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Abstract

Reinforcement learning (RL) is a theoretical framework that describes how
agents learn to select options that maximize rewards and minimize punishments over
time. We often make choices, however, to obtain symbolic reinforcers (e.g. money,
points) that can later be exchanged for primary reinforcers (e.g. food, drink). Although
symbolic reinforcers are motivating, little is understood about the neural or
computational mechanisms underlying the motivation to earn them. In the present
study, we examined how monkeys learn to make choices that maximize fluid rewards
through reinforcement with tokens. The question addressed here is how the value of a
state, which is a function of multiple task features (e.g. current number of accumulated
tokens, choice options, task epoch, trials since last delivery of primary reinforcer, etc.),
drives value and affects motivation. We constructed a Markov decision process model
that computes the value of task states given task features to capture the motivational
state of the animal. Fixation times, choice reaction times, and abort frequency were all
significantly related to values of task states during the tokens task (n=5 monkeys).
Furthermore, the model makes predictions for how neural responses could change on a
moment-by-moment basis relative to changes in state value. Together, this task and

model allow us to capture learning and behavior related to symbolic reinforcement.

Significance statement

Symbolic reinforcers, like money and points, play a critical role in our lives. Like
rewards, symbolic reinforcers can be motivating and can even lead to compulsive

behaviors like gambling addiction. However, we lack an understanding of how symbolic
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reinforcement can drive fluctuations in motivation. Here we investigated the effect of
symbolic reinforcers on behaviors related to motivation during a token reinforcement
learning task, using a novel reinforcement learning model and data from five monkeys.
Our findings suggest that the value of a task state can affect willingness to initiate a trial,
speed to choose, and persistence to complete a trial. Our model makes testable

predictions for within trial fluctuations of neural activity related to values of task states.

Introduction

In most decision-making contexts, the objective is to maximize rewards and
minimize punishments over time. In some situations, rewards are symbolic, such as
money or points, in which case they can be exchanged for primary rewards, such as
food or drink, in the future. Past studies have shown that animals and humans will work
for symbolic reinforcers, and symbolic reinforcers can drive learning and therefore
motivate behavior (Hackenberg, 2009, 2018).

Motivation is a process that invigorates behavior in the present to reach rewards
in the future (Berridge, 2004; Berke, 2018; O’Reilly, 2020). Motivation can be studied in
the context of reinforcement learning (RL). Learning builds predictions of choice
outcomes that can be used to direct future behavior (Sutton and Barto, 1998). N-armed
bandit tasks are often used to study RL in animals. These tasks can be modeled with
Rescorla-Wagner (RW) RL models (Recorla, 1972), because the choices lead
probabilistically, but immediately, to a primary reinforcer (Bartolo and Averbeck, 2020;
Beron et al., 2022). However, one can also use symbolic reinforcers, for example,

tokens or money to drive learning (Jackson, 1996; Kirsch et al., 2003; Seo and Lee,
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93  2009; Delgado, Jou and Phelps, 2011; Taswell et al., 2018; Taswell et al., 2021;
94  Falligant and Kranak, 2022; Yang, Li and Stuphorn, 2022; Taswell et al., 2023). In these
95 tasks, subjects learn to make choices to obtain tokens, which can be exchanged in the
96 future for primary reinforcers. Token based learning tasks set up a distinction between
97 two types of cues that predict rewards in different ways. Specifically, tokens predict
98 rewards on long-time scales, deterministically, whereas choice cues predict tokens.
99  Furthermore, the relation between cues and tokens must be learned. Such tasks
100 involving symbolic reinforcement cannot be accurately captured with current RL models,
101  because the distinction between rewards and symbolic reinforcers cannot be made
102  explicit.
103 Thus, we developed a Markov Decision Process (MDP) model to characterize
104 the value of symbolic reinforcers, and the computational mechanism that links cues
105 through tokens to rewards. The MDP also allows us to model multiple factors that drive
106  value, including the time to reach primary rewards, and the probability of obtaining
107 additional rewards in the future. We can therefore use the model to establish which
108 factors most strongly drive behavior. To establish the validity of the model, beyond
109  predicting learning which can be done with RW-RL models, we examined the
110 relationship between the state value (i.e. the expected discounted sum of future
111  rewards) and behavioral measures associated with motivation. Five monkeys performed
112  atask where they learned to select images that led to gaining or losing tokens. The
113  tokens were later exchanged for juice rewards. To examine the ability of the model to
114  capture motivation, we conducted regressions between state value and change in state

115 value and three behaviors linked to motivation. To demonstrate the effect of each task
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116  dimension included in the model, we performed marginalization analyses, where each
117 feature was removed and the analyses were repeated. These analyses demonstrated
118 that all features that drove value in the model contributed to motivation. Taken together,
119  our results make predictions for how neural activity might evolve in reinforcement

120 learning circuits during a task involving symbolic reinforcement.

121

122 Materials and Methods

123

124  Subjects

125 The subjects included three male and two female rhesus macaques with weights
126  ranging from 6 to 11 kg. Four monkeys were used as control monkeys in a previous
127  study (Taswell et al., 2018). One additional monkey was a naive monkey whose first
128 task was the tokens task. For the duration of collecting behavioral data, monkeys were
129  placed on water control. On testing days, monkeys earned their fluid from performance
130 on the task. Experimental procedures for all aspects of the study were performed in

131  accordance with the Guide for the Care and Use of Laboratory Animals and were

132 approved by the National Institute of Mental Health Animal Care and Use Committee.
133

134  Experimental Design

135 We conducted post hoc analyses on previously published data (Taswell et al.,
136  2018) and data from one additional subject. We use data from one variant of the tokens

137  task, previously called Stochastic Tokens with Loss (referred to as TkS).
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138 The images used in the task were normalized for luminance and spatial

139  frequency using the SHINE toolbox for MATLAB (Willenbockel et al., 2010). Image
140 presentation was controlled by PC computers running Monkeylogic toolbox (Version
141 1.1) for MATLAB (Asaad and Eskandar, 2008; Hwang, Mitz and Murray, 2019). Eye
142 movements were monitored using the Arrington ViewPoint eye-tracking system

143 (Arrington Research).

