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Abstract 47 

Reinforcement learning (RL) is a theoretical framework that describes how 48 

agents learn to select options that maximize rewards and minimize punishments over 49 

time. We often make choices, however, to obtain symbolic reinforcers (e.g. money, 50 

points) that can later be exchanged for primary reinforcers (e.g. food, drink).  Although 51 

symbolic reinforcers are motivating, little is understood about the neural or 52 

computational mechanisms underlying the motivation to earn them. In the present 53 

study, we examined how monkeys learn to make choices that maximize fluid rewards 54 

through reinforcement with tokens. The question addressed here is how the value of a 55 

state, which is a function of multiple task features (e.g. current number of accumulated 56 

tokens, choice options, task epoch, trials since last delivery of primary reinforcer, etc.), 57 

drives value and affects motivation. We constructed a Markov decision process model 58 

that computes the value of task states given task features to capture the motivational 59 

state of the animal. Fixation times, choice reaction times, and abort frequency were all 60 

significantly related to values of task states during the tokens task (n=5 monkeys). 61 

Furthermore, the model makes predictions for how neural responses could change on a 62 

moment-by-moment basis relative to changes in state value. Together, this task and 63 

model allow us to capture learning and behavior related to symbolic reinforcement.  64 

 65 

Significance statement 66 

Symbolic reinforcers, like money and points, play a critical role in our lives. Like 67 

rewards, symbolic reinforcers can be motivating and can even lead to compulsive 68 

behaviors like gambling addiction. However, we lack an understanding of how symbolic 69 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2023. ; https://doi.org/10.1101/2023.10.11.561900doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.11.561900
http://creativecommons.org/licenses/by-nc-nd/4.0/


reinforcement can drive fluctuations in motivation. Here we investigated the effect of 70 

symbolic reinforcers on behaviors related to motivation during a token reinforcement 71 

learning task, using a novel reinforcement learning model and data from five monkeys. 72 

Our findings suggest that the value of a task state can affect willingness to initiate a trial, 73 

speed to choose, and persistence to complete a trial.  Our model makes testable 74 

predictions for within trial fluctuations of neural activity related to values of task states. 75 

 76 

Introduction 77 

In most decision-making contexts, the objective is to maximize rewards and 78 

minimize punishments over time. In some situations, rewards are symbolic, such as 79 

money or points, in which case they can be exchanged for primary rewards, such as 80 

food or drink, in the future. Past studies have shown that animals and humans will work 81 

for symbolic reinforcers, and symbolic reinforcers can drive learning and therefore 82 

motivate behavior (Hackenberg, 2009, 2018). 83 

Motivation is a process that invigorates behavior in the present to reach rewards 84 

in the future (Berridge, 2004; Berke, 2018; O’Reilly, 2020).  Motivation can be studied in 85 

the context of reinforcement learning (RL).  Learning builds predictions of choice 86 

outcomes that can be used to direct future behavior (Sutton and Barto, 1998).  N-armed 87 

bandit tasks are often used to study RL in animals.  These tasks can be modeled with 88 

Rescorla-Wagner (RW) RL models (Recorla, 1972), because the choices lead 89 

probabilistically, but immediately, to a primary reinforcer (Bartolo and Averbeck, 2020; 90 

Beron et al., 2022). However, one can also use symbolic reinforcers, for example, 91 

tokens or money to drive learning (Jackson, 1996; Kirsch et al., 2003; Seo and Lee, 92 
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2009; Delgado, Jou and Phelps, 2011; Taswell et al., 2018; Taswell et al., 2021; 93 

Falligant and Kranak, 2022; Yang, Li and Stuphorn, 2022; Taswell et al., 2023). In these 94 

tasks, subjects learn to make choices to obtain tokens, which can be exchanged in the 95 

future for primary reinforcers.  Token based learning tasks set up a distinction between 96 

two types of cues that predict rewards in different ways.  Specifically, tokens predict 97 

rewards on long-time scales, deterministically, whereas choice cues predict tokens.  98 

Furthermore, the relation between cues and tokens must be learned.  Such tasks 99 

involving symbolic reinforcement cannot be accurately captured with current RL models, 100 

because the distinction between rewards and symbolic reinforcers cannot be made 101 

explicit.   102 

 Thus, we developed a Markov Decision Process (MDP) model to characterize 103 

the value of symbolic reinforcers, and the computational mechanism that links cues 104 

through tokens to rewards.  The MDP also allows us to model multiple factors that drive 105 

value, including the time to reach primary rewards, and the probability of obtaining 106 

additional rewards in the future.  We can therefore use the model to establish which 107 

factors most strongly drive behavior.  To establish the validity of the model, beyond 108 

predicting learning which can be done with RW-RL models, we examined the 109 

relationship between the state value (i.e. the expected discounted sum of future 110 

rewards) and behavioral measures associated with motivation. Five monkeys performed 111 

a task where they learned to select images that led to gaining or losing tokens.  The 112 

tokens were later exchanged for juice rewards. To examine the ability of the model to 113 

capture motivation, we conducted regressions between state value and change in state 114 

value and three behaviors linked to motivation. To demonstrate the effect of each task 115 
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dimension included in the model, we performed marginalization analyses, where each 116 

feature was removed and the analyses were repeated. These analyses demonstrated 117 

that all features that drove value in the model contributed to motivation. Taken together, 118 

our results make predictions for how neural activity might evolve in reinforcement 119 

learning circuits during a task involving symbolic reinforcement. 120 

 121 

Materials and Methods 122 

 123 

Subjects 124 

The subjects included three male and two female rhesus macaques with weights 125 

ranging from 6 to 11 kg. Four monkeys were used as control monkeys in a previous 126 

study (Taswell et al., 2018). One additional monkey was a naïve monkey whose first 127 

task was the tokens task. For the duration of collecting behavioral data, monkeys were 128 

placed on water control. On testing days, monkeys earned their fluid from performance 129 

on the task. Experimental procedures for all aspects of the study were performed in 130 

accordance with the Guide for the Care and Use of Laboratory Animals and were 131 

approved by the National Institute of Mental Health Animal Care and Use Committee. 132 

 133 

Experimental Design 134 

We conducted post hoc analyses on previously published data (Taswell et al., 135 

2018) and data from one additional subject. We use data from one variant of the tokens 136 

task, previously called Stochastic Tokens with Loss (referred to as TkS).  137 
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The images used in the task were normalized for luminance and spatial 138 

frequency using the SHINE toolbox for MATLAB (Willenbockel et al., 2010).  Image 139 

presentation was controlled by PC computers running Monkeylogic toolbox (Version 140 

1.1) for MATLAB (Asaad and Eskandar, 2008; Hwang, Mitz and Murray, 2019). Eye 141 

movements were monitored using the Arrington ViewPoint eye-tracking system 142 

(Arrington Research). 143 

 144 

Stochastic Tokens Task with Gains and Losses 145 

Blocks consisted of 108 trials that used four novel images that had not been 146 

previously presented to the animal. Each image was associated with a token outcome 147 

(+2, +1, −1, −2), such that if that image was chosen, the animal gained or lost the 148 

corresponding number of tokens 75% of the time and received no change in tokens 149 

25% of the time (Fig. 1A).  150 
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 151 

