posterior distribution of cell
1429 abundance of every cell type in every spot. Posterior distribution was summarised as 5%
1430 quantile, representing the value of cell abundance that the model has high confidence in, and
1431 thus incorporating the uncertainty in the estimate into values reported in the paper and used for
1432 downstream co-location analysis.

1433 To identify microenvironments of co-locating cell types, we used non-negative matrix
1434 factorisation (NMF). We first normalised the matrix of estimated cell type abundances by
1435 dividing it by per-spot total abundances. Resulting matrix X_n of dimensions $n \times c$, where n is
1436 the total number of spots in the Visium slides and c is the number of cell types in the reference
1437 was decomposed as $X_n = WZ$, where W is a $n \times d$ matrix of latent factor values for each spot
1438 and Z is a $d \times c$ matrix representing the fraction of abundance of each cell type attributed to
1439 each latent factor. Here latent factors correspond to tissue microenvironments defined by a set
1440 of co-localised cell types. We use the NMF package for R¹⁶³, setting the number of factors $d =$
1441 10 and using the default algorithm¹⁶⁴. NMF coefficients were normalised by a per-factor
1442 maximum. We ran NMF 100 times and constructed the coincidence matrix. Then we selected
1443 the best run based on the lower mean silhouette score calculated on the coincidence matrix. If
1444 more than one run had the minimal mean silhouette, we selected one with smaller deviance (as
1445 reported by NMF function).

1446 For cell type abundance correlation analysis, we used a per-spot normalised X_n matrix. Pearson
1447 correlation coefficient was calculated for each pair of cell types (all possible pairs computed)
1448 and each sample. For visualisation of correlation analysis, selected cell pairs were plotted,
1449 guided by NMF results and which cell groups/categories formed microenvironments, e.g.,
1450 macrophages formed microenvironments with endothelial cells (microenvironments 1 and 5),
1451 with neuronal cells (microenvironments 1 and 5) and fibroblasts (microenvironments 1, 4 and
1452 5) in **Fig. 1d**.

1453 **Methods references**

1454 147. Rueden, C. T. *et al.* ImageJ2: ImageJ for the next generation of scientific image data.
1455 *BMC Bioinformatics* **18**, 529 (2017).

1456 148. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell
1457 Doublets in Single-Cell Transcriptomic Data. *Cell Syst* **8**, 281–291.e9 (2019).

1458 149. Pijuan-Sala, B. *et al.* A single-cell molecular map of mouse gastrulation and early
1459 organogenesis. *Nature* **566**, 490–495 (2019).

1460 150. Heaton, H. *et al.* Souporcell: robust clustering of single-cell RNA-seq data by genotype
1461 without reference genotypes. *Nat. Methods* **17**, 615–620 (2020).

1462 151. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression
1463 data analysis. *Genome Biol.* **19**, 15 (2018).

1464 152. Polański, K. *et al.* BBKNN: fast batch alignment of single cell transcriptomes.
1465 *Bioinformatics* **36**, 964–965 (2020).

1466 153. Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with
1467 Harmony. *Nat. Methods* **16**, 1289–1296 (2019).

1468 154. Jardine, L. *et al.* Blood and immune development in human fetal bone marrow and
1469 Down syndrome. *Nature* **598**, 327–331 (2021).

1470 155. Domínguez Conde, C. *et al.* Cross-tissue immune cell analysis reveals tissue-specific
1471 features in humans. *Science* **376**, eabl5197 (2022).

1472 156. Wallace, C. S. *Statistical and Inductive Inference by Minimum Message Length*.
1473 (Springer Science & Business Media, 2005).

1474 157. Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* **172**, 650–665 (2018).

1475 158. Lange, M. *et al.* CellRank for directed single-cell fate mapping. *Nat. Methods* **19**, 159–
1476 170 (2022).

1477 159. Navas-Palencia, G. Optimal binning: mathematical programming formulation. Preprint
1478 at <https://arxiv.org/abs/2001.08025> (2020).

1479 160. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB:
1480 inferring cell-cell communication from combined expression of multi-subunit ligand-

1481 receptor complexes. *Nat. Protoc.* **15**, 1484–1506 (2020).

1482 161. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances
1483 circular visualization in R. *Bioinformatics* **30**, 2811–2812 (2014).

1484 162. Human Protein Atlas: proteinatlas.org. *protein_class:Predicted secreted proteins*
1485 https://www.proteinatlas.org/search/protein_class%3APredicted+secreted+proteins.

1486 163. Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization.
1487 *BMC Bioinformatics* **11**, 367 (2010).

1488 164. Brunet, J.-P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular
1489 pattern discovery using matrix factorization. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 4164–
1490 4169 (2004).

1491 **Acknowledgements**

1492 We thank Aidan Maartens for scientific writing support. We acknowledge funding from the
1493 Wellcome Human Developmental Biology Initiative (WT215116/Z/18/Z). M.H. is funded by
1494 Wellcome (WT107931/Z/15/Z), The Lister Institute for Preventive Medicine and NIHR and
1495 Newcastle Biomedical Research Centre. S.A.T. is funded by Wellcome (WT206194) and the
1496 ERC Consolidator Grant DEFINE. L.J. is funded by a Newcastle Health Innovation Partners
1497 Lectureship. N.H.G. is funded by an MRC Clinical Research Training Fellowship
1498 (MR/W015625/1). B.O. is funded by a Wellcome 4Ward North Clinical Training Fellowship.
1499 Some of this research was supported by the NIHR Cambridge Biomedical Research Centre
1500 (NIHR203312); the views expressed are those of the authors and not necessarily those of the
1501 NIHR or the Department of Health and Social Care and Wellcome (203151/Z/16/Z). This
1502 publication is part of the Human Cell Atlas – www.humancellatlas.org/publications/
1503 [\[humancellatlas.org\]](http://humancellatlas.org).

1504 **Author contributions**

1505 Conceptualization: M.H., S.A.T., and K.K. Funding acquisition: M.H., S.A.T. Supervision:
1506 M.H. and L.G. Data curation: N.H.G., N.H., B.O., P.M., S.B., D.H., D.B.L. and P.Ma. Formal
1507 analysis: N.H.G., N.H., B.O., C.A., R.A.B., A.R.F., E.W., D.S., W.M.T., P.M., I.G., A.R.,
1508 D.M.P., S.B. and P.Ma. Software: D.H., D.B.L., T.L., J.M., O.B. Investigation: C.A., R.A.B.,
1509 A.R.F., F.T., M.M., E.S., B.R., K.R., K.S., J.E., V.R., J.F., D.M.P., E.P, J-E.P., S.P., I.M. and
1510 L.G. Methodology: N.H., E.W., D.S., I.G., C.A., R.A.B, E.S. and P.Ma. Resources: P.H., S.L.,
1511 I.G., V.R., A.Fi., S.Li., R.B., R.V.T., A.P.L., S.S., J.K., C.D., J.L., N.R., M.N., B.T. and K.K.
1512 Writing - original draft: N.H.G., N.H., B.O., C.A., A.R.F., E.W., D.S., B.R., S.B., P.Ma., L.G.,
1513 M.H. Writing - review and editing: N.H.G., N.H., B.O., I.G., E.S., L.J., G.R., C.G., E.P., A.D.,
1514 A.P.L., S.S., J.L., N.R., E.O'T., M.K., L.G., K.K., S.A.T. and M.H. Visualization: N.H.G.,
1515 B.O., C.A., M.M., K.S., D.B.L., D.H., T.L., J.M., O.B., L.G. and M.H.

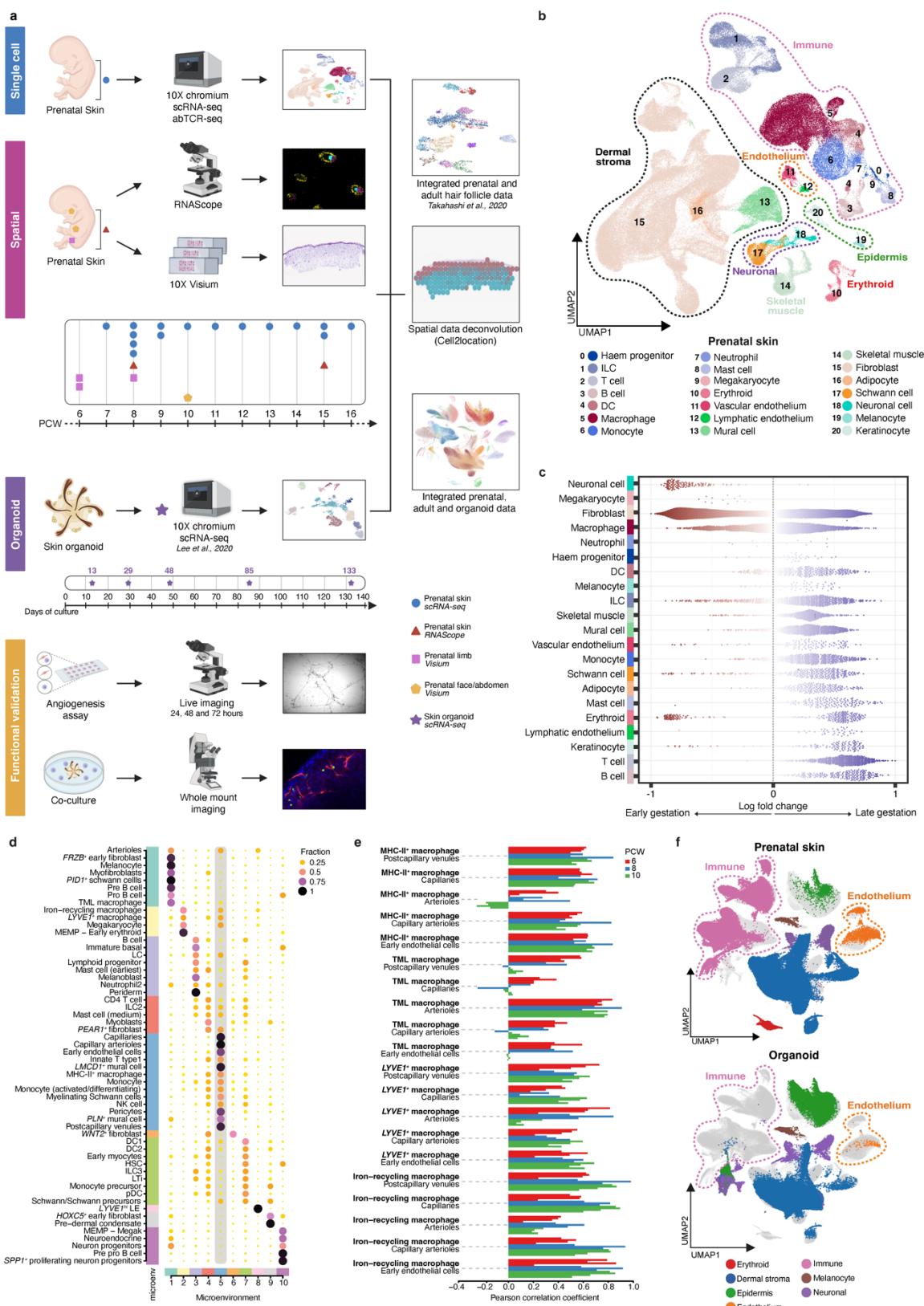
1516 **Competing interest statement**

1517 All authors declare no competing interests.

1518 **Additional information statement**

1519 For additional information regarding reprints and permissions, correspondence and requests
1520 for materials must be addressed to Muzlifah Haniffa at mh32@sanger.ac.uk.