144

145  Stochastic Tokens Task with Gains and Losses

146 Blocks consisted of 108 trials that used four novel images that had not been
147  previously presented to the animal. Each image was associated with a token outcome
148  (+2, +1, -1, -2), such that if that image was chosen, the animal gained or lost the
149  corresponding number of tokens 75% of the time and received no change in tokens

150 25% of the time (Fig. 1A).
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Figure 1. Overview of the Tokens task with stochastic rewards. (A) Flow of single trial. First
the monkey fixates on the screen and is required to hold fixation for 500 ms. Two cue images
appear on either side of fixation, each of which is associated with gaining or losing tokens (+2,
+1, -2, -1). The monkey must make a saccade to one of the images and hold their gaze for 500
ms. After a successful hold, the number of tokens associated with the chosen option appears on
the screen 75% of the time, and 25% of the time, nothing changes. After a 1000 ms intertrial
delay, the next trial begins. Every four to six trials, tokens were exchanged for juice drops 1:1
and the monkey started the subsequent trial with zero tokens. (B) The monkeys learned through
trial and error which visual images were associated with gaining tokens and which images were
associated with losing tokens. Four new images were presented every block of 108 completed
trials. Each pair of cues (six total) was seen 18 times (nine Left/Right, nine Right/Left). Image
credit: Wikimedia Commons (scene images).
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165 On each trial, monkeys had 2000 ms to acquire a fixation spot at the center of the

166  screen and were required to hold fixation for 500 ms. After monkeys held central

167 fixation, two of the four possible images would appear to the left and the right of

168 the fixation point. The animal had 1000 ms to choose one of the images by making a
169 saccade to an image and hold their gaze on the image for 500 ms to indicate their

170  choice. If the monkey moved his eyes outside the fixation window during fixation, did not
171  choose a cue, or did not hold the cue long enough, the trial was aborted and repeated
172 immediately. After a successful hold of gaze on a choice, tokens associated with the
173  image were then added or subtracted from their total count, represented by circles at
174  the bottom of the screen. Note that the animals could not have fewer than zero tokens.
175  After an intertrial interval of 1000 ms, the next trial would begin with the accumulated
176  tokens visible on the screen the entire time. Every four to six trials, tokens were

177  exchanged 1:1 for juice drops. During this cashout epoch, one drop of juice was

178 delivered and a token disappeared, until all tokens were gone. The animal did not

179  choose when to cash out, rather the probability of exchanging tokens for juice drops
180 was a uniform distribution over four to six trials.

181 There were six cue conditions in the task, defined by the possible pairs of the
182  four images. The conditions within a block were presented pseudorandomly, such that
183  the animals saw each condition twice (same images, opposite sides) every 12 trials
184  before seeing any condition a third time. This prevented strings of trials with loss v. loss
185 that could lead to abberant behaviors. At the end of each 108-trial block, we introduced
186  four new images and the animals restarted learning associations between the pictures

187  and the token outcomes (Fig. 1B). The animals completed approximately 9 blocks of
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188 images per session, and approximately 20 sessions from each animal were used for
189 subsequent analyses.

190

191 Model Framework

192 We modeled the Tokens task using a Markov decision process with partially

193  observable states (POMDP). To fit the POMDP to each animal’s behavior, we leveraged
194 the Rescorla Wagner Reinforcement Learning Model (RW-RL) to calculate the average
195 values of each of the four cue images and to verify the validity of our MDP results for
196 fitting choice probability curves across the cue conditions. Details of this process are in
197 the following sections.

198

199 Rescorla Wagner Reinforcement Learning (RW-RL) Model

200 We used a variant of the RW-RL model as was previously used to model the

201 tokens task (Taswell et al., 2018).

202 We fit a Rescorla-Wagner value update equation given by the following:

203 vi(t+1) = v(t) + ai(R - vi(t)) (D
204  where the variable v; is the value estimate for cue option /i, R is the change in the

205 number of tokens that followed the choice in trial ¢, and «; is the cue-dependent learning
206 rate parameter. In past work on this data, the model with a separate learning rate

207 parameter for each cue was found to be the best RW-RL model fit to the data. Thus, we
208 continued using this formulation of the RW-RL for these analyses, although the results

209 described in this study are not contingent on this choice.
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210 The value computed in Eq. 1 were then used to compute choice probabilities for
211 each cue pair using the softmax function:

212 di(t) = (1+ P OO )1 g,(£) =1 - d;(t)

213 (2)

214  where B, is the consistency choice parameter, fit across all six cue conditions, and / and
215 jare the two choice options. We then maximized the likelihood of the animal’s

216  choices, D, given the parameters, using the cost function:

217 f(Dlog, B*) = el di ()1 (8) + dy (), (0]

218 3)

219  where di(t) is the choice probability value for option 1 on trial t and c1(t) and cx(t) are
220 indicator variables that take on a value of 1 if the corresponding option was chosen and
221 0 otherwise. This model was fit across blocks in each session for each monkey to give
222  one set of fit parameters for each session.

223 Mean cue values as a function of learning trial in each block from the RW-RL
224  model were used to generate transition probabilities for the MDP discussed in detail
225 below. To extract mean cue values, all v; for a single cue were averaged across

226  sessions. This produced four curves that reflected the change in cue value across trials

227  for each animal (Fig 2A, 2B).

A B
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229  Figure 2. Mean cue values extracted from the RW-RL model and transition probabilities
230 for change in tokens given a cue image selection. (A) Mean cue values across number of
231  observations of a cue pair (NObs) are plotted for each of the four cues in the stochastic tokens
232 task (error bars s.e.m. across monkeys). The +2 curve is the highest, followed by the +1 curve,
233 reflecting how the animals learned to select the +2 and +1 image cues. -2 and -1 curves are
234  similar, reflecting that the animals did not learn the value differences between the -2 and -1 cue
235  options. The mean values were extracted from the RW-RL model fits to each monkey. Each
236 data point is an average of the three conditions in which the cue was observed. For example, for
237  the +2 curve, a single data point would be the average value of the +2 cue value from the

238 conditions +2 v +1, +2 v -2, +2 v -1. (B) Example set of curves from Monkey U with scaling

239  applied to the variance (see Methods) and scaling parameter fit during the MDP fitting process
240 and derivation of a subset of transition probabilities. Left: (1) +2 cue value highlighted early in
241  learning at trial 3. (2) +2 cue highlighted late in learning at trial 16. Error bars are the mean

242 variance across blocks and solid lines show the cue values with the parameterized scaling

243  factor. Right: Plot of a subset of transition probabilities derived from mean value curves for the
244  +2 v +1 condition and choice of +2 for each possible token outcome. p(Atk=0|choice +2 cue) is
245  always 0.25 and is not shown.

246

247  Markov Decision Process (MDP) Model

248 The MDP model computes the value of each task state. Task states were

249  defined by four features of the task: number of tokens (NTk), trials since cashout

250 (TSCO), task epoch (TE), and number of observations of a cue pair (NObs). The state
251  space included all possible combinations of these features across a single block of

252 trials, such that the bounds for each feature were: NTk: 0-12, TSCO: 1-6, TE: 1-10

253 (which included fixation, 6 cue conditions, token outcome, cashout, intertrial interval),
254  NObs: 1-18. Using NObs as a feature allowed us to avoid having to track each time a
255 cue was shown, chosen and rewarded across trials, and to reduce the size of the state
256  space by 18'2 states, which also made a tabular form of the model tractable. The model
257  of the task was in epoch time (i.e. event based), rather than true time (i.e. seconds

258  based).