Figure 1. Overview of the Tokens task with stochastic rewards. (A) Flow of single trial. First 152 
the monkey fixates on the screen and is required to hold fixation for 500 ms. Two cue images 153 
appear on either side of fixation, each of which is associated with gaining or losing tokens (+2, 154 
+1, -2, -1). The monkey must make a saccade to one of the images and hold their gaze for 500 155 
ms. After a successful hold, the number of tokens associated with the chosen option appears on 156 
the screen 75% of the time, and 25% of the time, nothing changes. After a 1000 ms intertrial 157 
delay, the next trial begins. Every four to six trials, tokens were exchanged for juice drops 1:1 158 
and the monkey started the subsequent trial with zero tokens. (B) The monkeys learned through 159 
trial and error which visual images were associated with gaining tokens and which images were 160 
associated with losing tokens. Four new images were presented every block of 108 completed 161 
trials. Each pair of cues (six total) was seen 18 times (nine Left/Right, nine Right/Left). Image 162 
credit: Wikimedia Commons (scene images). 163 
 164 
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On each trial, monkeys had 2000 ms to acquire a fixation spot at the center of the 165 

screen and were required to hold fixation for 500 ms. After monkeys held central 166 

fixation, two of the four possible images would appear to the left and the right of 167 

the fixation point. The animal had 1000 ms to choose one of the images by making a 168 

saccade to an image and hold their gaze on the image for 500 ms to indicate their 169 

choice. If the monkey moved his eyes outside the fixation window during fixation, did not 170 

choose a cue, or did not hold the cue long enough, the trial was aborted and repeated 171 

immediately. After a successful hold of gaze on a choice, tokens associated with the 172 

image were then added or subtracted from their total count, represented by circles at 173 

the bottom of the screen. Note that the animals could not have fewer than zero tokens. 174 

After an intertrial interval of 1000 ms, the next trial would begin with the accumulated 175 

tokens visible on the screen the entire time. Every four to six trials, tokens were 176 

exchanged 1:1 for juice drops. During this cashout epoch, one drop of juice was 177 

delivered and a token disappeared, until all tokens were gone. The animal did not 178 

choose when to cash out, rather the probability of exchanging tokens for juice drops 179 

was a uniform distribution over four to six trials.  180 

There were six cue conditions in the task, defined by the possible pairs of the 181 

four images. The conditions within a block were presented pseudorandomly, such that 182 

the animals saw each condition twice (same images, opposite sides) every 12 trials 183 

before seeing any condition a third time. This prevented strings of trials with loss v. loss 184 

that could lead to abberant behaviors. At the end of each 108-trial block, we introduced 185 

four new images and the animals restarted learning associations between the pictures 186 

and the token outcomes (Fig. 1B). The animals completed approximately 9 blocks of 187 
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images per session, and approximately 20 sessions from each animal were used for 188 

subsequent analyses.   189 

 190 

Model Framework 191 

We modeled the Tokens task using a Markov decision process with partially 192 

observable states (POMDP). To fit the POMDP to each animal’s behavior, we leveraged 193 

the Rescorla Wagner Reinforcement Learning Model (RW-RL) to calculate the average 194 

values of each of the four cue images and to verify the validity of our MDP results for 195 

fitting choice probability curves across the cue conditions. Details of this process are in 196 

the following sections. 197 

 198 

Rescorla Wagner Reinforcement Learning (RW-RL) Model 199 

We used a variant of the RW-RL model as was previously used to model the 200 

tokens task (Taswell et al., 2018). 201 

We fit a Rescorla-Wagner value update equation given by the following:  202 

𝑣!(𝑡 + 1) = 	𝑣!(𝑡) + α!*𝑅 − 𝑣!(𝑡)-     (1) 203 

where the variable 𝑣! is the value estimate for cue option i, R is the change in the 204 

number of tokens that followed the choice in trial t, and α! is the cue-dependent learning 205 

rate parameter. In past work on this data, the model with a separate learning rate 206 

parameter for each cue was found to be the best RW-RL model fit to the data. Thus, we 207 

continued using this formulation of the RW-RL for these analyses, although the results 208 

described in this study are not contingent on this choice. 209 
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The value computed in Eq. 1 were then used to compute choice probabilities for 210 

each cue pair using the softmax function: 211 

𝑑"(𝑡) = (1 +	𝑒b
!"($#(%)'$$(%))	)'(, 𝑑!(𝑡) = 1 − 𝑑"(𝑡)  212 

 (2) 213 

where b, is the consistency choice parameter, fit across all six cue conditions, and i and 214 

j are the two choice options. We then maximized the likelihood of the animal’s 215 

choices, D, given the parameters, using the cost function:  216 

𝑓*𝐷4α! , b)*- = 	∏ [% 𝑑((𝑡)𝑐((𝑡) + 𝑑+(𝑡)𝑐+(𝑡)]   217 

 (3) 218 

where d1(t) is the choice probability value for option 1 on trial t and c1(t) and c2(t) are 219 

indicator variables that take on a value of 1 if the corresponding option was chosen and 220 

0 otherwise.  This model was fit across blocks in each session for each monkey to give 221 

one set of fit parameters for each session.   222 

 Mean cue values as a function of learning trial in each block from the RW-RL 223 

model were used to generate transition probabilities for the MDP discussed in detail 224 

below. To extract mean cue values, all 𝑣! for a single cue were averaged across 225 

sessions. This produced four curves that reflected the change in cue value across trials 226 

for each animal (Fig 2A, 2B).   227 

 228 
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Figure 2. Mean cue values extracted from the RW-RL model and transition probabilities 229 
for change in tokens given a cue image selection. (A) Mean cue values across number of 230 
observations of a cue pair (NObs) are plotted for each of the four cues in the stochastic tokens 231 
task (error bars s.e.m. across monkeys). The +2 curve is the highest, followed by the +1 curve, 232 
reflecting how the animals learned to select the +2 and +1 image cues. -2 and -1 curves are 233 
similar, reflecting that the animals did not learn the value differences between the -2 and -1 cue 234 
options. The mean values were extracted from the RW-RL model fits to each monkey. Each 235 
data point is an average of the three conditions in which the cue was observed. For example, for 236 
the +2 curve, a single data point would be the average value of the +2 cue value from the 237 
conditions +2 v +1, +2 v -2, +2 v -1. (B) Example set of curves from Monkey U with scaling 238 
applied to the variance (see Methods) and scaling parameter fit during the MDP fitting process 239 
and derivation of a subset of transition probabilities. Left: (1) +2 cue value highlighted early in 240 
learning at trial 3. (2) +2 cue highlighted late in learning at trial 16. Error bars are the mean 241 
variance across blocks and solid lines show the cue values with the parameterized scaling 242 
factor. Right: Plot of a subset of transition probabilities derived from mean value curves for the 243 
+2 v +1 condition and choice of +2 for each possible token outcome. p(Dtk=0|choice +2 cue) is 244 
always 0.25 and is not shown. 245 
 246 

Markov Decision Process (MDP) Model 247 

The MDP model computes the value of each task state.  Task states were 248 

defined by four features of the task: number of tokens (NTk), trials since cashout 249 

(TSCO), task epoch (TE), and number of observations of a cue pair (NObs). The state 250 

space included all possible combinations of these features across a single block of 251 

trials, such that the bounds for each feature were: NTk: 0-12, TSCO: 1-6, TE: 1-10 252 

(which included fixation, 6 cue conditions, token outcome, cashout, intertrial interval), 253 