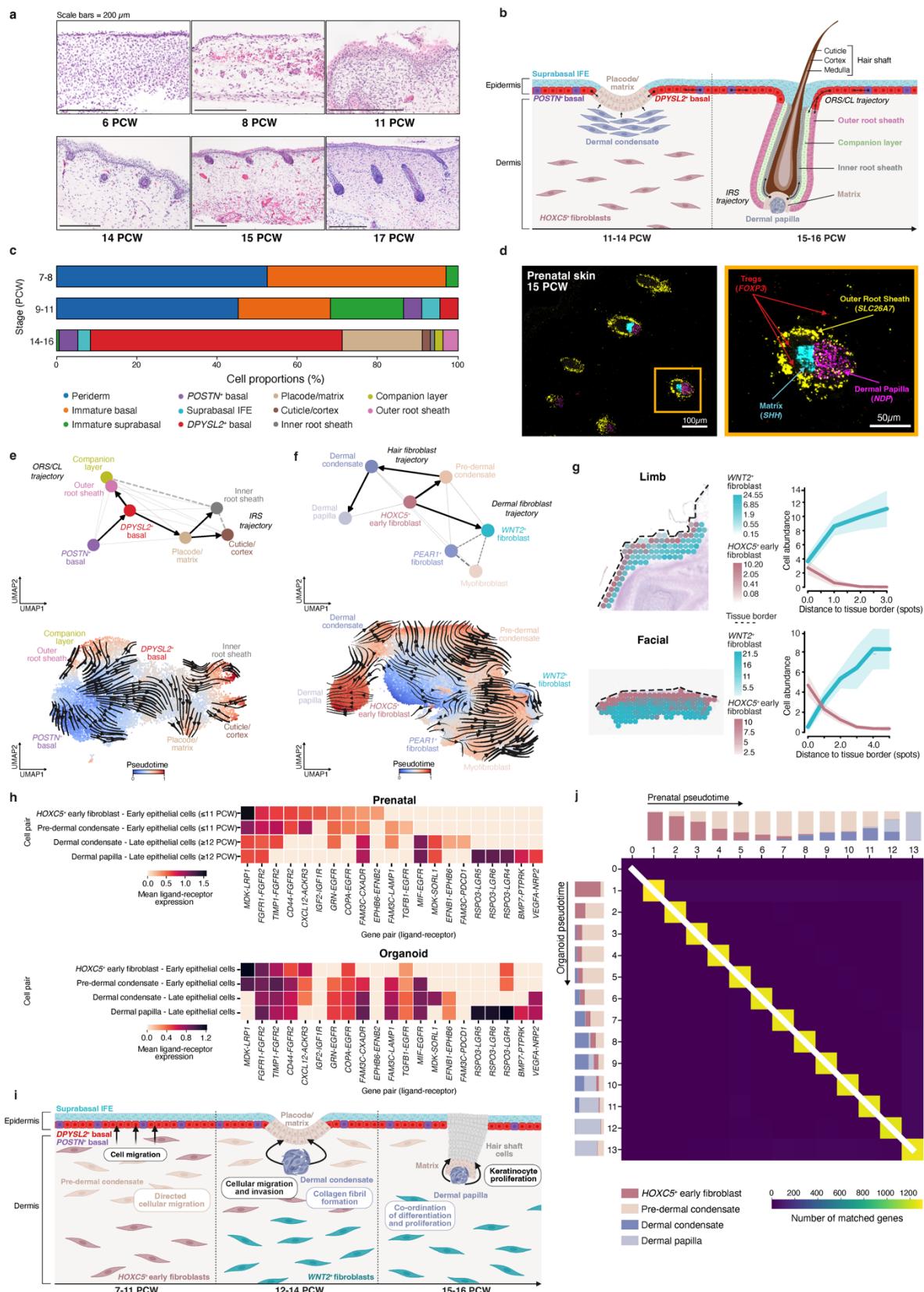
1521 **Data availability statement**


1522 The datasets generated and/or analysed during the current study are available in the following
1523 repositories: Prenatal scRNA-seq skin data is available on ArrayExpress under E-MTAB-
1524 11343, E-MTAB-7407 and E-MTAB-13071 accessions. Prenatal skin TCR-seq data is
1525 available under E-MTAB-13065 accession. Skin organoid scRNA-seq data is available on
1526 GEO under GSE147206, GSE188936, and GSE231607 accessions. Visium limb data is

1527 available under E-MTAB-10367 and Visium facial and abdominal data are deposited in
1528 ArrayExpress under E-MTAB-13024. Embryonic macrophage scRNA-seq data is available on
1529 GEO under accession numbers GSE13345 and GSE137010. All of the blood vessel organoid
1530 scRNA-seq data analysed as part of this study are included in the pre-print article from
1531 Nikolova et al¹²⁸. Adult healthy skin scRNA-seq is available on ArrayExpress under E-MTAB-
1532 8142. Adult hair follicle scRNA-seq data is accessible from GEO under GSE129611. Processed
1533 data can be accessed on our web-portal <https://developmental.cellatlas.io/fetal-skin> (password:
1534 fs2023).

1535 **Code availability statement**

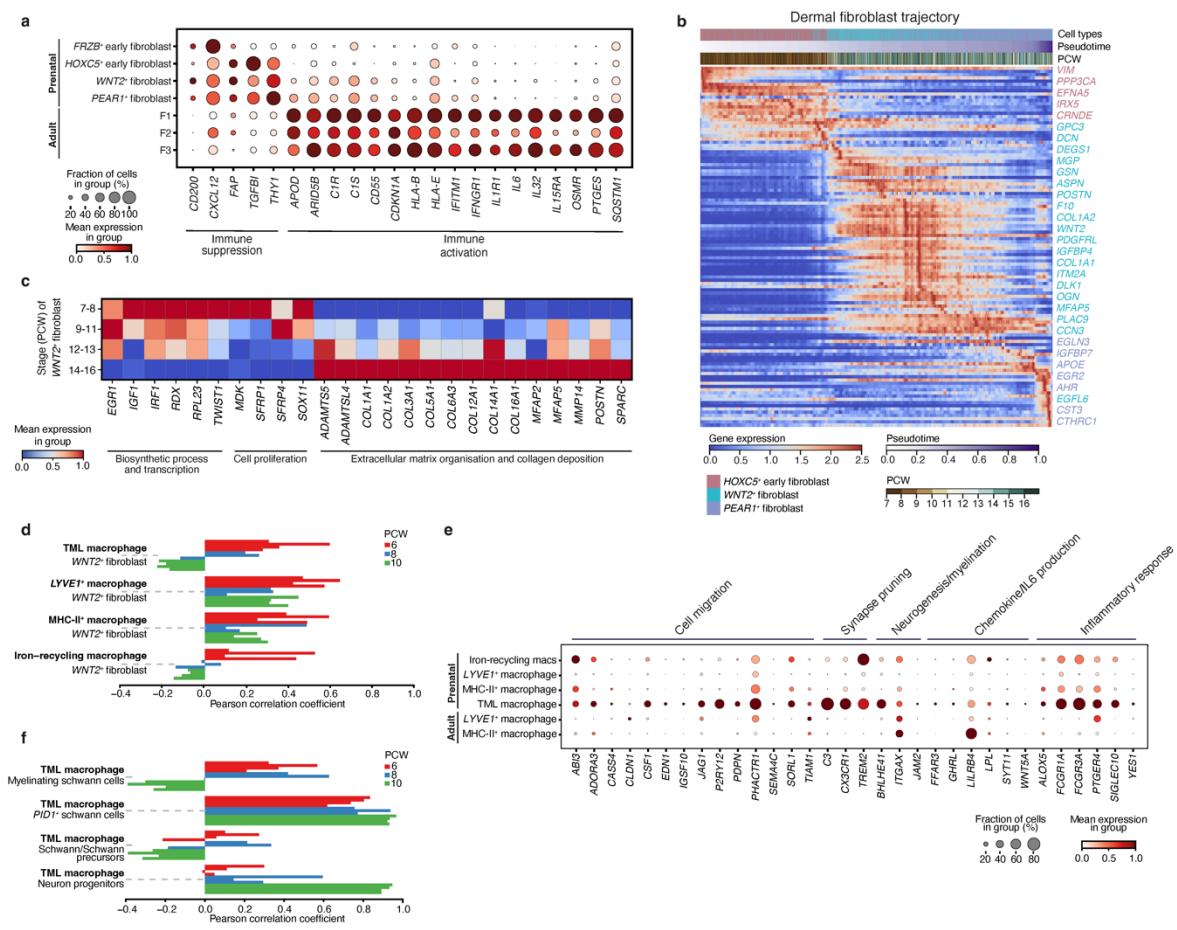
1536 Single-cell and spatial data were processed and analysed using publicly available software
1537 packages. Python/R code and notebooks for reproducing these analyses are publicly available
1538 at <https://doi.org/10.5281/zenodo.8164271>.


Figure 1

1540 **Fig. 1: A single cell atlas of human prenatal skin**

1541 **(a)** Experimental overview demonstrating the generation of scRNA-seq data from dissociated
1542 prenatal skin cells (n=15, 7-16 PCW). Spatial experiments were carried out using RNAScope
1543 and Visium, and a hair-bearing skin organoid dataset was integrated for benchmarking.
1544 Findings of the study were functionally validated using an angiogenesis assay and skin
1545 organoid co-culture. **(b)** UMAP visualisation of the prenatal skin dataset with broad annotation
1546 of cell states, as denoted by colour and number in the legend. **(c)** Milo beeswarm plot showing
1547 differential abundance of neighbourhoods in prenatal skin across gestation time, annotated by
1548 broad cell labels. Red/blue neighbourhoods are significantly enriched in earlier/later gestation
1549 respectively. Colour intensity denotes degree of significance. **(d)** Dotplot showing spatial
1550 microenvironments. Cell type to microenvironment coefficients are normalised by cell type
1551 sums; cell type to microenvironment assignment is shown by colour. Microenvironment 5,
1552 which shows co-locating macrophages and endothelial cells, is highlighted. **(e)** Bar plot
1553 showing cell type co-location, indicated by positive Pearson correlation coefficient, for selected
1554 cell type pairs (macrophage and endothelial cells). Pearson correlation coefficients were
1555 calculated across all skin-covered spots of Visium samples; each sample is shown by an
1556 individual bar. **(f)** UMAP visualisations of the integrated prenatal skin, adult skin¹³ and skin
1557 organoid¹⁵ datasets, coloured by broad cell lineages. ASDC: *Axl*+*Siglec6*+ dendritic cells; DC:
1558 dendritic cells; HSC: hematopoietic stem cells, ILC: innate lymphoid cells, LC: Langerhans
1559 cells, LTi: lymphoid tissue inducer cells, pDC: plasmacytoid dendritic cells, TML macrophage:
1560 *TREM2*⁺ microglia-like macrophage.