259 The state space can be considered as a graph with edges and nodes, where the
260 states are defined by the possible combinations of these features, and the edges are

261 the transitions to future states. A trajectory through the state space represents one trial
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262 and as the model proceeds through a block, the trajectory traverses through the state
263  space.
264 The state value, sometimes called state utility, u(s;), was calculated using the

265  equation:
266 u(sy) = max [ (s, ac) + Y Zjesee, PUlSe a)u ()] (4)

267 where s;is the state, a;is the action taken at that state, u(s;) is the state value, r(s;, a;)
268 is the immediate reward, y is the discount factor, p(j|s;, a;) is the transition probability to
269 future state j and St+7 is the set of immediate future possible states from state s:. A

270  range of discount factors (y=0.8, 0.85, 0.9, 0.95, 0.99, 0.999) were tested. y=0.999

271  produced the least error for the regressions and was used for all analyses. We used
272 value iteration to fit the MDP (Puterman, 2014). The algorithm loops over all possible
273  states and recomputes Eq. 4 until both the policy and state values converged. This took
274  approximately 100 iterations across the state space for each MDP that was fit.

275 The transitions between states include: fixation to the six cue states, cue state to
276  token update, token update to cashout or intertrial interval and intertrial interval to

277 fixation. The transition probabilities from fixation to any cue state were modeled as

278  pcues=1/6 a there were 6 possible cue pairs. The transition probabilities from token

279  update to cashout were pcashout=0 for TSCO 1-3, pcashout=0.33 for TSCO 4, pcashout=0.50
280 for TSCO 5, pcashout=1.0 for TSCO 6. Transition probabilities for the transition to a

281 change in tokens given a cue image selection, i.e. p(change in tokens | image choice in
282  agiven condition), were fit using the behavioral data and average cue values that were
283  extracted from the RW-RL model fits. Thus, this is not an ideal observer estimate, but

284  rather our inference of the monkey’s estimate. These transition probabilities represent
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285 the monkey’s mapping of individual cues to outcomes, i.e. which picture leads to +2
286 tokens. The cue values are related to this mapping, thus making the RW-RL values an
287  approximation to the process by which the animal learns the outcomes related to each
288 cue image (Fig. 2).

289 We had to infer the monkey’s estimate of the number of tokens they would

290 receive when they chose a given option. For example, in the first trial of a new block,
291 the monkeys had no experience with any options, and therefore they should assume
292 that choice of any option could lead to either -2, -1, 0, 1, or 2 tokens. However, after 10
293 trials the monkeys had a reasonable estimate of the token outcomes associated with
294  each option. This process makes the MDP have partially observable states, as we

295 estimate the transition probabilities using mean values from the RW-RL model. We

296 carried out this estimate in two steps. First, we calculated the value estimates for each
297  option, as a function of the number of trials they had seen each option using the RW-RL
298  algorithm value estimates (Fig. 2). We then used these estimates to calculate the

299 posterior probability that choice of a given cue would lead to a given outcome (i.e. Atk).
300 For the outcome of no tokens, p(Atk = 0) = 0.25. For all other possible outcomes, the

301 following equations were used:

302 p(Atk = {+2,+1,-2,-1}) = 7 (5)
303
V., o|Atk)p(Atk)
304 p(Atklve,) = 2rauel 0P 6)
1 (_1 (xcue—ﬂj)z)
305 P(WeyelAtk = j) = m/ﬁe 2 ot 7

306
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307 P(Wene) = X1 P (Vewe| Atk;)p(Atk;) ®)
308 and where v, is the mean value of a single cue for a given NObs, Atk= +2, +1, -1, -2,
309 «x is the mean of the cue value of the chosen option, and u is a mean value of one of the
310 other cues. Transition probabilities were calculated for all possible choices and NObs
311 and were not dependent on other MDP features such as NTk or TSCO. For example, 3
312  trials into the block, mean cue values were 0.17, 0.11, -0.01, -0.01 for the +2 cue, +1
313  cue, -1 cue, and -2 cue, respectively (Fig. 2B). To calculate p(Atk = +2|v.,. = 2) (i.e.
314 the probability of receiving 2 tokens for choosing the +2 cue), x=0.17, u;=0.11, u,= -
315  0.01, u3=-0.01, which produces p(Atk = +2|v.y. = 2)=0.24 in the +2 versus +1

316 condition. Later in the block, for example on NObs=16, mean cue values were 0.66,

317 0.36, -0.03, -0.04 for the +2 cue, +1 cue, -1 cue, and -2 cue, respectively. At this point in
318 learning, p(Atk = +2|v.. = 2)= 0.52 in the +2 versus +1 condition.

319 The mean cue values were used to fit the set of transition probabilities

320 p(Atk|choice) for Atk= 0, 1, 2, -1, -2 and choice= cue 1, cue 2. First, an MDP was fit

321 using the mean cue values for each animal in order to compute a converged policy of
322  choices and action values without any free parameters. These MDP models captured
323  general trends of behavior to select the better options (i.e. an optimal MDP) but showed
324 faster learning than the animals learned. To better match animal learning behavior, we
325 optimized the transition probabilities underlying the behavioral performance of the MDP.
326 To optimize the set of transition probabilities p(Atk|choice), mean cue values

327 were used with two free parameters: (1) a scaling parameter for the mean cue values
328 such that:

329 Veue = K * Vcye 9
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330 for all mean cue values and (2) an inverse temperature parameter for the choice

331  probability (BMPP). In addition, the variance on the mean value curves for each animal
332 was set to the average variance across all four cues, allowing variance to vary across
333 trials, but not across cue values. Using the initial MDP fit and the behavioral data from
334 the task for each animal, the two free parameters were fit jointly by minimizing the error
335 between the MDP choice probability and average performance across sessions for each
336 monkey (Table 1). The resulting parameters and transition probabilities were then used

337 to refit the MDP until the state values and policy reconverged.

Monkey Mean value scaling | Choice probability
parameter (k) parameter (BMPP)

Monkey U 0.45 2.77

Monkey B 0.71 1.87

Monkey S 1.04 1.15

Monkey P 1.14 1.34

Monkey A 0.53 2.24
338 Table 1. MDP free parameter values for each monkey. Two parameters were optimized to
339  minimize the error between the MDP choice probability and the monkey’s choice behavior. The
340 mean value scaling parameter acted as a scalar on the variance of the value curves (Eq. 9).
341  The choice probability parameter was the inverse temperature parameter used to calculate the
342  choice probability using action values derived from the MDP.
343
344 In addition, MDP models were fit using a range of discount factors (y = 0.8, 0.85,
345 0.9, 0.925, 0.95, 0.99, 0.999) for each animal’s dataset. To determine the discount
346 factor that produced the best fit to behavior, each y was used to regress on fixation
347 reaction times, choice reaction times, p(Abort) and to produce choice probability curves
348 for the six conditions (see below for details on the regressions). For all monkeys, y =
349  0.999 produced the best fits to these behavioral data metrics, and thus, y = 0.999 was
350 used for all models.

351
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352 Regressions and Statistical Analyses

353 Comparison of performance of the MDP and RW models at predicting choice
354  behavior was conducted using a comparison of correlation coefficients. Correlation
355 coefficients (r1, r2) were calculated between the average choice behavior and each

356 model separately. The values were then Fisher-z transformed to compute a p value for
357 atwo-sided test for differences between the correlation coefficients.