NObs: 1-18. Using NObs as a feature allowed us to avoid having to track each time a 254 

cue was shown, chosen and rewarded across trials, and to reduce the size of the state 255 

space by 1812 states, which also made a tabular form of the model tractable. The model 256 

of the task was in epoch time (i.e. event based), rather than true time (i.e. seconds 257 

based). 258 

The state space can be considered as a graph with edges and nodes, where the 259 

states are defined by the possible combinations of these features, and the edges are 260 

the transitions to future states. A trajectory through the state space represents one trial 261 
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and as the model proceeds through a block, the trajectory traverses through the state 262 

space. 263 

The state value, sometimes called state utility, 𝑢(𝑠%), was calculated using the 264 

equation: 265 

𝑢(𝑠%) = 	max,%∈.
	[	𝑟(𝑠% , 𝑎%) + 	𝛾 ∑ 𝑝(𝑗|𝑠% , 𝑎%)𝑢(𝑗)"∈/%&' ]   (4) 266 

where st is the state, at is the action taken at that state, 𝑢(𝑠%) is the state value, 𝑟(𝑠% , 𝑎%) 267 

is the immediate reward, g is the discount factor, 𝑝(𝑗|𝑠% , 𝑎%) is the transition probability to 268 

future state j and St+1 is the set of immediate future possible states from state st. A 269 

range of discount factors (g=0.8, 0.85, 0.9, 0.95, 0.99, 0.999) were tested. g=0.999 270 

produced the least error for the regressions and was used for all analyses. We used 271 

value iteration to fit the MDP (Puterman, 2014).  The algorithm loops over all possible 272 

states and recomputes Eq. 4 until both the policy and state values converged. This took 273 

approximately 100 iterations across the state space for each MDP that was fit. 274 

The transitions between states include: fixation to the six cue states, cue state to 275 

token update, token update to cashout or intertrial interval and intertrial interval to 276 

fixation. The transition probabilities from fixation to any cue state were modeled as 277 

pcues=1/6 a there were 6 possible cue pairs. The transition probabilities from token 278 

update to cashout were pcashout=0 for TSCO 1-3, pcashout=0.33 for TSCO 4, pcashout=0.50 279 

for TSCO 5, pcashout=1.0 for TSCO 6. Transition probabilities for the transition to a 280 

change in tokens given a cue image selection, i.e. p(change in tokens | image choice in 281 

a given condition), were fit using the behavioral data and average cue values that were 282 

extracted from the RW-RL model fits.  Thus, this is not an ideal observer estimate, but 283 

rather our inference of the monkey’s estimate.  These transition probabilities represent 284 
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the monkey’s mapping of individual cues to outcomes, i.e. which picture leads to +2 285 

tokens. The cue values are related to this mapping, thus making the RW-RL values an 286 

approximation to the process by which the animal learns the outcomes related to each 287 

cue image (Fig. 2).  288 

We had to infer the monkey’s estimate of the number of tokens they would 289 

receive when they chose a given option.  For example, in the first trial of a new block, 290 

the monkeys had no experience with any options, and therefore they should assume 291 

that choice of any option could lead to either -2, -1, 0, 1, or 2 tokens.  However, after 10 292 

trials the monkeys had a reasonable estimate of the token outcomes associated with 293 

each option.  This process makes the MDP have partially observable states, as we 294 

estimate the transition probabilities using mean values from the RW-RL model. We 295 

carried out this estimate in two steps.  First, we calculated the value estimates for each 296 

option, as a function of the number of trials they had seen each option using the RW-RL 297 

algorithm value estimates (Fig. 2).  We then used these estimates to calculate the 298 

posterior probability that choice of a given cue would lead to a given outcome (i.e. Δ𝑡𝑘). 299 

For the outcome of no tokens, 𝑝(Δ𝑡𝑘 = 0) = 0.25. For all other possible outcomes, the 300 

following equations were used: 301 

𝑝(Δ𝑡𝑘 = {+2,+1,−2,−1	}) = 0.23
4

     (5) 302 

 303 

𝑝(Δ𝑡𝑘|𝑣567) =
89𝑣567:Δ𝑡𝑘;8(<%=)

8($()*)
     (6) 304 

𝑝(𝑣567|Δ𝑡𝑘 = 𝑗) = (
>√+@

𝑒(	'
'
+	
(-()*./$)

+

1+
)   (7) 305 

 306 
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𝑝(𝑣567) = ∑ 𝑝(𝑣567|	Δ𝑡𝑘")𝑝(Δ𝑡𝑘")4
"B(     (8) 307 

and where 𝑣567 is the mean value of a single cue for a given NObs, Δ𝑡𝑘= +2, +1, -1, -2, 308 

𝑥 is the mean of the cue value of the chosen option, and 𝜇 is a mean value of one of the 309 

other cues. Transition probabilities were calculated for all possible choices and NObs 310 

and were not dependent on other MDP features such as NTk or TSCO. For example, 3 311 

trials into the block, mean cue values were 0.17, 0.11, -0.01, -0.01 for the +2 cue, +1 312 

cue, -1 cue, and -2 cue, respectively (Fig. 2B). To calculate 𝑝(Δ𝑡𝑘 = +2|𝑣567 = 2) (i.e. 313 

the probability of receiving 2 tokens for choosing the +2 cue), 𝑥=0.17, 𝜇(=0.11,	𝜇+= -314 

0.01,	𝜇C=-0.01, which produces 𝑝(Δ𝑡𝑘 = +2|𝑣567 = 2)=0.24 in the +2 versus +1 315 

condition. Later in the block, for example on NObs=16, mean cue values were 0.66, 316 

0.36, -0.03, -0.04 for the +2 cue, +1 cue, -1 cue, and -2 cue, respectively. At this point in 317 

learning, 𝑝(Δ𝑡𝑘 = +2|𝑣567 = 2)= 0.52 in the +2 versus +1 condition.  318 

The mean cue values were used to fit the set of transition probabilities 319 

p(Dtk|choice) for Dtk= 0, 1, 2, -1, -2 and choice= cue 1, cue 2. First, an MDP was fit 320 

using the mean cue values for each animal in order to compute a converged policy of 321 

choices and action values without any free parameters. These MDP models captured 322 

general trends of behavior to select the better options (i.e. an optimal MDP) but showed 323 

faster learning than the animals learned. To better match animal learning behavior, we 324 

optimized the transition probabilities underlying the behavioral performance of the MDP.  325 

To optimize the set of transition probabilities p(Dtk|choice), mean cue values 326 

were used with two free parameters: (1) a scaling parameter for the mean cue values 327 

such that: 328 

𝑣567D = 𝑘 ∗ 𝑣567      (9) 329 
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for all mean cue values and (2) an inverse temperature parameter for the choice 330 

probability (bMDP). In addition, the variance on the mean value curves for each animal 331 

was set to the average variance across all four cues, allowing variance to vary across 332 

trials, but not across cue values. Using the initial MDP fit and the behavioral data from 333 

the task for each animal, the two free parameters were fit jointly by minimizing the error 334 

between the MDP choice probability and average performance across sessions for each 335 

monkey (Table 1). The resulting parameters and transition probabilities were then used 336 

to refit the MDP until the state values and policy reconverged.  337 

Monkey Mean value scaling 
parameter (k) 

Choice probability 
parameter (bMDP) 

Monkey U 0.45 2.77 
Monkey B 0.71 1.87 
Monkey S 1.04 1.15 
Monkey P 1.14 1.34 
Monkey A 0.53 2.24 

Table 1. MDP free parameter values for each monkey. Two parameters were optimized to 338 
minimize the error between the MDP choice probability and the monkey’s choice behavior. The 339 
mean value scaling parameter acted as a scalar on the variance of the value curves (Eq. 9). 340 
The choice probability parameter was the inverse temperature parameter used to calculate the 341 
choice probability using action values derived from the MDP. 342 
 343 

In addition, MDP models were fit using a range of discount factors (g = 0.8, 0.85, 344 