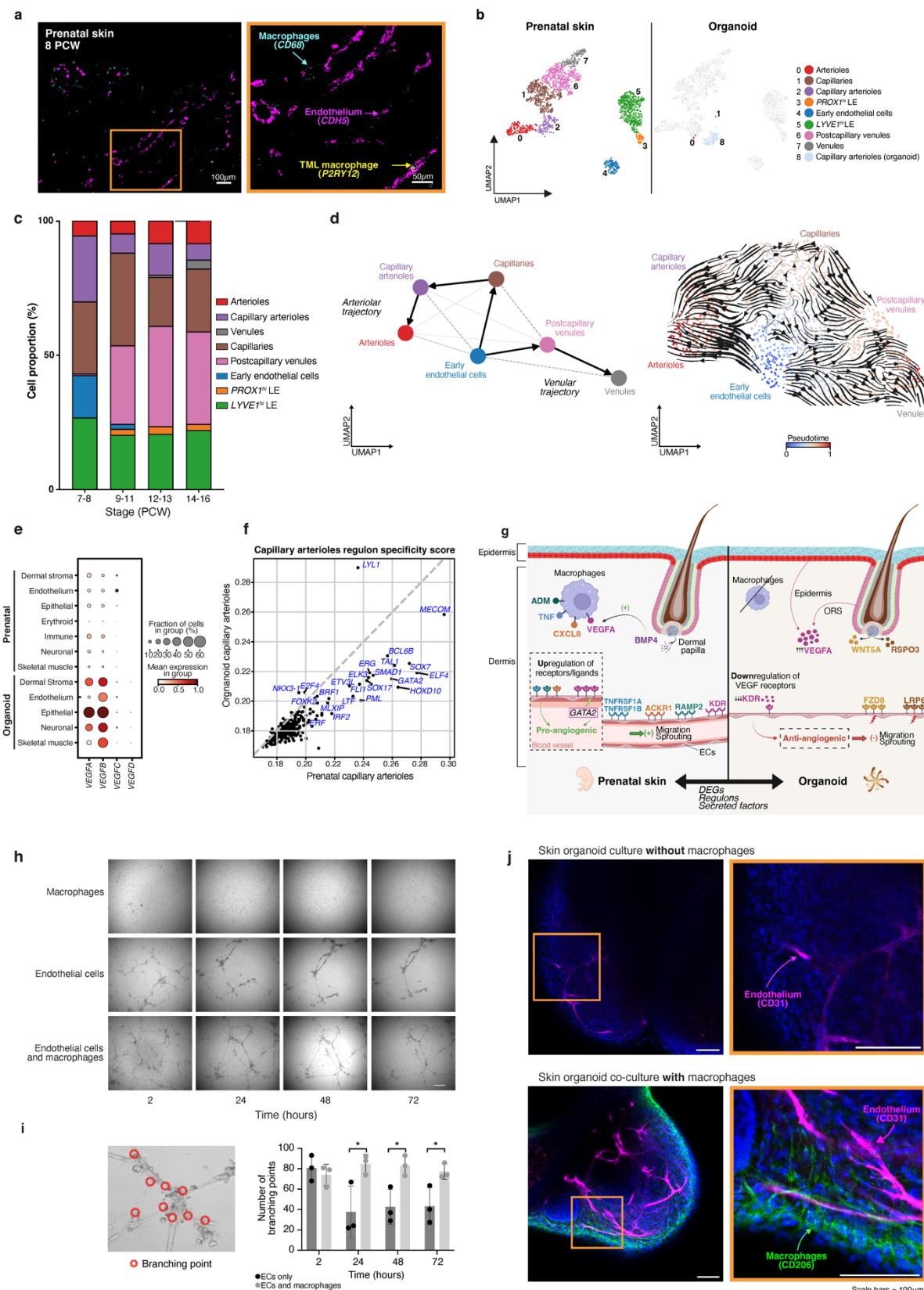
Figure 2



1562 **Fig. 2: Human prenatal hair follicle development**

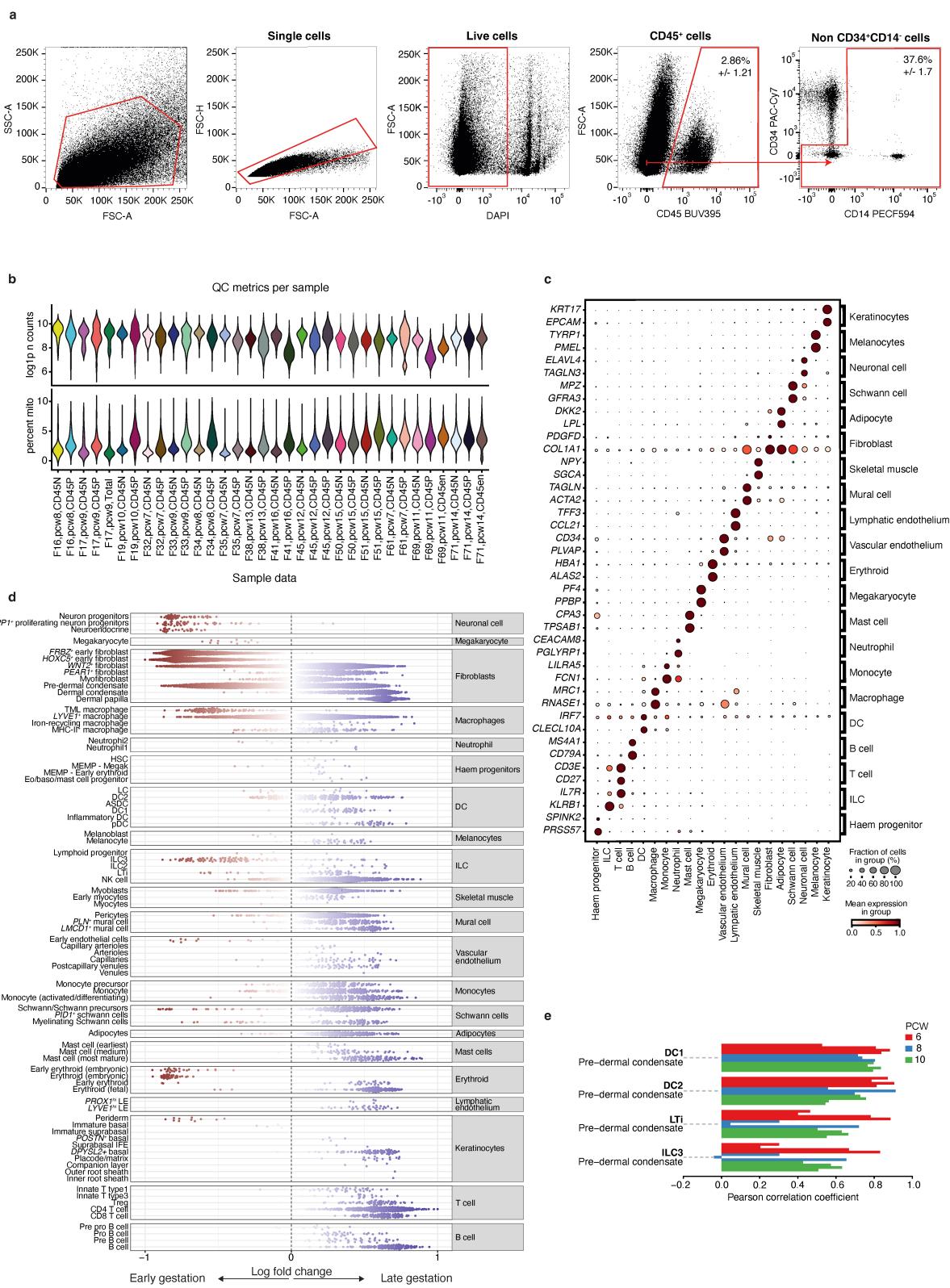
1563 **(a)** Representative haematoxylin and eosin-stained images showing different developmental
1564 stages of prenatal skin and hair follicle morphogenesis. **(b)** Schematic of stages of hair follicle
1565 formation. **(c)** Bar plot showing proportions of epidermal cell states across gestational age in
1566 prenatal skin. Bar colours represent cell states. **(d)** Large-area (left, scale bar=100 μ m) and
1567 magnified (right, scale bar=50 μ m) RNAScope images of prenatal skin (representative 15 PCW
1568 sample) demonstrating ORS (*SLC26A7*), matrix (*SHH*), dermal papilla (*NDP*) and Tregs
1569 (*FOXP3*). **(e)** Inferred pseudotime trajectory of skin organoid epidermal cell states
1570 differentiating along the ‘ORS/CL’ and ‘IRS’ trajectories; UMAP overlaid with PAGA and
1571 coloured by cell state (top) and overlaid with CellRank state transition matrix inferred arrows
1572 and coloured by pseudotime (bottom). **(f)** Inferred pseudotime trajectory of prenatal skin
1573 fibroblasts differentiating along the ‘hair’ and ‘dermal’ fibroblast trajectories. UMAP overlaid
1574 with PAGA and coloured by cell state (top) and overlaid with CellRank state transition matrix
1575 inferred arrows and coloured by pseudotime (bottom). **(g)** Spatial distribution of *WNT2*⁺
1576 fibroblasts and *HOXC5*⁺ early fibroblasts on two representative prenatal skin Visium samples.
1577 Predicted cell abundances shown either as the sum of two colour gradients per spot (left) or
1578 averaged across all spots which are located on the same distance from tissue border (right).
1579 Shaded areas show 95% confidence interval. **(h)** Heatmap showing significant (adjusted p-
1580 value <0.05) CellphoneDB-predicted interactions between prenatal skin hair follicle
1581 mesenchymal cells and epithelial cells (early: Immature basal; late: *DPYSL2*⁺ basal, *POSTN*⁺
1582 basal, Placode/matrix, ORS, CL, IRS, Cuticle/cortex). Top 10 interactions per cell pair in
1583 prenatal skin are shown (top), with the same interactions plotted from the skin organoid
1584 CellphoneDB results (bottom). Colour scale represents the mean expression values of each
1585 ligand-receptor pair in corresponding cell pairs. **(i)** Schematic representation of mesenchymal-

1586 epithelial signalling and cellular processes during hair formation. **(j)** Aggregate alignment
1587 result for all included TFs between *in vitro* skin organoid and *in vivo* prenatal skin (reference)
1588 data, shown as a pairwise time point matrix between organoid and reference pseudotime axes.
1589 Colour scale represents the number of genes showing a match for the given pair of organoid-
1590 reference timepoints; the white line represents the main average alignment path. Stacked bar
1591 plots represent the cell compositions at each timepoint (13 equispaced time points on
1592 pseudotime [0,1]), coloured by cell types for reference (top) and skin organoid (left). CL:
1593 companion layer, IRS: inner root sheath, ORS: outer root sheath.