358 State values were extracted for all trials and epochs using the MDP fits for each
359 animal. This produced a table of states such that the value of each state was: u(s;) =
360 f(NTk,TSCO,TE,NObs). These state utilities were used to characterize trial-by-trial
361 relationships to reaction time to acquire fixation, choice reaction time, and trial aborts.
362 Mean reaction times (RT) were computed by averaging reaction times across
363  blocks of trials and then averaging across sessions for each monkey. Scatter plots of
364 RTs from individual sessions do not include outlier reaction times. Outlier RTs were
365 removed using Tukey’s method: RT > q0.75+ 1.5*IQR and RT< q0.25 — 1.5*IQR, where
366 IQR is the interquartile range.

367 To assess the relationship between state value and reaction times to acquire
368 fixation, linear regression on state value was performed such that:

369 log (RTqcquire_fixation) = Bo + Bvey, Vrix 9
370  where Vg, is the value of the fixation state. Reaction times were log transformed before
371 the regression.

372 To assess the relationship between state value and reaction times to choose,

373 linear regression on state value was performed such that:

374 log (RTacquire_fixation) = Bo + ﬁchchue + Bav(AV) (10)
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375 where I, is the value of the cue presentation state and AV =V, — V;, . Reaction
376 times were log transformed before the regression.

377 To assess the relationship between state value and the probability of aborting a
378 trial, logistic regression on state value was performed such that:

379 p(Abort) = (1 + e~ (Pot BveyeVeuet Bav(aV)) )1 (11)
380 where I, is the value of the cue presentation state and AV = V., — Vi, . We

381 additionally assessed the effect of cue condition on p(Abort) using a mixed effects

382 ANOVA, where monkey was the random effect and cue condition was the fixed effect.
383 To assess whether regressors were significantly different than zero, for each
384 animal, t-tests on the distributions of beta values across sessions for each regressor
385 were performed for each animal. These values are reported in the text. Mean

386 parameter values did not appear to be Gaussian distributed across monkeys.

387 Therefore, to assess whether the regressors were significantly less than zero at the
388 group level, the non-parametric Wilcoxon signed-rank test was used on the distribution
389 of mean parameter values across animals. Results of these tests are reported in the
390 figure captions and text. To show group trends in relationships between reaction times
391 and regressors, 1D kernel smoothing was conducted on each monkey’s data with ¢ =
392 0.5 with a Gaussian kernel.

393 We also sought to examine the contributions of the different variables that

394 defined the state to each regression by marginalizing over one factor at a time, to

395 remove its effect, and carrying out the correlation analyses. To perform this

396 marginalization, we averaged over the state values for all possible values of a single

397 feature, given the other features. For example, to compute state values for all features
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averaging over NTk, with TSCO = 4,TE = 1, NObs = 12, we computed Vy;,,=
mean(f(NTk = 0:8,TSCO = 4,TE = 1, NObs = 12)), as NTk=8 is the maximum number

of tokens possible when TSCO=4.

Code Accessibility
All code used to generate the results in this manuscript can be accessed on GitHub

here: https://github.com/dcb4p/mdp tokens.

Results

Five monkeys were trained on a stochastic tokens task (Taswell et al., 2018)
(Fig. 1). Briefly, each block of the task used four novel images, and choice of each
image led to a different possible token outcome (+2, +1, -1, -2). In each trial, two of the
four images were presented as options, and the monkey made a saccade to one of the
cues and held their gaze to indicate their choice. After the choice, the monkey received,
stochastically, the corresponding change in tokens on the screen. In 75% of the trials
they received the number of tokens associated with the cue and in 25% of the trials the
number of tokens did not change. Every four to six trials was a cashout trial. In cashout
trials, the monkey received one drop of juice for each accumulated token. The monkey
would then start over accumulating tokens until the next cashout trial. Each of the pairs
of cue images (six total) were presented 18 times during a block of trials. At the end of
the block, the four cue images were replaced with novel images, and the monkey
restarted learning the associations between the images and token outcomes.

Behavioral performance and learning were assessed for each animal by the increasing
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421  frequency with which the monkeys chose the image associated with the better option in
422  each condition over the course of a block.

423 In this task the monkeys were not given rewards on every trial. Rewards were
424 only given at the time of cashout when tokens were exchanged for juice. Commonly
425 used RL models, such as the Rescorla Wagner model (RW) (Sutton and Barto, 1998),
426  do not make a distinction between symbolic reinforcers and primary rewards and

427  therefore they do not have a natural way to model the difference between primary and
428 secondary reinforcers. To address this, we developed a state-based, Markov decision-
429 process model of the stochastic tokens RL task to capture the relevant features of the
430 task that would affect motivation and choice behavior. Within MDP models, values and
431 available actions are defined by the current state. In our model, the state is a function
432  of the number of tokens (NTK), trials since cashout (TSCO), task epoch (TE) and

433  number of observations of each condition within the block (NObs). The state space

434  consists of all possible combinations of these four features. The model, once trained,
435 has states that inherit value from their proximity to the true rewarding state (cashout),
436  similar to how a well-trained monkey expects to earn juice in the future.

437 State values are given by the maximum action value in each state. State values
438 and action values are equivalent in all epochs except the choice epoch, because only
439 one action is possible in the other epochs. Rewards are only delivered in the cashout
440 period, and therefore immediate expected values, r(st, at) are 0, except in the cashout
441  period when more than 0 tokens have been accumulated. In all other states, immediate
442  expected values are 0, and state values are future discounted expected values, all of

443  which are filtered through the graph from the cashout period. Thus, future expected
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444 values in each state follow from the features of the task that predict the delay to and

445  size of the reward that will be delivered in cashout.

446 For example, the value of the fixation state is a combination of the number of

447  tokens accumulated, trials since cashout, and number of observations of the cue pairs
448  witnessed up until that trial (Fig 3). The value of the fixation state is the sum of the

449 immediate expected value (which is 0 at fixation because no juice is ever delivered) and
450 the future expected value, which is the expected value of the next state (i.e. the average
451  over the cue states, each of which occurs with a probability of 1/6). Thus, state value in

452  the fixation state is inherited from the values of the cue states.

oled o Lo .
U(Sqpor)= f (NTK=3, h - @’: ssese
TSCO=4, TE=1, NObs=1) _17 \7
- 15 T
N cues token update
t#
fixation

Trial 1

T1) T2 T3

pAtk | choice p
cashout

cashout
intertrial
interval
-~
453 Q

454  Figure 3. Overview of task state space for Markov Decision Process (MDP) framework.
455  Each circular node represents a state given by a set of task features: token count (NTk), trials
456  since cashout (TSCO), task epoch (TE), number of cue condition observations (NObs). Each
457  edge of the graph represents a transition probability, or the transition between states that could
458  be deterministic (p=1) or probabilistic (p <1). A single trial is highlighted and the progression
459 from each step in the task is shown for an example trial that ends in a cashout. The example
460 trial starts at fixation and the monkey has three tokens, making the value of the state f(NTk=3,
461 TSCO=4, TE=1, NObs=1). The transition probability pc.es=1/6 and represents the probability of
462  any of the six cue conditions being the next state. At the cue states, the monkey must make a
463  choice, and the model captures this choice policy behavior. The next set of states after the cue
464  state is the outcome state; the transition is governed by the transition probability patichoice 2. In
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465 the example, the monkey receives 2 tokens and the model receives 2 tokens. After the outcome
466 state, the monkey can transition to the intertrial interval or cashout; the transition to this state is
467  governed by pcasnout. During cashout, one drop of juice is exchanged for each token and all the
468 tokens disappear before proceeding to the next intertrial interval and subsequent trial. Image
469  credit: Wikimedia Commons (scene images).