0.9, 0.925, 0.95, 0.99, 0.999) for each animal’s dataset. To determine the discount 345 

factor that produced the best fit to behavior, each g was used to regress on fixation 346 

reaction times, choice reaction times, p(Abort) and to produce choice probability curves 347 

for the six conditions (see below for details on the regressions). For all monkeys,  g = 348 

0.999 produced the best fits to these behavioral data metrics, and thus, g = 0.999 was 349 

used for all models. 350 

 351 
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Regressions and Statistical Analyses 352 

Comparison of performance of the MDP and RW models at predicting choice 353 

behavior was conducted using a comparison of correlation coefficients. Correlation 354 

coefficients (r1, r2) were calculated between the average choice behavior and each 355 

model separately. The values were then Fisher-z transformed to compute a p value for 356 

a two-sided test for differences between the correlation coefficients. 357 

State values were extracted for all trials and epochs using the MDP fits for each 358 

animal. This produced a table of states such that the value of each state was:  𝑢(𝑠%) =359 

	𝑓(𝑁𝑇𝑘, 𝑇𝑆𝐶𝑂, 𝑇𝐸,𝑁𝑂𝑏𝑠). These state utilities were used to characterize trial-by-trial 360 

relationships to reaction time to acquire fixation, choice reaction time, and trial aborts. 361 

Mean reaction times (RT) were computed by averaging reaction times across 362 

blocks of trials and then averaging across sessions for each monkey. Scatter plots of 363 

RTs from individual sessions do not include outlier reaction times. Outlier RTs were 364 

removed using Tukey’s method:  RT > q0.75+ 1.5*IQR and RT< q0.25 – 1.5*IQR, where 365 

IQR is the interquartile range.  366 

To assess the relationship between state value and reaction times to acquire 367 

fixation, linear regression on state value was performed such that:  368 

log	(𝑅𝑇,5E6!F7_H!I,%!JK) = 	𝛽0 +	𝛽L2#-𝑉H!I    (9) 369 

where 𝑉H!I is the value of the fixation state. Reaction times were log transformed before 370 

the regression. 371 

To assess the relationship between state value and reaction times to choose, 372 

linear regression on state value was performed such that:  373 

log	(𝑅𝑇,5E6!F7_H!I,%!JK) = 	𝛽0 +	𝛽L()*𝑉567 +	𝛽<L(Δ𝑉)   (10) 374 
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where 𝑉567 is the value of the cue presentation state and Δ𝑉 = 𝑉567 − 𝑉H!I . Reaction 375 

times were log transformed before the regression. 376 

To assess the relationship between state value and the probability of aborting a 377 

trial, logistic regression on state value was performed such that:  378 

𝑝(𝐴𝑏𝑜𝑟𝑡) = 	 (1 +	𝑒'(M3N	M4()*L()*N	M54(<L))	)'(    (11) 379 

where 𝑉567 is the value of the cue presentation state and Δ𝑉 = 𝑉567 − 𝑉H!I . We 380 

additionally assessed the effect of cue condition on p(Abort) using a mixed effects 381 

ANOVA, where monkey was the random effect and cue condition was the fixed effect. 382 

 To assess whether regressors were significantly different than zero, for each 383 

animal, t-tests on the distributions of beta values across sessions for each regressor 384 

were performed for each animal. These values are reported in the text.  Mean 385 

parameter values did not appear to be Gaussian distributed across monkeys.  386 

Therefore, to assess whether the regressors were significantly less than zero at the 387 

group level, the non-parametric Wilcoxon signed-rank test was used on the distribution 388 

of mean parameter values across animals. Results of these tests are reported in the 389 

figure captions and text. To show group trends in relationships between reaction times 390 

and regressors, 1D kernel smoothing was conducted on each monkey’s data with 𝜎 =391 

0.5 with a Gaussian kernel.  392 

 We also sought to examine the contributions of the different variables that 393 

defined the state to each regression by marginalizing over one factor at a time, to 394 

remove its effect, and carrying out the correlation analyses.  To perform this 395 

marginalization, we averaged over the state values for all possible values of a single 396 

feature, given the other features. For example, to compute state values for all features 397 
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averaging over NTk, with 𝑇𝑆𝐶𝑂 = 4, 𝑇𝐸 = 1,𝑁𝑂𝑏𝑠 = 12, we computed 𝑉H!I= 398 

mean(𝑓(𝑁𝑇𝑘 = 0: 8, 𝑇𝑆𝐶𝑂 = 4, 𝑇𝐸 = 1,𝑁𝑂𝑏𝑠 = 12)), as NTk=8 is the maximum number 399 

of tokens possible when TSCO=4.   400 

 401 

Code Accessibility 402 

All code used to generate the results in this manuscript can be accessed on GitHub 403 

here: https://github.com/dcb4p/mdp_tokens. 404 

  405 

Results 406 

Five monkeys were trained on a stochastic tokens task (Taswell et al., 2018) 407 

(Fig. 1). Briefly, each block of the task used four novel images, and choice of each 408 

image led to a different possible token outcome (+2, +1, -1, -2).  In each trial, two of the 409 

four images were presented as options, and the monkey made a saccade to one of the 410 

cues and held their gaze to indicate their choice. After the choice, the monkey received, 411 

stochastically, the corresponding change in tokens on the screen.  In 75% of the trials 412 

they received the number of tokens associated with the cue and in 25% of the trials the 413 

number of tokens did not change. Every four to six trials was a cashout trial.  In cashout 414 

trials, the monkey received one drop of juice for each accumulated token. The monkey 415 

would then start over accumulating tokens until the next cashout trial. Each of the pairs 416 

of cue images (six total) were presented 18 times during a block of trials. At the end of 417 

the block, the four cue images were replaced with novel images, and the monkey 418 

restarted learning the associations between the images and token outcomes. 419 

Behavioral performance and learning were assessed for each animal by the increasing 420 
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frequency with which the monkeys chose the image associated with the better option in 421 

each condition over the course of a block.  422 

In this task the monkeys were not given rewards on every trial.  Rewards were 423 

only given at the time of cashout when tokens were exchanged for juice. Commonly 424 

used RL models, such as the Rescorla Wagner model (RW) (Sutton and Barto, 1998), 425 

do not make a distinction between symbolic reinforcers and primary rewards and 426 

therefore they do not have a natural way to model the difference between primary and 427 

secondary reinforcers.  To address this, we developed a state-based, Markov decision-428 

process model of the stochastic tokens RL task to capture the relevant features of the 429 

task that would affect motivation and choice behavior. Within MDP models, values and 430 

available actions are defined by the current state.  In our model, the state is a function 431 

of the number of tokens (NTk), trials since cashout (TSCO), task epoch (TE) and 432 

number of observations of each condition within the block (NObs). The state space 433 

consists of all possible combinations of these four features. The model, once trained, 434 

has states that inherit value from their proximity to the true rewarding state (cashout), 435 

similar to how a well-trained monkey expects to earn juice in the future. 436 

State values are given by the maximum action value in each state.  State values 437 

and action values are equivalent in all epochs except the choice epoch, because only 438 

one action is possible in the other epochs.  Rewards are only delivered in the cashout 439 

period, and therefore immediate expected values, r(st, at) are 0, except in the cashout 440 

period when more than 0 tokens have been accumulated.  In all other states, immediate 441 

expected values are 0, and state values are future discounted expected values, all of 442 

which are filtered through the graph from the cashout period.  Thus, future expected 443 
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values in each state follow from the features of the task that predict the delay to and 444 