Figure 3

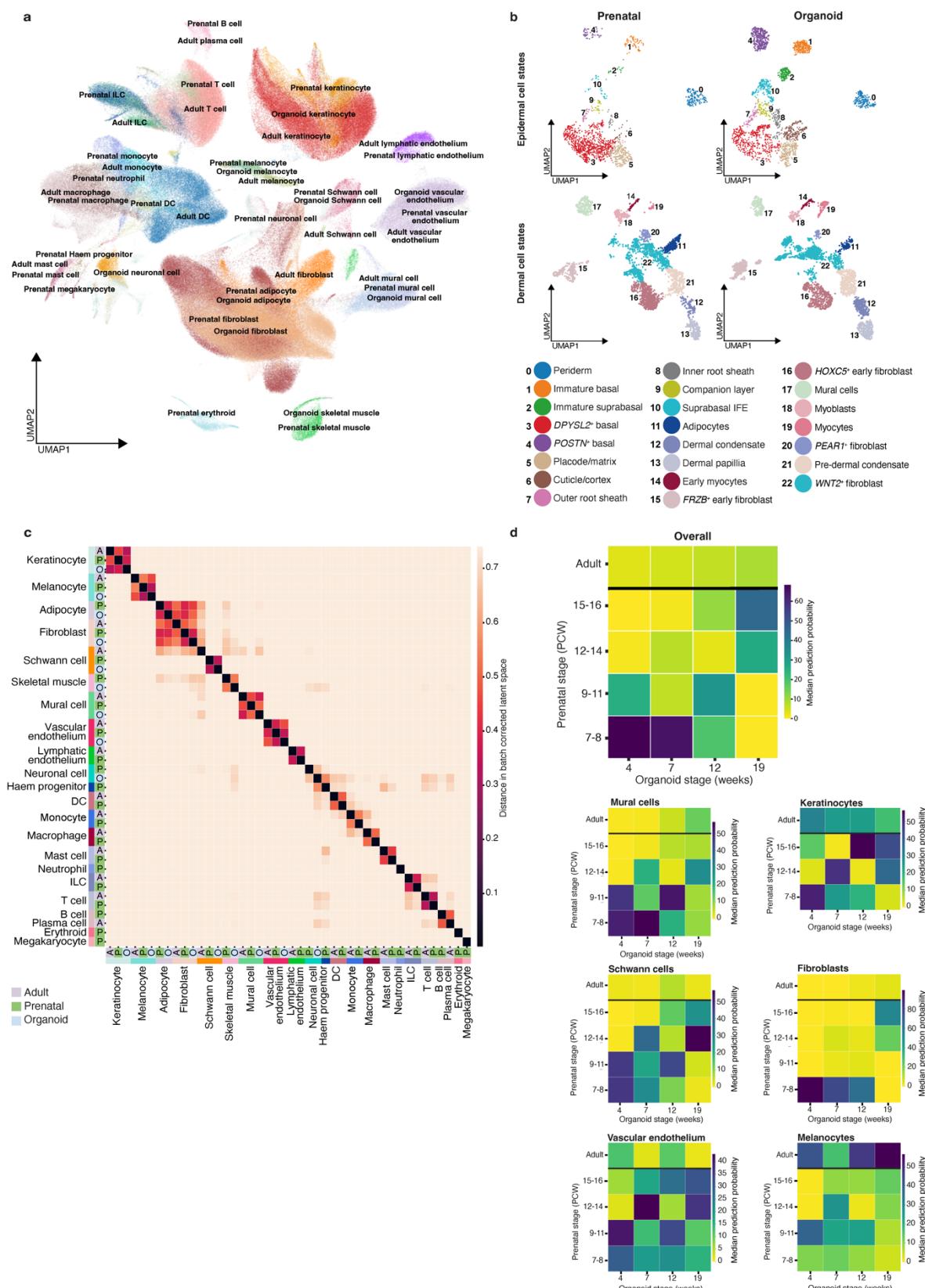
1595 **Fig. 3: Early dermal fibroblasts and macrophages protect against skin scarring**

1596 **(a)** Dot plot showing variance-scaled, mean expression (dot colour) and percent of expressing
1597 cells (dot size) of genes differentially expressed by prenatal ('immune suppression') and adult
1598 skin fibroblasts ('immune activation')¹³. **(b)** Heat map showing differentially expressed genes
1599 across pseudotime along the 'Dermal fibroblast trajectory'. **(c)** Matrix plot showing variance-
1600 scaled, mean expression (colour) of Milo-generated DEGs by gestational age (grouped by
1601 PCW) in *WNT2⁺* fibroblast population. DEGs are grouped by function. **(c)** Bar plot showing
1602 cell type co-location, indicated by positive Pearson correlation coefficient, for selected cell
1603 type pairs (macrophages and *WNT2⁺* fibroblasts). Pearson correlation coefficients were
1604 calculated across all skin-covered spots of Visium samples; each sample is shown by an
1605 individual bar. **(e)** Dot plot showing variance-scaled, mean expression (dot colour) and percent
1606 of expressing cells (dot size) of genes differentially upregulated by TMLM in prenatal and
1607 adult skin macrophages. Genes are grouped by function. **(f)** Bar plot showing cell type co-
1608 location, indicated by positive Pearson correlation coefficient, for selected cell type pairs
1609 (TMLM and neuronal cells). Pearson correlation coefficients were calculated across all skin
1610 spots of Visium samples; each sample is shown by an individual bar. TML macrophage:
1611 *TREM2⁺* microglia-like macrophage.


Figure 4

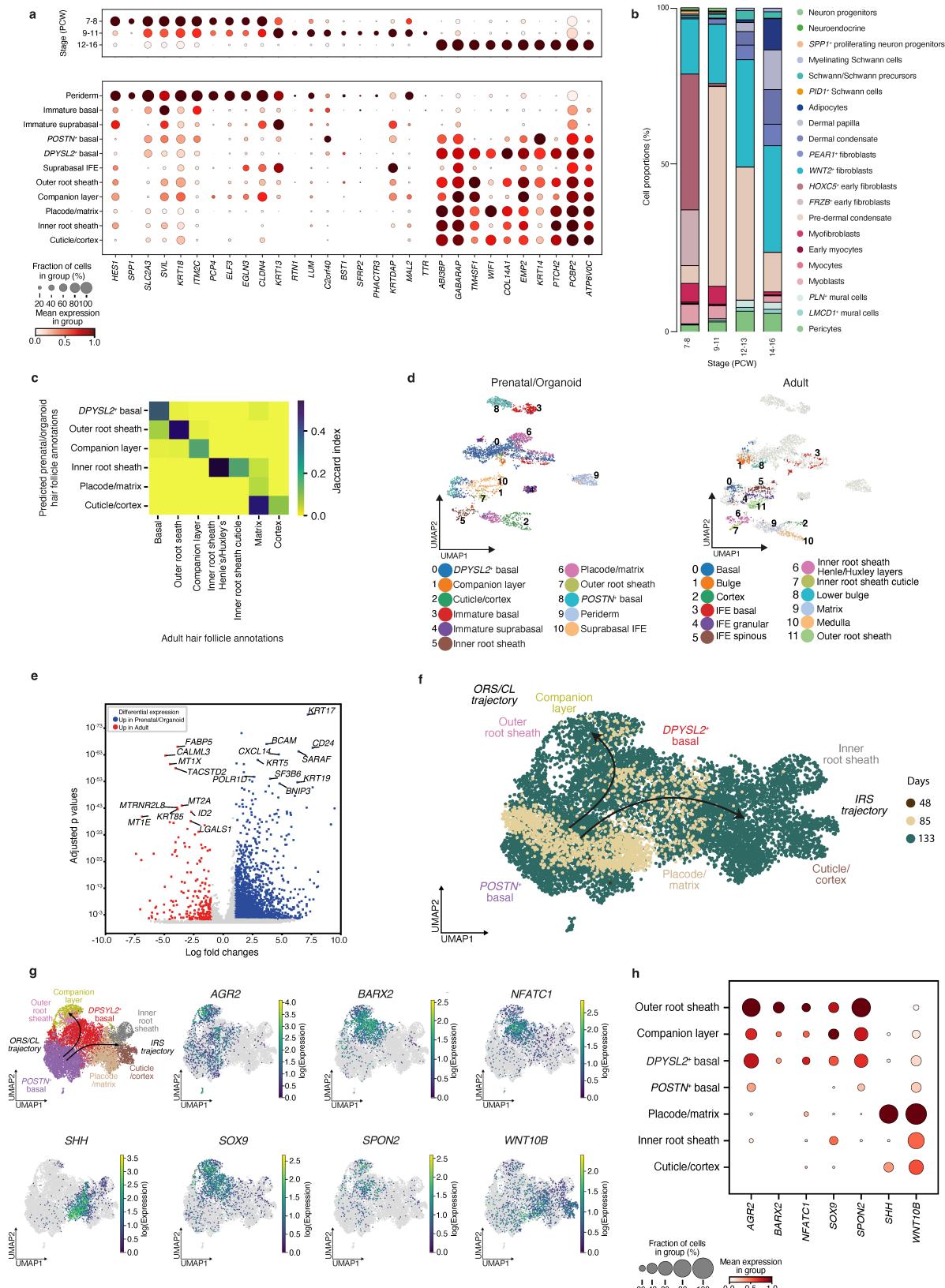
1613 **Fig. 4: Macrophages support prenatal skin angiogenesis**

1614 **(a)** Large-area (left, scale bar = 100 μ m) and magnified (right, scale bar = 50 μ m) RNAScope
1615 images of prenatal skin (representative 8 PCW sample) demonstrating endothelium (*CDH5*),
1616 macrophages (*CD68*) and TMLM (*P2RY12*). **(b)** UMAP visualisation of endothelial cell states
1617 present in prenatal skin and skin organoid. **(c)** Bar plot showing the proportions of endothelial
1618 cell states across gestational age in prenatal skin. Bar colours represent cell states. **(d)** Inferred
1619 pseudotime trajectory of prenatal skin endothelial cell states differentiating along ‘arteriolar’
1620 and ‘venular’ trajectories; UMAP overlaid with PAGA and coloured by cell state (left) and
1621 overlaid with CellRank state transition matrix inferred arrows and coloured by pseudotime
1622 (right). **(e)** Dot plot showing variance-scaled, mean expression (dot colour) and percent of
1623 expressing cells (dot size) of vascular endothelial growth factors in prenatal skin and skin
1624 organoids. **(f)** Comparison of regulon activity between prenatal skin (x-axis) and organoid (y-
1625 axis) capillary arterioles. **(g)** Schematic showing differences between prenatal skin and skin
1626 organoids in pro- and anti-angiogenic factors produced by myeloid and dermal papilla cells
1627 and their corresponding receptors on endothelial cells. **(h)** Angiogenesis assay including
1628 macrophages only, endothelial cells only and co-culture of endothelial cells plus macrophages
1629 at timepoints 2 hours, 24 hours, 48 hours, and 72 hours of culture. Scale bar=200 μ m. **(i)**
1630 Analysis of the number of branch points in each condition of the angiogenesis assay. **(j)**
1631 Representative wholemount immunofluorescence images of the skin organoid, without and
1632 with macrophage co-culture, showing macrophages (*CD206*) in green, endothelium (*CD31*) in
1633 red and DAPI nuclei stain in blue. Scale bars=100 μ m. DEGs: differentially expressed genes,
1634 EC: endothelial cells, LE: lymphatic endothelium, TML macrophage: *TREM2*⁺ microglia-like
1635 macrophage.