332 In each cue state, there is a choice between the two cues, which then leads to
472  the token outcome states. As five of the six possible cue conditions have gain

473  outcomes (once the monkey learns to select the better option), the state values of the
474  cue conditions reflect this possible gain as it develops with learning. In the outcome
475  states the monkey can receive +2, +1, 0, -1, or -2 tokens. As there is also no immediate
476  reward available during the cue states, state value comes from the future expected

477  value of the intertrial interval or cashout states.

478 The monkey learns to choose options that maximize gaining tokens over losing
479  tokens. We modeled this learning as an inference over the token outcome distribution
480 associated with each choice, using a parameterized function of the number of times an
481  option had been chosen. The model, which generated an estimate of the transition

482  probabilities from cue to token outcome (patchoice), Was fit to each monkey’s choice
483  behavior. Unlike the transition from the fixation state to the cue state (pcue), the

484  probability of transitioning to each outcome state (paiu|choice) Changes as the monkey
485 learns the associations between the cue options and token outcomes. For example, at
486 the start of a block, the monkey does not know which cue image predicts which token
487  outcome, and patk=+2|choice = Patk=+1|choice = PAtk=-2|choice = Patk=-1|choice. ONCE the monkey
488 learns which cue image is associated with +2 tokens, they are more likely to select that

489  option, and we assume they infer that the probability of getting two tokens, patk=+2(choice,

490 is larger given choice of that option. Thus, the transition probabilities change over the
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course of a block as the number of times the cue pair has been observed (NObs)
increases. The changes in these transition probabilities reflect learning (Fig. 2B,C).

At the time of token outcome, the next possible states are either the intertrial
interval or cashout, governed by the transition probability pcashout- This transition is a
feature of the task and does not change with learning. At the time of cashout, the state
value is the sum of the immediate reward (1 drop of juice per token present) and the
next state, which is the intertrial interval, with zero tokens. In the model, this means
state value will drop after cashout if the monkey cashed out tokens for juice, as the state

value depends on the number of tokens.

Changes in task features drive fluctuations in state value

State values change with variation of each state feature. For example, having
more tokens increases state value (Fig. 4A). Being closer to the cashout state (e.g.
TSCO >4) also increases state value (Fig 4B). As the monkey proceeds through the
task epochs (i.e. fixation, cue onset, outcome, cashout or intertrial interval), the state
value will also increase for conditions where tokens can be gained, and more subtly,
because one is also getting closer to cashout (Fig. 4C). For the -2 v. -1 cue condition
where tokens can only be lost or maintained (if there is a no change outcome), the
value of the state either decreases or increases marginally approaching cashout (Fig
4D). In the first trial of a block, when the monkey has started learning the associations
between cues and outcomes (i.e. NObs =1), the best option in a pair of cues will be
ambiguous. This is reflected by identical state-action values in the model (Fig. 4E).

Near the end of the block, when the monkey
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515 Figure 4. How changes in state features can affect state value (example from Monkey B).
516 (A) Fixation state value (Vix) versus token count (NTk). As NTk increases, state value

517 increases. For one trial since cashout (TSCO=1), only 1 trial has been completed, so the

518 maximum number of tokens available is two. As the TSCO increases, juice will be delivered
519 sooner, which is reflected by higher state value. (B) Fixation state value (Vix) versus trials since
520 cashout (TSCO). As TSCO increases, the state value increases when there is more than one
521  token (NTk=1, NTk=2). If there are zero tokens (NTk=0), then state value increases until

522  TSCO=4. When cashout becomes possible, state value begins to decrease when there are no
523  tokens, because a cashout epoch can occur, with zero juice delivery, resetting the interval

524  before juice can be delivered again. (C) State value versus task epoch for a single cue condition
525 +2vs +1. As the model proceeds through a trial, state value changes depending on task epoch
526  and outcome. In this example, there is one token at fixation (red dot, far left) and three traces
527  are shown, one to represent each possible outcome (+2 tokens, +1 token, 0 token change).
528  State value increases for gaining tokens and decreases slightly when no tokens are gained.
529  State value at cashout corresponds to the token count. The state value is identical for all three
530 outcome traces during the intertrial interval after a cashout. (D) State value versus task epoch
531 for a single cue condition -2 vs -1. In this example, there are two tokens at fixation (red dots, far
532 left) and three traces are shown, one to represent each possible outcome (-2 tokens, -1 token, 0
533  token change). State value decreases when tokens are lost and stays constant when the

534  outcome is zero tokens. At the time of cashout, state value depends on whether tokens are

535 present. Like in (C), the state value is identical for all three outcome traces during the intertrial
536 interval after a cashout. (E) Cue state value (Vcue) versus number of observations of a cue pair
537 (NObs). As NObs increases, the state value increases for all cue conditions that include the
538 Dbest option (+2 tokens). The state value for the cue conditions with the +1 option decreases with
539 learning and plateaus. The state value for the loss vs. loss condition (-2 v -1) decreases with
540 NObs. (F) Fixation state value versus NObs. As NObs increases, the value of the fixation state
541 increases. As the monkey proceeds through a block, they learn the associations between the
542  cue images and token outcomes, and it is more likely the monkey will select the better options
543  (+2 and +1). In the MDP, this means that as NObs increases, it will be more likely that tokens
544  will be received, which causes an increase in the future expected value and thus state value.
545

546  knows which cues correspond to +2 and +1 tokens (e.g. NObs 18), the state action

547  values will reflect the knowledge of the best option and the state values at the time of
548 the cue state will be higher for the conditions with +2 or +1 cues (Fig. 4E). Even though
549 the fixation state precedes the cue state, the number of observations also affects the
550 value of the fixation state and causes it to increase as NObs increases, because the
551 monkey can make better choices when the options are presented (Fig. 4F). The

552 minimum state value is at the baseline for all features, i.e. NTk=0, TSCO=1,

553  TE=Fixation, NObs=1 (Fig. 4F, NObs=1).
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554 The exact value of the baseline state value and the relationship between NObs
555 and the fixation state value vary by model (i.e. monkey). This relationship is affected by
556 three things: the token outcome transition probabilities, the discount factor, and number
557 of iterations for fitting the model. The discount factor was 0.999 for all monkeys, and the
558 number of iterations for fitting each model was constant. Only the token outcome

559 transition probabilities (patchoice), Which were fit to each monkey’s behavior, vary

560 between monkeys in the models. Therefore, the larger the token outcome transition
561 probabilities to gain outcomes, the larger the initial state value even at the time of

562 fixation. In other words, when the monkey learned faster, these transition probabilities
563 changed faster, and state value increased faster with NObs.