size of the reward that will be delivered in cashout. 445 

For example, the value of the fixation state is a combination of the number of 446 

tokens accumulated, trials since cashout, and number of observations of the cue pairs 447 

witnessed up until that trial (Fig 3). The value of the fixation state is the sum of the 448 

immediate expected value (which is 0 at fixation because no juice is ever delivered) and 449 

the future expected value, which is the expected value of the next state (i.e. the average 450 

over the cue states, each of which occurs with a probability of 1/6).  Thus, state value in 451 

the fixation state is inherited from the values of the cue states.  452 

  453 

Figure 3. Overview of task state space for Markov Decision Process (MDP) framework. 454 
Each circular node represents a state given by a set of task features: token count (NTk), trials 455 
since cashout (TSCO), task epoch (TE), number of cue condition observations (NObs). Each 456 
edge of the graph represents a transition probability, or the transition between states that could 457 
be deterministic (p=1) or probabilistic (p <1). A single trial is highlighted and the progression 458 
from each step in the task is shown for an example trial that ends in a cashout. The example 459 
trial starts at fixation and the monkey has three tokens, making the value of the state f(NTk=3, 460 
TSCO=4, TE=1, NObs=1). The transition probability pcues=1/6 and represents the probability of 461 
any of the six cue conditions being the next state. At the cue states, the monkey must make a 462 
choice, and the model captures this choice policy behavior. The next set of states after the cue 463 
state is the outcome state; the transition is governed by the transition probability pDtk|choice 2. In 464 
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the example, the monkey receives 2 tokens and the model receives 2 tokens. After the outcome 465 
state, the monkey can transition to the intertrial interval or cashout; the transition to this state is 466 
governed by pcashout. During cashout, one drop of juice is exchanged for each token and all the 467 
tokens disappear before proceeding to the next intertrial interval and subsequent trial. Image 468 
credit: Wikimedia Commons (scene images). 469 
 470 

In each cue state, there is a choice between the two cues, which then leads to 471 

the token outcome states.  As five of the six possible cue conditions have gain 472 

outcomes (once the monkey learns to select the better option), the state values of the 473 

cue conditions reflect this possible gain as it develops with learning.  In the outcome 474 

states the monkey can receive +2, +1, 0, -1, or -2 tokens. As there is also no immediate 475 

reward available during the cue states, state value comes from the future expected 476 

value of the intertrial interval or cashout states.   477 

The monkey learns to choose options that maximize gaining tokens over losing 478 

tokens.  We modeled this learning as an inference over the token outcome distribution 479 

associated with each choice, using a parameterized function of the number of times an 480 

option had been chosen. The model, which generated an estimate of the transition 481 

probabilities from cue to token outcome (pDtk|choice), was fit to each monkey’s choice 482 

behavior.  Unlike the transition from the fixation state to the cue state (pcue), the 483 

probability of transitioning to each outcome state (pDtk|choice) changes as the monkey 484 

learns the associations between the cue options and token outcomes. For example, at 485 

the start of a block, the monkey does not know which cue image predicts which token 486 

outcome, and pDtk=+2|choice = pDtk=+1|choice = pDtk=-2|choice = pDtk=-1|choice. Once the monkey 487 

learns which cue image is associated with +2 tokens, they are more likely to select that 488 

option, and we assume they infer that the probability of getting two tokens, pDtk=+2|choice, 489 

is larger given choice of that option. Thus, the transition probabilities change over the 490 
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course of a block as the number of times the cue pair has been observed (NObs) 491 

increases. The changes in these transition probabilities reflect learning (Fig. 2B,C).  492 

At the time of token outcome, the next possible states are either the intertrial 493 

interval or cashout, governed by the transition probability pcashout. This transition is a 494 

feature of the task and does not change with learning. At the time of cashout, the state 495 

value is the sum of the immediate reward (1 drop of juice per token present) and the 496 

next state, which is the intertrial interval, with zero tokens. In the model, this means 497 

state value will drop after cashout if the monkey cashed out tokens for juice, as the state 498 

value depends on the number of tokens.  499 

 500 

Changes in task features drive fluctuations in state value 501 

 State values change with variation of each state feature. For example, having 502 

more tokens increases state value (Fig. 4A). Being closer to the cashout state (e.g. 503 

TSCO >4) also increases state value (Fig 4B). As the monkey proceeds through the 504 

task epochs (i.e. fixation, cue onset, outcome, cashout or intertrial interval), the state 505 

value will also increase for conditions where tokens can be gained, and more subtly, 506 

because one is also getting closer to cashout (Fig. 4C). For the -2 v. -1 cue condition 507 

where tokens can only be lost or maintained (if there is a no change outcome), the 508 

value of the state either decreases or increases marginally approaching cashout (Fig 509 

4D). In the first trial of a block, when the monkey has started learning the associations 510 

between cues and outcomes (i.e. NObs =1), the best option in a pair of cues will be 511 

ambiguous.  This is reflected by identical state-action values in the model (Fig. 4E). 512 

Near the end of the block, when the monkey  513 
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Figure 4. How changes in state features can affect state value (example from Monkey B). 515 
(A) Fixation state value (Vfix) versus token count (NTk). As NTk increases, state value 516 
increases. For one trial since cashout (TSCO=1), only 1 trial has been completed, so the 517 
maximum number of tokens available is two. As the TSCO increases, juice will be delivered 518 
sooner, which is reflected by higher state value. (B) Fixation state value (Vfix) versus trials since 519 
cashout (TSCO). As TSCO increases, the state value increases when there is more than one 520 
token (NTk=1, NTk=2). If there are zero tokens (NTk=0), then state value increases until 521 
TSCO=4. When cashout becomes possible, state value begins to decrease when there are no 522 
tokens, because a cashout epoch can occur, with zero juice delivery, resetting the interval 523 
before juice can be delivered again. (C) State value versus task epoch for a single cue condition 524 
+2 vs +1. As the model proceeds through a trial, state value changes depending on task epoch 525 
and outcome. In this example, there is one token at fixation (red dot, far left) and three traces 526 
are shown, one to represent each possible outcome (+2 tokens, +1 token, 0 token change). 527 
State value increases for gaining tokens and decreases slightly when no tokens are gained. 528 
State value at cashout corresponds to the token count. The state value is identical for all three 529 
outcome traces during the intertrial interval after a cashout.   (D) State value versus task epoch 530 
for a single cue condition -2 vs -1. In this example, there are two tokens at fixation (red dots, far 531 
left) and three traces are shown, one to represent each possible outcome (-2 tokens, -1 token, 0 532 
token change). State value decreases when tokens are lost and stays constant when the 533 
outcome is zero tokens. At the time of cashout, state value depends on whether tokens are 534 
present. Like in (C), the state value is identical for all three outcome traces during the intertrial 535 
interval after a cashout.   (E) Cue state value (Vcue) versus number of observations of a cue pair 536 
(NObs). As NObs increases, the state value increases for all cue conditions that include the 537 
best option (+2 tokens). The state value for the cue conditions with the +1 option decreases with 538 
learning and plateaus. The state value for the loss vs. loss condition (-2 v -1) decreases with 539 
NObs. (F) Fixation state value versus NObs. As NObs increases, the value of the fixation state 540 
increases. As the monkey proceeds through a block, they learn the associations between the 541 
cue images and token outcomes, and it is more likely the monkey will select the better options 542 
(+2 and +1). In the MDP, this means that as NObs increases, it will be more likely that tokens 543 
will be received, which causes an increase in the future expected value and thus state value.  544 
 545 