Extended data figure 1

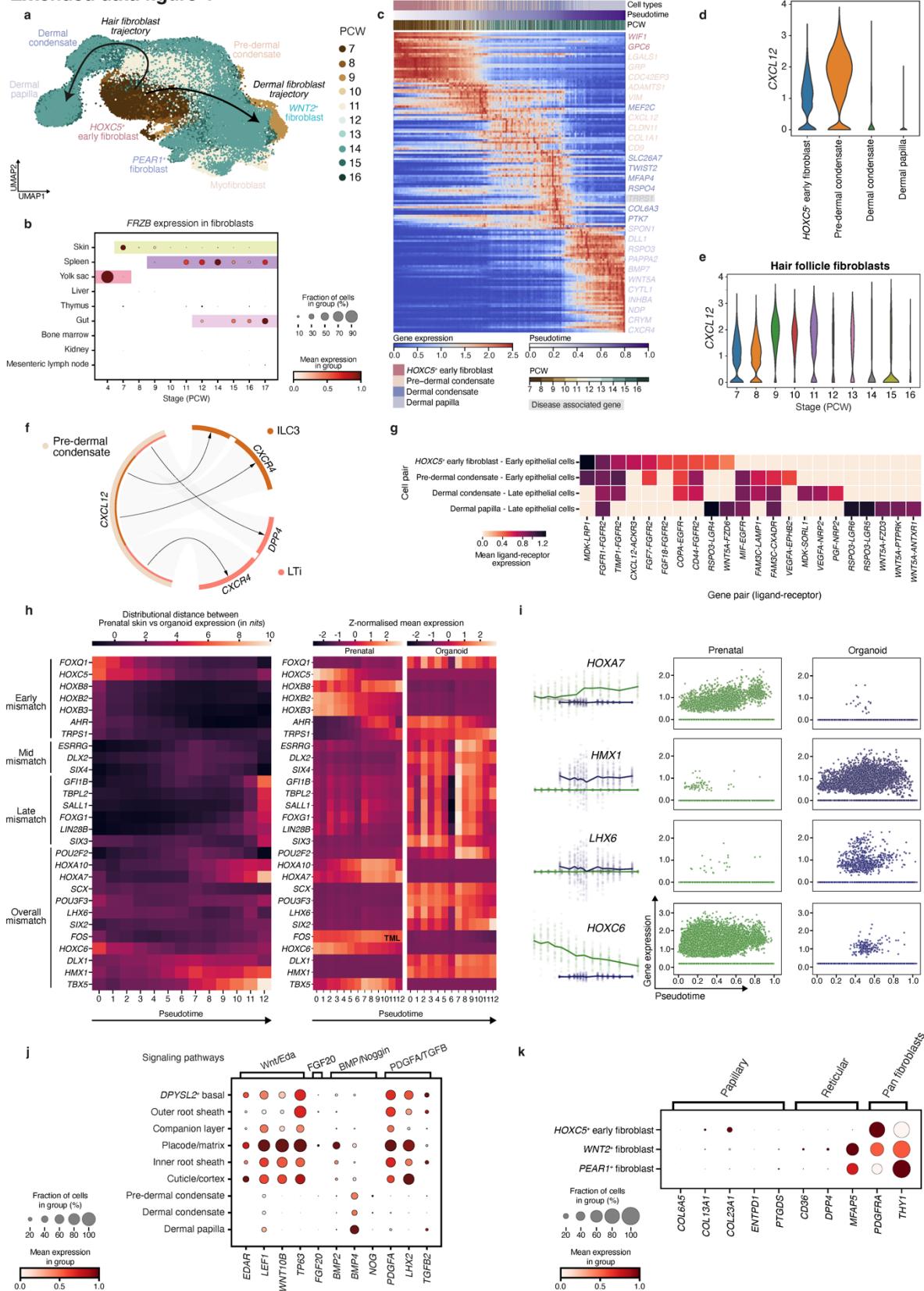
1637 **Extended Data Fig. 1. Temporal and spatial composition of human prenatal skin**

1638 **(a)** Prenatal skin cells isolation by fluorescence-activated cell sorting into CD45⁺ and CD45⁻
1639 fractions (n=15); from the CD45⁻ fraction we further isolated all cells that were not within the
1640 CD34⁺CD14⁻ gate (n=2) to enrich for endothelial cells and keratinocytes. Representative data
1641 from n=1 is shown as mean percentage +/- SD values. **(b)** Quality control plots showing
1642 frequency distribution of UMI counts (log1p-transformed) and percent of UMI counts in
1643 mitochondrial genes per sample fraction. **(c)** Dot plot showing variance-scaled, mean
1644 expression (dot colour) and percent of expressing cells (dot size) of defining genes for cell
1645 states corresponding to **Fig. 1b**. **(d)** Milo beeswarm plot showing differential abundance of
1646 neighbourhoods in prenatal skin across gestation time, annotated by refined cell labels.
1647 Red/blue neighbourhoods are significantly enriched in earlier/later gestation respectively.
1648 Colour intensity denotes degree of significance. **(e)** Bar plot showing cell type co-location,
1649 indicated by positive Pearson correlation coefficient, for selected cell type pairs (pre-dermal
1650 condensate and immune cells: DC1, DC2, LTi and ILC3). Pearson correlation coefficients were
1651 calculated across all skin-covered spots of Visium samples; each sample is shown by an
1652 individual bar. ASDC: *Ax1+Siglec6+* dendritic cells; DC: dendritic cells; HSC: hematopoietic
1653 stem cells, ILC: innate lymphoid cells, LC: Langerhans cells, LTi: lymphoid tissue inducer
1654 cells, CD45en: CD45 negative fraction enriched for keratinocyte/endothelial cells; CD45N:
1655 CD45 negative; CD45P: CD45 positive; pDC: plasmacytoid dendritic cells, TML macrophage:
1656 *TREM2*⁺ microglia-like macrophage.


Extended data figure 2

1658 ***Extended Data Fig. 2. Comparison of the skin organoid with prenatal and adult skin***

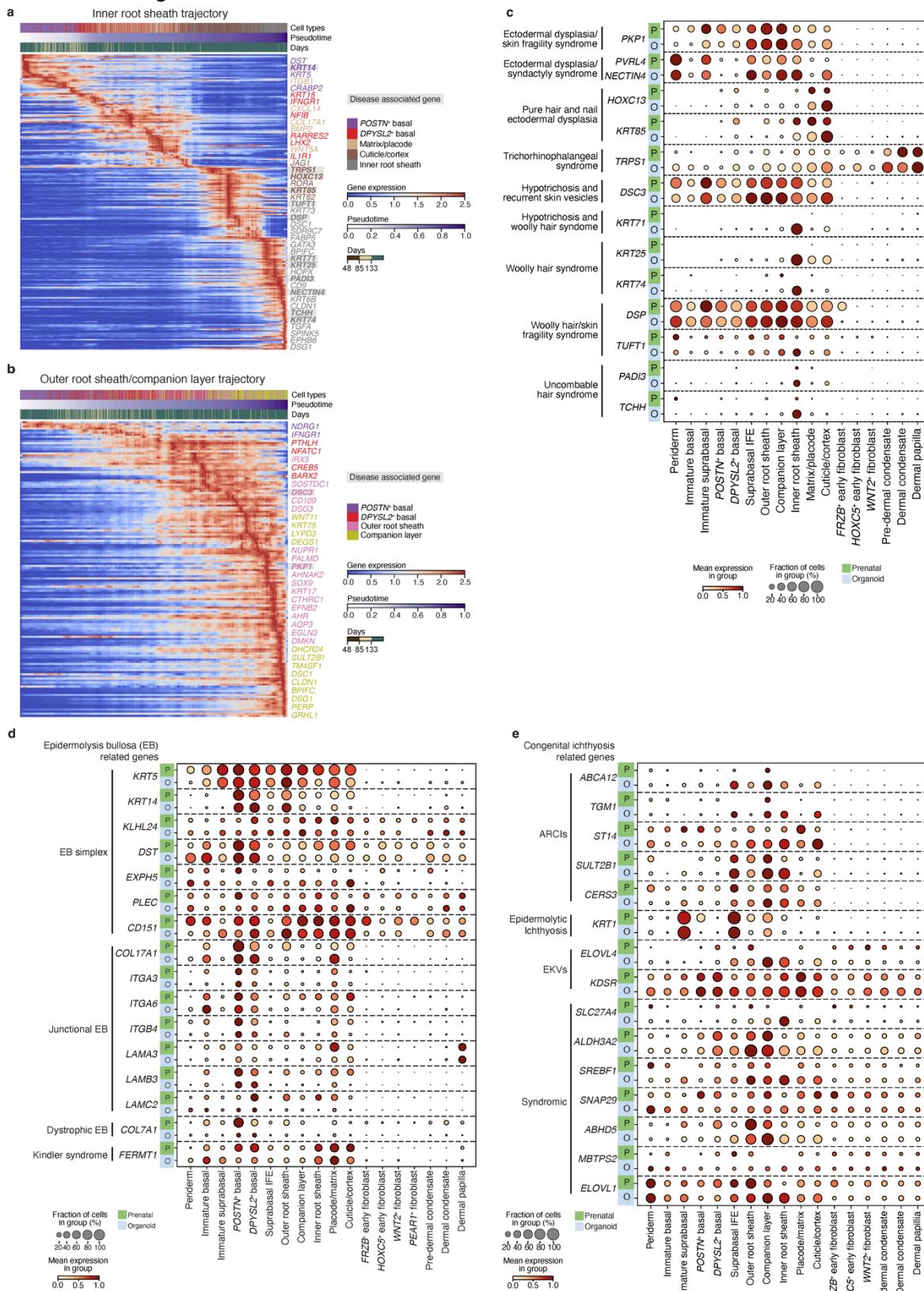
1659 **(a)** UMAP visualisation of the integrated prenatal skin, adult skin¹³ and skin organoid¹⁵
1660 scRNA-seq datasets, coloured by broad cell types. **(b)** UMAP visualisations of integrated data
1661 from prenatal skin and skin organoid, coloured by epidermal (top) and dermal (bottom) cell
1662 types in prenatal skin (left) and skin organoid (right). **(c)** Heatmap showing conserved cell
1663 states (measured by distance in principal component space) between prenatal skin, adult skin¹³
1664 and skin organoid¹⁵ for broad cell categories. **(d)** Heatmap showing prediction probabilities
1665 (overall and per broad cell category) for a logistic regression model trained on time-encoded
1666 prenatal skin and adult skin data (y-axis)¹³ and projected onto time-encoded skin organoid
1667 data¹⁵ (x-axis). Colour scale indicates median prediction probabilities.