564

565 State-based MDP model of symbolic reinforcement captures learning behavior
566 To test the validity of the choice policy of the MDP model for each monkey, we
567 calculated the choice probabilities produced by the choice policy of each MDP, after
568 passing action values through a softmax. After fitting an MDP to each monkey, choice
569 probability was calculated using the action values for each choice in each cue condition,
570 for each trial in a block (NObs 1-18). The action values were passed through a softmax
571  with an inverse temperature parameter  (see methods), which controlled the

572  stochasticity of the choice policy given two action values. Average choice probability
573 across animals demonstrated that the choice probabilities produced by the MDP

574  produced similar fits to the behavioral data to the RW-RL model, with no statistically
575  significant difference between the correlation coefficients computed from the behavioral

576 data and the two models (rrw= 0.9904, ruor= 0.9868, difference in correlation: p= 0.25,


https://doi.org/10.1101/2023.10.11.561900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561900; this version posted October 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

577  Fig. 5). This verified that the MDP captures choice behavior in the task, over and above
578 its ability to model future state values. Further analyses using state values are,

579 therefore, grounded in an accurate representation of choice behavior.
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581 Figure 5. Average performance in the tokens task and model fits. (A) Average performance
582 and RW-RL model fits for all subjects (n=5) monkeys in the six task conditions (s.e.m. across
583 animals). (B) Same as (A) but average MDP choice probability instead of RW-RL model fits.
584

585 Time to acquire fixation is related to the value of the fixation state

586 We next examined whether the MDP state values could be used to predict

587 motivation in monkey behavior. The first question was how state value might affect the
588 initiation of a trial, which has been previously shown to be affected by motivation (Hamid
589 etal., 2016; Oemisch, Johnston and Paré, 2016; Mohebi et al., 2019; Steinmetz et al.,
590 2019). For example, if the monkey has multiple tokens at the start of a trial, might they

591 be more motivated to initiate a trial, than in the case when they have no tokens (Fig.


https://doi.org/10.1101/2023.10.11.561900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561900; this version posted October 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

592 6A)? However, token count is not the only task feature that could affect motivation in
593 this task. Thus, we used the value of the fixation state (Vsx) from the MDP to relate all

594 relevant task features (NTk, TSCO, TE, NObs) on a trial-by-trial basis to the time it took
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595

596 Figure 6. Reaction time to acquire fixation. (A) An example case of when motivation might
597 differ in the tokens task at the time of fixation. (B) Mean regression coefficients across animals
598 from the linear regression on Viy (bar plot) and mean beta values across sessions for each
599 animal (dots). (* indicates p< 0.05). Note that regressions were conducted on log(RT). (C) An
600 example set of reaction times from a single session from Monkey A showing a decrease in
601 reaction time to acquire fixation as Vi increases with an overlay of the regression line. Values
602  near zero indicate trials in which the monkey was already within the fixation window when the
603 fixation cue appeared. (D) Kernel smoothed, averaged mean reaction times for each monkey
604  versus V. Average reaction times across sessions are shown for each animal in a different
605 color indicated by the legend. The average of all animals is shown in grey, with error bars

606  showing the standard deviation across animals.

607

608 the animal to acquire the fixation spot. We conducted a linear regression for each

609 session of data from each animal and calculated the average regression coefficient
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value for each animal (Fig. 6B). Mean regression coefficients for Viix (Bvix) were
significantly less than zero at the group level (p= 0.0312, Wilcoxon signed-rank test). All
five of the individual distributions of regression coefficients for each animal were
statistically significant (1(20)= -5.78; t(22)= -9.48; t(16)= -11.74; t(19)= -28.18; t(19)= -
19.37; p<0.0001). Thus, as the value of the fixation state increased, reaction times

decreased (Fig. 6C) and this was true for all five monkeys (Fig. 6B, 6D).

Choice reaction time is related to the value of the cue state and change in state
value

Next, we asked whether choice reaction times were related to the value of the
cue state (Vcue) and the change in value between the cue onset and fixation state (AV=
Veue - Viix), Which would reflect an impending gain or loss of tokens from selecting a cue.
For example, if the cue condition was loss v. loss (-1 vs. -2), the monkey might be
slower to choose an option than in the case of gain v. gain (+1 vs. +2) where there is a
preferred option (Fig. 7A). We conducted a linear regression of Vcue and AV on reaction
times for each session of data from each animal and calculated the average regression
coefficient for each animal (Fig. 7B). Mean regression coefficients Bvcue and Bav were
significantly less than zero at the group level (p= 0.0312, Wilcoxon signed-rank test).
This meant that as the value of the cue state increased, reaction times became faster,

and as the change in cue value became more positive, reaction times also
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631 Figure 7. Reaction time to choice. (A) An example case of when motivation might differ in the
632  tokens task at the time of image cue presentation. Image credit: Wikimedia Commons (scene
633 images). (B) Mean regression coefficients cross animals from the linear regression on V¢, and
634 AV (bar plots) and mean beta values across sessions for each animal (dots). (* indicates p<
635  0.05). Note that regressions were conducted on log(RT). (C) Example set of reaction times from
636 a single session from Monkey S showing a decrease in choice reaction time as Ve increases
637 and AV becomes more positive with regression fits overlayed. (D) Kernel smoothed, averaged
638 mean reaction times for each monkey versus V. and AV. Average reaction times across

639 sessions are shown for each animal in a different color indicated by the legend. The average of
640 all animals is shown in grey, with error bars showing the standard deviation across animals.
641

642 became faster (Fig 7C, 7D). Four of the five individual monkey distributions of Bvcue,

643  where session was the repeat, were statistically significant ( t(20)=-2.19, p <0.05; t(22)=
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-6.62, p <0.0001; t(16)= -3.44, p <0.005 ; t(19)=-1.98, p =0.06 ; t(19)=-14.78, p
<0.0001). Five of the five individual distributions of Bav were statistically significant
t(20)=-7.29, p <0.0001; t(22)= -8.86, p <0.0001; t(16)= -3.22, p <0.01 ; t(19)=-3.89, p
<0.001 ;t(19)=-9.98, p <0.0001). In summary, this demonstrated that as the value of
the cue state was higher, choice reaction times were faster for all animals. These
analyses also demonstrated that when the change in state value from fixation to cue

(AV) was positive, reaction times were also faster.