knows which cues correspond to +2 and +1 tokens (e.g. NObs 18), the state action 546 

values will reflect the knowledge of the best option and the state values at the time of  547 

the cue state will be higher for the conditions with +2 or +1 cues (Fig. 4E). Even though 548 

the fixation state precedes the cue state, the number of observations also affects the 549 

value of the fixation state and causes it to increase as NObs increases, because the 550 

monkey can make better choices when the options are presented (Fig. 4F). The 551 

minimum state value is at the baseline for all features, i.e. NTk=0, TSCO=1, 552 

TE=Fixation, NObs=1 (Fig. 4F, NObs=1).  553 
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The exact value of the baseline state value and the relationship between NObs 554 

and the fixation state value vary by model (i.e. monkey).  This relationship is affected by 555 

three things: the token outcome transition probabilities, the discount factor, and number 556 

of iterations for fitting the model. The discount factor was 0.999 for all monkeys, and the 557 

number of iterations for fitting each model was constant. Only the token outcome 558 

transition probabilities (pDtk|choice), which were fit to each monkey’s behavior, vary 559 

between monkeys in the models.   Therefore, the larger the token outcome transition 560 

probabilities to gain outcomes, the larger the initial state value even at the time of 561 

fixation. In other words, when the monkey learned faster, these transition probabilities 562 

changed faster, and state value increased faster with NObs.  563 

 564 

State-based MDP model of symbolic reinforcement captures learning behavior 565 

To test the validity of the choice policy of the MDP model for each monkey, we 566 

calculated the choice probabilities produced by the choice policy of each MDP, after 567 

passing action values through a softmax. After fitting an MDP to each monkey, choice 568 

probability was calculated using the action values for each choice in each cue condition, 569 

for each trial in a block (NObs 1-18).  The action values were passed through a softmax 570 

with an inverse temperature parameter b (see methods), which controlled the 571 

stochasticity of the choice policy given two action values. Average choice probability 572 

across animals demonstrated that the choice probabilities produced by the MDP 573 

produced similar fits to the behavioral data to the RW-RL model, with no statistically 574 

significant difference between the correlation coefficients computed from the behavioral 575 

data and the two models (rRW= 0.9904, rMDP= 0.9868, difference in correlation: p= 0.25,  576 
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Fig. 5). This verified that the MDP captures choice behavior in the task, over and above 577 

its ability to model future state values.  Further analyses using state values are, 578 

therefore, grounded in an accurate representation of choice behavior. 579 

 580 

Figure 5. Average performance in the tokens task and model fits. (A) Average performance 581 
and RW-RL model fits for all subjects (n=5) monkeys in the six task conditions (s.e.m. across 582 
animals). (B) Same as (A) but average MDP choice probability instead of RW-RL model fits. 583 
 584 

Time to acquire fixation is related to the value of the fixation state  585 

We next examined whether the MDP state values could be used to predict 586 

motivation in monkey behavior.  The first question was how state value might affect the 587 

initiation of a trial, which has been previously shown to be affected by motivation (Hamid 588 

et al., 2016; Oemisch, Johnston and Paré, 2016; Mohebi et al., 2019; Steinmetz et al., 589 

2019). For example, if the monkey has multiple tokens at the start of a trial, might they 590 

be more motivated to initiate a trial, than in the case when they have no tokens (Fig. 591 
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6A)? However, token count is not the only task feature that could affect motivation in 592 

this task. Thus, we used the value of the fixation state (Vfix) from the MDP to relate all 593 

relevant task features (NTk, TSCO, TE, NObs) on a trial-by-trial basis to the time it took  594 

 595 

Figure 6. Reaction time to acquire fixation. (A) An example case of when motivation might 596 
differ in the tokens task at the time of fixation. (B) Mean regression coefficients across animals 597 
from the linear regression on Vfix (bar plot) and mean beta values across sessions for each 598 
animal (dots). (* indicates p< 0.05). Note that regressions were conducted on log(RT). (C) An 599 
example set of reaction times from a single session from Monkey A showing a decrease in 600 
reaction time to acquire fixation as Vfix increases with an overlay of the regression line.  Values 601 
near zero indicate trials in which the monkey was already within the fixation window when the 602 
fixation cue appeared. (D) Kernel smoothed, averaged mean reaction times for each monkey 603 
versus Vfix. Average reaction times across sessions are shown for each animal in a different 604 
color indicated by the legend. The average of all animals is shown in grey, with error bars 605 
showing the standard deviation across animals.  606 
 607 
the animal to acquire the fixation spot. We conducted a linear regression for each 608 

session of data from each animal and calculated the average regression coefficient 609 
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value for each animal (Fig. 6B). Mean regression coefficients for Vfix (bVfix) were 610 

significantly less than zero at the group level (p= 0.0312, Wilcoxon signed-rank test). All 611 

five of the individual distributions of regression coefficients for each animal were 612 

statistically significant (t(20)= -5.78; t(22)= -9.48; t(16)= -11.74; t(19)= -28.18; t(19)= -613 

19.37; p<0.0001). Thus, as the value of the fixation state increased, reaction times 614 

decreased (Fig. 6C) and this was true for all five monkeys (Fig. 6B, 6D).  615 

 616 

Choice reaction time is related to the value of the cue state and change in state 617 

value 618 

 Next, we asked whether choice reaction times were related to the value of the 619 

cue state (Vcue) and the change in value between the cue onset and fixation state (DV= 620 

Vcue - Vfix), which would reflect an impending gain or loss of tokens from selecting a cue. 621 

For example, if the cue condition was loss v. loss (-1 vs. -2), the monkey might be 622 

slower to choose an option than in the case of gain v. gain (+1 vs. +2) where there is a 623 

preferred option (Fig. 7A). We conducted a linear regression of Vcue and DV on reaction 624 

times for each session of data from each animal and calculated the average regression 625 

coefficient for each animal (Fig. 7B). Mean regression coefficients bVcue and bDV were 626 

significantly less than zero at the group level (p= 0.0312, Wilcoxon signed-rank test). 627 

This meant that as the value of the cue state increased, reaction times became faster, 628 

and as the change in cue value became more positive, reaction times also  629 
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 630 

Figure 7. Reaction time to choice. (A) An example case of when motivation might differ in the 631 
tokens task at the time of image cue presentation. Image credit: Wikimedia Commons (scene 632 
images). (B) Mean regression coefficients cross animals from the linear regression on Vcue and 633 
DV (bar plots) and mean beta values across sessions for each animal (dots). (* indicates p< 634 
0.05). Note that regressions were conducted on log(RT). (C) Example set of reaction times from 635 
a single session from Monkey S showing a decrease in choice reaction time as Vcue increases 636 
and DV becomes more positive with regression fits overlayed. (D) Kernel smoothed, averaged 637 
mean reaction times for each monkey versus Vcue and DV. Average reaction times across 638 
sessions are shown for each animal in a different color indicated by the legend. The average of 639 
all animals is shown in grey, with error bars showing the standard deviation across animals. 640 
 641 

became faster (Fig 7C, 7D). Four of the five individual monkey distributions of bVcue, 642 

where session was the repeat, were statistically significant ( t(20)= -2.19, p <0.05; t(22)= 643 
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-6.62, p <0.0001; t(16)= -3.44, p <0.005  ; t(19)= -1.98, p =0.06  ; t(19)= -14.78, p 644 

<0.0001). Five of the five individual distributions of bDV were statistically significant 645 

t(20)= -7.29, p <0.0001; t(22)= -8.86, p <0.0001; t(16)= -3.22, p <0.01  ; t(19)= -3.89, p 646 