Extended data figure 3

1669 ***Extended Data Fig. 3. Differentiation of prenatal hair follicle epidermal cells and***
1670 ***comparison with adult hair follicles***

1671 **(a)** Dot plot showing variance-scaled, mean expression (dot colour) and percent of expressing
1672 cells (dot size) of DEGs between gestational stage groups (grouped PCW) (top) and expression
1673 of the same genes by different epidermal cell states (bottom). **(b)** Bar plot showing the
1674 proportions of stromal cell states across gestational age in prenatal skin. Bar colours represent
1675 cell states. **(c)** Heatmap showing the correspondence (measured by Jaccard index) between
1676 prenatal skin/skin organoid (y-axis) and adult (x-axis) epidermal and hair follicle cell states for
1677 a logistic regression model trained on adult hair follicle data¹⁴ and projected onto integrated
1678 prenatal skin/skin organoid data. **(d)** UMAPs showing clustered cell states in integrated data
1679 from adult hair follicles¹⁴ and prenatal/skin organoid, coloured by prenatal skin/skin organoid
1680 cell types (left) and adult cell types (right). **(e)** Volcano plot showing differentially expressed
1681 genes between prenatal/organoid placode/matrix cells and adult matrix cells¹⁴. **(f)** Inferred
1682 pseudotime trajectory of skin organoid epidermal cell states differentiating along the ‘ORS/CL’
1683 and ‘IRS’ trajectories, coloured by days of culture. **(g)** Inferred pseudotime trajectory of skin
1684 organoid epidermal cell states differentiating along the ‘ORS/CL’ and ‘IRS’ trajectories,
1685 coloured by gene expression (log-transformed). **(h)** Dot plot showing variance-scaled, mean
1686 expression (dot colour) and percent of expressing cells (dot size) in prenatal skin of genes
1687 expressed along the ‘ORS/CL’ and ‘IRS’ trajectories. CL: companion layer, IRS: inner root
1688 sheath ORS: outer root sheath.

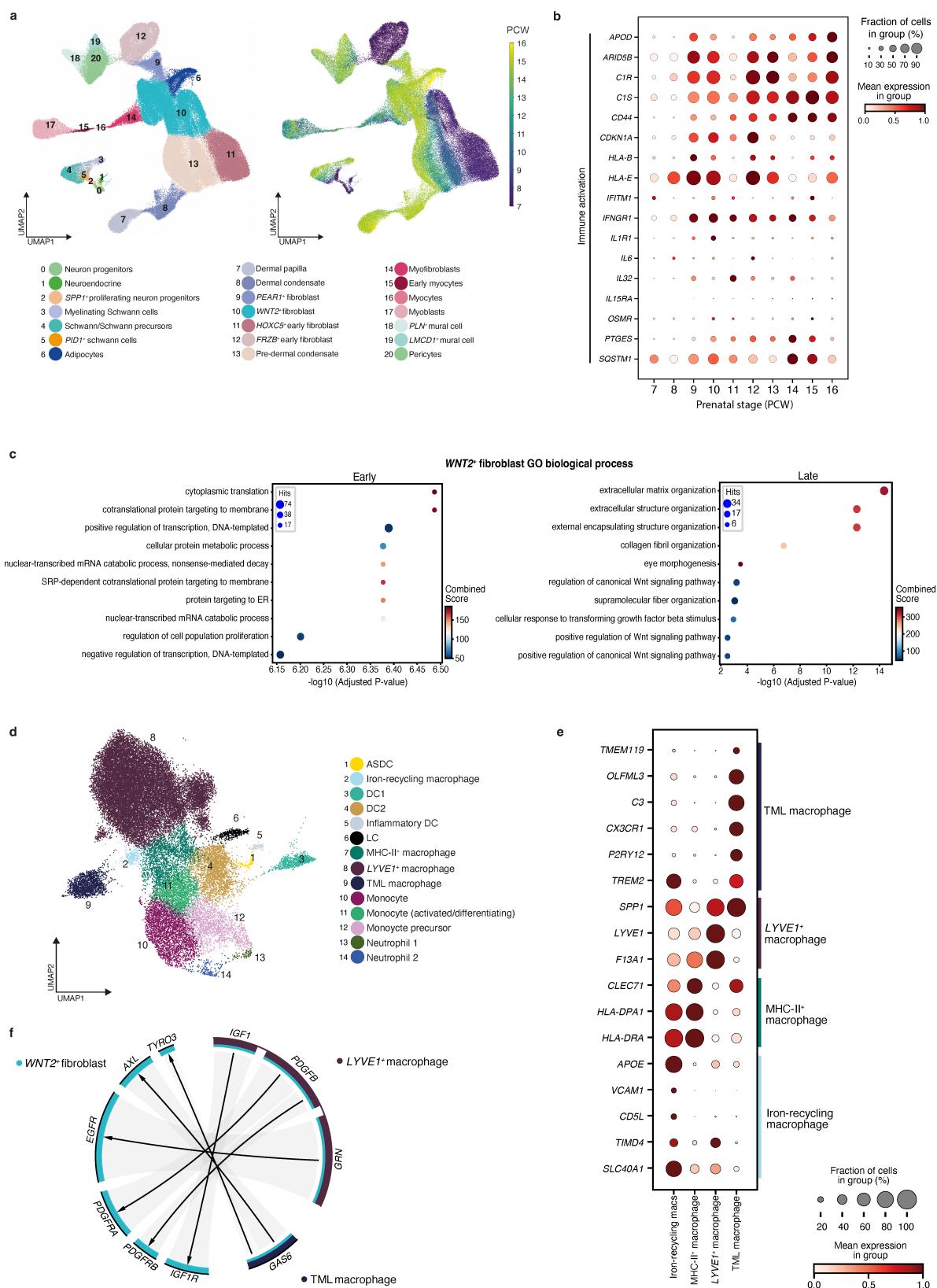
Extended data figure 4



1690 **Extended Data Fig. 4. Differentiation of the prenatal hair follicle mesenchyme**

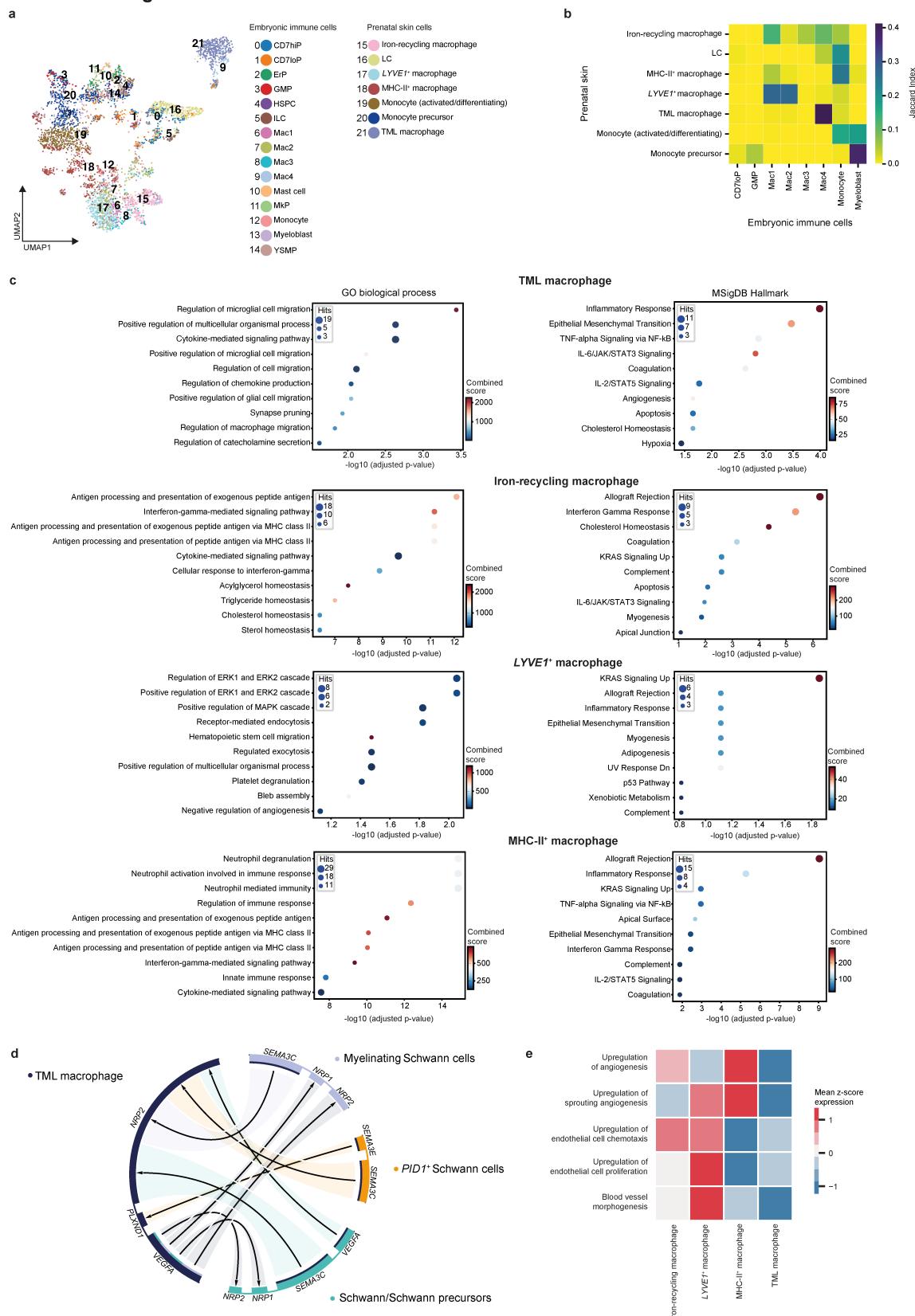
1691 **(a)** Inferred pseudotime trajectory of prenatal skin fibroblasts differentiating along the ‘hair’
1692 and ‘dermal’ trajectories, coloured by gestational age (PCW). **(b)** Dot plot showing variance-
1693 scaled, mean expression (dot colour) and percent of expressing cells (dot size) of *FRZB* gene
1694 in fibroblasts from developing organs. Gestational ages during which individual organs are
1695 present are highlighted. **(c)** Heatmap showing differentially expressed genes across pseudotime
1696 along the ‘hair fibroblast trajectory’. Gene associated with genetic hair disorders is highlighted
1697 in grey. **(d)** Violin plot showing expression of *CXCL12* in hair mesenchymal cells (violin width
1698 proportional to counts). **(e)** Violin plot showing expression of *CXCL12* in hair mesenchymal
1699 cells by gestation (PCW) (violin width proportional to counts). **(f)** Circos plot showing selected
1700 significant (adjusted p-value<0.05) predicted interactions between pre-dermal condensate and
1701 ILC3 and LTi cells in prenatal skin. Arrows represent directionality of interactions (ligand to
1702 receptor); connection width is proportional to the CellphoneDB mean value for each ligand-
1703 receptor pair. **(g)** Heatmap showing significant (adjusted p-value <0.05) predicted interactions
1704 between hair mesenchymal cells and epithelial cells (early: Immature basal; late: *DPYSL2*⁺
1705 basal, *POSTN*⁺ basal, Placode/matrix, ORS, CL, IRS, Cuticle/cortex) in skin organoid. Top 10
1706 interactions per cell pair are shown. Colour scale represents the mean expression values of each
1707 ligand-receptor pair in corresponding cell pairs. **(h)** Left: Heatmap showing the distributional
1708 distance (measure of Shannon information (unit: nits)) of gene expression between prenatal
1709 skin (reference) and skin organoid, as a measure of dissimilarity (mismatch) for selected,
1710 differentially expressed genes across pseudotime. Heatmap of the smoothed (interpolated)
1711 and z-normalised mean expression of the selected genes across pseudotime in prenatal skin
1712 (middle) and skin organoid (right). **(i)** Gene expression plots for representative genes in
1713 prenatal skin (green) and skin organoid (blue) across pseudotime. Left column: the interpolated

1714 log1p normalised expression (y-axis) against pseudotime (x-axis). The lines represent mean
1715 expression trends; the data points are 50 random samples from the estimated expression
1716 distribution at each time point. Right two columns: actual log1p normalised expression (y-axis)
1717 against pseudotime (x-axis) where each point represents a cell. **(j)** Dot plot showing variance-
1718 scaled, mean expression (dot colour) and percent of expressing cells (dot size) of known genes
1719 involved in hair formation²¹. **(k)** Dot plot showing variance-scaled, mean expression (dot
1720 colour) and percent of expressing cells (dot size) of fibroblast marker genes. CL: companion
1721 layer, ILC: innate lymphoid cells, IRS: inner root sheath, LTi: lymphoid tissue inducer cells
1722 ORS: outer root sheath.