The probability of the monkey aborting a trial is related to the value of the cue
state

To investigate the relationship between the completion of a trial and state value,
we related the frequency of trial aborts to state value by looking at all trials in a session
and analyzing both complete and incomplete trials. If the monkey moved his eyes
outside the fixation window during fixation, did not choose a cue, or did not hold the cue
long enough, the trial was aborted and repeated. Given that the monkeys do not learn to
pick the smaller loss well in the loss vs. loss condition (Fig. 5), it might be more likely
that the animal aborts these trials to avoid losing tokens (Fig. 8A). Indeed, past work
has shown that monkeys are more likely to abort cue conditions with two loss cues
(Taswell et al., 2018). We found a significant effect of cue condition on the frequency of
aborts (mixed effects ANOVA, main effect: cue condition F(5, 29)=7.86, p<0.001;
random effect: monkey F(4,29)=51.14) (Fig. 8B). We next asked whether cue state

value and changes in state value were related to the probability of aborting a trial by
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666  conducting logistical regression on cue state value (Vcie) and the change in value

667 between the cue state and
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669  Figure 8. Probability of aborting a trial. (A) An example case of when motivation to complete
670 a trial might differ in the tokens task at the time of image cue presentation. Image credit:

671  Wikimedia Commons (scene images). (B) Average proportion of aborts in each task condition
672 (s.e.m. average across n=5 monkeys, * indicates p< 0.05). (C) Mean regression coefficients
673  across animals for the logistic regression on Ve and AV. Only the regressor for Vee was

674  statistically significant. (D) Kernel smoothed, averaged mean reaction times for each monkey
675  versus V. Average proportions of aborts across sessions are shown for each animal in a

676 different color indicated by the legend. The average of all animals is shown in grey, with error
677  bars showing the standard deviation across animals.

678
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679 fixation state (AV= Vcue - Vsx). The distribution of mean regression coefficients Bvcue was
680  significantly less than zero at the group level (p= 0.0312, Wilcoxon signed-rank test)
681  whereas Bav did not emerge as significant (p=0.4062, Wilcoxon signed-rank test),

682  suggesting that changes in state value were not the main factor related to abort

683  behavior (Fig. 8C). Four of the five individual distributions of Bvcue Were statistically
684  significant (t(20)=-3.33, p <0.01; t(22)=-19.78, p <0.0001; t(16)= -3.46, p<0.01; t(19)= -
685 1.94,p =0.068 ;t(19)=-14.78, p <0.0001). Overall trends across animals showed that
686 as the value of the cue state increased, the probability of aborting decreased (Fig. 8D).
687

688  All MDP state features contribute to state values

689 We next examined whether token count was the only driving force for the

690 correlations found between state values and behavior. As was shown, current token
691  count strongly influenced state value (Fig. 4). To assess the contribution of each of the
692 features in the MDP to the regression results, we marginalized across each feature,
693  thus removing the effect of variation in that feature on state value, and recomputed the
694 regressions. For example, to marginalize over token count, state values for each trial
695  were extracted using only the other features (TSCO, TE, NObs) after averaging over the
696 values for all possible values of token count. The average of these state values was
697 used as the single trial state value for the regressions.

698 For reaction time to acquire fixation, all distributions of regression coefficients
699 remained statistically significant for each marginalized version of the regression (Fig.
700 9A). Removing token count from the regression had the largest effect on reducing the

701 relationship between Vix and reaction time to acquire fixation. Removing TSCO and


https://doi.org/10.1101/2023.10.11.561900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561900; this version posted October 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

702  NObs in the regression for reaction time to acquire led to an increase in beta values,
703  which suggests these factors interact and affect the regression, but are less important
704 than token count in the regression. For both choice reaction time and probability of

705 aborting a trial, regressions were recomputed using only one regressor, for Vcue. This
706  was because removing the cue condition from the regression caused AV=Vue-Viix to go
707 to zero and therefore made the regressions uninterpretable. Marginalizing over cue

708 condition or tokens in the regression for choice reaction times reduced the magnitude of
709 the regression coefficients (Fig. 9B). This reflects a weaker relationship between the
710 state value and reaction times without these features. In the logistic regression for

711  aborts, marginalizing over tokens also had the largest effect on the regressors, but did
712 not eliminate the relationship between state value and the probability of aborting a trial
713  (Fig. 9C). Taken together, these analyses show that the number of tokens strongly

714  affects all behavioral measures but is not the only factor leading to the relationships

715  between behavior and state value.

716
RT Acquire Fixation RT Choice P(Abort)
° HE
-0.004 ' m .
che
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718  Figure 9. Marginalization over features. Linear regressions for each behavioral feature were
719  recomputed using state values that omitted the effect of a single feature at a time: number of
720  tokens (NTKk), trials since cashout (TSCO), number of observations of a cue pair (NObs), Task
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721  Epoch (TE, condit). Mean regression coefficients across animals are shown (bar plots) and for
722  each subject (dots) for three behavioral features: (A) RT to acquire fixation (B) RT to choice (C)
723 Probability of aborting trials. Error bars s.e.m.

724

725 Discussion

726 In this study, monkeys learned to make choices to maximize gains and minimize
727 losses of tokens. The tokens were symbolic reinforcers that represented future juice
728 rewards. We designed a Markov Decision Process (MDP) model to capture the

729 relationship between features of the task that drive behavior (i.e. states) and value. We
730 then related these state values to measures of motivation. The state space for the task
731  included the number of tokens (NTk), trials since cashout (TSCO), task epoch (TE), and
732 the number of observations of each cue pair (NObs). We found that reaction times to
733  acquire fixation, choice reaction times, and the probability of aborting a trial were

734  significantly related to state value and changes in state value (except abort probability).
735 Furthermore, we demonstrated that state values were dependent on all state features,
736  not just the number of tokens. Number of tokens did, however, often have a large

737  effect. These relationships between state value and behavior cannot be captured by
738 simpler models such as the Rescorla-Wagner model, as these models are stateless and
739 therefore cannot capture state values that depend on future rewards, nor can they

740 account separately for tokens vs. primary rewards. Given that the MDP also allows for
741  modeling trial state-dependent values, it can also be used in future work to understand
742  the neural circuitry relevant to the task.

743 Past work has shown that symbolic (or secondary) reinforcers can drive learning

744  and have motivational properties similar to those of primary rewards (Wolfe, 1936;

745  Woyckoff, 1959; Jackson, 1996; Sousa and Matsuzawa, 2001; Seo and Lee, 2009;
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746  Donahue and Lee, 2015; Farashahi et al., 2018; Taswell et al., 2018; Beran and

747  Parrish, 2021; Yang, Li and Stuphorn, 2022; Taswell et al., 2023). This happens through
748 the learned associations between tokens and primary reinforcers. In this task, tokens
749  and cue images both predict rewards, although in different ways. Cues are

750  stochastically linked to tokens on short timescales, whereas tokens are deterministically
751 linked to juice on longer timescales. Cues, therefore, predict rewards, but only through
752  tokens. The cues also change in each block, which requires rapid learning of the cue
753  values, whereas the relationship between tokens and juice is stable and constant over
754  the course of the experiment. The state-based modeling framework presented here

755 accounts for the differential attributes of cues and tokens and allows for examining

756  behavioral measures related to motivation, including trial initiation time, choice reaction
757  times, and trial aborts.