<0.001  ; t(19)= -9.98, p <0.0001).  In summary, this demonstrated that as the value of 647 

the cue state was higher, choice reaction times were faster for all animals. These 648 

analyses also demonstrated that when the change in state value from fixation to cue 649 

(DV) was positive, reaction times were also faster.   650 

 651 

The probability of the monkey aborting a trial is related to the value of the cue 652 

state 653 

To investigate the relationship between the completion of a trial and state value, 654 

we related the frequency of trial aborts to state value by looking at all trials in a session 655 

and analyzing both complete and incomplete trials. If the monkey moved his eyes 656 

outside the fixation window during fixation, did not choose a cue, or did not hold the cue 657 

long enough, the trial was aborted and repeated. Given that the monkeys do not learn to 658 

pick the smaller loss well in the loss vs. loss condition (Fig. 5), it might be more likely 659 

that the animal aborts these trials to avoid losing tokens (Fig. 8A). Indeed, past work 660 

has shown that monkeys are more likely to abort cue conditions with two loss cues 661 

(Taswell et al., 2018). We found a significant effect of cue condition on the frequency of 662 

aborts (mixed effects ANOVA, main effect: cue condition F(5, 29)=7.86, p<0.001;  663 

random effect: monkey F(4,29)=51.14) (Fig. 8B). We next asked whether cue state 664 

value and changes in state value were related to the probability of aborting a trial by 665 
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conducting logistical regression on cue state value (Vcue) and the change in value 666 

between the cue state and  667 

 668 

Figure 8. Probability of aborting a trial. (A) An example case of when motivation to complete 669 
a trial might differ in the tokens task at the time of image cue presentation. Image credit: 670 
Wikimedia Commons (scene images). (B) Average proportion of aborts in each task condition 671 
(s.e.m. average across n=5 monkeys, * indicates p< 0.05).  (C) Mean regression coefficients 672 
across animals for the logistic regression on Vcue and DV. Only the regressor for Vcue was 673 
statistically significant. (D) Kernel smoothed, averaged mean reaction times for each monkey 674 
versus Vcue. Average proportions of aborts across sessions are shown for each animal in a 675 
different color indicated by the legend. The average of all animals is shown in grey, with error 676 
bars showing the standard deviation across animals. 677 
 678 
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fixation state (DV= Vcue - Vfix). The distribution of mean regression coefficients bVcue was 679 

significantly less than zero at the group level (p= 0.0312, Wilcoxon signed-rank test) 680 

whereas bDV did not emerge as significant (p=0.4062, Wilcoxon signed-rank test), 681 

suggesting that changes in state value were not the main factor related to abort 682 

behavior (Fig. 8C).  Four of the five individual distributions of bVcue were statistically 683 

significant ( t(20)= -3.33, p <0.01; t(22)= -19.78, p <0.0001; t(16)= -3.46, p<0.01; t(19)= -684 

1.94, p =0.068  ; t(19)= -14.78, p <0.0001). Overall trends across animals showed that 685 

as the value of the cue state increased, the probability of aborting decreased (Fig. 8D).  686 

 687 

All MDP state features contribute to state values  688 

  We next examined whether token count was the only driving force for the 689 

correlations found between state values and behavior.  As was shown, current token 690 

count strongly influenced state value (Fig. 4). To assess the contribution of each of the 691 

features in the MDP to the regression results, we marginalized across each feature, 692 

thus removing the effect of variation in that feature on state value, and recomputed the 693 

regressions. For example, to marginalize over token count, state values for each trial 694 

were extracted using only the other features (TSCO, TE, NObs) after averaging over the 695 

values for all possible values of token count. The average of these state values was 696 

used as the single trial state value for the regressions.   697 

For reaction time to acquire fixation, all distributions of regression coefficients 698 

remained statistically significant for each marginalized version of the regression (Fig. 699 

9A). Removing token count from the regression had the largest effect on reducing the 700 

relationship between Vfix and reaction time to acquire fixation. Removing TSCO and 701 
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NObs in the regression for reaction time to acquire led to an increase in beta values, 702 

which suggests these factors interact and affect the regression, but are less important 703 

than token count in the regression. For both choice reaction time and probability of 704 

aborting a trial, regressions were recomputed using only one regressor, for Vcue. This 705 

was because removing the cue condition from the regression caused DV=Vcue-Vfix to go 706 

to zero and therefore made the regressions uninterpretable. Marginalizing over cue 707 

condition or tokens in the regression for choice reaction times reduced the magnitude of 708 

the regression coefficients (Fig. 9B). This reflects a weaker relationship between the 709 

state value and reaction times without these features. In the logistic regression for 710 

aborts, marginalizing over tokens also had the largest effect on the regressors, but did 711 

not eliminate the relationship between state value and the probability of aborting a trial 712 

(Fig. 9C). Taken together, these analyses show that the number of tokens strongly 713 

affects all behavioral measures but is not the only factor leading to the relationships 714 

between behavior and state value. 715 

 716 

 717 

Figure 9. Marginalization over features. Linear regressions for each behavioral feature were 718 
recomputed using state values that omitted the effect of a single feature at a time: number of 719 
tokens (NTk), trials since cashout (TSCO), number of observations of a cue pair (NObs), Task 720 
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Epoch (TE, condit). Mean regression coefficients across animals are shown (bar plots) and for 721 
each subject (dots) for three behavioral features: (A) RT to acquire fixation (B) RT to choice (C) 722 
Probability of aborting trials. Error bars s.e.m.  723 
 724 

Discussion  725 

In this study, monkeys learned to make choices to maximize gains and minimize 726 

losses of tokens.  The tokens were symbolic reinforcers that represented future juice 727 

rewards.  We designed a Markov Decision Process (MDP) model to capture the 728 

relationship between features of the task that drive behavior (i.e. states) and value.  We 729 

then related these state values to measures of motivation. The state space for the task 730 

included the number of tokens (NTk), trials since cashout (TSCO), task epoch (TE), and 731 

the number of observations of each cue pair (NObs). We found that reaction times to 732 

acquire fixation, choice reaction times, and the probability of aborting a trial were 733 

significantly related to state value and changes in state value (except abort probability). 734 

Furthermore, we demonstrated that state values were dependent on all state features, 735 

not just the number of tokens.  Number of tokens did, however, often have a large 736 

effect. These relationships between state value and behavior cannot be captured by 737 

simpler models such as the Rescorla-Wagner model, as these models are stateless and 738 

therefore cannot capture state values that depend on future rewards, nor can they 739 

account separately for tokens vs. primary rewards.  Given that the MDP also allows for 740 

modeling trial state-dependent values, it can also be used in future work to understand 741 

the neural circuitry relevant to the task.   742 

Past work has shown that symbolic (or secondary) reinforcers can drive learning 743 

and have motivational properties similar to those of primary rewards (Wolfe, 1936; 744 

Wyckoff, 1959; Jackson, 1996; Sousa and Matsuzawa, 2001; Seo and Lee, 2009; 745 
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Donahue and Lee, 2015; Farashahi et al., 2018; Taswell et al., 2018; Beran and 746 