Extended data figure 5

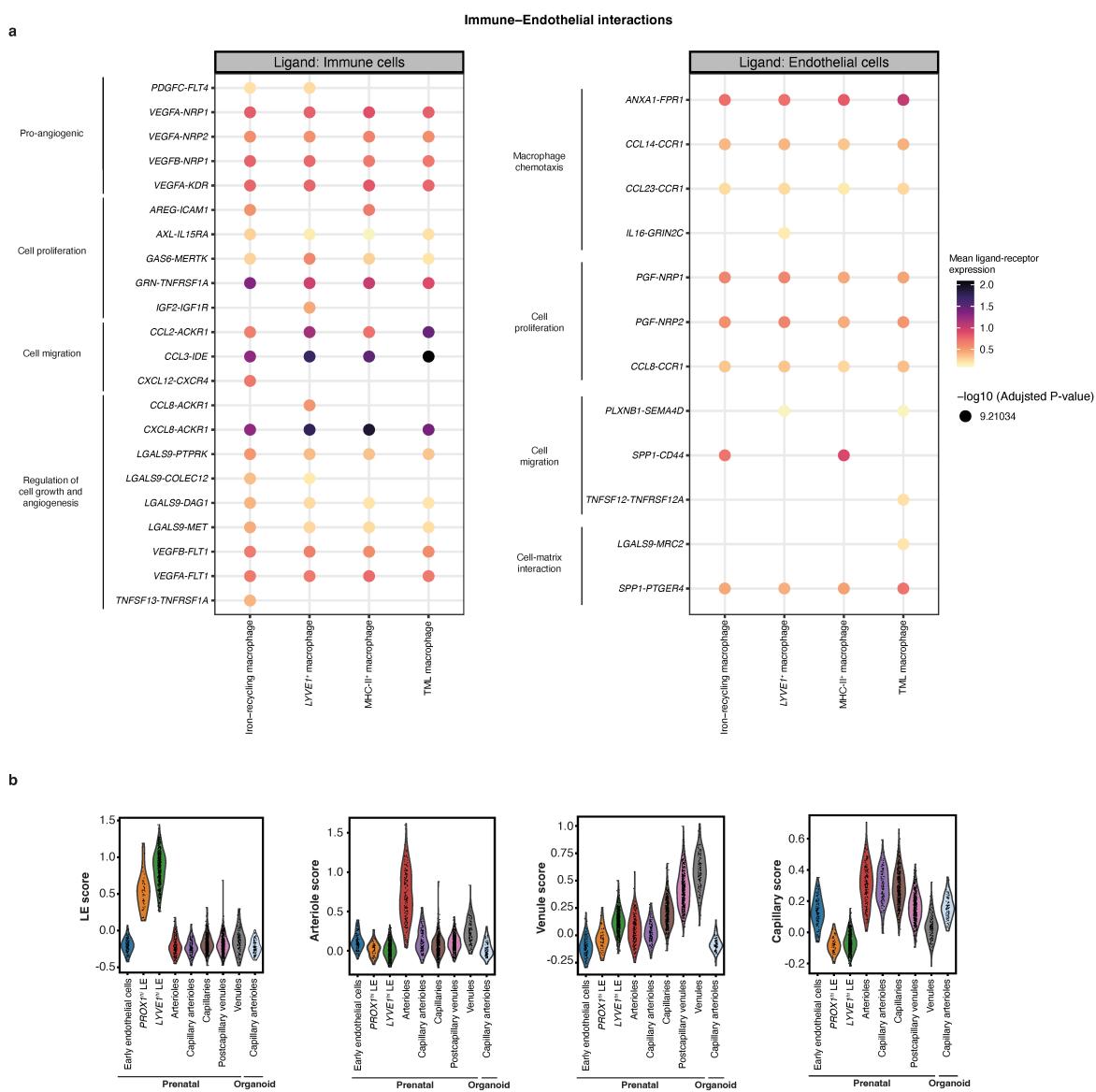
1724 ***Extended Data Fig. 5. Genetic hair and skin disorders***

1725 **(a)** Heat map showing differentially expressed genes across pseudotime along the ‘Inner root
1726 sheath trajectory’. Genes associated with genetic hair disorders are highlighted in grey. **(b)**
1727 Heat map showing differentially expressed genes across pseudotime along the ‘Outer root
1728 sheath/ Companion layer trajectory’. Genes associated with genetic hair disorders are
1729 highlighted in grey. **(c)** Dot plot showing variance-scaled, mean expression (dot colour) and
1730 percent of expressing cells (dot size) of genes implicated in genetic hair diseases in prenatal
1731 skin and skin organoid skin¹⁵. **(d)** Dot plot showing variance-scaled mean expression (dot
1732 colour) and percent of expressing cells (dot size) of genes causing Epidermolysis Bullosa in
1733 prenatal skin and skin organoid skin¹⁵. **(e)** Dot plot showing variance-scaled, mean expression
1734 (dot colour) and percent of expressing cells (dot size) of genes causing congenital ichthyoses
1735 in prenatal skin and skin organoid skin¹⁵.


Extended data figure 6

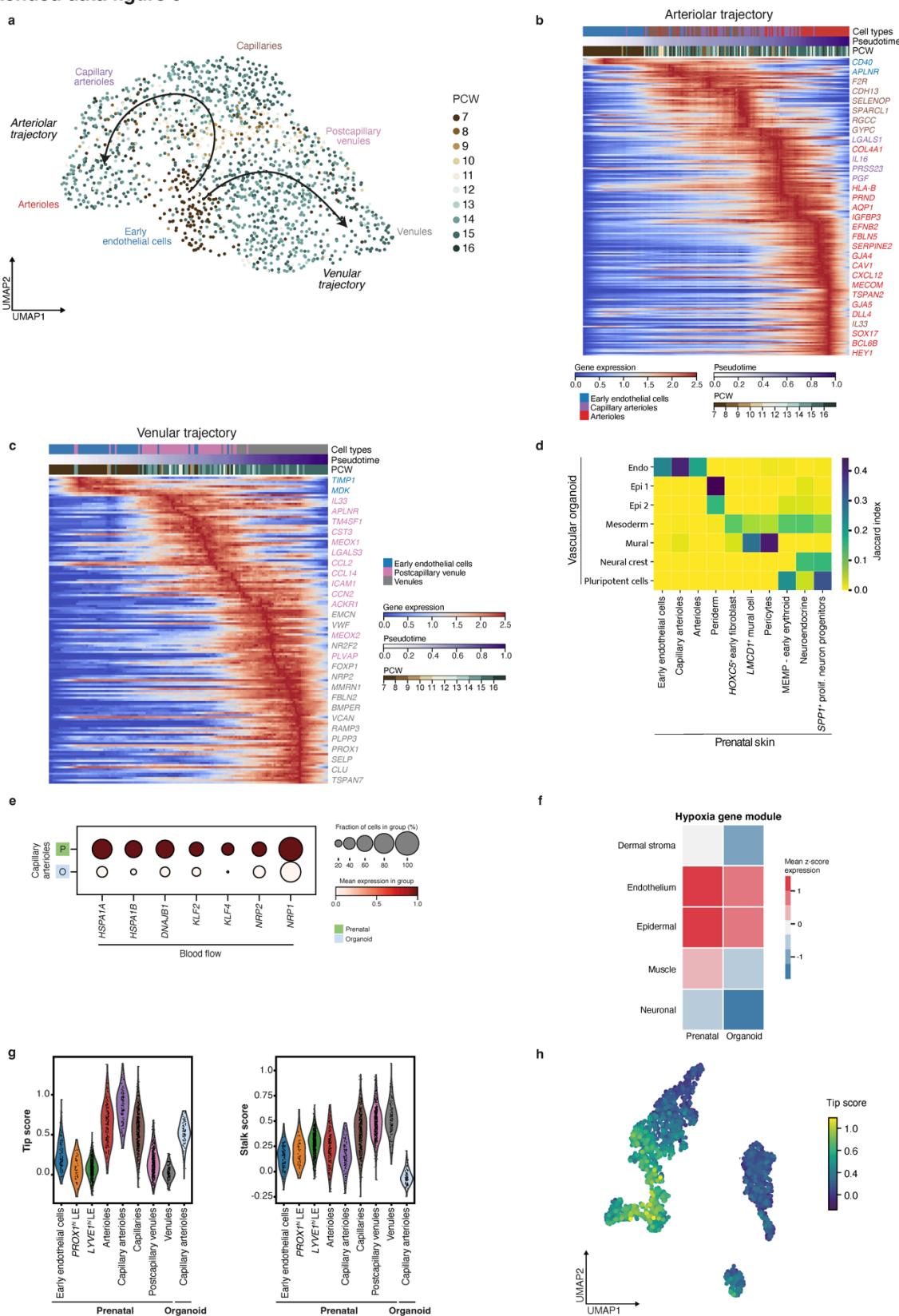
1737 **Extended Data Fig. 6. The role of early dermal fibroblasts in prenatal skin**

1738 **(a)** UMAP visualisation showing stromal cells found in prenatal skin, coloured by cell state
1739 (left) and by gestational age (PCW) right. **(b)** Dot plot showing variance-scaled, mean
1740 expression (dot colour) and percent of expressing cells (dot size) of ‘immune activation’ genes
1741 (as shown in **Fig. 3a**) in prenatal skin fibroblasts by gestational age (PCW). **(c)** Gene set
1742 enrichment analysis results for differentially expressed genes in Milo-defined early- and late-
1743 specific neighbourhoods of *WNT2*⁺ fibroblasts. Each plot shows the top 10 enriched gene sets
1744 (using Gene Ontology Biological Process 2021). The x-axis shows the negative log₁₀ of the p-
1745 value adjusted for multiple testing (Benjamini-Hochberg correction); dot size is proportional
1746 to the number of genes associated with the gene set and colour represents the combined Enrichr
1747 score calculated within GSEAp. **(d)** UMAP visualisation of the myeloid cells in prenatal skin
1748 data, coloured by cell state. **(e)** Dot plot showing variance-scaled, mean expression (dot colour)
1749 and percent of expressing cells (dot size) of marker genes⁹ used to annotate macrophage subsets
1750 in prenatal skin. **(f)** Circos plot visualisation of representative significant (adjusted p-value
1751 <0.05) predicted interactions between macrophages (*LYVE1*⁺ and TMLM) and co-localising
1752 *WNT2*⁺ fibroblasts in prenatal skin. Arrows represent directionality of interactions (ligand to
1753 receptor); connection width is proportional to the CellphoneDB mean value for each ligand-
1754 receptor pair. ASDC: *Axl*+*Siglec6*+ dendritic cells; DC: dendritic cells; LC: Langerhans cells,
1755 TML macrophage: *TREM2*⁺ microglia-like macrophage.