758 The time to initiate a trial has been studied previously as a measure of motivation
759 (Hamid et al., 2016; Oemisch, Johnston and Paré, 2016; Mohebi et al., 2019; Steinmetz
760 etal., 2019). In a task which required rodents to nose poke after a light went on, rodents
761  were faster, interpreted as increased motivation, when reward rate was higher (Hamid
762  etal., 2016; Mohebi et al., 2019). When we investigated the relationship between state
763  value and reaction times to acquire fixation, we found that a higher state value

764  correlated with faster reaction times to acquire fixation. This implies a somewhat

765  counterintuitive result: that on the trials immediately after receiving reward (during

766  cashout), when state value is lowest, the monkeys are, on average, slower to initiate the
767 next trial. Thus, symbolic reinforcers have assumed the motivational properties of

768 rewards to encourage the choice to begin work.
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769 Past work on choice reaction times has also suggested that reward expectation
770  can influence execution of a choice response (Hollerman, Tremblay and Schultz, 1998;
771  Wrase et al., 2007). Our regressions on cue state value and changes in state value from
772  fixation suggested that reaction times to choose options were affected by other task

773  factors, including distance to cashout, the number of tokens present, and the desirability
774  or value of the cue condition. This fits with past work that has shown that expected

775 outcomes can affect reaction times (Hollerman, Tremblay and Schultz, 1998; Shidara,
776  Aigner and Richmond, 1998). In the Tokens task, once the monkeys knew the values of
777  the cue images, the images served as a similar instruction to the possible outcomes as
778 in past studies. Regressions on cue state value showed that as cue state value

779 increased, reaction times decreased, as the monkeys learned to anticipate gains from
780 certain cue conditions. Correspondingly, in loss vs. loss (-2 v -1) trials, the monkeys

781  slowed their choices.

782 Aborted trials can happen for many reasons. In our Tokens task, however, we
783  observed a systematic increase in abort trials in the condition involving only loss options
784 (-2 v -1), which led us to investigate how cue state value and changes in state value

785  might correlate with this behavior. Past work on trial abort behavior has shown that

786  aborts (or refusals) occur most often in trials furthest from reward (La Camera and

787  Richmond, 2008; Inaba et al., 2013) and trials that require the most effort (Pasquereau
788 and Turner, 2013, 2015; Varazzani et al., 2015), suggesting that animals are more

789  motivated to complete a trial when the cost of reaching a reward is lower. Our

790 regression results are consistent with these findings, as monkeys were less likely to

791 abort when the cue state value was higher.


https://doi.org/10.1101/2023.10.11.561900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561900; this version posted October 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

792 Our analysis showed that monkeys were motivated to work when they had more
793  tokens. However, as our marginalization over dimensions of the state vector showed,
794  state values and our regression results depend on more than the number of tokens

795 present. In this task, higher state value, and therefore higher discounted future expected
796 reward, led to faster trial initiation, faster reaction times, and fewer aborts. This has

797 implications for understanding the neural responses, as the time leading up to the

798  receipt of the reward, also known as the anticipatory phase (Knutson et al., 2001; Ernst
799 etal., 2004; Rademacher et al., 2017), has signals that capture expectation of future
800 reward, which occurs in the consummatory phase (Dillon et al., 2008; Kumar et al.,

801 2014). Understanding the dynamics of anticipation, motivation, and reward in a single
802 framework allows for linking both processes to fluctuations in neural activity in multiple
803  brain areas.

804 Within the presented framework, symbolic reinforcers have been recast as

805 dimensions that drive state value. Past work involving choice tasks and state value have
806 suggested the existence of a ventral circuit for the representation of state value

807 (Glascher et al., 2010; Averbeck and Murray, 2020) and state transitions (Belova, Paton
808 and Salzman, 2008; Chan et al., 2021; Kalmbach et al., 2022). It has been

809 hypothesized that distinct ventral and dorsal networks define behavioral goals and

810 orchestrate actions to achieve goals, respectively (Everitt et al., 1999; Cardinal et al.,
811 2002; Averbeck and Costa, 2017; Averbeck and Murray, 2020). In choice tasks, the

812  main behavioral goal is to reach high value states. Recent work has shown correlations
813  between fluctuations in dopamine and state value (Hamid et al., 2016), and local control

814  of dopamine in the ventral striatum, is related to motivation (Mohebi et al., 2019).
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815 However, the ventral circuit, which includes the orbital frontal cortex, ventral medial
816  prefrontal cortex, ventral striatum, ventral pallidum, and amygdala, is innervated by
817 dopaminergic projections in multiple sites (Haber, 2014), and thus dopamine may

818 differentially affect processing in each of these areas to support reinforcement learning
819 and motivation (Berke, 2018; Westbrook and Frank, 2018). Furthermore, recent lesion
820 work has shown that lesions of the ventral striatum and amygdala show only subtle
821 deficits on performance on the Tokens task (Taswell et al., 2018; Taswell et al., 2023)
822  but larger deficits in reversal learning tasks (Costa et al., 2016) and tasks requiring
823  switches between action-based and stimulus-based strategies (Rothenhoefer et al.,
824  2017).

825 The question then becomes, how are connections between symbolic

826 reinforcement, rewards, and actions represented in the brain? Symbolic reinforcers
827  such as tokens could be tracked directly across multiple areas, as a global

828 representation of visual object numerosity (Tudusciuc and Nieder, 2009; Ramirez-

829 Cardenas, Moskaleva and Nieder, 2016; Viswanathan and Nieder, 2020), but

830 numerosity does not directly have motivational value. However, symbolic reinforcers
831 can take on a range of identities. Furthermore, other states including abstract

832 completion of intermediate goals can serve as symbolic reinforcers (Janssen et al.,
833  2022). Furthermore, as the capacity to measure more neural signals simultaneously has
834 advanced, there has been growing evidence that task-related signals are represented
835 across many areas (Dotson et al., 2018; Steinmetz et al., 2019; Fine et al., 2023).

836  Therefore, it is unlikely that there would be a localized neural signature of an individual

837 task feature, as most task features will be represented across many areas. Thus, we
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838 must consider how symbolic reinforcers might be mapped onto a distributed

839 representation that allows for flexibility in the identity of the reinforcer, and design future
840 experiments with this in mind. Here, we have selected four features to integrate: tokens,
841 temporal distance to reward, task epoch, and cue observations to measure the state
842 value moment by moment in the task. The model therefore generates values for each
843  task state, including fixation, cue presentation, token outcome, and the inter-trial

844 interval.

845 In summary, we developed a computational framework that quantifies the value
846  of symbolic reinforcers and characterizes the effect of several task features on those
847 values. Furthermore, the model captures not only choice behavior, but also behaviors
848 related to motivation. In this task, reaction times to initiate a trial, choice reaction times,
849 and the probability of completing a trial were correlated with state value and changes in
850 state value. Our results suggest that symbolic reinforcers and rewards can have similar
851 effects on behavior, which allows for predictions about how symbolic reinforcers might
852  be represented in the brain.

853
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