Parrish, 2021; Yang, Li and Stuphorn, 2022; Taswell et al., 2023). This happens through 747 

the learned associations between tokens and primary reinforcers. In this task, tokens 748 

and cue images both predict rewards, although in different ways.  Cues are 749 

stochastically linked to tokens on short timescales, whereas tokens are deterministically 750 

linked to juice on longer timescales.  Cues, therefore, predict rewards, but only through 751 

tokens. The cues also change in each block, which requires rapid learning of the cue 752 

values, whereas the relationship between tokens and juice is stable and constant over 753 

the course of the experiment. The state-based modeling framework presented here 754 

accounts for the differential attributes of cues and tokens and allows for examining 755 

behavioral measures related to motivation, including trial initiation time, choice reaction 756 

times, and trial aborts.  757 

 The time to initiate a trial has been studied previously as a measure of motivation 758 

(Hamid et al., 2016; Oemisch, Johnston and Paré, 2016; Mohebi et al., 2019; Steinmetz 759 

et al., 2019). In a task which required rodents to nose poke after a light went on, rodents 760 

were faster, interpreted as increased motivation, when reward rate was higher (Hamid 761 

et al., 2016; Mohebi et al., 2019). When we investigated the relationship between state 762 

value and reaction times to acquire fixation, we found that a higher state value 763 

correlated with faster reaction times to acquire fixation. This implies a somewhat 764 

counterintuitive result: that on the trials immediately after receiving reward (during 765 

cashout), when state value is lowest, the monkeys are, on average, slower to initiate the 766 

next trial.  Thus, symbolic reinforcers have assumed the motivational properties of 767 

rewards to encourage the choice to begin work. 768 
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 Past work on choice reaction times has also suggested that reward expectation 769 

can influence execution of a choice response (Hollerman, Tremblay and Schultz, 1998; 770 

Wrase et al., 2007). Our regressions on cue state value and changes in state value from 771 

fixation suggested that reaction times to choose options were affected by other task 772 

factors, including distance to cashout, the number of tokens present, and the desirability 773 

or value of the cue condition. This fits with past work that has shown that expected 774 

outcomes can affect reaction times (Hollerman, Tremblay and Schultz, 1998; Shidara, 775 

Aigner and Richmond, 1998). In the Tokens task, once the monkeys knew the values of 776 

the cue images, the images served as a similar instruction to the possible outcomes as 777 

in past studies. Regressions on cue state value showed that as cue state value 778 

increased, reaction times decreased, as the monkeys learned to anticipate gains from 779 

certain cue conditions. Correspondingly, in loss vs. loss (-2 v -1) trials, the monkeys 780 

slowed their choices.  781 

 Aborted trials can happen for many reasons. In our Tokens task, however, we 782 

observed a systematic increase in abort trials in the condition involving only loss options 783 

(-2 v -1), which led us to investigate how cue state value and changes in state value 784 

might correlate with this behavior. Past work on trial abort behavior has shown that 785 

aborts (or refusals) occur most often in trials furthest from reward (La Camera and 786 

Richmond, 2008; Inaba et al., 2013) and trials that require the most effort (Pasquereau 787 

and Turner, 2013, 2015; Varazzani et al., 2015), suggesting that animals are more 788 

motivated to complete a trial when the cost of reaching a reward is lower. Our 789 

regression results are consistent with these findings, as monkeys were less likely to 790 

abort when the cue state value was higher.  791 
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Our analysis showed that monkeys were motivated to work when they had more 792 

tokens. However, as our marginalization over dimensions of the state vector showed, 793 

state values and our regression results depend on more than the number of tokens 794 

present. In this task, higher state value, and therefore higher discounted future expected 795 

reward, led to faster trial initiation, faster reaction times, and fewer aborts. This has 796 

implications for understanding the neural responses, as the time leading up to the 797 

receipt of the reward, also known as the anticipatory phase (Knutson et al., 2001; Ernst 798 

et al., 2004; Rademacher et al., 2017), has signals that capture expectation of future 799 

reward, which occurs in the consummatory phase (Dillon et al., 2008; Kumar et al., 800 

2014). Understanding the dynamics of anticipation, motivation, and reward in a single 801 

framework allows for linking both processes to fluctuations in neural activity in multiple 802 

brain areas.  803 

Within the presented framework, symbolic reinforcers have been recast as 804 

dimensions that drive state value. Past work involving choice tasks and state value have 805 

suggested the existence of a ventral circuit for the representation of state value 806 

(Gläscher et al., 2010; Averbeck and Murray, 2020) and state transitions (Belova, Paton 807 

and Salzman, 2008; Chan et al., 2021; Kalmbach et al., 2022). It has been 808 

hypothesized that distinct ventral and dorsal networks define behavioral goals and 809 

orchestrate actions to achieve goals, respectively (Everitt et al., 1999; Cardinal et al., 810 

2002; Averbeck and Costa, 2017; Averbeck and Murray, 2020). In choice tasks, the 811 

main behavioral goal is to reach high value states. Recent work has shown correlations 812 

between fluctuations in dopamine and state value (Hamid et al., 2016), and local control 813 

of dopamine in the ventral striatum, is related to motivation (Mohebi et al., 2019). 814 
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However, the ventral circuit, which includes the orbital frontal cortex, ventral medial 815 

prefrontal cortex, ventral striatum, ventral pallidum, and amygdala, is innervated by 816 

dopaminergic projections in multiple sites (Haber, 2014), and thus dopamine may 817 

differentially affect processing in each of these areas to support reinforcement learning 818 

and motivation (Berke, 2018; Westbrook and Frank, 2018). Furthermore, recent lesion 819 

work has shown that lesions of the ventral striatum and amygdala show only subtle 820 

deficits on performance on the Tokens task (Taswell et al., 2018; Taswell et al., 2023) 821 

but larger deficits in reversal learning tasks (Costa et al., 2016) and tasks requiring 822 

switches between action-based and stimulus-based strategies (Rothenhoefer et al., 823 

2017).   824 

The question then becomes, how are connections between symbolic 825 

reinforcement, rewards, and actions represented in the brain? Symbolic reinforcers 826 

such as tokens could be tracked directly across multiple areas, as a global 827 

representation of visual object numerosity (Tudusciuc and Nieder, 2009; Ramirez-828 

Cardenas, Moskaleva and Nieder, 2016; Viswanathan and Nieder, 2020), but 829 

numerosity does not directly have motivational value. However, symbolic reinforcers 830 

can take on a range of identities.  Furthermore, other states including abstract 831 

completion of intermediate goals can serve as symbolic reinforcers (Janssen et al., 832 

2022). Furthermore, as the capacity to measure more neural signals simultaneously has 833 

advanced, there has been growing evidence that task-related signals are represented 834 

across many areas (Dotson et al., 2018; Steinmetz et al., 2019; Fine et al., 2023).  835 

Therefore, it is unlikely that there would be a localized neural signature of an individual 836 

task feature, as most task features will be represented across many areas. Thus, we 837 
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must consider how symbolic reinforcers might be mapped onto a distributed 838 

representation that allows for flexibility in the identity of the reinforcer, and design future 839 

experiments with this in mind. Here, we have selected four features to integrate: tokens, 840 

temporal distance to reward, task epoch, and cue observations to measure the state 841 

value moment by moment in the task. The model therefore generates values for each 842 

task state, including fixation, cue presentation, token outcome, and the inter-trial 843 

interval.    844 

 In summary, we developed a computational framework that quantifies the value 845 

of symbolic reinforcers and characterizes the effect of several task features on those 846 

values.  Furthermore, the model captures not only choice behavior, but also behaviors 847 

related to motivation. In this task, reaction times to initiate a trial, choice reaction times, 848 

and the probability of completing a trial were correlated with state value and changes in 849 

state value. Our results suggest that symbolic reinforcers and rewards can have similar 850 

effects on behavior, which allows for predictions about how symbolic reinforcers might 851 

be represented in the brain.   852 

 853 
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