Extended data figure 7

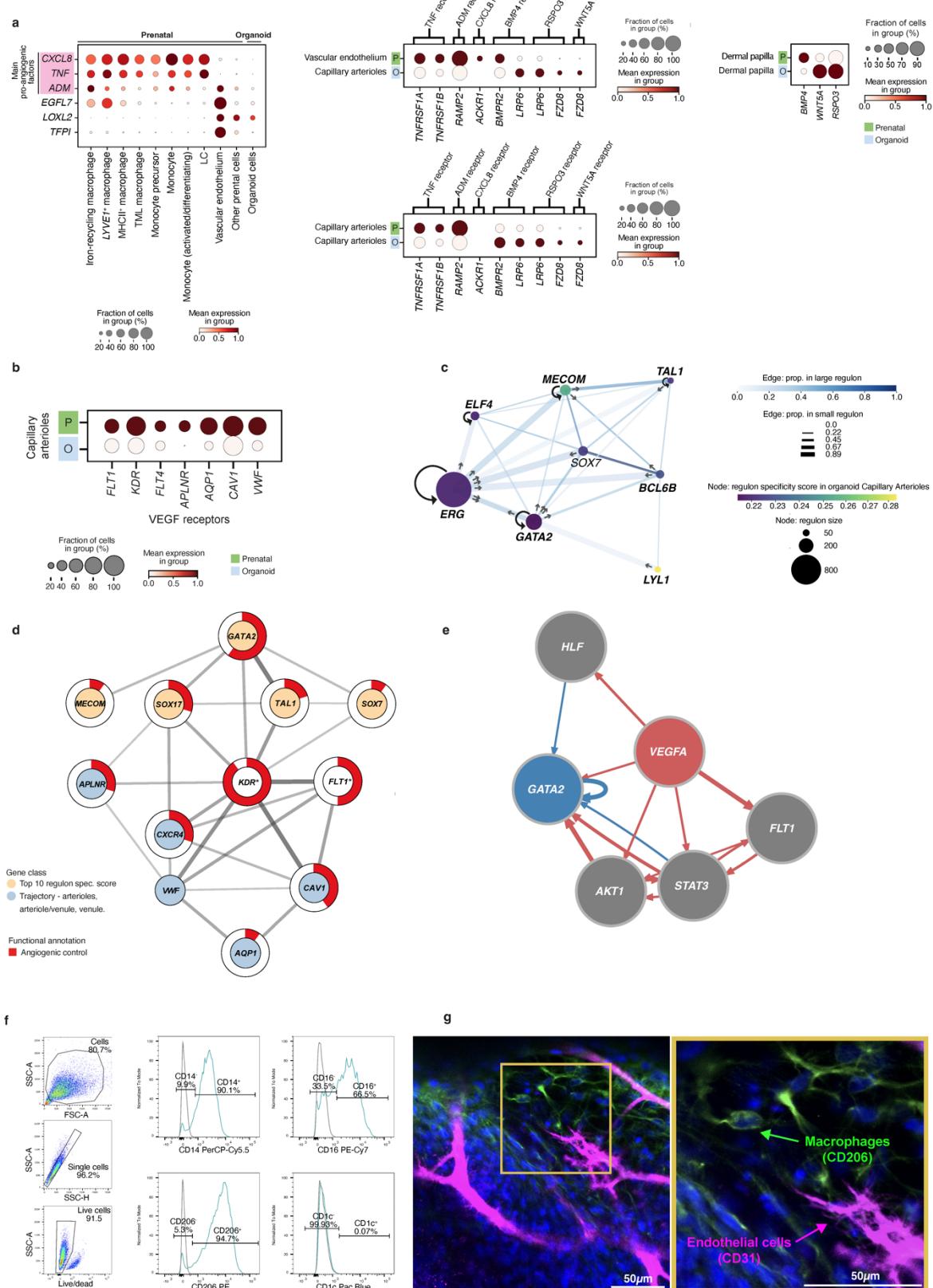
1757 **Extended Data Fig. 7. The role of macrophages in prenatal skin neurovascular development**

1758 **(a)** UMAP showing clustered cell states in integrated data from embryonic immune cells⁹⁷ and
1759 prenatal skin myeloid cell subset. **(b)** Heatmap showing the correspondence (measured by
1760 Jaccard index) between embryonic immune cells (x-axis) and prenatal skin (y-axis) myeloid
1761 cell states for a logistic regression model trained on embryonic data⁹⁷ and projected onto
1762 prenatal skin myeloid cell subset. TML macrophage had the highest proportion prediction to
1763 Mac4 (embryonic brain microglia). **(c)** Gene set enrichment analysis results of over-expressed
1764 genes in macrophage subsets (Iron-recycling, *LYVE1*⁺, MHC-II⁺ and TMLM). Each plot shows
1765 the top 10 enriched gene sets (using Gene Ontology Biological Process 2021 (left) and MSigDB
1766 Hallmark 2020 (right) databases). The x-axis shows the negative log₁₀ of the p-value adjusted
1767 for multiple testing (Benjamini-Hochberg correction); dot size is proportional to the number of
1768 genes associated with the gene set and colour represents the combined Enrichr score calculated
1769 within GSEAp. **(d)** Circos plot visualisation of selected significant (adjusted p-value <0.05)
1770 predicted interactions between TMLM and co-localising neuronal cells in prenatal skin.
1771 Arrows represent directionality of interactions (ligand to receptor); connections are coloured
1772 by sender cell type with width proportional to the CellphoneDB mean value for each ligand-
1773 receptor pair. **(e)** Heatmap of normalised (z-score) mean expression of angiogenesis gene
1774 modules in prenatal skin macrophages. CD7hiP: CD7^{high} progenitors, CD7loP: CD7^{low}
1775 progenitors, ErP: erythroid progenitors, GMP: granulocyte-monocyte progenitors, HSPC:
1776 haematopoietic stem and progenitor cells, ILC: innate lymphoid cells, LC: Langerhans cells,
1777 Mac1-4: macrophages 1-4, MkP: megakaryocyte progenitors, TML macrophage: *TREM2*⁺
1778 microglia-like macrophage, YSMP: yolk-sac derived myeloid-biased progenitors.


Extended data figure 8

1780 ***Extended Data Fig. 8. Endothelial cell heterogeneity and interactions with macrophages***

1781 **(a)** Dot plot visualisation of selected significant (adjusted p-value<0.05) CellphoneDB-
1782 predicted interactions between macrophage subsets and co-localising vascular endothelial cells
1783 in prenatal skin, grouped by function. Right: Ligand (first gene in each gene pair) is expressed
1784 by macrophages; Left: Ligand (first gene in each gene pair) is expressed by endothelial cells.
1785 Dot colour represents the mean expression values of each ligand-receptor pair for the
1786 corresponding cell pairs, dot size represents $-\log_{10}(\text{adjusted p-value})$. **(b)** Violin plots of gene
1787 module scores in prenatal skin and skin organoid endothelial cells. Scores were derived from
1788 marker genes for the different endothelial cell groups.


Extended data figure 9

1790 ***Extended Data Fig. 9. Factors driving angiogenesis and endothelial cell differentiation***

1791 **(a)** Inferred pseudotime trajectory of prenatal skin endothelial cell states coloured by
1792 gestational age (PCW). **(b)** Heat map showing differentially expressed genes across
1793 pseudotime along the ‘arteriolar’ differentiation trajectory. **(c)** Heat map showing differentially
1794 expressed genes across pseudotime along the ‘venular’ differentiation trajectory. **(d)** Heatmap
1795 showing the correspondence (measured by Jaccard index) between prenatal skin (x-axis) and
1796 blood vessel organoid cell states¹²⁸ (y-axis) for a logistic regression model trained on prenatal
1797 skin data. The top 10 predicted prenatal cell states were retained for visualisation. **(e)** Dot plot
1798 showing variance-scaled, mean expression (dot colour) and percent of expressing cells (dot
1799 size) of blood flow-related genes in prenatal skin and skin organoid capillary arteriole cells. **(f)**
1800 Heatmap of normalised (z-score) mean expression of hypoxia gene module in prenatal skin and
1801 corresponding cell categories in skin organoid. **(g)** Violin plots of ‘Tip’ and ‘Stalk’ cell module
1802 scores in prenatal skin and skin organoid endothelial cells. **(h)** UMAP visualisation of the ‘Tip’
1803 cell module score in prenatal skin and skin organoid endothelial cells.

Extended data figure 10

1805 **Extended Data Fig. 10. Macrophages support prenatal skin and skin organoid angiogenesis**

1806 **(a)** Dot plot showing variance-scaled, mean expression (dot colour) and percent of expressing
1807 cells (dot size) of pro- and anti-angiogenic factors and of corresponding receptors in prenatal
1808 skin and skin organoid endothelial cells. Genes encoding the main pro-angiogenic factors
1809 secreted by macrophages in prenatal skin are highlighted. **(b)** Dot plot showing variance-
1810 scaled, mean expression (dot colour) and percent of expressing cells (dot size) of genes
1811 (vascular endothelial growth factor receptor and endothelial differentiation genes) in prenatal
1812 skin and skin organoid capillary arteriole cells. **(c)** Gene regulation network for five regulons
1813 with high specificity score in prenatal skin and/or skin organoid capillary arterioles. Arrows
1814 indicate the direction of regulation from transcription factor to target gene. Edges show the
1815 proportion of genes shared by two regulons (colour for proportion in the larger regulon and
1816 thickness for proportion in the smaller regulon). **(d)** Gene network for five regulons with high
1817 specificity score in prenatal skin and/or skin organoid capillary arterioles (*GATA2*, *MECOM*,
1818 *SOX17*, *TAL1*, *SOX7*), and selected *GATA2* target genes. The proportion of red in the ring
1819 around nodes indicates the proportion of gene ontology terms associated with angiogenesis in
1820 the gene set enrichment analysis performed with genes in the network. **(e)** Tree diagram
1821 showing network of interactions (NicheNet) linking the ligand *VEGFA* (red) to *GATA2* as
1822 target gene (blue) through identified signalling mediators and transcriptional regulators (grey).
1823 Edges representing signalling interactions are coloured red and gene regulatory interactions in
1824 blue; edge thickness is proportional to the weight of the represented interaction. **(f)** Gating
1825 strategy used on iPS-derived macrophages before co-culture (n=1 batch, day 38 of
1826 differentiation) to isolate single live cells, analyse expression of macrophage markers (CD14,
1827 CD16, CD206) and exclude dendritic cells (CD1c). **(g)** Brightfield images of macrophage and

1828 endothelial cell co-culture at 16 hours and 48 hours of the angiogenesis assay suggesting
1829 interaction between the two cell types.